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ABSTRACT 

Risk analysis is currently not quantified in microgrid resource scheduling 

optimization. This thesis proposes a conditional value at risk (cVaR) analysis on a 

disconnected residential microgrid with distributed energy resources (DER). We 

assume the infrastructure to set up an ad-hoc microgrid is already in place for a 

residential neighborhood with power sources such as PV, diesel, and battery generation. 

With this scenario in mind, we employ optimization using day-ahead scheduling to 

allocate various resources to match demand in scenarios where neighborhoods, 

especially residential, are disconnected from the overall grid such as in flooding, 

hurricanes, winter storms, or operational failures. These allocations are then analyzed 

through a cVaR algorithm to calculate the worst-case scenarios the microgrid would 

face with abnormally high demand. The goal is to provide an alternative framework to 

optimize power availability for priority customers and strengthen the overall grid 

against dips in power outside of normal operating considerations. 

Natural disasters have been increasing in severity and length due to climate 

change. Additionally, the existing electric grid has been strained due to an increase in 

residential and commercial solar power, as well as other renewable systems and electric 

vehicles. This has created more reliability concerns for the overall health of the grid. It 

has also made it more difficult to provide consistent and reliable electricity especially 

when faced with large-scale disaster scenarios such as flooding, wildfires, hurricanes, 

or winter freezes.  

The focus of this research will be taking in renewable energy sources from 

photovoltaic (PV) combined with diesel and Battery Energy Storage System (BESS) 
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while minimizing cost. This will allow for compensating on a distribution level for 

short-term usage in a residential microgrid configuration. Lastly, by utilizing existing 

infrastructure with a new energy management system, microgrids can be implemented 

to be for more resilient for new reliability challenges. 
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NOMENCLATURE 
 
𝐷!!    Priority customer demand defined as customers where electricity cannot  

                   be curtailed. 

𝐷"!             Essential customer demand. Defined as residential customers whose electricity can 

                   be curtailed to manage load curtailment. 

𝐷""!           Essential customer curtailed. Defined as residential customers whose electricity is 

        curtailed to manage load curtailment. 

𝐷#"$	&'()!  Demand load of the system subtracted from any residential PV that is generated. 

𝐷&'()!        Demand total for all customers in microgrid.  

𝑃*+,,! 	        Power of the battery energy storage system. 

𝑃-.!            Power value of photovoltaic residential solar panels. 

𝑃/0!             Power output of diesel generator. 

𝑃/0#$%         Power output minimum for diesel generator. 

𝑃/0#&'        Power output maximum for diesel generator. 

𝑃1'$(2!        Power total available combining diesel, battery, and residential solar power. 

𝑃/#&'
*          The maximum discharge rate of the battery 

𝑃/!
*              The power rate at which battery is discharging from the system. 

𝑃3!
*               The power at which the battery is charging from the system. 

𝑃3	#&'
*          The maximum charge rate of the battery. 
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𝐶4($$,6")    The additional price ($) of the battery cost when the battery state of charge is 

                   outside the green zone. 

𝐶78"2          Fuel cost ($/kW) of diesel generation.  

𝐶*)!            Cost ($) of battery proportional to the degradation at cycle N. 

𝐶**+!&,        The capital cost ($) of the battery. 

𝐶/-             Cost ($/kW) of curtailing essential customers. 

𝑈6              Binary value indicating whether the battery state of charge is outside  

     the green zone. 

𝑈3!             Binary value indicating whether a battery is charging. 

𝑈/!             Binary value indicating whether a battery is discharging. 

𝑈)0!            Binary state determining if diesel generator is on or off. 

𝑆𝑂𝐶$          The energy state of the battery.  

𝑆𝑂𝐶90:
;6"":  Minimum state of charge at which normal battery degradation can occurs.  

𝑆𝑂𝐶9(<
;6"":  Maximum state of charge at which normal battery degradation can occurs.  

𝑆𝑂𝐶90:      Minimum possible state of charge for battery.  

𝑆𝑂𝐶9(<     Maximum possible state of charge for battery.  

𝐷𝑜𝐷$          Depth of discharge for battery. The percentage energy value which the 

                   battery has been depleted. 

𝐷𝑜𝐶$          Depth of charge for battery. The percentage energy level which the battery has been 

charged. 

𝑁                Number of scenarios in which the microgrid system is processed and  
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                   analyzed for one full day. 

𝑁4($,9(<!   Rated maximum number of cycles of the battery system. 

𝑁4($!          Battery cycle count. 

𝑐𝑉𝑎𝑅          Conditional value at risk formulation used to calculate risk at high-risk 

                   low probability scenarios. 

𝑉𝑎𝑅            Possible value at risk. 

𝛼                Smallest possible cost for admissible loss. 

𝑓(𝑥, 𝑦)       Unmet demand after generation is accounted. 

𝛽                Confidence level.  

𝑧0                BESS power and diesel power of the specific interval.  

t                  Time segment per analysis.  

∆λ               Change in degradation between two-time intervals.	

𝜆#.&!! 										The capacity factor loss at the Nth cycle.	

∆𝑇              The length of time segment. 

𝛾                 Price normalizer value ($/cycle). 

𝜀                 Relationship between essential and priority customers.  
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CHAPTER 1 INTRODUCTION 
 

1.1 Electrical Grid Reliability 
 

There have been 500 weather events in North America impacting 50,000 

customers for each event from 2005-2015 [1]. Similar increased electricity outages 

due to weather have been reported on other continents. These increases in the severity 

of natural disasters are due to the forces of climate change [2]. Also, blackouts have 

occurred due to operational errors resulting in millions of customers losing power [3]. 

Lastly, attacks against the grid have become more common from foreign actors [4]–

[5]. Both trends have emphasized the need for a more distributed and decentralized 

electric grid which should function even if disconnected from the overall electric 

utility. Besides reliability issues, technological shifts have resulted in distributed 

generation, intermittent renewable power sources, as well as advanced customer 

expectations that did not exist when the grid was initially designed. Due to these 

considerations and the aging of grid infrastructure, today’s electric grid is particularly 

susceptible to numerous types of damage and prolonged periods of blackouts [10]. 

1.2 Microgrid 
 

A microgrid is defined by the Department of Energy as “‘a group of 

interconnected loads and distributed energy resources within clearly defined electrical 

boundaries that acts as a single controllable entity with respect to the grid” [6]. 

Microgrid technology has become increasingly more common in the past few 

decades due to its ability to supply areas with geographical constraints, disaster prone 

issues, and rural areas. It is also an effective tool for electricity distribution and 
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reliability. Additionally, a microgrid has the capacity to disconnect from the main grid 

and be self-sufficient for a period of time but it can also remain connected and function 

alongside a larger grid system in normal operations. This is essential in a blackout or 

disaster scenario since a microgrid can disconnect from the other supply issues or even 

equipment damage that could be occurring elsewhere. This allows the microgrid to 

avoid cascading failures and provide reliable power in its specific area [7].  

