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Abstract

Large data sets are generally stored on disk following an organization as rows,

columns or arrays, with row storage being the most common. On the other hand,

matrix multiplication is frequently found in machine-learning algorithms as an im-

portant primitive operation. Since database management systems do not support

matrix operations, analytical tasks are commonly performed outside the database

system, in external libraries or mathematical tools. In this work, we optimize sev-

eral analytic algorithms that benefit from a fast in-database matrix multiplication.

Specifically, we study how to compute in-database parallel matrix multiplication to

solve two major family of big data analytics problems: machine-learning models and

graph algorithms. We focus on three cases: the product of a matrix by its transposed,

the powers of a square matrix and iteration of matrix-vector multiplication. Based

on this foundation, we introduce important optimizations to the computation of fun-

damental linear models in machine-learning: linear regression, variable selection and

principal components analysis. On the other hand, we present parallel graph algo-

rithms that take advantage of matrix powers and parallel vector multiplication to

solve several graph problems: transitive closure, all pairs shortest paths, reachability

from a single source vertex, single source shortest paths, connected components and

PageRank.
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Chapter 1

Introduction

1.1 Motivation

Nowadays the world has become more interconnected than before, with billions of

devices generating some kind of data. Consequently, data is generated, gathered,

and stored in a faster pace. The analysis of large amounts of data, generally stored

in parallel clusters, becomes critical for corporations and government.

Database Management Systems (DBMS) remain the most common technology

to store transactions and analytical data, due to optimized I/O, robustness and se-

curity control. Even though, the common understanding is that DBMSs cannot

handle demanding analytics problems, because relational queries are not sufficient

to express important algorithms, and scarce support of matrix operations. There-

fore, DBMS are considered cumbersome and too slow for complex analytical tasks,
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such as supervised/unsupervised learning and graph analytics. Consequently, most

of the analytical tasks become a complex data flow between the DBMS and exter-

nal analytics systems, especially popular tools on the Hadoop-Mapreduce platform.

Such complex data flows have several drawbacks: Time consuming exporting pro-

cesses, security risks, handling additional systems and tools, and additional hardware

resources.

In this work we concentrate on devising algorithms for data sets stored in parallel

database systems, working on clusters under a shared-nothing architecture. We

face several challenges: limited programmability for complex analytics, specially

Machine Learning and Graph Algorithms; lack of support for matrix operations

in the relational model; inflexibility in some systems due to the enforcement of a

data model.

1.2 Contribution Overview

Our contribution targets two families of algorithms: Computation of linear models

and graphs algorithms. The common foundation of our algorithms is the optimized

multiplication of matrices stored in a distributed manner through the cluster. Our

contributions are enumerated in a more detailed way below:

1. We show how to accelerate the computation of linear models, exploiting fast

parallel computation of a special matrix product.
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2. We present optimized queries to compute matrix-matrix multiplication for ma-

trices stored in parallel DBMSs, and an application for graph algorithms: All

pair shortest paths, triangle counting and transitive closure.

3. We propose a unified algorithm for parallel DBMSs to compute reachability

from a source vertex, single source shortest path, connected components and

PageRank.

On the other hand, our research generates technical benefits to the data analyt-

ics community: (1) in-database analytics avoids complex data flows between diverse

systems and applications, alleviating the burden of transferring data and program-

ming scripts for multiple systems; (2) since DBMSs possess mature data security and

recovery features, security and privacy risks are minimized; (3) because our parallel

algorithms are in general several times faster than current solutions, the process can

be executed in a cluster of smaller size, which generates financial savings by using

less energy and hardware resources.

1.3 Dissertation Organization

The organization of this dissertation is presented below:

Chapter 2 presents a literature review about linear models and graph analytics

computation in parallel data systems. In Chapter 3 we present notation, definitions

and background information about linear models and graph analytics. We discuss

the representation of data sets in database systems. Chapter 4 explains details about

3



the computation of a summarization matrix, and how it is exploited to accelerate

linear regression, variable selection, and Principal Component Analysis. Chapter 5 is

devoted to the computation of powers of a square matrix in parallel database systems;

furthermore, we present an application to solve three graph problems: transitive

closure computation, all pairs shortest paths, and triangle counting. In Chapter 6

we explain how to optimize the computation of iterative matrix-vector multiplication,

and we apply it to four graphs problems: reachability from a source vertex, single

source shortest path, connected components and PageRank. Finally, in Chapter 7

we present the conclusions of our work as well as research issues for future work.
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Chapter 2

Related Work

2.1 Analytics in Parallel Systems

The MADlib Analytics library [19] is a comprehensive suite of statistical and machine

learning methods, that runs on top of a DBMS. Matrix multiplication is one impor-

tant primitive of MADlib, solved with call to specialized linear algebra libraries (i.e.,

LAPACK). Although MADLib supports linear regression, it does not address the

problem of variable selection. SciDB [46] is a parallel array-storage system providing

some analytical functions including Singular Value Decomposition (SVD), quartiles,

average and standard deviation, as well as matrix multiplication. Like MADLib,

SciDB’s linear algebra functions calls LAPACK. On the Hadoop platform, Mahout

is a set of Java libraries of primitives for statistics and Machine Learning, to facilitate

development of analytics algorithms under the MapReduce model. Apache Spark is

another system built on top of Hadoop DFS. Spark[49] is an in-memory system,
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designed to overcome MapReduce limitations running interactive loads. Specialized

libraries for machine learning (MLlib [33]) and graph algorithms (GraphX [16]) have

contributed to the increased popularity of Spark.

2.2 Graph Algorithms in Parallel Systems

In recent years the problem of solving graph algorithms in parallel DBMS with re-

lational queries has received limited attention. Recently, the authors of [24] studied

Vertica as a platform for graph analytics, focusing in the conversion of vertex-center

programs to relational queries, and in the implementation of shared-memory graph

processing via User Defined Functions (UDFs), in one node. [13] describe the en-

hancements to SAP HANA to support graph analytics, in a columnar in-memory

database. In [48], the authors show that their SQL implementation of shortest path

algorithm has better performance than Neoj4. Note that the later work runs in one

node with a large RAM (1 TB). In our previous work [36], we proposed optimized

recursive queries to solve two important graph problems with SPJA queries: Transi-

tive closure and All Pairs Shortest Path. This recent work also shows that columnar

DBMS technology performs much better than array or row DBMSs. Running on top

of Hadoop, Pegasus is a graph system based on matrix multiplications; the authors

propose grouping the cells of the matrix in blocks, to increase performance in a large-

RAM cluster. Our work differentiates of the previously described in several ways: 1)

we present a unified framework for compute graph algorithms with relational queries;

2) we present optimizations for columnar and array DBMS based in a careful data

6



distribution; 3) the out-of-core graph computation allows us to analyze graphs with

hundreds millions edges with minimum RAM requirements.

7



Chapter 3

Background and Definitions

3.1 Parallel DBMSs under Shared-nothing Archi-

tecture

The algorithms in this work are conceived for parallel DBMSs under a shared-nothing

architecture. Although our optimized algorithms can work in any DBMS, in our pre-

vious work [36] we showed experimentally that columnar and array DBMSs present

performance substantially better than row DBMSs for graphs analysis. For this

reason in the current study we concentrate on columnar and array DBMSs. These

systems are designed for fast query processing, rather than transaction processing.

In this work, we consider parallel DBMSs under a sharing-noting architecture: a

cluster of N nodes, each one with its own storage and memory.
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Row DBMS

The pioneer parallel database management systems stored data by records, whose

fields are stored in contiguous space. This systems were aimed to exploit the I/O

bandwidth of multiple disks [12], improving in this way reading and writing perfor-

mance, and allowing the storage of data too big to fit in only one machine. Large

tables are to be partitioned through the parallel system. Three common methods of

partitioning are: 1) splitting the tables to the nodes by ranges with respect to an

attribute’s value; 2) distributing records to the nodes in a round-robin assignment;

3) using a hash function to assign records to the nodes. Currently, the last method

is the most commonly used.

Columnar DBMSs

Columnar DBMSs emerged in the previous decade presenting outstanding perfor-

mance for OLAP. C-Store [44] and Monet-DB [21] are among the first systems that

have exploited the columnar storage. Columnar DBMSs can evaluate queries faster

than traditional row-oriented DBMSs, specially queries with join or aggregation op-

erations. While row DBMSs generally store data in blocks containing a set of records,

columnar DBMSs store columns in separate files, as large blocks of contiguous data.

Storing data by column benefit the use of compression. Due to the low entropy of

the data in a column, low-overhead data compression has been exploited for further

performance improvements. This data compression does not hinder parallelism.
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Array DBMSs

Array store is a technology aimed to provide efficient storage for array-shaped data.

Most of the array DBMSs support vectors, bi-dimensional arrays and even multi-

dimensional arrays. Array stores organize data by data blocks called chunks [43]

[45], distributed across the cluster. In bi-dimensional arrays, chunks are square or

rectangular blocks. The chunk map is a main memory data structure that keeps the

disk addresses of every chunk. Each cell of the array has a predefined position in

the chunk, just as regular arrays are stored in main memory. Because the access to

the data is relative to the initial address of the chunk, user-defined indexes are not

necessary. Parallel array DBMSs distribute data through the cluster’s disk storage

on a chunk basis.

3.2 Data Set as a Matrix

We first define X, the input matrix (data set obtained after preprocessing [38]). Let

X = {x1, ..., xn}, where xi is a vector in IRd. In other words, X is a d × n matrix.

Notice that for notational convenience X is defined as a large set of column vectors.

Intuitively, X can be pictured as a wide rectangular matrix. Supervised (predictive)

models require an extra attribute [5]. For regression models X is augmented with

a (d + 1)th dimension containing an output variable Y . For classification models,

there is an extra discrete attribute C, where is C is generally binary (e.g., false/true,

bad/good). We use i = 1...n and j = 1...d as matrix subscripts. We use Θ, a set of

vectors, matrices and associated statistics, to refer to a machine learning model in a

10



generic manner. Thus, Θ can represent models such as principal component analysis

(PCA), linear regression (LR), among others.

3.3 Graph Data Set

Let G = (V,E) be a directed graph, where V is a set of vertices and E is a set of

edges, considered as an ordered pairs of vertices. Let n = |V | vertices and m = |E|

edges. The adjacency matrix of G is a n × n matrix such that the cell i, j holds a

1 when exists an edge from vertex i to vertex j. In order to simplify notation, we

denote as E the adjacency matrix of G. The outdegree of a vertex v is the number of

outgoing edges of v and the indegree of v is the number of incoming edges of v. The

algorithms in this work use a vector S to store the output and intermediate results.

The ith entry of S is a value corresponding to vertex i, and it is denoted as S[i].

11



Chapter 4

Linear Models with Optimized

Parallel Matrix Multiplication

4.1 Summarization Matrix for Linear Models

A statistic is a function of a random sample of a population. Assuming a population

described by a specific distribution with parameter Θ, a sufficient statistic as good

as the complete sample to compute the model Θ. Under a Gaussian distribution, a

fundamental set of sufficient statistics is:
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L =
n∑
i=1

xi (1)

Q = XXT =
n∑
i=1

xix
T
i (2)

n = |X| (3)

As we will explain in detail in section 4.5 , the linear model uses the augmented X

matrix, represented as X. We denote Q as equivalent to the matrix product XXT .

In [40], we introduced a more general augmented matrix Z, created by appending

to X one additional row, which contains the vector Y . Because X is (d + 1)× n, Z

contains (d+ 2) rows: The (d+ 1) rows of X, plus the additional row of Y. Thus:

Γ = ZZT (4)

contains a summary of the whole data set, sufficient to compute the linear model.

Γ =


n

∑
xTi

∑
yi∑

xi
∑
xix

T
i

∑
xiyi∑

yi
∑
yix

T
i

∑
y2i



=


n LT

∑
yi

L Q XY T∑
yi Y XT Y Y T


=

 Q XY T

YXT Y Y T

 (5)
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In Big Data problems, the number of data point is much larger than the number

of dimensions. Under this conditions, the (d+ 2)× (d+ 2) matrix Γ contains a very

compact set of quantities, useful for computing linear regression, variable selection

and PCA. Since the quantities on Γ are summations, this matrix computed in parallel.

4.2 Parallel Computation in Multi-core CPUs,

Single Node

4.2.1 Aggregate UDF in row DBMS for n >> d

The parallel computation of sufficient statistics with multiple CPUs in a single node

was presented in a previous research work of Ordonez et. al [39]. The parallel

computation is implemented by aggregated User Defined Functions (UDFs). The

parallel computation of the summarization matrix occurs in four steps:

1. Initialize: In this step and variables and data structures for the aggregation

get their initial value.

2. Accumulate: This is the key step in parallel processing. Separate threads

computes partial versions of the summarization matrix.

