
COMPUTER-AIDED PROCESSING TECHNIQUES

FOR

USEAGE IN REAL-TIME IMAGE EVALUATION

A Thesis Presented to

the Faculty of the Department of Electrical Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

L. K. Bromley

May, 1977

ABSTRACT

The capture -and conviction of criminals is often hampered by the

present cumbersome method of suspect identification. A witness to a crime

may have to view thousands of photographs in order to find the one that

corresponds to the suspect. This process can be speeded up by utilizing

a computer-aided system.

This thesis provides a computer program that takes as an input a

digitized version of the suspect's photograph or sketch. This information

is processed by the computer and provides as output, the location of the

major features(eyes, nose, mouth, etc.) and also a facial outline. Using

this information an algorithm can be developed that can be used to process

the photographs contained in a police department's mug file by producing

an array containing information that is unique to each photograph. Then

when a crime is committed, the digitized version of the suspect's sketch

can be given to the computer to construct this array. The array can then

be compared to those on file and those most similar can be chosen. Then

the witness would only have to view these few photographs.

Before the development of this automatic feature locating algorithm

facial measurements were taken by hand at a rate of 5 minutes per case.

Using this algorithm, the major facial features were accurately located

within 10 seconds in over 88% of the test cases. The facial outline that

was produced by the algorithm was acceptable in 66% of the cases. When

implemented in a user interactive system, the algorithm presented in this

thesis should significantly speed up the process of suspect identification.

TABLE OF CONTENTS

Page

ABSTRACT............‘...i

LIST OF TABLES...iv

LIST OF FIGURES...V

Chapter

1. INTRODUCTION.......................... 1

Statement of the Problem.. 1

Problem Solution.................................. 2

General Description of the Thesis 3

Uses....................3

2. LITERATURE REVIEW........................ 8

Weighted Derivative... 10

Bit Removal and Bit Plane..................................... 11

Highpass Filtered Image....................................... 12

3. BASIC PROGRAM TECHNIQUES.......... 13

System Procedures... 13

Digitizing photographs....................................... 13

Displaying images... 15

Techniques Developed for CAPTURE Algorithm...................... 16

Signatures.. . . .16

Derivatives... 18

Digital filtering... 19

ii

TABLE OF CONTENTS (CONTINUED)

iii

Page

4. CAPTURE ALGORITHM DESCRIPTION 24

Feature Location..24

Facial Outline..30

5. EXAMPLES OF CAPTURE ALGORITHM RESULTS..........................36

CAPTURE Algorithm Output Time 36

CAPTURE Algorithm Examples......... 37

6. CONCLUSIONS AND RECOMMENDATIONS................................48

BIBLIOGRAPHY..51

APPENDIXES

A. SMOOTHED DIFFERENTIATION OF SAMPLED DATA........................53

B. CALCULATION OF WEIGHTING FACTORS. 56

C. DIGITAL FILTERS..60

' D. DETAILED PROGRAMMING DESCRIPTION................................ 67

LIST OF TABLES

Table .. Page

1-1 Tabulation of Possible Measurements 6

3-1 Summary of Filter Parameters...................................... 22

5-1 CAPTURE Algorithm Rating Summary.................................. 47

LIST OF FIGURES

Figure .. Page

1- 1 Typical Output of CAPTURE Algorithm.......................... 5

2- 1 Excerpt from a Face Feature Questionnaire 9

3- 1 Image Processing Laboratory System Block Diagram................... 14

3-2 Example of a Row Signature.. 17

3- 3 Finite Difference Derivative Example Taken Down the Noseline- • 20

4- 1 Feature Location. .. 25

4-2 Row Signature Example.. 26

4-3 Finite Difference Derivative Along the Noseline................. 28

4-4 Facial Outline.. 31

4-5 Filter Output Example................ 33

4- 6 Facial Outline Search Regions 34
5- 1 CAPTURE Algorithm Example ".................'..................... 38

thru " thru

5-8 CAPTURE Algorithm Example 45

B-l Two Dimensional Derivative Requirement............................ 57

B-2 Calculation of Weighting Factor 58

C-l Circuit Characteristics of a Lowpass Filter 61

C-2 Circuit Characteristics of a Highpass Filter...................... 64

D-l CAPTURE Algorithm Program Flow.................................... 68

D-2 Row Signature Example.. 70

D-3 Finite Difference Derivative Along the Noseline................ 72

D-4 Mainprogram FILT Flow Chart...................................... 75

v

LIST OF FIGURES (CONTINUED)

Figure Page

D-5 FILT Mainprogram Listing... 81

D-6 Facial Outline Search Regions................................. ' . 84

D-7 Orientation of the IHOLD Martix................................... 86

D-8 WRNR Subroutine Flow Chart....................................... 89

D-9 WRNR Subroutine Listing... 93

D-10 Example of Writing a Vertical Line Using EXEC...................... 96

D-ll Example of Writing Horizontal Lines and Outline.................... 98

D-12 Example of a Typical CRT Message................................ 100

D-13 DRAW Subroutine Flow Chart...................................... 102

D-14 DRAW Subroutine Listing.. 107

D-15 SIGTR Subroutine Flow Chart.............. . 110

D-16 SIGTR Subroutine Listing 114

vi

Chapter 1

INTRODUCTION

Statement of the Problem

One of the major problems of densely populated cities, such

as Houston, is crime. In far too many cities, hundreds of large and

small crimes, ranging from shoplifting to murder, are committed each

day. Some criminals are caught by the police,' but many are not caught.

The reason is not through any lack of effort by the police but is simply

due to the sheer cumbersomeness of the present system of suspect ident­

ification. The Houston Police Department has access to thousands of

files of known criminals from all over the continent. When a crime

has occured, witnesses are often brought in to help identify the perpe­

trator by giving the police a verbal description. ,In many cases a

police artist is asked to construct a sketch of the suspect from this

verbal description. In addition to giving a description or sketch of

the suspect, the witness may be asked to review the department's "mug

file", which contains photographs of most known criminals. These

photographs may be contained in large books or, at best, as slides for

projection. In either case, the witness is required to scan hundreds

of photographs in hopes of finding the one that corresponds to the

suspect. This process can be very time consumming and tedious, causing

the witness to give up before scanning all of the photographs. So,

unless there are other clues as to the identification of the suspect, a

criminal's chances of escaping justice are fairly good.

1

2

Problem Solution

In order to resolve this problem, the University of Houston

has been given a grant from the Law Enforcement Assistance Administration for

development of a computer-aided system that would help in the identi­

fication of suspects. An algorithm is to be developed to at least

reduce the number of photographs that the witness would have to look

through.

Using the algorithm developed under the grant, a computer

would digitally scan and process all the photographs currently on file

at the police department. ' This information would be stored for later

reference by the computer. Then, when required, the computer could

digitally scan a photograph or sketch of a suspect and, using the

algorithm, select from the preprocessed images, those photographs

most resembling the suspect. The witness would then only have to

review these few photographs. In this manner, a criminal’s chances of

escaping justice will be reduced. And, perhaps, as more criminals are

caught, fewer new crimes will be committed.

In response to this grant, the University of Houston has set

up an Image Analysis Laboratory. A HP2100A minicomputer with 32k of

memory, magnetic tape and dual disk drives has been provided in the

laboratory for the development of the algorithm. A microfiche display

card system is available for projection of microfiched mug shots that

have been provided by the police department. A black and white TV

camera and monitor is available for use in the digitazation . of photo­

graphs. The scanning, digitizing and storing of images is conducted

3

by an SDS92 computer. In addition to the TV monitor, a storage scope and

a plotter are available for displaying the digitized images. A block

diagram of the Image Analysis Laboratory equipment and the system

procedures for digitizing and displaying images are presented in detail

in Chapter 3.

General Description of Thesis

The program developed for this thesis is to be a tool for use

in the realization of the final complex algorithm to be used by the

police department. The program, henceforth referred to as the CAPTURE

(Computer-Aided Processing" Techniques for Useage in Real-time image

Evaluation) Algorithm, provides two major functions: 1) Locates the

major facial features and 2) produces a general outline of the face.

There are a few assumptions that were made in the development

of the CAPTURE Algorithm. It is assumed that the photograph to be digi­

tized is of the face and shoulder region only, not full length. It is

also assumed that the image is reasonably centered, i.e., that the top of

the head is in the upper quarter of the picture and that the chin is in

the lower quarter. The algorithm has also been designed to work on

Caucasians with no beard or eyeglasses. An extension of the algorithm

is possible such that other races or images with beards can be processed.

But, such an extension is outside the scope of this thesis.

Uses

The CAPTURE Algorithm is to be used as a tool in the develop­

ment and implementation of the final complex suspect identification

package that will be implemented in the Oakland Police Department. The

4

technique that is to be used in the final package, is one that uses the

relative distances between facial features. For example, the distance

between the tip of the nose and the mouth, or the distance from the nose tip

to the side of the face would be useful measurements. These and other

measurements of the face would be taken and stored for each of the mug

shots the police department has on file. Then when an artist has made a

sketch from a witness's verbal description, the same type of measurements

can be taken from the sketch after it had been digitally scanned. The

computer would then compare the measurements 'from the sketch with those

stored in its memory, chosing those similar.

Prior to this work, such measurements had to be taken by hand.

But, taking manual measurements of the thousands of photographs contained

in the police department's files would be far too time consuming and

tedious. There is also a certain amount of measurement inaccuracies due

to human error. The program developed for this thesis automatically

locates the major features with horizontal or vertical lines. It is then

a simple matter to find these measurements by having the computer add or

subtract the appropriate line locations.

Figure 1-1 represents a typical CAPTURE Algorithm output.

Table 1-1 gives examples of the types of measurements that might be

useful, and the type of calculation that would be involved. An array

of the resulting distances that were calculated, indexed according to

measurement number, would be saved. It would then be this array which

is used for comparison in the determination of which photographs are

to be viewed.

5*

IHAR=26

LE = 59

NT = 80

ML = 97

0(ML,IR)=830(ML,L)=48

IBH=119

ITH = 4

LF=44 NL=63 IRF=90

Figure 1-1 Typical Output of CAPTURE Algorithm

1 6

Table 1-1

Tabulation of Possible Measurements

Measurement
number

Description Calculation
required

Resulting
Distance

1 Distance between nose tip
and mouth

ML-NT=97-80 17

2 Distance between eyes and
nose tip

NT-LE=80-59

C6* •

21

3 Distance between nose line
and right side of face at
the mouth line

O(ML,IR)-NL
=83-63

20

4 Distance between nose line
and left side of face at
the mouth line

NL-O(ML,L)
=63-48

15

5 Distance between mouth and
chin tip

IBH-ML=119-97 22

6 Distance between eyes and
mouth

ML-LE=97-59 38

7 Distance between eyes and
chin tip .

IBH-LE=119-59 60

7

Another method that could have been used in the final package is c

based on the use of the Identikit. The Identikit is a collection of

various shapes of mouths, chins, noses, and so forth. Using this

system, a witness would be asked to construct a sort of sketch of the

suspect by choosing the appropriate shapes of the facial features. Each

of the shapes in the kit have a corresponding number. The array of

numbers of the selected shapes put together by the witness would then

be given to the computer. The computer would compare this array to

those of the preprocessed images, each having a similar array of Identi­

kit numbers. Those with arrays similar to that provided by the witness

would be selected for viewing.

If this method was chosen for the final algorithm, an outline

of the face and each of its major features would have to be determined.

The facial outline provided by the CAPTURE Algorithm would probably

only require that some sort of smoothing be performed.. The feature

location provided by the CAPTURE Algorithm will give the exact location

of each facial feature that needs to be outlined. Therefore, only a

program that would provide a smoothed outline for the features would

be required.

As can be seen, the use of the automated feature location and

facial outline provided by the CAPTURE Algorithm makes it a useful

tool for the development of the final complex algorithm. It is flexible

enough to be used in many of the various concepts of how the final

algorithm is to be implemented.

Chapter 2

LITERATURE REVIEW

A library search was conducted in an attempt to gather infor­

mation on existing methods of automatic facial identification. It was

found that much of the work being done was by qualitative methods. In
A. J. Goldstein's paper\ for example, a method is discussed in which

a face feature questionnaire;, as given in Figure-2-1, was filled out.

Under this system, a witness to a crime would be asked to fill out this quest­

ionnaire , rating various facial features from one to five. But,

the questionnaire is difficult to fill out on even someone that is well known

to the subject, such as a spouse or relative, let alone on a stranger

that was perhaps only seen a few seconds. It also relies too much on

the individual's concept of what constitutes, for example, a big nose or

wide eyes. These methods were therefore discarded.