A microgrid can be a residential neighborhood, single building, or a larger 

subsection [7]–[8]. The advantages are numerous for each type of microgrid. A 

residential microgrid is chosen for the analysis covered in this research. This has also 

been used to design for island nations due to geographical constraints. A residential 

microgrid is chosen in this scenario since existing geographically connected 

neighborhoods can use the same microgrid configuration with high renewable 

penetrations and additional resources without a full grid overhaul [9]. 

1.3 Energy management system 
 

The focus of this research will be on the microgrid’s ability to disconnect from 

the larger electric grid in a time of outages and be able to reliably provide power to a 

specific section otherwise referred as an island state. However, this requires that a 

microgrid have its own energy management system (EMS) and far more refined control 

methods then a traditional EMS since both the energy demand and consumption is at a 

far more granular level [10]. These enhanced requirements are implemented in this 

research with two systems. Firstly, the day-ahead scheduling is used to optimize 

resource allocation since an emergency usually unfolds on a day-to-day basis. This 

system also makes sure that demand is being met. Lastly, it also allows cost 
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approximation to allocate the correct energy supply ensuring effectiveness and ideal 

dispatching [11]. 

In addition to physical infrastructure, new forms of EMS including intermittent 

energy such as solar panels must be considered for resource allocation and constraints 

[11]. Microgrid functionality must be built into the system as more microgrids are being 

integrated or being developed alongside the main grid. This will have far reaching 

consequences in energy management systems as large changes in both the generation 

and consumption of energy are rapidly shifting. 

The energy management system in a regular electrical system has incredible 

reliability and is a marvel of the modern world. Unfortunately, this reliability and 

interconnectedness is only guaranteed for normal conditions. The electric grid’s ability 

to respond to issues under abnormal conditions such as storms, flooding, or other 

disasters may be reduced [7], [18]. Additionally, the standards of electric reliability that 

are expected for day-to-day operations are not the same expectations as in a disaster 

scenario [19].  

This research is primarily focused on such circumstances where the normal 

standards for reliability are not available. The high standard is only possible due to a 

vast and durable interconnected system which relies on large-scale generation 

transmitted to distributed residential systems. These infrastructure advantages are 

guaranteed in a natural disaster where due to damage, the system can be disconnected 

into multiple sections. When this happens, individual residential homes or industrial 

systems must have previously installed redundant systems such as diesel generation or 
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BESS. Otherwise, their ability to receive electricity is entirely dependent on the speed 

at which the whole system can be reintegrated into a default state [13].  

Therefore, advanced EMS software is necessary along with more resilient 

physical assets to harden the overall grid [1]. There are also new forms of distributed 

generation which change the dynamics of power transmission. All these factors require 

a rethinking of acceptable risk which currently is not acknowledged for existing 

systems. This research utilizes day-ahead scheduling with specific time segments by 

assigning certain cost objectives to various resources including solar power, load 

curtailment, BESS, and diesel generation. This allows the model to create the most 

effective mix of resources to supply a load while minimizing resource usage throughout 

the day.  

This research presents one such approach to reduce unreliability by looking at 

day-ahead scheduling resource allocation which is then analyzed through a risk 

management method to determine the risk factor of load curtailment throughout the day. 

This framework points out how intermittent resources and load curtailment can increase 

reliability [34]–[35]. The goal is to understand that not only can load curtailment be 

necessary in certain situations but how to quantify this necessity to ensure that system 

operations and reliability is maximized in an emergency. It also creates a starting point 

to discuss instances where property that is currently controlled by individual use can be 

used in a more communal manner. This will allow a more sophisticated conversation 

about load curtailment instead of the current reality of demand reduction occurring 

haphazardly [20].  
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1.4 Conditional Value at Risk  
 

Conditional value at risk is a systematic framework used to analyze the risk 

found in financial investments. The algorithm evolved from value at risk (VaR) which 

allows for general risk found in investments during normal operations. A traditional 

VaR would give a value of loss possible during a regular interval. In comparison, a 

cVaR analysis would state the risk factor in a minority of scenarios (usually 1%, 5%, or 

10%) by doing an average summation of the worst returns in the past historical record 

[15].  

 

Figure 1: Traditional cVaR representation showcasing maximum loss along with traditional VaR [16]. 
 

The cVaR and VaR is represented above in graph form visualizing how cVaR is 

used at the end of a distribution to find maximum loss [16]. For example, a cVaR 

analysis would highlight if an investment is likely to lose more than half of its entire 
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value even if the likelihood of this occurring is extremely rare. The cVaR methodology 

allows an evaluation of high-risk, low-probability found in investments compared to 

standard financial evaluations which do not consider tail-end risks [15]. In a standard 

distribution for cVaR analysis, tail-end or edge-case risks are defined as low probability 

but high-risk events.  

The ability to quantify risk at edge-cases and not simple day-to-day operations 

has allowed cVaR analysis to transition from finance to other industries including 

energy management [14]. Historically, electric grids boasted extremely high reliability 

and have not needed edge-case risk-based analysis. However, two recent trends in the 

last several years have made it necessary to prepare for larger risk failures, first is the 

increased likelihood of blackouts and brownouts due to stronger and more frequent 

natural disasters as well as digital attacks on infrastructure [3]–[5]. This dangerous new 

reality is due to climate change and foreign state attacks and has resulted in a call for 

more grid hardening efforts. Although grid hardening is necessary, equally as important 

will be the quantification of risk to understand where and how much the grid is 

vulnerable. cVaR allows for probing and quantification of these vulnerabilities. This is 

a necessary step to increasing reliability for the overall system using probabilities of 

load curtailment [11].  

Secondly, the proliferation of microgrids as well as distributed energy resources 

(DER) has resulted in larger volatilities in both demand and supply within energy 

management. This has created the need of cVaR techniques to better manage changing 

grid systems while maintaining a high state of reliability. This research allows 

exploration of  microgrids in an island state with the inclusion of load curtailment as 
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well as various distribution energy sources [2], [10], [32]. The mathematical 

formulation is explained in more detail in the problem formulation and how it is used 

for microgrid systems in the specific setup used in this research.  

1.5 Distributed Energy Resources 
 

Distributed Energy Resources (DER) can include both generation and storage as 

seen in diesel generation, BESS, and residential photovoltaic (PV). These DERs are less 

predictable or can store less energy than more traditional power sources. For load 

management, DERs have become increasingly necessary for maintaining grid stability 

as they provide low transmission costs and are closer to demand sources [17].  

This research will consider all above mentioned DER sources in the aspect of 

targeted load curtailment [13]. The focus will be to increase resiliency using residential 

solar power, diesel generation, and BESS within a residential microgrid using day-ahead 

scheduling alongside advanced risk analysis modeling [12], [14]. 
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CHAPTER 2 MICROGRID DAY-AHEAD SCHEDULING 
 

The objective function in this research is to maximize power availability for 

priority customers by minimizing risk and cost of volatile power generation sources. 

This will be accomplished be utilizing day-ahead scheduling calculations with built in 

cost factors for each generation source. To do so, an overall formulation of day-ahead 

scheduling must be developed with cost factorization for different generation and load 

curtailment sources. The second portion of the chapter discusses conditional value at 

risk with the results of day-ahead scheduling to create a holistic risk profile of the 

system. 

