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ABSTRACT

Two new properties are proven to be equivalent to the
definition of quasi-continuous function. One of which is
suitable for generalizing the definition to abstract spaces.
Several properties of quasi-continuity in topological spaces
are presented. Axioms are presented defining a refinement
space in which several more properties of quasi-continuous
functions are proven, and a Riemann type integral is defined

in this space.
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INTRODUCTION

Many of the definitions by which we classify functions
use properties inherent to the real numbers but absent even
in the real ﬁléne. It is the prime purpose of this paper to

extend the definitions of quési~continuous functions and other
related concepts to abstract topological spaces.

The real numbers provide a set of points in which the
natural order is a total ordering of the space which agrees
with the céncept of limit point. Upon this rests the defini-
tion of quasi-continuous functions. The equivalence of this
class of functions to the collection of uniform limits of
sequences of step functions provides an approach to genéral-
ization. For example, a step function may be defined in the
plane to be constant over the intgriors of each of a finite
number of rectangles covering the domain of the function, and
assume arbitrary values at the boundaries of these rectangles.
This definition, however, leads to a collection of '"undesir-
able" functions. The property‘that each region has at most
twé boundary points is not true in the real plane. There
are other ways that we may define step functions that prove
to conform more ciosely to our conception of step functions
in spaces other than the real numbers. We measure the suit-
ability of an alternative definition by the properties which
are preserved and by the number and importance of the spaces

" into which they fit.



Tw6 important properties of the real numbers that are
absent in the plane have been mentioned above. The space
of real numbers with region meaning segment also has the
properties that each region is connected, each bounded
open, connected set is a region, each bounded set is com-
pact and others that often arise but are only alluded to
in proofs. It is upon these properties that we may generalize
the concept of quasi-continuous functions'and Still main-
tain most of the properties which we found usefulland import-
ant in the real numbers.

In this paper, we introduce a new property and prove
its equivalence to the usual definition of quasi-continuous
function. The new property uses the concept of connected set
rather than "right" and "left'", and thus is more suitable
for generalization. In addition, we describe a space more
general than the real numbers that preserves the properties
necessary to define a Riemann type integral. In this setting
we present many properties of quasi-continuous functions.
This paper provides a rigorous support of our claim to a

more general definition of quasi-continuous function. .



NOTATION

The following notati&n and terminology will be used
éhroughout this paper. R will denote the set of real numbers.
RM where n is a natural number, will denote the set_g D Si,
where Si=R for each 1l<i<n. = |

The statement that s is a segment means s is a bounded,
open, connected subset of R. The statement that 1 is an
interval means I is a Bounded, connected subset of R. We
use this definition rather than one which requires intervals

to be non-degenerate and closed. The statement that r is a

region in R means r is a segment.

If R={s,|xeA an indexing set} is a collection of sets
then R* means the set'{XIXesA for some XeAl.

The statement that the point set M is compact in the
topological space S means every infinite subset of M has a
limit point in S. |

The statement that the collection D is a subdivision

of the point set M means D is finite, D* equals M, and if

d and g are distinct elements of D, then d and g are disjoint.

The statement that the collection R is a refinement of
the finite Eover C of the point set M means R is a subdivision
of M, and if r is an element of R and ¢ is an element of C,
then either r and c¢ are disjoint or rCc.

In this paper, all functions will be considered to be

real valued.



If f is a function defined on the topological space S,
then
1. D(f) denotes the collection of all points x
in S such that f is discontinuous at x, and
2, if s is a segment, S(s,f) denotes the collection
of components of {xlf(x)és}.
Note: If there is no such x with f(x) in s,
then each of S(s,f) and {x|f(x)es} denotes
the empty set. For convenience we cbnsider
the empty set to be both finite and connected
throughout this paper.
Suppose f is a function defined on the topological space
S. Let xeS, and X be the set so that yeX if and only if there
is a sequence of points of S, X1s X35 X35 on- converging to
x such that f(xl), f(xz), f(XS)’ ... converges to y. Then the
symbol w(x) denotes the least upper bound of X, w(x) denotes
the greatest lower bound of X, and w(x) = w(x) - w(x).

Note: If X is empty, then each of w(x) and w(x) denotes 0.



QUASI-CONTINUOUS FUNCTIONS IN R

We introduce a series of four equivalent statements
in theorem 3.3, each of which could serve as a definition
for quasi-continuity. With the assurance that we will not
contradict the traditional definition, we may use any one
of the statements as a definition in other spaces and inves-
tigate its properties.

DEFINITION 3.1. The statement that the function f

defined on the interval [u,v] in R is quasi-continuous at

the point x in {[u,v] means if xl,'xz, Xgs oes is a monotonic
sequence of points of [u,v], converging to x, then

f(xl), f(xz), f(XS)’ ... converges. If f is quasi-continuoﬁs

at each point x in [u,v], then f is said to be quasi-continuous.

