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ABSTRACT

Two new properties are proven to be equivalent to the 

definition of quasi-continuous function. One of which is 

suitable for generalizing the definition to abstract spaces. 

Several properties of quasi-continuity in topological spaces 

are presented. Axioms are presented defining a refinement 

space in which several more properties of quasi-continuous 

functions are proven, and a Riemann type integral is defined 

in this space.
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INTRODUCTION

Many of the definitions by which we classify functions 

use properties inherent to the real numbers but absent even 

in the real plane. It is the prime purpose of this paper to 

extend the definitions of quasi-continuous functions and other 

related concepts to abstract topological spaces.

The real numbers provide a set of points in which the 

natural order is a total ordering of the space which agrees 

with the concept of limit point. Upon this rests the defini

tion of quasi-continuous functions. The equivalence of this 

class of functions to the collection of uniform limits of 

sequences of step functions provides an approach to general

ization. For example, a step function may be defined in the 

plane to be constant over the interiors of each of a finite 

number of rectangles covering the domain of the function, and 

assume arbitrary values at the boundaries of these rectangles. 

This definition, however, leads to a collection of '’undesir

able" functions. The property that each region has at most 

two boundary points is not true in the real plane. There 

are other ways that we may define step functions that prove 

to conform more closely to our conception of step functions 

in spaces other than the real numbers. We measure the suit

ability of an alternative definition by the properties which 

are preserved and by the number and importance of the spaces 

into which they fit. ‘
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Two important properties of the real numbers that are 

absent in the plane have been mentioned above. The space 

of real numbers with region meaning segment also has the 

properties that each region is connected, each bounded 

open, connected set is a region, each bounded set is com

pact and others that often arise but are only alluded to 

in proofs. It is upon these properties that we may generalize 

the concept of quasi - continuous functions and still main

tain most of the properties which we found useful and import

ant in the real numbers.

In this paper, we introduce a new property and prove 

its equivalence to the usual definition of quasi-continuous 

function. The new property uses the concept of connected set 

rather than "right" and "left", and thus is more suitable 

for generalization. In addition, we describe a space more 

general than the real numbers that preserves the properties 

necessary to define a Riemann type integral. In this setting 

we present many properties of quasi-continuous functions. 

This paper provides a rigorous support of our claim to a 

more general definition of quasi-continuous function. .
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. NOTATION

The following notation and terminology will be used 

throughout this paper. R will denote the set of real numbers.
n nR where n is a natural number, will denote the set z ® S. , 

i=l 1 
where S.=R for each l<i<n.

i ------
The statement that s is a segment means s is a bounded, 

open, connected subset of R. The statement that I is an 

interval means I is a bounded, connected subset of R. We 

use this definition rather than one which requires intervals 

to be non-degenerate and closed. The statement that r is a 

region in R means r is a segment.

If R={s^|xeA an indexing set} is a collection of sets 

then R* means the set {x|xes^ for some XeA}.

The statement that the point set M is compact in the 

topological space S means every infinite subset of M has a 

limit point in S.

The statement that the collection D is a subdivision 

of the point set M means D is finite, D* equals M, and if 

d and g are distinct elements of D, then d and g are disjoint.

The statement that the collection R is a refinement of 

the finite cover C of the point set M means R is a subdivision 

of M, and if r is an element of R and c is an element of C, 

then either r and c are disjoint or r C c.

In this paper, all functions will be considered to be 

real valued.
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If f is a function defined on the topological space S, 

then

1. D(f) denotes the collection of all points x 

in S such that f is discontinuous at x, and

2. if s is a segment, S(s,f) denotes the collection 

of components of {x|f(x)es}.

Note: If there is no such x with f(x) in s, 

then each of S(s,f) and {x|f(x)es} denotes 

the empty set. For convenience we consider 

the empty set to be both finite and connected 

throughout this paper.

Suppose f is a function defined on the topological space 

S. Let xeS, and X be the set so that ysX if and only if there 

is a sequence of points of S, x^, ... converging to

x such that f^x.), f(x7), f(x_), ... converges to y. Then the 

symbol w(x) denotes the least upper bound of X, w(x) denotes 

the greatest lower bound of X, and w (x) = aT(x) - w (x) . 

Note: If X is empty, then each of w(x) and uT(x) denotes 0.
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QUASI-CONTINUOUS FUNCTIONS IN R

We introduce a series of four equivalent statements 

in theorem 3.3, each of which could serve as a definition 

for quasi - continuity. With the assurance that we will not 

contradict the traditional definition, we may use any one 

of the statements as a definition in other spaces and inves

tigate its properties.

DEFINITION 3.1. The statement that the function f 

defined on the interval [m,v] in R is quasi-continuous at 

the point x in [u,v] means if x^, X2> x^, ... is a monotonic 

sequence of points of [m,v], converging to x, then

fCx^), f(x2), f(x3), ... converges. If f is quasi-continuous 

at each point x in then f is said to be quasi-continuous.