2.1 Day-Ahead Scheduling 
 

Day-ahead scheduling provides forecasting traditionally for the next day of 

operation by analyzing both generation capacity and demand needs. This is done so by 

using a method called security constrained unit commitment (SCUC) [39]. The unit 

commitment position sets On and Off for generators over a set period allowing an 

economic best use of generators over a set period [32], [36]. 

 

Figure 2: An example Unit Commitment Table with Combinations for Dispatch highlighting how demand  
               and supply can match with numerous different generator availabilities [41]. 
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Security constraints are necessary to operate a microgrid in real world operations 

[11], [42]–[43]. In this system, the security constraints include battery charging and 

discharging constraint and diesel energy dispatch capacity with the assumption of a DC-

DC model [37]. Meanwhile, spinning reserves are additional generation set aside 

especially for abnormal circumstances. In our formulation, the diesel generator as well 

as the BESS provide spinning reserves for the model. 

In an integrated electric grid, there are also pricing markets for the purchase of 

generated electricity. For this thesis, the model is in a disconnected island state. 

Therefore, the pricing costs are predetermined based on the cost of fuel for diesel, 

existing cost function for load curtailment based on utility price rates, and battery 

degradation approximation for BESS [36]. 

This system is designed to lower the total operating cost while optimizing 

resources. For this research, SCUC is ideal because it allows for a mix of DERs with 

different constraints and advantages along with demand usage. SCUC is used to look at 

the existing system in that time segment as well as the viability of the whole system to 

allow a mix of resources that could supply an islanded microgrid in the most cost 

effective manner [35], [37]–[38]. 

2.2 Cost Formulations 
 

The objective function is to reduce cost while providing power for customers in 

a residential setting as 

(1) 															min	 ∑{𝐶!!"𝑃!"##" + 𝐶$%&'𝑃()" + 𝐶(#𝐷&$" + 𝑈*𝐶+,--,*&/}. (1) 

The objective function represented by (1) is a variation of the cost function of SCUC 

showing resource allocation for BESS, diesel, and load curtailment while balancing 
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demand and PV generation. Diesel generation and load curtailment have their own cost 

function which is explained in the sections below. Battery systems have two 

components to account for when the battery swings into a higher than preferred state of 

charge. This can be displayed as   

(1) 𝐷01,/" −	𝐷&$" =	𝑃()" +	𝑃!"##" + 𝑃23" . (2) 

(2) is a basic requirement for all electric grid operations ensuring that demand meets 

supply. The usage of 𝐷&$" 	to minimize demand will be explained in the Load 

Curtailment section. 

When BESS is outside of its preferred range, then an additional cost will be 

added. This is represented by the binary function for battery red zone, 𝑈*, and the battery 

red cost function 𝐶+,--,*&/. The function minimizes cost by ensuring that the appropriate 

resource is scaled for maximum cost effectiveness. This will be essential in this research 

by allowing cost functions to not only account for economic prices but also more 

complex valuation such as load curtailment to ensure reliability for prioritized 

customers as well as coordinating battery systems to maximize lifecycle. Each cost 

function rationale for these resources is explained in the sections below including how 

they are used to balance both resource generation with cost approximation, resource 

longevity, and customer needs [38]. 

It is important to consider that this research is limited to short-term decision-

making processes. All the necessary long-term investments made to install and purchase 

the initial energy sources have already been assumed to be completed. The focus for 

this research is on short-term considerations such as cost of fuel. Initial costs of 

residential PV systems and diesel generation systems are deferred since the devices are 
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calculated in a purely operational role where installation costs have already been 

acknowledged.  

One exception is that long term battery degradation costs are estimated in the 

short term by battery depth and degree of usage estimation over the period of a day and 

its effect over the total course of a battery's capital cost and then included as the existing 

cost of the system. This is taking an initial one-time investment of battery cost and 

estimating it as an equivalent short-term cost [30]. This allows the model to bridge the 

gap between research which assumes perfect battery systems in microgrids and existing 

research that is primarily focused on only battery models. Lastly, this research will 

explore the concept of taking already existing infrastructure (such as individually 

purchased batteries, solar panels, and diesel generators) and explore models of 

retrofitting them to create a residential microgrid which could be utilized in emergency 

scenarios [31]. Now, each resource cost can be addressed to calculate the most cost-

effective method to distribute customer demand. 

2.3 Microgrid Components 
 

The main difference between a microgrid and the overall electric grid is its 

ability to provide power to a smaller locality including managing DERs in the microgrid. 

Additionally, it means microgrids have their own energy management system. Both of 

these features mean that a microgrid can be integrated and interact with the main grid 

but can also disconnect in island mode and function independently [3], [6]. These 

abilities allow microgrids to be incredibly helpful in load restoration and reliability as 

well as customer engagement in demand management since the scale of electrical 

systems is significantly smaller [3]–[4]. 
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Figure 3: Microgrid example from Chevron Energy Solutions’ Project showcasing BESS, diesel  
                generation, PV, as well as other DERs [3]. 
 

The figure above showcases an ideal example of a microgrid that can utilize 

numerous DERs to provide for demand while also having decoupling mechanisms if it 

would like to remove itself from the main grid. All of this controlled by its own 

distributed energy management system [3].  

The model used in this research includes a microgrid in an island state. The 

sources of generation are residential PV, BESS, and diesel generation as the three 

DERs. BESS is especially useful since it can absorb and discharge power. All three 

are DERs which can be utilized near the source of the demand. This is crucial for a 

microgrid to function by itself. The fourth resource is load curtailment which limits 

demand by prioritizing certain customers with higher requirements. The sections 

below address each resource in greater detail. 

 



 

13 

2.3.1 Residential Photovoltaic System 
 

Residential PV defined in the model as the inclusion of solar panels to a 

residential home providing electricity as well as being able to export energy to the 

microgrid. Solar panels have several advantages such as the ability to provide power 

without any input fuel while having much smaller physical area requirements than other 

renewable sources. They also require less maintenance than other fuel sources. With 

weather forecasting, it has become easier to accurately predict the amount and time of 

power production [25]. Since residential solar panels are installed at or near the point of 

consumption, the transmission costs are dramatically reduced. Residential small scale 

connected PV also has the advantage of already being implemented in the central grid 

system as well as having their own inverter configuration for each residential unit 

instead of needing a centralized controlling unit as seen in solar farms [23]. 

The disadvantages of solar is that power production is confined from late 

morning to early afternoon even in ideal circumstances. Additionally, they are 

extremely susceptible to changing weather conditions especially rain and snow. For 

now, this means that BESS is necessary on a microgrid level to hedge the quickly 

changing nature of solar generation. There will be a focus in the model on how to best 

utilize excess solar energy to meet demand.  

This research utilizes residential PV for input values collected from homes in 

Austin, Texas courtesy of Pecan Street in the model [40]. Therefore, the model can be 

tested with a dataset that includes the volatilities found in live systems. Since initial 

costs of residential PV systems are deferred and it possesses no fuel cost, PV has the 
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advantage of not needing a cost function in the model. The main consideration of PV is 

accounting for the volatile nature of solar production. 

