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Abstract

Porting applications to a new system is a nontrivial job in the HPC field. It

is a very time-consuming, labor-intensive process, and the quality of the results

will depend critically on the experience of the experts involved. In order to ease

the porting process, we propose a methodology to address an important aspect of

software porting that receives little attention, namely planning support. When a

scientific application consisting of many subroutines is to be ported, the selection

of key subroutines greatly impacts the productivity and overall porting strategy,

because these subroutines may represent a significant feature of the code in terms

of functionality, code structure, or performance. They may also serve as indicators

of the difficulty and amount of effort involved in porting a code to a new platform.

The proposed methodology is based on the idea that a set of similar subroutines can

be ported with similar strategies and result in a similar-quality porting. By viewing

subroutines as data and operator sequences, analogous to DNA sequences, we are

able to use various bio-informatics techniques to conduct the similarity analysis of

subroutines while avoiding NP-complete complexities of other approaches. To further

improve accuracy for porting, we also merged some other code metrics and cost-

model metrics for similarity analysis to capture the internal code characteristics.

In this dissertation, we describe our methodology, which includes presentation of a

tool called Klonos. To evaluate the effectiveness of Klonos, we used it to conduct

experiments to find strategies for porting of several scientific benchmarks and a large

scientific application. Our experiment shows Klonos is very effective for providing

a systematic porting plan to guide the users during their porting process of reusing

similar porting strategies for similar code regions.
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Chapter 1

Introduction

1.1 Overview

The High Performance Computing (HPC) community is heading toward the era of

exascale computing. Although the final form of an exascale machine is yet unknown,

this system is expected to exhibit a hitherto unprecedented level of complexity and

size, and this architectural innovation comes with a high cost to the users of the sys-

tem. Today, computer architects are already building systems that employ Graphical

Processing Units (GPUs) in order to provide more favorable power/performance ra-

tios. The new Titan supercomputer [36] at Oak Ridge National Laboratory (ORNL)

exemplifies this trend. Hardware platforms are currently undergoing drastic changes

that require significant code reorganization in order to provide much higher data lo-

cality, and to map the computations and data to different kinds of devices configured

within the node. To deploy a highly efficient code on such systems, which we need
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to explore different levels of parallelism from the inter and intra nodes by using the

becoming more and more complicated programming models.

In order to migrate codes to Titan, scientists will need to know how to exploit

not only the large number of CPU cores, but also the GPUs that are configured

on the nodes. They will need to create new computational kernels with suitable

granularity to exploit the GPUs, while minimizing costly data movements, exploiting

complex memory subsystems, and mapping the work to balance the overall load.

They may need to use a hybrid programming model, such as adding OpenMP [9, 25]

and accelerator directives [35, 41] to MPI applications [84], or they may introduce

Pthreads [22] or an API designed for accelerators [61, 65]

Unfortunately, it is not possible to fully automate the task of restructuring codes

to exploit the capabilities of heterogeneous node architectures. In our early evalu-

ation of porting two real scientific kernels to GPUs, we found the porting process

is very time-consuming. Users have to rely on compiler and other profiling tools

to locate bottlenecks and manually to do the optimization in order to get desired

performance. Also according to our experiments, we found that many subroutines

have very similar porting strategies which suggest that many aspects of the process

are highly repetitive. In other words, a successful restructuring strategy, once iden-

tified, can typically be re-used in multiple code regions. Yet until now, nobody has

studied or quantified the degree of re-usability of porting strategies with respect to

real scientific applications porting in the HPC field.

Besides these challenges faced by the application developers, many scientific ap-

plications tend to be long lived and comprise large code bases developed by a team
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of people, and often outlive the involvement of any single developer. To maintain

those applications is not a easy task, let alone to port them to the new system

while with guaranteed efficiency and correctness. Rewriting the entire application

is too expensive and seems unrealistic. In contrast, simulation platforms emerge at

a frequency much higher than the lifetime of such application code bases, at times

fairly intrusive changes required to fully benefit from the capabilities such platforms

provide, which take years to integrate. These changes are made manually due to

the lack of tool support. Automation of the process is rather impractical given its

complexity, the level of tool support, and the lack of tool integration that automates

user-driven porting strategies. Thus, the porting of scientific applications is both

time consuming, labor intensive, and erroneous. Even an “expert team” needs to

start somewhere. This team will initiate the effort to restructure the code in order to

exploit the new systems features, a very challenging error-prone process; the quality

of the results will depend critically on the experience of the experts involved.

In order to reduce the effort for the software porting, we create a tool called Klonos

which is based on a methodology to address an important aspect of software porting

that receives little attention, called tool-based planning support [44, 82, 83], in this

thesis. Given a scientific application with many subroutines, the planning problem

is defined as finding a good order on which subroutine to port first and which one

next so that the porting process is productive and maximizes the knowledge gained

from previous subroutine porting experiences. In this work, we broaden the similarity

concept, only not exploring source code structure similarity, but also other metrics to

define if two source codes could be be optimized similarly. We can divide subroutines
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into different groups based on their syntactic and code feature similarity and only

concentrate on doing the best porting of a few subroutines from each group. By

narrowing down the focus, we believe that we are able to provide a good planning

support for the porting of scientific applications, and give an overall view of the

porting effort involved in porting a code to a new platform.

1.2 Research Goals and Contributions

Emerging parallel architectures require software porting, but few tools are avail-

able for supporting software porting. Worse still, most of the tools are outdated

for porting code to the emerging architectures such as GPUs, MICs, etc. For per-

formance sensitive scientific applications, the porting includes not only the same

functionality but also the same or better execution efficiency. In this dissertation,

we create a tool called Klonos used for software porting, which addresses an impor-

tant aspect of the software porting process called planning. We proposed a novel

similarity-based methodology for the planning problem. Unlike previous similarity-

based approaches, our work adopts a bio-inspired view of the program. We describe

in detail the methodology developed and present a tool called Klonos to facilitate

the process of porting applications to a new system. As a proof of concept, we

conducted experiments on several scientific benchmarks and one real scientific appli-

cation called HOMME with respect to porting to the OpenMP programming model

and High-Level GPU directives. We showed that the methodology is effective and

scalable in providing the planning support for the porting of scientific applications.
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In fact, we were able to use the methodology to identify a possible optimization that

the programmer missed for one of the codes, which is beyond the scope of planning.

We also found out that similarity needs to be stricter than pure syntactic measures

in some cases, which should contain more parallel information about the codes. We

are currently investigating how to develop a better similarity metric. In particular,

we are looking into various ways to combine syntactic similarity with cost models

and parallel properties of the source code. We also want to extend our test base. We

have planned to employ the methodology to test the behavior of existing compilers.

In addition, we want to evaluate the effect of different score models and different

views of similarity on the effectiveness of the methodology.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 explores the directive-

based approach for porting two large scientific application kernels to GPU, which

motivates our creation of a software porting tool. It describes several popular direc-

tives for accelerators to support porting serial code to GPUs from the optimization

point of view and make a comparison of the performance by comparing with hand-

written CUDA code. In addition, we evaluate how much effort is needed for restruc-

turing the code during the porting process and how we can use the compiler to help

us perform the optimization in order to get desired performance in a heterogeneous

programming environment.

Chapter 3 provides an overview of the software porting challenges faced by the
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High Performance Computing (HPC) community and related tools, methods used to

help software porting.

Chapter 4 introduces the main framework of the Klonos tool. Detailed imple-

mentation for each key module is described.

Chapter 5 shows the similarity analysis we have by using Klonos with the NPB

NAS Benchmark 3.3. We used OpenMP as an example to show how we can use

Klonos to port serial code a shard memory environment. By referring to the opti-

mized NPB NAS OpenMP codes, we have also verified the correctness of suggested

porting plan produced by Klonos.

Chapter 6 explores different code feature metrics which could be used to increase

the accuracy of using similar optimization strategies for similar code. We also explain

why those metrics matter in our similarity analysis.

In Chapter 7, we evaluate the Klonos tool by applying Klonos to port serial code

to a shared memory programming environment by using OpenMP. We then explain

the steps for making a porting plan and demonstrate the effectiveness of using the

proposed porting plan by Klonos, and propose a method for validating the porting

plan.

Chapter 8 summarizes the whole work and describe the improvement we are going

to make for Klonos, and other future work.
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Chapter 2

Heterogeneous Programming for

the GPU

This chapter describes our experience of porting serial code to GPU. We explore

popular GPU programming models and compare the use of two sets of accelerator

directives in two real-world application kernel studies. We explain the porting chal-

lenges and limitations encountered, and based on the lessons learned, reach initial

conclusions on how to transform code to take advantage of the accelerator directive

from the optimization point-of-view. We also compare the performance of running

the codes on the GPU versus the CPU, and found that in all the cases the GPU

yielded significantly better performance. In order to use the accelerator directives

efficiently, it is necessary to perform code transformations to close the gap in perfor-

mance to native CUDA implementations.

7



2.1 Heterogeneous Computing Today

Heterogeneous computing is not new, but the range of devices and the extent of

their deployment is. Heterogeneous platforms may include Digital Signal Processors

(DSPs), Field Programmable Gate Arrays (FPGAs), Application Specific Instruction

Processors (ASIPs), stream processors, SIMD (Single Instruction Multiple Data)

processors, and high-end floating point accelerators. Hybrid systems such as the

IBM’s Cell Broadband Engine have been used both for games as well as for technical

computing. Low-cost GPUs are widely deployed. Intel and AMD have designed

general-purpose chips that are heterogeneous.

Today’s accelerators are typically GPUs, massively parallel processors that can

be programmed to perform a range of computations including, but not limited to,

their original graphics domain. The raw computing power of modern GPUs such

as the NVIDIA Tesla series, Quadro and GeForce series, and ATI Radeon, ATI

FirePro, and AMD FireStream have far outstripped that of the conventional CPU.

A typical GPU contains a number of different SIMD engines, each of which may

execute different code. Code running on a single SIMD engine is executed by its

thread processors, each of which will process the same instruction sequence but

on an independent data stream. For example, the ATI Radeon 3870 GPU has 4

SIMD engines, each with 16 thread processors; these, in turn, have five stream cores.

The individual thread processors in an NVIDIA GeForce 8-series GPU can manage

96 concurrent threads, so that the GPU can potentially execute many thousands

of threads simultaneously. A typical GPU computation will have a large number
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of threads whose instructions are executed by a thread processor in an interleaved

manner to hide memory access and instruction latencies. This implies that each such

thread requires a high operation count if its processing power is to be exploited. The

optimal thread count is highly application dependent. Communication between the

host and GPU is typically provided by the PCI Express channel, with a data transfer

performance that depends on the CPU and chipset. Prefetching can help to avoid

penalties for data access.

The Nvidia Fermi presents many significant advances over its predecessors, al-

though the basic architectural ideas remain the same. Fermi supports higher double

precision floating point performance, error-correcting code (ECC), 64-bit unified ad-

dressing, and an extensive cache and memory architecture and hierarchy. Fermi has

a 384-bit GDDR5 memory interface and 512 cores that give performance gain up to

8x. The 512 cores are arranged into 16 streaming multiprocessors(SM), where each

SM (also known as a cluster) has 32 processors cores. The shared memory and L1

data cache are used for explicit and implicit communication between threads respec-

tively. The 64 KB shared memory can be configured with a 16 KB or 48 KB shared

memory, with the remainder used for L1 cache. An L2 cache is shared by all SMs.

9



2.2 Programming Models for Heterogeneous Sys-

tems

Several vendors have provided programming interfaces for accelerators. Most have

adapted the C programming language to fit the strict requirements of applications on

their platform. GPUs were originally programmed using OpenGL. Domain-specific

languages for graphics programming like GLSL (OpenGL Shading Language), HLSL

(high level shader language), and Cg (C for graphics) from NVIDIA are also available.

With their growing usefulness for compute-intensive functions in general-purpose

applications, a number of programming interfaces (mostly based on C) have been

provided to facilitate the development of application kernels for them. Rather than

being fully fledged languages, most of them are based upon C. These include StreamIt

[14], Sh [57], Brook [21], CUDA [64], and OpenCL. Thrust [70] is a CUDA library

of parallel algorithms with an interface resembling the C++ Standard Template

Library (STL). UC Berkeley developed Copperhead [23] together with NVIDIA, a

high-level data parallel language embedded in Python. In addition, other languages

wrapper around CUDA, like PyCUDA and sgc-ruby-cuda, are also available. Matlab

and Mathematica also have GPU CUDA plug-in for GPUs support. Compared with

those programming languages, CUDA in particular has become popular for general-

purpose programming on NVIDIA GPUs. The OpenCL [4] specification has been

released by a group of vendors led by the Khronos organization [1].

Moreover, a variety of high level programming directives for accelerators are
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available or are undergoing development. CAPS HMPP [35], PGI accelerator di-

rectives [5], and HiCUDA [43] target CUDA and OpenCL [4]. RapidMind [6] defines

C++ extensions that allow its users to describe how data in a C++ application should

be mapped between GPUs, cell processors, and cores. However their approach re-

quires redefinition of data types and the creation of kernels with a special syntax

language. It is important to note that while these approaches provide portability

at the language / directive level, the program optimizations and porting strategies

required to apply them depend heavily on the target architecture and the applica-

tion input set. The OpenACC Application Program Interface, which is released on

2011, describes a collection of compiler directives to specify loops and regions of

code in standard C, C++ and Fortran to be offloaded from a host CPU to an at-

tached accelerator, providing portability across operating systems, host CPUs, and

accelerators [66].

2.3 A Comparison of Directive-based Program-

ming Approaches

CUDA (and OpenCL) require the application developer to carefully study all the

salient details of the target architecture. The process of code adaptation and tuning

may be lengthy, involving significant reorganization of code and data, and is moreover

error-prone. Porting the resulting code to another GPU (e.g. a successor model) may

require non-trivial modification. High-level programming models have the potential

to simplify the program creation and maintenance effort and may potentially result in
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portable code. There have been few studies [58] that compare different vendors GPU

directives implementations, their overall features, compare what sort of application

changes are needed to get good performance, and the benefits of using directives

versus native CUDA/OpenCL or OpenMP.

2.3.1 Overview of the HMPP and PGI Accelerator Direc-

tives

HMPP is a directive-based programming interface for hybrid multicore parallel pro-

gramming that aims to free the application developer from the need to code in

a hardware-dependent manner. It is implemented by a source-to-source compiler

designed to extract maximal data parallelism from C and FORTRAN kernels and

translate them into Nvidia CUDA or OpenCL. The main concepts of HMPP are the

codelet and the callsite. A function that can be executed remotely on an accelerator

is identified by the codelet directive; the callsite is the place for launching the codelet

(kernel) function call. HMPP has both synchronous and asynchronous modes for the

codelet remote procedure calls (RPCs). The asynchronous mode enables the over-

lapping of data transfers between the host and accelerators with other work. The

programmer specifies targets for the execution of codelets. If the desired accelerator

is present and available, it will run there. Otherwise the native host version is run.

