
SUPPORT FOR DEPENDENCY DRIVEN EXECUTIONS

AMONG OPENMP TASKS

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Priyanka Ghosh

December 2012

SUPPORT FOR DEPENDENCY DRIVEN EXECUTIONS

AMONG OPENMP TASKS

Priyanka Ghosh

APPROVED:

Dr. Barbara Chapman, Chairman
Dept. of Computer Science

Dr. Weidong Shi
Dept. of Computer Science

Dr. Dennis Adams
Dept. of Decision and Information Sciences

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgements

I would like to express my gratitude to my advisor, Dr. Barbara Chapman for provid-

ing an excellent environment for research. It was an absolute privilege to work under

her tutelage, inspiring me to explore ideas for prospective research topics, obtaining

constructive feedback on my performance, and providing me the opportunity to at-

tend conferences in order to interact, gather, and share ideas with fellow members

of the HPC (high performance computing) community.

I would also like to thank my mentor, Dr. Yonghong Yan. Without his unre-

lenting support, guidance, positive energy, and patience, this project would not have

been possible. I would like to extend a special word of thanks to Deepak Eachempati

for his guidance and support in conceptualization, execution and revision of the ideas

presented in this thesis.

A very special thank you to my family, especially my Mum, Dad, Sister, and

Sayan, for inspiring confidence and determination in me to never give up and strive

to achieve the very best in all my endeavors.

A word of thanks to all my colleagues in the HPCTools lab, for all their sugges-

tions which helped me refine the content of this thesis, as well as lending their time

to review and provide feedback on the material.

I would like to acknowledge the contribution of Anibal Maldonado Agosto, a

summer intern at the HPCTools lab.

Lastly, I would like to thank the Department of Computer Science for providing

me the opportunity to pursue research in this distinguished university.

iii

SUPPORT FOR DEPENDENCY DRIVEN EXECUTIONS

AMONG OPENMP TASKS

An Abstract of a Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Priyanka Ghosh

December 2012

iv

Abstract

In order to improve its expressivity with respect to unstructured parallelism, OpenMP

3.0 introduced the concept of tasks, independent units of work that may be dynam-

ically scheduled and hence support efficient load-balancing. Task synchronization is

primarily accomplished via the insertion of taskwait and barrier constructs. How-

ever, these are global synchronizations and may incur significant overhead on large

platforms. The performance of certain algorithms may benefit substantially if finer

grained synchronization mechanisms were available. In this thesis, we extend the

OpenMP tasking model to allow point-to-point synchronization among tasks in an

OpenMP program. Such an approach enables us to provide support for a dataflow

model within OpenMP.

We propose language extensions to the current OpenMP task directive that en-

able the specification of task-level granularity for synchronization of asynchronous

tasks sharing the same parent. A task waits only until the explicit dependencies

as specified by the programmer are satisfied, thereby avoiding the use of expensive

global synchronization points. The extensions are simple to use and promise an

increase in the achievable concurrency for some parallel algorithms.

We have implemented our ideas fully within the OpenUH OpenMP runtime li-

brary. The application of the extensions on two algorithms, LU Decomposition and

Smith-Waterman, demonstrated significant performance improvement over the stan-

dard tasking versions of the two algorithms using the GNU, Intel, OpenUH, PGI,

Oracle/Sun, and the Mercurium compilers. We compared our results with those ob-

tained using related dataflow models - OmpSs and QUARK, and observed that the

versions using our task extensions obtained an average speedup of 2 - 6X.

v

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Thesis Contribution . 3

1.3 Thesis Organization . 4

2 Related Work 5

2.1 Introduction . 5

2.2 History of Dataflow Models . 6

2.3 Caveats of the Dataflow Computation 7

2.4 Recent Developments in Dataflow Models 7

2.4.1 QUARK Runtime API . 8

2.4.2 The OmpSs Programming Model 10

2.4.3 StarPU . 12

2.4.4 Data-Driven Tasks (DDT) . 13

2.4.5 Data Versioning-based Approach 13

2.5 Summary . 14

3 OpenMP Tasking Model 15

3.1 OpenMP Overview . 15

3.1.1 Limitations of OpenMP 2.5 16

vi

3.2 Introduction to OpenMP Tasks . 18

3.2.1 Task Synchronization . 19

3.3 Other Tasking Models . 21

3.3.1 Cilk . 21

3.3.2 DARPA HPCS Languages . 22

3.3.3 Phasers . 23

3.3.4 Intel Workqueueing Model . 23

3.4 Limitations of the OpenMP Tasking Model 24

3.5 Summary . 26

4 Proposed Extensions to the OpenMP Task Construct 27

4.1 Extensions to the OpenMP Task Construct 27

4.2 Categories of Data Dependence . 31

4.3 Target Algorithms . 33

4.3.1 LU Decomposition . 34

4.3.2 Smith-Waterman Algorithm 38

4.3.3 Matrix - Matrix Multiplication 45

4.4 Summary . 48

5 Algorithm and Implementation 49

5.1 Introduction to the OpenUH Compiler 49

5.1.1 OpenUH Runtime Tasking Implementation 50

5.2 OpenUH Runtime Implementation for Proposed Extensions 54

5.2.1 Dependency Setup . 54

5.2.2 Dependency Resolution . 59

5.2.3 Efficient Handling of Tag Table and Tag Entry 64

5.3 Summary . 64

vii

6 Performance Evaluation And Results 65

6.1 Testbed . 66

6.2 Performance Analysis for LU Decomposition Algorithm 68

6.2.1 Implementation . 68

6.2.2 Results Obtained with Elimination of Global Synchronization
Points . 70

6.2.3 Performance Comparison to other Dataflow Models 78

6.3 Performance Results for Smith-Waterman Algorithm 82

6.3.1 Implementation . 82

6.3.2 Results Obtained with Elimination of Global Synchronization
Points . 88

6.3.3 Performance Comparison to other Dataflow Models 95

6.4 Dataflow Model Overhead Analysis 97

6.5 Summary . 101

7 Conclusion and Future Work 102

7.1 Conclusion . 102

7.2 Future Work . 103

Bibliography 105

A Runtime Implementation of OpenUH Task Extensions 110

A.1 Addition of task Tags at task creation 110

A.2 Deletion of task Tags at task exit . 112

B Explanation of Abbreviations 114

viii

List of Figures

2.1 Architecture of the QUARK shared-memory runtime environment [42] 9

3.1 The OpenMP fork-join model [5] . 16

4.1 Dependency graph with true, anti, and output dependencies 32

4.2 Progress of Blocked LU Decomposition per iteration [41] 34

4.3 A single iteration highlighting data dependence relations across blocks
[41]. 35

4.4 Data dependencies in the wavefront pattern exhibited by Smith-Waterman
algorithm [29]. 40

4.5 Progression in the scoring matrix generation. 41

4.6 Scoring matrix traversal in the presence of global barrier. 45

4.7 Scoring matrix traversal without the global barrier 45

4.8 Dependency graph for Matrix Multiplication [16] 47

5.1 OpenMP implementation in the OpenUH Compiler 50

5.2 Addition of Task 1 to the tag table 57

5.3 Addition of Task 2 to the tag table 58

5.4 Addition of Task 3 to the tag table 58

5.5 Addition of Task 4 to the tag table 59

5.6 Deletion of Task 1 from the tag table 62

5.7 Deletion of Task 2 from the tag table 62

ix

5.8 Deletion of Task 3 from the tag table 63

5.9 Deletion of Task 4 from the tag table 63

6.1 Scalability measure for matrix size 2048 X 2048 with no optimization 70

6.2 Performance measure varying blocks per dimension for matrix size
2048 with no optimization . 72

6.3 Scalability measure for matrix size 2048 with -O3 optimization . . . 73

6.4 Performance measure varying blocks per dimension for matrix size
2048 with -O3 optimization on 48 cores 75

6.5 Speedup obtained for matrix size 4096 X 4096 with -O3 optimization 76

6.6 Performance measure varying blocks per dimension for matrix size
4096 with -O3 optimization on 48 cores 77

6.7 Performance measure varying the number of threads for matrix size
2048 with no optimization . 79

6.8 Performance measure varying the number of threads for matrix size
2048 with -O3 optimization . 80

6.9 Performance measure varying the number of threads for matrix size
4096 with -O3 optimization . 81

6.10 Smith Waterman - chunked tasking implementation 83

6.11 Smith Waterman OpenUH task implementation depicted in Listing
6.2, displaying the 4 separate regions 85

6.12 Performance obtained by varying the number of threads for sequence
size 4096 with -O0 optimization . 89

6.13 Performance obtained by varying the task chunk size for sequence size
4096 with -O0 optimization . 90

6.14 Performance obtained by varying the number of threads for sequence
size 8192 with -O0 optimization . 92

6.15 Performance obtained by varying the task chunk size for sequence size
8192 with -O0 optimization . 93

6.16 Performance obtained by varying the number of threads for sequence
size 8192 with -O2 optimization . 94

x

6.17 Speedup obtained for matrix size 2048 with block 256 98

6.18 Speedup obtained for matrix size 2048 with block 256 with -O2 opti-
mization . 99

6.19 Speedup obtained for matrix size 8192 with block size 1024 with -O0
optimization . 100

xi

List of Tables

5.1 Important Terminology . 55

6.1 Summary of the conducted experiments 67

6.2 Performance obtained for matrix 2048 X 2048 (in seconds) with no
optimization . 71

6.3 Performance obtained for matrix 2048 X 2048 (in seconds) with 8
blocks per dimension . 74

6.4 Performance measuring scalability (in seconds) for matrix 4096 X
4096, with 16 blocks . 76

6.5 Performance of Smith-Waterman algorithm (in seconds) for sequence
size 4096 for task chunk of 320 with -O0 optimization 89

6.6 Performance of Smith-Waterman algorithm (in seconds) for sequence
size 4096 on 8 threads with varying chunk size 90

6.7 Performance obtained (in seconds) for sequence size 8192 with no op-
timization, on varying number of threads 91

6.8 Performance (in seconds) for sequence size 8192, with varying chunk
size on 8 threads . 93

6.9 Performance (in seconds) for sequence size 8192, task chunk 512 and
-O2 optimization . 94

6.10 Performance comparison with dataflow models (in seconds) for size
4096, chunk 320, with varying number of threads,-O0 optimization . . 95

6.11 Performance comparison with dataflow models (in seconds) for size
8192, chunk 512, with varying number of threads, -O0 optimization . 95

xii

6.12 Performance comparison with dataflow models (in seconds) for size
8192, chunk 512, with varying number of threads - O2 optimization . 96

6.13 Performance obtained (in seconds) for matrix size 2048 with block 256 98

6.14 Performance obtained (in seconds) for matrix size 2048 with block 256
with -O2 optimization . 99

6.15 Performance obtained (in seconds) for matrix size 8192 with block
1024 with -O0 optimization . 100

B.1 Abbreviations used in this document 114

B.2 Abbreviations used in this document 115

xiii

Chapter 1

Introduction

Task parallelism, as compared to data parallelism, refers to the explicit creation of

multiple threads of control, or tasks, which synchronize and communicate under the

control of programmers. Conventionally, task parallelism is enabled to programmers

through library APIs, notably pthreads [32]. Recently, task parallelism has gained

more attention in the multi-core and many-core systems, and was introduced in

several parallel programming languages owing to the flexibility and productivity it

offers, with respect to handling unstructured parallelism in programs. The program-

ming languages developed as part of the DARPA HPCS program [21, 26] (Chapel

[1] and X10 [15]) identified task parallelism as one of the prerequisites for success,

on highly parallel platforms.

Explicit task parallelism was introduced in OpenMP 3.0 for programming on

shared-memory machines [6, 10]. In this context, a task is defined as an instance

of executable code and its data environment, generated when a thread encounters a

1

task construct. In OpenMP, the concept of tasks, i.e. the implicit task, is pervasive.

The standard defines that, the use of of an OpenMP parallel region or worksharing

construct, causes the creation of multiple implicit tasks in an SPMD style (Single

Program Multiple Data), which distributes the workload and runs independently on

the different threads. This approach potentially guarantees better performance and

was pioneered by Tien-hsiung Weng in 2002 [39].

1.1 Problem Statement

The execution of a task can occur at any point between its creation in the program

and the next task synchronization point, which is often identified by the taskwait or

barrier construct. The synchronization points serve as a global barrier that causes

the current execution to block until all the spawned tasks (implicit or explicit) have

completed execution. In particular, there is no means to wait on a specific task, or

tasks that access some specified data, to complete. The programmer is forced to

make use of taskwait or barrier, which may prevent the code from fully exploiting

the concurrency achievable for certain parallel algorithms. The overhead of global

synchronization among tasks typically presents itself as an obstacle to obtain high

performance on problems that are characterized by a data dependency pattern across

a data space, producing a variable number of independent tasks through the traversal

of such space.

Such behavior is typically characteristic to task parallelizing dense linear algo-

rithms such as LU factorization [20] or Cholesky kernels as well as wavefront based

2

problems dealing with DNA sequence alignment [19].

1.2 Thesis Contribution

• We extend the OpenMP tasking model by proposing language extensions to

the current OpenMP task construct, and implementing them in the OpenUH

OpenMP compiler runtime library. The extensions embody the principles of a

dataflow model, facilitating a more flexible approach to the ordering of asyn-

chronous tasks based on the data access relationship among them.

• We allow the runtime detection of dependencies among sibling tasks by intro-

ducing the the notion of unique task object synchronizers of the type output

and input. We highlight the two core algorithms proposed to track and resolve

the data hazards among tasks at runtime. The implementation of the algo-

rithms in the OpenUH OpenMP runtime library, at the time of task creation

and task exit, limit the use global lock operations, alleviating the possibility of

contention among resources.

• We perform a comparative study, comparing the results obtained with the ap-

plication of our extensions on two target algorithms, in terms of performance

improvement observed, the ease of programmability and average speedup ob-

tained, with respect to related academic projects embodying similar principles

of a dataflow model.

3

1.3 Thesis Organization

This thesis is organized into the following sections as described below:

• Chapter 2 provides the background on the origin and advantages of using a

dataflow model. It describes the current research initiatives in the field of

dataflow model construction and use.

• Chapter 3 provides a brief introduction to the OpenMP programming model

and moves on to describes it advantages and caveats. We then introduce the

OpenMP tasking model and discuss the motivation for this thesis.

• Chapters 4 and 5 introduce and describe the features of the proposed extensions

to the OpenMP task construct, the target applications which would benefit

with application of the extensions. It also describes the algorithm employed to

implement the extensions in the OpenUH OpenMP runtime library.

• Chapter 6 presents the performance analysis and experimental results obtained

after the application of the extensions to our target applications namely, LU

Decomposition and Smith-Waterman algorithms. We also compare these re-

sults with those obtained from related dataflow models, OmpSs and QUARK.

• Chapter 7 contains our conclusion and future work.

4

Chapter 2

Related Work

2.1 Introduction

A dataflow model of computation offers an alternative to the conventional control

flow model in extracting parallelism from programs, owing to a higher degree of

achievable concurrency. Firstly, the dataflow model of execution is asynchronous,

i.e., the execution of an instruction is based on the availability of its operand(s),

in contrast to control-flow instructions, which are executed sequentially under the

control of a program counter. Secondly, instructions in the dataflow model do not

impose any constraints on sequencing except in the presence of data dependencies

within the program. Therefore, the dataflow graph representation of a program

exposes all forms of parallelism eliminating the need to explicitly manage parallel

execution of a program. For high speed computations, the advantage of the dataflow

approach over the control flow method stems from the inherent parallelism embedded

5

at the instruction level. This allows efficient exploitation of fine-grain parallelism in

application programs. A dataflow model hence provides an elegant solution to the

two fundamental problems of a Von Neumann (sequential control flow computing)

computer: memory latency and synchronization overhead.

2.2 History of Dataflow Models

Research on dataflow models emerged in the early 1970’s with the use of dataflow

graphs to exhibit parallelism in programs. Computations in a program were ex-

pressed as ‘actors’ (or nodes), where each actor represents a basic building block

in the HPC program. The dependence relationships between pairs of actors were

denoted by the arcs of the graph. Kahn process networks [31] emerged as a dif-

ferent dataflow model wherein the actors were replaced with sequential processes.