3. Merge: This step merges the partial results computed in the previous step by

independent thread. Thus, the global aggregation is computed in this step.

4. Terminate: This step returns the final aggregation result to the user, after the

14



partial results have been merged.

When the data set has a moderated dimensionality (i.e., d < 1000 ) the data

set can be stored in a relational table in the usual manner: rows represent data

points and columns dimensions. Of course, the number of dimensions can not

exceed the maximum number of columns allowed by the DBMS.

4.2.2 Aggregate UDF in row DBMS for d >> n

When d >> n, the number of dimensions might exceed the maximum number of

columns (MaxCol) per a DBMS table [8]. In case of n < MaxCol , we propose

storing the data set in a transposed format: columns store data points and rows

store dimensions. On the other hand, the computed matrix Γ may fit or not in main

memory. This situation makes a substantial difference for the programming, since a

large Γ must be stored in disk.

4.2.3 Computation in Array DBMS

While n and L can be efficiently computed in SciDB in a trivial manner, a straightfor-

ward computation of Γ with SciDB built-in operators may lead to inefficient queries,

as we will show in our experiments. The straightforward (or intuitive) computa-

tion of Γ is based on calculating it by using matrix multiplication and transposition,

just like its mathematical definition (see equation 4 ). Thus, two straightforward

solutions based on SciDB custom operators are:

15



• use gemm() and transpose() built-in operators to compute Γ

• use crossprod() function, available in SciDB-R to compute Γ

We present below the sequential algorithm to compute Γ.

Data: X = {x11, ...xn} , Y = {y11, ...yn}
Result: Γ

1 Z ← [1, X, Z];
2 Γ← 0 ;
3 for i = 1...n do
4 for a = 0...d+ 1 do
5 for b = 0...d+ 1 do
6 Γab ← Γab + zia ∗ zab
7 end

8 end

9 end

Algorithm 1: Gamma Computation

4.2.4 Computation with LAPACK

LAPACK is a high performance library for linear algebra operations, including

matrix-matrix and matrix-vector multiplication. LAPACK performs matrix mul-

tiplication in main memory only, contrasting to our proposed algorithm which does

not need to upload the complete data set in RAM. Notice our contribution does

not rely in matrix multiplication with this library, but we run experiments comput-

ing Γ with LAPACK in order to understand the performance differences with our

algorithm. In the experimental section we will present a performance comparison

between computing Γ calling LAPACK and using our proposed method.
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4.3 Parallel Computation in Multiple Nodes

4.3.1 Computation with ScaLAPACK in Array DBMS

ScaLAPACK [10] ( Scalable Linear Algebra Package) is a library that redesigns

several LAPACK functions to work in a cluster of distributed memory. ScaLA-

PACK requires properly partitioned matrices, and relies on MPI (Message Passing

Interface). ScaLAPACK is widely used in numerical computations in HPC settings.

SciDB has incorporated ScaLAPACK to solve Linear Algebra computations, includ-

ing SVD and matrix multiplications. Since the summarization matrix Γ is defined as

a matrix multiplication, we conduct experiments to compare Γ versus ScaLAPACK.

4.3.2 Computation with Custom Operator in Array DBMS

In [40], we have explained the computation of Γ in an array DBMS with multiple

computing nodes. Exploiting parallelism in multiple nodes is a requirement that com-

plicates programming, because we need to ensure that X can be evenly partitioned

across N processing nodes, with minimal or no need of synchronization overhead [40].

The advantage is, of course, the ability to scale processing to more nodes as the data

set size grows. Our Γ operator works fully in parallel with a partition of X into N

database subsets D1∪D2∪ ...DN = X, where we compute ΓI on DI for each node I.

When every node is done with its portion of the computation, all the partial ΓI are

concentrated in the coordinator nodes, which computed the global Γ = Γ1 + ..+ ΓN .

This sequential algorithm presented in section 4.2.3 can be easily generalized to a
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parallel one, due to the additive properties of Γ

4.4 Principal Components Analysis (PCA)

Principal Components analysis is a well known analytical technique, applied in many

domains as neuroscience, computer vision, semantic analysis of large databases, etc.

The objective of PCA is to reduce the noise and redundancy by re-expressing the

data set in a new orthogonal basis, which is a linear combination of the original basis

[18]. The Principal Components are a set of vectors, ordered by their associates

variances in decreasing order. Principal Components are efficiently calculated by

computing SVD in the correlation matrix. Given a matrix M , SVD is a factorization

expressed as M = UΣV T

4.5 Linear Regression

Let X = {x1, . . . , xn} be a set of n observations with d explanatory variables and

Y = {y1, . . . , yn} be a set of numbers such that each yi represents an outcome of xi.

Using the matrix notation to represent the data, Y ([1 × n]) and X ([d × n]), the

linear regression model can be expressed as:

Y = βTXXX + ε (6)
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where β = [β0, . . . , βd] is the vector of regression coefficients; ε represents the error,

with a Gaussian probability distribution and XXX is X augmented with a row of n 1s

stored in an extra dimension X0. The canonical regression setup [15] assumes that

Y has a normal distribution, as follows:

Y |β, σ2, X ∼ Nn(Xβ, σ2In) (7)

The vector β is usually estimated using the Ordinary Least Squares method [42].

Table 4.1 summarizes the notation of the linear regression model.

Table 4.1: The Linear Regression Model.

Matrix Dimensions Name

Y 1× n Dependent Variable
X d× n Independent Variable
XXX (d+ 1)× n Augmented Independent Variable
β (d+ 1)× 1 Regression Coefficients

4.6 Bayesian Variable Selection

Variable selection is the search for the best subsets of variables that are good pre-

dictors of Y [34]). The assumption of this search is that the data contains features

that are redundant and can be safely excluded from the model, since they provide

little relevant information. There are many reasons to undertake this search:

• To express the relationship between the dependent variables and the explana-

tory variables in the simplest way possible [34]
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• To identify the which variables are important and which are negligible predic-

tors [34]

• To facilitate data visualization and interpretation [17]

Finding which subsets are the most appropriate is not computationally trivial, since

there are 2d potential combinations of variables. Evidently, this problem cannot be

solved using a brute force method when the number of dimensions is high. Tradi-

tional greedy methods (stepwise methods, for instance [20]) focus on finding the best

subset of variables, but the probabilistic Bayesian approach aims to identify several

promising subsets of variables.

The set of selected variables can be represented by a d-dimensional vector γ ∈

{0, 1}d, such that γj = 1 if the variable j is selected and γj = 0 otherwise. We denote

by Mγ the model that selects k of the d variables, corresponding to the vector γ.

Given γ we can easily find how many variables were selected by performing the dot

product k = γT · γ. Throughout this thesis we will use γ as an index on selected

variables such as βγ and XXXγ.

Under the Bayesian approach, the unknown parameters of the model θ = {β, σ, γ}

are considered random variables [37]. The goal under the Bayesian approach is to

find the models with higher probabilities, instead of a single model.

20



4.6.1 SSVS

Stochastic Search Variable Selection (SSVS) is a classic Bayesian method for variable

selection [15]. SSVS uses the Gibbs sampler, a Monte Carlo method, to find the

Markov chain β0, σ0, γ0, β1, σ1, γ1...

Each one of these values is obtained by sampling, as follows:

βj ∝ f(βj|Y, σj−1, γj−1) (8)

σj ∝ f(σj|Y, βj−1, γj−1) (9)

γji ∝ f((γi)
j|Y, βj, γ(i)j) (10)

These expressions show that β and σ are required in order to compute γ. More-

over, the computation of σ requires the complete data set (Y and X). For such

reason, we could not optimize SSVS, because we would need to scan the complete

data set in each iteration. Instead, we consider Gibbs sampler with a different prior

formulation, as we explain in the next subsections.

4.6.2 Zellner G-prior

The Zellner G -prior is a well know prior specification for linear models [31], which

is a member of the family of conjugate priors. Zellner proposed a particular form of

the Normal-Gamma family, with mean β and a constant c multiplying the variance.

β|σ2, X ∼ Nk+1

(
β̃, cσ2

(
XXT

)−1)
(11)

σ2 ∼ π
(
σ2|X

)
∝ σ−2 (12)
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A important advantage of the Zellner G-prior is that enables analytical margining

out of β and σ from π(β, σ, γ|Y ). Thus, the computation of β and σ is not required,

and the Markov chain becomes simpler: γ0, γ1, γ2...

4.6.3 Bayesian Variable Selection with Gibbs Sampler and

the Zellner G-prior

Since the search space of this computational problem is exponential (2d subsets

of variables), an exhaustive search is impractical for even a moderately large d.

Though there are many techniques available in the literature [20] to deal with such a

problem, a Bayesian approach provides information about the prior probabilities as

an added bonus. Because it is very difficult to produce a solution to such a problem,

several authors [15, 34] exploit Markov chain Monte Carlo techniques, such as the

Metropolis-Hastings Method and the Gibbs sampler, to obtain accurate results and

to sample from the posterior distributions. The Gibbs sampler is a Markov chain

Monte Carlo method to obtain a sequence of observations approximated from the

posterior probability. In the case of Variable Selection, this sequence of observations

is characterized by a vector γ[i], that describes the variables selected at iteration i of

the sequence [15] γ[i] is obtained from the previous vector, γ[i−1], as follows: For every

variable xj the normalized probabilities of p(γ
[i]
j = 0) and p(γ

[i]
j = 1) are calculated.

Based on these probabilities either γ
[i]
j = 0 or γ

[i]
j = 1 is chosen by sampling and

the j position of vector γ[i] is updated. After N iterations we obtain the Markov

chain sequence γ[0], . . . , γ[N ]. To avoid introducing a bias into the prior computation
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due to initial instabilities, the first B iterations of the Markov chain are usually

discarded. This is called the burn-in period. After the burn-in, it is assumed that we

have reached a stable distribution (the process becomes ergodic) and we can safely

sample the priors.

4.6.4 Three-step algorithm

Very-high-dimensional problems are hard and very demanding in computing re-

sources. To reduce the computational burden, we proposed in [32] a Bayesian Vari-

able Selection method of three steps:

1. Pre-selection: This process performs an initial screening of variables using the

correlation ranking method [17, 22]

2. Summarization: Compute the summarization matrix Γ

3. Iterative Computation: Compute Gibbs sampler with the Zellner prior, ex-

ploiting Γ.

4.7 Experimental Evaluation

We conduct experiments with the network intrusion data set from the KDD99 Cup,

to evaluate the execution performance of our algorithms. To understand time com-

plexity, we replicate the data set to increase the input size. In Table 4.2, we compare

standard statistical functions from the R libraries versus our optimized algorithms,

23



Table 4.2: Comparing the computation of the model Θ using R and DBMS+R;
data set KDD; local server; time in seconds

d n PCA LR VS
R R+DBMS R R+DBMS R R+DBMS

10 100k <1 <1 <1 <1 3 4
10 1M 5 1 6 1 8 5
10 10M 45 7 50 7 593 10
10 100M fail 65 fail 70 fail 93

100 100k 6 3 6 3 34 15
100 1M 61 17 61 17 113 29
100 10M fail 195 fail 195 fail 207

Table 4.3: Bayesian variable selection (VS) in gene data set (d = 12506, n = 248):
Comparing R+SciDB with R at 1000 iterations; time in secs.

d R+SciDB R unoptimized R optimized
with Γ

100 17 1139 16
200 43 * 43
400 83 * 85
800 199 * 20

which compute the summarization matrix Γ in the parallel DBMS and the actual

model in R. Only in the case of the smallest data set the execution time of plain R is

comparable to R exploiting Γ. In general, our optimized algorithms are one or even

two orders of magnitude faster. Moreover, plain R fails when the data set does not

fit in RAM, whereas our algorithms keep working with promising performance.

Recall that Γ is by definition a matrix multiplication: Z × ZT . We run ex-

periments to compare the performance of the Gamma operator versus the matrix

multiplication of Math Kernel Library (MKL), an implementation of LAPACK for

Intel microprocessors. Notice the time for the Gamma operator includes reading the

data set from disk, but the times for MKL are measured when the data is already
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Table 4.4: Comparing dense Gamma Operator vs MKL BLAS (parallel LAPACK)
with synthetic data sets; time in secs.

n d Gamma Operator MKL BLAS
1M 100 31 3
1M 200 107 8
1M 400 374 389
1M 800 1449 2160

10M 100 323 fail
10M 200 1058 fail
10M 400 stop fail
10M 400 stop fail

Table 4.5: Comparing SciDB programming mechanisms; data set KDDnet d = 100;
1 node; time in secs.

n SCALAPACK SciDB-R built-in Gamma Operator
10k 3.1 19.1 0.3

100k 15.3 76.8 1.3
1M 177.8 stop 13.7

10M fail stop 150.2

loaded in RAM. Thus, we give to MKL an advantage. The results are shown in table

4.4. While MKL is faster for lower values of n and d, the Gamma operator is faster

when d ≥ 400. Finally, while MKL fails when the matrices do not fit in RAM, the

Gamma operator is able to finish the computation.

