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Background: Manufacturing large quantities of recombinant RNAs by overexpression in a bacterial host is
hampered by their instability in intracellular environment. To overcome this problem, an RNA of interest can be
fused into a stable bacterial RNA for the resulting chimeric construct to accumulate in the cytoplasm to a
sufficiently high level. Being supplemented with cost-effective procedures for isolation of the chimera from cells
and recovery of the recombinant RNA from stabilizing scaffold, this strategy might become a viable alternative to
the existing methods of chemical or enzymatic RNA synthesis.

Results: Sequence encoding a 71-nucleotide recombinant RNA was inserted into a plasmid-borne deletion mutant
of the Vibrio proteolyticus 55 rRNA gene in place of helix Il - loop C segment of the original 55 rRNA. After
transformation into Escherichia coli, the chimeric RNA (3xpen aRNA) was expressed constitutively from E. coli rmB
P1 and P2 promoters. The RNA chimera accumulated to levels that exceeded those of the host's 55 rRNA. A novel
method relying on liquid-solid partitioning of cellular constituents was developed for isolation of total RNA from
bacterial cells. This protocol avoids toxic chemicals, and is therefore more suitable for large scale RNA purification
than traditional methods. A pair of biotinylated 8-17 DNAzymes was used to bring about the quantitative excision
of the 71-nt recombinant RNA from the chimera. The recombinant RNA was isolated by sequence-specific capture
on beads with immobilized complementary deoxyoligonucleotide, while DNAzymes were recovered by biotin

Conclusions: The feasibility of a fermentation-based approach for manufacturing large quantities of small RNAs
in vivo using a “5S rRNA scaffold” strategy is demonstrated. The approach provides a route towards an economical
method for the large-scale production of small RNAs including shRNAs, siRNAs and aptamers for use in clinical and

Background

In recent years, small RNAs, including siRNAs (small
interfering RNAs), shRNAs (small hairpin RNAs), apta-
mers, and ribozymes [1-9] have attracted increasing
interest for their fundamental role in gene regulation, as
well as for the potential of their use as novel diagnostic
and therapeutic agents [10-16]. Interfering RNAs have
generated particular interest due to its ability to effec-
tively silence genes. For example, large-scale RNAi
screens have been conducted to identify important
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genes in various biological pathways [17]. Multiple
siRNA-based therapies are currently under development
and soon may be used in the treatment of diseases such
as hepatitis virus infection, macular degeneration, leuke-
mia, and acquired immune deficiency syndrome [18-21].
Likewise, due to their high affinity and relatively low
cost, aptamers have been used in numerous investiga-
tions seeking novel diagnostic tools or new drugs
[7,22-25]. For example, an anticoagulant RNA aptamer
that specifically binds and inactivates Factor IXa, is cur-
rently in Phase II clinical trials [23,26]. With the
expanding use of small RNAs in basic and applied biolo-
gical research, the demand for large quantities of syn-
thetic RNAs of high quality has dramatically increased.
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Traditional methods of chemical and enzymatic synth-
esis are effective but are currently very expensive when
large amounts are needed. Thus, a cost-effective method
to produce defined small RNAs in large quantities is
urgently needed.

The in vivo expression of recombinant RNAs has been
described for some time [27-29]. However, the heteroge-
neity of the RNA products and their instability in the
cytoplasm due to cleavage by cellular ribonucleases
(RNases) have made the process inefficient. For example,
mRNAs expressed in E. coli from T7 promoter exhibit a
substantial heterogeneity due to ambiguous termination
of the RNA transcripts [28,29]. Attempts to obtain
in vivo expression of aptamers also were not successful,
apparently because the resulting transcripts were again
heterogeneous and did not accumulate to any substantial
level [30]. One way to overcome these limitations is by
expressing RNA molecules of interest in a tRNA scaffold
[30,31]. In one such study, the epsilon sequence of
human hepatitis B virus (HBV) was inserted into cloning
sites surrounded by a tRNA™* or tRNA™M®" scaffold under
the control of E. coli [pp promoter. The tRNA scaffold
formed a structure that protected the RNA insert from
nucleolytic digestion. The tRNA-HBV chimera was
shown to be successfully expressed in E. coli and could
be extracted by affinity capture when the chimeric RNA
contained in addition a sephadex or streptavidin aptamer
module. The RNA insert was released from the tRNA
scaffold using the enzyme RNase H and two unmodified
guide deoxyoligonucleotides. However, the reported
absolute positional specificity of RNA cleavage by RNase
H is uncommon under the described conditions [32-34],
and cannot be regarded as a general case. In addition, it
is not yet known if a large variety of RNAs can be suc-
cessfully prepared with this system or how the presence
of the construct may affect the host cell.