These processes communicated by sending messages along channels that conceptu-

ally consisted of unbounded FIFO queues. While the application of dataflow graphs

were mainly applied to computer architecture design, Kahn dataflow was used by

concurrency theorists for modeling concurrent software. In the field of computer

architecture, dataflow graphs were originally used in a machine-level program rep-

resentation in the two forms of dataflow architecture - Static and Dynamic. In the

static approach the arc could contain only a single token (result value) and could

have only one instance of a dataflow actor in execution at any time. In the dynamic

approach, arcs could support multiple tokens, where each token was assigned to a tag

6

so that tokens associated with different activations of an actor maybe distinguish-

able. A history of the evolution of the dataflow computation model(s) is beyond the

scope of this work and can be referenced amongst others in [27].

2.3 Caveats of the Dataflow Computation

The aforementioned dataflow model did present a few caveats [27, 24]. Firstly, the

dataflow model incurs more overhead in the execution of an instruction cycle com-

pared to its control-flow counterpart due to its fine-grained approach to parallelism.

Secondly, the overhead involved in the detection of enabled instructions and the con-

struction of result tokens generally results in poor performance in applications with

low degree of parallelism.

However, in the light of these shortcomings, interest in dataflow models has re-

cently emerged for exploiting parallelism in multi and many-core architectures. Origi-

nally the emphasis lay solely on individual data elements in the pure dataflow model

emulating hardware design. The introduction of low cost on-chip (Network-on-a-

chip) memory coupled with the capacity of high core density lead to a shift in the

design of dataflow paradigms from fine to medium and now at a coarser grain.

2.4 Recent Developments in Dataflow Models

The ubiquity of multi-core processors in current hardware has led to the emergence

of a myriad of multithreading frameworks embracing the idea of task parallelism.

7

Dynamic task parallelism is also being added for mainstream application in many

new programming models for multi-core processors and shared-memory parallelism

(apart from OpenMP 3.0), such as Cilk [23] , Java Concurrency Utilities, Intel Thread

Building Blocks [33], and Microsoft Task Parallel Library.

There also exists multithreading systems based on dataflow principles, that rep-

resent computations as a Directed Acyclic Graph (DAG) and schedules tasks at

runtime through resolution of data hazards. Projects falling within this category

include QUARK (QUeueing And Runtime for Kernels), [42] a runtime API part of

the PLASMA library [7], the OmpSs runtime environment from Barcelona Super-

computer Center [11], and StarPU [8] from INRIA Bordeaux.

2.4.1 QUARK Runtime API

QUARK (QUeuing And Runtime for Kernels) [42] provides a runtime environment

which enables the dynamic execution of tasks with data dependencies in a multi-core,

multi-socket, shared-memory environment. QUARK infers data dependencies and

precedence constraints among tasks from the way that the data is being used, and

then executes the tasks in an asynchronous, dynamic fashion in order to achieve a

high utilization of the available resources. Even though the main focus for the devel-

opment of the API was catered to support basic linear algebraic algorithms (BLAS)

for the PLASMA [7] library, developed primarily at the University of Tennessee, it

is capable of supporting other data-driven applications that can be decomposed into

tasks with data dependencies.

8

QUARK was designed to implement an easy to use application interface, that

embodies the principle of a dataflow model, where scheduling is based on data depen-

dencies between tasks in a task graph. The data dependencies are inferred through

a runtime analysis of data hazards implicit in the data usage by the kernels. Fig-

ure 2.1 below represents the architecture of the QUARK shared-memory runtime

environment.

Figure 2.1: Architecture of the QUARK shared-memory runtime environment [42]

QUARK uses the parameter specifications to infer the dependencies between the

various kernel routines in the application. These dependencies form an implicit DAG

(Directed Acyclic Graph) connecting the kernel routines. As seen in Figure 2.1 user

thread runs serial code and acting as the master inserts tasks into a (implicit) DAG

based on their dependencies. Tasks can be in NotReady, Queued or Done states.

When dependencies are satisfied, tasks are queued and executed by worker threads.

Workers update dependencies when tasks are done. The use of QUARK additionally

enables some optimizations such as DAG merging, loop reordering, etc. Overall

9

it promotes an easy to use interface which allows developers to experiment with

alternative algorithmic formulations.

2.4.2 The OmpSs Programming Model

OmpSs (OpenMP SuperScalar) language is an effort to integrate features from the

StarSs programming model developed by Barcelona Supercomputing Center into a

single programming model. The OmpSs programming standard defines additions to

the OpenMP standard to enable a dataflow representation in C and C++ programs.

It makes use of pragmas that define tasks with a set of input, output, and inout

parameters. Although variable names are given as arguments, the dependence in-

formation is evaluated at task creation time. This model is a prominent example of

a coarse-grain dataflow programming model that offers programmers a compact set

of non-intrusive language annotations in the form of the aforementioned pragmas.

These pragmas are employed to remove global synchronization barriers. Although

such global synchronization points limit dependence resolution, they are required at

control flow points in existing programming models such as the OpenMP tasking

model. The OpenMP tasking model presently dictates the use of control flow which

does not fit naturally within the dataflow paradigm.

OmpSs embodies the dataflow principles of execution with the implementation

of a task dependency graph at runtime, where tasks are scheduled for execution as

soon as all their predecessors in the graph have finished (which does not mean they

are executed immediately) or at creation if they have no predecessors. As described

10

in [11], at every nested hierarchy level of the task dependency graph, a small table is

maintained in order to store the list of variables active in the system. Each variable

in this table, is associated with the last graph node written to. When the code

represented by a graph node completes, it removes itself as the last writer in the

table. A graph node with no associated last writers, is considered to be free of the

described dependence, allowing the runtime environment to pass it on to a scheduler

which in turn assigns it to an available core.

The implementation proposed in this thesis differs with respect to the proposal

presented by the Barcelona Supercomputing group in [22] on mainly two grounds.

Firstly, in our implementation the actual specification of the dependencies among

tasks (by the programmer in the argument list associated with the extension) com-

prises of integer expressions as compared to blocks of contiguous memory locations

proposed by the Barcelona Supercomputing group. Secondly, their implementa-

tion employs a task dependency graph and a table data structure (maintained at

every hierarchical level of the graph), to store and manage the data dependencies

among tasks, whereas our implementation employs a single tag table (unordered hash

map) to account for the same. The OmpSs runtime offers expressivity in terms of

application of their proposed extensions, which allows programmers to specify the

dependencies among tasks at program level with ease. However, the generation and

maintenance of the task dependency graph constructed at runtime, coupled with the

time invested by threads waiting for tasks to be ready for execution, levies a signifi-

cant overhead on their implementation. In contrast, our proposed extensions produce

minimalistic overhead owing to the efficient handling of the tag table data structure

11

(explained in detail in Chapter 5) at runtime, providing performance improvement

and scalability.

2.4.3 StarPU

StarPU [8] is a tasking API that allows programmers to conveniently schedule parallel

tasks, develop and fine tune scheduling algorithms over a heterogeneous environment

(CPU’s and GPU’s) while eliminating the effort to adapt their programs to the tar-

get hardware. It basically integrates an efficient data-management facility with a

task execution engine. StarPU’s runtime library provides support for a task-based

programming model where programmers can execute tasks on multiple targets di-

rectly by means of the appropriate programming language (eg. CUDA) or libraries

(eg. BLAS) based on the availability of the environment on the hardware. StarPU

schedules and executes the tasks and the associated data transfers on the available

hardware, freeing the programmer from issues pertaining to efficient load balancing

and task offloading. It is also possible to express task dependencies owing to the pres-

ence of high level detailing on data being accessed by every task, such as the mode

of data access (Read, Write, Read/Write) by the data management library. This not

only facilitates data coherency but also permits programmers to express complex

task graphs with ease due to its asynchronous nature allowing the reordering of the

tasks when needed to further improve performance.

12

2.4.4 Data-Driven Tasks (DDT)

For task and data parallel programs, many researchers have advocated Data-Driven

Tasks (DDT) that can help avoid potentially expensive global barriers, and have

shown that their use can lead to improved performance [37, 39]. These efforts rely

on compiler transformation and runtime scheduling to decompose task and data

parallel computations into tasks with dependencies, and to achieve higher degree of

overlap and concurrency between these tasks. It does not require users to explicitly

specify the data dependency, which helps on migrating legacy applications to data

flow model. Yet the effectiveness of this automatic approach depends solely on

the quality of the compiler’s and runtime’s. Another extension to task parallelism,

described as Data-Driven Futures (DDFs) in [35] , allows users to create write-once

tags as input and output events that could trigger other tasks. The write-once

restriction, same as in the Intel Concurrent Collection [2] programming model for

data-flow parallelism, simplify the programming logic and algorithms reasoning, as

well as the runtime implementations, but may introduce overheads when handling a

large number of tags requiring multiple read/write operations.

2.4.5 Data Versioning-based Approach

In [36], we see that instead of expressing dependencies among tasks, the authors have

handled the data dependencies by attaching a version number (or a handle) to all the

data being accessed and storing a lowest required version number for each access to

that task when the task is added to the library. On the other hand in the task library

13

presented, a given task has no knowledge of any other tasks, instead it associates

itself only with the data that it accesses. When a task has finished execution, it

increases the version number of each data it has accessed. Data dependencies are

monitored by the comparing the required versions stored inside the task with the

version numbers attached to the accessed data. By comparing these version numbers

it can be detected if a task is ready for execution, as well as it can be detected if a

certain task which wants to read a certain data has finished before allowing another

task to overwrite that data. The advantages of this approach is that it avoids a

global perspective, i.e. each task is only aware of the handles it accesses and each

handle is only aware of the tasks for which it is waiting. Also, there is no coupling

in between tasks which means tasks can be deleted at any time without notifying its

successors.

2.5 Summary

In this chapter we discussed the origin and highlighted the advantages a dataflow

model has to offer, in comparison to a control flow model. We also discussed the

application of the respective models in various fields of research including high per-

formance computing, computer architecture, etc. We also incorporated a survey on

ongoing research initiatives that employ the use of dataflow models in their compiler

and runtime API construction. In the forthcoming chapters, we will compare and

contrast the performance obtained from few of the aforementioned dataflow models

with the extensions proposed as a part of this thesis.

14

Chapter 3

OpenMP Tasking Model

In this chapter we provide a brief overview of the OpenMP programming model and

the discuss the features of the tasking implementation.

3.1 OpenMP Overview

OpenMP [3] is the de facto standard for a simple, portable, and consistent inter-

face for shared memory programming across a host of hardware architectures and

commercial compilers. It comprises of a set of worksharing and synchronization

directives and runtime routines for the C/C++ and Fortran languages. With the

addition of these directives to sequential programs, a user can convey instructions

to an OpenMP compiler that allows it to generate multi-threaded code. To put it

simply, OpenMP essentially provides a fork-join model of parallel execution (as seen

in Figure 3.1) where all threads in the current thread team, have access to a shared

15

memory. On entering a parallel region a single master thread creates (forks) several

slave threads which execute the work in parallel with the master thread. Each unit

of work is bound to a specific thread for its entire lifetime and uses the data environ-

ment of the thread they are bound to. Once the slave threads have completed their

work they join back with the master thread, at the end of the parallel region, and

execution continues sequentially. The main merits of OpenMP (as of version 2.5) can

be credited to its shared-memory abstraction, incremental parallelism, portability,

scalability, support for fine-grained and coarse-grained parallelism, and ease of use.

Figure 3.1: The OpenMP fork-join model [5]

3.1.1 Limitations of OpenMP 2.5

Even though OpenMP 2.5 was tailor-made for applications exhibiting loop level

parallelism and employing large array-based data structures, it was yet to provide

adequate support to explore unstructured parallelism. Unstructured parallelism is

characterized by:

• Programs exhibiting irregular distribution of data

• Programs where the workload and data access patterns can only be discerned

16

at runtime.

• Programs where along with workload and data access pattern, data dependen-

cies are also dynamic in nature and can be known only at runtime.

OpenMP 2.5 lacks the ability to specify structured dependencies among different

units of work. This could be considered a significant limitation in programming

hierarchical problems like those employed in: a) recursive parallelism with unbounded

loops, b) list and tree traversal, c) dense linear algebra, d) multiblock grid solvers,

etc.

For example, consider the code in Listing 3.1 that illustrates the traversal of a

linked list using worksharing constructs. As seen the dynamic nature of the linked

list suggests an unbounded loop which is essentially a characteristic of unstructured

parallelism and thus difficult to parallelize with OpenMP 2.5 constructs. A possi-

ble approach, involves primarily calculating the number of nodes in the list followed

by the transformation at run time of the linked list into an array, which incurs the

overhead of the additional while loop and array construction thereby limiting perfor-

mance owing to lack of generality and flexibility. Therefore applications exhibiting

similar irregular parallelism may possess the scope for potential concurrency, which

cannot be fully exploited in the absence of support for asynchronous execution of

units of work, that can further benefit their performance.

17

1 whi l e (p != NULL)

2 {

3 p = p−>next ;

4 count++;

5 }

6 p = head ;

7 f o r (i =0; i<count ; i++)

8 {

9 parr [i] = p ;

10 p = p−>next ;

11 }

12 #pragma omp p a r a l l e l

13 {

14 #pragma omp f o r schedu le (s t a t i c , 1)

15 f o r (i =0; i<count ; i++)

16 processwork (parr [i]) ;

17 }

Listing 3.1: Traversal of a linked list using OpenMP worksharing constructs

3.2 Introduction to OpenMP Tasks

An explicit task maybe defined as an instance of executable code and its data envi-

ronment, generated when a thread encounters a task construct. Each task has some

18

private memory associated with it that stays persistent during a single execution.

In addition tasks do not use the data environment of any thread but have a data

environment of their own. The advantage of tasks over threads as highlighted in [9]

mainly include:

• Tasks are more lightweight than threads i.e. the overhead for task creation and

deletion are significantly lower in comparison to that of threads.

• Tasks are not bound to a specific thread and that different parts of a task may

be executed by different threads.

• Tasks allow the programmer to specify units of work that maybe deferred to

be executed at a later time.

• Tasks are very flexible with respect to their placement within a program. It

requires only that they be nested within a parallel region. The construct can

be placed within any other construct, including itself.

• Tasks enable dynamic generation of units of work, to be asynchronously exe-

cuted, allowing expression for irregular parallelism, which ultimately benefits

performance and program structure.

3.2.1 Task Synchronization

Synchronization among tasks maybe achieved through the use of the taskwait or

barrier constructs. On encountering a taskwait construct the encountering master

task must suspend and wait until all of its child tasks have completed up until

19

that point before resuming execution. When a barrier construct is encountered, all

threads must wait until all the other threads in the current thread team reach that

barrier and all tasks created prior to the barrier are completed.

Listing 3.2 below represents the code described in Listing 3.1 only with the inclu-

sion of OpenMP tasks. In this version we see a single thread creating all the tasks

(each node of the list) and all child threads executing the work within the parallel

region, thereby eliminating the overhead for array construction at runtime. Tasks

are dynamically created and scheduled asynchronously allowing scope for additional

concurrency as well as improving the overall program structure by making it more

concise.

1 #pragma omp p a r a l l e l

2 {

3 #pragma omp s i n g l e

4 {

5 p=head ;

6 whi l e (p) {

7 #pragma omp task f i r s t p r i v a t e (p)

8 processwork (p) ;

9 p = p−>next ;

10 }

11 }

12 }

Listing 3.2: Traversal of a linked list using OpenMP tasks

20

3.3 Other Tasking Models

Dynamic task parallelism is gaining popularity for extensive mainstream use in many

new programming models and languages for multi-core processors and shared mem-

ory paradigms. In this section we briefly discuss a few of the more popular paradigms

that have adopted and integrated the advantages of dynamic task parallelism.

3.3.1 Cilk

Cilk [12], is a programming language and runtime system developed at MIT that

generalizes the semantics of C and effectively exploits parallelism in a multithreaded

environment. Its runtime system implements a work stealing algorithm, where each

processor maintains a ready pool of threads. The algorithm allows idle processors

called thieves to steal work from busy processors called victims. Cilk’s scheduler

guarantees that the cost of stealing contributes only to the critical-path overhead,

and not to the overall work overhead thereby benefiting performance by increased

load balancing. It also adopts the work-first principle that minimizes the scheduing

overhead borne by the work of a computation.