Other papers found in the literature review described various

methods in which certain parts of an anatomical x-ray were being out-
2 3 lined. These papers involved such anatomical regions as the lungs ’ ,

^A. J. Goldstein, L. D. Harmon, and A. B. Lisk, "Identification
of Human Faces", Procedings of the IEEE, Vol. 59, No. 5, (May 1971)

2E. L. Hall, R. P. Kruger, and A. F. Turner, "An Optical-Digital
System for Automatic Processing of Chest X-Rays", Optical Engineering,
Vol. 13, No. 3, (May/June, 1074), pp. 250-257.

3E. L. Hall, R. P. Kruger, and A. F. Turner, "Automated Measure­
ments from Chest X-rays for Lung Disease Classification", Computer
Graphics, Pattern Recognition and Data Structures Conference,(Beverly
Hills, May 1975)

8

Lip
Thickness 1 2 3 4 5

UPPER Thin - Medium Thick

-

1 2 3 4 5
LOWER Thin - Medium - Thick

b. Lip
Overlap

1 2 3

< Upper Neither Lower

c. Width 1 2 3 4 5

Small - Medium - Large

d. Nose-to-
Mouth
Distance

1 2 3 4 - 5

Short — Medium' —— Large '

e. Mouth-to-
Chin
Distance

1 ' - '2 - - - 3 - 4 - 5

Short - Medium - Long

8. Ears
a. Length

1 2 3 4 5

Short - Medium - Long

b. Lobes 1 2 3 4 5

Attachec Medium - Not
Attached

Figure 2-1 Excerpt from a Face-Feature Questionnaire

10
12 3heart ’ and knee . It was decided that some of these methods could

be adapted for use in outlining the face. Some of the methods that

were tried but subsequently discarded are described in the following

paragraphs.

Weighted Derivative

The first method that was tried was a weighted derivative method
3 simular to the weighted gaussian technique used in D. A. Ausherman’s

paper. An edge was first assumed to be present at the intersection of the

eyeline and the left side of the face, as determined by the feature

locating algorithm. Since .-the search for the edge structure moved upward,

the pixel immediately above this assumed point and the two values on

either side were addressed. Horizontal and vertical derivatives were

calculated for each of these three points using the smoothed derivative

method described in Appendix A. These derivatives were then multiplied

by a weighting function, as described in Appendix B' that weights the

horizontal and vertical derivatives for each point as to which contains

the most information. The edge was taken to be at the point of maximum

weighted derivative. The entire process was repeated for subsequent

rows. * D.

E. L. Hall and others, "A Survey of Preprocessing and Feature
Extraction Techniques for Radiographic Images1.1, IEEE Transactions on
Computers, Vol. C-20, No. 9, (September, 1971), pp. 1032-1044.

2R. P. Kruger, "Computer Processing of Radiographic Images",
Ph. D. Thesis, (May, 1971), University of Missouri, Columbia Missouri.

3
D. A. Ausherman, S. J. Dwyer and G. S. Lodwick, "Extraction of

Connected Edges for Knee Radiographs", IEEE Transactions on Computers,
Vol. C-21, No. 7, (July, 1972), pp. 753-758.

11

The results of this method was found to be too erratic. It

requires a sharply defined edge structure, as were available in the

knee radiographs, to work well. The photographs had areas of shadow

along the sides of the face that seemed to confuse the algorithm.

Once a mistake was made, it was propagated down to subsequent rows with

little hope for recovery.

Bit Removal and Bit Plane Methods

These two methods are concerned with looking at one or more of

the six binary bits used to indicate the intensity level of each pixel.

If a pixel has an intensity' level of 57, for example, the corresponding

binary word would be 111001.

The bit removal method removes bits one through N from the

intensity level word where,

1 < N < 6

For example, if N=4 then the first four bits of the intensity word is

to be set to zero while leaving the remaining two untouched. Then for

a pixel with intensity 111001 (a decimal 57), the rescaled value would

be 000001 or a decimal 1.

This rescaling process is performed for all the pixels in the

image. The resulting scaled pixel values are then displayed as an entire

picture.

In contrast, the bit plane method masks out all but the desired

bit. If, for example, bit plane four is desired, then all the bits in

the intensity level word are reset to zero except for bit four which is

left untouched. For an intensity level of 111001 (57), the rescaled

12

level would be zero, since bit four is a zero. In this case the pixel

would not be illuminated in the resulting picture. If, however, the level

was 110111 (55), bit four is a one, resulting in an illuminated pixel when

the picture was drawn.

Of the two, the bit plane method was the more, promising. Bit

three did give-the general outline of the edge structure, including

eyes, eyebrows and hair. This method however, also had a great deal of

"noise", i.e., spots illuminated where no edge existed on the original

photograph. The noise rendered the method unusable for the purpose

of feature measurement.

High Pass Filtered Image

This method was employed in hope that it would help enhance

the edges that were within the shadows. A high pass digital filter

was selected by the process described in Appendix C. A high pass filter

was chosen since it has the property of being a differentiator and

therefore should enhance edge structure. The value of cutoff frequency

was varied in an.attempt to achieve the best image.

A cutoff frequency of f = .75 f , where f represents the Nyquist r n n
frequency, was found to be the optimum for the image being tested.

However, this number varied substantially for each photograph. A

search method was attempted in order to determine the proper number for

a given photograph. The time, however, to conduct the search was too

long to be practical. So this method was also discarded.

Chapter 3

BASIC PROGRAM TECHNIQUES

This chapter will discuss some of the basic techniques used

in the development and implementation of the CAPTURE Algorithm. These

techniques will include a description of how the photographs are

digitized and displayed, and some of the techniques used in the CAPTURE

Algorithm programming.

System Procedures

The equipment and software necessary for digitizing and

storing photographs was already developed and ready for use when

research for this thesis began. Figure 3-1 gives a block diagram of

the overall system. The next few paragraphs briefly describe how this

system operates.

Digitizing photographs. The digitizing process involves use

of the black and white TV camera and monitor as well as the SDS computer.

A photograph is displayed either from slides or on the microfich display

system. The camera is positioned so that the head of the image fills

the camera's viewing range as displayed by the monitor. The image system

program is read into the SDS computer which then transfers control to

the teletype for command imput. The command to scan the image is typed

into the teletype. When the return button is pressed the SDS scans the

image which is broken up into a matrix having 128 rows and 128 columns.

Each element of the matrix being call a pixel. When the SDS scans

13

14
Storage
Scope

Figure 3-1 Image Processing
System Block Diagram

Laboratory

.15

an image it assigns a value of 0 to 63 to each pixel according to the

intensity level. If the area is very dark, the SDS will assign a pixel

value of zero. If very light, a value of 63 will be assigned. After

the scanning process is complete, requiring less than a second of time,

the digitized version of the image, i.e., the matrix of pixel values,

is stored in the SDS.

The digitized image can now be sent to the HP2100A for storage

on the disk. First, a 128 by 128 file must be opened on the disk under

the desired file name. Then, after the appropriate file name has been

entered, a second command is given to the SDS that sends the digitized

version of the image to the disk for storage. It can now be readily

accessed by the HP2100A minicomputer.

Displaying Images. Images can be displayed in several ways.

The actual pixel values can be printed on the CRT console or on the

teletype by successive calls to EXEC. (See Chapter D.) This type of

display is good for developing or debugging programs that work with these

pixel values. This method was used in the early stages of research

for the CAPTURE Algorithm to develope the signature technique. (See

Chapter 4)

The image can be displayed in visual form on the storage scope,

TV monitor or the electrostatic printer. Most of the research for

the CAPTURE Algorithm was conducted by displaying the image on the

storage scope through successive calls to subroutine SCOPE. Chapter 4

will describe this procedure in detail.

16
The examples presented in this thesis were produced by the

electrostatic printer. The technique used to produce these plots

was to first fill a 128 by 128 matrix with the desired information. If

the original image is desired to be outputted, the array contains the

pixel values. Lines are drawn by filling the appropriate row or column

in the array with zeroes. After the array-has been filled with the

appropriate data a call to Subroutine DRAW will output the array onto

the electrostatic printer.

Techniques Developed for CAPTURE Algorithm

The following paragraphs will describe some of the basic con­

cepts used in the CAPTURE Algorithm. The understanding of the concepts

of signatures, derivatives and digital filters is vital to the under­

standing of the algorithm.

Signatures. A signature is obtained by summing columns

(column signature) or rows(row signature) of pixel values of a digi­

tized picture. After plotting these sums, the signature can be viewed £

for the general regions of light or dark. For example, if a row -

signature is taken over the entire picture, a signature as shown in

Figure 3-2 is obtained. The hair tends to bring the signature down while

the brighter portions of the face, such as the nose tip and forehead,

tend to peak the signature. A vertical line depicting the left side of

the face, LF, can be found by determining the leftmost minimum of the

signature. Likewise, the right side of the face, IRF, can be found by

determining the rightmost minimum of the signature. After IRF and LF

are found, a vertical line depicting the nose line can be found by

determining the maximum between LF and IRF.

igure 3-2 Example of a row signature

18

Derivatives. In some cases, the signature method was not

adequate to define certain features of the face. In these cases the

derivative of either the signature or the pixel values (from single row

or column) was determined. Two types of derivatives were used. The first

method was a smoothed derivative, which smoothes the data by passing

a least squared parabola through an odd number of points centered around

the point of interest and then computing the derivative of this parabola.

Evaluating this derivative at zero will provide the derivative for the

point of interest. The development of this theory is confined in

Appendix A. As shown in this appendix, the first derivative is given by:

3
y = .0357 Vky

k=-3 k

where y^ is the pixel value and when using three pixels on either side

of the point to be differentiated.

The second method was simply a finite difference derivative.

The finite difference at point k is defined by

* -• yk-l " Yk+1
yk 2At

where At represents the distance between elements.

This derivative can be simplified to

yk = v7"\7r

since only the points of maximum and minimum will be of interest and

not the value of the derivative.

The direction of the subtraction, that is, whether y. n is k-1
subtracted from y, .. or whether y, , is subtracted from y. , isk+1 Jk+1 k-1

19

dependent upon the feature being located and the direction of the search.

For example, say the intersection of the hairline, IHAR, and the nose

line, NL, is to be found. The search starts by taking the finite diff­

erence moving down the nose line. yk-l will therefore be the point directly

above the point of derivative, y^, and y^+^ will be directly below y .

As the algorithm progresses down the noseline one would expect to see a

drastic change in the derivative at the hairline where the darker hair

changes into a lighter forehead. At this point yk-1 will lie on the dark

hair and will have a very low pixel value. y / will lie on the forehead Jk+1
and have a very large pixel value. Therefore if a positive derivative is

desired, the finite difference derivative would be found by

yk yk+l yk-l

If, however, the search had been from the bottom up, then a

change from light to dark is encountered and the positive derivative

would be found by

yk = yk-l " yk+l

Figure 3-3 shows an example of a finite difference derivative taken down

the nose line and searching from the top down.

Digital Filtering. Appendix C describes the basics of digital

filtering. Therefore, only the results of the development of the

digital filter used in the CAPTURE Algorithm is given here.
A paper published . by J. W. Modestino and R. W. Fries^

J. W. Modestino and R. W. Fries, "Edge Detection in Noisy
Images Using'Recursive Digital Filtering", unpublished R. P. I. report.

Figure 3-3

— ITH

IHAR

Finite difference derivative example taken down noseline M o

21

develops an optimum filter that can be used in detecting

edges in noisy digitized images. This filter is of the form

r2 e'r2/2
H (r) = ------------—-— —------- ; r > 0

{r2+2(l-p)2X2}/ r2+(l-p)2X2
8(l-p)X?

where the gray level assumed throughout any elementary rectangle is

zero-mean Gaussian with variance (X and correlation coefficient p with the

gray levels in contiguous. rectangles. t, Ko2" fa7" . The parameter p repre-— n
sents the degree of correlation across an edge, X represents the average

number of edges per unit distance and "C, represents the SNR of the edge

structure.

The digital approximation to H (r) was given to be

H (z ,z) = A 0 12

l-t(bxpl) t bHz1"1Z2"1

1 / -1 ' -1 -11 * a10(zl +z2 ’ * allZl z2

The gain A and the tree coefficients a 10 and were determined

by using an iterative gradient procedure and the results were given in

tabular form. This result is repeated in Table 3-1.