Lemma 3.2 introduces a property of the real numbers 

that we will use to prove Theorem 3.3.

LEMMA 3.2. If M is a bounded subset of R which has 

infinitely many distinct components {m^|XeA an indexing set}, 

then

(1) M  (the complement of M) has infinitely 

many components {n^jxer an indexing set}, 

and

c

(2) If x is a point and (x^|XeA, x^em^} has a

countable subset x^, x^, ... that converges

to x from the left (respectively right), then 

there exists a countable subset y^, y2> y^, ...
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of the set {/IyeT, that converges to

x from the left (respectively right).

Proof: Let x^, x2, x3, ... be a subset of {xx|XeA and 

x^emp. The sequence x^, X2> x3, ... has a limit point x 

since M is bounded, and a bounded subset of R is compact. 

Thus (without loss of generality (w.l.o.g.)) we may suppose 

that some subsequence x , x , x , ... converges to x from 
nl n2 3

the left where n^ is a natural number for each natural number 

i. Let z-£=xn ’ an<^ denote a segment (r^,x) so that z-^ is 

not an element of . Since x is a limit point of

xn , xn , xn , ... from the left, contains infinitely many 

points of the sequence, hence infinitely many components of M.

The set R^M is not connected so there is a point y-^ in Mc 

and in R1. Again since the sequence xn , x , x , ... con-
1 1 n2 n3

verges to x from the left, there is a Z2=xn ^or some natural 
j

number j so that y^<z2. If we let R2 be a region (r2>x) not

containing z2, we may in a similar manner construct the sequences

z^, z2, z^, ... and y^, y2, y^, ... with the properties that 

zi<yi<zi+l» for each natural number i. Since 

(zj_, Zj + ^) and (zj , Zj+j) are mutually separated if i/j, yj, 

and yj must be in different components of Mc, hence Mc has 

infinitely many components.

The sequence y-p y2, y3, ... converges to x from the 

left and the second part of the lemma is also established.

THEOREM 3.3. If f is a bounded function defined on the

interval [u,v] the following are equivalent:

(1) The function f is quasi-continuous.

(2) If b is a number, e>0, and pe[u,v], then 



there is a number a, b-e<a<b and a region 

R containing p such that S={x|xeR, f(x)>a} 

has only finitely many components.
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(3) The function f is the uniform limit of a

sequence of step functions, i.e. if e>0, 

there is a step function g such that if 

xe[u,v], then |f(x)-g(x)|<e.

(4) If I-£ and are segments in R and T-^C I2, 

then there is a finite subset R of S(l2»f) 

such that S* (11 , f) dR* .

Proof: (1) implies (2).

Suppose (1) is true and that (2) is not true. Let p 

be an element of the interval [u,v], and let b be a number 

and e>0 so that for each number a, b-E<a<b and each region 

R containing p, the set S^fxlxeR, f(x)>a} has infinitely 

many components. Let a^, a2> and a^ be numbers such that 

b-E<a^<a^<a-^<"b, R be a region containing p, and define

S^ = {x|xeR, f(x)>ajL) for l£i£3. Each has infinitely many 

distinct components {m^ jJxeA an indexing set}. There is 

a subset x^ 1, x. x^ -z, ... of the set {x. a|XeA, 

and x- , emi ■>} for l<i<3, such that Xi 1, x. x. . ..1, A x, A — — ±± x ,2. 1 >
converges to p. At least two of these have subsequences 

converging to p from the same side. We may suppose 

(w.l.o.g.) that they be sequences of points .in S^* and

S2* and that their subsequences yi}i> 2’ 3’ •••

and y2,l’ y2,2> y ... converge from the left.
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Since $2 has infinitely many components, by lemma 3.2 
c 

also has infinitely many components and a sequence

z^, Z2> Zj, ... of points of 82° converging from the left 

to p. Since for each natural number j, fCy^ j)>ai> an^ 

for each point z-, f(zi)<a7, the sequence y1 , y1 o, z7, . .

converges to p, but f(y1 1), ffz-), f(yi}2)> £(z2), ... does 

not converge, a contradiction.

(2) implies (1).

Suppose (2) is true, and pe[u,v]. Let x-^, X2, Xj, . .. 

be a sequence of points converging from the left to p. Then 

some subsequence of f(x^), f(x2), ffx^), ... converges since 

f is bounded. Let this sequential limit be y.

Let a and B be numbers so that B<y<a. It is only neces

sary to show that there is a point r such that if xe(r,p) 

then B<f(x)<a, since a similar argument may be used for 

sequences converging to p from the right.