2.3.2 Diesel Generation 
 

Diesel systems are a useful fuel source around the world in grid operations as a 

DER alongside BESS and residential PV [3]. On a base level, they burn diesel to power 

a motor generating electricity. They are readily available, can provide a large amount of 

power, and have been well tested in the grid. Diesel will be a necessary generation 

source even for research focused on incorporating renewable power sources because of 

its long record and power capacity. It is a necessary bridge to more environmentally 

friendly DER system as they are already integrated into the overall system. Start-up 

costs are not considered in this model because of model optimization timing [32]. As a 

base constraint, there is a maximum discharge and charge capacity for diesel generators 

to meet technical limitations as  

(1) 𝑃()%&' ≤	𝑃()" 	≤ 		 𝑃()%() . (3) 

It is assumed that a diesel system with the necessary fuel for an entire day of operations 

is provided with the microgrid. The cost of the diesel is considered linear and added to 

ensure an appropriate mix of diesel with load curtailment, BESS, and residential PV 

using the energy management system [34].  

 
2.3.3 Load Curtailment 
 

Load curtailment is the practice of removing or reducing electricity for a certain 

time frame due to a mismatch between strong demand and limited supply. Load 

curtailment is traditionally discouraged in the United States and most other developed 
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countries. However, as seen in the Texas Winter Storm Uri, load curtailment can and is 

unfortunately becoming more commonplace [21]. Load curtailment can occur due to a 

reduction or inability to generate electricity. It can also occur because demand surged 

due to extreme temperatures. On a day-to-day basis, the North American electric grid is 

reliable yet due to logistical issues caused by stronger storms, load curtailment due to 

limited supply of electricity is becoming more common [18]. 

Unfortunately, the standards for reliability are not quantitatively calculated 

during hurricanes or other disaster scenarios. Although there has been research on 

building an energy framework resilience reference, there has not been a serious 

discussion on the role of targeted load curtailment [18], [22]. Since the goal has always 

been to have no load curtailment, there has never been a conversation about how to 

utilize load shedding strategically to not increase larger chances of the grid failing or 

unnecessarily reducing load from priority customers. Some current research is 

attempting to score electric grid reliability post-disaster but there is no contention of 

disaster hardiness in a planning stage or in operations in the middle of a disaster [18]. 

An attempt to do so was made in the 2021 Texas Winter Storm with rolling blackouts 

but unfortunately was done at the time of the emergency with no planning beforehand 

due to weather conditions [21]. 

This research will explore the idea of utilizing load curtailment as a negative 

demand in resource allocation strategically along with BESS, PV, and diesel in an 

integrated energy management system. This will reduce the overall riskiness of the 

system as well as to ensure the adoption of microgrids in existing infrastructure. 

Additionally, the research will also allow an evaluation of the microgrid’s ability to exist 
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in an island state in a post-disaster scenario instead of reliability and infrastructure 

planning based entirely on a grid behaving in normal operations [22]. 

(1) 𝐷4&-	01,/" = 𝐷6" + 𝐷&" − 𝑃23" (4) 

defines the fundamental connection between how demand is configured in the system. 

Net Load is set to all customer demand subtracted from any PV generation. The two 

other equations, 𝐷2 and 𝐷&, are two distinct groups of customer demand. This allows us 

to understand the total load faced by the system for generation that the model can 

control.  

1) 𝐷6" = 	𝜀𝐷&" (5) 

then sets the grouping of priority customers and essential customers. Priority customers 

are a fraction defined by 𝜀 of the essential customers. Priority customers cannot be 

curtailed by the model. Comparatively, the larger essential customer group can be 

curtailed. Of the essential customer group, only	𝐷&$"  is defined as essential customer 

curtailed are removed from the system. The overall equation can be represented by 

(1) 	𝐷6" +	𝐷&" −	𝐷&$" =	𝑃71-,'" . (6) 

In this model, customers are only placed in the essential customer classification 

if they opt into the classification. 𝐶(# in (2) is defined as a multiple of the residential 

electric rate for essential customers who have their electricity curtailed to compensate 

for the inconvenience of losing power. The rationale for the priority group is to include 

those that are medically dependent on consistent electricity or those who have essential 

job requirements for their community. Classifying customers in this way has a couple 

of benefits. It allows the creation of a more accurate load profile of the needs of the 
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customer base. It gives customers an opportunity to opt out if they are not in their homes 

at the time of the emergency and would rather be reimbursed for load curtailment since 

they do not require electricity.  

Now, we can create a full system level equation in (6) showcasing that the two 

classifications of priority and essential customers subtracted from any customers 

curtailed must equal the total generation of the system. Therefore, the 𝐷&$ is necessary 

in (1) to ensure that demand meets supply. 

(1) 𝐷&" ≥ 𝐷&$" ≥ 0 (7) 

shows that 𝐷&$"  must be greater than zero since customers cannot be negatively removed 

from the system. It can also not be greater to 𝐷&". It is possible although rare that 𝐷&$"  

is equal to 𝐷&".  

2.3.4 Battery Energy Storage System 
 

Battery systems are quickly becoming a necessary component to balance small 

scale energy production such as residential solar panels as well as larger power 

generation systems such as wind power plants as well as general oscillations in the 

central grid [11], [13]. This research takes the approach and hardware of a medium sized 

battery source and uses it in a smaller scale microgrid energy system to provide 

stabilization. This is a similar configuration to a larger battery system operation but 

provides even more value since there are larger fluctuations in demand and supply 

compared to the overall total grid power. BESS in this thesis will be incorporated into 

EMS day-ahead scheduling to ensure efficient allocation of power [30]. 
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On a singular level, BESS can be used to supply power to its designated 

residential location for a limited period in a blackout. These batteries are usually 

specified for its designated residential location. On a larger setting like the Hornsdale 

Power Reserve, power is provided on a massive scale to hundreds of homes securing 

grid stability and system security [20]. BESS are also used in tandem with residential 

PV to extend peak solar generation hours as well as hedge power in blackouts and 

supply demand mismatch [28].  

The model defines battery charge and discharge by two binary values defined 

below: 

(1) 𝑈8"{1, 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔	𝑠𝑡𝑎𝑡𝑒. 0, 𝑛𝑜𝑡	𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔	},   (8) 

(1) 𝑈(" 	{1, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔	𝑠𝑡𝑎𝑡𝑒	0, 𝑛𝑜𝑡	𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔},   (9) 

(1) and	𝑈8" + 𝑈(" 	≤ 1. (10) 

The U variables are to account for the charging and discharging state of the battery for 

when the system has an influx of generation or excess demand. These values are set 

above or equal to zero since anything else would be an impossible state for a battery 

system. The two binary states have then been set to be equal to or less than one. The 

equal state forces the battery to either be in charge or discharge system or for neither 

state to be activated. The power of the battery is the power discharge rate subtracted 

from the charge rate as shown in (11). In this research, the BESS is exporting power in 

most instances and absorbing power is considered a negative generator state displayed 

as 

(1) 𝑃!"##" =	𝑃("
! − 𝑃8"

! 	. (11) 
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As a base constraint, there is a maximum discharge and charge rate of batteries 

to meet technical limitations. This can be shown as  

(1) 0 ≤ 𝑃8"
! ≤	𝑈8"𝑃8	%()

!
	