Cilk-5 [23] closely resembles the OpenMP tasking model. The spawn statement

corresponds to explicit OpenMP tasks and the sync statement behaves exactly like

the omp taskwait directive. The most important difference between OpenMP and

Cilk is that OpenMP provides constructs to express parallelism beyond the task level

(i.e. loops). Cilk requires the programmer to convert loops into recursion in order

to parallelize them. Cilk also requires tasks to be encapsulated in function calls,

21

whereas OpenMP allows any block of code to become a task. Cilk does not support

the notion of a tied task; therefore, all tasks are free to migrate across threads. Cilk is

closely tied to the GCC compiler, which it uses as its backend. Scheduling algorithms

based on Cilk‘s work stealing scheduler are gaining popularity for its provision for

dynamic lightweight task parallelism.

3.3.2 DARPA HPCS Languages

HPCS languages were developed as part of DARPAs efforts to achieve 2 petaflops

of sustained performance, scalable to 4 petaflops in 2002. The three languages that

evolved were: Chapel [18] by Cray, X10 [15] by IBM and Fortress by Sun Microsys-

tems, all of which identified dynamic lightweight task parallelism as one of the pre-

requisites for success. Unlike the data parallel and the SPMD [17] programming

models that normally assume a fixed number of concurrent threads during program

execution, dynamic task parallelism allows concurrent tasks to be created and joined

at any time during the execution.

The need to support irregular forms of parallelism is evident in features being

included in these new programming languages, notably activities and futures in X10

and the the cobegin statement in Chapel. Another striking feature of X10 is clocks,

that guarantees deadlock-free computation when used correctly with X10s parallel

constructs like async, final, foreach, and atomic. Similar to barrier, clocks allow

better synchronization among the asynchronous tasks executing at the various places.

22

3.3.3 Phasers

The success of clocks led to concept of phasers [34] used in Habanero-C which

apart from deadlock- free synchronization, also accomplished phase-ordering pro-

viding better point-to-point synchronization in fine-grained task-parallel program-

ming. A phaser is typically associated with four modes: signal-wait-next, signal-wait,

signal-only, or wait-only. These different modes define different capabilities for tasks

associated with them. Several phaser operations are available e.g. adding/dropping,

next operation (similar to that in clocks) and phaser-specific signals which depend on

the phasers registration mode. When executing a next call, a task participates in a

barrier or point-to-point operation depending on the registration mode on the phaser.

In addition to next operation, phasers have a next with single statement which allows

advancing phasers associated with an activity to be advanced to next phase and also

executing the stmt as a single statement. This reduces a lot of overhead and thus

provides better synchronization.

3.3.4 Intel Workqueueing Model

The Intel workqueueing model was an early attempt to add dynamic task generation

to OpenMP. The model consisted of the taskq and task constructs. This proprietary

extension allows hierarchical generation of tasks by nesting of taskq constructs. Syn-

chronization of descendant tasks was controlled by means of implicit barriers at

the end of taskq constructs. The constructs had been intentionally designed to be

similar to existing worksharing constructs, but the implementation exhibited some

23

performance issues.

3.4 Limitations of the OpenMP Tasking Model

The overhead of communication and synchronization between concurrent tasks typ-

ically presents an obstacle to getting high performance and scalability on parallel

systems. In order to support diverse workloads in multi and many-core architectures

it is desirable to have a high level synchronization mechanism that is able to sup-

port point-to-point synchronizations among asynchronous tasks. The execution of a

task normally (as of OpenMP 3.1) occurs at any point between its creation and its

encounter with a task synchronization point namely taskwait or barrier (to name a

few) which serve as a global barrier. For example in case of barrier, threads in a

thread team must wait for the slowest one to reach the barrier in the program, which

may typically degrade performance.

We identify the following roadblocks in the current OpenMP 3.1 specification:

• There are no means to specify waiting on a specific task(s).

• Support for expressing data dependencies among tasks is absent.

• The programmer has limited control over scheduling of tasks.

• Increased data synchronization overheads limits scalability and performance of

the application.

Since the current model provides no means to specify waiting on a particular

24

task or a set of tasks, the programmer is forced to make use of the global barriers

taskwait or barrier which prevents a given parallel algorithm from fully exploiting

the maximum concurrency achievable.

Code in Listing 3.3 illustrates the problem mentioned above. The for loop gener-

ates a number of tasks, each writing to an element of the array A. The statement at

line 10 reads from A[j]. Since OpenMP does not provide any means to wait specifi-

cally on the task that writes to A[j], and the programmer must instead rely on the

the taskwait which waits for all created tasks to complete. This is necessary since we

must avoid a situation where a read in line 10 may happen prior to a write in line 5

for elements in array A, in order to maintain data integrity.

1 #pragma omp p a r a l l e l

2 {

3 f o r (i = 0 ; i < N; i ++) {

4 #pragma omp task shared (A)

5 A[i] = f () ;

6 }

7 / ∗ proce s s some element o f A ∗ /

8 j = get index (0 ,N) ;

9 #pragma omp taskwai t

10 g (A[j]) ;

11 }

Listing 3.3: Absence of point-to-point synchronization among OpenMP tasks

25

The need for controlling synchronization among such tasks is particularly impor-

tant when dealing with applications that a) can be expressed through a task graph,

b) exhibit pipeline parallelism, and c) require wavefront synchronization.

We explore ways to reduce the need for global synchronization, by including ad-

ditional language features to the current specification, which tailor a macro-dataflow

model strategy of execution. In the next chapter we shall discuss this approach which

entails extending the current OpenMP tasking construct to support a specific order-

ing of tasks based on the dependence relationships existing among the individual

tasks.

3.5 Summary

In this chapter we began by providing a brief overview to the OpenMP programming

model. We discussed the limitations of this model, OpenMP 2.5, which led to the

introduction of the tasking model (in the OpenMP specification 3.0). We further

described how other mainstream programming models have gradually leaned towards

adopting the concept of dynamic task parallelism. Lastly, we spoke of the limitations

accompanying the present OpenMP tasking model. In the next chapter we focus on

how to overcome these limitations which primarily serve as motivation for this thesis.

26

Chapter 4

Proposed Extensions to the

OpenMP Task Construct

In this chapter we propose to extend the current OpenMP tasking model, by propos-

ing language extensions to the OpenMP task construct. Our objective is to lend

support for unstructured parallelism to the current OpenMP specification by allow-

ing point-to-point synchronization among asynchronous tasks. This serves as our

main motivation for this thesis. We also discuss target algorithms which may benefit

in performance, owing to a specific ordering of tasks expressed by the programmer.

4.1 Extensions to the OpenMP Task Construct

The solution to the scheduling of dynamic tasks comprises of determining firstly when

a given task may execute, and secondly determining where a task may execute. The

27

present OpenMP task model provides limited means for a programmer to control

scheduling of tasks created within a parallel region. Addressing the latter problem,

there exists a one-to-one mapping of the implicit tasks to the threads constituting

the regions thread team, but the explicit tasks created in the region may execute

on any thread in the team. Addressing the former problem as to when a task may

execute, it could occur at any point between its creation in the program and the next

taskwait or barrier construct (whichever is encountered first). Thus, the order of task

execution is solely governed by the global synchronization points created with those

constructs. Finer grained control and manipulation of ordering of specific tasks have

to involve those global operations, which introduce unnecessary overhead in most

cases.

We address such limitations by providing three clauses to the OpenMP task con-

struct [25]. Taken together, these extensions allow the programmer to express point-

to-point synchronizations between sibling tasks of the same parent in an OpenMP

program. The extensions aim at enhancing synchronization among tasks. By syn-

chronization we mean to recognize data dependencies amongst tasks that are modi-

fying and reading a shared resource, and ensuring that they are not violated. If the

tasks do not access a shared resource they are considered independent.

Similar extensions to the OpenMP tasking model [22] has been proposed by the

Barcelona Supercomputing Center (BSC). However, our approach may be consid-

ered more concise and expressive in terms of implementing task-level granularity.

It supports fine-grained synchronization based on the data dependencies among the

28

tasks, without the addition of extreme overhead for maintaining task synchroniza-

tion. This flexible scheduling of computations to available resources also accounts

for improved load balancing. We introduce the notion of “tags“, or synchronization

object identifiers among sibling tasks. These “tags“ may be ideally expressed as a

list of integral expressions (as simple as a unique constant). If the programmer’s

intent is to synchronize a variable access, then this identifier may uniquely identify

that variable (e.g. an address). We show the extensions proposed and Listing 4.1

explains very briefly the functionality of the extensions:

• #pragma omp task out [t1,t2,....,tn] A task is proposed to have “out” depen-

dence if a task might compute variables required by succeeding tasks.

• #pragma omp task in [t1,t2,....,tn] A task is proposed to have “in” dependence

if it requires variables that have been computed previously.

• #pragma omp task inout [t1,t2,....,tn] The combination of the two extensions

explained above which entails a task having an in and out dependence on the

same tag.

t1,t2,....,tn specifies the argument list that can be represented in the form of inte-

ger expressions (which may include constants, an constant expression, variables, an

address etc) denoting the tags as specified by the programmer.

In the Listing 4.1 below, task 3, due to the existence of an in dependence owing

to tags t1 and tag t2, is put on hold until task 1 and task 2 (which have tags t1 and

tag t2 respectively as out dependencies) complete execution. Similarly, task 4 has

29

to wait only until task 2 completes execution and can be executed in parallel with

both task 3 and task 1. In the absence of our extensions, to maintain the correct

order of task execution, we may insert a taskwait clause between task 2 and task 3.

By doing so, task 4 would have to wait for a global synchronization point and will

not be scheduled in parallel with task 1.

1 #pragma omp parallel num_threads (2)

2 {

3 #pragma omp master

4 {

5 #pragma omp task out(t1) /* task 1 created */

6 x = f1();

7 #pragma omp task out(t2) /* task 2 created */

8 y = f2();

9 #pragma omp task in(t1) in(t2) out(t3) /* task 3 created */

10 z = f3(x,y);

11 /* task 3 has to wait for task 1 and task 2 to complete execution

*/

12 #pragma omp task in(t2) out(t4) /* task 4 created */

13 w = f4(y,z)

14 /* task 4 has to wait on only task 2. Can scheduled in parallel

with task 1 and task 3 */

15 }

16 }

Listing 4.1: sample code quoting the proposed extensions.

30

4.2 Categories of Data Dependence

Before we discuss the target applications that may benefit from the proposed ex-

tensions and explain the details of the extension’s implementation, in the OpenUH

runtime library, it is important to enumerate the different categories of dependen-

cies the extensions are capable of handling, and explain the semantics of using those

extensions.

Figure 4.1 represents the three dependence relationships that may exist among

the several different tasks. T1 to T4 represents four such tasks. The numbers adjacent

to each task, are the synchronization objects, namely tags, that were introduced in

the previous section. Taking Figure 4.1 into consideration, we highlight the typical

data dependencies encountered at the time of parallelizing scientific algorithms.

1. True/Flow Dependence: A True dependence is encountered between statement

S1 and S2 when the former sets a value that the latter uses. This dependence

is also referred to as the read after write (RAW) dependence. In Figure 4.1,

we encounter four true dependencies, namely:

(a) Between T1 and T4 for tag 2

(b) Between T1 and T4 for tag 6

(c) Between T2 and T4 for tag 4

(d) Between T2 and T3 for tag 10

2. Anti Dependence: An Anti dependence is encountered between statement S1

and S2 when the former uses a value that the latter defines. This dependence

31

is also referred to as the write after read (WAR) dependence. In Figure 4.1,

we notice an anti dependence between T3 and T4 for tag 10.

3. Output Dependence: A Output dependence is encountered when both state-

ments S1 and S2 define the value of some variable. In Figure 4.1, an output

dependence is noticed for tasks T1 and T4 for tag 5.

T1 T2

T3

T4

2

5

6

3

10

4

5

2

4

10

10

6

5

TRUE ANTI OUTPUT

Figure 4.1: Dependency graph with true, anti, and output dependencies

In Figure 4.1 each task has been labeled with its respective tags establishing

the existence of dependence relationships among them. The true dependence is the

32

relationship that forms the data-flow execution pattern for tasks. In our extensions,

we also allow both anti and output dependencies to exist and the runtime library

will ensure that the execution of those dependent tasks follow the order in which

they appear in the program (or are created).

4.3 Target Algorithms

We applied three algorithms to evaluate the advantages of obtaining high scalability

and improved performance, with the application of the proposed extensions to the

OpenMP task construct.

1. The LU decomposition algorithm - characteristic of dense linear algebra compu-

tations found within the LINPACK benchamrks used to rank supercomputers

collected by the TOP500 website.

2. Smith-Waterman algorithm - a wavefront-based programming paradigm used

in scientific applications such as those based in sequence alignment, biological

sequence, etc.

3. Matrix Multiplication - found in Level 3 BLAS libraries.

In this context our challenge was the combination of two goals: achieving high

performance and maintaining the accuracy of the scientific algorithms.

33

4.3.1 LU Decomposition

LU Decomposition is a well studied algorithm for uniprocessor and multiprocessor

systems. It is frequently used to characterize the performance of high-end parallel

systems used in LAPACK benchmarks. Other than the conventional blocking algo-

rithms, there are other algorithms studied to improve the performance and scalability

of LU Decomposition, such as dynamic blocking [38], and pipeline processing [30].

In linear algebra, LU Decomposition involves factorizing a matrix as a product of a

lower triangular and upper triangular matrix. It is widely used in solving a system

of linear equations, matrix inversion or computing the determinant of a matrix.

The problem definition is as follows:

A = L ∗ U (4.1)

where L is a lower triangular matrix and U is an upper triangular matrix.

We focus on a blocked version of the algorithm which takes advantage of the fact

that higher performance can be obtained by fitting smaller chunks of data sets in

cache memory by employing a divide and conquer strategy.

Figure 4.2: Progress of Blocked LU Decomposition per iteration [41]

With the assistance of Figure 4.2, we provide a more detailed explanation of

34

the algorithm: An N X N matrix is divided into M X M equal blocks where M

<< N. Each of the M iterations have to essentially execute the following steps as

demonstrated in Figure 4.2, considering each block to be an explicit OpenMP task.

1. Computation of the top-left corner block (in blue).

2. Computation of the first row and column blocks (green) only after step 1.

3. Computation of the rest of the blocks (yellow) based on the results obtained

from step 2.

In the next iteration, blocks processed in step 3 of the previous iteration become

the target of calculation as shown in Figure 4.3. Figure 4.3 represents the depen-

dency graph for a 5 X 5 block matrix where we can clearly observe the dependence

relations where each arrow illustrates an existent data dependence across neighbor-

ing blocks.

Figure 4.3: A single iteration highlighting data dependence relations across blocks

[41].

35

In every iteration of the outermost diagonal block is been factorized. The factor-

ization of that block enables the execution of the swap and triangular solve operations

on all blocks in the same column and row accordingly. All the column and row blocks

can be updated in parallel since there are no dependencies among them. Blocks of

the inner part of the matrix can be updated with a matrix multiplication operation as

soon as their dependencies are solved. This means that for each of the blocks their

corresponding swap and triangular solve blocks must both finish executing before

they are available for execution. The iteration of this algorithm over all the diago-

nal blocks produces the final decomposition of the matrix. Synchronization between

steps of the same iteration uses global synchronization points (such as taskwait) to

avoid data races. The existence of such data dependencies hurts the performance

and scalability of the algorithm especially for large data sets.

Listing 4.2 represents the pseudo-code for execution of the LU Decomposition al-

gorithm using OpenMP tasks. The use of a taskwait depicts the presence of a global

synchronization point. This indicates that before ProcessInnerBlock can execute,

all tasks executing ProcessBlockOnRow and ProcessBlockOnColumn must complete.

The presence of a taskwait compromises the flexibility with which tasks can be op-

timally scheduled at runtime and also limits the margin of achievable concurrency.

36

1 #pragma omp parallel

2 {

3 #pragma omp master

4 {

5 for (i=0; i < matrix_size; i++) {

6 /**** Processing Diagonal block ****/

7 ProcessDiagonalBlock (.....);

8

9 for (i=1;i<M;i++) {

10 /**** Processing block on column ****/

11 #pragma omp task

12 ProcessBlockOnColumn (.......);

13 /**** Processing block on row ****/

14 #pragma omp task

15 ProcessBlockOnRow (........);

16 }

17 #pragma omp taskwait /**** global synchronization point ****/

18 /**** Processing remaining inner block ****/

19 for (i=1;i<M;i++)

20 for (j=1;j<M;j++){

21 #pragma omp task

22 ProcessInnerBlock (............);

23 }

24 #pragma omp taskwait

25 } // end of outer for loop

26 } // end of master region

27 } // end of parallel region

Listing 4.2: Tasking implementation for LU decomposition

37

4.3.2 Smith-Waterman Algorithm

The Smith-Waterman algorithm is used primarily in the field of DNA and protein

sequencing, where with the help of local sequence alignment, we are able to determine

similarities between biomolecule sequences according to a scoring system defined by

a substitution matrix and gap penalty function. It employs a dynamic computational

matrix technique that makes the algorithm more computationally intense, especially

in the presence of data dependencies which restrict it from scaling well for parallel

applications. The time complexity of this algorithm for comparing two sequences is

O(mn), where m and n are the lengths of the two sequences being compared in order

to obtain the most optimal local alignment between the two.