Herein, a fermentation-based system for expressing
and purifying functional RNAs, especially RNAs of less
than 100 nucleotides, is described. In this system, RNA
sequences of interest are expressed under the strong P1
and P2 ribosomal promoters from the E. coli rrnB
operon in the context of a carrier derived from 5S
rRNA [35]. The resulting RNA product does not enter
the ribosome but nevertheless accumulates to levels
comparable to those of wild type 5S rRNA. In previous
work with this system, various RNA insert sequences
were incorporated into the plasmid-encoded 5S rRNA
scaffold [36,37]. In each case, the expressed RNA/insert
chimeras accumulated to high levels in the cell. An
examination of the transcriptome revealed that the pre-
sence of the insert had essentially no effect on gene
expression in the host cell [38]. In order for this
approach to be broadly applicable, however, it will be
necessary to extract the RNA of interest from the 5S
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rRNA carrier. We demonstrate herein that this can be
effectively accomplished using sequence-specific DNA-
zymes [39-43]. An RNA substrate known as the 3xpen
aRNA [37] (Figure 1) is used as a model system. The
insert in this case is highly structured, as are many of
the RNAs of interest and, at 71 nucleotides, illustrates
that relatively large RNAs can be expressed in the 5S
rRNA carrier system with good success.

Methods

Chemicals

Enzymes were purchased from Promega (Madison, WI)
or New England Biolabs (Ipswich, MA). Synthetic deox-
yoligonucleotides (Table 1) were obtained from Eurofins
MWG (Huntsville, AL) and IDT (Coralville, IA). DNA
markers were purchased from NEB and Bionexus (Oak-
land, CA). Chemicals were obtained from Sigma (St.
Louis, MO) and EMD Chemicals (Gibbstown, NJ).

RNA expression scaffold

Plasmid pCP3x3 [37] was electroporated into E. coli
JM109 (DE3) (Promega) and used as the RNA expres-
sion scaffold in this work. The core element of the plas-
mid is the truncated 5S rRNA gene from Vibrio
proteolyticus with a 71-nt insertion sequence. Gene
expression is controlled by the E. coli rruB P1 and P2
promoters. 3xpen aRNA coding sequence is followed by
the E. coli rrnB T1 and T2 transcription terminators.
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Figure 1 Sequence and predicted secondary structure of 3xpen
aRNA (160 nt). Sequence outside the grey box is the 55 rRNA
scaffold, Bst aRNA [35], and sequence inside the grey box is RNA
insert (figure modified from [37]). DNAzymes Pen17zymel, -1B, and
-1C are expected to cut 3xpen aRNA after nucleotide 94, and
Pen17zyme2 is expected to cut after nucleotide 23. The excision
sites on 3xpen aRNA are marked by arrows, and the expected
excision product is 71 nucleotides long.
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Table 1 Sequences and modifications of deoxyoligonucleotides used in this study

Name of oligos Sequence (from 5’ to 3')

Length (nt)

Pen17zymel CGCTAATTGGTTATCCGAGCCGGTCGAACGTAACATGAGTT 41
Pen17zymelB GCTAATTGGTTACTGTCAGCGACACGAAGTAACATGAGTTTTAC 44
Pen17zymelC CGCTAATTGGTTAGTCAGCTGACTCGAACGTAACATGAGTTTTAC 45
Pen17zyme2 GAGTTTTACGTGTTATGTCAGCGACACGAACAATCGCTATGGTC 44
bioPEN17zyme1B Biotin-GCTAATTGGTTACTGTCAGCGACACGAAGTAACATGAGTTTTAC 44
bioPEN17zyme2 Biotin-GAGTTTTACGTGTTATGTCAGCGACACGAACAATCGCTATGGTC 44
bioantiPEN Biotin-GAGTTTTACGAGTTACGTAACATGAGTTTTAC 32

Underlined bold letters indicate residues that comprise the catalytic core of each DNAzyme.