Lemma 3.2 introduces a property of the real numbers
that we will use to prove Theorem 3.3.

LEMMA 3.2. If M is a bounded subset of R which has
infinitely many distinct components {mA]AeA an indexing set},
then

(1) M® (the complement of M) has infinitely

many components {nAIAsP an indexing set}l,
and .

(2) If x is a point and {x,|red, x,em } has a

A
countable subset X1s Xy Xz, oo that converges
to x from the left (respectively right), then

there exists a countable subset Yi» Y25 V3



of the set {y]|yer, yst?} that converges to
x from the left (respectively right).

Proof: Let xy, X, X3, ... be a subset of {x,|XeA and
XAemA}‘ The sequence X15 X35 X35 oo has a limit point x
since M is bounded, and a bounded subset of R is compact.
Thus (without loss of generality (w.l.o.g.)) we may suppose

that some subsequence x_ , x_ , X, , ... converges to x from
R ML S
the left where ny is a natural number for each natural number

i. Let zl=xn1, and Ry denote a segment (ry,x) so that zj is
not an element of Rl' Since x is a limit point of

X X from the left, R

ny’ xnz, ny’ contains infinitely many

1
points of the sequence, hence infinitely many components of M.

The set Ry/1M is not connected so there is a point y; in M®
and in Rl' Again since the sequence x, , xnz, an’
verges to x from the left, there is a z,=x, for some natural

con-

number j so that y,<z,. If we let R, be a %egion (rz,x) not
containing Z,, We may in a similar manner construct the sequences
.zl, Z2s Zgs oeo and Yi» Y2 Yzo oo with the properties that
Z5<Yi<Zi4+1> yieMC for each natural number i. Since
(z5, zi+1) and tzj, Zj+1) are mutually separated if i#j, y;
and yj must be in different components of M€, hence M® has
infinitely many components.

The sequence yq, Y25 yj, ... converges to x from the
l1éft and the second part of the lemma is also established.

THEQREM 3.3, If f is a bounded function defined on the

interval [u,v] the following are equivalent:
(1) The function f is quasi-continuous.

(2) If b is a number, >0, and pe [u,v], then



there is a number a, b-e<a<b and a region
R containing p-such that S={x|xeR, f(x)>a}
has only finitely many components.

(3) The fun;tion f is the uniform limit of a
sequence of step functions, i.e. if >0,
there is a step function g such that if
xe[u,v], then |f(x)-g(x)]<e.

(4) If I and I, are segments in R and T,c1Iy,
then there is a finite subset R of S(Iz;f)
such that S*(Iy,f)cR*.

Proof: (1) implies (2).

Suppose (1) is true and that (2) is_nof true. Let p
be an element of the interval [u«,v], and let b be a number
and e>0 so that for each number a, b-e<a<b and each region
R containing p, the set S={x|xeR, f(x)>a} has infinitely
many components. Let aj, a,, and asg be numbers such that
b-s<a3<a2<a1<b, R be a region containing p, and define
Si={x|xaR, f(x)>a;} for 1<i<3. Each Si has infinitely many
distinct components {mi’AIAsA an indexing setl}. There is
a subset xj 1, Xi g0 Xi, 30 ce of the set {xi’AIAeA,
and Xi,xemi,k} for 1<i<3, such that Xj, 1 xi,Z’ Xi,3’
converges to p. At least two of these have subsequences
converging to p from the same side. We may suppose
(w.l.o.g.) that they be sequences of points.in S;* and
S,* and that their subsequences Y1,1» ¥1,2> y1,3’
and y2,1’ yZ,Z’ y2,3’ ... converge from the left.



Since S, has infinitely many components, by lemma 3.2
c ;
82 also has infinitely many components and a sequence
Zy> 235 23, ... of points ‘of SzC converging from the left
to p. Since for each natural number j, f(yl j)>a1, and
: ’

for each point zj,f(zj)<a2, the sequence yl,l’ Zqs yl,Z’ Zyy oee
converges to p, but f(yl,l)’ f(zlj, f(yl,z), £(z;), ... does

not converge, a contradiction.

(2) implies (1).

Suppose (2) is true, and pelu,v]. Let X1s X2 X35 oo
be a sequence of points converging from the left to p. Then
some subsequence of f(x7), f(xz), f(XS)’ e ﬁonverges since
f is bounded. Let this sequential limit be y.

Let o and B be numbers so that B<y<a. It is only neces-
sary to show that there is a point r such that if xe(r,p)
then B<f(x)<a, since a similar argument may be used for
sequences converging to p from the right.