The basics steps involved in the algorithm are as follows:

1. Populate the dynamic programming scoring matrix

2. Calculate the maximal score in the scoring matrix

3. Trace back the path that leads to the maximal score to find the optimal local

alignment.

38

Scoring Matrix H is determined as follows:

H(i, 0) = 0, 0 ≤ i ≤ m

H(0, j) = 0, 0 ≤ j ≤ n

if ai = bj thenw(ai, bj) = w(match) or

if ai 6= bj, w(ai, bj) = w(mismatch)

H(i, j) = MAX(0,

H(i− 1, j − 1) + w(ai, bj), (Match/Mismatch)

H(i− 1, j) + w(ai,−), (Deletion)

H(i, j − 1) + w(−, bj), (Insertion)

)

(4.2)

where :

• a,b = individual alphabets of the two sequences.

• m = length(a)

• n = length(b)

• H(i,j) is the maximum Similarity-Score between a suffix of a[1...i] and a suffix

of b[1...j]

• w(x,y) is the gap penalty

For the purpose of this thesis we have employed a symmetric square scoring ma-

trix whose costs are derived from the observed substitution frequencies in alignments

39

of related sequences.

Figure 4.4: Data dependencies in the wavefront pattern exhibited by Smith-

Waterman algorithm [29].

Figure 4.4 [19] represents an example of a 2D wavefront, where updating an ele-

ment in the matrix requires the updating of previous neighboring elements, resulting

in a computation that resembles a diagonal sweep across the elements in the logical

plane. Each element in the scoring matrix has three explicit dependencies on: a)

its immediate north neighbor, b) its immediate west neighbor, and c) its immediate

north-west neighbor. The computations start at the extreme corner of the matrix

and a gradual sweep moves along the diagonal up to the next corner. This diago-

nal represents the number of computations or elements that could be executed in

parallel without dependencies among them. Hence the individual elements on each

diagonal are mutually independent of each other and depend only on the respective

neighboring elements from the previous two diagonals. As illustrated in Figure 4.4,

40

elements of a similar color on each diagonal can be executed in parallel provided

their respective dependencies has been satisfied. The number of such independent

elements gradually increases as seen in Figure 4.5 to the maximum length of the di-

agonal. Then it will decrease to end in the opposite corner of the grid. This diagonal

sweep is the reason for the name wavefront. In Figure 4.5 we observe that in the first

cycle, only one element could be calculated. In the second cycle, two elements could

be calculated. In the third cycle, three elements could be calculated, and so on. This

feature implies that the algorithm has a very good potential for parallelism.

Figure 4.5: Progression in the scoring matrix generation.

By applying the equation in 4.2, all values of the scoring matrix can be obtained.

The gap cost in above equation is the penalty for inserting a gap character “-“ in

the event of a mismatch in sequence alignment.

41

We advocate the use of a task-based approach over a thread-based approach

primarily because a) tasks are much more lightweight compared to threads, and b)

in a task-based model, the task scheduler is capable of manipulating the scheduling

of tasks based on the discretion of the programmer. We can tweak the runtime task

scheduler to adapt itself to suit the requirements of the application. For instance,

in this particular case we implemented and enabled a lockless approach (described

in Chapter 5) for accessing the task queue’s so that we could reduce the amount

of contention among threads when they try to steal work from the task queues

simultaneously. We noticed a significant improvement in performance when utilizing

the lockless queue implementation.

The initial OpenMP tasking implementation parallelized the diagonals using a

brute force approach where we compute every single element of each diagonal as

a task in parallel. This approach caused a degradation in performance with the

increase in the number of threads primarily due to: a) enormous overhead generated

for creating numerous tasks (a task for each element on the scoring matrix) especially

for larger problem sizes, b) the additional overhead incurred in synchronization of

all these numerous tasks.

In order to improve the parallelization further and take advantage of the avail-

able hardware, a second OpenMP tasking version was implemented. In this version

instead of creating a task for computing a single element of the matrix, we divide all

the work into smaller chunks, where a cluster of elements on each diagonal comprises

of a task. Such an approach coarsens the granularity of the parallelizing application

leading to better performance in comparison to the fine grained approach initially

42

implemented.

1 #pragma omp parallel

2 {

3 #pragma omp master

4 {

5 for(wave = 0; wave < waves; ++wave) {

6 /* obtain number of element in the present diagonal */

7 obtain_num_elements ();

8 /* traversing elements of each diagonal */

9 for(ii = 0; ii < elements; ii+=chunk) {

10 min = MIN(elements ,ii + chunk);

11 #pragma omp task firstprivate(ii , np, mp, chunk , elements)

12 {

13 /* chunk of elements comprising of each task */

14 for (i = ii; i < min; i++)

15 {

16 /* acquiring north -west neighbor */

17 temp [0] = H[(np-i) -1][(mp+i) -1] +

18 similarity(seq_a[a][(np-i) -1],seq_b[a][(mp+i) -1]);

19 /* acquiring west neighbor */

20 temp [1] = H[(np-i) -1][(mp+i)]-gap;

21 /* acquiring north neighbor */

22 temp [2] = H[(np-i)][(mp+i) -1]-gap;

23 temp [3] = 0;

24 H[(np-i)][(mp+i)] = find_array_max(temp ,4);

25 }

26 } // task

27 } // inner for loop

28 #pragma omp taskwait /* global barrier */

29 } // outer for loop

30 } // master

31 } // parallel region

Listing 4.3: Tasking implementation for Smith-Waterman

43

Listing 4.3 represents the pseudo-code for the chunked task implementation of

the Smith-Waterman algorithm. A chunk of elements as specified in the inner for

loop in line 19 denotes a single task. Array H denotes the scoring matrix where

each element represents the maximum of its north, west and north-west neighboring

elements. However the presence of a taskwait in line 34 of Listing 4.3 prevents us from

accessing more than a single diagonal at a given time as in Figure 4.6. This means

elements of any given diagonal have to wait until all the elements of its previous

diagonal have completed execution, even after their respective dependencies in the

aforementioned diagonal have been satisfied. This prevents the code from exploiting

the maximum amount of concurrency that is achievable, even in the presence of

available resources. Since the current OpenMP 3.1 specification is not yet equipped

to handle explicit dependencies among tasks of the different diagonals, we envision

an approach with our proposed extensions to the OpenMP task construct that might

allow us to eliminate this taskwait, thereby allowing tasks on multiple diagonals to

be executed concurrently only after their respective dependencies in the previous two

diagonals have been resolved as seen in Figure 4.7.

It is to be noted that previous efforts have been made to accelerate this algo-

rithm using both homogeneous and heterogeneous accelerator architectures as well

as hybrid programming models. However the scope of our implementation solely lies

within a shared memory environment with the use of OpenMP 3.1/4.0 constructs.

44

Figure 4.6: Scoring matrix traversal in the presence of global barrier.

Figure 4.7: Scoring matrix traversal without the global barrier

4.3.3 Matrix - Matrix Multiplication

We use the matrix-matrix multiplication microbenchmark for assessing the overhead

generated by the proposed extensions at runtime. We also apply this benchmark

in gauging the overhead generated by related dataflow model implementations like

the OmpSs runtime and QUARK (as described in Chapter 2) API. We perform this

analysis in Chapter 6 of this thesis.

A naive version of a matrix - matrix multiplication [16], is seen in Listing 4.4,

where A, B and C are the naive matrices of size N X N, the algorithm has the com-

plexity of O(n3) flops while operating on O(n2) data elements.

45

1 for i = 1 to N

2 for j = 1 to N

3 for k = 1 to N

4 C(i,j) = C(i,j) + A(i,k) * B(k,j)

Listing 4.4: Pseudo-code for Naive Matrix Multiplication

When working with large matrices, it becomes impossible to store the computa-

tions within the cache hierarchy of the processor. As a workaround, it is advisable to

perform certain optimizations, for example, break the workload into smaller chunks

or blocks of computation. Since each block uses a smaller piece of the data it fits

well into caches thus allowing scope to improve temporal and spatial locality.

1 for i = 1 to B

2 for j = 1 to B

3 load block C(i,j) into cache

4 for k = 1 to B

5 load block A(i,k) into cache

6 load block B(k,j) into cache

7 C(i,j) = C(i,j) + A(i,k) * B(k,j)

8 do a matrix multiply on blocks

9 writes block C(i,j) back to memory

Listing 4.5: Pseudo-code for Blocked Matrix Multiplication

The pseudo-code of such a blocked matrix multiplication algorithm is shown in

Listing 4.5, where A, B, and C are the matrices of size N X N divided into b X b

blocks where b = N/B. Matrix multiplication is an embarrassingly parallel algorithm

that allows the calculation of the product of each block in parallel without any

46

dependencies.

Figure 4.8: Dependency graph for Matrix Multiplication [16]

The dependency graph shown in Figure 4.8 illustrates how each sub-block of the

matrix can be executed independently in parallel with other blocks on available cores.

The only synchronization point is at the end of the computation, where it becomes

essential to wait for all the blocks to finish processing. At the return of the function,

we have the result for the whole matrix, with each core completing its own part of

the result.

47

4.4 Summary

In this chapter, we have described at length the proposed extensions to the OpenMP

task construct, which provides a mechanism for expressing point-to-point synchro-

nizations among sibling tasks. We provide, as example, two applications namely

- LU Decomposition (involving dense linear algebraic computations), and Smith-

Waterman algorithm (exhibiting wavefront parallelism). Each shows potential for

improvement in performance if a specific ordering of tasks is enforced. This would

allow them to exploit higher degrees of concurrency by the eliminating a global syn-

chronization point (like taskwait) so long as their respective data dependencies are

correctly honored. We also briefly discussed the matrix-matrix multiplication mi-

crobenchmark. The purpose for utilizing this benchmark is to make an assessment

with regards to the overhead generated, when using the proposed extensions and

compare it with overhead generated from related dataflow model implementations.

48

Chapter 5

Algorithm and Implementation

In this chapter we describe the algorithm, which adds support to detect and pro-

cess data dependencies among OpenMP explicit tasks, implemented at the OpenUH

OpenMP runtime library at length. Table 5.1 introduces a few terminologies that

we shall be referring to throughout the rest of the chapter.

5.1 Introduction to the OpenUH Compiler

The OpenUH compiler [14] as seen in Figure 5.1 is a branch of the open source

Open64 compiler suite for C, C++, Fortran 95/2003. OpenUH includes support for

OpenMP 3.x tasks. This consists of front-end support ported from the GNU C/C++

compiler, a back-end translation implemented jointly with Tsinghua University, and

an efficient runtime task scheduling infrastructure which holds support for improved

nested parallelism.

49

Figure 5.1: OpenMP implementation in the OpenUH Compiler

Its implementation supports a configurable task pool framework that allows the

user to adapt the runtime environment based on the needs of the application. For

instance, for greater control over task scheduling, the programmer can choose at

runtime an appropriate task queue organization as well as control the order in which

tasks are added/removed from a task queue. As described in [28] the efficiency of

the runtime implementation will therefore heavily impact the performance of appli-

cation’s using tasks. An ideal task scheduler will schedule tasks for execution in a

way that maximizes concurrency and, therefore, performance.

5.1.1 OpenUH Runtime Tasking Implementation

The OpenUH OpenMP runtime library (RTL) offers the following environment vari-

ables which allows the programmer to tweak the runtime in order to extract maximum

performance from a given application:

50

• O64 OMP TASK POOL: allows the user to control the task pool environment.

The OpenUH RTL provides a variety of distributed queue strategies with work

stealing, to help configure the task pool environment -

– default : single-level task pool with 1 task queue per thread holding tied

and another task queue holding untied tasks.

– simple: single-level task pool, 1 task queue per thread holding both tied

and untied tasks.

– 2level : two-level task pool with 1 task queue per thread, and 1 community

queue for the team. Each queue holds both tied and untied tasks. Work

can be stolen from the community queue in chunks.

The use of multiple public queues instead of a shared global queue, allows the

contention to be distributed across the system.

• O64 OMP TASK QUEUE: allows user to control how the task queues operate.

This environment variable controls how tasks are entered and removed from

the queues as well as determines the execution order of the tasks. The available

options are:

– DEQUE, a doubled-ended queue where tasks can be stolen from the head

or the tail of the queue.

– FIFO, a First In First Out queue where tasks are stolen from queue’s own

head or from a victim’s head. This allows a breadth-first execution of

tasks.

51

– LIFO, a Last In First Out queue where tasks are stolen from queue’s own

tail or from a victim’s tail. This allows a depth-first execution of tasks.

This method benefits from the data locality of depth-first execution but

requires more memory for storing the excess tasks.

There is also a CFIFO or concurrent FIFO ordering of tasks which allows tasks

to access the pool concurrently from the head and tail.

• O64 OMP TASK CUTOFF: allows user to control the cutoff condition for task

generation. The OpenUH runtime allows the programmer to choose from a

number of values, each of which sets the task create condition that determines

whether tasks will be queued or executed immediately.

– always : always cuts off explicit tasks which means that explicit tasks will

never get created.

– never : never cuts off explicit tasks implying that explicit tasks will always

get created.

– num threads : cuts off task generation if team size is less than specified

value (by default is set to 2).

– switch: cuts off task generation if the “switching depth” reaches this spec-

ified value (by default is set to 100).

– depth: cuts off task generation if current depth in the task tree reaches

this specified value (by default set to 100).

• O64 OMP QUEUE STORAGE: controls how slots in the queue are stored.

The available options include:

52

– ARRAY : where the slots in the task queues are stored in an array. This

is the default configuration.

– LIST : where the slots in the task queues can be stored in a linked list.

This allows the size of the list to be dynamically altered based on the

number of tasks in the queue.

– DYN ARRAY : an optimization which applies to the ARRAY implemen-

tation where work is grabbed from a GLOBAL queue when the array if

completely full. When the GLOBAL queue is full, it dynamically doubles

in size.

– LOCKLESS : provides a lockless queue implementation inspired from Haben-

ero C [13], where we use a compare-and-swap operation to obtain atom-

icity of operations. This configuration was implemented to alleviate the

contention overhead generated from a mutual lock based approach, in

the event that the task queues are bombarded by threads simultaneously

looking for work.

Explicit details explaining the scheduling of tasks (taking explicit data depen-

dencies into consideration), in the OpenUH runtime, will be explained in the next

section.

53

5.2 OpenUH Runtime Implementation for Pro-

posed Extensions

In this section we describe the algorithm implemented at the OpenUH OpenMP

runtime library that provides support for the extensions proposed in Chapter 4.

We introduce a data structure (an unordered hashmap) called the “tag” table as

described in Table 5.1 in the runtime which dynamically detects the dependencies

associated among the tasks in the form of tags as specified by the programmer.

5.2.1 Dependency Setup

Algorithm 1 explains the procedure with which the runtime library interprets the

dependencies parsed by the compiler at the time of task creation. In the absence

of the extensions, the OpenUH runtime environment employs a scheduling strategy

that places a newly created task immediately into a task pool, to be executed by the

next available resource. With the proposed extensions implemented, this behavior is

altered wherein, only when a task with its corresponding Dep Count equivalent to

zero is allowed to be placed in the task pool. The Dep Count counter is a parameter

that indicates the number dependencies associated with that task. The task is put

on hold (in a WAIT state) until all its previous requisite dependencies are resolved.

54

Table 5.1: Important Terminology

Terminology Meaning

tag The unique synchronization identifier associated with an output and

corresponding input dependence relation.

tag/parent

table

A hash table representation, with the tags acting as hash keys and a

list of input and output dependencies associated with that particular

tag acting as the corresponding hash value. Hence, one entry in the tag

table may hold dependence information of one or many tasks depending

upon the data dependence relationship.

Dependency

list

The corresponding hash value in the parent table that represents the

list of dependencies (in or/and out) associated with the same tag (hash

key).