PGI’s accelerator directives may be incrementally inserted into a code to des-

ignate a portion of C or Fortran code to be run on CUDA-enabled Nvidia GPUs.

They enable the application developer to specify regions for potential acceleration,
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to manage the necessary data transfers between the host and accelerator, and to

initialize and shut down the accelerator. They further provide guidance to the im-

plementation to help it perform data scoping, mapping of loops, and transformations

for performance. The directives assume that it is the host that handles the mem-

ory allocation on the device, initiates data transfers, sends the kernel to the device,

waits for completion, and transfers the results back from the device. The host is also

responsible for queuing kernels for execution on the device.

The PGI directives include the kernel region declaration #pragma acc with

copyin, local, and copyout clauses to specify the input data, local data, and output

data of the kernel. PGI also supports the autoscoping of these data automatically.

Directives #pragma acc for parallel(M) and #pragma acc for vector(N) are used to

help compiler identify parallel loops and how they should be mapped to the GPU.

The compiler also attempts to associate a loop nest’s iterations to grid and block-sizes

that map to the GPU. The grid sizes will depend on the amount of work launched in

the kernel, while the thread-block size remains constant. PGI has been developing

new directives such as the #pragma acc region and #pragma acc declaration direc-

tive to scope variables that should shared among kernels and reside in the GPU or

CPU or both.

HMPP uses the concept of groups, #pragma hmpp group <groupid >, target=CUDA,

to specify codelets that will run in the same accelerator and that share data. HMPP

provides the codelet #pragma hmpp <groupid ><codeletid >codelet and callsite di-

rective #pragma hmpp <groupid ><codeletid > to specify codelets and where to

invoke them. In addition, these directive have clauses to specify the input and output
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data and their sizes in the format args[A1]=size and args[A1].io=in, args[An].io=inout.

HMPP provides asynchronous advanced load and delegate store directive to control

when to move data to and from the accelerator. The directive #pragma hmppcg paral-

lel indicates that the following loop is parallel and can be mapped to the GPU, while

#pragma hmppcg noParallel indicates that a loop can not be parallelized. HMPP

allows the user to explicitly define the thread-block size of a loop nest by using the

#pragma hmppcg grid blocksize NxN directive. The #pragma hmpp <groupid >res-

ident specifies data that should be allocated in the GPU and that may be shared

among codelets.

2.4 Adapting Programs for GPUs: Two Case Stud-

ies

In this section, we present our experimental results that consists of adapting two

applications kernels to run on GPU-based platform. For both kernels, we use the PGI

and HMPP accelerator directive-based programming to accelerate the kernels. Then

we describe the transformation we used to get good performance when comparing it

against CUDA and OpenMP. Our experiments were run on an Nvidia Tesla C2070

GPU with 448 cores in 14 Streaming Multiprocessors with frequency of 1.15 GHz.

The GPU has 6GB DDR5 global memory shared by all threads. The local memory

is 64K in size, and can be split 16K/48K or 48K/16K between L1 cache and shared

memory. Shared memory for each Streaming Multiprocessor is accessible only within

a thread block. The Tesla C2070 is also equipped with an L2 cache (768KB in size for
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a 512-core chip). The L2 cache covers GPU local DRAM as well as system memory.

2.4.1 S3D Thermodynamics Kernel

S3D is a parallel combustion flow solver for the direct numerical simulation of tur-

bulent combustion. S3D [27] solves fully compressible Navier-Stokes, total energy,

species, and mass conservation equations coupled with detailed chemistry. The gov-

erning equations are supplemented with additional constitutive relations, such as the

ideal gas equation of state, models for chemical reaction rates, molecular transport,

and thermodynamic properties. These relations and detailed chemical properties

are implemented as kernels or community-standard libraries that are amenable to

acceleration through GPU computing. For this work, we chose the thermodynam-

ics kernel that evaluates the mixture-specific heat, enthalpy, and Gibbs functions

as a temperature polynomial. The coefficients of the thermodynamic polynomials

and their relevant temperature ranges are obtained from thermodynamic databases

following the conventions used in the NASA Chemical Equilibrium code. The ther-

modynamic kernel with small variations is applicable across a wide range of reacting

flow applications.

Figure 2.1(a) shows the most time consuming portion of the serial kernel, where

a double nested loop contains an if statement. The serial version takes about 22 sec-

onds to execute in a CPU core. We decided to parallelize the outerloop with OpenMP

as shown in Figure 2.1(b). We noticed that the inner loop was not being vectorized
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because of the if conditional. To further optimize the code, we hoisted the if condi-

tional by precomputing the branch values in a separate loop that was also parallelized

with OpenMP. As a result, we merge the if and else computations into single state-

ments that were masked with the precomputed branch result. Figure 2.1(c) shows

the transformation applied. By doing so, we were able to parallelize and vectorize

the computational loop which yielded a good speed up 3.8x when running the code

on four codes. When running the code on twelve cores, the original OpenMP version

in Figure 2.1(b) yielded the best of performance 9.5x because because it does not

have any shared memory contention on the masked branch variable.

Our first attempt to accelerate the code with PGI and HMPP directives, by

inserting a !$ acc region directive and creating a HMPP codelet for the main com-

putational loopnest yielded very little performance for PGI and HMPP directives

(2x speedup for PGI and 1.2 speedup for HMPP). By using the CUDA Profiler from

Nvidia, we observed that most of the time spent in the accelerated kernels was on

data transfer between the CPU and GPU. Since the kernel contains read-only arrays,

we optimized the accelerated kernels by allocating and initializing the read-only vari-

ables inside the GPU. To do so, we had to inline the main computational kernel loop

(loop i) to the procedure that was invoking it within its loop j. Figure 2.2(a) shows

the corresponding code transformation implemented in PGI, which uses a data region

data region to define the data that resides in the GPU. For HMPP, we used the group

and resident directive to allocate data in the GPU and share data among the codelets

of the same group. Figure 2.2(b) shows the HMPP implementation, where codelets

s3d mixenth and s3d mixcp belong the same group, named cudagroup. Arrays Rsp,
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midtemp, coeffhig, and coefflow are declared as resident variables, which are used

to make them accessible by the two codelets defined in the HMPP group. In order

to optimize the data transfers, we used the advancedload directive to transfer the

data used to initialize the read only GPU variables one time before the first codelet

calc mixenth is executed. We also used the advancedload clause of the HMPP callsite

directive to notify HMPP that the read only data is available in the GPU for the

second codelet.

S3D Thermodynamics Timings (Seconds)

SERIAL 21.926
HMPP 0.363
HMPP Kernel 0.3192948
HMPP Data Transfer 0.042834
PGI 0.346305
PGI Kernel 0.320225
PGI Data Transfer 0.02608
CUDA 0.29
CUDA Kernel 0.269265
CUDA Data Transfer 0.019952
OpenMP 12 Threads (best) 2.274

Table 2.1: S3D thermodynamics timing table

By comparing the results of the different parallelization and acceleration methods,

we found that the HMPP and PGI implementations produced a 60 and 63 times

speedup, respectively. The native CUDA implementation produced a speedup of

76 times that amount, while the OpenMP version using twelve threads produced a

speedup of 10, as shown in Figure 2.3. The timings of our experiments are shown in

Table 2.1. Our results show that by managing the data correctly, we were able to

produce good speed-ups with the PGI and HMPP accelerator directives, within 80%
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of the native CUDA performance.

2.4.2 HOMME/SE Application

The High-Order Multi-scale Modelling Environment application, or HOMME, is

one of the highly promising frameworks for integrating the atmospheric primitive

equations in spherical geometry. HOMME applies a spectral element method to

conserve both mass and energy using a isotropic hyper-viscosity term. To discretize

the horizontal dimension, it uses a cubed-sphere grid and in the radial direction a

vertical dimension. The HOMME application consists of several hundred Fortran

90 subroutines where the computations are spread evenly across them and whose

relevance depends on the input problem.

For each of the spherical elements in the grid, HOMME maintains a global data

structure that stores the state of elements, including velocity, temperature, pressure,

divergence, and geo-potential. Figure 2.4(a) shows a code fragment of the subroutine

compute and apply rhs which is one of the routines that computes the divergence for

each of the cubed elements. The ie loop iterates over the spherical elements, the

q loop over the advected physics, the k loop iterates over the vertical radial grid

points, and the j and i loops iterate over the horizontal plane grid points.

In HOMME, coarse-grain parallelism is implemented via MPI by distributing the

spherical elements across nodes, whereby one or more elements can be assigned to an

MPI process (see ie loop). In our case we assumed that each node will be assigned

twelve elements to provide enough work for all the cores for in-node optimization or
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acceleration (i.e one element per core). The in-node problem size used was: ie =

12, qsize d = 101, nlev = 26 and nv,np = 4. We optimized several version of the

kernel for OpenMP, PGI Accelerator directives, and HMPP. We then compared them

against the original serial version and the CUDA implementation tuned by NVIDIA

and ORNL.

For the OpenMP version, see Figure 2.4(b). We parallelized the ie loop with

OpenMP parallel do to assign spherical elements to OpenMP threads and take ad-

vantage of the node’s shared memory. One of the challenges when porting the code

to OpenMP is to make sure memory access are consistent, by always accessing the

same spherical element with the same thread including the data initialization loops.

This improves locality by placing element’s data in the core’s local memory. We

also must determine whether to privatize variables such as gradQ, temporary vari-

able that gathers data that is passed to the procedure or inline the procedure to

avoid unnecessary data copies. For the inner loops we need to make sure loops get

vectorized, if possible. When running the OpenMP kernel we noticed that using 4

threads gives the best performance with 510 milliseconds and a speed-up of 2.67.

The sequential version takes 1366 milliseconds.

For the PGI and HMPP implementations of the kernel, it was necessary to inline

the procedure divergence sphere to map data parallel loops to a GPU and provide

sufficient work. Also, this step is necessary if we want to accelerate the kernel at the

ie loop, using the same approach adopted by the OpenMP implementation.

With the PGI accelerator directives, we needed to do some code restructuring to

achieve good performance. We inlined the procedure divergence sphere and inserted
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a !$acc region to accelerate the ie loop. This was necessary for the PGI directives,

since it cannot handle function calls inside an accelerated region. The next step

was to specify how to parallelize the loop nest iterations across the GPU Symmetric

Multi-processors (SM) and within the SMs efficiently. We use the parallel and vector

clause to specify the vector size and grid size: in this case we specified a block size

of nvxnvxnv. To avoid non-coalesced memory accesses, we eliminated a temporary

array gv and fused the inner loops. We also allocated and initialized all the data

inside the GPU by using the PGI data region directive and copyout directive to

obtain the results of the kernel. To achieve good performance, we allocated and

initialized the twelve spectral elements state on the GPU. Figure 2.5(a) shows the

implementation of the kernel using the PGI accelerator directives.

HOMME/SE Timings (Miliseconds)

SERIAL 1366.37
HMPP Kernel 224.73
PGI Kernel 137.43
CUDA 70.00
OpenMP 4 Threads (best) 510.62

Table 2.2: HOMME/SE timing table

We used a similar code transformation to implement the kernel with HMPP

directives. With HMPP we had to outline the ie loop to a separate procedure to

create a codelet. We also had to transform the loops by collapsing the ie and q

loops with the l and the e loop respectively, to provide enough work for a two-

dimensional thread block (At the time of writing, HMPP 2.5.0 only supported two

dimensional thread blocks). Figure 2.5(b) shows the HMPP implementation of the

kernel. Table 2.2 lists the timing for using OpenMP(with 4 threads), HMPP, PGI,
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and CUDA compared with the serial version. According to Figure 2.6, it shows that

the OpenMP version (with 4 threads) achieves a speed-up of 2.67 (over the serial

version). Without counting the data transfer time, the GPU implementations achieve

a speed up of 9.9x for the (ACC) PGI directives, 12.92x for HMPP, and 19.5x for

the CUDA implementation.

In order to get good performance when porting those two scientific kernels to

GPU, we used Open64, HMPP, and PGI compilers to help us analyze the code.

The compiler is able to dump all the optimization information, and that information

is quite helpful, as it is able to tell us the loop parallelization and vectorization

information of the code. This is illustrated in Figure 2.7, which lists the dumped

information by using PGI compiler. With this information, we can properly set up

the parallelism among the threads blocks and also parallelism for threads inside each

thread block. Additionally, the compiler is able to help us check the data transfer

between CPU and GPU to make sure to data transferred to the device properly.

2.5 Summary of Code Porting to GPUs

In this porting experience, we explore different GPU programming models and com-

pare the use of two sets of accelerator directives in two real-world application kernel

studies. We explain the porting challenges and limitations encountered, and demon-

strate how we could use available tools and compilers to help us to analyze the code

for optimization. Specifically, we show how much effort is needed for restructure the

code in order to make the optimization meet the GPU architecture needs.
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Most importantly, we evaluated the porting difficulty for porting code to the

heterogeneous environment. During the porting process, we found there are a lot

of scientific application kernels that are quite structurally similar to each other; the

optimization experience we get can be reused for similar kernels. In our experiment,

We compare the performance of running the codes on the GPU versus the CPU,

and found that in all the cases the GPU yielded significantly better performance.

In order to use the accelerator directives efficiently, it is necessary to perform code

transformations to close the gap in performance to native CUDA implementations.

Purely replying on manual directive insertion would make the porting very challeng-

ing for a large scientific application porting. There is an urgent need of a porting

tool which could give the user some guidance to automate the porting process.
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do i = 1, np

enth(i) = 0.0

do m = 1, nslvs

if(temp(i)<midtemp(m)) then

enth(i)=enth(i)+yspec(i,m)*Rsp(m)*(&

coefflow(6, m)+temp(i)*(&

. . .

coefflow(5, m)*rp05))))) )

else

enth(i)=enth(i)+yspec(i,m)*Rsp(m)*(&

coeffhig(6, m)+temp(i)*(&

. . .

coeffhig(5, m)*rp05))))) )

end if

end do

end do

(a)S3D Thermodynamics Serial

!$OMP parallel do private(i, m, enth)

do i = 1, np

enth(i) = 0.0

do m = 1, nslvs

if(temp(i)<midtemp(m))then

enth(i)=enth(i)+yspec(i,m)*Rsp(m)*(&

coefflow(6,m)+temp(i)* (&

. . .

coefflow(5,m)*rp05))))))

else

enth(i)=enth(i)+yspec(i,m)*Rsp(m)*(&

coeffhig(6,m)+temp(i)*(&

. . .

coeffhig(4,m)*rp04+temp(i)*(&

coeffhig(5,m)*rp05))))))

end if

end do

end do

!$OMP end parallel do

(b)S3D Thermodynamics OpenMP

. . .