It was determined by trial that the coefficients such that

5=3 dB, X = 0.0125 and p = 0.5 worked the best in mose cases. It was

expected that a high value of p would be required. Since the images

that are being processed are of the human face, a high correlation

between successive pixel values is likely.

Table 3-1

Summary of Filter Parameters
For Selected Values of X, p and

Notes: 1. For filter coefficients are independent of X and p.

C = 00 ?=10dB C=3dB
Filter
Coeff. -Kp<l p=-0.9 p=0.0 p=0.5 p=-0,9 p=0.0 p=0.5

bll -0.8256 -0.8924 -0.8252 -0.5736 -0.8264 -0.8256 -0.7556

X=0.0125 aio -0.2149 -0.2565 -0.3217 -0.4654 -0.3602 -0.3840 -0.4815

all 0.0098 -6.2189 -0.1579 0.0449 -0.1540 -0.1461 0.0102

A 0.1150 0.0530 0.0380 0.0250 0.0220 0.0150 0.0088

bll -0.8256 -0.9396 -0.8460 -0.8228 -0.8664 -0.8120 -0.8260

aio -0.2149 -0.1989 -0.2849 -0.3106 -0.3075 -0.3686 -0.3782
X=0.0250

all 0.0098 -0.2490 -0.1687 -0.1761 -0.2040 -0.1350 -0.1534

' A 0.1150 0.0700 0.0530 0.0400 0.0340. 0.0230 0.0150

bll -0.8256 -0.9244 -0.7980 -0.8480 -0.8896 -0.8228 -0.7636

aio -0.2149 -0.1944 -0.2925 -0.2821 -0.2665 -0.3326 -0.3929
X=0.050

all 0.0098 -0.1929 -0.0884 -0.1696 -0.2213 -0.1575 -0.0895

A 0.1150 0.0840 0.0670 0.0540 0.0480 0.0340 0.0230

2. Additional results are available from the paper by
Modestino and Fries.

23

This filter has an interpretation as the cascade of the Laplacian

operator with a lowpass spatial filter. The Laplacian operator for

a two dimensional image is given by

v2i(x) = 32l(x) + 32l<x)
ax.2 9x 2 1 2

where I(X) is the input image.

The application of this differential operator on an image is

particularly useful in detecting edges in no-npise conditions. The

images that will be experienced, however, contain random noise due

to the displaying system and also due to shadows on the face. But,

by cascading this operator with a low pass filter, much of this noise

can be removed. Notice that although a lowpass filter may blurr the

edge structure, as shown in Appendix C, the Laplacian is a second

order derivative and so will lessen the effects of the blurring.

Chapter 4

..CAPTURE ALGORITHM DESCRIPTION

This chapter will describe the manner in which the CAPTURE

Algorithm locates the major features and produces the facial outline.

A detailed description of the computer program routines used to implement

the algorithm is contained in Appendix D for reference.

Feature Location

The facial features that are located by the CAPTURE algorithm

are as follows:
1. Top of head—horizontal line ■ t"

2. Tip of chin—horizontal line

3. Eyes—horizontal line

4. Mouth—horizontal line

5. Nose tip—horizontal line

6. Left side of face—vertical line

7. Nose line—vertical line

8. Right side of face—vertical line

These features are located by either horizontal or vertical lines as

depicted in Figure 4-1.

The algorithm begins by determining the three vertical lines

indicating the left and right sides of the face and the nose line.

These lines can be found by first forming a row signature of 10 lines

near the center of the image. Figure 4-2 is an example of this signature.

24

25

Figure 4-1 Feature Location

26

Figure 4-2 Row Signature Example.

n

The estimate for the left side of the face is obtained by

finding the minimum of the first half of the signature. The estimate

for the right side of the face is likewise found by determining the

minimum of the last half of the signature. Using these estimates for

LF and IRF, the nose line, NL, can be found by determining the maximum

of the signature between LF and IRF.

The next task, then, is to find the top of the head, ITH. This

is accomplished by taking a finite difference derivative along the

nose line, NL. The top of the head should then be at the point of the

maximum negative derivative when searching the top quarter of the

derivative array. The derivative should be negative since at the top

of the head point we will have a low pixel value, due to the dark hair,

minus a large pixel value due to the light background. Figure 4-3

shows an example of the derivative taken down the nose line.

The hairline, IHAR, can similarly be found by determining the

maximum positive derivative in the top half of the image working from

ITH down. We would expect the derivative to be positive since at the point

of the hairline we will have a high pixel value due to the forehead,

minus a lower pixel value due to the hair.

Estimates of the bottom of the head, IBH, and the mouth line, ML,

are then formed. In general most heads are no more than three times as

long as they are wide. Therefore, this criterion is used to form an

estimate for the bottom of the head. Since this value is used only as a

limit for searches, an exact determination is not necessary at this point.

An estimate for the mouth line is formed by assuming it to be 30 rows above

the IBH line. This value will be determined exactly at a later time.

i e *

Figurt- 4-3 Finite Difference Derivative aleng Noselint- M
oo

29

Next, the eyebrow, LEB, and the eyeline, LE, can be found.

This is accomplished by first forming a column signature between columns

starting at five columns to the right of the nose line and ending at five

columns to the left of the right of the face.'_\The -eyebrow, containing

many low value pixels, should then be the minimum value of this signature.

The eyeline, LE, is next desired to be found. Using the same

signature as determined for finding the eyebrow, and working from LEB

down, we would expect to find next a peak corresponding to the space

between the eyebrow and the eye, and then a minimum corresponding to the

eye itself. So these are the next conditions for which the algorithm

searches.

The tip of the nose, NT, can now be determined. Since the nose

protrudes out from the face, it is usually very bright in the images.

Therefore, by forming a column sum just around the nose line, NL, and by

determining the maximum, the nose tip can be found. So, to this end, a

column signature is formed over the five rows on either side of the nose

line. The maximum is searched for between rows starting at 15 rows below

the eyeline, and ending 15 rows before the mouthline. This maximum is

taken to be NT.

The next task is to define the mouth line ML, more accurately.

The mouth line can be found using the same signature used to determine

the nose tip. This signature is searched between rows beginning at 10

rows above the old estimate for the mouth line and ending at 20 rows

from the bottom of the head. Since the mouth will contain many low pixel

values, the mouth line, ML, is taken to be the minimum of the search.

30

The algorithm determines the right and left extremities of the

mouth. These values will not be made available as a program output

since these values are too variable. These values would widely vary,

for example, in a picture if the suspect was smiling than if he were

not smiling. These values will be used however, in the search strategy

used to determine the facial outline. These values are determined by

first forming a row signature involving ten rows centered around ML.

The corners of the mouth, being recessed into the face more than at the

center, should contain more low pixel values Therefore the left

corner of the mouth, MLL, can be found by searching for the minimum of

the row signature between th’e center of the left part of the face to the

nose line. The right corner of the mouth, MLR, is similarly found by

searching for the minimum signature between the nose line and the center

of the right side of the face. At this point all the major features

have been located. The remaining task, then is to produce the facial

outline.

Facial Outline

An example of the facial outline that is to be determined is

shown in Figure 4-4. The feature location lines as previously determined

are used as an aid in the determination of the facial outline. The

outline is formed by first passing the rows of pixel values through a

digital filter to remove some of the effects of the facial shadows. The

particular filter that is used is described in Chapter 3. After the image

is passed through the digital filter, the filtered pixels are compared

to the threshold. All pixels having a filtered value less than the

threshold are set to a value of one, while pixels "over the threshold are

set to zero.

31,

Figure 4~4 Facial Outline

32

The image matrix at this point contains only pixels having a value

of ones or zeros. They are arranged, however, so that most of the pixel

values in the face area are now zero and those in the hair and along the

chin line are ones. Figure 4-5 is an example of an output from the

filter. The process is then to search from the center of the face

outward and select the first column whose pixel value is a one to be the

face edge. However, some of the darker areas in the face, such as the

eyes and mouth, may also contain a few scattered ones that may interfere

with the edge detection scheme. But, these areas have already been

located by the feature location algorithm. This information can be used

to skip over these areas. Therefore the areas that are searched are the

six regions as given in Figure 4-6.

A search is begun over regions 1 and 2 from a point begining at

five rows above the eyebrow line, tip to the hairline. Starting at the

left side of the face, a search is conducted up the column until a row

'is found that contains a value of 1. When a 1 is found, it is replaced

with a value of 64 to indicate that it was the first value of 1 encountered.

The next column is then addressed and the process is repeated. After

searching regions 1 and 2 upwards in this manner, the regions are searched

in a horizontal direction. Searching each region in two directions will

provide a smoother appearing outline. Region 1 is first searched starting

at the nose line and moving left to the left side of the face. Again,

when the first value other than a zero is encountered, which could be a

value of 1 or a value of 64 from the previous search, the pixel value is

reset to be a value of 64. In a similar manner region 2 is searched

starting at the nose line and moving right.

33

Figure 4-5 Filter Output Example

? if’.34 V

IRFLF NL

ITH

IHAR

LEB

LE

NT

ML

IBS

BiinrmigBiii Regions 1 (left)
and 2 (right)

vseKMflRZMKZie Regions 3 (left)
and 4 (right)

eaesr^er^r-^das Regions 5 (left)
and 6 (right)

Horizontal and vertical
direction separator

• Direction of search

Figure 4~6 Facial outline search regions

35

After the edges have been defined for regions 1 and 2, regions

3 and 4 are searched. Since these two regions are at the sides of the

head, they need only to be searched in the horizontal directions. Region

3 is searched starting from a point midway between the NLF and NNL points

and moving left until the left side of the face is reached. In some

cases the search may not encounter a pixel of value 1 on a given row. In

this case there would be a gap in the facial outline. To prevent this,

a running account is kept to indicate the column at which the edge was

detected in the previous row. If no edge is detected in a subsequent

row, this value is taken to be the edge. Region 4 is searched in a

similar manner starting at a point midway between the NLF and IRF points

and moving right to the right side of the face.

After all edges have been detected in regions 3 and 4, regions 5

and 6 are searched. Region 5 and 6 are first searched starting at a

point ten lines below the mouth and moving down to the bottom of the

head. Region 5 is then searched starting at the left edge of the mouth,

as determined by the feature locating algorithm and moving to the left

side of the face. Region 6 is similarly searched from the right edge of

the mouth to the right side of the face. In both regions 5 and 6 a running

account is kept to determine the edge column for the previous row in case

no edge is found.

After all six regions been searched, the complete facial outline

has been formed. This information, including the feature locations can

then . be output to the user for any further processing that may be required.

Chapter 5

EXAMPLES OF CAPTURE ALGORITHM RESULTS

This chapter will present some examples of the CAPTURE Algorithm

results. These results will cover examples of not only when the

algorithm worked well but also examples of when it did not work. In

these latter examples, reasons for the algorithm's failure will be

given and possible corrections for future use will be proposed.

The images in these examples were taken from a magnetic tape

that was already available". Although the tape contained 44 images, only

the first 16 were accessible. As will be seen in the examples, information

is slowly lost on the left side of the images while information on the

next image begins overlapping into the right. There probably exists

some incongruity between the program-that wrote the images onto the

magnetic tape and that which reads from the magnetic tape onto disk.

CAPTURE Algorithm Output Time

Before looking at the examples, a few comments are needed on the

time required to process a picture using the CAPTURE Algorithm. All the

images take approximately the same time to process. The only time that

may vary slightly is that required for the determination of the facial

outline. \

In general, the CAPTURE Algorithm requires about 18 seconds to

read the image from the disk, process the information, locate the features

and determine the outline. It then requires another 12 seconds just

to write this information back onto the disk in order that the

36

31

electrostatic printer may be used as an output device. As can be seen

most of the time is required reading from or writing , onto the disk. But

all the information is available after 12 seconds. The total time required

to output this information to the user is dependent upon the output device.

CAPTURE Algorithm Examples

Figures 5~1 through 5-8 are examples of CAPTURE Algorithm results.

The feature location and facial outline of each of the images were rated

under a four point system:

G00D-A11 information is determined to be accurate

FAIR-Most of the information is accurate

POOR-Some of the information is useable

BAD -No useable information

The feature location technique used by the CAPTURE Algorithm

seemed to work very well. Indeed all the images except for Figure 5-8

were given a GOOD rating. The line that was to depict the eyeline, LE,

in Figure 5-8 is too high. The algorithm mistook the hair on the right

side of the face which falls down nearly to his eyes, to be his right

eyebrow. The algorithm then looks for the next peak, which is

supposed to be the space between the eyebrow and the eye, and then assumes

the next minimum to be the eye. In this case however, it was his eyebrow.