 (12) 

(1) and	0 ≤ 𝑃("
! ≤	𝑈("𝑃(	%()

! . (13) 

2.3.5 Battery Degradation Model Approximation 
 

Battery coordination must balance load curtailment management along with 

battery degradation. This is one of the core reasons why a communal battery system or 

multiple coordinated smaller batteries must be utilized instead of allowing separate 

batteries with their own cost function. This would result in battery arbitrage and will 

drag down the overall system. This thesis creates a formulation with one core battery 

system that has resulting rules in place to enhance overall system reliability. The cost 

function however can be used with multiple individual batteries.  

The BESS degradation cost is approximated in the model to provide more 

accurate results for cVaR risk calculations. Battery degradation is an important aspect 

of fully utilized BESS assets and must be balanced by PV resource hedging throughout 

the day. Other approaches to battery degradation have been used for day-ahead 

scheduling to explore the best resource allocation of battery usage and arbitrage but does 

not consider battery degradation [3]. This research both considers day-ahead scheduling 

with unit commitment as well as battery degradation by using battery charging zones 

and non-linear cost functions. This will allow a short-term operation to extend the life 

profile of battery systems by approximating a battery capital cost in a short-term setting 

[28]. It will also allow more optimal charging and discharging [27]. 



 

20 

Battery optimization rules are used to prolong life cycles of these systems. These 

principals include keeping state of charge (SOC) in minimum and maximum range of 

𝑆𝑂𝐶9,:
;*&&< and 𝑆𝑂𝐶9)<

;*&&< [27]. 𝑆𝑂𝐶9)<
;*&&< and 𝑆𝑂𝐶9,:

;*&&<	stand for state of charge green 

zones minimum and maximum respectively. State of charge here is defined as the 

energy level available at the battery at any specific time interval. The standing BESS 

system of this research however can go lower or higher than the defined green zone.  

There are a couple of reasons to prefer SOC in this zone. One reason is to have 

the ability to hedge further swings in sudden generation or demand. The BESS at its 

minimum or maximum cannot hedge energy needs as effectively. Another reason is that 

research shows that battery systems in these ranges will last longer over time [27]. 

If 𝑆𝑂𝐶- fall within the green range, it is considered to degrade normally. The 

model implements this constraint by adding another cost factor to any usage of the 

battery outside of the green zone as in (14) [32]. This results in a more accurate usage 

of BESS and encourages the model to maintain SOC in the green zone or face higher 

penalties. This is reflected in the objective function in (2). Battery usage in these 

intervals is considered green charging zones as seen in 

F
𝑆𝑂𝐶9)<

;*&&< ≤ 𝑆𝑂𝐶- 	≤ 	 𝑆𝑂𝐶9,:
;*&&<											𝑈* = 0

𝑆𝑂𝐶9)<
;*&&< > 𝑆𝑂𝐶-																																				𝑈* = 1

𝑆𝑂𝐶- 	> 	 𝑆𝑂𝐶9,:
;*&&<																																	𝑈* = 1.

 

 

(14) 

Besides zones of operation, this research considers the usage cost as a component due 

to the non-linear nature of degradation. The battery is said to drop by a factor after each 

cycle. A full cycle is defined as a battery completely discharging and then being charged 

to its maximum value. At its most basic premise, battery life cycle is defined as the rated 
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maximum number of cycles (𝑁+,-%()) completed before the battery is considered 

completely degraded. Degradation is defined as the battery being able to no longer 

charge to its rated energy value but instead can only charge to a fraction of its initial 

maximum charge [28], [30].  

With the volatile nature of this model, a full cycle is unlikely to occur 

continuously. Therefore, the model counts the depth of discharge into fractions which 

can then be scaled to give an approximation of the degradation for the battery. For 

example, if half the battery is discharged and then charged then it will be half a cycle 

for the modeled equation below [27], [30]. The cost of the battery system is then 

connected to the maximum life cycle to calculate the overall cost of the battery as 

connected to cycle count. This allows us to take a specific portion of battery usage such 

as one day and connect it to the overall cost of the battery by  

(1) 
𝑁+,-" =I

1
2
(𝐷𝑜𝐷- + 𝐷𝑜𝐶-).

-

-=>

 
(15) 

After every cycle, the battery can hold slightly less charge. This depreciation is non-

linear and can be approximated by modifying an infinite geometric series equation [30]. 

𝑁+,-" in 

1 
𝑁+,-,9,:" − 𝑁+,-" =

𝑁+,-,9,:"(1 − 𝜆4+("")
𝜆4+("" ∗ 𝛾

 
(16) 

is the number of cycles the battery is at while 𝜆4+(""  is the capacity factor loss at the Nth 

cycle. The initial state of 	𝜆4+(""  will be set a smaller value close to zero to correlate the 

infinite geometric series equation at a reasonable starting point to model a finite battery 

source. 𝛾 is the value equalizing value translating a theoretically infinite non-linear 
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equation and allows 𝜆4+(""  to be approximated to a manageable value into the existing 

cost function. When 𝜆4+(""  equals 1, the battery is considered completely degraded. 

Battery degradation allows the calculation of the battery’s operational cost at a specific 

cycle by multiplying by the capacity factor at that cycle point by the total cost of the 

battery (𝐶!,-"(.) by setting 

(1) 𝐶!!" = 𝜆4+("" ∗ 𝐶!,-"(. . (17) 

The 𝐶!! indicates the total battery cost at that level of degradation and cycle count. For 

this research, we would like to find out the difference in degradation cost from t to t-1 

or the change in degradation between time intervals. This can be done by taking the 

difference in 𝜆 as seen in [28] 

(1) ∆𝜆 = 	𝜆4+("" −	𝜆4+(""/0 . (18) 

The price of the battery cost at that charge will be dependent on its cycle count 

multiplied by the charge used in that scenario [30]. 

To summarize battery storage, the system has certain set objectives and logical 

conditions which will determine cost approximations:  

1. The BESS system has different set charging and discharging costs as the state 

of charge of the battery varies.  

2. The state of charge for BESS is monitored and is preferred to be above a 

minimum limit and below a maximum limit to increase battery life cycle. 

3. BESS cannot be charged and discharged at the same time. 

The next section explains how the costs defined in the model for day ahead 

scheduling resource allocation are used in the cVaR framework.  
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CHAPTER 3 CONDITIONAL VALUE AT RISK FORMULATION 
  

This chapter explains how the costs defined in the model for day-ahead 

scheduling is used in the cVaR framework. The diagram below showcases the process 

from day-ahead scheduling to cVaR analysis. First, all the scenarios in the day-ahead 

scheduling must be completed. This means that for one time interval, t, there will be 

hundreds of scenarios operating with different demand constraints and PV generation. 