!$OMP parallel private(i,m,flag_hig,flag_low)

do m = 1, nslvs

!$OMP do

do i = 1, np

if(temp(i)<midtemp(m)) then

flag_low(i, m)=1

flag_hig(i, m)=0

else

flag_low(i, m)=0

flag_hig(i, m)=1

endif

enddo

!$OMP end do nowait

enddo

!$OMP do

do i = 1, np

enth(i) = 0.0

do m = 1, nslvs

enth(i)=flag_low(i,m)*(enth(i)+yspec(i,m)*&

Rsp(m)*(coefflow(6,m)+ temp(i)*(&

. . .

coefflow(5, m)*rp05))))) ))+&

flag_hig(i,m)*(enth(i)+yspec(i,m)*&

Rsp(m)*(coeffhig(6,m)+temp(i)*(&

. . .

coeffhig(5, m)*rp05))))) ))

end do

end do

!$OMP end do nowait

!$OMP end parallel

. . .

(c)Optimized S3D Thermodynamics with
OpenMP

Figure 2.1: S3D thermodynamics kernel OpenMP code snippets
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!$acc data region copyin(temp,...),&

copyout(enth)

do j = 1, MR

!$acc region

!$acc do parallel(np)

do i = 1, np

enth(i) = 0.0

do m = 1, nslvs

if(temp(i)<midtemp(m)) then

enth(i)=enth(i)+yspec(i,m)*&

Rsp(m)*(&

...

coefflow(5, m)*rp05)))))

else

enth(i)=enth(i)+yspec(i,m)*&

Rsp(m)*(&

...

coeffhig(5, m)*rp05))))))

end if

end do

end do

!$acc end region

!$acc region

!$acc do parallel(np)

do i = 1, np

cp(i) = 0.0

do m = 1, nslvs

...

end do

end do

!$acc end region

end do

!$acc end data region

(a) PGI

!$hmpp <cudagroup> group, target=CUDA

!$hmpp <cudagroup> resident, args[Rsp].io=in

real,parameter::Rsp(1:nstts)=Ru/molwgt(1:nstts)

!$hmpp <cudagroup> resident, args[midtemp].io=in

real,parameter::midtemp(68)=(/ ... /)

!$hmpp <cudagroup> resident,args[coeffhig].io=in

real,parameter::coeffhig(7,68)=reshape(/.../)

subroutine calc_mixenth(np, ... ,cp)

implicit none

. . .

!$hmpp <cudagroup> allocate

!$hmpp <cudagroup> s3d_mixenth advancedload,&

args[::Rsp; ...; ::coeffhig]

!$hmpp <cudagroup> s3d_mixenth callsite

call hmpp_kernel1(np, ... , coeffhig)

!$hmpp <cudagroup> s3d_mixcp callsite, &

arg[::Rsp; ...].advancedload=true

call hmpp_kernel2(np, temp, ... , coeffhig)

!$hmpp <cudagroup> release

end subroutine calc_mixenth

!$hmpp <cudagroup> s3d_mixenth codelet, &

args[np;...;yspec].io=in,args[enth].io=out

subroutine hmpp_kernel1(np,temp,...,coeffhig)

...

end subroutine hmpp_kernel1

!$hmpp <cudagroup> s3d_mixcp codelet, &

args[np;...;yspec].io=in,args[cp].io=out

subroutine hmpp_kernel2(np,...,coeffhig)

...

end subroutine hmpp_kernel2

(b) HMPP

Figure 2.2: S3D thermodynamics kernel PGI and HMPP code snippets
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Figure 2.3: S3D thermodynamics speedup

...

do ie=nets, nete

do q=1,qsize

do k=1,nlev

gradQ5d(:,:,k,q,1)=

elem(ie)%state%v(:,:,1,k,n0)*&

elem(ie)%state%Qdp(:,:,k,q,n0)

gradQ5d(:,:,k,q,2)=

elem(ie)%state%v(:,:,2,k,n0)* &

elem(ie)%state%Qdp(:,:,k,q,n0)

end do

end do

divdp4d(:,:,:,:) =

divergence_sphere5d( &

gradQ5d(:,:,:,:,:), &

deriv, elem(ie))

...

end do

(a) Serial code

...

!$omp parallel private(ie,j,i,k,q,m,l,&

!$omp& gradQ5d,divdp4d,deriv)

...

!$omp do

do ie=nets, nete

do q=1,qsize

do k=1,nlev

gradQ5d(:,:,k,q,1)=

elem(ie)%state%v(:,:,1,k,n0)*&

elem(ie)%state%Qdp(:,:,k,q,n0)

gradQ5d(:,:,k,q,2)=

elem(ie)%state%v(:,:,2,k,n0)* &

elem(ie)%state%Qdp(:,:,k,q,n0)

end do

end do

divdp4d(:,:,:,:) =

divergence_sphere5d( &

gradQ5d(:,:,:,:,:), &

deriv, elem(ie) )

...

end do

!$omp enddo nowait

!$omp end parallel region

(b) OpenMP code

Figure 2.4: The original serial and OpenMP divergence sphere code snippets
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!$acc region

!$acc do parallel(nete)

do ie=nets, nete

!$acc do parallel(qsize)

do q=1,qsize

!$acc do vector(32)

do k=1,nlev

!$acc do vector(nv)

do j=1,nv

!$acc do vector(nv) private(dudx00,dvdy00i)

do l=1,nv

dudx00=0.0d0

dvdy00i=0.0d0

do i=1,nv

dudx00 = dudx00 + Dvv(i,l ) * &

(metdet(i,j,ie)*(Dinv(1,1,i,j,ie)* &

gradQ5da(i,j,k,q,1,ie) + &

Dinv(1,2,i,j,ie)*gradQ5da(i,j,k,q,2,ie)))

dvdy00i = dvdy00i + Dvv(i,j ) * &

(metdet(l,i,ie)*(Dinv(2,1,l,i,ie)* &

gradQ5da(l,i,k,q,1,ie) + &

Dinv(2,2,l,i,ie)*gradQ5da(l,i,k,q,2,ie)))

end do

divdp4da(l,j,k,q,ie)= &

rmetdetp(l,j,ie) * &

(rdx(ie))*dudx00+(rdy(ie))*dvdy00i

end do

end do

end do

end do

enddo

!$acc end region

(a) PGI Accelerator Directives

!$hmppcg grid blocksize 4x4

!$hmppcg parallel

do i2=nets, nete*nlev ! ie, q

!$hmppcg parallel

do i1=1, qsize*nv ! q, j

!$hmppcg set b2 = BlockId(i2)

!$hmppcg set t2 = RankInBlock(i2)

!$hmppcg set b1 = BlockId(i1)

!$hmppcg set t1 = RankInBlock(i1)

ie=b2+1

q = b1+1

k =t2 +1

j =t1+1

do l=1, nv

dudx00=0.0d0

dvdy00i=0.0d0

do i=1,nv

dudx00 = dudx00 + Dvv(i,l ) * &

(metdet(i,j,ie)*(Dinv(1,1,i,j,ie)* &

gradQ5da(i,j,k,q,1,ie) + &

Dinv(1,2,i,j,ie)*gradQ5da(i,j,k,q,2,ie)))

dvdy00i = dvdy00i + Dvv(i,j ) * &

(metdet(l,i,ie)*(Dinv(2,1,l,i,ie)* &

gradQ5da(l,i,k,q,1,ie) + &

Dinv(2,2,l,i,ie)*gradQ5da(l,i,k,q,2,ie)))

end do

divdp4da(l,j,k,q,ie)= rmetdetp(l,j,ie)

* (rdx(ie)*dudx00+rdy(ie)*dvdy00i)

enddo

enddo

enddo

end subroutine

(b) HMPP Implementation

Figure 2.5: The inlined and accelerated divergence sphere code snippet
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Figure 2.6: HOMME/SE divergence sphere speedup

S3D: Thermo Dynamics Kernel (PGI) 

$acc data region copyin(temp,...) copyout(enth) 
… 
!$acc region do parallel 
  do i = 1, np 
    enth(i) = 0.0 
    do m = 1, nslvs 
      if(temp(i)<midtemp(m)) then 
        enth(i)=enth(i)+yspec(i,m)*Rsp(m)*(& 
          ... 
        coefflow(5, m)*rp05))))) 
      else 
        enth(i)=enth(i)+yspec(i,m)*Rsp(m)*(& 
          ... 
        coeffhig(5, m)*rp05)))))) 
      end if 
    end do 
  end do 
!$acc end region do 
… 
!$acc end data region 

calc_mixenth: 
     38, Generating copyout(cp(:)) 
         Generating copyout(enth(:)) 
         Generating copyin(yspec(:,:)) 
         Generating copyin(temp(:)) 
     39, Loop not vectorized/parallelized: contains call 
     40, Generating copyin(midtemp$ac(1:52)) 
         Generating copyin(coefflow$ac(1:6,1:52)) 
         Generating copyin(rsp$ac(1:52)) 
         Generating copyin(coeffhig$ac(1:6,1:52)) 
     42, Loop is parallelizable 
         Accelerator kernel generated 
         42, !$acc do parallel, vector(256)  
             Using register for 'temp' 
             Using register for 'enth' 
     44, Loop carried reuse of 'enth' prevents parallelization 
         Complex loop carried dependence of 'enth' prevents’  
         parallelization 
         Inner sequential loop scheduled on accelerator 
      

Compiler Output: 

Figure 2.7: S3D PGI compiler dumped information
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Chapter 3

Related Work for Tool Support in

Software Porting

The hands-on experience on porting two real large scientific application kernels to

GPUs motivates us to create a porting tool. This chapter will describe the application

porting scenarios in the HPC field in the past decade, and current porting challenges

faced by scientists for porting code to some emerging architectures, such as GPUs,

MICs, etc. We will describe available tools which can be used for software porting

and show how we build on previous similarity research for creating our software

porting tool.

28



3.1 Traditional Application Porting

In the past decade, the process of adapting large-scale DOE applications to a new

architecture focused primarily on adapting and tuning MPI-based parallel codes to

clusters with new processors and communication characteristics, as well as increasing

the amount of exploitable parallelism and reducing bottlenecks. A variety of strate-

gies were employed to support this porting process. Microbenchmarks [40, 60, 42, 75]

enabled low-level evaluation of MPI performance on new target platforms. Some

systems, such as the first generation Blue Gene/L supercomputer [13], resulted in

reduced memory per process necessitating reduction of replicated data and careful

memory management in applications. One of the most common approaches used

during the porting process is to use profiling tools [69, 33, 79, 38] to analyze the

application under the new environment, then to use the profiling information to aid

program optimization by removing computation bottleneck.

There has been a long history of research and development in techniques and tools

for automatic or semi-automatic parallelization [17, 45, 49, 47]. However, few of these

efforts have been helpful for porting HPC codes to new parallel architectures. There

are a few reasons why parallelization tools often fail to generate efficient parallel code.

They are unable to reproduce expert knowledge about the available parallelism that

may be exploited within the code. As a result, the parallelization strategy they

apply is often too conservative to meet the performance requirements, necessitating

human effort to manually restructure and tune the codes. In addition, users may

program at a lower level, such as assembly language or accelerator-specific languages
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for better control of code generation (this can be useful, as evidenced by projects

such as Goto BLAS [29]). However, these codes are typically too low-level and

architecture-specific, making them difficult to port to new architectures. Because of

the limitations of parallelization tools, typically an iterative manual approach has

been used, where the user parallelizes the code using explicit (e.g. Pthreads) or

directive-based (e.g. OpenMP) threading APIs , evaluates the performance of the

resulting code, and repeats until a satisfactory performance is reached for the target.

In addition to the issue of parallelization, the challenge of porting HPC codes

to new parallel architectures also depends on identifying a suitable compiler opti-

mization strategy. Compilation flags can be used to tune performance for a target

platform; however, because the optimizations selected by these flags are typically

globally applied, this can result in uncertainy over why they may or may not be

effective. Some compilers support directives for applying optimizations to specified

code sections [39], giving more fine-grained control to the user. But they provide

only limited tuning options and are not portable across compilers. Source-to-source

translators [72, 30, 86, 68, 71, 2] can apply local restructuring to source code, but

they fail to give access to many optimizations available within the compilation pro-

cess, and there is no guarantee that the generated code restructuring will not be

undone by the target compiler.
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3.2 State-of-the-art

In the HPC field nowadays, hardware platforms are currently undergoing drastic

changes, as scientists introduced Graphic Process Units (GPUs), MICs, and other

co-processors for computation. The traditional homogeneous system is evolving to

heterogeneous architectures. The architecture changes require significant code re-

organization in order to provide much higher data locality and to map the compu-

tations and data to different kinds of devices configured within the node. It is a

challenge to make changes to the code and port the scientific applications to these

newer hardware platforms. Newer platforms have features that include faster CPUs

with multi-cores and improved larger space DRAM access, bigger hard drives, etc.

For example, many platforms have GPUs enabled for their computing nodes. Since

the GPU can easily generate hundreds or thousands of light-weighted threads due

to its intrinsic hardware structure, more and more applications are being ported to

it. Porting and optimizing codes for these newer and more powerful parallel plat-

forms require restructuring code, identifying parallelism, optimizing loops and data

structures, managing data locality, adding or rewriting code in new languages, etc.

For example, the 20 Petaflop (peak) Titan supercomputer, which has been de-

ployed at Oak Ridge National Laboratory, is composed of Cray XK6 nodes with

18,000 Nvidia Tesla GPUs. CPUs and GPUs have their own local memories instead

of a physically shared memory, requiring shared data to be explicitly transferred

between the two. Porting an MPI or hybrid MPI+OpenMP application to such het-

erogeneous platforms requires identifying multiple levels of parallelism, optimizing
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loops and data structures, and potentially reorganizing data accesses across wide

areas of code in order to avoid large transfers of data between the CPU and GPU.

Moreover, the portions of code that will be accelerated on a GPU must be rewritten:

there are several programming interfaces that may be used to create GPU code, and

the appropriate choice may not be easy. Some researchers summarize their early ex-

perience on using Titan [53, 54], but they only describe how to use OpenACC [66], a

directive-based programming model, to port code to GPU and how the hybridization

technique is able to convert an application with a single level of parallelism to an ap-

plication with multiple levels of parallelism. No porting tools were used during their

porting process. They mainly rely on profiling tools to locate computation hotspots

and then manually insert directives for porting code to the GPU. Finally they man-

ually tune the code based on the profiling information provided by the Nvidia Visual

Profiler [28].