There are numbers a’ and B’, and regions Ra and such 

that B<B’<y<a'<a, and the sets Sa = {x|xeRa, f(x)>a*}, 

and S^ = {xJxeR^, f(x)>B’} have only finitely many components, 

as does S A (C,p) and S^A (C,p) for each Ce [u,p] .

Let the finite collection of components of Sa<A (c,p) 

and Sbfj (c,p) be {A1, A2, Aj, *.. ., Ana) and 

{Bp B2, B3, ..., Bnb} respectively for ce[u,p], and 

natural numbers na and nb. Let raeA^ be the right endpoint 
na of the set ( A^) . Suppose (by way of contradiction 

(b.w.o.c.)) ra=p. Since f(x^), f(x2), f(x3), ... converges
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to y, there is an such that f(x^)<a’> which is a 

contradiction, and thus ra/p.
nb 

Let r^EB- be the right endpoint of the set (
J i = l

Suppose (b.w.o.c.) that r^/p. There is an not in

B. such that f(X|)>B’, a contradiction and r^=p.

Let r be a point in Ra and such that r is in Bj, 

and r>ra. If xe(r,p), then x is not in Sa but is in S^, 

and we get g<g '_<f (x)<a' <a, and f is quasi-continuous at p.

(1) implies (3).

Suppose (1) is true. At each point pe [u,v] either f

is continuous or discontinuous. Let pe[u,v], and e>0.

Case 1. If f is continuous at p, then there is a segment

Sp containing p such that if xeSp, then f(x)e(f(p)-e/2,f(p)+e/2). 

Case 2. If f is discontinuous at p, then by (1), there is 

a number y^ such that if r-^, r£, r^, . .. converges to p 

from the right, then f(r-^), fC^), ffrj), . .. converges to 

y^. Thus there is a segment Spj?L=(p,bp) for some number bp 

such that if xes„ h then f(x)e(yh-e/2, y +e/2). SimilarlyP >/L 7L

there exists a "number y^ that is the limit of function 

values of points converging to p from the left, and a

covering the closed, compact

segment Sp ^=(ap,p) for some 

then f(x)e(y^-E/2, y^+s/2)..

We have a collection of

finite subcollection of S, Sp^, Sp2, spj> •••> spn where 

pj, P2> Pj, ..., pn are points of [u,v] and n is a natural

number ap such that if xeSp 

Let Sp=(ap,bp).

open sets S={Sp|ps[u,v]} 

set [u,v], thus there is a
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t2>

for

for some k if f is continuous at

in a more general setting.

-number, covering Let t^,

collection of segments such that

t3’ '* 1’ tm be a 

each l<i<n, s^^t.----- Pi k
and (api,pi)=tj,

j and h if f is

Pi> 

(p^,bp^)=tj1 for some natural numbers 

discontinuous at p^. There is a collection of segments 

{u-p U2, Uj, .uv) such that u^ and u^ are disjoint 

whenever i/j, (J u.: = [k,v], and if l<i<v, u; CLt • for some 
i=l J

natural number j<m. This statement will be proven later

Associate with each segment u^, l^_i£V a point z^eu^.

Let f£ denote the step function defined over the collection 

of segments U={u-p U2> Uj, .uy} so that if xeu^, then 

fe(x)=f(z. If x is a boundary point of some element of - 

U, then f (x)=f(x). Since for each i, l<i<v, u^dt- for 

some natural number j, if xeu^, | f (x)-f e (x) | = | f (x)-f (z j,) | <_e, 

and f is the uniform limit of a sequence of step functions.

(3) implies (4).

Suppose (3) is true. Let fp f2» fj, ... be a 

sequence of step functions such that for each xe[u,v], and 

natural number i, |f^(x)-f(x)|< 1/i. Let each of and 

12 be segments so that > and d(I;pl2)=e. Let n

denote a natural number such that 1/n < e/2. Let

D=(dp d2, d^, ..., dm} be the collection of intervals of 

the defining subdivision of the step function fn, and 

x^, X2» X3, ..., xm be a sequence of real numbers such 

that if l<i<m, then fn(x)=x^ whenever xed^.
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Let Ij be denoted by (c,d), and D’={dni, dn2> dn3> .dn } 

where nj, n2> Hj, .nj are natural numbers less than or 

equal to m, be a subcollection of D so that d-eD’ whenever
j 1

xie(c-e/2,d+E/2) . Thus S* (I x, f) C (J dn. OS* (12 , f) .
i = l 1

Since the elements of SC^^f) are components of 

S*(l2»f), and since each element of D is connected, there 

is a single element of S(l2>f) containing dn^ for each n^, 

l_<i£j, thus there is a finite collection of elements of 

S(l2,f) that contains all of the points of S*(I^,f).

(4) implies (1).