We run additional experiments to compare the performance of the Gamma opera-

tor versus SCALAPACK, and a built-in operator available in SciDB-R. The Gamma

operator shows a clear advantage: One order of magnitude over the closer competitor,

matrix multiplication with SCALAPACK.
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Chapter 5

Graph Analytics with Parallel

Matrix-Matrix Multiplication

5.1 Matrix Powers with Linear Recursion

Matrix Powers can be computed elegantly using recursive queries. Legacy row-store

database systems generally provide recursive queries, as in the case of Postgres, Or-

acle, Teradata and MS SQL Server. In contrast, recursive queries are not supported

in array or columnar DBMS, with SAP Hana as the exception. Our contribution

consists on presenting optimized recursive queries in columnar and array DBMS,

with an application on graph algorithms. The standard ANSI SQL defines a syntax

to create recursive views using RECURSIVE VIEW. A recursive view has one or

more non-recursive SELECT statements, and one or more SELECT statements with

recursive references. The non-recursive part is known as the ”base step”, and the
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statement with a recursive reference is the ”recursive step”. Although the steps may

appear in any order, we show firstly the base step, for the sake of clarity.

We study queries of the form: Rd = Rd ./ E, where the most common join

predicate is equality in equi-join Rd.j = E.i (finding connected vertices). Within

linear recursive queries the most well-known problem is computing the transitive

closure of G, which accounts for most practical problems. As noted above, transitive

closure is deeply related to matrix multiplication. Linear recursion is specified by a

join operator in a recursive select statement, where the declared view name appears

once in the FROM clause [36]. In general, the recursive join condition can be any

comparison expression, but we focus on equality (i.e., equi-join). To avoid long runs

with large tables, infinite recursion with cyclic graphs or infinite recursion with an

incorrectly written query, it is advisable to add a WHERE clause to set a threshold

on recursion depth (k, a constant).

We define queries for the two problems introduced in Section 2. We start by

defining the following recursive view R, which expresses the basic recursion to join

E with itself multiple times. We emphasize R appears once in the FROM clause

obeying a linear recursion

5.2 Recursive Query processing

We start by reviewing SQL queries for the standard algorithm to evaluate recursive

queries with SQL: Seminaive. Such SQL queries do not depend on any specific storage

mechanism or database system architecture. After understanding these basic aspects,
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we revisit optimization of recursive queries. We focus on contrasting how recursive

queries are optimized in a columnar DBMS compared to row and array DBMSs.

We study the optimization of SPJ queries involving selection, projection and join

operators where projection includes duplicate elimination and group-by aggregations

as two particular cases. For each operator we first present its optimization from an

algebraic perspective and then we discuss how the operator is evaluated considering

each different DBMS architecture.

5.2.1 Seminäıve Algorithm

In order to make this chapter self-contained we review Seminäıve, using as input

the graph G defined in Section 3.3 The standard and most widely used algorithm to

evaluate a recursive query comes from deductive databases and it is called Seminäıve

[3, 4]. The Seminäıve algorithm solves a general class of mathematical logic problems

called fixpoint equations [3, 2]. Let Rk represent a partial output table obtained from

k − 1 self-joins with E as operand k times, up to a given maximum recursion depth

k:

Rk = E 1 E 1 · · · 1 E,

where slightly abusing notation each join uses E.j = E.i (i.e., in SQL each table

has an alias E1, E2, . . . , Ek). The base step produces R1 = E and the recursive steps

produce R2 = E 1 E = R1 1R1.j=E.i E, R3 = E 1 E 1 E = R2 1R2.j=E.i E, and so

on. Notice that the general form of the recursive join is Rd+1 = Rd 1Rd.j=E.i E, where
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the join condition Rd.j = E.i links a source vertex with a destination vertex if there

are two edges connected by an intermediate vertex. Notice that at each recursive

step a projection (π) is required to make the k partial tables union-compatible.

Assuming graphs as input, π computes d = d + 1, i = Rd.i, j = E.j, p = R.p ∗ E.p

and v = Rd.v + E.v at each iteration:

Rd+1 = π
d,i,j,p,v

(Rd 1Rd.j=E.i E). (13)

In general, to simplify notation from Equation 13 we do not show neither π nor

the join condition between R and E: Rd+1 = Rd 1 E. The final result table is the

union of all partial results: R = R1 ∪R2 ∪ · · · ∪Rk. If Rd eventually becomes empty

at some iteration, because no rows satisfy the join condition, then query evaluation

stops. In other words, R reaches a fixpoint [2, 47]). The query evaluation plan is a

deep tree with k − 1 levels, k leaves with table E and k − 1 internal nodes with a

1 between Rd and E. Therefore, the query plan is a loop of k − 1 joins assuming

recursion bounded by k.

The following SQL code implements Seminäıve [35] and it works on any DBMS

supporting SQL. Notice graph cycles are filtered out to avoid double counting paths

and reducing redundancy. It is a good idea to set a threshold k on recursion depth

instead of reaching a fixpoint computation [4], in order to bound evaluation time on

large or dense graphs. Since a real database may contain multiple edges per vertex

pair it may be necessary to pre-process the graph. In a similar manner, we may

insert into temporary tables multiple edges (i.e., bag semantics), which can be later
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eliminated to compute the final set union in R.

/* pre-process E: delete duplicate edges per vertex pair

from some input table T with multiple edges per vertex pair */

SELECT i, j,min(v),max(1)

INTO E

FROM T

GROUP BY i, j ;

/* base step */

INSERT INTO R1

SELECT 1, i, j, v, 1

FROM E;

/* recursive step expansion */

FOR d = 1 . . . k − 1 DO

INSERT INTO Rd+1

SELECT d+ 1, Rd.i, E.j,Rd.p ∗ E.p, Rd.v + E.v

FROM Rd JOIN E ON Rd.j = E.i

WHERE (Rd.i 6= Rd.j) /* eliminate loops */ ;

END

/* R = R1 ∪R2 · · · ∪Rk */

FOR d = 2 . . . k DO

INSERT INTO R
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SELECT i, j, p, v FROM Rd;

END

5.2.2 Optimizing Recursive Join: Storage, Indexing and Al-

gorithm

We first study how to efficiently evaluate the most demanding operator in recursive

queries: the join operator. We focus on computing G+, the transitive closure of

G, without duplicate elimination since it involves an expensive sort. As explained

above, G+ requires an iteration of k − 1 joins between Rd and E, where each join

operation may be expensive to compute depending onm andG structure. Notice that

computing Ek requires a GROUP BY aggregation, which has important performance

implications and which has a close connection to duplicate elimination. Duplicate

elimination is studied as a separate problem and time complexity is analyzed at the

end of this section, after all optimizations have been discussed.

The first consideration is finding an optimal order to evaluate the k − 1 joins.

From the Seminäıve algorithm recall Rd 1 E with join comparison Rd.j = E.i

needs to be evaluated k − 1 times. But since evaluation is done by the Semi-näıve

algorithm there exists a unique join ordering. R1 = E and Rd = E 1 E 1 · · · 1

E = ((E 1 E) 1 E) 1 . . . E) 1 E for d = 2 . . . k. Clearly, the order of evaluation

is from left to right. In this work, we do not explore other (associative) orders

of join evaluation such as ((E 1 E) 1 (E 1 E)) 1 ((E 1 E) 1 (E 1 E)) . . .

because they require substantially different algorithms. Computing the final result
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R = R1 ∪ R2 · · · ∪ Rk does not present any optimization challenge when duplicates

are not eliminated (Näıve algorithm). Therefore, we will focus on evaluating Rd 1 E

and then discuss its generalization to k − 1 joins.

In a columnar DBMS [13, 21, 28, 44] each column is stored on a separate file, where

column values are sorted by a specific, carefully selected, subset of columns. Since

repeated values end up being contiguous it is natural to use compression. In this case

the natural compression algorithm is Run-Length Encoding (RLE), where instead of

storing each value the system stores each unique value and its frequency. When there

are many repeated values such compressed storage dramatically reduces I/O cost and

it can help answering aggregations exploiting the value frequency. It is noteworthy

there are no indexes from the DBA perspective: the columnar DBMS maintains

internal sparse indexes to the first and last value of each compressed block. The join

optimization involves sorting E ordering by i, j and creating a sorted temporary table

Rd ordering by j, i (i.e., inverting the two ordering columns) which enables a hash

join or a merge join, with a merge join being preferable because for the columnar

DBMS merge joins work in time O(m), skipping the sort phase of a sort-merge join.

Otherwise, hash joins are a good alternative, with average time O(m), but they are

sensitive to skewed key distributions.

In a row DBMS the fastest algorithms are hash joins (O(m) average), followed

by merge-sort joins ( O(m log(m)) worst case). If both tables are sorted by the

joining key the row DBMS can choose the same merge join algorithm, explained

above, bypassing the sorting phase resulting also in time O(m). On the other hand,
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if one table is sorted, but the other is not the row DBMS generally chooses a sort-

merge join taking time O(m log(m)). We should point out that because the join

condition is Rd.j = E.i, in general there are multiple connecting edges per vertex,

resulting in many duplicates. When using hash joins such high number of duplicate

values produces many collisions which must be handled. In a row DBMS there are

two major choices to accelerate joins: physically sorting rows in Rd or E (or both)

or creating an index on i or j to speed-up joins. In general, creating an index is

more expensive than sorting in multiple iterations. Since index creation on a large

temporary table is expensive and there are k−1 temporary tables we sort E edges by

i and Rd by j, as the default join optimization. This tuned optimization is equivalent

to the sorted projection used in a columnar DBMS.

In the array DBMS [46] there are two major features to improve join evaluation:

(1) chunk size, which involves setting sizes of a 2-dimensional subarray (i.e., similar

to a block of records). (2) sparse or dense storage, which requires knowledge on

the fraction and distribution of zeroes across chunks. For a 2-dimensional array

setting chunk size further requires deciding if the chunk shape should be squared or

rectangular. Since E is squared we believe it is more natural to choose a squared

chunk. Deciding sparse or dense storage is easy since it simply involves deleting

zeroes. However, manipulation in main memory must be carefully considered: a

dense chunk is transferred almost directly into a dense array in main memory, whereas

a sparse chunk requires either converting to a dense representation or using a special

subscript mechanism for sparse arrays. Needless to say, a dense array in RAM for a

dense E is faster. Chunks are automatically indexed based on the chunk boundaries
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with a grid-like data structure, which may saturate RAM if chunk size is too small

(i.e., a fine grid). The array DBMS physically sorts cells within each chunk in

major column order (i.e., 1st chunk dimension, 2nd chunk dimension and so on).

Therefore, changing cell order on secondary storage is not possible. We emphasize

that in general it is necessary to tune chunk size depending on the graph density.

But there is a catch-22 situation: tuning chunk size cannot be done without having

some knowledge about G and knowing G structure requires loading G into the array

DBMS with a chunk size already set. Therefore, this is a fundamental optimization

difference with the column and the array DBMS, where the block size plays a less

significant role.

5.3 Data Partitioning

The computation of analytics algorithms under a shared nothing architecture requires

a careful distribution of the data. This is specially important for the computation of

matrix operations, that may require several passes to the input matrices. In general,

the objective of data partitioning is to improve data locality, for instance, exploiting

the CPU cache to get the operators closer to the CPU. Our data partition strategy is

aimed to improve locality at the level of a computing node in the cluster. Specifically,

we study how to speed up the parallel join evaluation, to ensure data locality.

Recall that our algorithm relies on the multiplication of two matrices: Ri and E.

To ensure join locality, the data in Ri is distributed through the cluster nodes by

a hash function applied to the join column j. Table E is distributed by the same
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a) Data partitioning optimizing  R JOIN E ON R.j=E.i
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Figure 5.1: Partitioning of Table E in 4 nodes

hash function, applied in this case to column i. As a result, rows matching on the

join condition are found in the same computing node. A second consideration about

the data storage is its order. When the two tables in the join are stored sorted by

the respective column on the join condition, the matching algorithm does not need

to order the data; therefore, a merge join is feasible to join the data. When the

data is already sorted, merge join is the most efficient algorithm, with linear time

complexity.

5.4 Applications for Graph Algorithms

5.4.1 Triangle Counting

A triangle in a graph is a path of length three that starts in a vertex v1 and returns

to the same v1. The value of the entry i, j of matrix E3 corresponds to the number

of paths of length 3 from i to j. Thus, the value in E3
i,i is equal to the number
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of triangles that the vertex i participates in. Clearly, if G is a directed graph, the

number of triangles in G is computed by 1
3

∑n
i=1E

3
i,i.