Then when all N scenarios have been completed, they will create a large set of data 

points of cost optimized resource allocation including any possible load curtailment. 

These load curtailment measurements can then be tested for stability and resiliency and 

used to create a risk profile using cVaR analysis. 

 

Figure 4: The analysis starts with scenario day ahead scheduling. After every scenario is completed, the  
                full system analysis is modeled for systematic risk. 
 
3.1 cVaR Formulation 
 

The use of risk-constrained scenarios in financial models and utilities is to 

maximize profit with an internal pricing mechanism [33]. cVaR is a popular risk 

calculation algorithm. It is built on the work of VaR which calculates how to reduce risk 

within a certain confidence level (β) by minimizing loss due to the uncertainty in 

specific variables [33] otherwise defined as 

 
(1) 𝑉𝑎𝑅	 = 𝑚𝑖𝑛{𝛼 ∈ 𝑅: 𝑃{𝑓(𝑥, 𝑦) ≤ 𝛼} ≥ 𝛽} 					𝑓𝑜𝑟	0 ≤ 𝛽 ≤ 1. (19) 
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The 𝑓(𝑥, 𝑦) factor in (19) is defined as the losses calculated. The x denotes the variables 

available to fine tune and reduce risk where y represents the volatile uncertainty inherent 

in our system. By minimizing the worst-case scenario of y, the system could create an 

expected risk profile. This is calculated by taking the smallest possible cost (𝛼) that is 

greater or equal to 𝑓(𝑥, 𝑦) and then calculated the risk factor over β. This can be used 

to calculate the level of risk inherent in investing in certain markets and diversification 

tools (such as cash or bond hedging). 

 Unfortunately, VaR suffers from two key issues. Mathematically, it has a lack 

of convexity and subadditivity making it non-ideal for intensive calculation operations. 

Secondly, VaR only minimizes losses within a given confidence level and does not 

consider losses occurring at a confidence level outside of its boundaries at 1-β. cVaR 

allows a better grasp for situations where a small likelihood of risk could have a huge 

effect [14]. cVaR as a financial constraint is seen in 

(1) 𝑐𝑉𝑎𝑅	 = 	𝔼?(𝑓(𝑥, 𝑦)|𝑓(𝑥, 𝑦) ≥ 𝑉𝑎𝑅). (20) 

In this evolution of the original VaR equation, the cVaR is now taking the 

expected value of random variables above its VaR consideration. In other words, it is 

taking the loss factors inherent in the system and calculating them in situations of 1-β 

or above the standard confidence interval. This is a much more robust and flexible 

system since it allows forecasting of situations where non-likely events outside of the 

confidence interval occur. Additionally, a higher cVaR means the system is inherently 

less stable because in non-normal situations, the losses can be considerably higher. 

To transition from the above equations to models with samples, (20) can be 

converted into 
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𝑐𝑉𝑎𝑅	 = 𝑚𝑖 𝑛 ]	𝛼 +	

1
𝑁(1 − 𝛽)I[𝑓(𝑥, 𝑦)	

4

)=@

− 𝛼]A	`. 
(21) 

The first shift here is the addition of N moving the model from continuous to samples 

with N scenarios. The second change is that the positive component of our losses taken 

by known x and volatile y subtracted by 𝛼 as our hedging cost. For our formulation, we 

can then replace [f(x,y)−𝛼]A with 𝑧). This can be shown as 

 𝑧) = [𝑓(𝑥, 𝑦) − 𝛼]A. (22) 

 𝑧) can then be used to calculate the maximum losses seen in a market in situations 

outside the normal 𝛽 in (1-	𝛽)		[34]. The cVaR equation can now be redefined with 𝑧) 

as seen in 

 
𝑐𝑉𝑎𝑅	 = 𝑚𝑖 𝑛 ]	𝛼 +	

1
𝑁(1 − 𝛽)I𝑧)

4

)=@

`. 
 

(23) 

 

3.2 cVaR Application in Microgrid 
 

This section explains how cVaR will be used to maximize power reliability for 

priority customers. cVaR gives a weighted average of risk above the normal confidence 

level. This allows a calculation of the risk in high-demand scenarios that can occur in 

emergency situations [22]. Using this approach is more useful compared to prior work 

for reliability purposes. One advantage is that cVaR can now analyze load curtailment 

likelihood. This allows better understanding on how to maintain load for priority 

customers whereas in prior research, the goal was to increase economic savings [14].  

 𝑓(𝑥, 𝑦) = 𝐷4&-	01,/" − 𝑃!"##" − 𝑃()"  (24) 
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takes 𝑓(𝑥, 𝑦) from (19) and defines the combined losses as demand subtracted from 

diesel, PV, and BESS [14]. 

The last variable to form 𝑧) in (25) is 𝛼. 𝛼 is set as the smallest load curtailment 

while maintaining stability at the confidence level β [33]. The 𝛼 value will be measured 

in units of kilowatts. It is the level of customer demand that can be removed from the 

essential customer group defined in (6) as 𝐷&$. In keeping with cVaR convention, 

demand load that is curtailed will be referred to as 𝛼 moving forward. All this can be 

set as 

 𝑧) = [𝐷4&-	01,/" − 𝑃!"##" − 𝑃()" − 𝛼]
A. (25) 

𝑃!"##"  is set to be positive if discharging power as mentioned in (11). Net load power is 

defined as customer demand subtracted from power generated by PV as seen in (4) and 

constitutes the uncertain parameter of the system. The customer demand and PV values 

are taken from homes with built-in solar panels courtesy of Pecan Street [40]. The 

combination of Net Load and PV are uncertain values which BESS and diesel 

generation match in day-ahead scheduling. When this will not cover demand, the step 

of load curtailment is necessary to ensure 𝑧) is positive in (25). N in (23) is the number 

of scenarios for various risk factors. Each scenario is a different possible variation of 

the demand necessary for the load as well as possible PV generation based on weather 

conditions. One consecutive day is defined as discrete time segments (t) with each 

interval having N possible scenarios. This includes both volatile generation such as PV 

and controllable sources such as BESS and diesel. This expectation and management of 

unmet load with 𝛼 is essential to calculate cVaR in (23) [34].  
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CHAPTER 4 CASE STUDIES 
  

This section will first introduce all the components of the test microgrid system 

and then the specifications for each component. The process to calculate the cVaR is 

then explained and then the model results are discussed. 

4.1 Microgrid Configuration 
 

The test residential microgrid is designed with currently available commercial 

products. It is designed with a battery system made up of twenty Tesla Powerwall 

batteries with a capacity of 15 [kWh] each that starts at an initial value of 10 [kWh] for 

each battery. 𝐵) 	is	the	capital	cost	of	the	BESS	system	at	$10,000	[45]. The standard 

rooftop residential solar output is at 4 [kWh] during peak solar generation [44]. There 

are ten residential homes in need of power all with installed solar panels. 𝜀 in (5) was 

set to 0.5 therefore priority customers were a total of 33% of total demand. This means 

that a maximum of 66% of customers can be essential customers [11]–[12]. A 

simulation of all 187 possible scenarios, N, is run and the battery, diesel, and PV 

combination are recorded for each specific segment. 𝛽 is defined as 5% for the 

confidence level in this analysis. 