If this type of case becomes a problem in the future, the eyeline could

be verified by the computer to be accurate by searching upwards from the

nost tip line, NT, after it has been determined.

The facial outline algorithm however, did not function as well.

Figures 5-1, 5-2, 5-3, and 5-4 were given a GOOD rating since all the

information can be used if a smoothing technique is used to soften the

38

THE FOLLOWING FEATURE LOCATIONS HAVE BEEN DETERMINED FOR FILE ? ? ?-

HORIZONTAL LINES
''A* zTx /T* 'V* *n <IT' A ^T* <T* ■’* vf'

VERTICAL LINES
-K -K -fi -li -fi -fi -|i 'J* -K -fi -t* -fi -1^ -t* Di"

TOP OF HEAD- 5
HAIRLINE- 26
EYELINE- 59
NOSETIP- 76'1OUTHLINE- 97 BOTTOM OF HEAD 127"

LEFT SIDE OF FACE- 4F
NOSELINE- 63-
RIGHT SIDE OF FACE- 86

Figure 5-1 CAPTURE Algorithm example

39

THE FOLLOWING FEATURE LOCATIONS HAVE BEEN DETERMINED FOR FILE ???

HORIZONTAL LINES.O fci-- *£■* •J* LpT

1OP OF HEAD-HAIRLINE- 20 3
EYELINE- S9
HOSETIP- 79MOUTHLINE- 97- BOTTOM OF HEAD- 127-

VERTICAL LINES
^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p ^p

LEFT SIDE OF FACE- 37-NOSELINE- 65
RIGHT SIDE OF FACE- 89

Figure 5-2 CAPTURE Algorithm Example

40.

THE FOLLOWING FEATURE LOCATIONS HAVE BEEN
DETERMINED FOR FILE ? ? ?-

HORIZONTAL LINES

TOP OF HEAD- 3
AIRLINE- 30
EYELINE- 58
lOSETIP- 77-1OUTHLINE- 96BOTTOM OF HEAD- 127"

VERTICAL LINES
*** *******************’
LEFT SIDE OF FACE- 31=
NOSELINE- 58
RIGHT SIDE OF FACE- 83

Figure 5-3 CAPTURE Algorithm Example

:41

THE FOLLOWING FEATURE LOCATIONS HAVE BEEN DETERMINED FOR FILE ?7?

HORIZONTAL LINES ^k ^k ^k ■4* ^k ^k

TOP OF HEAD- 5
HAIRLINE- 19
EYELINE- 58
HOSETIP- 80-1OUTHLINE- 99BOTTOM OF HEAD- 127-

UERTICAL LINES♦ ^k ^k ^k 'V ‘♦, 'A* 'V 'V *4* ^k * ^k *4?3>

LEFT SIDE OF FACE- SZ"
NOSELINE- S7
RIGHT SIDE OF FACE- 83

Figure 5-4 CAPTURE Algorithm Example

THE FOLLOWING FEATURE LOCATIONS HAVE BEEN DETERMINED FOR FILE ???

HORIZONTAL LINES
21* *K 2H #H ill #1* 2K

**UERTICAL LINES

3TOP OF HEAD-
HAIRLINE- 33
EYELINE- 61
NOSETIP- 78'1OUTHLINE- 98BOTTOM OF HEAD- 12?--

LEFT SIDE OF FACE- 31-.
NOSELINE- S3
RIGHT SIDE OF FACE- 77

Figure 5-5 CAPTURE Algorithm Example

43

THE FOLLOWING FEATURE LOCATIONS HAVE BEEN DETERMINED FOR FILE ???

HORIZONTAL LINES'I* ^k ^k ^k ^k ^k ^k ^k ^k ^k ^k ^k * t*

TOP OF HEAD- 3
HAIRLINE- 21
EYELINE- 57
HOSETIP- 82 1OUTHLINE- 105 BOTTOM OF HEAD- 127-

UERTICAL LINES^k ''V ^k ^k 'i* 'V '4* ^kt- *T* <T» m** A <1*

LEFT SIDE OF FACE- 31-
NOSELINE- 51
RIGHT SIDE OF FACE- 79

Figure 5-6 CAPTURE Algorithm Example

44'

THE FOLLOWING FEATURE LOCATIONS HAVE BEEN
DETERMINED FOR FILE 7 7 7-

HORIZONTAL LINES
*********** OX*

TOP OF HEAD-
HAIRLINE- 34
EYELINE- 60

2

'I05ETIP- 92 ■1OUTHLINE- 96BOTTOM OF HEAD 127-

UERTICAL LINES
XXXXXXXOXXXXXXXXXXXXX.'

LEFT SIDE OF FACE- 30“
NOSELINE- 54
RIGHT SIDE OF FACE- 80

Figure 5-7 CAPTURE Algorithm Example

rHE rDETE%INEDE?5^FltECTTT°NS HSUE BEEN

HORIZONTAL LINES
K**X*X*t****X*:K***X*
TOP OF HEAD- 3
HAIRLINE- 31
EYELINE- 53
HOSETIP- 76 HOUTHLINE- 97BOTTOM OF HEAD- 127-

UERTICAL LINES
*XX*XX*XX****t*tX*XXX)li:
LEFT SIDE OF FACE- 30
NOSELINE- 49
RIGHT SIDE OF FACE- 81

Figure 5-8 CAPTURE Algorithm Example

46

abrupt changes. Figure 5-7 was given a rating of FAIR since only the

outline in the lower right quadrant is inadequate. Figures 5-5 and 5-6

were given ratings of POOR. Although a smoothing technique will greatly

enhance the outline's appearance, there is a good deal of information

lost particularly in the upper half. It is highly probable that the

standard threshold of .11 that was used on all the images was too low.

Increasing this threshold will help the facial outline. Perhaps some

algorithm can be developed to automatically determine the optimum value

of threshold for each particular image, based ,on its average gray scale

value. Notice that these figures are somewhat blurry with few distinct

edge structures. Figure 5-8 was given a rating of BAD since there is

very little information contained in the facial outline.

Table 5-1 gives a summary of all the images that were accessible

on the tape. As given in the table, 56% of the images on the tape

qualified (i.e., contained images having no eyeglasses or beards, etc)

for use. Of these images, the feature location program received ratings

of GOOD in 88.9% and FAIR in 11.1%. If useable information is considered

to be ratings of GOOD or FAIR, then the feature location algorithm

provided useable information in 100% of the cases. The facial outline

algorithm, using a standard threshold of .11 for all images, provided

useable information in 66.7% of the cases.

47

Table 5-1

CAPTURE Algorithm Rating Summary

File Qualifies? Feature Location Outline Figure

1 Yes Good Good 5-1

2 Yes Good Good 5-2

3 Yes Good Fair -

4 No - - —

5 Yes Good Good 5-3

6 No - r - -

7 Yes Good Good 5-4

8 No - - -

9 No - — -

ro Yes Good Poor 5-5

11 Yes Good Poor 5-6

12 Yes Good Fair 5-7

13 No - - —

14 Yes Fair Bad 5-8

15 No - - ' -

16 Nb - - -

Totals 9/16=56% 8/9=88.9% GOOD 4/9=44.5% GOOD
1/9=11.1% FAIR 2/9=22.2% FAIR.

2/9=22.2% POOR
1/9=11.1% BAD

X

Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

As can be seen from the examples in Chapter 5, the CAPTURE

Algorithm can provide accurate feature location and facial outline data.

After only 18 seconds this information is available for the user to

employ as necessary. Previously, feature measurements were taken by hand,

requiring an average of 5 minutes per case for.-maximum accuracy. The

savings in time provided by the CAPTURE Algorithm are substantial.

Future users of the CAPTURE Algorithm may want to investigate

further possible techniques for improvement of the algorithm. For

example, some attention may be devoted to pre-filtering the image before

the features are located. This may remove some of the shadows that could

possibly confuse the algorithm Other filters may be tried for the facial

outline, or, an automatic search routine could be developed that would

find the optimum threshold for each image.

One area for future work on the CAPTURE Algorithm that is strongly

recommended, is the adaptation for stereographic images. A companion

program should be developed, using similar techniques as in CAPTURE to

provide a facial outline and measurement data for a facial profile. In

this manner, information can be provided for both the full face, as is

now available, and for the profile resulting in a three dimensional

description of the suspect. This development is important because a

witness may only see. the profile of the suspect and not the full face.

48

49

There are also many possible options for the actual employment of

this algorithm. It may be that an interactive system should be employed.

Under this option an operator will decide upon the accuracy of the feature

locations and determine whether the facial outline is smooth enough for.
usage When, for example, the computer completes its calculations a

question could be asked of the operator whether all the information is

accurate. If not, the operator can tell the computer what part is not

accurate and suggest a possible new direction in which the computer should

search. If a result as shown in Figure 5-8 were produced, having the

eyeline being located too high, an operator could tell the computer that

line LE was inaccurate and to search immediately below this line for the

proper location. In this manner both the computer and the human operator

will be providing what each does best: rapid and accurate computations

as only a computer can provide and human judgement as only a human can

provide.

Even in this type of interactive system a significant amount

of time savings can be attained. For example, say there are 10,000 mug

shots on file that are to be processed. If, at worst case, the computer

can only process 70% of these images, leaving 30% to be measured by hand

the total time can be calculated:

Number of images by computer = (10,000) (.7) ” 7000

Number of images by hand = (10,000) (.3) = 3000

Time for computer = (7000) (.3) = 2100 minutes

Time for hand= (3000) (5.) = 15000 minutes

Total time = 17,100 minutes = 285 hours

50

Assuming an eight hour work day, this time corresponds to 35.625 man-days.

If, however, all 10,000 photographs had to be measured by hand:

Time by hand = (10,000) (5) = 50,000 minutes

= 833.333 hours

Again assuming an eight hour work day, this time corresponds to 104.16

man-days. This represents a total savings of 68.54 man-days when aided

by the CAPTURE Algorithm.

51

BIBLIOGRAPHY

Ausherman, D. A., Samuel J. Dwyer and Gwilym S. Lodwick, "Extraction
of Connected Edges from Knee Radiographs", IEEE Transaction on
Computers, Vol C-21, No. 7, July 1972, pp. 753-758.

El'bur, R. E., "Utilization of the Apparatus of Projective Geometry
In the Process of the Identification of Individuals by their
Photographs", pp. 321-348.

Fries, R. W., "Edge detection in Noisy Images Using Recursive Digital .
Filtering", M. S. Thesis, Department of Electrical and Systems
Engineering, Rensselaer Polytechnic Institution, Troy, N. Y.,
November 1975.

Goldstein, A. J., L. D. Harmon, and A. B. Lisk, "Identification of
Human Faces", Proceedings of the IEEE, Vol. 59, No. 5, May 1971
pp. 748-760,'

Hall, Earnest L., Richard P. Kruger, and A. F. Turner,"An Optical-
Digital System for Automatic Processing of Chest X-Rays",
Optical Engineering, May/June, 1974.

Hall, Earnest L., Richard P. Kruger, A. F. Turner, "Automated Measurements
from Chest X-rays for Lung Disease Classification", Computer
Graphics, Pattern Recognition and Data Structures Conference,
May 1975.

Hall, Earnest L., Richard P. Kruger etaal, "A Survey of Preprocessing
and Feature Extraction Technizue for Radiographic Images",
IEEE Transactions on Computers, Vol. C-20, No. 9, September, 1971.

Kruger, R. P., "Computer Processing of Radiographic Images", Ph. D. Thesis
University of Missouri, Columbia Missouri, May, 1971.

Modestino, J. W., R. W. Fries, "Edge Detection in Noisy Images Using
Recursive Digital Filtering", Unpublished R. P. I. report.

Stockham, Thomas G., "Image Processing in the Control of a Visual Model,
Proceedings of the IEEE, (July, 1092), pp. 828-842.

A.:/**

APPENDICES

53

APPENDIX A

SMOOTHED DIFFERENTATION OF SAMPLED DATA

Let N be the total number of data points and n be an odd number

representing the number of data points to which a least square smoothing

of each interval will be the point
to be smoothed and differentiated.

The corresponding parabola is

-(n-l)/2 k < (n-l)/2

the interval.