Although elegant, the solution by a summation of the diagonal of E3 is not as

efficient as the following: Compute E2. Then, compute the diagonal of E3 only.

We express this computation with relational algebra as follows: Compute E2 to

get the number of paths of length 2. Then, join E2 to E, with joining condition

E2
j = Ei ∧ E2

i = Ej. The result of the join operation is the number of triangles per

vertex. To get the total quantity of triangles in the graph, we sum up the number

of triangles per vertex and divide by 3.

σπE2.i,E2.j,E2.v(E
2 ./E2

i =Ej∧E2
j=Ei

) (14)

Optimizations for Undirected Graph

When G is undirected, the adjacency matrix becomes symmetric, because for every

edge i, j a backward edge j, i shall to be included. As a consequence, the expression

in 14 returns many redundant cyclic paths. More over, the computation of E2 is

affected by an unnecessary burden of redundant paths.

5.4.2 Transitive Closure

We consider π as a general operator that projects chosen columns, eliminates du-

plicates and compute GROUP BY aggregations. We start by discussing duplicate

elimination, from which we generalize to group-by aggregations.
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Optimizing Duplicate Elimination

This optimization corresponds to the classical transitive closure problem (reachabil-

ity): edge existence in G+ instead of getting multiple paths of different lengths (in

terms of number of edges, distance or weight). In fact, getting all paths is a harder

problem since each path represents a graph and therefore, storage requirements can

grow exponentially for dense graphs.

Recall πi,j(Rd) = πi,j(E 1 E 1 · · · 1 E). Then the unoptimized query is

πi,j(R) = πi,j(R1∪R2∪· · ·∪Rk). n UNiOn the other hand, the equivalent optimized

query is

πi,j(R) = πi,j(πi,j(R1) ∪ πi,j(R2) ∪ · · · ∪ πi,j(Rk)).

Notice a πi,j(R) is required after the union. In general, pushing πi,j(R) alone

requires more work at the end than pushing πi,j,sum(R) due to the additional pass,

but it does not involve computing any aggregation.

When this optimization is turned off duplicates are eliminated only at the end of

the recursion.

SELECT DISTINCT i, j FROM R;

On the other hand, when this optimization is turned on duplicates are incremen-

tally eliminated at each recursion depth d. Notice an additional pass on R is still

needed at the end.
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FOR d = 2 . . . k DO

INSERT INTO R

SELECT DISTINCT d, i, j FROM Rd;

END

SELECT DISTINCT i, j FROM R;

Notice a GROUP BY i, j a with a sum() aggregation, does not make sense: the

sum E +E2 + ..+Ek does not make sense since it would overlap path length infor-

mation, but it makes sense for a min() aggregation. Therefore, this is an important

difference between both classes of queries.

In the array DBMS duplicates must be eliminated at each iteration due to the

array storage model. Otherwise, it would be necessary to add a new array dimension

with the recursion depth, resulting in a 3D array. Therefore, this optimization cannot

be turned off in the array DBMS.

Optimizing GROUP BY Aggregation

Considering a graph G = (V,E), the transitive closure of G is a graph G+ where a

directed edge exists from v to v′ if v′ is reachable from v in graph G. G+ is defined as:

G+ = (V,E+), where E+ = {(i, j)| ∃a path between i and j}. Notice that G+ is a

new graph with the same vertices as G, but with new edges representing connectivity

in a vertex pair. When the set of edges is stored as an Adjacency Matrix E, the
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Transitive closure is computed by successive multiplications of E by itself, as follows:

E+ =
d∑

k=1

Ek (15)

5.4.3 All Pairs Shortest Paths

All Pairs Shortest Paths (APSP) can be solved with matrix multiplication, under

the min-plus semi-ring. Moreover, in parallel database systems APSP can be com-

puted following the same algorithmic pattern as the transitive closure computation:

Recursive queries applying the semi-naive algorithm. Besides, the computation of

APSP befits from the same data partitioning strategy. Under the min plus semiring,

the min operator replaces
∑

, and the + operator replaces ×. Computing the matrix

multiplication in this way, the matrix Ek
i,j contains the shortest k-edged path from i

and j. To compute the shortest path between i and j, regardless of the number of

edges of the path, an additional operation is required: compute the overall minimum

value between the successive matrices E...Ed.

shortest path from i to j =
d

min
k=1

Ek
i,j (16)

5.5 Experimental Evaluation

Since our SQL-based algorithm and optimizations produce correct results (i.e., we

do not alter the basic Semi-naive algorithm), our experiments focus on measuring

query processing time. In order to evaluate query processing under challenging con-

ditions we analyze a wide spectrum of graphs having different structure, shape and
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connectivity. Our experimental evaluation analyzes three major aspects:

1. Evaluating the impact of classical query optimizations.

2. Understanding the impact of G structure on query processing.

3. Comparing column, row and array DBMSs with each other.

We conducted a careful benchmark comparison tuning each DBMS, but results

may vary with other DBMSs, especially if they provide hybrid storage (i.e., row+column)

or specialized subsystems for graphs. Also, we aim to understand how effective query

optimizations are on new generation DBMSs. We report the average time of three

runs per recursive query. Table entries marked with “stop” mean query evaluation

could not finish in reasonable time and thus queries were stopped; to evaluate query

optimizations we stopped at 30 minutes (1800 seconds) and to analyze the most chal-

lenging graphs with optimizations turned on we stopped at 2 hours (7200 seconds).

When a DBMS crashed for any reason (insufficient RAM, temporary file/array over-

flowing temporary storage, bugs) we report “fail”. All measured times are given in

seconds.

5.5.1 Experimental Setup

Here we provide an overview of how we conducted experiments in order to replicate

them.
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DBMS Software and Hardware

We compared the three database systems under demanding conditions to force con-

tinuous I/O between a single disk and small main memory. To make sure the input

table was read from disk, the buffers of each DBMS were cleared before processing

each recursive query. We conducted experiments on two identical servers, each with

an Intel Quad Core 2.13 GHz CPU, 4 GB RAM and one 3TB disk, each running

the Linux Ubuntu operating system. Following DBMS user’s guide recommenda-

tions, each DBMS was tuned to exploit parallel processing with multi-threading in

the multicore CPU. A benchmark on a parallel cluster is out of scope of this paper

since DBMSs vary widely on hardware supported, exploiting distributed RAM and

parallel capabilities. However, trends should be similar and gaps in performance

wider.

We used a columnar DBMS and a row DBMS supporting ANSI SQL. The array

DBMS was SciDB [46], which supports AFL, a functional language to define arrays

and write queries on arrays and AQL, an SQL-like language based on AFL calls.

Our choice of SciDB was motivated by being parallel, matrix-compatible, fully func-

tional and providing the AFL language, capable of expressing SPJ queries, including

group-by aggregation. In order to preserve anonymity of the other DBMSs, we do

not mention the DBMS name or whether the DBMS is open source or industrial.

However, since our benchmark study is based on analyzing query processing with-

out modifying DBMS internal source code, our major research findings should be

valuable to users, developers and DBAs trying to decide which system to use.
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SQL Code Generator

We developed a generic SQL code generator in the Java language connecting to

each DBMS via JDBC (i.e., aiming to generate standard SQL queries). This Java

program had parameters to specify the input table (and columns), choose DBMS

SQL dialect and turn each optimization on/off. The recursive view was unfolded by

creating the iteration of of k SQL statements, following the Seminäıve algorithm from

Section 5.2.1. Query evaluation was performed using temporary tables for each step

populating each table with SELECT statements. Time measurements were obtained

with SQL with timestamps for maximum accuracy.

Experimental Parameters

The buffers of each DBMS were cleared before evaluating the recursive query (i.e.,

clearing the DBMS cache). That is, we made sure table E was initially read from

disk. In order to get evaluation times within one hour and produce a uniform set of

intermediate results, we did not run recursion to get the full G+, which would require

a practically unbounded recursion depth (i.e., k = n). We initially tested queries

on several graphs to investigate a maximum recursion depth k, so that evaluation

could finish in less than 1 hour. Based on our findings, we consider k = 2 a shallow

recursion depth (equivalent to matrix multiplication), k = 4 medium and k = 6 deep.

Only for trees it was feasible to go beyond k = 6. We shall convince the reader these

seemingly “low” recursion depth levels stress the capabilities of each DBMS.
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Table 5.1: Type of graph G.

G cycles cliques density m edges complexity
tree N N very sparse O(n) best
cyclic Y N sparse O(n) fair
clique-tree Y Y medium O(MK2) medium
clique-cyclic Y Y medium O(MK2) bad
clique-complete Y Y dense O(M2K2) very bad
complete Y Y very dense O(n2) worst

Graph Data Sets

We analyzed synthetic and real graph data sets. Synthetic data sets vary in size and

structure, whereas real data sets are fixed.

Synthetic Graphs: We evaluated recursive queries with synthetic graphs, but we

were careful to generate realistic graphs with complex structure and varying degree of

connectivity, summarized in Table 5.1. Our experimental evaluation used two major

classes of graphs: simple graphs where cliques are not part of data generation (tree,

cyclic, complete) and graphs where cliques are initially generated and then connected

(having prefix “clique-”). Within each class there are three graph types based on their

density (connectivity): trees (binary, balanced), cyclic (long cycles) and complete (no

edges missing), going from easiest to hardest. Notice a complete graph represents a

worst, unrealistic, case, full of cliques from size 3 (triangles) to n (i.e., G itself) to

test recursive query processing. In order to understand how recursive queries behave

with different graphs we applied a 2-phase data generation approach. In Phase 1

we decide if the graph will have cliques (also called “fat” nodes), which is a major

factor impacting query processing time. Then during Phase 2 vertices (or cliques)
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are connected. Graphs and their parameters are summarized in Table 5.1. If G has

cliques each “fat node” is a clique, whose size we control. We decided to call this

parameter K, after the well-known Kuratowski graph Kn, (an important observation

is that K, clique size, is denoted in uppercase, not be confused with recursion depth

k, in lower case). If G has no cliques each node is “lean”, representing a simpler time

complexity case. In graphs with “lean” nodes we connect vertices directly with an

edge, according to the graph structure, with the number of edges going from n to n2.

For graphs with fat nodes (i.e., prefixed with “clique-”) we assume there are initially

M “fat nodes”, then connected by M − 1 edges (clique-tree), M edges (clique-cycle)

and M(M − 1) edges (clique-complete). In this case, we connect some vertex in

clique i with some vertex in clique j, in a random manner, guaranteeing cliques are

connected with each other. Our graph definitions are comprehensive and subsume

disconnected graphs, where each disconnected component can be any of the graphs

above. In short, our synthetic graph generator has the following input parameters:

n nodes, m edges, M fat nodes and clique size K. Since m is the actual storage size

in SQL we generated graphs with m growing in log-10 scale. For graphs with “lean”

nodes m determines n, whereas for graphs with “fat” nodes M and K determine

n and m. To simplify study we maintain K fixed (e.g., K = 4, which represents a

family or close mutual friends in a social network, emphasizing solving with K=4 is

much harder than with triangles). Needless to say as K → n, G starts resembling a

complete graph, making the problem of computing recursive queries intractable.

Real Graphs: For the real data set we picked two well-known data sets from the

Stanford SNAP repository: (1) wiki-vote with n=8k and m=103K. (2) Web-Google
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Table 5.2: Optimization: recursive join to compute transitive closure G+ (recursion
depth k = 6; clique size K = 4; times in seconds).

columnar row array
projection order storage

G n m N Y N Y dense sparse
tree 10M 10M 112 101 454 437 stop stop
cyclic 1M 1M 11 12 48 47 stop 1314
clique-tree 312k 1M 1124 1055 stop stop fail 771
clique-cyclic 312k 1M 1082 1004 stop stop fail 405
clique-complete 1300 100k stop stop stop stop 41 41
complete 100 10k stop stop stop stop 25 25

with n = 916k and m = 5.1M . Both data sets have a significant number of cliques

(including many triangles) and medium diameter, resulting in long paths. Because

real data sets are particularly challenging because we cannot totally understand

their structure, we analyze them with the best query optimizations turned on in

each DBMS.

5.5.2 Evaluating Query Optimizations

We proceed to test the effectiveness of each optimization on each relational operator:

1, π, σ (in importance order). In the following experiments the computation is

stopped at 30 minutes (1800 seconds).
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Optimizing Recursive Join

We start by analyzing the most-demanding operator: the recursive join. As explained

in Section 5.2.1, it is necessary to evaluate an iteration of k − 1 joins. Since storage

is different in each DBMS the physical join operator is different and therefore the

specific optimization is different as well: projections for the columnar DBMS, sorting

rows (edges) in the row DBMS and choosing between dense/sparse storage in the

array DBMS. Table 5.2 compares query processing time turning each optimization

on and off.

We start by discussing the columnar DBMS, which did not require major tuning.