The input data for the scenarios including load demand and PV generation is 

graciously provided by Pecan Street. This is part of Pecan Street’s Dataport Project [44] 

which includes the world’s largest resource for residential energy use data, electric 

transportation and has been expanded to include residential water use, electric 

transportation, and regenerative agriculture [40]. Electricity demand as well as PV 

generation will have expected statistical deviation from historical data.	 𝑆𝑂𝐶9)<
;*&&< is 
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defined as 20% and 𝑆𝑂𝐶9,:
;*&&< as 80% in the model using values from previous research 

[28]. 𝑃()%&'is	set	as	0	and	𝑃()%()is set as 3.75 [kWh] for the system generator. The 

diesel generator is assumed to have sufficient fuel to operate during the whole course of 

the day. 𝑃(	%()
!  	and	𝑃8	%()

! 	is	defined	as	5	[kW]	for	one	Tesla	Powerwall	[45].	∆𝑇	is 

the length of time segment which is 15 minutes in this thesis. There are 96 segments for 

a 24-hour period.  

𝛾 is the price normalizer ratio between dollars and battery lifecycle. This 

allows the theoretical battery degradation equation to match the actual capital cost of 

the battery. It is set as 10 which allows the cost function to approximate the overall 

value of the Tesla Powerwall cost. 𝑁+,-,9,:" will be defined as 10,000 cycles for the 

system according to Tesla Powerwall specifications [45]. λ is the capacity factor loss 

with a half-life approximation of the battery cost will be set a constant value to  @
@@

. 

This value was chosen to approximate the non-linear battery degradation curve to an 

initial starting point. When the capacity factor is at one, the battery is degraded. 

Degradation is defined as when the BESS can hold 80% of its initial charge [28]. The 

cost for diesel fuel (𝐶$%&') is 0.066 $/kWhr, load curtailment (𝐶(#) is $1.2/kWhr, and 

battery cost outside of the green zone (𝐶+,--,*&/) is $0.66/kWhr. 

The objective function and cost parameters are then modeled with day-ahead 

scheduling using AMPL. AMPL is language designed specifically for optimization. The 

day-ahead scheduling gives the resource allocation for all generation including any load 

curtailment. The load curtailment if any for each fifteen-minute interval is then 

recorded. The load curtailment is then divided by the total demand supplied and 
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recorded in a matrix. Python is then used to take these values and calculate the 

conditional value at risk for the most demanding and highest load curtailment of the five 

percent of scenarios (nine scenarios) of the total set of 187 scenarios for all time 

segments.  

4.2 Results 
		

The results highlight the cVaR analysis on the microgrid system for one full day 

or 96 t segments on a total of 187 scenarios. The graph below shows in how many 

instances curtailment was necessary in the model. This showcases a high level of self-

sufficient reliability that above would be a boon to the existing electrical grid 

infrastructure. The system had zero instances of load curtailment for 90% of scenarios. 

It had a maximum of 13 instances of load curtailment in the most challenging 5% of 

cases for all segments. 
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Figure 5: The above graph shows how many scenarios had active curtailment over the course of the  
                day. Each hour represents four different segments of fifteen-minute intervals. 

 
From a systemwide load curtailment view, now we can take a more in depth look at the 

5% of challenging scenarios in terms of balancing generation and demand. The standard 

deviation shown below showcases the difference in values of the dataset for each 

segment. 

 

 

Figure 6: The Conditional Value Standard Deviation at a 5% confidence level of the model. Each hour 
                represents four different segments of fifteen-minute intervals. 

 
Within each segment, there is a 20-30% standard deviation indicating the model is 

robust. These results showcase that the model can take in very different demand 

constraints and respond appropriately to the need of the specific scenario. Interestingly, 

the standard deviation is largely consistent throughout the day, showcasing that the load 

curtailment deviation is not too different between sample segments. An exception to 

this is late mornings to end of the afternoon where due to ample residential PV, there 

are far less load curtailments and therefore the standard deviation is lower. 
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Figure 7: The above graph shows scenarios and how many instances of active curtailment during an  
                entire day. 

 
The chart above showcases the twenty-six scenarios or 13.9% of the entire 

scenario dataset that was responsible for all load curtailment. This is expected since the 

model was tested on a robust dataset which has microgrid scenarios with larger than 

expected demands. This is very likely in emergency situations due to weather 

conditions, and it is important to note how the microgrid would react in these scenarios. 
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Figure 8: The Conditional Value Standard Deviation at a 5% confidence level of the model with all 187 
scenarios reflected in the graph. Each hour represents four different segments of fifteen-minute 
intervals. 

This model was able to supply demand in most scenarios without needing to curtail any 

customers. The chart above shows the actual representation of curtailment compared to 

all the scenarios the system processed during the course of a day. 

 

 
Figure 9: The Conditional Value at Risk Analysis at a 5% confidence level of the model represented by                                                                                                   
                load curtailment as a percentage of total demand throughout the course of the day. Each hour  
                represents four different segments of fifteen-minute intervals.  

The behavior of the case study matched expectations in the following ways. The risk 

when calculating real time energy management for the hours of 10 AM to 4 PM were 

reduced and in some time-segments brought to zero. This means residential solar times 

matched demand at these times and reduced risk of load curtailment. This is one of the 

main benefits of residential solar. It especially helps microgrids in providing a power 

source for a part of the day. Coupling residential PV with a BESS system allows energy 

arbitrage throughout the day as well as dealing with the new problem on addressing 

time-intermittent power generation coming from a residential setting 
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Additionally, the system can withstand a lot more load added quickly into the 

system and adjust accordingly. This has shown in scenarios where the load increases 

dramatically over short periods of time, but the system is able to provide energy in most 

cases. It is also reflected when the evening load increases drastically partially due to the 

decreased ability of residential PV and due to rising demand. The system responded 

effectively and was able to use its mix of energy options to meet demand. Additionally, 

the system was able to effectively adapt in the versatility and changes in different 

scenarios.  

Load curtailment was expected to be used in a small percentage of the case. This 

proved to be correct and brief and targeted load curtailments can improve system 

reliability for priority customers. This is complementary to grid hardening efforts but 

has the advantage of lower costs because it can be built with existing infrastructure.  

Some of the more unexpected results of the case study were limitations on 

battery charging as well as the extent to which battery degradation approximation can 

change the base model for a system. The model had to increase battery storage to double 

what was considered necessary. There was an expectation that the ability to discharge 

would cause issues not the ability to charge. Initial expectation of one battery per house 

had to be adjusted for a standard residential house battery model because of BESS cost 

considerations. In the cases where there is a load curtailment, the results can be stark. 

Six segment intervals showcase failure rates higher than 50%. 