Suppose (b.w.o.c.) f is not quasi-continuous at the 

point p. Then (w.l.o.g.) we may suppose that there are 

sequences x^, X2, xj, . .. and y-^, y2> ys, . . . both converging 

to p from the left with f(x^), f(x2), f(xj), ... converging 

to zx, and f(yi), fCy2)> ft/s), ••• converging to zy, zy/zx. 

Let e=|zx-z^|.

Let Ii=(zx- e/4, zx+ e/4), and l2=(zx" zx+ e/3)• 

By property (4), there exists a finite collection 

T={t^, t2» tj, ... t } of elements of S(l2,f) such that 

S*(I■£, f) c T*. Suppose tj is the right most element of T 

that is to the left or contains p, and suppose (b.w.o.c.)

that p/tj. Since x^, X2, xj,

left, and ffx^), f(x2), f(xj)

... converges to p from the

... converges to zx, there

is a natural number k such that x^/tj and x^eS*(I^,f), a 

contradiction since S*(I,f) C. T*. Thus tj contains p. 

Since y^, y2> converges to p from the left, there

is a natural number i such that if k>i. Since
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fCy-]^), f(72)> f(ys)> ••• converges to z /S*(I2»f), there 

is a y^, h>i so that y^/S*,f). But each element of tj 

is in and y^etj. This is a contradiction and

(4) implies (1).

This theorem provides several alternatives for general

ization. We intend to show that property (4) provides the 

better definition. Consider the following examples. 

Example 1: Let f be a function defined over the real plane, 

such that f(x,y)=0 if x<0, f(x,y)=l if x>0. When x=0 

then f(x,y)= 3/2 if y is rational and 0 otherwise. 

Example 2: This example is the same as example 1 reflected 

through the x-y plane. Let f be a function defined over 

such that f(x,y)=0 if x<0, and f(x,y) = -l if x>0. When x=0, . 

then f(x,y)=-3/2 if y is rational and 0 otherwise. 

Example 3: The set of rational numbers Q. is countable, 

thus we may order them such that .2={r^, r^, r^, ...}. 

Let f be defined over R^ such that f(x,y)= 0 if x<0, f(x,y)=l 

if x>0, f(0,y)=l/i if y=r^ for some natural number i, and 

0 otherwise.

Example 3 has both property (2) and (4) of theorem 3.3. 

Examples 1 and 2 both fail to have property (4). The first 

two examples differ only slightly in definition and do not 

appear to have changed any basic properties from one def

inition to the other, but example 2 has property (2) while 

example 1 does not. Furthermore, property (2) is "one

sided" and a similar property could be defined with respect 

to the set {x|f(x)<b}. This property would hold for example 1, 
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thus we suspect there is a basic deficiency in property (2) 

as a definition for quasi-continuous functions.
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PROPERTIES OF QUASI- CONTINUOUS FUNCTIONS 
IN ABSTRACT SPACES

Theorem 3.3 assures us that property (4) may be used 

as a definition of quasi-continuous functions without risk 

of contradicting bur previous definitions.

DEFINITION 4.1. The statement that the function f 

defined on the topological space S is quasi-continuous 

means f is bounded, and whenever I^ and I2 are segments 

such that c then there is a finite subset R of 

S(I2,f) so that S*(I1,f) CR*.

DEFINITION 4.2. The statement that the function f 

defined on the topological space S is a step function 

means there is a subdivision of connected sets of 5, 

C = {c-£, c2, C5, . .., cnJ and a finite collection of real 

numbers x^, . .., xn such that if l£i^n and xeCp

then f(x)=x^.-

The following theorems and propositions will elucidate 

some of the properties of quasi-continuous functions over 

spaces other than the real numbers.

THEOREM 4.3. If f is a function defined on the topologi

cal space S, and f is the uniform limit of a sequence of 

step functions, then f is quasi-continuous.

The proof of this theorem is similar to the proof that 

(3) implies (4) of theorem 3.3, and will not be repeated 

here.
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THEOREM 4.4. If f is a quasi'-continuous function 

defined on the topological space S, there exists a countable 

collection of connected sets C such that each point of D(f) 

is a boundary point of some element of C.

Proof: Since f is quasi - continuous, f is bounded.

Suppose f is bounded above by v and below by u.

Let £>0, and Me = {x| to (x) >_e}. Let 1^, I2, I3, ... In

be a finite collection of segments covering [u,v] > such

that

a

if Ii=(a-,b.), then |a.-b.|<e/2. Let xeM . There 
3 3 3 '33 e

natural number j such that f(x)el-. Let I•1 be a j j j

segment such that Tj C Ij*? and d(Ij,Ij1)<e/2. There

is a finite collection of connected sets C- of S(I-',f) 

such that if y is in

C. . Suppose xeM .J >e E
x contains a point y

S(Ij,f), then y is 

Since o)(x)>_e, any 

such that f(y)/IjT

in some element of 

region containing 

and hence y is not

in any element of Cj £.. Thus x is a boundary point of some 

element of the finite collection C-J >b
The collection of sets Mt, Mi , M^, ... contains all1 'A

of the points of D(f). Thus if X£D(f), then x is a boundary

point of some element of the countable collection of 

connected sets {c^ j e|c^ j,e£Cj)e for i and j natural 

numbers and e£(l, ...} }.