Projections help the columnar DBMS when the graph is very sparse, especially with

large trees. For denser graphs, including graphs with cycles, the time gain becomes

smaller. Assuming that in general the structure of G is not known, projections

(sorted tables by the join key) in the columnar DBMS are a good optimization.

Therefore, projections are turned on by default in our remaining experiments.

We now discuss tuning the row DBMS. We experimentally tried two optimiza-

tions: (1) indexes on the join vertices Rd.j and E.i and (2) physically sorting rows in

Rd and E by the join vertices, as explained in Section 5.2.2, to evaluate the iteration

of k − 1 joins. We found out that physically sorting rows in E with an ORDER

BY clause in the CREATE TABLE (i.e., clustered storage for edges) was faster than

creating a separate index on E (based on source vertex). Sorting Rd, after being

created, was expensive when the DBMS used a hash join. Maintaining an index on
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Rd was expensive as well. Notice that under pessimistic conditions, for every recur-

sive query evaluation we included the initial time to sort or index E in our total

times. In practice, however, E is sorted or indexed once, but queried multiple times.

Therefore, we identified ORDER BY E.i as the default row optimization to acceler-

ate joins. From Table 5.2 we can see sorting rows is moderately effective for sparse

graphs, but it does not help anyway with denser graphs (we had to stop the query).

Based on these results, we decided to initially sort E to accelerate join processing.

Therefore, this optimization is turned on by default.

For the array DBMS the optimization choice are sparse and dense storage for

arrays, which are the respective choice for sparse and dense graphs, respectively. As

discussed in Section 5.2.2 it is necessary to tune chunk size depending on the graph

density. Based on chunk tuning experiments we use two default chunk sizes for the

remaining experiments: (1) 1000× 1000 for dense graphs; (2) 100, 000× 100, 000 for

sparse graphs, which produced chunks of average size of 8 MBs, as recommended by

the DBMS User’s Guide. As can be seen from Table 5.2, sparse storage is preferable

since times are always smaller and because array storage becomes dense when G

is complete. Overall the array DBMS is the fastest with dense graphs (cliques,

complete), but it is slower by two orders of magnitude than the columnar DBMS

with sparse graphs (trees). The pattern is the same compared to the row DBMS,

but with a smaller gap (i.e., row DBMS faster one order of magnitude). The main

reason the array DBMS is so slow using dense storage for trees is that it evaluates

joins on arrays with almost empty chunks, full of zeroes (i.e., doing unnecessary

work). On the other hand, joins are still significantly slow using sparse storage for

47



Table 5.3: Optimizing projection: Pushing duplicate elimination (recursion depth
k = 6; clique size K = 4; times in seconds).

columnar row array
optimization optimization

G n m Y N Y N default=Y
tree 10M 10M 148 112 728 577 523
cyclic 1M 1M 16 11 67 57 109
clique-tree 312k 1M 49 1103 297 stop 226
clique-cyclic 312k 1M 44 963 229 stop 223
clique-complete 1300 100k 310 stop stop stop 616
Complete 100 10k 2 stop 20 stop 16

trees (i.e., zeroes are deleted) because the graph is too sparse and chunks remain

sparsely populated (helped a bit by RLE compression). When embedding cliques

into the graph array size explodes as depth k grows: only sparse storage works well.

These results highlight that the array DBMS is inefficient to evaluate joins on sparse

graphs or semi-dense graphs (with cliques) that produce a dense transitive closure

graph as they are explored. In conclusion, in further experiments we store G in

sparse matrix form by default, eliminating all zeroes.

Optimizing Projection: Pushing Duplicate Elimination and Group-by

The previous experiments do not give the column and row DBMS the opportunity

to eliminate duplicates. Table 5.3 helps understanding the impact of duplicate elim-

ination when computing transitive closure G+. Recall from Section 5.4.2 that in

the array DBMS duplicates must be eliminated due to the array storage model. All

graphs, except trees, produce duplicates in intermediate results during recursion.
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Table 5.4: Optimizing projection: Pushing GROUP BY aggregation to compute Ek

(recursion depth k = 6; clique size K = 4; times in seconds).

columnar row array
optimization optimization

G n m Y N Y N default=Y
tree 10M 10M 288 114 964 689 stop
cyclic 1M 1M 29 11 90 70 1314
clique-tree 312k 1M 60 1450 503 stop 771
clique-cyclic 312k 1M 42 1419 434 stop 405
clique-complete 1300 100k 601 stop stop stop 666
Complete 100 10k 3 stop 29 stop 25

Therefore, it is necessary to know whether to eliminate duplicates during recursion

or it is better to wait until the end of recursion. Duplicate elimination is unneces-

sary for trees. Therefore, it is expected time are worse on every DBMS. However, the

negative impact is not equally significant: it is significantly worse on the columnar

DBMS. Our explanation is that rows must be assembled from separate files for each

column and then sorted at each iteration in order to detect duplicates. For the row

DBMS, the impact is small, whereas for the array DBMS duplicates are automati-

cally eliminated at each iteration. On the other hand, for dense graphs (with cliques,

complete) this optimization becomes a requirement to make the problem tractable:

without it times are more than an order of magnitude bigger. With this optimization

column and row DBMSs become much more competitive with the array DBMS. In

fact, the columnar DBMS becomes uniformly faster. Therefore, the effectiveness of

this optimization depends on G structure and recursion depth k. In the absence of

information about G structure and because G most likely contains cliques it is better

to apply this optimization by default.
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Computing the GROUP BY aggregation for Ek should produce a similar trend to

computing transitive closure since the query plan is the same. The main difference is

computing the aggregated value v, which requires an extra column. Table 5.4 com-

pares pushing GROUP BY aggregation through recursion, as explained in Section

5.4.2. Recall pushing GROUP BY acts as a compression operator since it reduces

the size of intermediate results. As we can be seen from Table 5.4 this optimization

works very well for column and row DBMSs for dense graphs: without it they crawl.

Overall, with this optimization the columnar DBMS becomes the fastest and the row

and array DBMS exhibit similar performance with each other. Only with the largest

complete graph, an unrealistic worst case, the row DBMS is the worst. In summary,

the trends are the same as duplicate elimination. In big data analytics, G is likely

to contain cycles and cliques. Therefore, this optimization should be turned on by

default.

Optimizing Row Selection: Pushing Selection Filters

Evaluating the effectiveness of pushing σ requires deciding some comparison pred-

icate. By far, the most common is equality. In the case of G the most common

predicate is equality on a vertex attribute (e.g., id, name, description). Since G

structure varies significantly in our synthetic graphs and in order to have repeatable

results, we decided not to choose some random vertex. Instead, we chose vertex

i=1, making clear the DBMS has no specific knowledge about such vertex. In this

manner, our experiments are repeatable and explainable. That is, optimizing row
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Table 5.5: Optimizing row selection: Pushing row filtering on power matrix Ek

(recursion depth k = 6; clique size K = 4; times in seconds).

columnar row array
optimization optimization optimization

G n m Y N Y N Y N
tree 10M 10M 18 100 27 361 13 stop
cyclic 1M 1M 2 9 3 41 9 1314
clique-tree 312k 1M 2 990 4 stop 12 771
clique-cyclic 312k 1M 2 976 3 stop 12 405
clique-complete 1300 100k 1 stop 2 stop 7 666
complete 100 10k 1 stop 1 stop 6 25

filtering is done with a WHERE predicate i = 1, as shown on Table 5.5. Confirm-

ing decades of research, this optimization works well across all DBMSs, regardless

of storage mechanism. However, the relative impact is different: in the columnar

DBMS and the array DBMS the speed gain is two orders of magnitude with dense

graphs, whereas in the row DBMS three or more orders of magnitude with dense

graphs (the recursive query cannot finish in fewer than 30 minutes). Therefore, this

optimization confirms that a highly selective predicate should be pushed all the way

up through recursion when possible. In summary, with this optimization turned on

all DBMSs come much closer to each other (assuming the user knows which vertex

to explore), but the columnar DBMS still has the leading edge.

5.5.3 Comparing Column, Row and Array DBMSs

In this section we compare the three DBMSs with the best optimization settings

based on previous experiments, analyzing challenging graphs at a recursion level as
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Table 5.6: Comparing DBMSs with best optimization to get power matrix Ek

(fastest join, push group by, duplicates eliminated, no row filtering; stop at 2 hours;
times in secs).

DBMS
G cliques n m k columnar row array
tree N 10M 10M 8 57 1158 3391
clique-cyclic Y 1M 1M 6 258 322 405
clique-complete Y 1300 100k 6 601 stop 666
complete Y 100 10k 6 3 29 25
wiki vote Y 8k 100k 4 85 4500 426
wiki vote Y 8k 100k 6 187 stop 1461
web-Google Y 916k 5M 3 1068 stop stop
web-Google Y 916k 5M 4 4232 stop stop

deep as possible. We analyze synthetic and real graphs. We emphasize real graphs

are “harder” than trees, but “easier” than complete graphs. These experiments aim

to understand strengths and weaknesses of each system when facing with the task

on analyzing a large graph whose structure is not well understood. In this case we

stop the computation at 2 hours (7200 seconds), giving each DBMS full opportunity

to evaluate the recursive query.

We made a point G structure (shape and connectivity) plays a big role on query

processing time. Experiments in Section 5.5.2 uncovered two important facts: (1)

there is big time gain when tuning the query plan or graph storage to get faster joins;

(2) pushing projection significantly reduces the size of intermediate tables and the

additional time to do it in acyclic graphs is small (but not negligible). Therefore,

we evaluate recursive query processing with: (1) the fastest join algorithm provided

by each DBMS; (2) pushing projection (duplicate elimination, aggregation) at each
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iteration. In order to make the comparison in a more challenging manner and having

a more realistic (informative) query we analyze the computation of the power matrix

Ek, which requires computing a GROUP BY aggregation. Since selecting vertices

assumes knowledge about the graph and makes query evaluation much easier (i.e.,

all DBMSs have similar performance) pushing selection is not applied (e.g., WHERE

i = 1).

Table 5.6 provides a comparison under a “tuned” configuration, but still without

assuming anything about G. Results are interesting: The columnar DBMS is the

fastest overall, being faster than both the row DBMS and the array DBMS. For the

second place there is no winner: the array DBMS is faster for dense graphs, but

loses with sparse graphs. Neither the row DBMS nor the array DBMS can finish

analyzing the Google graph. In summary, the columnar DBMS is the fastest, but

certainly struggles with the Google graph.

5.5.4 Evaluating Matrix Multiplication Performance

We compare the performance to evaluate E2 with three mechanisms: (1) Query in

array DBMS; (2) ScaLAPACK matrix multiplication, available in SciDB; (2) Query

in columnar DBMS. We run experiments with two real graph data sets: webGoogle

and LiveJournal. On Table 5.7, the result shows columnar DBMS as a clear winner,

about 10 times faster than ScaLAPACK.
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Table 5.7: Comparing Matrix Multiplication Performance E2

Column Vs Array vs ScaLAPACK; times in secs.
G n m |E2| Array DBMS ScaLAPACK Columnar DBMS
web-Google 1M 5M 297M 240 189 17
LiveJournal 4.8M 69M 3369M 4232 stop 2889

Table 5.8: Transitive Closure and APSP Execution time; Columnar DBMS

Data set m k
Transitive Closure All Pairs Shortest Path

1 Node 4 Nodes Speed-up 1 Node 4 Nodes Speed-up
tree-clique 1M 6 50 24 2.1 35 22 1.6
web-Google 5M 4 4843 1256 3.7 3441 1002 3.4
cit-Patents 16M 4 3540 873 3.8 3010 837 3.6

5.5.5 Evaluating Parallel Speed-Up

We run experiments to evaluate the parallel performance and speed-up of our al-

gorithms. We present execution time for N=1 and N=4 for three graph data sets:

tree-clique, webGoogle and cit-Patents. The three graphs has a very different struc-

ture: tree-clique is a synthetic data set with cliques of size K = 4, linked as a binary

tree. This is a very sparse data set, and cycles are possible only inside the cliques. On

the other hand, web-Google and cit-Patents are real-world graph data sets, from the

SNAP repository. Table 5.8 shows results for experiments with a columnar DBMS,

and 5.9 with an array DBMS. Results can be visualized in Figure 5.2. The colum-

nar DBMS shows slightly better speed-up, compared to the array DBMS. Notice

the small data set presents the lowest speed-up. We have observed that, while the

density of the resulting matrix after each multiplication grows very fast for the rel

graphs (web-Google, cit-Patents), in case of three clique grows very slow, and the

resulting matrix remains very sparse.
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Table 5.9: Transitive Closure; Array DBMS

Data set m k
Transitive Closure

1 Node 4 Nodes Speed-up
tree-clique 1M 6 355 182 2.0
webGoogle 5M 3 6253 1737 3.6
cit-Patents 16M 3 7420 2592 2.9 6

55



0

1

2

3

4

tree-clique webGoogle cit-Patents

sp
ee

d-
up

Transitive Closure - Columnar DBMS
Parallel Speed-up

N=1 N=4

0

1

2

3

4

tree-clique webGoogle cit-Patents

sp
ee

d-
up

Transitive Closure-Array DBMS
Parallel Speed-up 

N=1 N=4

Figure 5.2: Parallel speed-up for Transitive Closure
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Chapter 6

Graph Analytics with Parallel

Matrix-Vector Multiplication

6.1 Computing an Iteration of Matrix-Vector Mul-

tiplications

Matrix-vector multiplication is an important primitive in many Machine learning al-

gorithms. Solving graph problems with matrix vector multiplication has been studied

in previous research. But there is scarce literature about solving graph algorithms via

matrix-vector multiplication. This way to compute graph algorithms is important

for this work because: 1) provides a common framework for several graph prob-

lems; 2) the challenges of parallel matrix-vector multiplication are already known; 3)

matrix-vector multiplication can be expressed with relational operators in a simple
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way.