Even if this is for a brief period, this showcases the adaptability that electricity 

providers must consider in the future. Additionally, this level of variability is not 

surprising considering the smaller scale of the grid. It is also worth considering that risk 
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factors do decrease dramatically from time segment to time segment, but the broader 

trend is true of higher risk factors later in the evening and in the early morning where 

demand is increased and residential solar is not in effect. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 
 

This chapter summarizes by the thesis and concludes with future topics that 

can be used to explore other aspects of both risk management and microgrid design 

and research. 

5.1 Conclusion 
 

cVaR analysis is used in a stand-alone microgrid alongside day ahead 

scheduling. This research showcases the adaptability of a multitude of generation 

sources being utilized along with load curtailment in different demand-constraint 

scenarios.  

The objective was to conduct a risk assessment on a microgrid system to assess 

likelihood of load curtailment. This allows for evaluating the risk of existing system 

infrastructure facing controlled load curtailment in a disaster scenario. The microgrid 

was able to continue operations and provide for demand while also utilizing BESS 

efficiently both for long term asset use as well as short-term dependability.  

The research results showed that a microgrid could be created from an existing 

residential neighborhood that is currently connected to the main grid [44]. Instead of 

proposing a brand new microgrid installation, existing electrical infrastructure in 

neighborhoods particularly those with high residential penetration can be retrofitted 

with additional diesel generation and battery storage services alongside its own energy 

management system [4], [13]. Additionally, cVaR could be applied to these existing 

residential neighborhoods.  This will allow these areas to decouple from the existing 



 

36 

larger grid and function successfully in the short term as microgrids. The test microgrid 

presented in this research can be applied to certain existing residential neighborhoods 

with the addition of resources such as relatively mid-sized BESS or diesel generation. 

These resources would be added based on the risk management analysis in emergency 

operations of the existing residential neighborhood.  

Other considerations that became crucial in this research is day-ahead 

scheduling and setting both preferences and objectives in energy management to reduce 

cost allowing the best mix of resource allocation. Cost functions were also important 

because they defined what is considered valuable in the model. For most electricity 

providers, reliability and cost is the focus. In this research, reliability, island-state 

feasibility, and a value on renewable sources was paramount. Other research mentions 

new systems that are needed to create a grid with volatile multi-generation sources [13], 

[34]. The core focus of this thesis is proving the feasibility for a predominantly 

residential neighborhood to be able to exist in an isolated microgrid while maintaining 

stability and a high level of power accessibility. The configuration proposed in this 

research will be a post-disaster scenario such as mass flooding, hurricane, or a winter 

storm limiting power reliability from the central grid.  

The current electric grid is not prepared for prolonged interruption in service 

[1]–[3]. This has resulted in millions of customers losing power with haphazard load 

shedding at the time of emergency [18], [21]. The microgrid proposed in this research 

is based on the understanding that there might not be sufficient generation in certain 

situations and presents different tiers of customer priority to ensure a methodical 

distribution of limited energy. This is a departure from the current utility system for 
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residential customers of rolling blackouts or random residential area load curtailment. 

This is not an acceptance of customer load curtailment but a more thorough risk analysis 

implementation to understand the likelihood of curtailment. With this research, systems 

can add generation based on the likelihood of emergency failure instead of the standard 

of normal operations. This research also explains the definition of priority customers as 

those medically dependent on consistent electricity as well as a template for economic 

recompense for those customers who could have their load curtailed. Neither of these 

options exist in the current electrical system.      

In this research, BESS was considered as a combined service to provide for the 

entire area. Yet, the framework also allows separate BESS systems to exist while being 

synchronized by a day-ahead scheduling system. Additionally, BESS capital cost 

approximation was utilized to benefit the entire grid. This is a more sophisticated 

approach to battery usage increasing the overall lifecycle of a battery system. 

Existing generation sources available currently such as residential PV and diesel 

generation can be combined into a microgrid with its own separate EMS to safeguard 

and enhance the electricity reliability for consumers on a local level in the situation of 

an emergency. 

5.2 Future Work 
 

This thesis opens several new avenues for further research on renewable 

operations in microgrids, and the overall electric grid in emergency situations. 

Microgrid stabilization using residential PV in emergencies requires further research. 

Moreover, a DC microgrid setup also needs additional research to go alongside BESS 
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and PV systems. Hardware challenges such as back feeding of electricity in situations 

of DERs will also need to be addressed. Other aspects that could be researched is solar 

inverter technology and new distribution protection schemes to be able to effectively 

and safely transmit and distribute electricity for residential PV systems. 

Customers and utility relationships will have to be reconsidered in a disaster 

scenario. Consideration of reliability in storms and how increased reliability capital 

spending and operations should be reviewed. Certain communities and neighborhoods 

are poised to be ideal areas for microgrids based on their geography and DER adoption 

rates but whether these changes occur is dependent on community decision making, 

federal infrastructure spending, and individual decision making. Research could 

investigate the changes needed to encourage the creations of these microgrids.  

Customer involvement, pricing, and communication platforms must also be 

developed for more sophisticated forms of pricing, electricity, and reliability 

expectations. On a single consumer level, providers must create platforms allowing 

consumers to update their load curtailment risk level. Also, consumers should be able 

to notify providers about future decisions in purchasing DER such as battery, residential 

PV, or an electrical vehicle which could be used as vehicle-to-generation (V2G) [27]. 

Additionally, electric providers could encourage or subsidize customers with 

community wide group rates for certain neighborhood PV adoption targets or specific 

rates to encourage DER purchases. These preferred behaviors can include certain 

neighborhood PV adoption targets, EV adoption, generator purchase, or even 

microturbine ownership. Additionally, the incentives would have to include the utility 

having the ability to control individual resources in certain emergency scenarios. Based 
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on incentives, electric providers could also invest in their own distributed renewable 

systems such as fuel cells and micro-wind turbines depending on the cost versus risk 

reduction basis. 

The completion of the new two-way production, storage, and usage of electricity 

also opens the avenue of using blockchain where consumers and providers exist on a 

marketplace. In this situation, electric providers could sell to consumers but also 

consumers could sell to producers and to other consumers. There is also the matter of 

how to resolve ownership access to individually owned battery systems or electric 

vehicles that could be used as community BESS. In this research, the battery system is 

considered a community investment but in future uses, individual devices could be 

"rented" out or certain access is given in extreme scenarios. Additionally, lifecycle costs 

of residential PV and diesel systems were not included since this research looked at a 

purely operational standpoint. Future research could calculate the cost of upgrading 

existing infrastructure or installing new infrastructure from a pricing perspective. An 

additional research topic could be looking at active and reactive power management for 

droop control for island microgrids [24]. 

The last topic that comes out of this research is managing risk factors in battery 

degradation cost approximation in new microgrid development. Large BESS systems 

are new and the effect of lifecycle degradation and their costs have had limited research. 

By at least taking into consideration an approximation of battery degradation costs, 

designers and researchers can build more durable microgrids with set limits on battery 

usage. For example, BESS analysis could then be prioritized with different usage 
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schemes and limits. Battery systems could be set to different priority levels and costs, 

so a large-scale BESS is more likely used then an electrical vehicle’s battery.   
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