OUT counter A counter that keeps track of the number of OUT dependencies asso-

ciated with each tag. Hence every entry in the hash table has an asso-

ciated OUT counter that is incremented when an OUT dependence is

introduced in the table for a particular tag. It is decremented every time

an OUT dependence is honored and is deleted from the table.

Dep Count A dependency counter flag associated with each task. When Dep Count

= 0, the task has no associated dependencies and is free to be sched-

uled. When Dep Count != 0, the task has to wait until its associated

dependencies have been honored. This counter is incremented every time

an OUT/IN dependence is introduced in the table for a given tag, and

decremented when the dependence is honored and removed from the

table.

Dep List A list of IN/OUT dependencies associated with each task, This is useful

especially at the time of task deletion in order to verify if all dependencies

of current tasks have been honored. If so, it decrements the Dep Count

of the subsequent dependent tasks.

55

ALGORITHM 1: Addition of tags - Task Creation
Input: # pragma omp task OUT (l1,l2,..,ln) IN (w1,w2,..,wn)

Dep Count = 0;

repeat

for (All IN and OUT dependencies specified for a given task T: Dep) do

Access the global hash parent table: PTable

if tag:Dep found in PTable ;

then

• Append dependency information to the dependency list (hash value) of tag : dep ;

• Add dependency information to Dep List for the task;

else

create tag TAG (hash key) in PTable ;

if Dep(TAG) == OUT then

1. OUT counter += 1 for TAG;

2. backtrace dependency list until another OUT dep is encountered;

3. count the IN dep’s in between (t count);

4. Dep Count += t count (of T);

end

if Dep(TAG) == IN and OUT counter != 0 then

Dep Count += t count (of T);

end

• Append dependency information to the dependency list (hash value) of tag : dep ;

• Add dependency information to Dep List for the task;

end

end

until (ln + wn) == 0 ;

if Dep Count of task T == 0 then

release T for execution;

end

56

The dependencies specified by the programmer are individually associated with

a ’tag ’. Each tag holds a unique entry in the parent table as a hash key. Its corre-

sponding hash value is a linked list representation of all dependent tasks sharing the

same tag. At any time when a task’s Dep Counter reaches zero, it has satisfied all

its related dependencies and can now be placed in the task pool for it to be sched-

uled. However, if the Dep Counter is not zero, it implies that it has to wait for the

subsequent dependent tasks to finish execution before it could be placed on the task

pool. Once a task is placed in the task pool it is available for execution based on the

task pool and task queue organization applicable at runtime.

Figures 5.2 to 5.5 represent the manner in which tasks with dependencies (tags)

once created, are added to the tag table.

Figure 5.2: Addition of Task 1 to the tag table

57

Figure 5.3: Addition of Task 2 to the tag table

Figure 5.4: Addition of Task 3 to the tag table

58

Figure 5.5: Addition of Task 4 to the tag table

We notice that the value of the Dep Counter varies according to the number of

IN and OUT dependencies specified for each and every task. Figure 5.5 represents

the state of the parent table (and Dep Counter) at runtime, after all the tasks in

Figure 4.1 have been created.

5.2.2 Dependency Resolution

Algorithm 2 illustrates the procedure with which an exiting task removes the requisite

dependency information from the parent table after it has finished execution. This

allows the scheduling of the subsequent tasks which had been waiting (in the WAIT

state) for the current task to complete execution.

59

ALGORITHM 2: Deletion of tags - Task Exit
Input: exiting task T’s Dep List

repeat

Node = Dep List(T)->tag ;

Access corresponding Node in PTable ;

if (Node(Dep) == IN) then

• forward traverse dependency list (hash value of tag)

until an OUT dep is encountered:T out;

• Dep Count(T out->task) -= 1;

• if (Dep Count(T out->task)) == 0 then

schedule task for execution;

end

end

if (Node(Dep) == OUT) then

• OUT counter(Node) -= 1;

• while (An OUT dep not encountered on forward traversal of dependency list) do

1. Dep Count(intermediate task) -= 1;

2. if Dep Count(intermediate task) == 0 then

schedule task for execution;

end

end

end

Next Node = Node->next ;

remove Node ;

Node = Next Node ;

until Dep List(T) == NULL ;

60

Abiding by the scheduling strategy explained in Algorithms 1 and 2, tasks T1 to

T4 (represented in Figures 5.2 to 5.5) are scheduled in the following order:

1. Task T1 has three associated tags 2, 5, and 6, all of which have a Dep Count

with value zero. This is owing to the fact that task T1 has three out depen-

dencies (identified by T1-out in the parent table) that form the first node in

the Dep List and hence free from prior dependencies. Similarly task T2 is as-

sociated with tags 3, 4, and 10. Both tasks T1 and T2 can hence be released

to the task pool and are in a position to be scheduled concurrently.

2. Task T3, after being created has to wait until task T2 completes execution owing

to a single dependency (i.e. T2) attributing to its Dep Count. T2 decrements

the counter as soon as its finishes execution allowing T3 to be placed in the

task pool.

3. Task T4 is accountable for three true dependencies (tags 2,4,6), one output

dependence (tag 5) and one anti-dependence (tag 10) thereby setting the value

of the Dep Count to 5. T4 is thus placed in the pool only after the execution

of task T3.

Figures 5.6 to 5.9 represent the manner in which tasks after completing execution

are deleted from the tag table. Before the tasks are removed from the table, it

is essential that the Dep Counter is updated for their subsequent dependent tasks

accordingly, after the dependency has been resolved.

61

Figure 5.6: Deletion of Task 1 from the tag table

Figure 5.7: Deletion of Task 2 from the tag table

62

Figure 5.8: Deletion of Task 3 from the tag table

Figure 5.9: Deletion of Task 4 from the tag table

Please refer to Appendix A, for a more detailed explanation on the process of

the actual implementation of the two aforementioned algorithms in the OpenUH

OpenMP RTL.

63

5.2.3 Efficient Handling of Tag Table and Tag Entry

In order to support the development of systems that avoid unsafe data race condi-

tions, it is imperative to implement an efficient locking strategy to ensure atomic

access to a shared resource. Locking costs introduce overheads and may limit scala-

bility of a given implementation owing to contention of resources. The granularity of

the locking mechanism is also vital. A global lock incurs far more costs than a lock on

a local data structure. In the implementation of our extensions we avoid the frequent

use of global locks thereby eliminating waiting time for tasks created at runtime to

access the parent table. The parent table is locked only if a new tag is being inserted

in the hash table and not at the time of searching for existing tags in the table or even

while appending related dependencies to the Dependency List (linked list associated

with each tag, representing the corresponding hash value). This considerably limits

the amount of overhead that would normally have been introduced into the system

if the parent table had been entirely locked at the time of its update.

5.3 Summary

In this chapter we provided an overview to the OpenUH OpenMP runtime library

(RTL). We discussed the two algorithms created for the purpose of implementing the

proposed extensions introduced in Chapter 4 in the OpenUH OpenMP RTL. With

the help of an example we illustrated the manner in which the runtime is capable of

detecting the dependencies among tasks, expressed by the programmer, and carefully

process them without compromising data integrity.

64

Chapter 6

Performance Evaluation And

Results

In this chapter we will be discussing the results obtained on applying the OpenUH

task extensions on the applications proposed in Chapter 4.

At the time of implementing the extensions and procuring the results on each of

the applications, we lay emphasis on the following:

• Performance: How well the applications perform with and without the use of

the extensions. The measure of scalability with respect to the number of cores

being utilized is crucial. A performance comparison between the implemented

extensions has been made with respect to other similar dataflow models.

• Programmability: We also lay emphasis primarily on the ease of implemen-

tation. We suggest approaches with which the extensions can be implemented

65

with minimalistic changes in lines of code.

• Accuracy: Our objective was to implement the extensions in a manner that

does not hamper the integrity of the results obtained. All our applications

(with and without the use of the extensions) have been tested thoroughly and

are error free.

6.1 Testbed

All three programs tested have been programmed in the C language. The perfor-

mance results have been obtained for the following compilers:

1. GNU (gcc) version 4.7.1

2. Intel (icc) version xe12.0

3. OpenUH (uhcc) version 3.0

4. PGI (pgcc) version 11.9

5. Sun/Oracle (suncc) version 12.3

6. Barcelona Supercomputing group’s OmpSs programming model - Mercurium

compiler with Nanos runtime support (current updated version on website) [4]

7. We also tested our applications using the QUARK runtime API [42]

Experiments have been conducted on two testbeds:

66

1. AMD Opteron Processor 6174 with 48 cores - 63GB of main memory, L1 cache

- 64KB, L2 cache - 512KB and last level cache, L3 of size 10MB.

2. Dual Intel Nehalem - E5520 processor with 16 cores. 32GB of total memory

capacity, L1 cache 32K, L2 cache 256K and an L3 cache of 8MB.

Table 6.1 represents a summary of the experiments conducted in the chapter,

explained in greater detail in the forthcoming sections.

Table 6.1: Summary of the conducted experiments

LU Decomposition

(Testbed 1)

Smith-Waterman

(Testbed 2)

Matrix-Matrix Multiplica-

tion (Testbed 1)

Problem size = 2048 x

2048 (-O0 optimization)

Sequence size = 4096 X

4096 (-O0 optimization)

matrix size = 2048 (-O0 opti-

mization)

Problem size = 2048 x

2048 (-O3 optimization)

Sequence size = 8192 X

8192 (-O0 optimization)

matrix size = 2048 (-O2 opti-

mization)

Problem size = 4096 x

4096 (-O3 optimization)

Sequence size = 8192 X

8192 (-O2 optimization)

matrix size = 8192 (-O0 opti-

mization)

NOTE: We used the numactl policy for running our experiments on both the test

beds. Numactl allows processes to run with specific NUMA scheduling or memory

placement policy. We utilized the –interleave=nodes, -i nodes policy which sets

a memory interleave policy for multiple nodes. This policy allows memory to be

allocated using round robin on nodes. When memory cannot be allocated on the

current interleave, target fall back to other nodes.

67

6.2 Performance Analysis for LU Decomposition

Algorithm

6.2.1 Implementation

Listing 6.1 below represents the pseudo-code for implementing the LU Decomposition

algorithm using the OpenMP task construct with the added use of the proposed

extensions thereby eliminating the need to apply the first taskwait acting as a global

synchronization point, denoted by the code depicted in Listing 4.2 in Chapter 4.

We specify an out dependence on ProcessBlockOnColumn (line 10) and Process-

BlockOnRow (line 13) with unique tags ’2*i’ and ’2*i+1’ respectively. With an in

dependence specified in line 19, we allow the tasks in ProcessInnerBlock to begin ex-

ecution immediately after their corresponding dependencies in blocks ProcessBlock-

OnColumn (2*i) and ProcessBlockOnRow (2*i+1) have been addressed at runtime.

This flexibility of task execution in the hands of the programmer warrants the reduc-

tion of overheads normally encountered (in the absence of the proposed extensions)

while having to wait until all the tasks executing ProcessBlockOnColumn and Pro-

cessBlockOnRow have concluded, prior to the execution of ProcessInnerBlock (the

first taskwait in Listing 4.2) in order to maintain data integrity.

68

1 #pragma omp parallel

2 {

3 #pragma omp master

4 {

5 for (i=0; i<matrix_size; i++) {

6 /**** Processing Diagonal block ****/

7 ProcessDiagonalBlock (.......);

8 for (i=1;i<M;i++){

9 /**** Processing block on column ****/

10 #pragma omp task out(2*i)

11 ProcessBlockOnColumn (........);

12 /**** Processing block on row ****/

13 #pragma omp task out(2*i+1)

14 ProcessBlockOnRow (...................);

15 }

16 /**** Processing remaining inner block ****/

17 for (i=1;i<M;i++)

18 for (j=1;j<M;j++){

19 #pragma omp task in(2*i) in(2*j+1)

20 ProcessInnerBlock (..............);

21 }

22 #pragma omp taskwait

23 }

24 }

25 }

Listing 6.1: LU Decomposition Algorithm using OpenMP tasks with the proposed

extensions [41]

69

6.2.2 Results Obtained with Elimination of Global Synchro-

nization Points

6.2.2.1 Results obtained with -O0 (no) optimization

The objective for obtaining results with no optimization is crucial to validate, that

the performance improvement observed with the use of the OpenUH task extensions,

could solely be attributed to the elimination of the taskwait, without the interference

of any other compiler optimizations. Any improvement observed in such a case could

only be attributed to the tasks executing in a specific order adhering to their respec-

tive data dependencies, without compromising the accuracy of the computation.

6.2.2.1.1 Experiment: Matrix size 2048 X 2048, with varying number of

threads - Figure 6.1 measures the speedup obtained by varying the number of

cores from 1 to 48 for 16 blocks per dimension on a matrix of size 2048 X 2048.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

1 2 4 8 16 24 32 48

S
p

e
e

d
u

p
 V

s
 1

 t
h

re
a

d

Number of threads

GNU
Intel

OpenUH-without ext
OpenUH-with ext

SUN-Oracle
PGI

OmpSs

Figure 6.1: Scalability measure for matrix size 2048 X 2048 with no optimization

70

Table 6.2 shows the performance obtained for the LU decomposition algorithm

in seconds, for a matrix of size 2048 X 2048 with 16 blocks per dimension.

Table 6.2: Performance obtained for matrix 2048 X 2048 (in seconds) with no opti-

mization
Threads GNU Intel OpenUH noext OpenUH ext Sun PGI OmpSs

1 40.874 39.298 45.044 45.006 43.8 20.107 33.337

2 20.586 19.904 22.269 23.11 22.039 13.941 18.569

4 11.555 11.225 11.766 11.466 11.856 9.012 9.815

8 6.028 5.696 6.31 6.001 6.69 5.107 5.287

16 3.485 3.234 3.518 3.186 3.821 3.239 3.089

24 2.655 2.349 2.629 2.294 2.919 2.138 2.416

32 2.235 1.81 2.077 1.847 2.489 1.394 2.079

48 1.952 1.476 1.678 1.379 2.065 1.182 1.936

We observe that the version implemented with the OpenUH task extensions scales

up to 32X for 48 cores in comparison to the performance on a single core. This is 1.23

times better than the speedup obtained for Intel and OpenUH (without extensions)

compilers, which scale up to 26X for 48 cores. However, it is interesting to note that

for the PGI compiler, which delivers speedup of only 17X on 48 cores, in terms of

performance, is the only compiler which outperforms the performance obtained on

the OpenUH compiler (with task extensions), by approximately 15% on 48 cores.

6.2.2.1.2 Experiment: Matrix size 2048 X 2048, with varying number of

blocks per dimension - Figure 6.2 measures the performance of the implemented

extensions in comparison to the conventional tasking version, by varying the number

blocks per dimension on a matrix of size 2048 X 2048 with 48 threads.

71

 0

 2

 4

 6

 8

 10

 12

 14

4 8 16 32

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of blocks per dimension

GNU
Intel

OpenUH-without ext
OpenUH-with ext

SUN/Oracle
PGI

OmpSs

Figure 6.2: Performance measure varying blocks per dimension for matrix size 2048

with no optimization

As mentioned earlier in Chapter 4 we employ a blocking strategy in order to pro-

mote data reuse and decrease memory latency, wherein the matrices are partitioned

into smaller blocks so that they could fit in memory registers. This allows spatial

locality to improve and can be acknowledged as a significant memory optimization

uplifting code performance.

We denote each block explicitly as an individual OpenMP task. We observe

improvement in performance as we gradually increase the number of blocks per di-

mension from 4 to 8 up to 16. However, implementing 32 blocks per dimension de-

grades performance mainly due to the creation of excessive tasks (too fine grained),

which adds additional overheads attributed to task creation/deletion as well as task

synchronization.

72

6.2.2.2 Results obtained with -O3 optimization

In this section we test the LU Decomposition kernel using -O3 level optimization.

Our focus is to draw a comparison with respect to the performance obtained with -O3

enabled optimization, on OpenUH (with task extensions) and the other commercial

compilers.

6.2.2.2.1 Experiment: Matrix size 2048 X 2048, with varying number of

threads - Figure 6.3 represents the speedup obtained across 48 cores, observed for

data size 2048 X 2048, comparing tasking implementations of different compilers in

addition to the extensions implemented in the OpenUH runtime library. The number

of blocks per dimension is set to 8.