Hardware platforms may undergo dramatic changes, requiring significant code

reorganization in order to provide much higher data locality and to ensure that effi-

ciency is guaranteed after porting to the newer platform. Obviously, originally devel-

oped tools and methodologies used for homogeneous environments can not meet the

new porting requirements today. Purely relying on scientists to manually migrate

applications to the heterogeneous system is expensive and error-prone. The com-

puter science research community recognizes these challenges and have been working

towards providing comprehensive solutions. New tools are needed in order to ease

the porting process.
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3.3 Tools Support for Application Porting

Although the computer science research community has recognized these porting

challenges, little attention has been given to deriving a detailed process for software

porting to new platforms. Tools such as CHiLL [26] and POET [90] can be used

to apply optimizing transformations, but these tools depend on manually derived

transformation scripts which still need user involvement. Also, they lack features for

identifying code regions to which these transformations can be applied. Considering

the size of scientific applications, it is a non-trivial job to locate those code regions and

derive scripts for each of them. Other available tools used for application porting can

be generally classified into two groups, software maintenance and similarity analysis,

according to their attributes. We will discuss the relevant ones and discuss the

differences between those studies and our work.

Software porting is one of the most common maintenance activities, but little

attention has been given to deriving a detailed process and planning support for it

until recently. Varma et al. described how eXtreme Programming (XP) practices

could provide a detailed process for quality porting [83, 82]. XP is a software de-

velopment methodology which advocates frequent releases of a working software in

short development cycles to improve productivity in response to changing customer

requirements. Much of the work in this area begins to focus on various ways to

automate the iterative and incremental process, with some emphasis on acceptance

testing [12]. Hennessy’s and Power’s work in [44] is the most relevant to ours. In

their porting strategy, one C++ class is ported at a time. An order for classes is
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defined based on an object relation diagram, whereas our methodology is based on

similarity.

Some of the work in this area addresses the problem through pattern matching,

by which we mean matching code either by coming up with syntactic measures or by

giving guidance via identification of methods or underlying computation (e.g. ma-

trix multiplication [56, 19]). TSF [18] and other work [51] also developed a notion

of similarity in order to detect related code regions for the purpose of applying loop

transformations. Such analysis typically examines loop nests, their nesting depth,

and certain details of the data usage patterns they contained. They rely on a defined

“pattern abstractor” to generalize patterns according to a criterion and then to do

a pattern matching which operates on the abstract syntax tree (AST). This requires

the user to be familiar with the pattern description language. Additionally, there is a

no way to measure the degree of similarity. Compared with our methodology, we not

only define a metric for the level of similarity between subroutines, but also provide

a way to visualize the similarity between all subroutines inside a large application.

Additionally, we can trace the code changes in terms of optimization from an evo-

lutionary point of view. Some other problems for using TSF include: 1) it requires

users to write transformation script, and TSF only could be applied for Fortran code

engineering which cannot be used for C/C++; 2) their implementation is based on

FORESYS system, which cannot be extended to other systems; and 3) there are no

recipes described or explored for accelerators such as GPUs. The similarity method-

ology used in our “Klonos” tool can be quickly implemented by other compilers, such

as GCC, without the need for users to write transformation recipes.
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Hercules [50] is another code transformation tool which is an on-going project

at ORNL. This tool relies on a transformation recipe and a compiler plug-in infras-

tructure to apply transformations at compile time. Although early evaluations of

Hercules suggest that the pattern matching approach is feasible on today’s computer

resources, the task of defining patterns may become daunting to the users. There-

fore, a tool for assisting the user on this pattern creation based on “similar code” is

needed. Also, automatic software porting via pattern-matching requires us to solve

a search problem. Thus, a pattern language is needed to specify a query [16, 74].

Our similarity-based methodology does not require that the pattern be specified

explicitly.

Our work is also related to studies on software evolution [89]. These studies target

different releases of an individual subroutine (or program), whereas our family dis-

tance tree represents similarity among all subroutines in a specific release. Compared

with this work, we applied the similarity analysis more broadly for each subroutine

of a large scientific application. Most importantly, our similarity is stricter than pure

syntactic similarity since our similarity also captures the data access pattern.

Similarity is used to compare programs in many contexts. Initially, similarity

work was conducted to identify students who copied code from others in a pro-

gramming assignment, but later this method was adapted for software engineering.

However, there was no precise definition of similarity between programs [85]. In ad-

dition, the definition of similarity often depends on the context in which it is being

used [80]. As a result, different types of similarity are defined in the literature. For

example, Walenstein et al. [85] considered representational similarity and behaviorial
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similarity. Roy et al. [77] proposed four categories of clones: identical code fragments

(Type I), syntactically identical code fragments with variation in identifiers, literals

(Type II), code fragments that have been further modified, improved or changed

(Type III), and code fragments that have the same functionality but that are im-

plemented differently (Type IV). Current research focuses more on representational

similarity (Type I–III) because behavioral similarity (Type IV) is more difficult to

detect. Our similarity metric falls under representational similarity (Type I–III).

Other researchers [52, 76] classified similarity based on strings, tokens, parse trees,

program dependence graphs, or a mix of different metrics.

In representational similarity, the term “program” refers to the representation,

commonly viewed as a sequence of characters forming a more complex text struc-

ture. Similarity can be defined in terms of the form, properties, or characteristics

of this representation. The community generally distinguishes between textual and

syntactic similarity. Textual similarity considers the program source to be text and

analyzes it in the way that general text documents are analyzed [20, 34, 48]. There-

fore, it is (programming) language independent. Smith and Horwitz [80] proposed

an approach that is largely language-independent, requiring only a language lexer

to detect similar codes called clones. Funaro et al. [37] combined both textual and

syntactic approaches in clone detection.

Although some of these prior efforts have focused on helping restructure appli-

cations by detecting code clones at the syntactic level, few have aimed to detect

clones, or similar code regions, that can potentially be optimized in the same way

for a given architecture. Given a code portion that has benefited from a specific
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optimization strategy, our goal is to determine other parts of the code that exhibit

not just a certain level of syntactic similarity but also similarity with respect to code

optimization characteristics. We ultimately also need to develop effective porting

strategies to automate the task of restructuring codes to exploit the capabilities of

emerging architectures.

What applications people really need are strategies that can automatically iden-

tify code pieces that have benefited from a previous specific optimization/transfor-

mation technique. Then, once these have been identified, they need a method to

easily apply the same strategies to other code subroutines that exhibit certain levels

of similarity. They also need effective porting strategies to automate the task of

restructuring codes to exploit the capabilities of emerging architectures. We note

that the cost of adapting these strategies to a new environment strategies should be

less than the cost of re-development.
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Chapter 4

Design of Klonos Tool

After exploring the directive-based programming models for porting code to a het-

erogeneous programming environment, we realized the software porting is a time-

consuming and error-prone process. State-of-the-art shows relevant tools for soft-

ware porting are rare and outdated, and cannot meet the current need in the HPC

field. In order to ease the porting process and increase porting productivity, we have

designed and created a tool, called “Klonos”, which is used for software porting. In

this chapter, we will describe the framework and key components of the Klonos tool.

This tool adapts an existing compiler, OpenUH, to detect similar codes based on

collected static code information and other code analysis. The users only need to

submit an application source code to Klonos. The tool then does the code pattern

extraction first and then analyzes the code sequences. After that, it will provide a

plan for porting the application to a target system.
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4.1 Klonos Framework

In this section, we formally introduce the similarity-based methodology and present

a prototype implementation of Klonos to carry out the similarity analysis. For better

understanding and clarity, we have defined some terms in Table 4.1 that are used in

the rest of this dissertation.

Table 4.1: Terminology used in Klonos

Term Definition

Similarity score A score of percentage which is used to describe percent of
identities of a pair of sequences.

Distance A metric used for evaluating the dissimilarities of a pair of
sequences. Distance = 100 - (similarity score) * 100

Similarity distance matrix A matrix (two-dimensional array) containing the distances,
taken pairwise, of a set of subroutines. This matrix has a size
of N×N, where N is the number of subroutines.

Family distance tree A tree structure which is constructed based on the similarity
distance matrix. Inside the tree, subroutines with similar code
structure will be grouped into one sub-tree.

Porting strategy A solution for adapting a program to a different or new plat-
form while guaranteeing program correctness and efficiency.

Similar porting group A set of subroutines, which fall into the same static and dy-
namic clustering, can be ported with the same porting strat-
egy. Generally, one subroutine will be selected as a repre-
sentative porting example, the porting strategy used for the
rest of the subroutines inside the same group will refer to the
representative subroutine.

Porting clustering A group of clusters with subroutines in each cluster share with
the same static and dynamic clustering.

Porting planning A process of making plans for deciding the porting orders
among the porting groups to a new platform in order to reuse
porting strategies as much as possible.

We formulate the problem of planning in a software porting process as follows:

a scientific application, consisting of many subroutines, is selected to be ported and

optimized to a new architecture. The personnel responsible for carrying out this

porting will need to make a plan on which subroutine in the application to port first

and which subroutine is next. In other words, it is an optimization problem that

attempts to create an order for all subroutines in a scientific application to facilitate
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Figure 4.1: The proposed methodology.

productive porting.

The proposed methodology addresses the planning problem. It is based on a

hypothesis that similar subroutines can be ported and optimized with similar strate-

gies and result in a similar-quality porting. At a high level, the methodology aims

to create a tree with subroutines as leaves based on similarity. The tree can provide

additional, structural information that enables us to suggest a good porting order

(detailed explanation described in Section 5.1). To keep it general, the methodology

is not tied with any specific way to generate that order. In some cases, the exposure

of the tree by itself already provides valuable information for the end user.

Figure 4.1 shows the four phases of the methodology: parsing, similarity analysis,

code analyses, and planning. The first step is parsing. We basically extract indi-

vidual subroutines from the application and transform them into a representation

suitable for similarity analysis and other analyses. In the similarity analysis phase,

the subroutines are analyzed based on similarity analysis, and a family distance tree
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Operator Character Map
STORE E
MULTIPLY M
IF I
ADD A
CALL C
DO LOOP L
ARRAY ACCESS Y
SUBTRACTION S
DIVISION D
FUNCTION ENTRY F
WHILE DO O
DO WHILE W
SWITCH H
MINUS R
PARALLEL REGION P
PARALLEL DO Q
CONSTANTS 0—8 B,G,J,K,N,T,U,V,X
>=9 Z

Table 4.2: The character map in Klonos.

is created at the end of the phase. Other analyses may be required to annotate the

tree for further refinements. Finally, we make (or suggest) a porting plan, and that

concludes the process of the proposed methodology.

4.2 Code Sequence Extraction

The phase of parsing requires identifying and transforming individual subroutines

into representations suitable for similarity and other analyses. We select OpenUH,

an open source research compiler suite for C, C++, and Fortran 95 programs, to
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subroutine MAT_MUL ( l , m, n )
     real ( kind = 8 ) a(l, n)
     real ( kind = 8 ) b(l, m)
     real ( kind = 8 ) c(m, n)
     . . . 
!$omp parallel 
!$omp shared ( a, b, c, l, m, n ) 
!$omp private ( i, j, k )
!$omp do
    do j = 1, n
        do i = 1, l
            a(i,j) = 0.0D+00
            do k = 1, m
                 a(i,j) = a(i,j) + b(i,k) * c(k,j)
             end do
         end do
    end do
!$omp end do
!$omp end parallel
     . . .
end 
     . . .
    (a) OpenMP code snippet for the matrix-multiplication

mat_mul_B_L0:  FMMMMMMMMALALCAAYEALALCAAYECREREALALAAYEALAAYAAYAAYMAAAYECMMMSDD

FUNC_ENREY

BLOCK BLOCK BLOCK

DO_LOOP

IDNAME STID LE STID

INTCONST LDID INCONST ADD

LDID INTCONST

BODY

BLOCK

DO_LOOP

VCALL

IDNAME BODY. . .

. . . . . .

mat_mul_B_L0: syntactic similarity

(b) IR Tree traversal 

(c)Syntactic pattern sequences 

Figure 4.2: The illustration of parsing: An OpenMP code snippet shown in (a) is
parsed into an AST shown in (b). The AST is then traversed to generate a string
shown in (c).

implement this phase. We use the front end of OpenUH to help encode a subroutine

into a text-based string. Specifically, the front end parses the source code of the

subroutine into an abstract syntax tree (AST) and also provides a mechanism to

traverse tree in post-order. We use the mechanism to traverse the AST for each

subroutine. During the traversal, each node visited is mapped to a unique character,

denoting the type of node such as branch, data access, or mathematical calculation

based on a character map as listed in Table 4.2. During the denoting process, we

quickly found that we were running out of the alphabetical letters. In order to keep

the sequence short and make each letter inclusively stands for corresponding node,

we denote any numbers greater than 9 as ’Z’ in the node map. Figure 4.2 illustrates

the parsing phase.
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4.3 Code Sequence Analysis

Once the parsing is done, each subroutine has an associated character string. View-

ing the string as a DNA-like sequence, we can leverage tools in bio-informatics for

similarity analysis. In particular, we use Jalview to generate the visual represen-

tation of the (global) alignment, Geneious[8], to create the family distance tree,

and EMBOSS[7] to calculate pair-wise global alignments and calculate the similarity

score. Note that Jalview is also able to construct distant trees, but the visual rep-

resentation of the tree is not as scalable as that from Geneious. Also note that the

tree used in our analysis was based on UPGMA (Unweighted Pair Group Method

with Arithmetic Mean), which is used to calculate genetic distance from multiple

sequence alignments and is a simple agglomerative or hierarchical clustering method

used in bio-informatics for the creation of phonograms. This method does not use

an evolutionary model and it is safe to apply to our program sequences.

The similarity score that is calculated for the pair-wise alignment of two program

sequences is based on optimal sequence alignment and the scoring system is paramet-

ric. The substitution matrix used for the alignment uses the score of 1 for a character

match, -1 for a mismatch on all characters used to encode the program AST. For the

alignments we used a score of -6 and -.5 for the gaps and subsequent gap penalties

respectively. Once sequences are aligned, we calculate a pair-wise percentage of iden-

tity based on the percentage of non-gap positions in the aligned sequences divided

by the total length of the aligned sequence. This percentage defines our similarity

score. Note that the score is normalized.