COROLLARY 4.5. If f is a quasi-continuous function in 

R defined over the interval [u,v], then the set D(f) is 

countable.
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Proof: In R each connected set has at most two boundary 

points. The corollary trivially follows.

CONJECTURE 4.6. The space of step functions with the 

usual definition of addition and scalar multiplication is 

a linear space.

Counterexample. Consider the following two step functions 

in Define f^(x,y)=l if x•sin(1/x)-y=0, and 0 otherwise. 

Define f2(x,y)= -1 if y=0 and 0 otherwise. Then f-£+f2 is 

not a step function.

CONJECTURE 4.7. Every continuous function is quasi- 

continuous.

Counterexample. Let S be the space of real numbers 

where the statement that s is a region means s is a segment 

or s is the point set R={1U [0,1/2]U[3/4,7/8] U ...}. Let 

f be defined such that f(x)=l if xeR, and 0 otherwise. First 

note that f is not quasi-continuous. The following shows 

that f is continuous. If xe[0,l] such that x/R, then f(x)=0. 

For 0<e<l let (-e,e) be an interval containing f(x) The set 

R is closed and there exists a region r such that xsr and 

r does not intersect R. Thus if yer, f(y)E(-E,E), and f 

is continuous at x. If xeR and I is a segment containing 1, 

then if yeR, f(y)El, and f is continuous at x.

The above counterexamples serve to point out two of 

the properties which appear to be basic to the concept of 

quasi-continuity if we are to provide any meaningful 

generalization. First, the difference of two regions is 

at most finitely many regions, and each region is connected.
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These properties are also basic to Riemann integration. It 

is desirable therefore to impose certain restrictions on the 

topological spaces in which we work, to guarantee that we 

have the above mentioned properties.
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REFINEMENT SPACES

We intend to define a Riemann-type integral in the 

spaces for which we define quasi-continuous functions, 

thus we require a space which will allow us to construct 

subdivisions and refinements of connected sets. We borrow 

and modify the concept of a a-ring for this purpose.

DEFINITION 5.1. The statement that the collection of 

sets R is a partial ring means the empty set is in fl, and 

if r-p r2> r^, ..., rn are elements of R, there exists 

tf, t2> t^, •••» tm elements of R for some natural number m 
n m

such that ( \J rjc = ( \J t-) , and t^ and t- are disjoint if i/j . 
i=l i=l 1 J

DEFINITION 5.2. The statement that the ordered triple

(S, R, M) is a refinement space means the following axioms

are satisfied.

Axiom 1. The space S is a Moore I3 space, i.e.

a. Every region is a point set.

b. 1) For each natural number n, Gn is

a collection of regions covering S.

2) For each natural number n, Gn C Gn+j.

3) If a and b are points of the open set

M, then there exists a natural number 

n such that if gEGn and aeg, then b^g 

and g C M.
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Axiom 2. The collection of sets R satisfies the following.

a. If teR, then r is connected.

b. The collection R is a partial ring.

c. If s is a region in S containing the point 

x, then there is an open set re/?, xer 

such that res.

Axiom 3. The function M is a non-negative set function 

defined on the elements of R such that if a 

and b are disjoint elements of R, then 

A/(aU b) =Af(a)+Af (b) .

Note that because R is a partial ring the following are 

true in the refinement space (S, 7?, M) .

If a-^, a2> a^, . .., an are elements of R, then there 

exists elements t^> t2> ..., tm of R such that

(aiD a 2 H a3 C\ . . . Oan)c = t1ut2Ut3U...l/tm.

If b^, b2> b^, ..., bp are elements of R then there 

exists a finite collection of elements s^, S2, s3, ..., s^ 

of R such that s^ and s^ are disjoint if i/j, and

(a-^/T a2<1> a3D . . .A an) - (b^U b2 U b3 \J . . . Jbp)

= ((ag^n a2<l a3n . . . H an) C u (blb/b2u b3(J . . . i7bp))c

= t2 L7t3 U - - * UtmUb1(Jb2lJ b3 U • • • Ubp))C

= (siU s2l7 s3 u . . . (Jsq)

LEMMA 5.3. If C is a finite collection of refinement 

elements covering the refinement space (S, R, M") , then 

there is a subdivision D of S of refinement elements so that 

if deD, then for each c in C, c and d are disjoint or d C c.
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Proof. Let d^, d^, d^, .dn be refinement elements 

covering the space S. Let A be the collection of all 

subcollections of {d1, do, dx, .d }. For 1 2 n
a = {d , d d d }eA, let ba= (fl dt | di ea) - ( U d . | d-/a) .