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 24 32 48

S
p

e
e

d
u

p
 V

s
 1

 t
h

re
a

d

Number of threads

GNU
Intel

OpenUH-without ext
OpenUH-with ext

SUN-Oracle
PGI

OmpSs

Figure 6.3: Scalability measure for matrix size 2048 with -O3 optimization

Similarly Table 6.3 refers to the corresponding performance numbers obtained for

data size 2048 X 2048, with 8 blocks per dimension.

73

Table 6.3: Performance obtained for matrix 2048 X 2048 (in seconds) with 8 blocks

per dimension

Threads GNU Intel OpenUH noext OpenUH ext Sun PGI OmpSs

1 5.54 4.86 5.47 5.47 4.72 7.02 6.75

2 2.86 2.52 2.85 3.18 2.49 4.72 4.12

4 1.99 1.76 1.87 1.6 2.05 2.83 2.64

8 1.26 1.14 1.19 0.95 1.36 1.64 1.84

16 0.81 0.74 0.8 0.64 1.06 0.99 0.96

24 0.67 0.62 0.66 0.55 0.98 0.8 0.9

32 0.65 0.58 0.62 0.49 0.95 0.74 0.88

48 0.57 0.5 0.51 0.43 0.91 0.59 0.73

We observe that OpenUH (with task extensions) obtains a maximum speedup

of more than 12X, and outperforms the speedup obtained by the GNU, Intel, PGI,

Sun/Oracle, OmpSs and OpenUH (without task extensions) compilers, by 1.32X,

1.16X, 1.37X, 2.11X, 1.69X and 1.18X respectively. It is interesting to note that,

unlike the previous test case (with no optimization), the OpenUH task extensions,

with -O3 optimization, contributed a 27% performance improvement, in comparison

to the PGI compiler.

6.2.2.2.2 Experiment: Matrix size 2048 X 2048, with varying number

of blocks per dimension - Figure 6.4 represents the performance obtained for

matrix size 2048 X 2048 with -O3 level optimization by varying the number of blocks

per dimension.

74

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of blocks per dimension

GNU
Intel

OpenUH-without ext
OpenUH-with ext

SUN/Oracle
PGI

OmpSs

Figure 6.4: Performance measure varying blocks per dimension for matrix size 2048

with -O3 optimization on 48 cores

The extensions provide improved performance with increasing number of blocks

per dimension in comparison to the remaining compilers depicted in Figure 6.4.

This could be attributed to a more flexible distribution of the workload amongst

the threads owing to an improved scheduling strategy invoked with the use of the

extensions in the OpenUH runtime library (RTL). Extending the value of the num-

ber of blocks per dimension beyond 16 resulted in performance degradation due to

excessive task creation and synchronization overheads as explained earlier.

6.2.2.2.3 Experiment: Matrix size 4096 X 4096, with varying number of

threads - Figure 6.5 presents the speedup obtained across 48 cores when applying

LU decomposition on a matrix of size 4096 X 4096 with -O3 level optimization, with

16 blocks per dimension.

75

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 4 8 16 24 32 48

S
p

e
e

d
u

p
 V

s
 1

 t
h

re
a

d

Number of threads

GNU
Intel

OpenUH-without ext
OpenUH-with ext

SUN-Oracle
PGI

OmpSs

Figure 6.5: Speedup obtained for matrix size 4096 X 4096 with -O3 optimization

Table 6.4: Performance measuring scalability (in seconds) for matrix 4096 X 4096,

with 16 blocks
Threads GNU Intel OpenUH noext OpenUH ext Sun PGI OmpSs

1 58.94 52.49 58.84 58.9 50.22 71.56 93.24

2 29.57 26.24 30.28 31.51 25.06 47.93 39.2

4 19.77 17.05 19.14 16.1 18.22 27.2 21.5

8 11.69 10.41 11.3 8.9 11.73 14.94 12.72

16 7.13 6.28 6.93 5.3 7.76 8.26 8.61

24 5.41 4.77 5.42 4 6.38 6.07 8.61

32 4.6 3.99 4.52 3.41 5.79 4.9 7.85

48 4.05 3.34 3.62 2.46 5.11 3.8 5.45

Figure 6.5 indicates that OpenUH (with task extensions) obtains a speedup of

up to 24X, which outperforms the performance obtained from the Intel and PGI

compilers (having obtained 16X and 18X speedup respectively) by 27% and 36%

respectively.

76

6.2.2.2.4 Experiment: Matrix size 4096 X 4096, with varying number of

blocks per dimension - Figure 6.6 represents the speedup obtained on varying

the number of blocks per dimension, for a matrix of size 4096 X 4096 with -O3 level

optimization.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

8 16 32 48

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of blocks per dimension

GNU
Intel

OpenUH-without ext
OpenUH-with ext

SUN/Oracle
PGI

OmpSs

Figure 6.6: Performance measure varying blocks per dimension for matrix size 4096

with -O3 optimization on 48 cores

The choice for the number of blocks per dimension in order to obtain the optimum

performance depends on the size of the last level cache. Performance results from

Figure 6.4 indicate, that use of 8 blocks per dimension for matrix size 2048 X 2048

proved better than the usage of 16 or 32 blocks per dimension. From Figure 6.6 we

gather that the use of 16 blocks per dimension for matrix size 4096 X 4096 proved

to be more advantageous compared to the usage of 8 or 32 blocks. Therefore in

order to obtain the optimum performance for a given size of input data, we need

to take into consideration the size of the block of data to be prefetched within the

cache, in order to exploit the advantages of cache affinity, to obtain increased spatial

77

locality. However, it is also important to take into consideration the availability of

space within the last level of cache. Hence, the trade-off between the distribution of

workload with appropriate block size and the available cache size is crucial in terms

of obtaining the best performance.

6.2.3 Performance Comparison to other Dataflow Models

We implemented LU Decomposition on runtime API’s which mirror dataflow models

such as the OmpSs programming model and QUARK runtime API. Our objective lay

mainly in comparing the performance obtained using the OpenUH task extensions

with related dataflow models as mentioned above. We wish to make an assessment

on how well the extensions provided by OmpSs, QUARK scale in comparison to

OpenUH for the LU Decomposition benchmark, with varying data sizes.

6.2.3.1 Experiment: Matrix size 2048 X 2048, with varying number of

threads, -O0 optimization

Figure 6.7 shows the scalability obtained on testing a matrix of size 2048 X 2048,

with 16 blocks per dimension, using -O0 optimization across OpenUH (with the use

of the extensions), the OmpSs Programming model and QUARK.

78

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

1 2 4 8 16 24 32 48

S
p
e
e
d
u
p
 V

s
.
1
 t
h
re

a
d

Number of threads

OpenUH-with ext
BSC

QUARK

Figure 6.7: Performance measure varying the number of threads for matrix size 2048

with no optimization

6.2.3.2 Experiment: Matrix size 2048 X 2048, with varying number of

threads, -O3 optimization

Figure 6.8 represents the speedup obtained for the implemented extensions for matrix

size 2048 X 2048, with 8 blocks per dimension, using -O3 optimization, in comparison

to dataflow models - OmpSs and QUARK.

79

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 24 32 48

S
p
e
e
d
u
p
 V

s
.
1
 t
h
re

a
d

Number of threads

OpenUH-with ext
BSC

QUARK

Figure 6.8: Performance measure varying the number of threads for matrix size 2048

with -O3 optimization

The performance obtained from OpenUH far supersedes the performance ob-

tained from OmpSs and QUARK in terms of both scalability and overall speedup.

Both OmpSs and QUARK scale to a maximum of 24 cores, beyond which we notice

performance degradation. We notice a similar pattern for data size 2048 X 2048, for

both -O0 and -O3 level of optimizations. OpenUH shows a performance benefit of

2.7X and 2.9X in comparison to the OmpSs and QUARK extensions respectively, for

matrix size 2048 X 2048 with -O3 level of optimization enabled.

However it is curious to note that, in the case of OpenUH, where, with the

application of the extensions on a matrix of size 2048 X 2048 (with -O0 optimization),

we observe a performance improvement of 18.7%, there is a noticeable degradation

in performance estimated close to 50%, observed for OmpSs. This can be attributed

to the overhead generated in maintaining a task dependency graph, in order to track

the explicit dependencies among tasks by the OmpSs runtime.

80

6.2.3.3 Experiment: Matrix size 4096 X 4096, with varying number of

threads, -O3 optimization

Figure 6.8 represents the speedup obtained for the implemented extensions for matrix

size 4096 X 4096 with -O3 optimization in comparison to dataflow models - OmpSs

and QUARK.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 4 8 16 24 32 48

S
p
e
e
d
u
p
 V

s
.
1
 t
h
re

a
d

Number of threads

OpenUH-with ext
BSC

QUARK

Figure 6.9: Performance measure varying the number of threads for matrix size 4096

with -O3 optimization

We observe that with the increase in data size (4096 X 4096), OpenUH contin-

ues to perform 2.3X and 3X times better in comparison to OmpSs and QUARK

respectively. However, the OmpSs scales upto 32 cores in this particular test case,

and manages to reduce the performance degradation from 50% (as mentioned in the

prior test case) to 26%.

81

6.3 Performance Results for Smith-Waterman Al-

gorithm

6.3.1 Implementation

We have implemented two approaches incorporating the OpenUH task extensions in

order to support a specific ordering among tasks, keeping true to their respective

data dependencies.

Both approaches provide a significant improvement over the conventional tasking

versions discussed in Chapter 4. The first approach (Version 1) shows improved scal-

ability and performance in comparison to the second approach (Version 2), although

Version 2 is easier to program when compared to Version 1. As mentioned earlier in

Chapter 4, both approaches have been implemented on top of the chunked tasking

implementation of the Smith-Waterman algorithm as depicted in Figure 6.10.

Figure 6.10, represents the chunked tasking version with a chunk size of two.

Every task (as denoted by the individual numbers included in every element of the

matrix) is composed of two elements (owing to chunk size two) and is represented

by an alternate color.

82

12 16 20

12 15 20 24

11 15 19 23 27

11 14 19 23 27 30

10 14 18 22 26 29 32

10 13 18 22 26 29 32 34

13 21 25 28 31 33 35

21 25 28 31 33 35 36

1

2 3

4

5

6

7

8

2

3

5

6

7

8

9

17

17

Figure 6.10: Smith Waterman - chunked tasking implementation

6.3.1.1 Version 1 approach

Listing 6.2 illustrates the implementation of the OpenUH task extensions to the

chunked tasking version of the algorithm, eliminating the taskwait in line 43.

1 #pragma omp parallel

2 {

3 #pragma omp master

4 {

5 for(wave = 0; wave < waves; ++wave) {

6 /* computation of nbr of elements per wave & its location within the matrix */

7 wave2 = wave1; wave1 = task_count; task_count =0;

8 for(ii = 0; ii < elements; ii+=chunk) {

9 tid ++;

10 if (line == -1 && elements <= chunk) /* Region 1 */

11 {

12 #pragma omp task in(tid-1) in(tid -2) out(tid)

13 {

14 for (i = ii; i < MIN(elements ,ii + chunk); i++)

15 SW_kernel ();

16 } // task

83

17 }

18 else if(line <= 0 && elements > chunk) /* Region 2 */

19 {

20 #pragma omp task in(tid -wave1) in(tid-wave1-1) in(tid-(wave1 + wave2))

21 in(tid-(wave1 + wave2 -1)) out(tid)

22 {

23 for (i = ii; i < MIN(elements ,ii + chunk); i++)

24 SW_kernel ();

25 } // task

26 }

27 else if(line > 0 && elements >= chunk) /* Region 3 */

28 {

29 #pragma omp task in(tid-wave1) in(tid-wave1+1) in(tid-(wave1 + wave2))

30 in(tid-(wave1 + wave2 +1)) out(tid)

31 {

32 for (i = ii; i < MIN(elements ,ii + chunk); i++)

33 SW_kernel ();

34 } // task

35 }

36 else /* Region 4 */

37 {

38 #pragma omp task in(tid-1) in(tid-2) in(tid-3) out(tid)

39 {

40 for (i = ii; i < MIN(elements ,ii + chunk); i++)

41 SW_kernel ();

42 } // task

43 }

44 task_count ++;

45 /* elimination of the taskwait */

46 } // inner for loop

47 } // outer for loop

48 } // master

49 } // parallel

Listing 6.2: Implementation for Smith-Waterman with task extensions - Version 1

84

A specific ordering of the tasks as represented in Listing 6.2 for Version 1, relies

on four separate IF conditions, each depicting a particular region in the scoring

matrix. It is particularly challenging to specify the dependencies for every task in

a wavefront-based pattern since, unlike the LU Decomposition algorithm where the

data dependencies were fixed, the dependencies for every task (or chunk of elements)

for this algorithm, vary based on the location of that task in the scoring matrix. We

make an assessment, based on Figure 6.11, where a task belonging to either of the four

regions demarcated from 1 to 4, will possess dependencies, on a different set of tasks,

as expressed in Listing 6.2. We track the dependencies for each task, (pertaining to

the region to which the task belongs) by storing the number of elements processed

in the prior two diagonals, within variables wave1 and wave2 as seen in line 7. We

estimate a pattern where the dependencies of every task relies on specific tasks in

the previous two diagonals. We notice that this pattern is common to all tasks in

their respective regions, which we incorporate in the four separate IF conditions.

1 2 2 2 2 2 2

1 2 2 2 2 2 3

2 2 2 2 2 3 3

2 2 2 2 3 3 3

2 2 2 2 3 3 3 3

2 2 2 3 3 3 3 3

2 3 3 3 3 3 4

2 3 3 3 3 3 4 4

2

2

2

2

1

Figure 6.11: Smith Waterman OpenUH task implementation depicted in Listing 6.2,

displaying the 4 separate regions

85

The explicit expression for dependent North, West, and North-West neighbors of

every task individually, negates the need for the taskwait in line 43, thereby allowing

multiple diagonals (or waves) to be processed concurrently, providing scope for more

parallelism.

6.3.1.2 Version 2 approach

Listing 6.3 illustrates an alternative implementation of the OpenUH task extensions

to the chunked tasking version of the algorithm, eliminating the taskwait in Line

26. Listing 6.3 represents the pseudo-code for implementing the second version, that

allows specifying the requisite dependencies for each task, thereby eliminating the

need to specify a taskwait between iterations of the for loop in line 5 processing

elements on each wave in the process of constructing the final scoring matrix. As

seen the code for this version is more concise and allows specifying dependencies on

the source and sink elements of each dependent task (or chunk) in the north, west

and north-west directions. However, this approach incorporates a local 1-D array (as

seen line 20) to store the values of each task (as out dependence), so that we could

later track its respective in dependencies as seen in line 13.

Even though this approach (Version 2) is easier to implement and guarantees

fewer changes in lines of code, its performance cannot surpass the performance ob-

tained from Version 1. This is owing to an increase in the number of load and store

operations in comparison to the number of floating-point operations, thereby com-

promising the achievable scalability.

86

1 #pragma omp parallel

2 {

3 #pragma omp master

4 {

5 for(wave = 0; wave < waves; ++wave) {

6 /* computation of nbr of elements per wave & its location within the matrix */

7 for(ii = 0; ii < elements; ii+=chunk)

8 {

9 tid ++;

10 NW1 = TASK_ID(np-ii -1,mp+ii -1); NW2 = TASK_ID(np -(min -1) -1,mp+(min -1) -1);

11 N1 = TASK_ID(np-ii -1,mp+ii); N2 = TASK_ID(np -(min -1) -1,mp+(min -1));

12 W1 = TASK_ID(np-ii ,mp+ii -1); W2 = TASK_ID(np -(min -1),mp+(min -1) -1);

13 #pragma omp task in(NW1) in(NW2) in(N1) in (N2) in(W1) in(W2) out(tid)

14 {

15 for (i = ii; i < MIN(elements ,ii + chunk); i++)

16 SW_kernel ();

17 } // task

18 for(i=ii; i< min; i++)

19 {

20 H1[(np -i)*N_a+(mp+i)] = tid;

21 }

22 } // inner for loop

23 /* elimination of taswait */

24 } // outer for loop

25 } // end of master

26 } // end of parallel

Listing 6.3: Implementation for Smith-Waterman with task extensions - Version 2

We will discuss the performance results obtained for either version in the next

section. For the purpose of this thesis, we will solely consider a symmetric square

scoring matrix, implying that the two different sequences being tested for performing

87

local alignment, will always be of the same size.