43



We could have compared two ASTs involved directly, but we decided not to be-

cause of the complexities. This is because graph comparison is generally a difficult

problem to solve and NP-complete. In other words, we also avoided the approaches

based on program dependence graphs. By casting each AST into a DNA-like se-

quence, we take advantage of years of research on dynamic programming which have

proved to be fast and scalable. In our experiments, we were able to deal with se-

quences of an average length of 256 characters and 5,000 characters maximum. In

bio-informatics, a sequence alignment is a way of arranging the sequences of DNA,

RNA, or protein to identify regions of similarity that may be a consequence of func-

tional, structural, or evolutionary relationships between the sequences [59]. In our

research, we used the sequence alignment to calculate the similarity of a pair of

subroutines. There are two types of methods for the sequence alignment: local and

global sequence alignment.

4.3.1 Local Sequence Alignment

Local sequence alignment is a technique mainly used to detect local regions of sim-

ilarity of sequences within their larger sequence context. The Smith-Waterman al-

gorithm is a popular local alignment method based on dynamic programming. This

algorithm is normally more biologically useful. Figure 4.3 shows an example of

two sequences, initialize B and initialize C. Figure 4.4 is the result after using local

alignment Smith-Waterman algorithm. In our analysis, we mainly used the global

sequence alignment, since the granularity in our analysis is at subroutine level.
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initialize__B: FMMADADEGGALGGALRGAMAE

initialize__C: FMMADALGGALAYEMSMMSMMSMSMMAAYE

Figure 4.3: Original sequences initialize B and initialize C

initialize__B 1 FMMADA 6

||||||

initialize__C 1 FMMADA 6

Figure 4.4: Local sequences alignment example when setting gap penalty=6.0, gapex-
tend=0.5

Input: Two sequences x and y of length M and N, respectively; scoring matrix 
σ(a,b); linear gap cost A.
Output: Dynamic programming matrix F.

Initialization:
F(0,0) = 0
for i = 1 to M

F(i, 0) = 0;
for j = 1 to N

F(0, j) = 0;
Recursion: 

for i = 1 to M
for j = 1 to N

F(i, j) = max

0,
F(i-1, j-1) + σ(xi, xj)
F(i-1, j) - A
F(i, j-1) - A 

Figure 4.5: Smith-Waterman algorithm pseudo code
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Assume we have two sequences, X and Y with length of M and N respectively,

and a scoring matrix which is a symmetric diagonal matrix with elements on diagonal

equal to 1, and the rest of elements are 0. In other words, we set perfect match score

to 1, and value of -1 for mismatch. We also set the gap penalty score to -0.5. In

order to align the sequences, we build a dynamic programming matrix with size of

M*N. M and N are the length of input sequences X and Y as mentioned before. This

algorithm first initializes the scoring matrix to zero, and then keeps updating the

scoring matrix based on the calculation of its right, down, and diagonal neighboring

points for each letter alignment calculation. Once the scoring matrix is ready, Figure

4.5 lists the Smith-Waterman local sequence alignment pseudo code. Based on the

algorithm, we can calculate the dynamic programming matrix at first. To find the

optimal local sequence alignment, this algorithm starts from choosing the cell which

has the highest score, and backtracks until reaching a cell with score 0.

4.3.2 Global Sequence Alignment

A general global alignment technique is the Needleman-Wunsch dynamic program-

ming algorithm [63], which is used in our sequence alignment. Assume there are two

input sequences A and B used for alignment:

String A: A B C D

String B: A A C D

In order to find the alignment with the highest score, a size of (M+1)×(N+1)

two-dimensional array (or matrix) is allocated. M is the length of sequence A, and
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N is the length of sequence B. There is one column for each character in sequence A,

and one row for each character in sequence B.

InitialMatrix =



− A B C D

− 0.0 −0.5 −1.0 −1.5 −2.0

A −0.5 0.0 0.0 0.0 0.0

A −1.0 0.0 0.0 0.0 0.0

B −1.5 0.0 0.0 0.0 0.0

C −2.0 0.0 0.0 0.0 0.0


As illustrated in Figure 4.6, the diagonal edges correspond to character matches

or identities. A down edge corresponds to a gap in string B, and an across edge

corresponds to a gap in string A.
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-11
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-0.5 -0.5

-0.5

-0.5
-1 -1 -1 1

A B C D

A

A

C

D

1.0 0.5 0.0

0.0 -0.5 -1.0 -1.5

-0.5

-1.0

-1.5

-2.0

-0.5

0.5 0.0 -0.5 -1.0

0.0 -0.5 1.0 0.5

-2.0 -0.5 -1.0 0.5 2.0

Figure 4.6: Needleman-Wunsch global sequences alignment algorithm
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AlignmentMatrix =



− A B C D

− −0.0 −0.5 −1.0 −1.5 −2.0

A −0.5 1.0 0.5 0.0 −0.5

A −1.0 0.5 0.0 −0.5 −1.0

B −1.5 0.0 −0.5 1.0 0.5

C −2.0 −0.5 −1.0 0.5 2.0


Global sequence alignment is used to align every residue in every sequence. A

gap will be inserted between residues if a mismatch is detected so that identical

or similar characters are aligned in the successive columns. A vertical bar between

a pair of sequences represents an identity. Figure 4.7 demonstrates an example

of a pair of sequence alignments by using the global sequence alignment method.

Alignment matrix is the corresponding scoring matrix we have. Global sequence

alignment is very similar to the local sequence alignment for the scoring matrix

generation, but it will backtrack the scoring matrix until all letters in the sequence

have been processed.

initialize__A 1 FMMADAD-EGGALGGALRGAMARGAABABABDGAIRGAYEMSMMSMMSMS 49

||||||| |||||||||||||||| |.|..||||||||||||||||||

initialize__B 1 FMMADADAEGGALGGALRGAMARG---AMAJRGAIRGAYEMSMMSMMSMS 47

Figure 4.7: Global sequences alignment example when setting gap penalty=6.0,
gapextend=0.5

48



4.4 Building the Distance Matrix

After extracting the sequences, we performed a pair-wise global alignment to compare

the degree of syntactic similarity between the subroutines. For this, we used the

Needleman-Wunsch algorithm [62] using the identity substitution matrix. A score is

generated for each pair-wise alignment using the value for their percent of identity. A

percent of identity of 100% means the sequences are identical. We used the pair-wise

comparison similarity score for each pair of sequences to calculate a distance matrix

by subtracting the percent of identity with 1, and then times 100.

4.5 Constructing the Family Distance Tree

There are several algorithms [73, 78, 87] that can be used to classify sequences into

distance trees. In our case, we used the Neighbor-joining [78] to build our syntactic

distance tree for its simplicity and because it is distance matrix based. This algorithm

aims to minimize the sum of all branch lengths. It starts by generating the distance

matrix from the input of multiple sequence. Then, it contiguously selects two nodes

which have the least distance, and replaces them with another new node until all

nodes have been consumed. It initially starts from a star-like digram, and gradually

expands to a tree while continuously reducing the total length of the tree. This

algorithm is heuristic greedy algorithm based. In our experiment, we used a tool

called Clearcut [55] to help us generate the family distance tree by using the NJ

algorithm, then we used Geneious [8] to read the generated tree file and draw the
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family distance tree.

4.6 Building the Optimization Planning Tree

According to the generated family distance tree, sequences with less distance have

been clustered into groups. In other words, similar subroutines have been grouped

together based on their syntactic similarity. The generated family distance tree can

precisely give us the overall code structure relationship over the all subroutines.

However relying solely on the syntactic code structure does not enable capture of

the similar code optimization similarity. More metrics are needed to determine if

two codes can be applied for a given optimization strategy (in our case OpenMP

parallelization).

Since loop parallelization information and data accesses are important factors for

codes with OpenMP, we extracted this information from the compiler and gathered

hardware counter data when we executed the serial version of the code on the pro-

cessor. As our experiments were conducted in a hex-core Opteron processor, so we

gathered the following hardware counters using AMD CodeAnalyst: “DC accesses”,

“DC misses”, “DTLB L1M L2M”, “CPU clocks”,“Ret branch”, and “Ret inst”.

Once we got those metrics, we used Weka [15] to help us cluster the subroutines

based on these code features, using the K-means algorithm based on the calcula-

tion of the Euclidean distance for each pair of subroutine. After that, we appended

the Euclidean distance clustering back to the family syntactic distance tree, which

serves as the optimization guidance. Klonos predicts that if two subroutines fall in
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the same subtree which are also in the same performance cluster, then there is a high

probability that those two subroutines should be optimized the same way.
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Chapter 5

Evaluation of Syntactic Similarity

Analysis

After the introduction of the Klonos tool framework, we will use a CFD benchmark

BT as an example to provide details on how to use similarity methodology for porting

code to a shared memory environment by using OpenMP. In particular, we will

discuss what is gained by viewing the benchmark as a set of DNA-like sequences.

We will also use the benchmark to test our similarity hypothesis. In addition, we

will explore different code metrics, such as syntactic similarity, parallel information,

application sampling, cost model, etc. to capture the code characteristics in order

to make an accurate porting planning. Also we will show our methodology could

be extended to other programming models such as HMPP, PGI, OpenACC, etc. for

different programming architectures.
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5.1 Similarity Analysis Metrics Used for BT Bench-

mark

BT is a simulated CFD application, meaning that it reproduces much of the data

movement and computation found in the full-scale code. BT solves a system of

three-dimensional compressible Navier-Stokes equations by factorizing the system

into block tridiagonal matrices, followed by solving the block tridiagonal system

along x, y, and z dimensions successively. Figure 5.1 shows the overall structure

of the benchmark. A major portion of the execution time is spent in the three

subroutines x solve, y solve, and z solve.

program BT

. . .

do step = 1, niter

call compute_rhs

call x_solve

call y_solve

call z_solve

call add

enddo

. . .

end

Figure 5.1: The overall structure of BT.

The three subroutines are the target when the optimized serial version of BT

was ported to the multi-core platform using OpenMP [46]. By examining the source

code for these subroutines, we found that they are similar to each other structurally.

This may or may not be detected by a given similarity detection tool, depending on

the tool’s capability. For example, Unix diff cannot detect such similarity. Other
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text-based comparison tools may not capture correctly the structure of the code

or differentiate the data accesses of the code (which plays an important role for

performance). In contrast, if we translate the code for each subroutine to a DNA-

like sequence, then we can see a high degree of similarity among these subroutines

(details follow), because each character in the sequences encodes important code

structures and data accesses.

Specifically, we represent the three subroutines by a sequence of characters en-

coding the operators and operands of the source code. This is done by mapping each

node in the abstract syntax tree (AST) representation of the code into a character

based on a character map that represents the type of the node. Each of the charac-

ters in the sequence represent operators and data operands that a typical compiler

will translate to machine instructions. For example, we encode a loop as a ‘L’ and

a subroutine call as ‘C’. (The details of the encoding process will be described in

Section 4.2.) Then we can use any similarity analysis method for DNA sequences

to evaluate the similarity among the subroutines, and the similarity we measure is

a type of syntactic (or representational) similarity. To calculate syntactic similarity,

we align the sequences to identify functionally or structurally similar regions of code.

Sequence alignment gives us a set of transformations (such as character substitution,

deletions, insertions, and gaps) which can be scored and used as a metric for code

similarity.

Figure 5.2 shows a graphical view of the similarity encoding result for the three

original subroutines after we apply multiple sequence alignment. The result is vi-

sualized by using a tool called Jalview. Jalview [11] uses the ClustalW multiple
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Figure 5.2: The results of a similarity encoding for BT when the subroutines are
viewed as a set of DNA-like sequences. The figure shows a local view of the sequences.

alignment algorithm [24] to optimally align the three sequences with respect to a

substitution matrix. For simplicity, we use the identity substitution matrix where

matches have a score of 1 and mismatches with a score of -1. The shaded area in the

figure indicates where the sequences are identical after the alignment. Therefore, the

larger the shaded area, the more similar the sequences are. As we can see, the three

subroutines are very similar to each other.

In our experiment, we also used another tool called needle from the European

Molecular Biology Open Software Suite (EMBOSS) to calculate a similarity score for

a pair of sequences, which uses the Needleman-Wunsch [62] pair-wise global align-

ment algorithm. With needle we also used the identity substitution matrix. The

output of the score is based on the percent of identity (described later), which is

correlated to the percentage of the shaded area in the overall area. A larger score

indicates more resemblance between two subroutines. The similarity scores for the

three subroutines, when compared to each other, are all around 87%. In other words,

these subroutines are similar to each other according to the similarity definition. Note

that the figure only shows the first 32 characters of the sequences. The length of

the sequences are around 3,200 characters before the alignment and 3,250 after the

alignment. Figure 5.3 shows the overall percent of identity of all the routines of

BT when compared to each other in a 2D plot. The hotter colors means the higher

similarity (percent of identity) between two routines. We can observe several regions
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Figure 5.3: The percent of identity among the different routines of BT benchmark.

in the plot with a high degree of similarity that need further classification with a

bio-inspired view.

We have intentionally used two tools, Jalview and EMBOSS, to evaluate the

similarity of subroutines. We wanted to demonstrate that there is a variety of tools

available for similarity analysis of DNA sequences, and we should leverage them.

Another motivation for viewing the source code of a scientific application as a set of

DNA-like sequences is that a“family distance tree” can be constructed. The tree is

constructed based on the alignment scores of the sequences, and provides valuable

structural information that other types of similarity analysis would not be able to

provide. For example, Figure 5.4 shows the family distance tree for all the subroutines

in BT, created by the third tool called Geneious [8]. The tree not only provides

the similarity information between two subroutines but also imposes a hierarchical

structure and can be used to order them for processing.

56



Figure 5.4: A “family distance
tree” of all subroutines in BT
based on syntactic similarity.

Figure 5.5: The results of a sim-
ilarity analysis for the OpenMP
version of BT as an evolution tree
construction problem.
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Figure 5.6: The results of a similarity anal-
ysis for the OpenMP version of BT as a
sequence alignment problem.
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Figure 5.7: The results of a sim-
ilarity analysis for the OpenMP
version of BT through correlation
analysis.

Since the group of y solve and z solve is more similar to x solve than to add,

it may be more productive if we port x solve before porting add once both y solve

and z solve are ported, making the porting plan familiarity oriented. Subroutine

y solve and z solve are more similar to each other because their code structures

and data access patterns are similar, and our sequence encoding scheme can capture

both.

In addition, the family distance tree constructed is balanced rather than skewed.