I ta O J V

Since by the note above, b& is the union of finitely 

many disjoint refinement elements for each aeA, and since 

A is finite, it.is sufficient to show that if a and c are 

distinct elements of A, then ba and bc are disjoint, and that 

(Uba|aEA) covers S.

Let xeS. Then there exists asA such that for the

natural numbers jv j?, j_, ..., j , a={d- , d- , d- , ..., dj }, -L O 111 J J Z J v in
and XEdj^ for l£i<m, but if d^/a, then x^d^. Thus

xe (fl d^ | dasa) and x/(Udj|dj^a) hence xsba. Thus {ba|asA} 

covers S.

In order to prove that for a and c elements of A, 

b and b are disjoint, suppose xsbai and xeba„ where a-i a c • . dl 2 -1
and a£ are distinct elements of A. Then there exists (w.l.o.g.)

d.Ea 1 but d-^a? since a^a-.il ip 2 1' 2
then x/b„ , hence 

al
pair a-^ and a£ of

b„ and bfl^
al a2

elements of

If xsd- then x/b . If x/d.
1 a2 1

are disjoint for each distinct

A.

Furthermore, if d is an element of the cover, then for acA,

either b and d are disjoint or bo C d, and the proof of the a a — r
lemma is complete.

CORROLARY 5.4. If R^ and R2 are subdivisions of S 

composed of refinement elements, then there exists a 
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subdivision R of S, composed of refinement elements, that 

is a common refinement of Rd and R .
1 2

Proof. is a cover s hence by the previous

lemma there exists a subdivision R which is a refinement 

of both R^ and R£ and is composed of refinement elements.

The following example demonstrates that such spaces 

do exist and are more general in nature then R.

Example 4: Let S be a rectangular subspace of the real 

plane with sides parallel to the axes. If R is defined 

to be the empty set plus the set of rectangles with sides 

parallel to the axes, or line segments parallel to one or 

the other axes or single points, and M to be the area in 

the ordinary sense, clearly (S,2?,Af) is a refinement space.

More complex refinement spaces may be defined which 

lead to better generalizations of quasi-continuous functions 

and it follows by induction that Rn with an appropriate 

collection of connected sets and an appropriate set function 

is a refinement space.

DEFINITION 5.5. The statement that the function f 

defined on the refinement space (S,/?,/i2) is quasi-continuous 

means if 1^ and 12 are segments such that C then 

there is a finite collection of refinement elements R such 

that S*(I ,f) C R* CS*(I ,f).

DEFINITION 5.6. The statement that the function f 

defined on the refinement space (S}Ris a step function 

means there is a subdivision D=(d^, d2, dj, ..., dn) of 

refinement elements and a finite sequence of real numbers 

x.p X2, Xj, . .., xn such that if xed^, then f(x)=x^.
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It is easily seen that in R, definition 5.5 is 

equivalent to definition 4.1, and in refinement spaces, 

the proofs of theorems 4.3 and 4.4 are valid, using 

definition 5.5. Let Theorems 4.3* and 4.4* denote the 

theorems analogous to theorems 4.3 and 4.4.

The following theorems are a series of properties 

about quasi - continuous functions in refinement spaces.

THEOREM 5.7. A function f defined on the refine

ment space is quasi - continuous if and only if it 

is the uniform limit of a sequence of step functions.

Proof. The uniform limit of a sequence of step 

functions is quasi - continuous is true by theorem 4.3'.

Thus it remains only to be shown that if f is quasi- 

continuous then f is the uniform limit of a sequence of 

step functions. Let e>0. Let [w,v] denote an interval 

containing the range of f. We may cover [w,v] with 

segments s^, Sz, s^, ..., sn such that the length of each

s^<e/2. For each s^, l<^i<^n, there is a segment s^ so that

Si s^ and d(s^,sp<E/2, and there is a finite collection

of refinement elements such that S (s^ , f) * CR* CS (sp f) * .

The collection R = {R^, Rz? Rj, •••> covers s, so

there is a subdivision D = {d^, d , d„ 2’ 3
..., dm} that

covers S and is a refinement of R. Define f so that for e
each xsd., there is an R-eR such that d. C R* xeR?. Let 

i J i - j J
k be the least integer for which xeR£ £ R* and fe(x)=c^

where sk=(ck,bk).

Now if xed^ and yed^, d^sD, then f£(x)=fe(y) and f£

is a step function. If xsd^ and fe(x)=c_, xeR., so
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|f(x)-f (x)| = |f(x)-c.|<e.

J
a sequence of step functions

Thus f is the uniform limit of

PROPOSITION 5.8 . The space of step functions over a 

refinement space (S,2?,^) is linear.