6.3.2 Results Obtained with Elimination of Global Synchro-

nization Points

6.3.2.1 Sequence size 4096 with -O0 level optimization

Figure 6.12 represents the performance obtained for sequences of size 4096, with

-O0 level optimization where tasks have been created as chunks of 320 (grouping

every 320 consecutive elements) per diagonal. It can deduced that compilers - Intel,

GNU, Oracle/Sun and OpenUH perform relatively in a similar fashion scaling up

to 8 threads, whereas PGI compiler demonstrates the least amount of scalability.

Both versions 1 and 2 implemented with the OpenUH task extensions, perform well

in terms of performance securing an improvement of 84% and 79% respectively, in

comparison to the OpenUH compiler, without the use of the extensions.

Another observation suggests that none of the compilers are able to produce

scalable results beyond 8 threads. This can be attributed to the fact the amount

of work performed by a task is significantly less, compared to the number of load

and store operations executed. Hence, the implementation is deemed more memory

bound. The master thread creates all the tasks, which are acquired by the slave

threads to perform the work. The tasks being smaller in size, allow the slave threads

to execute it fast enough and bombard the master thread’s queue looking for more

work to steal. With the increase in the number of threads, the amount of work

performed by each thread decreases, thereby increasing the amount of contention

88

on the master thread’s queue. This results in poor load balancing with the master

thread performing majority of the work, which adversely affects the scalability as

seen in Table 6.5.

 0

 2

 4

 6

 8

 10

 12

2 4 8 16

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of Threads

Intel
GNU

OpenUH-without ext
OpenUH-with-ext-V1
OpenUH-with-ext-V2

SUN-Oracle
PGI

OmpSs

Figure 6.12: Performance obtained by varying the number of threads for sequence

size 4096 with -O0 optimization

Table 6.5: Performance of Smith-Waterman algorithm (in seconds) for sequence size

4096 for task chunk of 320 with -O0 optimization

Threads Intel GNU OpenUH

no ext

OpenUH

ext V1

OpenUH

ext V2

Sun PGI OmpSs

2 6.062 5.604 5.519 1.045 1.291 6.360 2.305 11.497

4 3.819 3.569 3.661 0.511 0.553 4.429 2.266 10.065

8 3.215 2.774 3.057 0.480 0.646 3.845 2.242 9.733

16 4.001 3.518 4.051 0.669 0.807 4.327 3.830 8.014

89

6.3.2.2 Sequence size 4096 with -O0 level optimization, varying chunk

size

Table 6.6 and Figure 6.13 depict the performance (in seconds) obtained for sequence

size 4096, on 8 threads by varying the task chunk size, with -O0 level optimization.

 0

 2

 4

 6

 8

 10

 12

 14

192 256 320

T
im

e
 i
n

 s
e

c
o

n
d

s

Task chunk size

Intel
GNU

OpenUH-without ext
OpenUH-with-ext-V1
OpenUH-with-ext-V2

SUN-Oracle
PGI

OmpSs

Figure 6.13: Performance obtained by varying the task chunk size for sequence size

4096 with -O0 optimization

Table 6.6: Performance of Smith-Waterman algorithm (in seconds) for sequence size

4096 on 8 threads with varying chunk size

Chunk

size

Intel GNU OpenUH

no ext

OpenUH

ext V1

OpenUH

ext V2

Sun PGI OmpSs

192 4.576 4.122 4.490 0.457 0.783 5.254 3.452 12.467

256 3.689 3.209 3.550 0.466 0.686 4.324 2.703 10.401

320 3.215 2.774 3.057 0.480 0.646 3.845 2.242 9.733

We observe based on the readings specified in Table 6.6 that the OpenUH ex-

tensions version 2, shows improvement in performance in comparison to version 1

90

with gradual increase in chunk size. However, judging by the overall performance

and scalability, OpenUH task extensions version 1 provides the optimum result se-

curing a speedup of 6.6X, 5.6X, 7.9X, 4.5X and 16X compared to its Intel, GNU,

Sun/Oracle, PGI, and OmpSs counterparts.

6.3.2.3 Sequence size 8192 with -O0 level optimization, varying number

of threads

Figure 6.14 and Table 6.7 represents the performance obtained for sequences of

size 8192, with -O0 (no) level optimization where tasks have been generated as

chunks of 512 elements per diagonal. We observe that OpenUH compiler without

the task extensions performs significantly better than its Intel, GNU, Sun/Oracle,

PGI, and OmpSs counterparts by a margin of 35%, 27%, 44%, 11%, and 62% re-

spectively. However, the version 1 and 2 implementing the OpenUH task extensions

beat OpenUH version by a margin of 5.5X and 4X respectively.

Table 6.7: Performance obtained (in seconds) for sequence size 8192 with no opti-

mization, on varying number of threads

Threads Intel GNU OpenUH

no ext

OpenUH

ext V1

OpenUH

ext V2

Sun PGI OmpSs

2 29.469 27.228 14.509 4.478 5.580 30.421 12.803 41.327

4 18.465 17.253 10.037 1.818 2.053 20.661 11.652 35.660

8 14.708 13.040 9.529 1.780 2.305 17.079 10.793 29.007

16 17.510 15.376 14.995 2.780 2.905 18.870 14.762 25.354

91

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42

2 4 8 16

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of Threads

Intel
GNU

OpenUH-without ext
OpenUH-with-ext-V1
OpenUH-with-ext-V2

SUN-Oracle
PGI

OmpSs

Figure 6.14: Performance obtained by varying the number of threads for sequence

size 8192 with -O0 optimization

6.3.2.4 Sequence size 8192 with -O0 level optimization, varying chunk

size

Figure 6.15 and Table 6.8 represents performance obtained by varying the task chunk

size for sequence size 8192 on 8 threads with no optimization.

We observe that with the gradual increase in the chunk size, the noticeable im-

provement in performance, is owing to creation of fewer tasks. We also notice that

OmpSs scales not only with the increase in chunk size, but also with the increase in

the number of threads. However, this comes at a cost of overall inefficient perfor-

mance (brought by the overhead generated for maintaining the task dependencies),

negating the merits achieved with scalability.

92

Table 6.8: Performance (in seconds) for sequence size 8192, with varying chunk size

on 8 threads
Chunk sizeIntel GNU OpenUH

no ext

OpenUH

ext V1

OpenUH

ext V2

Sun PGI OmpSs

256 26.253 23.871 15.632 1.732 2.813 29.164 18.055 40.152

320 21.368 19.247 13.027 1.718 2.566 24.237 14.601 34.588

512 14.708 13.040 9.529 1.780 2.305 17.079 10.793 29.007

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42

256 320 512

T
im

e
 i
n

 s
e

c
o

n
d

s

Task chunk size

Intel
GNU

OpenUH-without ext
OpenUH-with-ext-V1
OpenUH-with-ext-V2

SUN-Oracle
PGI

OmpSs

Figure 6.15: Performance obtained by varying the task chunk size for sequence size

8192 with -O0 optimization

6.3.2.5 Sequence size 8192 with -O2 level optimization

Figure 6.16 and Table 6.9 represent the performance obtained for sequence size 8192,

across varying number of threads, with task chunk size 512 and -O2 level optimiza-

tion.

We notice that the Intel compiler performs almost at par with the version 2

93

implementation of the OpenUH task extensions, whereas the OpenUH compiler does

not scale well beyond 4 threads, unlike the Sun/Oracle and GNU compilers which

continue to scale well upto 8 threads.

However, version 1 OpenUH task extensions continues to outperform the perfor-

mance of the Intel, GNU, Sun/Oracle, PGI, and OmpSs by factors of 2.2X, 5.5X,

6X, 10X, and 18X respectively.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

2 4 8 16

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of Threads

Intel
GNU

OpenUH-without ext
OpenUH-with-ext-V1
OpenUH-with-ext-V2

SUN-Oracle
PGI

OmpSs

Figure 6.16: Performance obtained by varying the number of threads for sequence

size 8192 with -O2 optimization

Table 6.9: Performance (in seconds) for sequence size 8192, task chunk 512 and -O2

optimization

Threads Intel GNU OpenUH

no ext

OpenUH

ext V1

OpenUH

ext V2

Sun PGI OmpSs

2 6.422 8.029 6.720 2.137 2.473 12.945 11.918 19.902

4 3.925 6.275 4.804 0.959 1.505 7.646 10.593 17.873

8 2.055 5.029 4.926 0.906 1.889 5.474 9.651 16.225

16 2.236 6.063 8.113 1.309 2.207 5.759 14.991 15.113

94

6.3.3 Performance Comparison to other Dataflow Models

We implemented the Smith-Waterman algorithm on the aforementioned dataflow

models - OmpSs and QUARK.

The implementation for the OmpSs programming model entails, tracking the

respective source and sink memory addresses of the north, west, and north-west

neighboring dependent tasks as the input parameters, and specifying the current

task’s source and sink memory addresses as the output parameters.

Tables 6.10 to 6.12 denote the performance (in seconds) obtained from the two

dataflow models, across varying threads for sequence size 4096 and 8192 tested with

task chunk sizes 320 and 512 with -O0 and -O2 optimizations respectively.

Table 6.10: Performance comparison with dataflow models (in seconds) for size 4096,

chunk 320, with varying number of threads,-O0 optimization

Threads OpenUH ext OmpSs ext Quark

2 1.045 52.251 2.639

4 0.511 50.640 2.278

8 0.480 48.645 2.081

16 0.669 46.256 2.395

Table 6.11: Performance comparison with dataflow models (in seconds) for size 8192,

chunk 512, with varying number of threads, -O0 optimization

Threads OpenUH ext OmpSs ext Quark

2 4.47 392.92 10.63

4 1.81 344.02 9.11

8 1.77 314.22 8.13

16 2.78 308.15 8.32

95

Table 6.12: Performance comparison with dataflow models (in seconds) for size 8192,

chunk 512, with varying number of threads - O2 optimization

Threads OpenUH ext OmpSs ext Quark

2 2.13 388.39 8.23

4 0.96 324.09 7.12

8 0.90 308.44 6.38

16 1.30 301.76 7.76

For all the above test cases, we observe that the OpenUH task extensions not

only sustains the overall best performance, but also in the absence of global synchro-

nization points, incurs the least overhead by effectively scheduling the tasks.

We noticed that OmpSs, incurred large overhead which significantly impacted its

performance. This can primarily be attributed to the fact that the master thread

invests significant amount of its time in the maintenance of the task graph (which

allows tracking of the dependencies among the tasks), and only around 65% of its

time is actually invested for execution of the tasks. The worker threads also suffer

some overheads, not only due to the maintenance of the task graph, but also for

the time the threads are kept waiting for ready tasks to be executed. Additional

overhead is incurred due to the time invested in updating the tables nested in each

hierarchical level of the task graph storing variables (depicting active dependencies)

associated with the last node being written to in the graph.

Similar to OmpSs, the QUARK API manages the data dependencies among tasks

with a task graph implementation. However it differs from the OmpSs model on the

grounds that it integrates the PLASMA linear algebra library. With the PLASMA

96

library incorporating a static scheduler incurring no overhead, coupled with opti-

mizations enabled in QUARK (e.g DAG merging, loop reordering), justifies its better

performance in comparison to OmpSs. The drop in performance for QUARK is par-

tially due to the fact that, the master thread remains completely devoted to detecting

dependencies and inserting the tasks in the DAG, without participating in executing

them. Despite these features, QUARK has been designed to cater performance, espe-

cially for linear algebraic problems, possessing dense computation intensive kernels.

For a memory bound algorithm such as Smith-Waterman, it is unable to surpass the

performance obtained from the OpenUH task extensions.

Both OmpSs and QUARK allow created tasks to immediately populate the task

pool, mandating the need for the runtime scheduler to scan all the tasks within

the pool in order to identify a task free from data dependencies. Once identified,

this task is assigned to an available core to be executed. This poses an additional

overhead on the runtime scheduler which is required to scan the entire task pool

before assigning work to available cores. In the OpenUH OpenMP runtime library,

we eliminate this overhead by placing tasks in the task pool only after their respective

data dependencies have been resolved.

6.4 Dataflow Model Overhead Analysis

We have used the Matrix Multiplication kernel, an embarassingly parallel microbench-

mark, to draw an assessment in terms of the amount of overhead generated by each of

the dataflow models discussed in the previous sections. Our objective was to choose

97

an application, which required little to no need for coordination among tasks, so

that, the overhead estimated for each model, could be directly accountable to their

respective implementations in the runtime.

The experiments have been performed on a blocked matrix multiplication kernel

in order to promote more efficient cache usage by fitting smaller chunks of data into

cache, thereby improving spatial locality.

Figure 6.17 and Table 6.13 represents the speedup and performance obtained

with matrix size 2048 with no optimization with block size 256.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42

1 2 4 8 16 24 32 48

S
p
e
e
d
u
p
 V

s
.
1
 t
h
re

a
d

Number of threads

OpenUH-with ext
OmpSs
QUARK

Figure 6.17: Speedup obtained for matrix size 2048 with block 256

Table 6.13: Performance obtained (in seconds) for matrix size 2048 with block 256

Threads OpenUH OmpSs Quark

1 131.735 97.431 132.229

2 65.927 48.811 65.903

4 33.027 24.365 33.031

8 16.503 12.201 16.503

16 8.247 6.138 8.263

24 6.199 4.588 5.672

32 4.164 3.126 4.146

48 4.137 3.088 3.150

98

Figure 6.18 and Table 6.14 represent the speedup and performance obtained with

matrix size 2048 with -O2 optimization with block size 256.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38

1 2 4 8 16 24 32 48

S
p
e
e
d
u
p
 V

s
.
1
 t
h
re

a
d

Number of threads

OpenUH-with ext
OmpSs
QUARK

Figure 6.18: Speedup obtained for matrix size 2048 with block 256 with -O2 opti-

mization

Table 6.14: Performance obtained (in seconds) for matrix size 2048 with block 256

with -O2 optimization

Threads OpenUH OmpSs Quark

1 11.876 15.689 12.065

2 5.949 7.873 6.029

4 3.014 3.911 3.011

8 1.527 1.988 1.516

16 0.780 1.038 0.770

24 0.589 0.785 0.574

32 0.402 0.551 0.402

48 0.373 0.588 0.334

With the introduction of optimizations we observe that, unlike OmpSs which

scales up to 32 threads, both QUARK and OpenUH with task extensions, continues

to scale up to 48 threads. In Figure 6.18 it is clearly visible that due to overhead

99

generated in the scheduling and synchronization of the tasks, OmpSs fails to scale

beyond 32 threads causing rapid performance degradation for 48 threads.

Figure 6.19 and Table 6.15 represents the speedup and performance obtained

with matrix size 8192 with -O0 optimization with block size 1024.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40

1 2 4 8 16 24 32 48

S
p
e
e
d
u
p
 V

s
.
1
 t
h
re

a
d

Number of threads

OpenUH-with ext
OmpSs
QUARK

Figure 6.19: Speedup obtained for matrix size 8192 with block size 1024 with -O0

optimization

Table 6.15: Performance obtained (in seconds) for matrix size 8192 with block 1024

with -O0 optimization

Threads OpenUH OmpSs QUARK

1 8597.01 6626.1 8621.62

2 4317.99 3303.75 4303.57

4 2158.44 1658.28 2158.59

8 1102.36 838.21 1096.36

16 554.07 452.86 552.92

24 371.92 323.64 382.51

32 280.34 222.83 279.28

48 215.52 226.32 219.21

We observe that for matrix size 8192, OpenUH and QUARK perform head to head

100

in terms of performance, scalability, and speedup. However, we do notice that OmpSs

continues to scale poorly beyond 32 threads even though in terms of performance,

it is comparable to both OpenUH and QUARK. OpenUH task extensions performs

well by incurring the least amount of overhead and providing a performance benefit

of close to 5% and 3% when compared OmpSs and QUARK respectively, for the

above test case.

6.5 Summary

In this chapter we revisited the applications initially described in Chapter 4, and

applied the proposed OpenUH task extensions to each of them. We obtained per-

formance improvement for each of the applications, due to the elimination of the

taskwait directive (acting as a global synchronization point). We observed an im-

provement in the overall scalability achieved for each of the applications. This is

attributed to the

• Reduction in task synchronization and scheduling overheads when dealing with

larger input data sizes.

• Improved load balancing among the threads owing to flexible scheduling of

computations.

• Lesser overhead generated by the implementation at runtime (compared to the

performance obtained from related dataflow model implementations - OmpSs

and QUARK).