The squared error over n points is then

where

A=(n-l)/2

The values the squared error

are found by

(A-l)0

(A-2)0
3E2
3a ;

3E^
9aQ‘

parabola is to be fit. The center value

The error, e^ is then

Wyk
= a^k+a^2-^

A
= y (a +a k+a k2-y) (2k) = 0, L. o 1 2 kk=-A

A
= y 2(a +a k+a k2-7~) = 0
k=-A 012

of a , a,, and a„ which minimizes o 1 2

yk'ao+alk+a2k2

where.y, here is an estimate of each y, contained in k vk

A
y (ao+a1k+a2k2 -^)2

-A

A
E2 = 1 e?

-i k

54

9i-.2 A __
—• = 0 = £ (a +ank+a k2-y,) (2k2) = 0 (A-3)
da , u A o 1 2 k2 k=-A

From numerical analysis it can be shown that

A
k2 = n(n2-l)

k=l 24

A
y k"* = n(n2-l) (3n2~7)

k=l 24 20

Then, eqn (A-l) becomes

A A A A
y 2a + y 2ak + y 2a,k2 - y 2y, =0

, o , Lt 1 , L„ 2 , u k 1k

Likewise, (A-2) becomes

(A-4)

A A A A
2a y k + 2a y k2 + 2a I. k3 - 2 \ ky = 0
g=-A fc=-A g=-A k=-A

Or,

n(n2-l) r —2al “14-----2J Akyk = 0
k=-A

n(n2-l)
al 12 ' 2 kyk

k^-A
= 0 (A-5)

And (A-3) becomes
2ao r2 + 2ai k3 + 2a2^ k‘‘ -21 k2yk = 0
°k=-A k=-A k=-A k=-A

55

20

Or

(A-6)

2 2 k2y = 0
k=-A

3 __
a = .0357 Iky
1 k=-3 K

A
• Z k2yv = 0
k=-A k

"n(n2-l)
% " 12 a2

n(n2~l) (3n2-1)
12

n(n2-l) (3n2-7)
12 20

Since the first derivative at k=0 is

solved. From equation (A-5):only the value of a^ has to be

^o = 31

n(n2-l) v ,— n
al -IT- 7 2 kyk " 0

k=-A

Or,
12 A —

al " n(n2-l rj ?yk
k=-A

So, by taking n~7

- 12 V i,-al ' 7(48)J kyk
k=-3

APPENDIX B

CALCULATION OF WEIGHTING FACTORS

A weighting factor is used to weight the derivatives taken to

find the outline of the face. Since a two dimensional derivative is

being taken, this weighting factor is used to determine whether the

horizontal derivative,, vertical derivative or some combination of the

two-carries the most information about the edge, structure.

The weighting function is desired to be such that when looking

at the top of the head, the vertical derivative only is considered and

when at the side of the head, the horizontal derivative is the only one

taken. Elsewhere on the face, it should be a combination of the two.

This requirement is illustrated in Figure B.-l.

A cosine function would account for this type of function.

When 6=0°, cos(6)=l so the horizontal component should be multiplied by

the cos(6) and the vertical component by (l-cos(9)). When at the top

of the head 0=90° and cos(0)=O. So the horizontal component would be

multiplied by zero and the vertical component by one.

This factor is calculated by first assumming that the head is

basically a circle. When looking at the upper half of the face, the

circle is centered on the intersection of the nose line, NNL, and

the eyebrow, NLEB. Figure B-2 shows this calculation.

Then,

Cos(0) = ■ ■ ■ ■ ■ ——-
/ (NNL-NLF)2+(X-NLEB)f1

56

57

Figure B-l Two-dimensional derivative requirement

58

NLEB

(NNL.NLEB)

Figure B-2 Calculation of weighting factor

59

X can be found by assumming that the slope of the line connecting

(JCOL.IROW) and (NNL,NLEB) is the same as for (JCOL,IROW) and (NLF,X):

(JCOL-NNL)

(IROW-X)
(JCOL-NLF)

(IROW-NLEB)S1Ope' ~ '('JCOL-NNL) ”

„ (IROW-NLEB) (JCOL-NLF)X = IROW —

1

APPENDIX C

DIGITAL FILTERS

This discussion of digital filters begins with a basic review of

analog filters. First, consider a basic lowpass filter. Figure C-la

shows a simple lowpass filter circuit diagram. Figure C-lb gives the

corresponding Laplace transform version of the-filter in Figure C-la.

The transfer function, G(s), of the lowpass filter is given by

0(,) = >e. (s) m

But, by the voltage-divider law,. eout.(s) for Figure C-lb is

e (s) = e. (s) ^7777-
out m R + 1/Cs

so that

e 1/n tx out 1/Cs 1 x(s) e. (s) R + 1/Cs ~ RCs + 1 (C“1)
m

The step response of this type of filter can be found by

e (t) = L l{e (s)} = L ^{G(s)e. (s)}
os o m

assuming zero intitial conditions and where,

e^Cs) = 1/s for a step response

G(s) is as given in ,u (C-l)

L is the Laplacian operator

So,

60

61

e.m

a) b)

Figure C-l Circuit characteristics of a lowpass filter, a) circuit
diagram b) Laplace transform c) step response

62
e (t) = L"1{l/(RCs2 + s)} (C-2)
os

= L*"1{l/(s(RCs + 1))}

which can be evaluated using Partial Fractions;
1 = A B = A(RCs+l) + Bs

s(RCs+l) s RCs+1 s(RCs+l)

Therefore,

1 = ARCs + A + Bs

= s(ARC + B) + A

Or, (ARC+B) = 0 <«- (C-3)

A = 1 (C-4)

Solving (C-2) for the B variable

B=-ARC

and substituting in eqn (C-4) yields

B=-RC

Therefore, eqn (C-2) can be written

e (t) = L-1
o

1 + ~RC
s RCs+1

[RCs + l_

i[i]+ L-i r__ L_.sj |^s + l/RC

From Laplacian tables it can be found that

Then when a=0

and when a=l/RC

(C-5)

63

Therefore the unit step response of a simple lowpass filter is

of the form
e (t) = l-e"t/RC (C-6)
os

Figure C-lc gives a general plot of this response. As can be

seen, a lowpass filter acts as an integrator on the input function. If

this type of filter were applied to an image the edges, corresponding

to a step increase, would be blurred due to the response given in eqn (C-6).

It therefore would not serve as an edge detector..

Next, consider a highpass filter. Figure C-2a and C-2b shows

a simple highpass filter and its corresponding Laplace transform version,

respectively.

The transfer function of this highpass filter is given by

G(s) = TTITFc (c"7)

The step response of this filter can be determined in the same

manner as for the lowpass filter and is given by

 "t/RCe vt) - e os

Figure C-2c gives a general plot of this response. As shown in Figure

Ct2c, - when applied to an image a highpass filter acts more like a

differentiator, assigning the maximum value at the point where the edge

is encountered.

The next problem is to change this analog highpass filter into

its digital filter version. First, let

G(s) = analog transfer function

H(z) = digital transfer function
(where z represents one sample delay)

64

Figure C-2 Circuit characteristics of a highpass filter, a) circuit
diagram b) Laplace transform c) step response

65

and let, X = analog filter reference frequency (rad/sec)

0)^ = digital filter reference frequency (rad/sec

Then, it can be shown
'H(z) = G(s)| C(l-z~1)

(1+z'1)

T where, 0 = X cot 0)r r ---2

For example, assume G(s) is a simple highpass filter of the form

G(s) =-47
s+1 f-

Then, for a digitized photograph with 128 pixels per line

f = sampling frequency

= 128 samples/line

T = 1/fs
= 1/128 lines/sample

so, if f is the Nyquist frequency n
f = f /2tt n s

= 64 samples/line

Let £ = to /2r r
= 3/4 fn

= (3/4) (f /2)s
= 3f /8s

and let X = 1r
Then’ (b T (3irf /4)(1/128)

- r = s 3tt

2 2 8

66
Therefore, solving for C

C = cot(w T/2) = .414 r

and

H(z) = G(p) c^-1)
P------~

(1+z)

■414(l-z~1)
= d+z"1)

^^d-z'1)
1 + -i

(1+z }

After simplifing the above term

H(z) = ■2927(l-z~1)
1 + .414z-1

From filter theory it is known that if X(z) is the input to the

filter H(z) and Y(z) is the corresponding output

Y(z) = H(z)X(z)

= ■2927(l-z~1) X(z)

l+.414z

Now, getting Y(z) in the form of a normal digital filter
Y(z) + .414z~1y(z) = .2927d-z-1)X(z)

Y(z) = .2927(x(z)-z ^X(z))-.414z ^Y(z)

Note that z ^X(z) and z ^Y(z) represent the previous input and

output respectively. So the algorithm may be written in general:

Y(l) = AX(1) 1=1

Yd) = A(X(I)+X(I-1))+BY(I-1) I>1

where A=.2927 and B=.414 for this example.

APPENDIX D

DETAILED.PROGRAMMING DESCRIPTION

Appendix D will describe in detail, the CAPTURE Algorithm.

A block diagram of the program flow is given in Figure D-l. Each of the

routines shown in Figure D-l will be described in the following para­

graphs. Routines developed specifically for the CAPTURE Algorithm will

be described by first giving a detailed technical description of the

programing methods and'philosophy. Flow charts and a listing of the

routine will also be given for further reference.

The library routines EXEC and SCOPE, will be described by

simply giving the program description and useage.

Mainprogram FILT

The purpose of mainprogram FILT is to locate the major facial

features, drawing vertical or horizontal lines as necessary for their

definition. FILT calls subroutine WRNR to/produce the facial outline.

All pertinent information is passed to the subroutines through COMMON.

FILT mainprogram technical description. The following major

variables are used in mainprogram FILT:

NAME —File name of desired image

IM —A 128 element array for holding a row or column of
pixel values

ISUM —A 128 element array used in finding signatures

IHOLD—A 128 by 70 matrix to hold pixel values

LF —Vertical line depicting the left side of the face

67

68

Figure D-l CAPTURE Algorithm program flow

69

IRF —Vertical line depicting the right side of the face

NL —Vertical line depicting the nose line

NT —Horizontal line depicting the nose tip

ML —Horizontal line depicting the mouth

ITH —Horizontal line depicting the top of the head

IBH —Horizontal line depicting the bottom of the head

IHAR—Horizontal line depicting the hairline

LE —Horizontal line depicting the eye

LEB —Horizontal line depicting the eyebrow

Figure 1-1 indicates the locations of these lines.

FILT begins by asking for the name of the file containing the

digitized version of the desired image. It then fills the IHOLD array

with the image’s pixel values. In order to conserve core space, only

the center 70 columns are read into the IHOLD array. Since most heads are

not as wide as they are long, pictures of the head region will have

a -great deal of wasted space at the left and right extremes of the

picture. If the image is centered properly, the center 70 columns

should contain all the desired information. However, since column one of

IHOLD now corresponds to column 34 of the original image, and since

the row and column numbers of the features are desired to be in terms of

the original image's coordinates, care must be taken to index the IHOLD

array properly.

A call to SIGTR is next made to find the row signature of

10 lines near the center of the image so that an estimate of the left,

LF, and right, IRF, side of the face can be determined. Figure D-2

shows an example of the results of this row sum.

70

Figure D-2 Row signature example

71

The estimate for the left side of the face is obtained by

finding the minimum of the first half of the signature. The estimate

for the right side of the face is likewise found by determining the

minimum of the last" half of the signature. Using these estimates for. LF

and IRF, the nose line, NL, can be found by determining the maximum of

the signature between LF and IRF.

The next task, then, is to find the top of the head, ITH. This

is accomplished by taking a finite difference derivative along the

nose line, NL. The top of the head should then be at the point of the

maximum negative derivative when searching the top quarter of the

derivative array. The derivative should be negative since at the top

of the head point we will have a low pixel value, due to the dark hair,

minus a large pixel value due to the light background. Figure D-3

shows an example of the derivative taken down the nose line.

The hairline, IHAR, can similarly by found by determining the

maximum positive derivative in the top half of the image working from ITH

down. We would expect the derivative to be positive since at the point

of the hairline we will have a high pixel value due to the forehead,

minus a lower pixel value due to the hair.

Estimates of the bottom of the head, IBH, and the mouth line, ML,

are then formed. In general most heads are no more than three times as

long as they are wide. Therefore, this criterion is used to form an esti­

mate for the bottom of the head. Since this value is used only as a limit

for DO loops, an exact determination is not necessary at this point. An

estimate for the mouth line is formed by assuming it to be 30 rows above

the IBH line. This value will be determined exactly at a later time.