6.1.1 Semirings and Matrix Multiplication

Semirings are algebraic structures defined as a tuple (R,⊕,⊗, 0, 1) consisting of a

set R, an additive operator ⊕ with identity element 0, a product operator ⊗ with

identity element 1, and commutative, associative and distributive properties holding

for the two operators in the usual manner. The regular matrix multiplication is

defined under (R,+,×, 0, 1). A general definition of matrix multiplication expands

it to any semiring. For example, on the min-plus semiring , min is the additive

operator ⊕, and + is the product operator ⊗. The min-plus semiring is used to solve

shortest path problems, as in [11]. Table 6.1 shows examples of relational queries to

compute matrix-vector multiplication under different semirings.

6.1.2 Unified Algorithm

Solving large graphs with iterative matrix-vector multiplication may look counterin-

tuitive: a large graph with one million vertices would lead to a huge adjacency matrix

with one trillion cells; the multiplication of such a large matrix times a large vector is

clearly unfeasible. Though, since real world graphs are sparse, the adjacency matrix

would need in general O(n) space. Moreover, when the input matrix and vectors

are stored sorted, the computation of the multiplication can be done with a merge

join in O(n) time, and a group-by, whose time complexity can be done in O(n) time

when a grouping by hashing is possible.
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Table 6.1: Matrix-Vector Multiplication with Relational Queries under common
semirings

E · S (+ , x ) semiring
SELECT E.i, sum(S.v * E.v)
FROM E JOIN S on E.j=S.i
GROUP BY i

ET · S (+ , x ) semiring
SELECT E.j, sum(S.v * E.v)
FROM E JOIN S on E.i=S.i
GROUP BY i

E · S (min, +) semiring
SELECT E.i, min(S.v +E.v)
FROM E JOIN S on E.j=S.i
GROUP BY i

E · S (agg(),
⊗

) general semiring
SELECT E.i, agg(S.v

⊗
E.v)

FROM E JOIN S on E.j=S.i
GROUP BY i

Data: Table E, Table S0, ε, optional: source vertex s
Result: Sd

1 d← 0; ∆←∞;
2 while ∆ > ε do
3 d← d+ 1 ;
4 Sd ← πi:⊕(E.v⊗S.v)(E ./j=i Sd−1) ;
5 ∆ = f(Sd, Sd−1) ;

6 end
7 return Sd ;

Algorithm 2: Graph Algorithms Evaluated with Relational Queries
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Table 6.2: Comparison of four graphs algorithms

Characteristic Reachability SSSP WCC PageRank
Computed as Sd ← ET · Sd−1 Sd ← ET · Sd−1 Sd ← ET · Sd−1 Sd ← T · Sd−1
Semiring op.(⊕,⊗) sum(),× min(),+ min(),× sum(),×
Value S[i] number of paths distance s to i id of component probability
S0 defined as S0[s] = 1 S0[s] = 0 S0[s] = s S0[i] = 1/n
|S0| 1 1 n n
Output Sk Sk Sk Sk
Time per iteration O(n log n) O(n log n) O(n log n) O(n log n)
Scope from source s from source s ∀i ∈ V ∀i ∈ V

Algorithm 2 is a pattern to solve several graph problems with an iteration of

relational queries. We base Algorithm 2 in our previous work[6], where we expressed

some graph algorithms with relational algebra. Table 6.2 is useful to understand

similarities between four graphs algorithms, which come to light when they are ex-

pressed as matrix-vector operations. This algorithm pattern can be applied in rela-

tional databases and array databases [7]. Furthermore, we keep the query as simple

as possible, as follows:

1. The query joins two tables

2. The query performs an aggregation, grouping by 1 column

3. The output of the query is inserted in an empty table. We do not do updates.

The size of Sd ≤ n

In a relational DBMS, the actual operation to compute the matrix multiplication

is a regular query with a join between E and S, and a subsequent aggregation. In

array databases, the operation can be implemented either via join-aggregation or

calling the built in matrix multiplication operator but we demonstrate later that the
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first option presents better performance.

We use matrix-vector multiplication: (1) as an abstraction, for a better under-

standing of the algorithms; (2) because it has been extensively proved that some

graph algorithms are equivalent to matrix vector multiplication.

The entries of E might be weighted or not, depending on the problem: un-

weighted entries for PageRank and WCC, and weights representing distances for

shortest paths. Prior to the first iteration, the vector S has to be set to an initial

state accordingly to the problem: infinite distances for Bellman-Ford, isolated com-

ponents in WCC, or a default initial ranking on PageRank. In the pth iteration, the

vector Sp is computed as E · Sp−1. A function f(Sd, Sd−1) returns a real number to

check convergence. The algorithm iterates when ∆ (the value returned by f ) is less

than some small value ε, or when it reaches the max number of iterations.

6.2 Data Partitioning

In this section, we present a graph partition strategy to improve data locality in the

computation of the parallel join, as well as even data distribution. In Section 6.4 we

will present an experimental evaluation of our strategy.

In the case of the family of algorithms studied in this work, keeping a low data

transfer between nodes is critical to achieve good performance. The core compu-

tation of our algorithms is the query which solves the matrix-vector multiplication,

comprised of a join and an aggregation. Moreover, because of the iterative nature of
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Table 6.3: Data partitioning and Physical Ordering in Columnar DBMS

Algorithm Join Partition Order
SSSP E ./i=i S hash(E.i);hash(S.i) E.i, S.i
WCC E ./i=i S hash(E.i);hash(S.i) E.i, S.i
PageRank T ./j=i S hash(T.j);hash(S.i) T.j, S.i
Reachability E ./i=i S hash(E.i);hash(S.i) E.i, S.i

these algorithms, this query is computed many times. We focus on optimizing the

parallel join, the most demanding operation. The parallel join runs efficiently when

excessive data transfer between nodes is avoided. By a careful data partition, we

ensure that rows in S matching rows in E are found in the same worker node. The

joining column in E can be either i or j, depending on the algorithm (see Table 6.3).

6.2.1 Partitioning in a Columnar DBMS

The illustration in Figure 6.1 shows a graph G, with 11 vertices. In the same figure,

we show the representation of the graph as a list of edges, stored in a database table

E. The graph should be partitioned in such a way that uneven data distribution

and costly data movement across the network is avoided. The latter is possible when

the parallel join occurs locally on each worker node. To ensure join data locality, we

partition table E and S by the join key. Depending on the algorithm, the join key

for table E is either i ot j. Table S is clearly partitioned by the vertex id.

Specifically, if the join condition is Ei = Si (Figure 6.2.a), the edges having

the same starting vertex are stored in only one computing node, along with the

corresponding vertices in S. When the join condition is Ej = Si (Figure 6.2.a),

the edges having the same ending vertex are stored in only one computing node,
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along with the corresponding vertices in S. The benefit of this partition is that any

vertex in E has the corresponding matching vertex in S in the same computing node,

avoiding costly data movement.

6.2.2 Partitioning in an Array DBMS

Our goal is two-folded: To balance the computation among the nodes, and to allow

locality in the parallel join, in order to avoid costly data transfer. In general, big-

data graphs are characterized by a sparse adjacency matrix. In the case of array

DBMSs, the adjacency matrix is partitioned by chunks, blocks of homogeneous size.

SciDB assigns chunks in a rigid way: considering a matrix split in chunks numbered

from 1 to κ, and considering the workers numbered as 1...N , chunks are assigned to

the workers just by the formula chunknumber mod N . Further than the problem of

skewed degree distributions, in some cases the top vertices (ordered by degree) might

be identified by a ”close” number-id. For instance, in the Live Journal data set, a

small group of vertices located in the first rows of the adjacency matrix have hundreds

and even thousands links. As a result, a few blocks of the matrix concentrates a

large amount of data. To alleviate that problem, we partition the data with a simple

strategy: re indexing of the adjacency matrix, as follows:

i′ → H ∗ (i mod N) + i/N ; (17)

j′ → H ∗ (j mod N) + j/N ; (18)

Where H is the chunk size. Figure 6.3 shows a plot of the density of the adjacency

matrix before and after the re-indexing. Furthermore, Figure 6.4 shows the data
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distribution among the workers. Clearly, the reindexing is helpful to alleviate the

problem of uneven partitions.

6.2.3 Partitioning in Spark-GraphX

GraphX includes a set of built-in partitioning functions for the edges collection.

Following the vertex-cut approach, edges are never cut. Edges are partitioned by

several strategies.

• Random Vertex Cut: The graph is partitioned by assigning edges to computing

node in random way

• Edge Partition 1D: the adjacency matrix is partitioned by horizontal cuts.

• Edge Partition 2D: the adjacency matrix is partitioned in a grid manner, both

horizontal and vertical cuts.

6.3 Applications for Graph Algorithms

Columnar DBMS. We programmed simple but efficient SPJA queries that per-

form matrix multiplication. In the parallel columnar DBMS, three factors are im-

portant for a good performance per iteration:

1. Local match: Rows that satisfy the join condition are always in the same

computing node. This is key to avoid data transfer between nodes.
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2. Presorted data: The join between E and S can achieve a linear time com-

plexity when the tables are presorted by the columns participating in the join

condition. The algorithm is the MERGE join. This is critical for very large

graphs.

3. Data Compression: Columnar data storage is favorable for efficient data com-

pression [1]; in this way the I/O consumption is reduced.

Array DBMS. We propose to compute the matrix-vector multiplication with a

combination of join and aggregation operations, and we compare our approach to the

standard way: call the built-in spgemm() SciDB operator; this operator internally

calls the high performance linear algebra library SCALAPACK [9]. In the array

DBMS, a carefully data partition let us to compute the join minimizing data transfer:

the matches of the join condition are always in the same node. The (sparse) array-

like data organization makes possible a merge join, since data is stored in order. On

the other hand, data partitioning needs to consider skewed data distribution. It is

natural to assign the edge (i, j) to the position (i, j) in the disk array. But due to the

power low, this naive procedure may lead to uneven data partitioning. To alleviate

this problem, we allocate the data with a function that redistributes the data when

the graph is skewed. Like the columnar DBMS, queries in the array DBMS can be

optimized to exploit: (1) Local match for parallel joins; (2) Presorted data, which is

inherent of the array-based data organization.
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Spark-GraphX. This Biga data system stores graphs with two main data struc-

tures, namely EdgeRDD and VertexRDD, which are extensions of the Spark RDD

data structure. The fundamental operation to solve graph problems in GraphX is

aggregateMessages, which receives as parameters a sendmsg (or map) function, and

an aggregate (or reduce) function. As output, aggregateMessages returns an RDD

which associates every vertex with the computed value. In [16], Gonzalez et al. state

”We identified a simple pattern of join-map-groupby dataflow operators that forms

the basis of graph-parallel computation. Inspired by this observation, we proposed

the GraphX abstraction”.

6.3.1 Reachability from a Source Vertex

Preliminaries

Reachability from a source vertex s is the problem aimed to find the set of vertices S

such that v ∈ S iff exists a path from s to v. It is well known that this problem can

be solved with a Depth-first search (DFS) from s, a Breadth-first search (BFS) from

s, or via matrix multiplications. In [27], the authors explain that a BFS starting from

s can be done using a sparse vector Sn (initialized as S[s] = 1, and 0 otherwise), and

multiplying iteratively ET by S, as in Eq. 19

Sk = (ET )k · S0 = ET · ... · (ET · (ET · S0)) (k vector-matrix products) (19)

where · is the regular matrix multiplication and S0 is a vector such that:

S0[i] = 1 when i = s, and 0 otherwise (20)
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Initialization Like Bellman-Ford, reachability from a source vertex starts the it-

erative process with a sparse vector S0, initialized as S0[s] = 1. In the same way,

E[s, s] is set to 1.