101

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis we presented an approach that aimed at handling fine-grained inter-

task synchronizations in a more dynamic and flexible manner. The proposed ex-

tensions implemented in the OpenUH OpenMP runtime library provide support for

the specific ordering among asynchronous tasks. Thereby producing a point-to-point

synchronization among the tasks needed to enable the efficient expression of algo-

rithms that rely on patterns such as wavefront propagation and pipeline parallelism.

Exhaustive experiments conducted on the LU Decomposition and Smith-Waterman

algorithms, exhibit marked improvement in performance, when compared to the

results obtained for the standard tasking versions (as per OpenMP 3.1 specifica-

tion). This is attributed primarily to the reduction of synchronization overheads

when dealing with larger input data sizes owing to the creation of a larger number of

102

tasks. It presented significant speedup and scalability for both the applications When

compared to the performance obtained from the GNU, Intel, PGI, Oracle/Sun, and

Mercurium compilers, as well as dataflow models (which demonstrate similar capabil-

ities for addressing dependencies among tasks at runtime), QUARK and OmpSs. We

utilized the matrix-matrix multiplication microbenchmark to perform overhead esti-

mation analysis, comparing the overall performance of the OpenUH task extensions

with QUARK and OmpSs runtime. We observed that the OpenUH task extensions

incurred the least overhead and provided an average speedup of 1.5X, when tested

with varying data sizes.

7.2 Future Work

As future work our focus lies in further improving the implementation in the OpenUH

OpenMP runtime library by firstly, including compiler optimizations to coalesce tasks

performing similar operations in quick succession, to coarsen the granularity of the

tasks. This will contribute towards reducing the overhead of creating numerous

tasks. Secondly, we would like to incorporate a sliding window approach, targeted

for applications generating a number of tasks, wherein we populate the tag table

with only a subset of active tasks at a time, in order to reduce the overhead of task

scheduling and modulate the memory usage. Lastly we would like to include support,

for handling data dependencies among tasks not sharing the same parent as well.

In another direction, we will also be exploring the benefits of task decomposition

within the OpenUH compiler infrastructure, by entirely decomposing an OpenMP

103

program into a collection of tasks and represent it in the form of a dependency graph

[40]. This information could then be used to assist the user in placing the in and

out dependence information at specific points in the program. After the initial tasks

have been identified, task cost modeling information maybe be used to re-factor the

tasks in the graph in a such a way that is most suitable for scheduling them onto

the available hardware.

We also wish to extend our implementation of such data driven algorithms in

the direction of a distributed memory environment. Our intention is to relax the

synchronization among tasks by employing an efficient scheduling strategy obtained

from analyzing the task dependency graph, before mapping them on to processors.

104

Bibliography

[1] Chapel Programming Language. http://chapel.cray.com/.

[2] Intel Concurrent Collections . http://software.intel.com/en-us/articles/
intel-concurrent-collections-for-cc/.

[3] OpenMP Application Program Interface, 3.1 edition, July 2011.
http://www.openmp.org/mp-documents/OpenMP3.1.pdf.

[4] Programming models at BSC. http://pm.bsc.es/ompss.

[5] The OpenMP Fork-Join Model. https://computing.llnl.gov/tutorials/

totalview/part3.html.

[6] C. Addison, J. LaGrone, L. Huang, and B. Chapman. Openmp 3.0 tasking
implementation in openuh. In Open64 Workshop at CGO, volume 2009, 2009.

[7] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures:
The plasma and magma projects. In Journal of Physics: Conference Series,
volume 180, page 012037. IOP Publishing, 2009.

[8] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. Starpu: A unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience, 23(2):187–198, 2011.

[9] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, E. Su,
P. Unnikrishnan, and G. Zhang. A proposal for task parallelism in openmp. A
Practical Programming Model for the Multi-Core Era, pages 1–12, 2008.

[10] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang. The design of openmp tasks. Parallel and
Distributed Systems, IEEE Transactions on, 20(3):404–418, 2009.

105

[11] N. Azuelos, Y. Etsion, I. Keidar, A. Zaks, and E. Ayguadé. Introducing spec-
ulative optimizations in task dataflow with language extensions and runtime
support. Accepted to the DFM 2012 Workshop in conjunction with PACT
2012, September 2012.

[12] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime system, volume 30. ACM, 1995.

[13] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-java: the new adventures
of old x10. In Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java, pages 51–61. ACM, 2011.

[14] B. Chapman, D. Eachempati, and O. Hernandez. Experiences developing the
openuh compiler and runtime infrastructure. Cetus Users and Compiler Infas-
tructure Workshop in conjunction with PACT 2011, October 2011.

[15] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. Von Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In ACM SIGPLAN Notices, volume 40, pages 519–538.
ACM, 2005.

[16] C. Christofi, G. Michael, P. Trancoso, and P. Evripidou. Exploring hpc paral-
lelism with data-driven multithreating. Accepted to the DFM 2012 Workshop
in conjunction with PACT 2012, September 2012.

[17] F. Darema. The spmd model: Past, present and future. Recent Advances in
Parallel Virtual Machine and Message Passing Interface, 19:1–1, 2001.

[18] R. Diaconescu and H. Zima. An approach to data distributions in chapel. Inter-
national Journal of High Performance Computing Applications, 21(3):313–335,
2007.

[19] A. Dios, R. Asenjo, A. Navarro, F. Corbera, and E. Zapata. Evaluation of
the task programming model in the parallelization of wavefront problems. In
High Performance Computing and Communications (HPCC), 2010 12th IEEE
International Conference on, pages 257–264. IEEE, 2010.

[20] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek. Achieving numerical
accuracy and high performance using recursive tile lu factorization. University
of Tennessee Computer Science Technical Report UT-CS-11-688 (also LAPACK
Working Note 259), Submitted to Journal of Concurrency and Computation:
Practice and Experience, 2011.

106

[21] J. Dongarra, R. Graybill, W. Harrod, R. Lucas, E. Lusk, P. Luszczek, J. Mcma-
hon, A. Snavely, J. Vetter, K. Yelick, et al. Darpa’s hpcs program: History,
models, tools, languages. Advances in Computers, 72:1–100, 2008.

[22] A. Duran, J. Perez, E. Ayguadé, R. Badia, and J. Labarta. Extending the
openmp tasking model to allow dependent tasks. OpenMP in a New Era of
Parallelism, pages 111–122, 2008.

[23] M. Frigo, C. Leiserson, and K. Randall. The implementation of the cilk-5 mul-
tithreaded language. ACM Sigplan Notices, 33(5):212–223, 1998.

[24] J. Gaudiot and L. Bic. Advanced topics in data-flow computing. Prentice Hall,
1991.

[25] P. Ghosh, Y. Yan, and B. Chapman. Support for dependency driven executions
among openmp tasks. Accepted to the DFM 2012 Workshop in conjunction
with PACT 2012, September 2012.

[26] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and help-first scheduling
policies for async-finish task parallelism. In Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pages 1–12. IEEE, 2009.

[27] A. Hurson and K. Kavi. Dataflow computers: Their history and future. Wiley
Encyclopedia of Computer Science and Engineering.

[28] J. LaGrone, A. Aribuki, C. Addison, and B. Chapman. A runtime implementa-
tion of openmp tasks. OpenMP in the Petascale Era, pages 165–178, 2011.

[29] Y. Liu, W. Huang, J. Johnson, and S. Vaidya. Gpu accelerated smith-waterman.
Computational Science–ICCS 2006, pages 188–195, 2006.

[30] P. D. Michailidis and K. G. Margaritis. Implementing parallel lu factoriza-
tion with pipelining on a multicore using openmp. In Proceedings of the 2010
13th IEEE International Conference on Computational Science and Engineer-
ing, CSE ’10, pages 253–260, Washington, DC, USA, 2010. IEEE Computer
Society.

[31] W. Najjar, E. Lee, and G. Gao. Advances in the dataflow computational model.
Parallel Computing, 25(13):1907–1929, 1999.

[32] B. Nichols, D. Buttlar, and J. Farrell. Pthreads programming. O\’Reilly, 1998.

107

[33] A. Robison, M. Voss, and A. Kukanov. Optimization via reflection on work
stealing in tbb. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1–8. IEEE, 2008.

[34] J. Shirako, D. Peixotto, V. Sarkar, and W. Scherer. Phasers: a unified deadlock-
free construct for collective and point-to-point synchronization. In Proceedings
of the 22nd annual international conference on Supercomputing, pages 277–288.
ACM, 2008.

[35] S. Tasırlar and V. Sarkar. Data-driven tasks and their implementation. In
ICPP11: Proceedings of the International Conference on Parallel Processing,
pages 652–661. IEEE, 2011.

[36] M. Tillenius and E. Larsson. An efficient task-based approach for solving the
n-body problem on multicore architectures. PARA 2010: State of the Art in
Scientific and Parallel Computing, pages 74:1–4, 2010.

[37] S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger, A. Malony, S. Shende,
R. Oldehoeft, and S. Smith. Smarts: Exploiting temporal locality and paral-
lelism through vertical execution. In International Conference on Supercom-
puting: Proceedings of the 13th international conference on Supercomputing,
volume 20, pages 302–310. Citeseer, 1999.

[38] I. E. Venetis and G. R. Gao. Mapping the lu decomposition on a many-core
architecture: challenges and solutions. In Proceedings of the 6th ACM conference
on Computing frontiers, CF ’09, pages 71–80, New York, NY, USA, 2009. ACM.

[39] T. Weng and B. Chapman. Implementing openmp using dataflow execution
model for data locality and efficient parallel execution. In Parallel and Dis-
tributed Processing Symposium., Proceedings International, IPDPS 2002, vol-
ume 2, pages 107–114. IEEE, 2002.

[40] T.-H. Weng and B. Chapman. Toward optimization of openmp codes for syn-
chronization and data reuse. In Journal of High Performance Computing and
Networking (IJHPCN), volume 1, pages 43–54, 2004.

[41] Y. Yan, S. Chatterjee, D. A. Orozco, E. Garcia, Z. Budimlić, J. Shirako, R. S.
Pavel, G. R. Gao, and V. Sarkar. Hardware and software tradeoffs for task syn-
chronization on manycore architectures. In Proceedings of the 17th international
conference on Parallel processing - Volume Part II, Euro-Par’11, pages 112–123,
Berlin, Heidelberg, 2011. Springer-Verlag.

108

[42] A. YarKhan, J. Kurzak, and J. Dongarra. Quark users guide: Queueing and
runtime for kernels. University of Tennessee Innovative Computing Laboratory
Technical Report ICL-UT-11-02, 2011.

109

Appendix A

Runtime Implementation of

OpenUH Task Extensions

This appendix describes the implementation of the OpenUH task dependency ex-

tensions in the OpenMP Runtime Library (RTL) in greater detail. We will refer to

terminologies discussed in Table 5.1 introduced in chapter 5.

A.1 Addition of task Tags at task creation

In this section we describe the implementation of the Algorithm 1 introduced in

chapter 5 in greater detail.

The omp task create() function in the OpenUH OpenMP RTL is responsible for

110

creating the tasks at runtime. Amongst the many arguments received, there con-

tains an array which holds dependency information for all tags provided by the

programmer. The dependency information comprises of a) the type of dependence

encountered - IN/OUT. b) the task with which the tag is associated with, etc.

For every tag encountered amongst the arguments passed to this function, it initi-

ates a search within the tag table (implemented as an unordered hash map) to ensure

if that particular tag already exists. If the tag exists, it calls the omp append dep

function which firstly, appends the tag to the Dep list for that task. Secondly, it

appends the dependency information (implemented as an additional node added to

the linked list) to the end of the Dependency List for that tag. Lastly, it updates

the Dep Counter of the associated task in accordance to the IN/OUT dependence

encountered.

If the tag does not exist in the tag table, it firstly locks the tag table, creates a

new entry for that tag in the table. It then calls the omp append dep function to

append the dependency information as the first node to the Dependency List and

lastly unlocks the tag table.

In the omp append dep() function, if the tag is identified to possess an IN de-

pendence, and the corresponding OUT counter for that tag is greater than one, we

atomically (with the use of compare and swap operations) increment the value of the

Dep Counter. This indicates that this particular task has a prior OUT dependence

to honor. If the tag is identified to contain an OUT dependence instead, we conduct

a backtrace on that tag’s Dependency List until we encounter an OUT dependence or

the end of the list. In the event that the previous node itself is an OUT dependence,

111

we increment the Dep Counter for that corresponding task by one, else we continue

backtracking, counting the number of IN dependencies encountered in between, un-

til an OUT dependence is encountered. We then increment the Dep Counter of the

task by the total number of IN’s encountered. This implies that the task has several

designated IN dependencies to satisfy, prior to its own execution.

We check the Dep Counter of every task after all its dependencies have been

added to the tag table. If the Dep Counter is equal to zero, it implies that the task

has no prior dependencies to satisfy and therefore it ready for execution. In such

a case we immediately place that task in the task pool, where it can grabbed by

an available resource and executed. In the event that the Dep Counter is greater

than zero, it suggests that the task is not ready for execution due to the existence

of pending dependencies. We put the task on hold (in a WAIT state) until all its

previous dependencies get resolved.

A.2 Deletion of task Tags at task exit

In this section we describe the implementation of the algorithm 2 introduced in

chapter 5 in greater detail.

The omp task exit() function in the OpenUH OpenMP RTL is responsible for

the deletion of tasks, after their execution at runtime. We examine the Dep List

of every task executing this function. The Dep List contains information of all the

associated dependencies for that task and by extension their respective tags which

are retrievable from the tag table.

112

We begin by examining the first dependence (IN/OUT) listed in the Dep List. We

retrieve its succeeding dependence node (say Tnext) on the Dependency list acquired

from the tag table. The objective is to correctly update the Dep Counter for that

task and its subsequent dependent tasks, associated with Tnext. If Tnext has an IN

dependence, we perform a forward trace on its corresponding Dependency List, until

we encounter an OUT dependence say Tout. We then decrement the Dep Counter of

the task associated with Tout and check to see if it is zero. If so, we place that task

in the task pool, else we place the task on hold. If Tnext has an OUT dependence, we

initiate a forward tracking from that position in its corresponding Dependency List

until we encounter another OUT dependence. In the event that the next node itself

is an OUT dependence, we decrement the Dep Counter of the associated task by

one and place it in the task pool if its Dep Counter hits zero. If the next node

has an IN dependence, we continue forward tracking. We decrement the respec-

tive Dep Counter ’s of all the tasks associated with IN dependencies encountered in

between (and place them in the task pool if their Dep Counter ’s hit zero), until an

OUT dependence is encountered. This ensures that we have removed the dependency

constraint’s the exiting task exercised, on subsequent tasks.

This process is followed for all the dependencies present in the exiting tasks’s

Dep List. After making sure all the dependencies on subsequent tasks have been

encountered for, we delete the task by deallocating the memory allotted for that

task.

113

Appendix B

Explanation of Abbreviations

Table B.1: Abbreviations used in this document

Abbreviation Acronym Meaning

RTL Runtime Library A special program library used by a compiler to implement

functions built into a programming language during the

execution (runtime) of a program.

NUMA Non Uniform Mem-

ory Access

Memory design used in multiprocessing, where the memory

access time depends on the memory location relative to a

processor.

BLAS Basic Linear Alge-

bra Subprograms

De facto programming interface standard for publishing

software libraries to perform linear Algebra operations.

API Application Pro-

gramming Interface

Source code based specification used by software compo-

nents to communicate to each other.

SPMD single program,

multiple data

A technique employed to achieve parallelism where tasks

are split up and run simultaneously on multiple processors

with different input in order to obtain results faster.

114

Table B.2: Abbreviations used in this document

Abbreviation Acronym Meaning

OpenMP Open Multiprocess-

ing

A programming model that supports multi-platform shared

memory multiprocessing programming in languages C,

C++, and Fortran

FLOPS Floating Point Op-

erations Per second

The number of FLOPS signify the performance of an ap-

plication

QUARK Queuing And Run-

time for Kernels

a library that enables the dynamic execution of tasks with

data dependencies in a multi-core, multi-socket, shared-

memory environment.

CPU Central Processing

Unit

Portion of computer that performs the basic arithmetical,

Logical, and input/output operations of the system

HPCS High Productiv-

ity Computing

Systems

An assessment on how we define and measure performance,

programmability, portability, robustness and ultimately,

productivity of applications in the HPC domain.

DARPA Defense Advance

Research Project

Agency

A project focused on providing a new generation of eco-

nomically viable high productivity computing systems for

national security and for the industrial user community.

115