A balanced distance tree is desirable because it helps minimize the number of sub-

routines we will need to learn how to best port. Specifically, if we divide subroutines

into groups based on similarity, then we will only need to focus on finding the best

porting for one representative subroutine from each group. The rest of the subrou-

tines are relatively easy to port according to our similarity analysis. Given that the

number of groups is an indicator of how complex the porting process will be, a plan

with a small number of groups is easier to porting. For example, there are 19 leaves
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in the tree for BT. The perfectly balanced tree has the height of 5 whereas the most

skewed tree has the height of 18. The height of the tree for BT is 7. Therefore the

tree is more balanced than skewed. In comparison with compute rhs, subroutines

x solve, y solve, z solve, and add are much more similar to each other, and can

be put in the same group while compute rhs is in another group. That other group

may also include error norm, rhs norm, and initialize due to the balanced fea-

ture of the tree. In other words, we can use a similar porting strategy for those 8

subroutines by only concentrating on two subroutines. This is certainly a productive

porting plan. We have demonstrated a few benefits we have gained with the bio-

inspired view of program, namely, the abundance of tool support and the additional

structural information. We believe that there are more benefits that the bio-inspired

view can provide, such as evolutionary trees.

5.1.1 Verification of Similar Optimization

Now we need to verify whether similarity measure works in practice for a good-

quality porting. First, we need to find a good-quality port of BT. Since BT is part of

NAS Parallel Benchmarks, and these benchmarks have been ported to the OpenMP

version [46] with the goal of comparing the performance of parallel computers, we

assume that the OpenMP version of BT is a good-quality port. Figures 5.5, 5.7,

and 5.6 show the results of various tests. As we can see from Figure 5.6, subroutines

x solve, y solve, and z solve are similar to each other in the ported version. The

similarity scores for the ported subroutines are all around 87%. Since they are similar

in the original serial version, the hypothesis is true for these three subroutines.
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Figure 5.7 shows the correlation between the original and ported versions for all

pairs of subroutines in BT with respect to similarity. For the hypothesis to be true,

we need to see the linear correlation exhibited (as indicated by the diagonal line).

The figure clearly shows the linear correlation. We can conduct statistical tests if we

want the analysis to be more rigorous. We omit them due to space constraints. We

can also test whether the two family distance trees are identical or not. Figure 5.5

shows a different test based on the tree view. We construct a family distance tree for

the union of two versions of code. From the figure we see that not only are the ported

versions of x solve, y solve and z solve similar to each other but also the original

of each subroutine are similar as well. In other words, this particular view provides

additional insight that other views such as Figures 5.6 and 5.7 cannot provide. The

high similarity between the original and ported versions of a code indicates that the

code is not dramatically changed. This explains why our similarity analysis is correct

for those three solvers.

Finally, we note a difference between syntactic similarity and performance simi-

larity. It has been observed that z solve spends more execution time than x solve

and y solve because the data is accessed non-contiguously, thereby producing more

cache misses [46]. As a result, we expect to see less similarity between z solve and

the other two solvers in the ported version because different data locality optimiza-

tions will need to be employed. Instead, z solve is actually more similar to y solve

than between x solve and y solve. This is because our similarity metric groups

them together due to their non-contiguous memory access pattern whereas x solve

has the non-contiguous memory access pattern.
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5.2 Using Klonos for the NPB

In this section we present the experimental setup and results for NAS Parallel Bench-

marks (NPB)3.3. We pay particular attention to the verification of the similar opti-

mization strategy or directives and to the shape of the family distance tree for each

benchmark.

5.2.1 Experiment Setup

NPB consist of 10 CFD benchmarks implemented and optimized serially as well as

with OpenMP. Table 5.8 shows some properties of these benchmarks. In our experi-

ments we omit EP since it has no subroutines. We also omit two benchmarks written

in C, DC, and IS, because Klonos is currently only verified for Fortran programs. C

programs require the sequence encoding to be extended to include pointers. BT is

omitted because we have presented its experimental results in Section 5.1. Thus, we

will only collect results for CG, FT, LU, MG, SP, and UA.

We use Klonos to collect the results. We use it to create the family distance tree

and pair-wise similarity scores for each of the six benchmarks, like what we did for

BT in Section 5.1. We assume that the OpenMP version of NPB’s 3.3 is a good-

quality port. Thus, we run Klonos for both serial and OpenMP versions to collect

trees and scores.
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Figure 5.8: Benchmarks properties of NPB’s 3.3

Benchmark Name Programming Language Number of Subroutines Lines of Code

BT Fortran 19 5059
CG Fortran 7 1034
DC C 2719
EP Fortran 1 272
FT Fortran 12 790
IS C 804
LU Fortran 18 5119
MG Fortran 15 1376
SP Fortran 20 3144
UA Fortran 67 6751

Figure 5.9: NPB family distance trees statistics.

Benchmark Name Height Range Tree Height

BT [5,18] 7
CG [3,6] 4
FT [4,11] 6
LU [5,17] 7
MG [4,14] 7
SP [5,19] 8
UA [7,66] 26
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5.2.2 The Verification of Optimization

We first check the similarity of optimization. The hypothesis states that the similar

subroutines in the serial version should be similar to each other in the OpenMP

version. We will show that this is generally true for the tested benchmarks.

Figure 5.10 shows six scatter plots, one for each NPB. A dot in the plot represents

a pair of similarity scores for the serial and OpenMP versions with respect to a pair

of subroutines. The diagonal line indicates results that would indicate that our

hypothesis is true. (In fact, the line shows a much stronger hypothesis.) If all the

dots are located near the line, then the hypothesis is generally true. As we can see

from all the plots, this is indeed the case.

Figure 5.10 also provides other insights. First, we observe that there exists more

similarity chances between subroutines when the application consists of more sub-

routines due to large number of subroutines. UA and SP are two largest applications

among all NPB’s. Both of their plots show more dots on the right hand side of the

plots, meaning that there are more subroutines similar to each other with a high

degree. This is promising as our methodology desires an application with such a

feature.

Second, the plot for UA has outliers. One type of outlier shows a case where

two subroutines are highly similar in the serial version but less similar in the ported

version. Looking into these two subroutines, we found out that one subroutine

is parallelized with the OpenMP directive whereas the other is not parallelizable,

therefore leading to a lower similarity in the ported version of the code. Conceptually,
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(f) UA

Figure 5.10: The visual check of the hypothesis.

64



this action causes the dots to go “up” in the scatter plot. This case shows that our

similarity-based methodology enables us to do a cross checking after the porting

is done, i.e., to see if there exists any possible code transformation that the user

neglected or intentionally chose to ignore.

Another type of outlier shows a case where two subroutines are reasonably similar

in the serial version but less similar in the ported version. We attribute this to the

imperfectness of the syntactic similarity metric we use. Specifically, two syntactically

similar subroutines may not be suitable for the same set of optimization strategy in

some cases. Conceptually, a better similarity metric will move these dots “left” in

the scatter plot. Note that our similarity still holds as it only concerns highly similar

subroutines. This experiment shows that the capability of Klonos to detect missing

possible optimization strategies missed by the developer.

5.2.3 The Family Distance Tree for Each NPB

Now we turn to the shape of the family distance trees for all six NPB’s. Figure 5.11

shows these trees. As we have observed in the BT case, the balanced tree is desirable.

Table 5.9 shows that the six trees are more balanced than skewed, using the tree

height as a measure of tree balance.

Although Geneious generates the tree with a better layout, the construction is still

based on similarity. We also believe that it is not coincidental for the following reason:

the subroutines in a scientific application often provide different functionalities for

the same data domain. In CFD codes, the data domain is the fluid substances while
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Figure 5.11: The family distance trees of all serial NPB’s.

66



in cosmological simulation, the data domain is the discretized universe. We can

observe that domain information is also encoded in the syntactic structure of the

subroutines (same type of solvers belong to the same group) which are translated

into syntactic similarity. As a result, the distance tree is balanced.

5.3 Scalability of Klonos

Normally the size of a scientific application is large, containing several hundreds or

thousands of subroutines. In order to test the scalability of Klonos tool, we applied

this tool for a large scientific application called “HOMME” which is introduced in

Section 2.4.2.

5.3.1 HOMME Application

The HOMME application consists of several hundred Fortran90 procedures where the

computations are spread evenly across them, and whose relevance depends on the

input problem. There is a certain degree of syntactic similarity between the solvers

that are implemented with minor changes in their algorithms to deal different physical

properties. Figure 5.12 shows the overall similarity among the different routines in

HOMME when doing a pair-wise comparison. The hotter colors (dots) represent

pair-wise routines with a high percent of identity. By inspecting the figure, we can

see areas with a high degree of similarity that need to be classified and further

inspected for porting planning purposes.
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Figure 5.12: The percent of identity among the different routines of HOMME.

Figure 5.13: The “family distance tree” of all subroutines in HOMME based on
syntactic similarity.
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Figure 5.14: A subtree from the “family distance tree” in HOMME that belong to
similar implicit solver
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Figure 5.13 shows the overall distance tree among the different routines of HOMME.

Because of space issues, we just present the overall view of the shape of the distance

tree. There is a large portion of the tree that is unbalanced, which consists of routines

with small degrees of similarity among them. However, there are several balanced

subtrees where routines have very similar structures. We highlight a portion of a

subtree in blue to show one of those regions. It is a subtree that contains a range

of implicit solver with similar structure in the application. The distance tree was

able to cluster these type of routines together, which shows that our approach can

also encode some domain knowledge of the application. This is something that a

scientist might need to validate or annotate as useful domain information to the sub-

tree. Figure 5.14 shows a zoomed in version of the subtree selected in Figure 5.13.

We can see that some implicit solvers routines have a high degree of similarity. For

example, divergence sphere and vorticity sphere have a similarity of 91.8%. Other

solvers, curl sphere and gradient sphere have a similarity of 90.8%, but have an av-

erage similarity of 80.68% with divergence sphere. The procedures interpolate V2P

and interpolate P2V have a degree of similarity of 100% because they are inter-

polating between velocity and pressure, which have the same data structures and

interpolation algorithm. A similar porting strategy can be applied these procedures

based on our manually porting observation mentioned in Chapter 2.

For evaluation purposes we evaluated how scientists ported the routines diver-

gence sphere and vorticity sphere to a GPU-based system using a high-level acceler-

ator directives. Because of the high degree of similarity of the routines, we noticed

that scientists ported these routines using the same strategy, while achieving good
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speed-ups. Both routines were parallelized over the physics and the vertical dimen-

sion loops of the cube-sphere and mapped them to the GPU multi-processors, while

the cubed-sphere planes were parallelized and mapped to the GPU thread-blocks.

Our similarity approach can be very promising in this case, as long as we can use

other analysis such as parallel, data scoping, and alias information to validate if two

routines can be ported the same way.
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Chapter 6

Adding Code Metrics Similarity in

Porting

Although syntactic similarity could be used to detect possible missing optimizations

neglected by developers, we still need other code feature metrics to increase the accu-

racy of deciding whether a similar optimization or porting strategy could be applied

for similar subroutine. Also, for different architectures, different metrics have to be

used in order to meet different porting environment needs, since most optimizations

or porting strategies are target specific. In this chapter, we will show other possible

metrics that we have explored for Klonos tools. Those metrics include cost-model-

related code feature information and relations of syntactic similarity maintained at

different compilation phases.

72



6.1 Dynamic Code Feature Similarity
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Figure 6.1: NAS BT OpenMP benchmark x solve, y solve sequences alignment

Although syntactic similarity can help users to locate structurally similar code

regions, this is still not sufficient to decide whether similar porting strategies could

be used for similar subroutines or code regions. Other code information and metrics

need to be taken into consideration. To illustrate this, we use the BT serial NAS

benchmark as an example to demonstrate how our notion of similarity can be ex-

tended to other code information analyses to help the user parallelize this code with

OpenMP. This technique can also be used for other directive-based programming

models. BT belongs to a family of CFD code, and it uses a multi-partition scheme

to solve three sets of uncoupled systems of equations in a block tridiagonal of 5x5

blocks. The direction of the solvers are in the x, y, and z dimensions over several

disjoint sub-blocks of the grid. The solvers use the same algorithm along the different

directions before the results are exchanged among the different blocks. Because of

this algorithmic property, BT is a good candidate to illustrate how our notion of

similarity can help to analyze and parallelize this code.

One way to quantify the source code similarity is to convert the intermediate

representations of subroutines of a program into sequences of symbols (in our case,

we used characters) that can be aligned using a global sequence alignment algorithm.

The result can then be used to calculate their pair-wise syntactic distance based on a
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Figure 6.2: NAS BT benchmark porting planning tree
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percentage score reflecting how similar they are (for example 100% means identical).

Figure 6.1 shows one portion of the pair-wise sequences alignment of subroutines

x solve and y solve. The length of the alignment is of 3003 characters. The vertical

lines indicate the portions of the sequences that are identical and the portions of the

subroutines that have identical operators.

We can then use the Neighbor-Joining algorithm to create a family distance tree

based on the pair-wise distance of the subroutines. Figure 6.2 shows the family

distance tree for the BT serial benchmark. Each edge of the tree is annotated with

a distance score, which represents the degree of their syntactic code differences. The

distance between two subroutines can be calculated by adding the distance value of

the edges between them.

By looking at the tree, we find that x solve, y solve, and z solve are siblings.

x solve and y solve are grouped into one subtree, and their parent node is grouped

with z solve into another subtree. By calculating the distance between these three

subroutines, we get x solve ∼ y solve=7.5, x solve ∼ z solve=7.468, and y solve ∼

z solve=7.432. These subroutines have small distances between them because they

have a high degree of similarity in their source code, which is consistent with the

algorithm of BT. Although the source code of the subroutines x solve, y solve, and

z solver look very similar, their data accesses are different. The subroutine x solve

has contiguous memory accesses but y solve and z solve have dis-contiguous memory

accesses. This may impact the optimization strategy for these subroutines on a cache-

based system. For example, the OpenUH [67] compiler optimizes the serial versions

of x solve and y solve similarly (when inspecting their intermediate representations
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Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
lhsinit initialize matvec sub add adi exact rhs z solve

exact solution matmul sub error norm compute rhs
binvcrhs rhs norm x solve
binvrhs y solve

Table 6.1: Subroutine clusters for the serial BT benchmark based on the code features

Attributes Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
DC accesses 0.0004 452.5 0.0007 84.058 0 1747.5666 1629.2438
DC misses 0.0004 25.5 0 10.2338 0.005 420.6692 858.1244

DTLB L1M L2M 0 0.5 0 0.6202 0 4.5561 37.9751
CPU clocks 0.0008 623.5 0.0012 194.0514 0.005 2718.1974 2913.2836
Ret branch 0.0001 113.5 0.0001 9.2769 0 210.1474 139.8806

Ret inst 0.0005 1227 0.0015 125.8657 0 3485.2936 3125.7264
# parallel loops 1.5 21 0 3.3333 0 22.5 15

Table 6.2: Cluster center point for the serial BT benchmark based on the code
features

after optimizations) but uses a different strategy for z solve.