There are numbers o' and g', and regions R, and Ry such
that 8<g'<y<a'<a, and the sets S, = {x|xeR,, f(x)>a'l},
and Sp = {x|xaRb, f(x)>8'} have only finitely many components,
as does Saf\(C,p) and SyN (C,p) for each Celu,pl.

Let the finite collection of components of S,N (c,p)
and SpN (c,p) be {A;, Az, Ag, ey Ap,} and
{Bl, By, B3, cees Bnb} respectively for celu,pl, and
natural numbers n, and ny. Let raeKk be the rightnendpoint

n
of the set ( ua Ki). Suppose (by way of contradiction
. i=1 '

(b.w.o.c.)) T, =p. Since f(x71), f(xz), f(xs), .o converées



to y, there is an X ey such that f(xi)<a', which is a

contradiction, and thus r #p.
np

Let rbij be the right endpoint of the set ( \J Bj)
i=1
Suppose (b.w.o.c.) that rp#p. There is an x; not in

Bj such that f(xi)>6', a contradiction, and ry=p.
Let r be a point in R, and RB such that r is in Bj’
and r>ry. If xe(r,p), then x is‘not in-Sa but is in §,

and we get B<g'<f(x)<a'<a, and f is quasi-continuous at p.

(1) implies (3).

Suppose (1) is true. At each point pelu,v] either £
is continuous or discontinuous. Let pe[u,b], and e>0.
Case 1. If f is continuous at p, then there is a segment
Sp containing p such that if xasp, then f(x)e(f(p)—e/z,f(pj+e/2).
Case 2. If f is discontinuous at p, then by (1), there is
a number y, such that if ry, r,, Tz, ... Converges top
from the right, then f(r;), f(rz), f(rs), ... converges to
Yn- Thus there is a segment sp,n=(p,bp) for some number b

P

such that if XeSy g then f(x)s(yn-s/Z, yn+€/2)' Similarly

there exists a number y, that is the limit of function
values of points converging to p from the left, and a
segment sp’£=(ap,p) for §ome number ap such that if Xesy g
then f(x)e(yz—e/z, y£+e/2).- Let sp=(ap,bp).

We have a collection of open sets S={sp|pe[u,v]}
covering the closed, compact set [u,v], thus there is a
ps’ - spn where
Pi» P2» P3s -.-» Pp are points of [u,v] and n is a natural

finite subcollection of S, Spy» Spp» S
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-number, covering [w,v]. Let ty, to, tzy «on, t) be a

collection of segments such that for each 1<i<mn, s .=t

Pi
for some k if £ is continuous at p,, and (api,pi)=t

k

-
(pi,bpi)=th for some natural numbers j and h if f ii
discontinuous at p;. There is a collection of segments
{uq, u,, uz, ..;, uy} such that ui and uj are disjoint
whenever i#j, }glﬁi=[u,v], and if I<icv, uiE;tj for some
natural numberljim. This statement will be proven later
in a more general setting.

Associate with each segment u;, lgi<v a point Zjeu, .
Let £_ denote the step function defined over the collection
of segments Uﬁ{ul, Uy, Uz, ..., U,} so that if xeu;, then
f . (x)=£f(z3). If xis a boundary point of some element of -
U, then f_(x)=£f(x). Since for each i, 1l<izv, uiggtj for
some natural number j, if XeUy [£(x) £, (x) |=|£(x)-£(z;) | <e,

and f is the uniform limit of a sequence of step functions.

(3) implies (4).

Suppose (3) is ‘true. Let £, f,, f3, ... be a
sequence of step functions such that for each xe[u,v], and
natural number i, Ifi(x)-f(x)]< 1/i. Let each of I, and
I, be segments so that T1§;IZ’ and d(I1,I;)=e. Letn
denote a natural number such that 1/n < ¢/2. Let
D={d{, dj, dz, ..., dpl} be the collection of intervals of
the defining subdivision of the step function f;, and
X1s X3, X3, .;., X, be a sequénce of real numbers such

that if 1<i<m, then fn(x)=xi whenever xed;.
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Let I; be denoted by (c,d), and D'={d d

nl) ]’]_2’ dns’ AR |
where nj, nj, Nz, ..., Ny are natural numbers less than or
equal to m, be a subcollection of D so that dieD' whenever
J

x;e(c-e/2,d+e/2). Thps S*(Il,f)s;;gldniggs*(lz,f).

Since the elements of S(Iz,f) are éomponents of
S*(Iz,f); and since each element of D is coﬁnected, there
is a single element of S(Iz;f) containing dni for each n;,
1<i<j, thus there is a finite collection of elements of

S(iz,f) that contains all of the points of S*(I4,f).
(4) implies (1).