Figure D~3 Finite Difference Derivative along Noseline

73

Next, the eyebrow, LEB, and the eyeline, LE, can be found.

This is accomplished by first forming a column signature between columns

starting at five columns to the right of the nose line and ending at five

columns to the left of the right side of the face. Notice that in the

coding this corresponds to NL-28 to IRF-38 and not to NL+5 to IRF-5 as

might be expected. This is due to the 33 column shift between the IHOLD

matrix and the original picture. Since NL and IRF are in terms of the

original picture we must subtract 33 from these values in order to index

the IHOLD array properly. The eyebrow, containing many low value pixels,

should then be the minimum value of this signature.

The eyeline, LE, is next desired to be found. Using the same

signature as determined for finding the eyebrow, and working from LEB

down, we would.expect to find next a peak corresponding to the space

between the eyebrow and the eye, and then a minimum corresponding to the

eye itself. So these are the next conditions for which FILT searches.

The tip of the nose, NT, can now be determined. Since the nose

protrudes out from the face, it is usually very bright in the images.

Therefore, by forming a column sum just around the nose line, NL, and by

determining the maximum, the nose tip can be found. So, to this end, a

column signature is formed over the five rows on either side of the nose

line. Notice here that the DO loop variable is from NL-5 to NL+5. The

column offset between the IHOLD array and the original picture is accounted

for by subtracting 33 from the column coefficient in IHOLD. The maximum

is searched for between rows starting at 15 rows below the eyeline, and

ending 15 rows before the mouthline. This maximum is taken to be NT.

74

The next task is to define the mouth line ML, more accuratly.

The mouth line can be found using the same signature used to determine

the nose tip. This signature is searched between rows beginning at 10

rows above the old estimate for the mouth line and ending at 20 rows

from the bottom of the head. Since the mouth will contain many low pixel

values, the mouth line, ML, is taken to be the minimum of the search.

A section of coding is next entered to determine the right and left

extremities of the mouth. These values will not be made available.'as

a program output since these values are too variable. These values

would widely vary for example, in a picture if the suspect was smiling

than if he were not smiling. These values will be used however in the

routine to determine the facial outline as a limiting factor in DO loops.

These values are determined by first forming a row signature involving

ten rows centered around ML. The corners of the mouth, being recessed

into the face more than at the center, should contain more low pixel

values. Therefore the left corner of the mouth, MLL, can be found by

searching for the minimum of the row signature between the center of the

left part of the face to the nose line. The right corner of the mouth,

MLR, is similarly found by searching for the minimum signature between

the nose line and the center of the right side of the face.

FILT's final function is to call subroutine WRNR to produce

the facial outline. All necessary feature location parameters, including

MLL and MLR, are passed to WRNR through the COMMON block.

FILT mainprogram flow chart. The next few pages present a flow

chart for FILT. This flow chart is very general in nature and is intended

to be used only as an aide in understanding mainprogram FILT.

75

Figure D-4 Mainprogram FILT Flow Chart

76

77

78

79

80

FILT mainprogram listing. This discussion of mainprogram

FILT is concluded with a listing of the coding, as presented in

Figure D~5. Each of the subroutines called by FILT will be described

in detail in later'sections.

Subroutine WRNR

The purpose of subroutine WRNR is to form the facial outline

using the feature location lines as determined by mainprogram FILT as

an aid. In general, the outline is formed by first passing the image

through a digital filter as described in Chapter 3 and in Appendix C.

The next step is to set a threshold for the filter output. Any filtered

pixel values that are greater than this value are set to a zero, while

any that are less than the threshold are set to one. The face is then

divided into six regions as given in Figure D-6. Each of these regions

are searched in the directions given in Figure D~6. The facial outline

edge then is determined to be at the location where' the first "1" is

encountered in the matrix.

WRNR subroutine technical description. The feature location

information is passed to WRNR through COMMON by mainprogram FILT. These

variable names will remain the same in WRNR. The additional major vari­

ables used by WRNR and their function are:

HOPT(l) -An array holding the filtered pixel values
for one row of IHOLD.

A, Bll, A10, All-Fixed variables used in implememtation of
the digital filter. (See Chapter 3)

ICNV, JCNV -Conversion factors reflecting the offset of
the IHOLD matrix from the original picture in

, horizontal and vertical directions respectively

81

301 FTN
302 PROGRAM FILT
303 C LlfSDA BROMLEY
304 COMMON I HOLD(128,70),NAME(3) , IM(128)
305 COMMON LF,IRF,NL,ITH,IBH,IHAR,ML,LE,NT,LEB,MLL,MLR
306 DIMENSION I5UM(128),IDERUC128)307 WRITECI,40)
308 40 FORMAT ("FILE-")-
309 READCI,11) NAME
310 11 FORMAT(2A2-A1)
311 DO 9 1=1,128
312 9 ISUM(I)=0
313 DO-20 J=34,103
314 CALL EXEC(14,103B,IM,128>NAME,J)
315 DO 3 1=1,128
316 I HOLD (I , J-33) = I M (I)
317 3 CONTINUE318 20 CONTINUE^
319 CALL SIGTRCNAME,IM,1,128,45,55,1,ISUM)320 IMIN=0321 MIN = 1000"
322 DO 10 1=64,30,-1
323. IFCISUMCI).GE.MIN) GO TO 10324 IM1N=1
325 MJN= ISUMC I)326 10 CONTINUE-327 LF=IMIN328 IM I N = 0329 MIN=1000c
330 DO 15 1=64,103
331 IFCISUMCI).GE.MIN) GO TO 15332" I M I N = I333 MIN=ISUMCI)
334 15 CONTINUE-
335 IRF= IMINC
336 MAX = 0_337 IMAX=0
338 DO 63 I-LF,IRF
339 I^^S^MC I) . LE. MAX) GO TO 63
341 MAX=ISUMC I)342 63 continue:343 NL=IMAX
344 CXXXTAKE DERIUITIUE DOWN NOSELINE.345 DO 333 I=2,126
34 6_
d-rt

333 H0LD(1 + 1 • NL-33)-IH0LDC 1-1, NL-33F
348 ISUm'cONTAINS THE DERIVATIUE DOWN THE NOSE LINE.
349 CX)K*TOP OF HEAD IN TOP QUARTER.
350 M0X = 0_351 IMAX=0
352 DO 335 1=2,32
353 15=IABSCISUMCI))
354 IFCIS.LE.MAX) GO TO 335355 IMAX=I
356 MAX=IS
357 335 CDNTINUE-
35BT ITH- IMAX=

Figure t>—5 FILT mainprogram listing

82

359 HAIRLINE IN TOP HALF.
361 IMAX=0
362 D0 739 I-ITH+5,64
363 IF(ISUMC1).LE.NAX) 30 TO 739
364 MAX=ISUM(I)
365 INAX=I
366 739 CONTINUE:367 IHAR=I MAX
368 CXXXFORM ESTIMATE OF MOUTH LINE AND BOTTOM OF HEAD".-
369 IBH=ITH+3XCIRF-LF)
370 IF(IBH.GT.127) IBH=127
371 ML=IBH-30
372 CXXXBLOCK OUT EYE.
373 DO-801 I=CIHAR+10),(ML-20)Ii5un=0
375 DO 800 J=(NL-28),(IRF-38)
376 800 IISUM=IISUM+IHOLDCI,J)
377 ISUMC I) = I I SUM378 801 CONTINUE"379 MIN=1000~
380 IMIN=0
381 DO 1 I = (IHAR + 10) , "(ML-20)
382 IF(ISUMC I) . GE.MIN) GO TO- 1
383 IMIN= I
384 MIN=ISUMCI)
385 1 CONTINUE
386 LEB= 1 MIN-
387 CXOXFIND NEXT PEAK. (SPACE BETWEEN EYEBROW AND EYE)_388 MAX = 0"
389 DO 2 I = (LEB+1), (LEB+16)
390 IF(ISUM(I).LT.MAX) GO TO 4
391 MAX=ISUM(I)392 2 CONTINUE
393 CXXXXFIRD NEXT MINIMUM^
394 4 MIN= ISUM(I)
395 DO 5 J=I,(LEB+16)
396 IF(ISUMCJ).GT.MIN) GO TO 6397 MIN=ISUMCJ)
398 5 continue:399 6 LE-J-1
100 DO-117 I=LE,IBH
101 I ISUM = 0
102 DO-116 J=CNL-5),CNL+5)
103 116 IISUM=IISUM+IHOLDCI,J-33)
104 ISUMCI) = I I SUM
105 117 CONTINUE
106 MAX = 0-107 IMAX=0
108 DO 167 I = (LE + 15) । (ML-15)
109 IF(ISUMCI).LE.MAX) GO TO 167Y
110 IMAX=I111 MAX=ISUM(I)
112 167 continue:113 NT=IMAX
114 IMIN=0115 ■ MIN=1000s
116 DO 168 I-CML-10),(IBH-20)
117 IF(ISUMCI).GE.MIN) GO TO 168=118" IMIN=I
119 MIN=ISUMCI)120 168 CONTINUE-121 ML-IMIN

83

122 FIND WIDTH OF MOUTH
123 JSTART=NL-(NL-LF)/2
124 JSTOP = NL+(IRF-ND/2
12S DO 900 J = JSTART , JSTOP-
126 I ISUM = 0
127 DO 901 I=(ML-5),(ML+5>
128 901 IISUM=IISUM+IHOLD(I,J-33)
129 ISLIM(J) = I I SUM
130 900 CONT I NUE-
131 MIN=10®0
132 IMIN=0133 DO 902 J = JSTART ,.JSTOP
134 IF(J.EQ.NL) GO TO 903
135
IS?

1F(ISUM^^GT. MIN) GO TO 902"
T A ? n = 5 u

138 GO TO 902
139 903 MLL= IMIN-
140 MIN=1000-
141 IMIN=0142 902 CONTINUE"143 MLR= I M I N-
144 CALL NRNR145 STOP­
146 END
147 ENDS

LIST END

84

IRFLF - NL

ITH

IHAR

LEE

LE

NT

ML

IBH

iHMiwiiiiHBn Regions 1 (left)
and 2 (right)

Regions 3 (left)
and 4 (right)

Regions 5 (left)
and 6 (right)

Horizontal and vertical
direction seperator

)$». Direction of search

Figure D-6 Facial outline search regions

85

Z1M,Z2M-Corresponds to the Z^ and Z^ terms in the digital
filter, respectively

Nxxx -Where xxx is a feature location variable (NIBH for example).
Represents the converted form of location variable xxx.

Subroutine WRNR begins by defining the filter constants and

threshold. These values were determined to be the best for general use

by a process of trial and error. A loop is then entered that sets up

a matrix, IHOLD, to hold the image values. Since most pictures have a

great deal of wasted space on either side of the head in the image, only

70 columns are stored for more efficient use of'memory. Which 70 columns

are to be stored are determined by where the feature location program

found LF to be positioned. The IHOLD matrix is then set up so that column

one corresponds to the tenth column to the left of LF. Also, since the

top of the head may not be at row one of the image file, the rows of

IHOLD were set up so that row one corresponds to ITH. This orientation

of the IHOLD matrix is given in Figure D-7.

' After the IHOLD matrix has been filled, the digital filter is

set up for implementation. For a detailed description of the particular

filter being implemented, refer to Chapter 3_ A row of IHOLD is filtered

and the result is contained in array HOPT. This array is then searched,

comparing each filtered pixel value with the threshold value. All pixels

having a filtered value less than the threshold are replaced with the

value of "1". All others are set to zero. This process is repeated

until all rows of IHOLD have been filtered.

The IHOLD matrix at this point contains only ones and zeros. They

are arranged, however, so that most of the pixel values in the face area

are now zero and those in the hair and along the chin line are ones. So,

86 '•

— Original image bounds

IHOLD nfatrix bounds

LF

Figure D~7 Orientation of the IHOLD matrix

87

the process is then to search from the center of the face outward and

select the first column encountered whose pixel value has been set to one

to be the face edge. However, some of the darker areas in the face,

such as the eyes and mouth, may also contain a few scattered ones that

may interfere with the edge detection scheme. However, since these areas

have already been located by mainprogram FILT, we can use this information

to skip over these areas. Therefore the areas that are searched are the

six regions as given in Figure D-6.