Based on this information, if we want to parallelize these subroutines using

OpenMP, we cannot rely on the syntactic similarity analysis, because other code

features need to be taken into consideration. Since we use OpenMP for porting se-

rial code to a shared memory environment, some important code features for porting

with OpenMP have been taken into consideration: parallel information is used for

detection of parallelism, amount of work, data access pattern, etc. These might be,

for example, the number of parallel loops in the subroutine, the values of hardware

counters that characterize the data access, and the amount of work done for each

subroutine. We can define a set of program features (analyses) that are relevant to

OpenMP optimizations and cluster them to further classify the subroutines. For the
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BT Benchmark, we clustered its subroutines based on the number of parallel loops,

data cache accesses, and cache misses, total number of cycles, TLB misses, and to-

tal number of instructions. The subroutines were classified into seven clusters (the

number of families in level three of the distance tree), using the K nearest neighbor

(K-NN). The k-means method is favored when the number of data points is small.

The result of the cluster is shown in Table 6.1. The dynamic code features were cal-

culated by running the BT serial benchmark with class B on a hex-core Opteron 2435

processor. Each cluster consists of a set of subroutines with the closest Euclidean

distance among their feature vectors. Table 6.2 shows the list of code features of

each subroutine that are used for the clustering. It also shows the average values of

the code features per cluster. In our experiment, we use the Instruction-Based Sam-

pling (IBS) events, since those events are the key factors which can summarize the

memory access pattern (or internal application behavior) of each subroutine. Those

memory events have a direct link with the optimization that contributes to the final

performance. Although IBS is a statistical method, the sampling technique delivers

precise event information and eliminates inaccuracies due to skid [10] for the AMD

Family 10h processors. Using the clustering results we can annotate families of codes

that share important code features for OpenMP optimizations. Figure 6.2 shows the

resulting annotated serial BT benchmark porting planning tree we achieved based on

the collected static and dynamic information of the syntactic similarity of the code

and its features. The subroutines marked with the same color have a greater poten-

tial to be optimized similarly if they are syntactically close enough to each other in

the same subtree with small syntactic distance. Our sampling performance tool was
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not able to collect hardware counter information for the subroutines MAIN, verify,

and set constants, because their execution time was too short. We excluded these

subroutines from further similarity analysis.

After collecting this information, the next step is porting planning. We notice that

x solve, y solve, and z solve fall into two different code feature clusters, although their

syntactic distance is small, with x solve and y solve in the same code feature cluster.

So we can predict that x solve and y solve can be optimized using the same OpenMP

strategy, while z solve might need a different one since it falls into “cluster 6” based

on the code feature clustering. This result suggests that the user should first attempt

to parallelize x solve with OpenMP, then based on this experience develop a porting

strategy that can be applied to y solve. For the case of z solve, a different porting

strategy is needed. When we inspected the corresponding OpenMP version of these

solvers, we noticed that the user inserted an OpenMP do directive at the same loop

level of the main computation loop. The user also used the same privatization and

data scoping strategy for the data. The user chose not to optimize the data access of

z solve and left this job to the compiler. This is perfectly captured by the planning

scheme supplied by our tool. The user applied the same parallelization strategy for

the subroutines error norm and rhs norm that fall under the same syntactic distance

family and the code feature clusters. Our tool predicted that these two subroutines

may be parallelized by using a similar OpenMP strategy. Figure 6.3 shows a partial

code listing of those two subroutines after being parallelized with OpenMP (from

the OpenMP version of the benchmark). We observed that the programmer used

exactly the same OpenMP strategy as suggested by our similarity tool.
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!$omp parallel default(shared)

!$omp& private(i,j,k,m,...,u_exact,rms_local)

!$omp& shared(rms)

do m = 1, 5

rms_local(m) = 0.0d0

enddo

!$omp do

do k = 0,grid_points(3)-1

zeta=dble(k)*dnzm1

do j=0,grid_points(2)-1

eta=dble(j)*dnym1

do i=0,grid_points(1)-1

xi=dble(i)*dnxm1

call exact_solution(xi,...u_exact)

do m = 1, 5

add=u(m,i,j,k)-u_exact(m)

rms_local(m)=rms_local(m)+add*add

enddo

enddo

enddo

enddo

!$omp end do nowait

do m = 1, 5

!$omp atomic

rms(m)=rms(m)+rms_local(m)

enddo

!$omp end parallel

(a) error norm

. . .

!$omp parallel default(shared) private(i,...)

!$omp& shared(rms)

do m = 1, 5

rms_local(m) = 0.0d0

enddo

!$omp do

do k=1,grid_points(3)-2

do j=1,grid_points(2)-2

do i=1,grid_points(1)-2

do m=1,5

add=rhs(m,i,j,k)

rms_local(m)=rms_local(m)+add*add

enddo

enddo

enddo

enddo

!$omp end do nowait

do m = 1, 5

!$omp atomic

rms(m)=rms(m)+rms_local(m)

enddo

!$omp end parallel

. . .

(b) rhs norm

Figure 6.3: Subroutines rhs norm and error norm code snippets of the NAS BT
benchmark

Based on these findings, we believe that the experiences gained when porting

a subroutine using OpenMP can be used for similar subroutines and benefit from

previous optimizations/transformation strategies. This dissertation includes a new

approach to define the code similarity based on syntactic structure of the codes and

code features that are relevant for the OpenMP parallelization. If two codes are

similar, there is a high probability that these codes can be ported using the same

OpenMP strategy.
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6.1.1 Experiment for NPB-3.3 Benchmarks

The OpenUH compiler first translates different languages to a high level intermediate

representation (IR), called WHIRL [3]. For each subroutine, we summarize the

intermediate representation (IR) into character sequences by traversing the IR in

post-order. The characters in the sequences represent operators and operands based

on a “node-map” described in [32].

In order to further verify this methodology, we use a similar concept for extract-

ing the code sequence. To generate the optimization distance, we first trace the

functions in charge of the OpenMP transformation. We used a unique letter to de-

note each function called during the OpenMP translation phase. Those functions are

responsible for translating a given OpenMP construct. The optimization process has

been converted to a flattened sequence for a comparison. Similarly, we can derive the

optimization distance from the OpenMP version of NPB based on the optimization

similarity score described above. The generated optimization distance is then used

to check if two codes were lowered and optimized in the same way.

In Section 5.1, we explained how we used the similarity technique to find a sim-

ilar porting strategy which could can be applied to the similar subroutines inside

the BT benchmark. Due to space limitations, we are not able to the list all the

family distance trees and code feature clusters for the rest of the five benchmarks.

However, in Figure 6.4, all the pair-wise subroutines comparison from the six bench-

marks including the BT are shown. Each dot inside this diagram refers to a pair

of subroutines with respect to their syntactic and optimization distance. The x axis
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Figure 6.4: Syntactic and optimization distance for a pair of subroutines

shows the syntactic distance between a pair of subroutines, and the y-axis represents

a optimization similarity as a distance value. for comparing of two subroutines.

According to Figure 6.4, we observe that a syntactic distance of 50 is an appro-

priate threshold for the NAS benchmark.

For the subroutine pairs with a syntactic distance less than 50, they are more

likely to have an identical OpenMP optimization strategy. Figure 6.5 shows the

percentage of subroutine pairs that have optimization distance is always zero when

their syntactic distances are less than 50, 60, 70, and 80 respectively. When the

subroutine pairs have syntactic distance less than 50 ( similarity score is greater

than 50), we found that they can all be optimized in the same way with OpenMP.

However only 90 percent of the subroutine pairs are optimized in the same way

when their syntactic distance is less than 60. The optimization strategy starts to
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Figure 6.5: Percentage diagram for the syntactic distance

change when the syntactic distance goes beyond 50. As the code structure further

diverges, the optimization similarity continues to decrease. This is generally true

that different subroutines are optimized differently. Referring back to the generated

family distance tree 6.2, we verified that all the subroutine pairs that classified into

the same syntactic and code feature clusters, used the same optimization strategy

with OpenMP as long as their syntactic distance is less than 50. We also observe

that for some cases they use the same optimization strategies although they diverge

dramatically from each other.

6.2 Cost-Model Metrics-based Similarity

The aggregated structural information provided by the static metrics, and the aggre-

gated behavioral information provided by the dynamic metrics combine to identify
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a viable porting plan for an application. However, it is still impractical to run an

entire application to collect the performance sampling data, especially for a large

application that consists of millions lines of code. To analyze a very large data set

generated by such a run is difficult and time-consuming. Even if it is possible to

collect this kind of performance data, the output is sensitive to the content of the

input data and sampling information varies significantly between different execution

phases. It is also evident that many optimization or code restructuring techniques

used during porting are target specific, and lead to variations in performance on

different platforms. Different cost-models will be used for different target systems.

A cost model is a performance estimation without regard to specific input data,

and is used by the compiler to select different optimization algorithms. OpenUH

uses a shared memory processor cost model to evaluate different combinations of

optimizations and to decide if there is enough work (in processor cycles) to bene-

fit from automatic parallelization of a loop. The cost model is essential to evaluate

whether it is worth applying static optimizations to loops and consists of three major

components: processor, cache, and parallel overhead [88]. The similarity of code is

measured by analyzing the similarity of cost-model-based metrics. Sections of code

that exhibit the same metrics are likely to benefit from similar optimization and

porting strategies.
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6.3 Similarity Analysis for Other Proposed Met-

rics

After successfully testing the scalability of Klonos using a real application, we found

that relying solely on syntactic similarity will help us locate similar code regions.

However, if we want to accurately find similar optimization strategies that can be

applied for similar code regions, we require more metrics that can be used to cap-

ture the internal code optimization characteristics. In our experiments, we used the

parallel information and cost model as two metrics for code analysis.

6.3.1 Parallel Information Analysis

Parallelization analysis can play an important role in code optimization. The com-

piler first examines the source code, and then analyses any possible data dependencies

that impede the parallelization. For each loop inside a subroutine, we rely on the

compiler to help us analyze whether it (1) is parallelizable, or (2) might be paral-

lelizable, or (3) is not parallelizable. Like the code sequence extraction we conducted

before, we encode loop parallelization information into a flattened sequence. Based

on the parallelization characteristic of loops, we denote a loop that is parallelizable

with the letter “P”, a loop that might be parallelizable with the letter “M” and a

loop that is not parallelizable with the letter “N”. The length of the loop parallel

information sequence represents the number of loops of a subroutine.

A cost model is a model that is used to evaluate the possible computing workload
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Figure 6.6: Syntactic, parallel information and cost model similarities for the NPB
benchmarks

and performance outcomes for possible combinations (search space) and select the

best overall transformations. It is used to help the compiler select optimal choices

about loop transformations (loop permutation, outer unrolling factor, tiling size,

fission, and fusion) that cannot be made individually. After the parallelization anal-

ysis, OpenUH applies cost model analysis for each possible parallelizable loop for a

performance estimation, an optimized solution will finally be selected and applied

for the code optimization. Using the OpenUH cost model, we are able to calculate

a value to estimate the computing workload. By comparing the cost value of two

subroutines using MIN{cost value a/cost value b, cost value b/cost value a}, we are

able to get a score which can serve as an indicator to evaluate the workload similarity

of a pair of subroutines.

Figure 6.6 lists the syntactic similarity, parallel information similarity, and cost

model similarity for the different subroutines of the NAS NPB benchmarks. Next,

we will explore new methods to find the relationships among the different similarity

metrics. These methods include probabilistic and transductive models, k-means, and

Euclidean distances.
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6.3.2 Similarities Comparison at Different Compiler Lower-

ing Phases

Figure 6.7: Similarity between three procedures in BT as they are translated by the
compiler

Subroutines lhsx, lhsy, and lhsz inside the NAS BT benchmark, are siblings in the

family distance tree because they have a high degree of similarity. However, these

syntactically similar solvers might not perform the same way when translated by

the compiler, since they perform calculations on different dimensions of various data

structures. We used our similarity analysis to track down how these three solvers

were translated and optimized within the OpenUH compiler. Some of their syntactic

similarity was lost as the compiler used different strategies to exploit data locality,

pre-fetching, and loop optimizations (fusion, unrolling). What we notice is that

procedures lhsx and lhsy maintain a high degree of similarity throughout the compiler

translation. Before the code translation, they have 94% syntactically similarity. After
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the code translation, they only have 90% similar score. We learn that the compiler

applied a similar strategy to them. Figure 6.7 shows how their similarity is affected by

the compiler translation. The compiler is optimizing the codes similarly because the

cost of the data accesses in x and y still remain close enough. When we execute these

two solvers, they have a performance ratio of 93%, indicating that their performance

characteristics are close to each other. We can advise the user to apply a similar code

transformation strategy to these two procedures when optimizing for this platform

and compiler. In contrast, when we compare these routines with lhsz, we discover

that the syntactic similarity of the code is lost during the translation and in its

performance. A different strategy is needed when optimizing the procedure lhsz.
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Chapter 7

Combined Approach to Detect

Similarity in Porting

In this chapter, we evaluate Klonos by applying it to a real scientific application

porting to a shared memory environment using OpenMP. We adapt cost-model-

provided metrics to capture code similarity in terms of optimization or porting, which

saves the trouble of running the application for profiling information collection. For

GenIDLEST application, we used the cost-model-based similarity analysis together

with syntactic similarity, which could very accurately find similar subroutines to

which we can apply similar optimization strategies. According to our experimen-

tal result, Klonos is very accurate in detecting similar codes which can be ported

similarly.
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7.1 GenIDLEST Similarity Analysis

For better evaluation, we have applied the “Klonos” tool to a real application called

GenIDLEST. GenIDLEST is a Fortran program that simulates transitional and tur-

bulent flows in complex geometries [81]. This application features both shared mem-

ory (OpenMP) and distributed memory (MPI) parallelism, which leads to a high

degree of portability between computer architectures. This application is thus ideal

for the porting planning strategy verification that we propose to perform with the

Klonos tool. First, we use Klonos to analyze the serial version of GenIDLEST,

and then generate a porting plan for a parallel version of the code using OpenMP.

By referring to the optimized GenIDLEST OpenMP code, we are able to verify the

accuracy of the proposed OpenMP porting plan with Klonos.