Suppdse (b.w.o.c.) f is not quasi-continuous at the

point p. Then (w.l.o.g.) we may suppose that there are

sequences Xq, X2, X3, ... and'yq, ¥y, Y3, ... both converging
to p from the left with f(x1), f(x3), f(xs), ce converéing
to z,, and f(y1), f(yz), f(yz), ... converging to Zys zy#zx.
Let €=|Zx'2y|-

Let Il=(zx- e/4, 24+ €/4), and I,=(z,- €/3, 24+ €/3).
By property (4), there exists a finite collection
T={t1, ty, tz, ... tn} of elements of S(I,,f) such that
S*CIl,f)g;T*. Suppose tj is the right most element of T
that is to the left or contains p, and suppose (b.w.o.c.)
that pifﬁ. Since Xy5 Xp5 X3, ... COnverges to p from the
left, and f(x7), f(xz), f(xs), ... converges to z., there
is a natural number k such that xkftj and xkeS*(Il,f), a
contradiction since S*(I;,f)CT#*. Thus 55 contains p.

Since y;, ¥y, Yzs ... CORvVerges to p from the left, there

-1s a natural number i such that Yketj if k>i. Since
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f(yl), f(y;), f(ys), ... converges to zyiS*(Iz,f), there
is a Yy, h>i so that yhfs*(lz,f). But each element of tj
is in S*(Il,f), and yhstj. This ‘is a contradiction and
(4) implies (1). .

This thgo;em provides several alternatives for general-
ization. We intend to show that property (45 provides the
~better definition. Consider the following examples.

Example 1: Let f be a function defined over the real plane,

RZ, such that f(x,y)=0 if x<0, f(x,y)=1 if x>0. When x=0
then f(x,y)= 3/2 if y is rational and 0 otherwise.

Example 2: This example is the same as example 1 reflected

through the x-y plane. Let f be a function defined over R2
such that f(x,y)=0 if x<0, and f(x,y)=-1 if x>0. When x=0, .
then f(x,y)=-3/2 if y is rational and 0 otherwise.

ExXample 3: The set of rational numbers Q is countable,

3 .}.
Let f be defined over RZ such that f(x,y)=0 if x<0, f(x,y)=1

thus we may order them such that,Q={r1, r,, T

if x>0, £(0,y)=1/i if y=r; for some natural number i, and
0 otherwise.

Example 3 has both property (Zj and (4) of theorem 3.3.
Examples 1 and 2 both fail to have property (4). The first
two examples differ only slightly in definition and do not
appear to have changed any basic properties from one def-
inition to the other, but example 2 has property (2) while
example 1 does not. Furthermoré, property (2) is 'one-
sided" and a similar property could be.defined with respect

" to the set {x|f(x)<b}. This property would hold for example 1,
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thus we suspect there is a basic deficiency in property (2)

as a definition for quasi-continuous functions.
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_ PROPERTIES OF QUASI-CONTINUOUS FUNCTIONS
IN ABSTRACT SPACES
Theorem 3.3 assures us that property (4) may be used
as a definition of quasi-continuous functions without risk
of contradicting our previous_defihitions.

DEFINITION 4.1. The statement that the function £

defined on the topological space S is 'quasi-continuous

means f is bounded, and whenever I; and I, are segments
such that T, < L, then there is a finite subset R of
S(Iz,f) so that S*(Iq,f) C R*,

DEFINITION 4.2. The statement that the function f

defined on the topological space S is a step function .

means there is a subdivision of connected sets of S,
C = {cl, Cps €35 vvs c,} and a finite collection of real
numbers X15 Xgs Xgs eees Xp such that if 1<i<n and XeC;,
then f(x)=xi;

The following theorems and propositions will elucidate
some of the properties of quasi-continuous functions over

spaces other than the real numbers.

THEOREM 4.3. If f is a function defined on the topologi-

cal space S, and f is the uniform limit of a sequence of
step functions, then f is quasi-continuous.

The proof of this theorem is similar to the proof that
(3) implies (4) of theorem 3.3,'and will not be repeated

here.
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THEOREM 4.4. If f is a quasi-continuous function

defined on the topological space S, there exists a countable
collection of connected sets C such that each point of D(f)
is a boundary point of some element of C.

Proof: Since f is quasi-continuous, f is bounded.
Suppose f is bounded above by v and below by u.