Isolation of small RNAs from E. coli

Cells were grown at 37°C in LB medium with constant
shaking (250 rpm). 100 pg/ml ampicillin was added to
plasmid-carrying cells. Cell growth (ODggo) was moni-
tored using a Labomed Spectro SC spectrophometer.
After incubation, cells were collected by centrifugation
(30 min, 5000 x g, 4°C). The resulting (typically
200 mg) pellet was resuspended in 960 pl of 10 mM
Tris-HCI (pH 7.5). Cells were lysed by adding 160 pl of
1 M Tris-Acetate with 0.1 M EDTA (pH 7.5), 160 pl of
10% SDS and 320 pl of pure formamide. After 20 min
shaking at 37°C, 1.6 ml of 3 M potassium acetate (pH
4.8) was added, and the mixture was shaken gently for
another 10 min. Cell debris and precipitated material
were removed by centrifugation (20 min, 10000 x g, 4°
C). The cleared supernatant was recovered and mixed
with 8 ml of ethanol. After 1 h incubation at -80°C, the
precipitated nucleic acids were collected by centrifuga-
tion (20 min, 10000 x g, 4°C). The pellet was then
resuspended in 300 pl of 3 M sodium acetate (pH 5.0),
and was shaken at 37°C for 10 min to selectively solubi-
lize the small RNAs. Insoluble material was removed by
centrifugation (20 min, 10000 x g, 4°C), and the super-
natant was mixed with 750 ul of ethanol. Finally, the
precipitate containing mostly small RNAs was collected
by centrifugation (20 min, 10000 x g, 4°C), washed
twice with 70% ethanol, and air dried for 15 min.

RNA samples were analyzed by gel electrophoresis and
staining as previously described [44,45]. Low Molecular
Weight DNA Ladder (New England Biolabs, Ipswich,
MA) was used as molecular weight standards. The ratio
of 3xpen aRNA accumulation level to that of 5S rRNA
was determined using the freely available software pack-
age, Image] [46].

Preparative PAGE

The 3xpen aRNA was purified to homogeneity by elec-
trophoresis on an 8% preparative denaturing polyacryla-
mide gel. After separation, RNA bands were visualized
by UV shadowing over Silica F254 TLC plates (What-
man), and excised using a sterile blade. RNA was eluted
from gel slices by triple extraction with equal volumes

of 50 mM HEPES-NaOH (pH 7.5), 1 mM EDTA,
150 mM NacCl, 19.2 M formamide. RNA was precipi-
tated from the collected extracts by mixing with 0.1 vol.
3 M sodium acetate (pH 5.0) and 2.5 vol. ethanol. The
sample was centrifuged (20 min, 10000 x g, 4°C), the
collected precipitate was washed twice with 70% ethanol,
and air dried for 15 min. Dry RNA pellets were dis-
solved in water, and their concentration was determined
spectrophotometrically.

Cleavage with DNAzymes

The DNAzymes used for the excision of RNA fragments
from the 5S rRNA scaffold are listed in Table 1. The
reaction conditions screened during optimization of
3xpen aRNA cleavage are summarized in Table 2. DNA-
zymes were annealed to the 3xpen aRNA substrate in
50 mM MOPS-NaOH (pH 7.2) containing additional
components as specified in Table 2, at 90°C for 2 min,
and then cooled to 23°C over 10 min in a thermal cycler
(Eurofins-MWG). After annealing, the mixture of DNA-
zymes and aRNA was adjusted to contain 125 mM KCl,
500 mM NacCl, 7.5 mM MgCl,, MnCl, (up to 45 mM),
and 50 mM MOPS (pH 7.2) besides the indicated addi-
tional components, and incubated at 23°C or 40°C for
up to 72 hours. In reaction 16 and 23, 50 and 6 addi-
tional cycles were introduced, respectively. After the
incubation, the reaction was terminated by adding 0.1
vol. 3 M sodium acetate (pH 5.0). The reaction products
were recovered by ethanol precipitation and analyzed by
denaturing PAGE. The intensity of bands in these reac-
tions was plotted using the ‘profile’ function of Image]
[46], and the total cutting percentage was quantified as
P = 1 - [intact 3xpen aRNA]/[total 3xpen aRNA]. Simi-
larly, Image] was used to determine the yield of final
product relative to the starting amount of chimeric
aRNA per wet cell paste.