After determining the converted values -for each of the feature

location parameters a search is begun over regions 1 and 2 from a

point begining at five rows above the eyebrow line, up to the hair­

line. Starting at the left side of the face, a search is conducted up

the column until a row is found that contains a value of 1. When a 1

is found, it is replaced with a value of 64 to indicate that it was the

first value of 1 encountered. The next column is then addressed and

the process is repeated. After searching regions 1 and 2 upwards in this

manner, the regions are searched in a horizontal direction. Searching

each region in two directions will provide a smoother appearing outline.

Region 1 is first searched starting at the noseline and moving left to

the left side of the face. Again, when the first value other than a zero

is encountered, which could be a value of 1 or a value of 64 from the

previous search, the pixel value is reset to be a value of 64. In a

simular manner region 2 is searched starting at the nose line and moving

right to the right side of the face.

After the edges have been defined for regions 1 and 2, region

3 and 4 are searched. Since these two regions are at the sides of the

88

head, they need only to be searched in the horizontal directions. Region

3 is searched starting from a point midway between the NLF and NNL points

and moving left until the left side of the face is reached. In some

cases the search may not encounter a pixel of value 1 on a given row. In

this case there would be a gap in the facial outline. To prevent this

a running account, LSTL, is kept to indicate " the column at which the

edge was detected in the previous row. If no edge is detected in a

subsequent row, this value is taken to the edge. • Region 4 is searched

in a similar manner starting at a point midway between the NLF and NIRF

points and moving right to the right side of the face.

After all edges have been detected in region 3 and 4, regions 5

and 6 are searched. Region 5 and 6 are first searched starting at a

point ten lines below the mouth and moving down to the bottom of the

head. Region 5 is then searched starting at the left edge of the mouth,

NMLL, as determined by FILT and moving left to the left side of the face.

Region 6 is similarly searched from NMLR to the right side of the face.

In both regions 5 and 6 a running count is kept to determine the edge

column for the previous row in case no edge is found.

After all six regions havebeen searched and the edge structure

defined, subroutine DRAW is called to prepare the output file to be

displayed on the electrostatic printer. All information is passed to

subroutine DRAW through the COMMON block.

WRNR subroutine flow chart. A flow chart for subroutine WRNR

is given in Figure D~8. This flow chart is very general in nature and

is intended to be used only as an aid in understanding WRNR.

89

Set constants for
digital filter
implementation

Select a row from
IHOLD matrix

WRNR
Start

Determine horiz­
ontal, ICNV, and
vertical,JCNV,
conversion factor

Set up IHOLD array
to hold original
pixel values

Determine corres­
ponding filter
values for row and
set in HOPT array

Figure D-8 WRNR Subroutine flow chart

90

91

92

WRNR subroutine listing. This discussion of subroutine WRNR

is concluded with a program listing. All subroutines called by WRNR

will be discussed in later paragraphs. Figure D--9 gives a listing of

subroutine WRNR.

Subroutine DRAW

The purpose of subroutine DRAW is to output the results of the

feature location routine and the facial outline routine to a file on

the disk. Then, by calling a library routine called IMP4, the file

containing the original image, the feature locations and the facial

outline can be outputted'to an electrostatic printer.

DRAW subroutine technical discussion. All information for the

DRAW7 subroutine is passed in the COMMON block. The variable names

remain unchanged from the previous routines and so will not be repeated

here. The feature location information is extracted from the vari-

'ables . in the COMMON block and the IHOLD matrix holds the facial outline

information.

The first function of subroutine DRAW is to calculate the

horizontal and vertical conversion factors, ICNV and JCNV, respectively.

These factors will be used later in the program for transferring the

outline data contained in IHOLD into the output file.

The next function is to write the vertical lines into the

output file. There are three lines that will be written by this

section, IRF, NL, and LF, The first time through this DO loop will

write the left side of the face line into the J=LF sector. Figure

D~10 illustrates this case. The working array IM is first set to all

^01
302
003
004
00S
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
2)35
036
037
03S
039
040
041
042
043
044
045
046
047
048
049
050
051
.052
053
054
055
056
057
058
059
060 061 068
063 064

93

FTN
SUBROUTINE WRNR-
COflMON I HOLD (128,70) , NANE(3) , INC 128)
CONMON LF, IRF,NL, I TH, I EH, IHAR,NL,LE,NT,LEB,NLL,NLR C LINDA BRONLEY
DINENSION HdPT(70)

C SET CONSTANTS FOR WIENER FILTER®. THRESH-.11 A=.0088
Al1=.0102
A1O = -. 4815-
Bll=-.7556
ICNV--ITH+1
JCNU--LF+11

C SET UP IHOLD ARRAY SO THAT ROW 1 CORRESPONDS TO ITH
C AND COLUMN 1 CORRESPONDS TO LF-10-JC-LF-10L'

DO 20 J = JC,JC+69=
CALL EXECC14,103B,IM,128,NAME,J)
DO 21 I=ITH,ITH+127
I HOLD(I-1TH + 1,J-JC + 1) = INC I)

21 CONTINUE:
20 CONTINUE"

C BEGIN IMPLEMENTATION" OF DIGIT"AL FILTER-
DO 1 IROW=1,127- HOPT(1)=0.
DO 2 JCOL=2,70
Z1M-FLOAT (I HOLD (I ROW, JCOL-1))-
Z2M = FL0AT(I HOLD (IROW+1 , JCOL))= ZPZ-Z1M+Z2M
ZZ=Z1M^Z2M
HOLD-AX (1 . - . 5XCB11 + 1 .)XZPZ + B11XZZ)-
HOPTCJCOL)-HOLD/(1.+A10XZPZ+A11XZZT

2 CONTINUE:
CXXXXXX1F FILTERED VALUE IS ABOVE THRESHOLD REPLACE ZEROED
C ROW ELEMENT IN IHOLD WITH A fc

IHOLDCIRDW,I)-©
DO 3 L=2,70
IHOLDC IROW,L)=0_
IFCHOPTCL).LE.THRESH) IHOLDCIROW,L)=fc

3 CONTINUE
1 CONTINUE

CXXXXXXDETERM1NE CORRESPONDING OFFSET FEATURE LOCATION LINES
NIHAR- IHAR+ICNV.
NLEB-LEB+ICNV
NML-ML+ICNV
NMLL-MLL+JCNV-5
NMLR-MLR+JCNV+S
NIBH-IBH+ICNV
NITH-ITH+ICNV
NLF-LF+JCNV
NNL-NL+JCNV
NIRF-IRF+JCNV

C BEGIN DETERMINATION OF OUTLINE-
CXXXDO REGIONS 1 AND 2 UP.

DO 901 J=CNLF+1), (NIRF-1)
DO 900 I=(NLEB-5),NIHAR,-1
I FC(I .EQ. (NLEB-5)).AND. (IHOLDCI,J).GE.1)) GO TO 901
IFC IHOLDC I , J) . NE. 1) GO TO 900"
IHOLDCI,J)=64 GO TO 901=900 CONTINUE,
I HOLD(NIHAR?J)-64901 CONTINUE-

Figure D~9 WRNR subroutine listing

94

365 C*** DO REGIONS 1 AND 8 ACROSS.366 DO 908 I-CNLEB-S) , (NIHAR-1) ,-l-367 DO 904 L=l,8368 IFCL.EQ.2) GO TO 905369 IH = NLF-5=370 IDEL=-1 :371 GO TO 930 ।372
Z>T5

905
374 930 DO 903 J=NNL,IH,IDEL375 IF((J.EQ.NNL).AND. (I HOLD(I,J).GE.1)) GO TO 904376 I F (IHOLD (I , J) . LE . 0) GO TO 903"377 I HOLD(I ।J)=64378 IF((L.EQ.1).AND.(I.EQ.(NLEB-5))) LSTL=J379 IF((L.EQ.8).AND.(I.EQ.(NLEB-5))) LSTR=J380 GO TO 904381 903 CONTINUE"388 IHOLDCI,IH)=64383 904 CONT I NUE2384 908 CONTINUE"385 CX** DO REGION 3 AND 4 ACROSS ONLY"-386 DQ 906 I = (NLEB-5) , (NI1L-5)387 DO 938 L=l,8388 IFCL.EQ.8) GO TO 933389 JSTART=NNL-(NNL-NLF)Z8390 JST0P=NLF-5391 LST=LSTL398 IDEL--1393 GO TO 934394 933 JSTART= (NIRF-NNDZS + NNL395 » JSTOF=NIRF+5396 LST = LSTFL397 IDEL-1398 934 DQ 907 J=JSTART,JST3P,IDEL399 IF((J.EQ,JSTART).AND. (IHOLDt I ,J) .GE.1)) GO TO 931100 I F (I HOLD (I > J) . LE . 0) GO TO 907.10J. IHOLDCI » J)=64108 IF(L.EQ.l) LSTL-J103 IFCL.EQ.P) LSTR-Jj 04 GO TO 938105 907 CONTINUE"106 931 IF(L.EQ.l) IHOLDCI,LSTL)=64
I®? TJ3E iErCAi^£_2) IH0LD(I,LSTR)=64
109 906 CONTINUE

95

(I .LE. (NML + 5))) GO TO 913-
) GO TO 938

GE.D) GO TO 910

110 CO*DO REGIONS 5 AND 6 DO^JN.
111 DO 910 J=(NLF+1),(NIRF-1)112 DO 911 I=(NNL+10),NIBH
113 IFC(I.ED. (NML+10)).AND. <I HOLD(I,J).114 I F (I HOLD (I , J) . LE . 0) GO TO 911-
115 IHOLDCI,J)=64
116 GO TO 910
117 911 CONTINUE-
118 IHDLDCNIBH, J)=64=119 910 CONTINUE-
120 DO REGIONS 5 AND 6 ACROSS.
121 DO 912 I=CNNL-5),NIBH122 DO 936 L=li2
123 IF(L.EQ.2) GO TO 937124 JSTOF=NLF
125 LST=LSTL
126 IDLT=-1
127 GO TO 938
128 937 JSTOP=NIRF
1291 30 L6T = LSTR*‘ TDl.t = I

131 938 90^913 J=NNLrJSTOP,IDLT13 2 I FG = 0
133 IFC (J. GE. NMLL) . AND. (J . LE. NI1ER) . AND.134 IFC(J.EQ.NNL).AND. CI HOLDCI > J).GE. 1)135 IF (I HOLD C I , J) . LE . 0) GO TO 913-
136 IH0LDC I ,J)=64137 IFCL.EQ.l) L5TL=J13B_ IFCL.EQ.2) LSTR=J139 GO TO 936
140 913 CONTINUE-141 IFCL.EQ.l) IHOLDCI,LSTL)=64142 IFCL.EQ.2) IHOLDCI,LSTR)=64143 936 CONTINUE:144 912 CONTINUE-145 C**XDRAU OUTLINE.146 CALL DRAW147 RETURN148 END149 ENDS

LIST END

96

Sector
J=LF

IM
array

Figure 0-10 Example of writing a vertical line using EXEC

97
zeroes. Then, every other element in the array is filled with a gray

scale value of 63 so that when displayed on the electrostatic printer,

the line will appear to be dashed resulting in a greater clarity After

filling the IM array, it is written into sector J=LF of the output file

by a call to EXEC. The loop is closed by selecting in turn the two

remaining vertical lines and writing them into the output file.

The six horizontal lines are next written into the output file.

This process is slightly more complex than writing vertical lines due to

the writing technique used by EXEC. EXEC writes only columns of data

and not rows of data. In the case of horizontal lines, the IM array will

have to be filled so that the elements corresponding to the locations

of the lines are forced to be either a 0 or 63, while keeping all others

to be whatever was read from the original image. Also, since this

process will have to be performed when the outline is to be written,

the coding to write the outline is contained within this loop. Figure

D-ll illustrates this problem, showing the IM array elements for an

arbitrary sector J.

Since dashed lines are desired and since all line elements in

the IM array will all he either 0 or 63 depending upon whether the last

sector output for that line was a 63 or a 0, two holding variable, IF1 and

IF2, are defined. A DO loop in J is then entered which will move use

sequentially from one sector to the next. A call to EXEC will fill the

array IM with the original picture (including the vertical lines

previously written). The elements in IM corresponding to the six

desired horizontal lines are then set to be the current value of IF1.

The values of IF1 and IF2 are then switched so that the next time through

the loop the line elments in IM will be the opposite color.