Proof: Clearly if f is a step function and a is a 

scalar, then af is a step function. Let f and f7 be step 

functions. Let R1, {x , x7, xx, ..., x } and R„ 

{/l? y2» 73> •••> ym^ be the defining subdivisions and 

sequences of f1 and f respectively. Let R={r , r7, r , ...,r } 

be a common refinement of R-^ and R2. For each r^eR there is 

exactly one sj eR^ and tj<ER2 such that r^ C Sj and r^ C. t^. 

Thus if x r^ define f(x)=Xj+y^, and f(x) is a step function. 

Furthermore, f (x) =Xj+y^.=f(x)+f(x) . The other properties 

of linear spaces are trivially true since f is real valued.

PROPOSITION 5.9. If f is a continuous function defined

compact, let

x, X2, x3, ..., Xn points

Let R-p R2, Rj, •••> Rn 

refining S'. If yeRj SXjL 

then let f£(y)=f (Xj^) .

over the compact refinement space , then f is quasi- 

continuous.

Proof: Let f be a continuous function defined over

the compact refinement space and let e>0. The 

space S is closed. At each point x in S there exists a 

region R^ such that if yeRx, then |f(y)-f(x)|<e/2. There 

exists an open refinement element Sx containing x such that

SY C R . Since S is closed andx — x
S'={S , S , S , ..., S } for x

1 a2 * x3 n
of S, be a finite subcover of S.

be a subdivision of elements of R

for some natural numbers j and i,
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This f is clearly a step function- and f is the uniform 

limit of a sequence of step functions, hence quasi-continuous.

DEFINITION 5.10. The statement that the function f 

defined over the refinement space (s,R,M) is R-integrable 

means there is a real number J such that if e>0, there is 

a subdivision of refinement elements D of the space S so 

that if R = {ri> r2> rj’ •••> rn^ a finite refinement of

D, and x^, Xj, ..., xn are points such that for

n
Ififn, then |J - e f(x.)^(r.)| < e. 

i = l 1 1

Since in a refinement space a common refinement of 

two subdivisions of refinement elements always exists, 

the Cauchy condition follows from the definition of 

R-integrable. We will use the Cauchy condition for our 

proof of Theorem 5.12. We state the Cauchy condition 

without proof.

THEOREM 5.11. Suppose f is a function defined over 

the refinement space (s,R,m). Then the following are 

equivalent.

(1) The function f is R-integrable.

(2) If e>0, there is a subdivision

D = d^, d^, ..., dn) such that if

R = (r^, r2> rj, ..., rm} is a refinement 

of D, and x^, X2> x^, ..., xn and 

71? 72> 73> •••> ym are points such that 

x^ed^, l£i<n, and 7^eri> l<_i<^m, then 

n m
| E f(x.)^(d.) - E f(y )^(r.)| < e 
i=l 11 i=i 1 1
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THEOREM 5.12. If f is a bounded function defined over 

the compact refinement space and for each e>0, there

is a countable collection r1, r7, rx, ... of open refinement 
n 

elements covering D(f) such that for each n, Z M(r-)<£, 
i = l 

then f is R-integrable.

Proof: If e>0, define M£ = {x | io (x) >_e }. Let e>0, and 

suppose M£ is infinite. If M has no limit point then M£ 

is closed. Suppose p is a limit point of Me, and suppose 

a)(p)<E. Denote (e-u)(p))/2 by 6. There is a region R 

containing p such that if xeR, f(x)<w(p) + 6/2. But R 

must contain a point mEM . The following is a proof that 

either w (m)-w (p) >6 , or w(p)-tn (m) >6 .

If w(m) >_o7(p) >iy (p)to (m) , then

co(m)-w(m) = (co(m)-uT(p)) + (uT(p)-w (p)) + (w(p)-io(m)) > e.

Thus a7(m)-u)(p) >_ E-to(p) - (a)_(p) - w (m))

>_ 26 - (a)_(p) - w (m) ) .

If to (p) - to (m) <6 , then a? (m)-tu (p) >_6 . Similarly, if 

a?(m)-aT(p) <6 , then io(p)-a^(m) >_6 . If w (p) <w(m) , then 

a)(m)-to(p) >26>6 , and if o7(p)>uj(m), then w (p)-co (m) > 26 >6 . 

Hence we may suppose (w.l.o.g.) that w(m)-co(p)<6 , since 

we may argue similarly for co(p)-co(m) <6. Since 

co(m)>_E, R must contain a point xeR such that co (m)-6/2<f (x) . 