Data: Table E, source s
Result: Table Sd

1 Initialization S0[s]← 1 ; E[s, s]← 1;
/* Iterations */

2 d = 0; ∆ = 1;
3 while ∆ > ε do
4 d = d+ 1 ;
5 Sd ← πj:min(E.v∗S.v)(E ./i=i Sd−1) ;
6 ∆←

∑
Sd −

∑
Sd−1

7 end
8 return Sd ;

Algorithm 3: Reachability from a Source Vertex

Iterations Like Connected Components, this algorithm stops when Sd = Sd−1

Since Sd[i] >= Sd−1[i], then Sd = Sd−1 if
∑
Sd −

∑
Sd−1. The relational query to

compute the matrix product is presented below. Since the query in array DBMS has

small syntactical differences, it is omitted.

insert into S1

select E. j , sum( S0 . v∗E. v ) v

from E join S0 on S0 . i = E. i

group by E. j ;
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Computation in Spark-GraphX Reachability from a Source has not be imple-

mented in Spark-GraphX. Even though, it is possible to use the SSSP routine as an

alternative.

6.3.2 Bellman Ford (SSSP)

Preliminaries

Bellman-Ford is a classical algorithm to solve the Single Source Shortest Path prob-

lem (SSSP). In contrast to Dijkstra’s algorithm, Bellman-Ford can deal with negative-

weighted edges. The algorithm iterates on every vertex, and execute a relaxation step

for each edge of the current vertex [11]. A way to express Bellman-Ford with matrix-

vector multiplication under the min-plus semi-ring is explained in [14]. The shortest

path of length k from a source vertex s to every reachable v ∈ E can be computed

as:

Sk = (ET )k · S0 = ET · ... · (ET · (ET · S0)) (k vector-matrix products) (21)

where · is the min-plus matrix multiplication and S0 is a vector such that:

S0[i] = 1 when i = s, and ∞ otherwise (22)

Notice that the expression to compute SSSP looks similar to the computation of

reachability, but the initialization and the multiplication (min,+), are different. At

each iteration, the resulting vector holds the ”current” minimum value. From a

relational point of view, the vector Sd is is stored Sd in a database table with schema
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Sd(j, v), where j is a destination vertex, and v is the minimum distance known at

the current iteration (relaxed distance). Both the standard and the linear algebra

algorithms require to initialize as ∞ every vertex, but the source. Instead, in a

relational database we only include vertices in Sd when an actual path from s has

been found. When the algorithm starts, Sd is sparse; only one non-zero value. The

matrix multiplication under the min-plus semi-ring reproduces the relaxation step:

In the dth iteration, the minimum distance is computed considering the relaxed value

from the iteration, stored in Sd−1, as well as the value of new edges discovered in the

current iteration.

Initialization The table S0 representing the initial vector is initialized inserting a

row with values (s,0), where s is the source vertex. Also, an artificial self-loop with

value zero (no distance) is inserted to E, which has the effect to keep shortest path

found in previous iterations in the current S. While initializing S, Bellman-Ford

requires that entries of the vector different than s be set to ∞. In the database

systems, those values are not stored.

Iterations Following our algorithmic pattern, the iterative process stops when ∆

is equal or less a value ε. The value ∆ is assigned to zero only when the current

vector Sd is equal to the previous, Sd−1. The relational query that computes the

min-plus matrix vector multiplication with relational queries is presented below.

insert into S1

select E. j , min( S0 . v+E. v ) v
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Data: Table E, source s
Result: Table Sd

1 Initialization S0[s]← 0; E[s, s]← 0;
/* Iterations */

2 d = 0; ∆ = 1;
3 while ∆ > ε do
4 d = d+ 1 ;
5 Sd ← πj:min(E.v∗S.v)(E ./i=i Sd−1) ;
6 ∆←case Sd == Sd−1 then 0 else 1;

7 end
8 return Sd ;

Algorithm 4: Single Source Shortest Path

from E join S0 on S0 . i = E. i

group by E. j ;

Computation in Array DBMS The computation of the vector Sp can be done

either by matrix-vector multiplication using SPGEMM() or by a join-aggregation.

As demonstrated in the Experimental section, a cross join operation presents better

performance, taking advantage of data locality.

insert into S1

select E. j , min( S0 . v+E. v ) v

from c r o s s j o i n (E, S , E. i , S . i )

group by E. j

Computation in Spark-GraphX The SSSP routine in the Spark-GraphX library

is a standard implementation based on message-passing and aggregation. The full

code is available in the Spark-GraphX source code repository.
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6.3.3 Weakly Connected Components (WCC)

Preliminaries

A weakly connected component of a directed graph G is a subgraph G′ such that

for any vertices u, v ∈ G′, exists an un-directed path between them. A recent, but

well known algorithm is HCC, proposed in [26]. The algorithm is expressed as an

iteration of a special form of matrix multiplication between the adjacency matrix E

and a vector (called S to unify notation) initialized with the vertex-id numbers. The

sum() operator of the matrix multiplication is changed to the min() aggregation.

Each entry of the resulting vector is updated to the minimum value between the

result of matrix computation and the current value of the vector. Intuitively, vertex

v receives the ids of all its neighbors as a message. The attribute of the vertex is set

to the minimum among its current value, and the minimum value of the incoming

messages. The iterative process stops when S remains unchanged after two successive

iterations. Our Connected Components algorithm is an improvement of HCC, an

iterative algorithm proposed in [26]. The algorithm in [26] can be explained as

follows: Let S a vector where each entry represents a graph vertex. Initialize each

value of S with the corresponding vertex ids. In the iteration d, the connected

components vector Sd is updated as:

Sd = assign(E · Sd−1) (23)

where assign is an operation that updates Sd[i] only if Sd[i] > Sd−1[i] and the

dot represents the min,* matrix multiplication. This algorithm has been applied in
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Map-Reduce and Giraph. Recently, the authors of [23] applied HCC in a RDBMS.

As showed in this work, the authors implemented the algorithm joining three tables:

edges, vertex, and v update.

We propose to compute the new vector just with the SPJA query for matrix

vector multiplication (join between two tables plus aggregation). In contrast with

HCC [26], we avoid the second join, necessary to find the minimum value for each

entry of the new and the previous vector. We avoid the three-table join proposed

by [23], too. We propose inserting an artificial self loop in every vertex; by setting

E(i, i) = 1, for every i.

Initialization As explained, we have to insert 1s in the diagonal of E, to simplify

the query. Each entry of the table Sd is initialized with the vertex-id.

Data: Table E,
Result: Table Sd

1 Initialization S0[i] =← i; E[i, i]← 1;
/* Iterations */

2 d = 0; ∆ = 1;
3 while ∆ > 0 do
4 d = d+ 1 ;
5 Sd ← πj:min(E.v∗S.v)(E ./i=i Sd−1) ;
6 ∆←

∑
Sd −

∑
Sd−1

7 end
8 return Sd ;

Algorithm 5: Connected Components

Iterations The algorithm stops when the current vector is equal to the second.

Since Sd[i] <= Sd−1[i], then Sd = Sd−1 if
∑
Sd −

∑
Sd−1. The relational query is
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presented below. The array DBMS query has small syntactical differences.

insert into S1

select E. i , min( S0 . v∗1) v

from E join S0 on S0 . i = E. j

group by E. i ;

Spark-GraphX Graphx includes in its library an implementation of Connected

Components similar to HCC, propagating minimum vertex-ids through the graph.

The implementation follows the Pregel’s message-passing abstraction.

6.3.4 PageRank

Preliminaries

PageRank [41] is an algorithm created to rank the web pages in the world wide

web. The output of PageRank is a vector where the value of the ith entry is the

probability of arriving to i, after a random walk. Since PageRank is conceived as

a Markov process, the computation can be performed as an iterative process that

stops when the Markov chain stabilizes. The algorithms previously described in this

section base their computation on E. Conversely, it is well known that PageRank can

be computed as powers of a modified transition matrix [25]. The transition matrix

T is defined as Ti,j = Ej,i/outdeg(j) when Ej,i = 1; otherwise Ti,j = 0. Notice that

if outdeg(j) = 0, then the jth column of T is a column of zeroes. Let T
′

= T + D ,

where D is a n × n matrix such that Di,j = 1/n if the column j is a 0 column. To
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overcome the problem of disconnected graphs, PageRank incorporates an artificial

low-probability jump to any vertex of the graph. This artificial jump is incorporated

by including a matrix A. Let A be a n × n matrix, whose cells contains always

1, and p the damping factor. The power method can be applied on T
′′

defined as:

T
′′

= (1− p)T ′
+ (p/n)A, as presented in Equation 24.

Sk = (T ′′)k · S0 (24)

Although Equation 24 seems to be simple, computing it with large matrices would

be unfeasible. While T might be sparse, T
′
is not guaranteed to be sparse. Moreover,

since A is dense by definition, T ′′ is dense, too. Equation 24 can be expressed as

based in the sparse matrix T as follows:

Sd = (1− p)T · Sd−1 + (1− p)D · Sd−1 + (p/n)A · Sd−1 (25)

This full equation of PageRank computes exact probabilities at each iteration. Be-

cause (1 − p)D · Sd−1 is a term that adds a constant value to every vertex, it is

generally ignored. After simplification, the expression for PageRank becomes:

Sd = (1− p)T · Sd−1 + P (26)

where every entry of the vector P is equal to p/n. It is recommended to set p = 0.15

[41].

PageRank is simple, but it is necessary to consider carefully the relational query

to avoid mistakes. According to Equation 26, the main computation in PageRank is

the multiplication T · S, that is solved in parallel DBMSs as a join. As a collateral

effect of using sparse data, the join between T and S does not return rows for those
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vertices having in-degree equal to zero (no in-coming edges). When the in-degree

of a vertex v is zero, it does not exist any row in E such that E.j = v. Thus a

row T.i = v does not exist, either. Therefore, in the next iteration the PageRank

value of v is lost. Moreover, vertex v will be neglected in further iterations. One

solution to this problem is to compute the PageRank vector with two queries: The

SPJA query for matrix vector multiplication, and a second query to avoid missing

vertices, inserting the constant value p/n for such vertices having in-degree equal to

zero, previously stored in a temporary table VertexZeroIndegree.

insert into S1 /∗ query 1 ∗/

select T. i , p/n + (1−p)∗sum(T. v∗S0 . v )

from T join S0 on S0 . i=T. j

group by T. i ;

insert into S1 /∗ query 2 ∗/

select S0 . i , p/n

from S0

where S0 . i in

( select v from VertexZeroIndeg )

To keep the algorithm elegant and efficient, we avoid using two queries. To avoid

”query 2”, we insert an artificial zero to the diagonal of the Transition Matrix as

part of the initialization. This is equivalent to the two-queries solution, and it does

not alter the numerical result.
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Initialization: Our first step is to compute the transition matrix T , which requires

the computation of the out-degree per vertex. T is carefully partitioned, to enforce

join locality. The vector S0 is initialized with a uniform probability distribution.

Therefore, S[i] = 1/n.

/∗ I n i t i a l i z a t i o n : Computing the t r a n s i t i o n matrix ∗/

insert into T

select E. j i , E . i j , 1/C. cnt v

from E,

( select i , count (∗ ) cnt

from E

group by i ) C

where E. i = C. i ;

Data: Table E,
Result: Table Sd

1 Initialization S0[i] =← 1/n; T [i, j]← E[j, i]/outdeg(i); T [i, i] = 0;
/* Iterations */

2 d = 0; ∆ = 1;
3 while ∆ > ε do
4 d = d+ 1 ;
5 Sd ← πi:sum(T.v∗S.v)(T ./j=i Sd−1) ;
6 ∆← max(Sd[i]− Sd−1[i])
7 end
8 return Sd ;

Algorithm 6: PageRank

Iterations: Algorithm 2 shows that in every iteration a new table is created. Since

we just need the current S and the previous one, we actually use only table S0 and
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table S1, swapping them at each iteration. PageRank algorithm keeps iterating until

convergence, meaning that for every entry of the output vector, the difference with

respect to the same entry of the vector of the previous iteration is less than a small

value ε. The relational query is defined as follows:

/∗ SQL query f o r a PageRank i t e r a t i o n ∗/

insert into S1

select T. i , p/n + (1−p)∗sum(T. v∗S0 . v ) v

from T join S0 on S0 . i=T. j

group by T. i ;

Like in the columnar DBMS, the base of the computation in the array DBMS is

iterative matrix vector multiplication. The input is the matrix E stored as a ”flat”

array, a uni-dimensional array where i, j, v are attributes. This flat array is used to

compute the Transition matrix as a sparse bi-dimensional array, and it is partitioned

to avoid unbalances due to skewed distributions. The query in the array DBMS

uses the built-in operator cross join() and group by. Note that the first pair of

parameters in cross join are the two tables, and the second pair of parameter are the

joining attributes.