Let €>0, and M_={x|w(x)>e}. Let I;s I, Iz, o0 I
be a finite collection of segments covering [u,v], such
that if Ij=(aj,bj), then Iaj—bj|<e/2. Let xeM_. There

is a natural number j such that f(x)el Let I;' be a

i’ j
segment such that Tj - Ij', and d(Ij,Ij')<e/2. There
is a finite collection of connected sets Cj ¢ of S(Ij',f)
b

such that if y is in S(Ij,f), then y is in some element of

Cj,e' Suppose xeM_. Since w(x)>e, any region containing

X contains a point y such that f(y)in' and hence y is not

in any element of Cj ¢+ Thus x is a boundary point of some
b

element of the finite collection Cj -
bl

The collection of sets Ml’ M%, M%, ... contains all
of the points of D(f). Thus if xeD(f), then x is a boundary
point of some element of the countable collection of

connected sets {c.: |c

i,j,e eCj,e for i and j natural

s i,j,e
numbers and ee{1, %, %, ...} }.

COROLLARY 4.5. If f is a quasi-continuous function in

R defined over the interval [u,v], then the set D(f) is

countable.
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\d

Proof: In R each connected set has at most two boundary
points. The corollary trivially follows.

CONJECTURE 4.6. The space of step functions with the

usual definition of addition and scalar multiplication 1is
a linear space.

Counterexample. Consider the following two step functions
in R2. Define f1(x,y)=1 if x-sin(1/x)-y=0, and 0 otherwise.
Define f,(x,y)= -1 if y=0 and 0 otherwise. Then f1+f2 is
not a step function.

CONJECTURE 4.7. Every continuous function is quasi-

continuous.

Counterexample. Let S be the space of real numbers
where the statement that s is a region means s is a segment
or s is the point set R={1U [0,1/2]U[3/4,7/8]U ...}. Let
f be defined such that f(x)=1 if xeR, and 0 otherwise. First
note that f is not quasi-continuous. The following shows
that f is continuous. If xe[0,1] such that x¢R, then f{x)=0.
For 0O<e<l let (-e,e) be an interval containing f(x) The set
R is closed and there exists a region r such that xer and
T does not intersect R. Thus if yer, f(y)e(-e,e), and £
is continuous at x. If xeR and I is a segment containing 1,
then if yeR, f(y)el, and f is continuous at x.

The above counterexamples serve to point out two of
the properties which appear to be basic to the concept of
quasi-continuity if we are to provide any meaningful
generalization. First, the difference of two regions 1is

at most finitely many regions, and each region 1s connected.
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These properties are also basic to Riemann integration. It
is desirable therefore to impose certain restrictions on the

topological spaces in which we work, to guarantee that we

have the above mentioned properties.
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REFINEMENT SPACES

We intend to define a Riemann-type integral'in the
spaces for which we define qﬁasi—continuous functions,
thus we require a space which will allow us to construct
subdivisions and refinements of connected sets. We borrow
and modify the concept of a o-ring for this purpose.

DEFINITION 5.1. The statement that the collection of

sets 2 1s a partial ring means the empty set is in R, and

if ry, Ty, Tz, ..., Iy are elements of R, there exists

t1, to, t3, ..., tp elements of R for some natural number m
n

m
such that (U rj)©¢ = (U t;), and t; and tj are disjoint if i#j.
i=1 i=1

DEFINITION 5.2. The statement that the ordered triple

(8, R, M) is a refinement space means the following axioms

are satisfied.
Axiom 1. The space S is a Moore 1z space, i.e.
a. Every region is a point set.
b. 1) For each natural number n, G, is
a collection of regions covering S.
2) For each natural number n, G, € Gp,q-
3) If a and b are points of the open set
M, then there exists a natural number

n such that if geG  and aeg, then bég

and g € M.



Axiom 2. The collection of sets R satisfies the following.

a. If rerR, then r is connected.

b. The collection R is a partial ring.

c. If s is a region in S containing the point

X, then there is an open set rekR, Xer

such that r Cs.

Axiom 3. The function ¥ is a non-negative set function

defined on the elements of R such that if a
and b are disjoint elements of R, then

M(aUDb)=Mu(a)+M(b).

Note that because R 1s a partial ring the following are

true in the refinement space (S, R, M).
If ay, a,, az, ..., a, are elements of R, then there

exists elements ti, to, tz, ..., ty of R such that

(a;Na,NazN ...Nay)% = tyut, Utz U... Uty.
If bl’ b2’ b3, cens bp are elements of R then there
exists a finite collection of elements sy, Sp, Sz, ..., Sq

of R such that s, and sj are disjoint if i#j, and
(alflazf\aS/W.../\an) - (blL}bZL}bsLj...\pr)
=((a1n a,NazN... f\an)cu (blubzu b3u ...ubp)}c
((t;Uut,Utsy... Ut UbjUb,Ub3U ...ubp)]c
(SlL/SZh/S3LJ---LJSq)

LEMMA 5.3. If C is a finite collection of refinement

elements covering the refinement space (S, R, M), then

there is a subdivision D of S of refinement elements so that

if deD, then for each ¢ in C, ¢ and d are disjoint or d C c.
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Proof. Let dl’ d2, d3, cees dn be refinement elements

covering the space S. Let A be the collection of all

subcollections of {d,, d,, d, ..., d }. For
1 2 3 n
a = {dal, daz’ daS’ cees dak}eA, let ba=(fldi[diea)—(Ldeldj¢a).