Figure 7.1: The subroutine similarities of the GenIDLEST application

GenIDLEST has a total of 264 subroutines. Before we perform the syntactic
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similarity analysis, we pre-process the generated sequence pattern files by exclud-

ing subroutines with only one function invocation inside them, since those files only

contribute noise through many highly syntactically similar pairs. After the pre-

processing steps, we generate a similarity square matrix by comparing each pair

of subroutine sequences until all the subroutines have been consumed. Figure 7.1

shows the 3D visualization of GenIDLEST subroutines. It lists the overall similari-

ties among all the subroutines. Axes X and Y are subroutines, the Z axis represents

the similarity score for each pair of subroutines. The node map legend shows the

level of similarity. Red means high similarity and blue means low, or no, similarity.

The diagonal shows subroutine self-similarity. Figure 7.2 is a circular family distance

tree with height of 31. It shows the overall relationship of syntactic similarity for

GenIDLEST subroutines after pre-processing. The family distance tree lists simi-

larity relationship of 254 subroutines, which the total number of subroutines after

preprocessing that excludes subroutines with only one function call inside.

Table 7.1 summarizes the statistics of the similarities of subroutines after pre-

processing. GenIDLEST has 1327 subroutine pairs that maintain syntactic similarity

of greater than 50%, which means a majority of subroutines look similar structurally.

7.1.1 Syntactic Cluster Analysis

Figure 7.3 shows the relationship of the number of correct porting similar subroutine

pairs with setting different number of clusters based on code syntactic similarity. In
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Figure 7.2: The overall family distance tree for GenIDLEST

Figure 7.3(a), we can the see the number of similar subroutine pairs using similar

porting directives decreases gradually as the syntactic based cluster number increases.

Figure 7.3(b) shows the ratio of similar subroutine pairs using similar porting direc-

tives over the total number of similar subroutine pairs from the “syntactic cluster”.

As we can see, the ratio is less than 40%, which means the porting accuracy is very

low by only using cost-model-provided metrics for porting clustering.

To further divide hierarchical clustering into fine-grained syntactic groups, we

propose three methods to cluster the tree, based on: a) the user inputs the tree
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Table 7.1: GenIDLEST subroutines similarity statistics

Similarity Range Number of subroutine pairs

Similarity > 90 47
Similarity > 80 43
Similarity > 70 44
Similarity > 60 208
Similarity > 50 985
Similarity < 50 30804
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Figure 7.3: Syntactic-based cluster for GenIDLEST application

depth value, which is used to divide the tree. b) a similarity distance value serves as

a threshold to divide the tree: if the distance between current the node and its parent

is greater than the distance threshold, then the current node and its descendants

will be separated into a subtree. c) a combination of the first two methods; this

combination method clusters the tree based on user input of tree depth and similarity

distance. Our goal is to find a cluster number that is able to put syntactically similar

subroutine pairs into groups as much as possible while maintaining a moderate group

size. Based on previous empirical experience, a syntactic value of 50% is a suitable

threshold [31], so in our experiment we use that threshold value and the input depth

of the tree for clustering.
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7.2 Cost-model Metrics Similarity Analysis
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Figure 7.4: Cost-model metrics-based cluster analysis for GenIDLEST
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Figure 7.5: Cost-model metric-based “Good-ratios” diagram for GenIDLEST

The cost-model metrics used are estimated number of iterations, suggested par-

allelization, loop parallelizable attribute, loop vectorizable attribute, loop vectorized

number, loop align peeled, work estimate, and loop depth. These metrics are key

factors used in the cost model of OpenUH for optimization strategy selection and

performance prediction, which can accurately capture the internal code optimiza-

tion characteristics. To better understand the relationship between those metrics
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and similar optimization or porting strategy, we only used the cost-model metrics

to cluster subroutines and then check the number of subroutine pairs which use the

same optimization directives or strategies. Figure 7.4(a) depicts the relationship be-

tween the number of subroutine pairs that use similar directives and the number of

clusters, which is set manually based on the cost-model metrics. When manually

setting the number of clusters based on the cost-model metrics, we can see the num-

ber of subroutine pairs using similar directive strategies decreases gradually until it

reaches a constant. Figure 7.4(b) shows the ratio of subroutine pairs using a similar

porting strategy over the total number of subroutine pairs that have been clustered

with respect to different numbers of clusters. According to this result, we find that

relying purely on cost-model-provided metrics for clustering subroutines results in

low accuracy (below 46%) for detecting subroutine pairs that can be ported or op-

timized in the same way. To obtain a reasonable number of clusters for cost-model

metrics, we define and use a “good ratio” to set the number of clusters. “good ra-

tio” is a percentage score of the number of subroutine pairs with syntactic similarity

greater than 50% over the total number of subroutine pairs in the clusters. We

select a cluster number with the highest “good ratio” to make structurally similar

subroutines aggregated as much as possible for similar porting experience reuse.

In Figure 7.5, the Y-axis is the percentage of the number of subroutine pairs with

syntactic similarity greater than 50% over the total number of subroutine pairs in the

clusters. We use the term “good ratio” to define this percentage score in the next text.

The x-axis is the number of clusters manually set for clustering subroutines based on

cost-model metrics In this diagram, we can see that the “good ratio” is around 16%
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when the number of clusters is set to 8 and 41 respectively. When setting up the

number of cluster based on cost-model-provided metrics, we want choose a cluster

number which could result in “good ratio” while maintaining a moderate group size

to void a scenario of generating too many combined clusters. Considering this, we

set the number of cluster for cost-model metrics to 8 in our experiment.

7.3 Combination of Syntactic and Cost-model-based

Clusters

Relying solely on either syntactic or cost-model-provided metrics results in low ac-

curacy when detecting similar subroutine pairs that could be optimized or ported

similarly. By merging these two metrics we can greatly increase the accuracy of the

process of detecting subroutine pairs to be ported in the same way.

In Section 7.2, we found that we can get a “good ratio” by setting cost-model-

provided cluster number to 8. To discover the relationship between those two clusters,

we tried different combinations of numbers of clusters for the syntactic and cost-

model-based clusters. To control the size of combined clusters, we set cost-model-

provided clusters from 1 to 9 in the relationship of syntactic and cost-model cluster

analysis. Our goal is to accurately aggregate similar subroutines into groups as much

as possible, which provides the opportunity to find subroutines that can be optimized

in the same way. In Figure 7.6, the X-axis is the ratio of the number of subroutine

pairs with syntactic similarity more than 50% over the total number of subroutine
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pairs based on current combined clustering methods. The Y-axis is the number

of clusters obtained by using different distance values from 0 to 100. Inside each

cluster, we vary the number of clusters based on the cost-model metrics, resulting in

the “heart-beat” shape diagram. We observe that the ratio reaches a peak in this

diagram when setting the cost-model metrics-based cluster to 8, which is exactly

the number of cluster we can get peak “good ratio” value in our cost-model metrics

analysis described in section 7.2.
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Figure 7.6: Combined syntax and cost-model metric clusters for GenIDLEST

7.4 Improved Verification Methodology

To increase the accuracy of testing the suggested plan for porting, our improved

methodology focuses on the syntax of OpenMP directive comparison directly. We
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add functions into the phase of code sequence extraction to extract the OpenMP

directives to see if a subroutine pair is ported in the same way by checking the

ported versions (described in section 4.2). If any OpenMP directive is detected in

a subroutine, a separate “.opt” file will be generated; this is used to record a loop

position index from its corresponding subroutine code sequence and optimization

sequences by encoding OpenMP directives into sequences according to the code map

defined in table 7.2.

Table 7.2: OpenMP Directive Encoding Code Map

Directives Character Map

$!OMP PARALLEL P
$!OMP DO D
$!OMP PARALLEL DO PD

Assume we have subroutines A and B in a combined cluster group. There are

three cases that can be classified when comparing their similar optimization or port-

ing strategy: 1) Neither A nor B have corresponding “.opt” files. We treat A and

B in the same way, meaning neither of them could be optimized. 2) Only one of

A and B has a “.opt” file, which means one was optimized and the other was not.

Therefore A and B do not count as similar for optimization and do not use similar

directives for porting. 3) Both A and B have “.opt” files. In this case, we perform

code sequence alignments first. We are able to see which loops have been aligned by

referring the loop index obtained from a code sequence back to the corresponding

“.opt” file. For aligned loops, we check the OpenMP encoded directive sequences

directly to check if two similar subroutines can have similar optimization directives

applied to them for porting purpose.
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7.5 Porting Strategy Verification

Based on analysis of clustering using syntactic and cost-model metrics listed in Fig-

ures 7.3 and 7.4, we found that either using syntactic distance or cost-model metrics

alone as a clustering method will results in inaccurate clustering for the purposes of

porting planning. Our goal is to minimize the number of clusters while at the same

time to make sure accuracy for clustering similar subroutines using similar porting

directives. Figure 7.6 shows that we can have maximum similar pairs ratios for sub-

routine pairs fall into the same syntactic and cost-model metrics-based clustering. So

we set up the number of clusters based on cost-model metrics (or for short, cost-model

cluster) to 8 in our experiment and then make a comparison of the accuracy of port-

ing. By setting distance value to 50 and depth to 5 based on the shape of the tree, we

are then able to divide the tree into 9 clusters for syntactic clustering. By merging

the syntactic and cost-model metrics-based clustering, we divide the 254 subrou-

tines into 25 groups. Subroutines within each group fall into the same syntactic and

cost-model cluster. After combining syntactic and cost-model metric-based clusters

or combined clusters, the next step is verifying the correctness of similar directives

used for subroutines falling into combined clusters. The ratio of all subroutine pairs

using similar optimization reaches 49.51% in our experiment. Figure 7.7(a) shows

the relationship of similar optimization ratio over the 254 subroutines with respect

to the syntactic similarity for subroutine pairs which fall into the same syntactic

and cost-model cluster, when setting the cost-model metrics-based cluster number

to 8. As the figure shows, the correctness of using similar directives for parallelizing

the code is almost 80% for subroutine pairs which fall into the same syntactic and
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cost-model cluster with syntactic similarity greater than 50%. Figure 7.7(b) shows

the number of pairs using a similar porting strategy in detail.
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Figure 7.7: Verification of GenIDLEST porting planning analysis

Higher syntactic similarity will result in using a similar directive-based paralleliza-

tion strategy for subroutine pairs with the same syntactic and code feature cluster.

This result proves that our similarity based methodology is very effective and accu-

rate in detecting similar subroutines which could use similar porting or optimization

strategies. Cost-model-based metrics are accurate for capturing code similarity in

terms of optimization or porting, which saves the trouble of running applications to

collect profiling information.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

One novelty of our methodology is that our “similarity” is based on key program con-

structs derived from the program abstract syntax tree (AST), consisting of operators

and data, which have an impact on the porting strategy beyond pure simple textual

comparison of the code. The methodology is based on a hypothesis that we can port

and tune similar subroutines of an application in a similar way while maintaining

a good porting quality and improving programmer’s productivity. In this disserta-

tion, we show this hypothesis is generally true and verify this hypothesis by using

NAS benchmarks and a real scientific application. Also, we extended the notion of

similarity to other metrics than pure syntactic language constructs. We show that

subroutines in scientific applications tend to be similar to each other syntactically

due to practices used in the scientific community, such as reoccurring implementation
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choices and code replication used for multi-versioning, and as a result of incremen-

tally adapting codes to new platforms. In fact, we found out that when we view each

subroutine as a bio-inspired DNA-like sequence, we are able to construct and define

relationships among the sequences using bio-informatic techniques. For example, this

allows us to build a “family distance tree” among the groups of subroutines based

on their similarity. However, adaptation to traditional sequence alignment methods

are needed, such as defining new scoring parameters and substitution matrices (i.e.

replacing BLOSUM80, with observed software trends) suitable for software porting

purposes. The tree provides valuable structural information that allows us to deter-

mine the porting order at the group level based on similarity and their distances. To

the best of our knowledge, we are the first to explore this bio-inspired view of the

source code. This is the second novelty of the work presented in this dissertation.

The similarity-based methodology is quite powerful. In this dissertation, we

demonstrate how this methodology can be used not only for detecting similar code

but as well as a “debugger” for newly ported codes. If we detect dissimilarities

in the ported code of similar routines, this may indicate that some optimizations

were missed by the user. We will then be able to check if it is simply due to an

error or some other factors. Methodologically, we expect to see high similarity in

ported subroutines of the same group. Other potential applications of the proposed

methodology include allowing typical programmers to benefit from prior successful

porting experiences of the heroic programmers, and allowing them to focus on critical

areas of the code. The shape of the tree can also serve as an indicator of how difficult

the porting process might be, and the diversity of the code involved in the application,
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which could help to quantify the process in terms of resources.

In summary, the main contribution of this thesis is a bio-inspired similarity-

based methodology for the planning support of scientific applications. The innova-

tive aspects of the methodology are: (1) the similarity-based analysis for similar code

porting that can lead to productive porting, (2) the casting of source code into DNA-

like sequences for powerful similarity comparison, and (3) cost-model provided code

feature information metrics are useful for detecting similar optimization or porting

strategy and save the trouble of running applications. We also identify the advantages

and limitations of this similarity analysis. To validate our similar porting strategy

and evaluate the feasibility of the methodology, we implemented a software tool and

used it for the entire National Aeronautics and Space (NSA) parallel benchmark suite

(i.e., version 3.3 with 10 computational fluid dynamics (CFD) mini-applications). In

order to test the scalability and adaptability of our methodology, we have also applied

our tool to a real application called High-Order Multiscale Modelling Environment

(HOMME) climate application which contains more than 700 subroutines. Finally

we have validated Klonos by applying it to GenIDLEST, a real scientific application,

that was originally written as serial code and then parallelized for a shared memory

environment using OpenMP. By referring to the optimized OpenMP GenIDLEST

code, we discovered that the OpenMP directives proposed by Klonos are both accu-

rate and effective. This porting approach is quite easily extended to other directive

based approaches for code migration to different architectures (e.g. PGI, OpenACC,

and HMPP etc.). Future work will include exploring cost-models for porting code to

other accelerators. We will also use data mining techniques to create a framework
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which can automatically find combinations of syntactic and cost-model clusters to

increase porting accuracy.

8.2 Future Work

In the future, we will modify the front-end of the OpenUH compiler to make it able to

parse the OpenACC directives. Then we will apply the Klonos tool for code porting

to other accelerators for the heterogeneous programming environment. Future work

will include exploring cost-models for porting code to other accelerators. We will

also use data mining techniques to create a framework which can automatically find

combinations of syntactic and cost-model clusters to increase porting accuracy.

Also we are planning to build a database to store code sequences and its corre-

sponding optimization strategies. A website will be provided to users to submit their

code and search for similar optimization from the database, which could give users

guidance for their code optimization and porting.
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