/∗ AQL query f o r a PageRank i t e r a t i o n in array DBMS ∗/

insert into S1

select T. i , p/n + (1−p)∗sum(T. v∗S0 . v ) v ,

from c r o s s j o i n (T, S0 , S0 . i ,T. j )

group by T. i ;
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Table 6.4: Data Sets

Data Set Description n m Avg degree Max degree Max WCC

web-Google Hyperlink 0.9M 5M 11.66 6,353 855,802
soc-pokec Social Network 1.6M 30M 37.51 20,518 1,632,803
LiveJournal Social Network 4.8M 69M 28.25 22,887 4,843,953
wikipedia-en Hyperlink 12.4M 378M 62.24 963,032 11,191,454
Web Data Commons Hyperlink 42.9M 623M 29.04 3.9 M 39.4 M

6.3.4.0.1 Computation in Spark-GraphX: We explain the algorithm included

as part of the GraphX library. PageRank is solved iteratively; aggregateMessage

is the main operation at each iteration. This operation is conceptualized as a map

function applied to messages sent from neighbor nodes, and a reduce function that

performs an aggregation. Specifically, the map function is a scalar multiplication,

and the aggregation is a summation. The output of aggregateMessage is a Ver-

texRDD. Though a different data structure, the content of the VertexRDD is similar

to the output of the join-aggregation in columnar DBMS.

6.4 Experimental Evaluation

We conduct experiments to compare performance and results of three graph algo-

rithms, under three different systems: An industrial columnar database, an open

source array database (SciDB) and the well known GraphX for Apache Spark. The

three systems were installed in the same hardware: a four node cluster, each node

with a Quad core Intel CPU. The cluster has in total 16 GB RAM and 4TB of disk

storage, running Linux Ubuntu.
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6.4.1 Data Sets

In graph analysis, hyperlink and social networks are considered challenging, not only

because their size, but the skewed distribution of the degree of their vertices. In

the case of web graphs, a popular page can be referenced for many thousands pages.

Likewise, a social network user can be followed for thousands of users, too. We study

our algorithms with three data sets from the SNAP repository [30], one dataset from

Wikipedia, and a very large web graph data set from Web Data Commons with

m=620M [29]. All the data sets are well known, and statistics are publicly available,

as maximum degree, average degree, number of triangles, and size of the largest

weakly connected component.

6.4.2 Evaluation of Query Optimizations

In section 4, we explained that the objectives of our optimizations are: 1) local

computation of the join E ./ S; 2) presorted data to compute the join with merge-

join algorithm. We run experiments to validate our optimizations, both in parallel

columnar and array DBMSs.

Evaluating Optimizations in a Columnar DBMS

We compare the benefits of our proposed partitioning strategy, identified in this

experiment as A, versus B, a classical optimization in parallel DBMS by replication

of the smallest table in the join to every node in the parallel cluster. We load

the Living Journal data set, and we grew it up two, three and form times, to run
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experiments with several input sizes. The table E is partitioned in the same way both

in A and in B. In case A, the table S is partitioned with the same join key as table

E. In case B, the table S (smaller than E) is replicated through the cluster. Figure

6.5 compares the execution time of the two strategies for an iterative computation

of PageRank in various data set sizes. Our strategy (labeled in the figure as ”A”)

is superior than the replication of the smaller table (labeled as ”B”). How can our

optimization be better than a data replication through the cluster? Recall that the

algorithms in this study work with several iterations, and that in each iteration the

vector is recomputed. Therefore, keeping a local copy has as drawback that the

result table needs to be replicated to the complete cluster in every iteration. We

run a second set of experiments to measure the average time that takes to solve a

PageRank query in the columnar database. Figure 6.6 show the execution time for

several social network sizes. This query runs in a time complexity close to linear.

Evaluating Optimizations in an Array DBMS

We partition the data set according our strategy, and then compute an iteration of

PageRank, in three different ways: (1) SciDB’s built-in matrix multiplication oper-

ator, calling ScaLAPACK; (2) our join-aggregation query (3) Our join-aggregation

query, plus re-partitioning to ensure even distribution of the data across the clus-

ter. Let us consider the results in Figure 6.7. Even though the data is partitioned

to ensure a local join, ScaLAPACK (right bar) takes longer time to evaluate the

query. Instead, our join-and-aggregation query performs better, taking advantage

of a local join. Further performance improvements are presented by the left bar,
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Table 6.5: Comparing Columnar DBMS vs Array DBMS vs Spark-GraphX

Algorithm Data set m Columnar Array GraphX
Reachability web-Google 5M 19 141 34

soc-pokec 30M 25 164 59
LiveJournal 69M 60 386 166
wikipedia-en 378M 364 4311 crash
Web Data Commons 620M 2139 stop crash

SSSP web-Google 5M 13 145 34
soc-pokec 30M 25 172 59
LiveJournal 69M 58 405 166
wikipedia-en 378M 487 4574 crash
Web Data Commons 620M 2763 stop crash

WCC web-Google 5M 24 175 32
soc-pokec 30M 53 345 83
LiveJournal 69M 125 919 451
wikipedia-en 378M 443 5091 crash
Web Data Commons 620M 3643 stop crash

PageRank web-Google 5M 18 143 58
soc-pokec 30M 72 380 153
LiveJournal 69M 99 1073 477
wikipedia-en 378M 507 stop crash
Web Data Commons 620M 2764 stop crash

where the execution time is improved due to re-partition of the data that balances

the computation through the cluster nodes.

6.4.3 Comparing performance of Columnar DBMS, Array

DBMS and Spark-GraphX

Results of our experiments are presented in Table 6.5, and in Figure 6.8. The vertical

axis represents the execution time The time measurement for the three systems

(columnar DBMS, array DBMS and Spark-GraphX) includes the iterative step and
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the time to partition the data set. We allow a maximum execution time of 120

minutes; after that time, the execution is stopped. The experiment with the largest

data set (Web Data Commons, 620 millions of edges) was successfully completed

by the columnar DBMS, but could not be finished neither for the array database

(stopped after 120 minutes) nor for Spark-GraphX (program crashes). The Spark

program works well for those data sets that fit in RAM, but crashes when the data set

is larger than RAM, after struggling to solve the join on data distributed through the

cluster. Our experimental results show that in general, the algorithms presented in

this work have superior performance in the columnar DBMS than the array DBMS.

Besides, in the columnar DBMS our algorithms present equal results and better

performance than standard implementations in GraphX, specially when the data

sets are large. Even when the data set fits in the cluster RAM, our algorithms

running on top of a columnar DBMS run at least as fast as in Spark-GraphX. Our

experiments show also that columnar and array DBMS can handle larger data sets

than Spark-Graphx, under our experimental setup.

6.4.4 Parallel speed-up experimental evaluation

We present a parallel speed-up evaluation comparing the execution time of the colum-

nar parallel DBMS in a four-node cluster versus the parallel DBMS running in one

node. We show the experimental results in Table 6.6. By definition, the parallel

speed-up is S = t1/tN . Our experiments shows that larger graph data sets benefit

from parallel processing, obtaining a speed-up from 2.50 up to 3.8. In contrast, the
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Table 6.6: Serial vs Parallel Execution performance for 3 algorithms in Columnar
DBMS

Data set m
SSSP WCC PageRank

1 Node 4 Node 1 Node 4 Node 1 Node 4 Node
web-Google 5M 14 13 49 24 34 18
LiveJournal 69M 156 58 452 125 272 99
wikipedia-en 378M 1243 487 1725 443 1195 366

experiments with the small data set (5 million edges) present a lower speed-up. Re-

call that the concept behind of our algorithms is a recursive matrix multiplication

of a matrix E and a vector S, which are stored in a DBMS as relational tables.

The superior parallel performance of weakly connected components and PageRank

can be explained considering the two tables that are read in the relational query at

every iteration. In the case of WCC and PageRank algorithms the vector S starts as

dense, and remains dense in the whole computation. With a dense S, the processing

happens in an even way, promoting parallelism. In contrast, in the case of SSSP and

Reachability the initial vector S is very sparse (only one entry), though the density

of the vector gradually increases in every iteration.
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Figure 6.1: A sample graph G stored as a table E or as a bi-dimensional array E .

a) Data partitioning optimizing  E JOIN Z ON E.i=S.i

Node 1 Node 2 Node 3 Node 4

E E E  E
i j v i v i j v i v i j v i v i j v i v

2 1 1 2 2 5 6 1 5 5 3 5 1 3 3 7 6 1 7 7

2 3 1 6 6 5 7 1 4 5 1 4 4 9 5 1 9 9

6 4 1 5 8 1 10 9 1 10 10 11 2 1 11 11

b) Data partitioning optimizing  E JOIN Z ON E.j=S.i

Node 1 Node 2 Node 3 Node 4

E E E  E
i j v i v i j v i v i j v i v i j v i v

2 1 1 1  3 2 1 2  3 5 1 5  7 4 1 4  

2 6 1 6  4 3 1 3  4 5 1   9 7 1 7  

6 6 1 9 8 1 8 9 5 1   11 9 1 9  

S  S S

S S S S

Figure 6.2: Partitioning of Table E in four nodes.
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Figure 6.3: Array DBMS: Live Journal data set. Adjacency matrix heat map
before (left) and after (right) repartitioning.

Figure 6.4: Array DBMS: Live journal data set: Another perspective of the data
density.
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Chapter 7

Conclusions

In this work we study the parallel in-database computation of three special classes

of matrix products that are frequently computed as part as machine learning and

graphs algorithms: the product of a matrix by its transposed, the kth power of a

matrix, and the product of a sparse matrix by a vector.

We present optimizations for three methods widely used in machine learning and

data analytics: linear regression, variable selection and PCA. We show that pre-

computation of the summarization matrix Γ is an effective strategy to accelerate

the aforementioned algorithms, by avoiding redundant computations. Furthermore,

in virtue of the scalability of the computation of Γ, the computation of the models

is able to deal with very large data sets, even larger than the system RAM. Our

algorithms are up to two order of magnitude faster than standard approaches. The

RAM requirements are small, as the size of the summarization matrix Γ is d × d,

with neglectable extra space required for the computation.

90



We demonstrate that relational queries are suitable to solve fundamental graph

problems: (1) transitive closure computation, (2) all pairs shortest paths, (3) triangle

counting, (4) reachability from a source vertex, (5) single source shortest path, (6)

weakly connected components, and (7) PageRank. We present algorithms to compute

(1),(2) and (3) on the foundation of matrix powers, incorporating several query

optimizations and a data partition strategy which promotes data locality on the node

level, on columnar and array DBMSs. Our experimental results show our algorithms

have promising performance and parallel speed up, due to several query optimizations

and our data partitioning strategy. Besides, our results shows that columnar DBMS

presents a superior performance computing sparse matrix-matrix multiplication with

relational queries, compared with the array system calling ScaLAPACK.

We show a common algorithmic pattern to solve graph problems (4), (5), (6)

and (7) , based on an iteration of matrix-vector multiplications, evaluated equiv-

alently with an iteration of relational queries. The unified computation can solve

different problems by computing the matrix-vector multiplication under different

semirings. Based on this framework we studied query optimization on columnar

and array database systems, paying close attention to their storage and query plans.

Furthermore, we propose a graph partitioning approach that promotes join locality

as well as even data partitioning through the parallel cluster. We remark that our

algorithms are based only regular queries, avoiding UDFs or internal modifications

to the database. Therefore, our optimizations are easily portable to other systems.

In the experimental section we used real graph data sets to demonstrate that the
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join, the most challenging operation in parallel, runs with a performance close to lin-

ear. Our experiments show a promising parallel speed-up, specially when the vector

S is dense. By comparing a columnar DBMS, an array DBMS and Spark-GraphX,

we observed that the columnar DBMS shows superior performance and scalability,

being able to handle the largest graphs. The performance of the columnar DBMS is

better than Spark-GraphX even when the data set fits in the cluster’s main memory.

Our results show that the array DBMS performs 2-3 times slower than Spark, and

up to 10 times slower than the columnar DBMS. We believe this results are related

to problems in SciDB’s operators handling sparse matrices. Even though, the array

DBMS is more reliable than Spark-GraphX when the graph data set is larger than

the cluster RAM.

Future Work

We plan to devise more in-database machine learning algorithms, specially exploiting

parallel matrix-vector multiplication. In the graph analytics field, Our work sheds

light on a family of algorithms that can be optimized as a single one, which opens

many opportunities for future work. We want to understand if there exist other

graph algorithms which can be also unified with similar ideas. We plan to study fur-

ther optimizations that may that advantage not only of the sparsity of the matrix,

but also of the sparsity of the vector, even considering different degrees of sparsity.

Moreover, we will look for opportunities to improve algorithms beyond graph ana-

lytics, exploiting our optimized sparse matrix-vector multiplication with relational

92



queries.
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