Since by the note above, b, is the union of finitely

a

many disjoint refinement elements for each aeA, and since
A is finite, it is sufficignt to show that if a and c are
distinct elements of A, then b, and b_. are disjoint, and that
(L/ba|asA) covers S.

Let xeS. Then there exists aeA such that for the

djn

j2’ dJS’ LR ] }’
and xadji for 1<i<m, but if dkﬁa, then xﬁdk. Thus

Xe(f]dildiea) and xi(\deldjia) hence xeb,. Thus {ba[aeA}

natural numbers Jq» j2’ jS’ v jm, a={dj1, d

covers S.
In order to prove that for a and c elements of A,

ba and bC are disjoint, suppose Xeb and Xebaz where aq

ai
and a, are distinct elements of A. Then there exists (w.l.o.g.)
diea1 but di¢az since al#az. If xadi then x¢ba2. If x¢di

then x¢b hence bal and baz are disjoint for each distinct

a b
1
pair aq and a, of elements of A.
Furthermore, if d is an element of the cover, then for acA,
either ba and d are disjoint or b, € d, and the proof of the

lemma 1is complete.

CORROLARY 5.4. 1If Rl and R2 are subdivisions of S

composed of refinement elements, then there exists a
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subdivision R of S, composed of refinement elements, that

is a common refinement of R1 and R

Proof. R1+R_2 is a cover of S hence by the previous

lemma there exists a subdivision R which 1is a refinement
of both R1 and R2 and is composed of refinement elements.

The following example demonstrates that such spaces
do exist and are more general in nature then R.

Example 4: Let § be a rectangular subspace of the real

plane with sides parallel to the axes. If R is defined

to be the empty set plus the set of rectangles with sides

parallel to the axes, or 1line segments parallel to one or

the other axes or single points, and ¥ to be the area in

the ordinary sense, clearly (S,R,M) is a refinement space.
More complex refinement spaces may be defined which

lead to better generalizations of quasi-continuous functions,

and it follows by induction that R™ with an appropriate

collection of connected sets and an appropriate set function

is a refinement space.

DEFINITION 5.5. The statement that the function f

defined on the refinement space (S,R,M) is quasi-continuous

means if I; and I, are segments such that I.c1I then

1= "2
there is a finite collection of refinement elements R such
that S*(Il,f) §1R* g.S*(Iz,f).

DEFINITION 5.6. The statement that the function f

defined on the refinement space (S,R,M) is a step function

means there is a subdivision D={dl, dy, d3, «eey dp} of
refinement elements and a finite sequence of real numbers

Xqs Xg, Xg5 «un xn.such that if xed;, then f(x)=xi.
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It is easily seen that in R, definition 5.5 1is
equivalent to definition 4.1, and in refinement spaces,
the proofs of theorems 4.3 and 4.4 are valid, using
definition 5.5, Let Theorems 4.3' and 4.4' denote the
theorems analogous to theorems 4.3 and 4.4.

The following theorems are a series of properties
about quasi-continuous functions in refinement spaces.

THEOREM 5.7. A function f defined on the refine-

ment space (S,R,M) is quasi-continuous if and only if it
is the uniform limit of a sequence of step functions.
Proof. The uniform limit of a sequence of step
functions is quasi-continuous is true by theorem 4.3'.
Thus it remains only to be shown that if f is quasi-
continuous then f is the uniform limit of a sequence of
step functions. Let ¢>0. Let [u,v] denote an interval
containing the range of f. We may cover [u,v] with
Segments Sy, Sy, Sz, ..., Sy such that the length of each
s;<e/2. For each s; 1<i<n, there is a segment si so that
Ei si and d(Si’Si)<€/2’ and there is a finite collection
Ri of refinement elements such that S(si,f)*szszS(si,f)*.
The collection R = {Rl, RZ’ R3, «.vy R }* covers 5, so
there is a subdivision D = {dj, d2’ d3, ceny dm} that
covers S and is a refinement of R. Define f€ so that for
each Xedi, there 1is an RjeR such that di - R?, XeR?. Let
k be the least integer for which xaRﬁ € R* and fe(x)=ck
where sk=(ck,bk).
Now if XEdi and yedi, dieD, then fe(x)=f€(y) and fe

is a step function. If xadi and fe(x)=cj, XeRj,so
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[£(x)-£.(x)]| = |f(x)—cj|<s. Thus f is the uniform limit of

a sequence of step functions.