Thus f(x) > co(m) - 6/2 > <o(p) + 6/2, and f(x) > <o(p) + 6/2, 

but xeR, and f(x)<co(p) + 6/2. This is a contradiction, hence 

co(p)>_£, and peM^. Therefore M is closed.
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Since f is bounded, there are' real numbers a and b 

such that a_<f(x)<_b, and |b-a|>l for each xeS. The number 

Af(S) is defined since the empty set is in R, and S is the 

complement of the empty set. If ^(S)=0, the theorem is 

trivial. If Af(S)>0, let K be a natural number such that 

K*A/(S)>1. Let £>0, and define 6 = e/ (4 •K-M(S') • (b-a)) .

By the hypothesis there is a countable collection

R={s1, s?, s-, . ..}, of open refinement elements such that 
n 

for each natural number n, E ^(s.)<6, and R* covers 
i=l

D(f). Since M6 is closed and S is compact, there is a 

finite subcollection of R, R'={r^, r^, ..rn}> that

covers . The set N=S-(R,)A is closed since S is closed, 

and R'* is open. For each xeN, let S^ be a region containing 

x, such that if yeS^, then |f(x)-f(y)|<6. Such a region 

exists since x^M^. Let t C Sx be an open refinement 

element containing x. For T={tx|xeN}, T* covers N, thus 

some finite subcollection of T, T'={t1, t2, t3, ..., tm] 

covers N.

The collection R’+T' covers S. So there is a refinement 

of S consisting of refinement elements. Denote the elements 

of the refinement that are subsets of R’* by

R”={r1’, r2', r3'. ru*}, and those which are not by

T'^ftj', t2', t^' > •••> Thus R'' subdivides R'*, 

and T'1 subdivides N.

Let V={v1, v2, v^, v.} be a refinement of R',+T''.
J w

Let the elements of V be ordered such that \j v- =N for some 
i=l 1
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natural number w. Let x^, x^, .xy be points such

that x^er^*, y^, yy^> .yv be points such that y^eti’, 

and Z-, , z7, z , . z. be points such that z.ev-. For each

C r^' , let and for each C t^', let qi=y^> f°r

each natural number i, l_<i<^j . Then

u v j
| S fCxJ^fri’) + Z fCy.jA/Ctj^') - Z fCza^Cv.)] 
i=l 1 i=l 1 i=l 1

, J J
= 1 f(qi)W(vi) - Z f(zi)^(vi)| 

i=l i=l

= | Z (fCq^-fCZi))^^)!
i = l

w j
= 1 ZCfCqa-fCz^D^Cv.) + Z (f(qi)-f(zi))M(v )|.

i=l i=w+l 1

Since a£f(x)<b for each x is S,

| Z (f (q )-f (z. ))^(vi) |
i=w+l 1 1

j
<_ Z (b-a)Af(v^) 

i=w+l

= (b-1) Z ^(Vj,).
i=w+l

j
Since \j v- = R' 1 *,

i=w+l

(b-a) Z M(v.) = (b-a)-MCR''*) < (b-a)‘e/(4-K-M(S) • (b-a)) 
i=w+l 1

= e/(4-K-^(S) < e/2.
. j .

Thus | Z (f(q.)-f(z.))y(v )| < e/2.
i=w+l -*-11 

w
Also since \j v. = N,

i=l 1
w
Z (f(qi)-f(zi))^(vi)

i=l
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w w
Z 26-^(v-) = 26- Z M(v.) ='26'M(N).

i=l i=l * * * n i * * 1 * * * * *

of the refinement space (S,7?,Af) has measure 0 means for

each e>0, there is a countable collection of open refinement

elements r-p r2> r^, ... covering M so that for each
n 

natural number n, Z Af(r-)<E.
i = l

COROLLARY 5.14. If the quasi-continuous function f

is defined over the refinement space (S,R,M), and the 

boundary of each element of R has measure 0, then f is 

R- integrable.

Proof: The set D(f) is a subset of the boundaries of

countably many refinement elements {r^> r2’ r3’ •••}• 

Let e>0. For each natural number i with 6.=e/21, let 
i

{c- -< , c. 9, c- . . . } be a countable collection of open 

refinement elements covering the boundary of r^, so that

for each natural number m, Z M(c. .)<6-. Let C={c|c=c- •
i = l 1,J

for some natural numbers i and j}, then C is a countable

collection of open refinement elements covering D(f), and

Since 6 = e/(4 "K^Cs) • (b-a)) , and Z^(N)<^(S), we have

26*Af(N) <_ e/(2*K* (b-a)) <_ e/2. Hence 

. w j
I 2 (f(q1)-f(zi))^(v.) + z (f(q.)-f(z.)M(v.)| 
i=l 1 1 1 i=w+l iii

<|e/2 + e/2| = e.

Thus f is R-integrable.

DEFINITION 5.13. The statement that the subset M
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m

if m is a natural number, and for l<i<m, c.eC, E M(c.)<e. 
1 i=l 1

Therefore D(f) has measure 0, and by theorem 5.12 is

R-integrable.
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