98

Figure D-ll Example of writing horizontal lines and outline

99

It is then determined if there are any outline points in this J

sector. This is done by looking at the corresponding column in the IHOLD

array. Since the columns in the IHOLD array are offset from the column

in the original file by the JCNV factor, a new variable JN is defined to

be the corresponding offset column in IHOLD. If JN is not between 1

and 70, the IHOLD matrix bounds, then there is no possibility of having an

outline point and so control is skipped to the call to EXEC where the

column is written into the output file.

If, however, JN is between 1 and 70, there is an outline point

contained within the column and so a DO loop is entered in which the

128 column elements of IHOLD is searched. Once again, since the rows

of IHOLD may be offset from the rows of the original file, a new variable,

IN, defined to be the corresponding offset row in IHOLD. If IN is

within the IHOLD row bounds, the matrix element located in the IN row and

JN column is checked. If this value is greater than 60, indicating an

outline point, the corresponding row element in the IM array is set to

63 to produce a bright dot. The loop is closed by similarly checking each

row element in the given column of IHOLD for an outline point, After all

elements have been checked and written accordingly into the IM array,

a call to EXEC writes the array into the output file. The major

loop in J is closed by selecting a new sector.

After the output file has been written, DRAW outputs a message

to the CRT screen giving the operator the results of the feature location

search. Figure D-12 is an example of this output.

100

THE FOLLOWING FEATURE LOCATIONS HAVE BEEN
DETERMINED FOR FILE ???

HORIZONTAL LINES
4* *4* 't' '4' "4* S*" *4* '4't* ^F' 4*> ^T* ■'T' -v* *Tfc ■'T1- *T*

TOP OF HEAD= 5
HAIRLINE* 2S
EYELINE* 59
NOSETIP* 76MOUTHLINE* 97=BOTTOM OF HEAD* 127"

UERTICAL LINES
4^ 4* 4Z 4* 4* 4Z 4* 4* 4* 4^ 4^ 4Z 4’ 4* 4^ 4^ 4* 4'/T\ ^S"^x

LEFT SIDE OF FACE* 41-
NOSELIME* S3t
RIGHT SIDE OF FACE* 86

Figure D-12 Example of a typical CRT message

101
DRAW subroutine flow chart. A flow chart for subroutine DRAW

is given in Figure D-13. This flow chart is very general in nature and

is intended to be used only as an aid in understanding DRAW.

DRAW subroutine listing. This discussion of subroutine DRAW is

concluded with a program listing. Figure D-14 gives a listing of subroutine

DRAW.

Subroutine SIGTR

The SIGTR subroutine calculates row or column signatures through

calls to EXEC. The number of rows or columns in the signature and the

range over which the signature is to be taken are set in the argument

list.

SIGTR subroutine technical description. The variables used in

the SIGTR argument list and in the subsequent program are defined as

follows:

NAME-Image file name as given to mainprogram

IM -A 128 element array used to hold a column of pixel
values as provided by EXEC

NCS -Column number where the signature is to start

NCE -Column number where the signature is to end

NRS -Row number where the signature is to start

NRE -Row number where the signature is to end

ISRS-Indicates what type of signature is to be performed. If
a one then a row signature is to be taken. Otherwise, a
column signature is assummed.

ISIG-An array provided by the mainprogram to hold the resulting
signature

102

Figure D-13 DRAW subroutine flow chart

103

104

105

106

2i01
302
303
004
005 006
007
008 309 010
011
018 313
014“ 315
016
017
018

021

024
325
026
027
028
029
030
031-
032
033 034
035 336
037
038
339
040
341' 042 043 344
345
346
047
348
049
350
051
052
053
054
055
356

107

FTN
SUBROUTINE DRAW

C L. BROMLEY
COMMON I HOLDC128,70),NAME(3), IM(128)
COMMON LF, I RF, NL , I TH, IBH, I H-AR , ML , LE , NT , LEB , MLL , MLR ICNU=-ITH+1
JCNU=-LF+11

CXXXXXXWRl TE VERTICAL LINES INTO NAME-. DO 1 1=1,3 IF(I.EQ.l) J = LF-
IF(I.EQ.2) J=1RF
IF(I.EQ.3) J=NO DO 2 L=1,128
IMCL)=0

e conT i nur
DO 3 L=1,128,2
IMCL) =635

3 continue:

i JiU^C<:15’ 103Bf 128, NAME, J)
CXX**XXWRITE HORIZONTAL LINES INTO MAME.-

DO 4 J=l,128
CALL EXEC(14,103B,IM,128,NAME,J)
IM(I TH) = I Fl
IM(IBH)=IF1
IM(IHAR)=IF1
IM(ML) = I Fl
IMCLE)=IF1
IM(NT)=IFF
HOLD=IF1_
IF1=IF2 IF2 = H0LI>

CXXXXXXMRITE OUTLINE INTO NAME.JN=J+JCNV
IF((JN.LT. 1) .OR. (JN.GT.70)) GO TO 8
DO 5 LL=1,128
IN=LL+ICNV
IF((IN.LT. 1) .OR. CIN.GT.120)) GO TO 5
IF(I HOLD (IN, JN) . GT. 60) IM(LL) =63"5 CONTINUE-8 CALL EXEC(15,103B,IM,128,NAME,J)4 continue:
WRITE(6,6) (NAME(I),I=1,3)

6 FORMAT(///," THE FOLLOWING FEATURE LOCATIONS HAVE BEEN",/,
1 DETERMINED FOR FILE " , 2A2 , Al , / / /)-
WRITE(6,7) I TH,LF, IHAR,NL,LE, IRF,NT,ML, IBH

7 F0RMAT(3X, "HORIZONTAL L I NES " , 14X , " VERT I C AL L I NES " , / , IX ,-
1 20(”X"),10X,22("X"),//," TOP OF HEAD= ",13,15X,
5 "LEFT SIDE OF FACE= ",I2,
2 /, " HAIRLINE= " , I 2, 19X, "NOSELINE= " , I 2,/, "EYELINE= ",I2,20X,
3 "RIGHT SIDE OF FACE= n,I3,Z," NOSETIP= ",I2,/," MOUTHLINE= ",I3,
4 /," BOTTOM OF HEAD= ",I3,///L
RETURN
END$

LIST END XXXX

Figure D-14 DRAW subroutine listing

108

NR-Number of rows in signature

NC-Number of columns in signature

The first action of sumbroutine SIGTR is to calculate the number

of rows, NR, and number of columns, NC, being used in the signature.

If ISRS is a one, the computer begins calculating a row signature by

summing rows NRS to NRE for each column from NCS to NCE.

This is accomplished by first choosing a column within the given

range and calling EXEC for that column. The pixel values in the given co

column are returned in the IM array. These values are summed from rows

NRS to NRE. The normalized signature result for the given row is found

by dividing this resulting sum by the number of rows, NR, that were

summed. A new column is chosen and the process is repeated until the

entire range of columns have been addressed. The ISIG array holding the

results of these sums is returned to the mainprogram via the argument

list.

If, however, ISRS is not one, the computer skips to the section

of the program that calculates column signatures by first clearing out

the ISIG array. A column is chosen from the range of NCS to NCE. A

call to EXEC places the pixel values for the chosen column into the IM

array. Since a summation of columns is desired, the elments of the IM

array are summed to corresponding elements in the ISIG array between the

rows of NRS to NRE. A new column is chosen and the process is repeated

until all desired columns are added to the ISIG array. The ISIG array

is normalized by dividing by the number of columns that were summed, NC,

before it is passed back to the mainprogram. :

109

SIGTR subroutine flow chart. A flow chart for subroutine SIGTR--

is presented in Figure D-15. This flow chart is very general in nature

and is intended only for an aid in understanding subroutine SIGTR.

SIGTR subroutine listing. This discussion of subroutine SIGTR

is concluded with a program listing. Figure D-16 gives a listing of

subroutine SIGTR.

Subroutine SCOPE

Subroutine SCOPE is a library subroutine that was already

available on the disk. Subroutine SCOPE is used to display images,

graphs, lines, or marks on the storage scope for viewing. Although „

the SCOPE subroutine is not used in the final program, it was used

extensively in the development of the program. A very brief discussion

of the subroutine is therefore presented.

Useage of subroutine SCOPE. There are three variables in the

SCOPE subroutine argument list. The first is the x-axis displacement

of the element to be illuminated on the storage scope. The second

variable is the y-axis displacement of the element to be illuminated.

The third variable represents the intensity to which the element is to be

illuminated. Therefore, one call to SCOPE results in the illumination of

one element on the storage scope.

For example, to display an image contained in file NAME in

the upper left hand quadrant, the program coding would be:

DO 20 J=l,128
CALL EXEC(14,103B,IM,128,NAME,J)
DO 3 1=1,128
CALL SCOPE(J,256-I,4*IM(I))

3 CONTINUE
20 CONTINUE

110

Figure D-15 SIGTR subroutine flow chart

Ill

112

113

301
302
303
304
305
306
307
308
309 310
311
312
313
314
315
316"
317
318
319
320
321
322
323
324 325
326
327

114

FTNc LINDA BROMLEY
SUBROUTINE SIGTRCNAME,IM,NCS,NCE,NRS,NRE,ISRS,ISIS)
DIMENSION NAME(l) , IM(l) , ISIGC1)=NR = NRE-NRS+1
NC=NCE-NCS+1
I F C ISRS. NE. 1) GO TO l"
DO 10 J=NCS.NCE
CALL EXEC(14,103B,IM,128,NAME,J) 1 a u n = y
DO 11 I=NRS,NRE

11 I SUM= I SUN+ I M (I
ISIG(J) = 1SUM/NR-

10 CONTINUE
GO TO 150

1
12 DO 12 I=NRS,NRE

ISIG(I)=0
DO 13 J=NCS,NCE
CALL EXEC(14,103B,IM,128,NAME,J)
DO 14 I=NRS,NRE14

13 ISIG(I)=ISIG(I)+IM(I)
CONTINUE-
DO 15 I=NRS,NRE-15150 ISIG(I)=ISIG(I)/NCRETURN
END
ENDS

LIST END X***

Figure D-16 SIGTR subroutine listing

115
Notice that a call to EXEC retrieves a column of pixel values

of the image, where the first element in the array corresponds to the

uppermost element of the image. So, the image will be drawn from the top

down and from left to right. It is also important to notice the use of

the term 256-1 for the y displacement variable. This is required

because although the first element of the array returned by EXEC

corresponds to the upper left corner, the origin for the y displacement

on the storage scope resides at the lower left corner. For example,

say 1=1 and J=1 in the coding above. The call to EXEC wTould then

produce the first column of values, with the first element representing

the upper left pixel of the image. The upper left element of the storage

scope is defined by the coordinates (0,255). Therefore the y displacement

relative to the pixel array is 256-1.

This discussion of the CAPTURE Algorithm routines is concluded

with a very brief description of library routine EXEC. Only its useage

as applicable to the CAPTURE Algorithm is discussed.

Since the maximum pixel value is 64, the intensity level for

each pixel is multiplied by four so that the maximum intensity level

of 255 for the storage scope can be obtained.

A horizontal line . be similarly drawn by using SCOPE in a

DO loop such that the y displacement remains the same but the x dis­

placement is varied over the desired range. A vertical line can likewise

be drawn by varying only the y displacement. Whenever any type of line

or plot is drawn, the intensity level is set to 255 for the maximum

illumination.

Subroutine EXEC

116

EXEC routine useage. There are six variables contained in the

EXEC routine argument list. The first determines whether a read (14)

or write (15) function is desired. The second variable describes what

type of data is "to be read or written. The third argument is an

array name. If a read function is called for, this array will contain

the information that was read from the disk file. If a write function

is desired, this array holds the information that is to be written

onto the file. Thr fourth argument is a number representing the number

of elements in the previously described array. The fifth argument is

an array containing the name of the file to be read from or onto which

the data is to be written. The last variable is a number representing

the "sector" or column of the file that the data is to be read from

or written into. The files used in the CAPTURE Algorithm are the

digitized form of the photographs or sketches. These files are

therefore a matrix of 128 rows and 128 columns. One call to EXEC

will produce one column of pixel values as determined by the sixth

argument number. The orientation of the resulting output array is

such that element one represents the pixel at the top of the image.

For example, a call to EXEC of the form

CALL EXEC(15,1O3B,IM,128,NAME,J)

means that it is desired to write (15) into a binary file contained on

disk (103B) the information contained in a 128 element array IM into

column J of the file called NAME.