PROPOSITION 5.8. The space of step functions over a

refinement space (S,R,M) is linear.
Proof: C(Clearly if f is a step function and o is a
scalar, then af i1s a step function. Let f1 and fz be step

functions. Let Rl’ {xl, Xps Xz wees xn}and R

2
{yl, Yor Yz» oo ym} be the defining subdivisions and
sequences of f1 and f2 respectively. Let R={r1, Ty r3, ...,rp}

be a common refinement of Rl and RZ' For each rieR there is

exactly one sjeR; and tpeR, such that r; € sy and r; < ty.

Thus if x r; define f(x)=xj+yk, and f(x) is a step function.
Furthermore, f(x)=xj+yk=fl(x)+f2(x). The other properties
of linear spaces are trivially true since f 1s real valued.

PROPOSITION 5.9. If f is a continuous function defined

over the compact refinement space (S,R,¥), then f is quasi-
continuous.

Proof: Let f be a continuous function defined over
the compact refinement space (S,R,¥), and let e>0. The
space S 1s closed. At each point x in S there exists a
region R, such that if yeR,, then | f(y)-£f(x)|<e/2. There
exists an open refinement element S, containing x such that

Sy € Rx' Since S is closed and compact, let

'={Sx1’ SXZ, st, cens an} for X5 X9, Xz, «e0s Xp points
of 5, be a finite subcover of S§. Let Ry, RZ’ Rz, ...y Ry
be a subdivision of elements of R refining S'. 1If yeRj C Sx;

for some natural numbers j and i, then let fs(y)=f(xi).
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This f€ is clearly a step function and f is the uniform
limit of a sequence of step functions, hence quasi-continuous.

DEFINITION 5.10. The statement that the function f

defined over the refinement space (S,R,M) is R—iﬁtegrable

means there is a real number J such that if ¢>0, there is
a subdivision of refinement elements D of the space S so

that if R = {r;, 1y, T ‘s rn} is a finite refinement of

3’
D, and X1, X5, Xz, ..., Xp are points such that X;eT, for

l<i<n, then |J -iglf(xi)M(ri)| < e.

Since in a refinement space a common refinement of
two subdivisions of refinement elements always exists,
the Cauchy condition follows from the definition of
R-integrable. We will use the Cauchy condition for our
proof of Theorem 5.12. We state the Cauchy condition
without proof.

THEOREM 5.11., Suppose f is a function defined over

the refinement space (S,R,#). Then the following are
equivalent.

(1) The function f is R-integrable.

(2) If >0, there is a subdivision

D

{dl, dz, d3, cees dn} such that if

R = {ry, rp, Tz, ..., r,} is a refinement

of D, and Xis Xp5 Xz, cony X and

n

Y15 Y35 Y3s «++» Yy are points such that

X-.ed:

j€di, l<i<n, and Yi€Ti> l<i<m, then

n m
liilf(xi)M(di) - iilf(yi)M(ri)l < e
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THEOREM 5.12. If f is a bounded function defined over

the compact refinement space (S,R,M), and for each ¢>0, there

is a countable collection Tys Tys Tzs - of open refinement
n

elements covering D(f) such that for each n, = M(ri)<e,
i=1

then f is R-integrable.

Proof: If ¢>0, define M€={x]w(x)ie}. Let ¢>0, and
suppose M_ is infinite. If ME has no limit point then M_
is closed. Suppose p is a limit point of M., and suppose
w(p)<e. Denote (e-w(p))/2 by 8. There is a region R
containing p such that if xeR, f(x)<w(p) + 6/2. But R
must contain a point meM_. The following is a proof that
either w(m)-w(p)>s, or w(p)-w(m)>s.

If o(m)>5(p)>w(p)> w(m), then
w(m)-e(m) = (wm)-w(p)) + (wlP)-wP)) + (uP)-u@m)) > e.
Thus w(m)-w(p) > e-w(p) - (u(p)-w(m))
> 28 - (w(p)-w@m)).

If w(p)-w(m)<s, then w(m)-w(p)>s. Similarly, if

w(m)-w(p)<s, then w(p)-w(m)>s. If w(p)<w(m), then
w(m)-w(p)>28>8, and if w(p)>w(m), then w(p)-w(m)>26>S5.

Hence we may suppose (w.l.o.g.) that w(m)-w(p)<$, since

we may argue similarly for w(p)-w(m)<$8., Since

w(m)>e, R must contain a point xeR such that w(m)-6/2<f(x).
Thus f(x) > w(m) - /2 > w(p) + §/2, and f(x) > w(p) + &/2,
but xeR, and f(x)<w(p) + /2. This is a contradiction, hence

w(p)>e, and peM,_. Therefore Me is closed.
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Since f is bounded, there are real numbers a and b
such that a<f(x)<b, and |b-a|>1 for each xeS. The number
M(S) is defined since the empty set is in R, and S is the
complement of the empty set. If M(S)=0, the theorem is
trivial. If M(S)>0, let K be a natural number such that
K-M(S)>1. Let ¢>0, and define 6=¢/(4-K-M(5)*(b-a)).

By the hypqthesis there is a countable collectibn
R={sl, Sys Sz, ...}, of opennrefinement elements such that
for each natural number n, I M(si)<6, and R* covers
D(f). Since Mg is closed aials is compact, there is a
finite subcollection of R, R'={ry, Tys Tgs =nes rn}, that
covers My. The set N=S-(R')* is closed since S is closed,
and R'#* is open. For each xeN, let SX be a region containing
x, such that if yeS , then |£(x)-f(y)|<s. Such a region
exists since x¢M6. Let t, C Sy be an open refinement
element containing x. For Tﬁ{tXIXeN}, T* covers N, thus
some finite subcollection of T; T]={t1, trs tzs oo tnl
covers N.

The collection R'+T' covers S. So there is a refinement
of S consisting of refinement elements. Denote the elements
of the refinement that are subsets of R'* by

"t={rq', rZ', r.'s ..., v '}, and those which are not by

3

"re{ty', ty', t . tv'}. Thus R'' subdivides R'%*,

3"
and T'' subdivides N.

, «++5 V.} be a refinement of R''+T''.
3 J W

Let the elements of V be ordered such that \y v;=N for some
i=1

Let V={V1, VZ, v
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natural number w. Let Xy Xpp Xgy wevy X be points such

that xieri', Y1o Yyo Y Yy be points such that y.etj',

g2 e

FLIRERE zj be points such that Z;€V5. For each

v, € ry', let q;=x;, and for each vy C ty', let 1=V o for

and Z1s 255 Z

each natural number i, 1<i<j. Then

u J
| z £(x; JM(ry') + 2 £y du(t;') - 2 £(z)M(v;) |
1f1 i=1 1=1
J J
=] I f(qIM(vy) - E £(z)M(v;)]
1f1 i=1
J
='_Z (£(q;)-f(z))M(v;) |
1=
i J
=| £(£f(q;)-f(z3))M(vy) + I (f(qi)-f(zi))M(Vi)l-
i=1 i=w+l

Since a<f(x)<b for each x is 5,
| g (f(a,)-£(z. ) mu(v;) |
D -f(z. '
jowel * *

% (b-a)M(v;)
i=w+l

| A

= (b-1) ; M(vy) -

‘ i=w+1l
Since & vy = R''#,
i=w+1 .
(b-a) % M(v.) = (b-a)-M(R"'¥*) < (b-a)+e/(4-K-M(S)(b-a))
i=w+1

e/ (4°K-M(5) < e/2.

J
Thus | I (£(qy)-£(z.))u(v.)| < e/2.
i=w+1 1 1
W
Also since \y v. = N,
i=1 i

E NCICIOREI COPEICAR

i=1
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26-u(vy) = 28- % M(v;) = 26-M(N).

1 i=1

A
I s

i
Since 6=¢/(4'K-M(s)-(b-a)), and M(N)<¥(S), we have
28 «M(N) i.e/(Z-K-(b-a)) < ¢/2. Hence
W 5
RNCCRE LIV I SN CICR R EREICA)

<le/2 + ¢/2| = «.

Thus f is R-integ}able.

DEFINITION 5.13. The statement that the subset M

of the refinement space (S,R,¥) has measure 0 means for
each ¢>0, there is a countable collection of open refinement

elements rq, T,y T covering M so that for each

3

natural number n, M(ri)<s.

1l tMS -

i=1

COROLLARY 5.14. If the quasi-continuous function f

is defined over the refinement space (S,R,M), and the
boundary of each element of R has measure 0, then f is
R-integrable.
Proof: The set D(f) is a subset of the boundaries of
countably many refinement elements {rl, T, Tg, ceo}e
Let £>0. For each natural number i with 6i=e/21, let
{Ci,l’ Ci,Z’ Ci,3’ ...} be a countable collection of open
refinement elements covering the boundary of r., SO that
m
for each natural number m, £ M(c. .
i=1 s )
for some natural numbers 1 and j}, then C is a countable

J.)<c$i. Let C={c|c=c;

collection of open refinement elements covering D(f), and



m

if m is a natural number, and for 1<i<m, cieC, I M(c
i=1

Therefore D(f) has measure 0, and by theorem 5.12 is

R-integrable.

i)<e:.

29
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