Isolation of 5’-biotinylated DNAzymes and RNA
Fragments by Affinity Capture

Biotinylated DNAzymes were removed from the mixture
of cleavage reaction products using streptavidin agarose
beads (Molecular Probes, Eugene, OR) in 3x NTE buffer
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Table 2 Conditions of 3xpen aRNA cleavage evaluated during optimization of the reaction yield
Reaction [3xpen Molar ratio 3xpen aRNA: Pen17zyme1/1B/1C: Additional [Mn?*] Reaction Time Additional
No. aRNA] Pen17zyme2 components (mM)* T (°C) Cycles
(uM)* in the annealing
buffer
1 0.25 1:0:1 N/A 0 23 10 0
min
2 0.25 1:0:1 N/A 7.5 23 10 0
min
3 0.25 1:0:1 N/A 15 23 10 0
min
4 0.25 1:0:1 N/A 45 23 10 0
min
5 0.25 1:0:1 N/A 15 23 100 0
min
6 0.25 1:1(Pen17zyme1):0 N/A 15 23 100 0
min
7 0.25 1:1(Pen17zyme1B):.0 N/A 15 23 100 0
min
8 0.25 1:1(Pen17zyme1Q):0 N/A 15 23 100 0
min
9 0.25 1:5(Pen17zyme1B).0 N/A 15 23 100 0
min
10 0.25 1:1(Pen17zyme1B):.0 N/A 15 23 17 h 0
" 0.25 1:1(Pen17zyme1B):0 N/A 15 40 100 0
min
12 0.25 1:1(Pen17zyme1B):.0 10%EtOH 15 23 100 0
min
13 0.25 1:5(Pen17zyme1B):.0 03 MKC, 1.2 M 15 23 17 h 0
Nacl
14 025 1:5(Pen17zyme1B):0 20% PEG 8000 15 23 17 h 0
15 0.25 1:5(Pen17zyme1B).0 500 pM spermine 15 23 17 h 0
16 0.25 1:5(Pen17zyme1B):.0 N/A 15 23 17 h 50
17 0.25 1:5(Pen17zyme1B):.0 2.2 M potassium 15 23 17 h 0
acetate
18 0.25 1:5(Pen17zyme1B):.0 3 M Lidl 15 23 17 h 0
19 0.80 1:1(Pen17zyme1B):1 500 uM spermine 15 23 17 h 0
20 0.80 1:10(Pen17zyme1B):1 500 UM spermine 15 23 17 h 0
21 0.80 1:20(Pen17zyme1B):2 500 uM spermine 15 23 17 h 0
22 0.80 1:10(Pen17zyme1B):10 500 UM spermine 15 23 17 h 0
23 0.80 1:10(Pen17zyme1B):10 500 UM spermine 15 23 17 h 6
24 0.80 1:10(Pen17zyme1B):10 500 uM spermine 15 23 40 h 0
25 0.80 1:10(Pen17zyme1B):10 500 uM spermine 15 23 72 h 0
26 0.80 1:10(bioPen17zyme1B):10(biopen17zyme2) 500 UM spermine 15 23 72 h 0

* The value corresponds to the final concentration of the indicated component in the reaction mixture.

(0.6 M NaCl, 15 mM Tris-HCl, 7.5 mM EDTA, pH 7.5)
[47]. The DNAzymes were recovered from the beads by
heating in H,O at 65°C. The excised RNA fragments
were isolated by affinity capture through hybridization
to a complementary oligodeoxyribonucleotide, bioanti-
PEN (Table 1), immobilized on streptavidin agarose
beads via streptavidin-biotin linkage [47].

Results and Discussion

Expression of 3xpen aRNA in strain JM109 (DE3)

The 160-nt 3xpen aRNA was strongly expressed in
E. coli (Figure 2 and Figure 3A, Lane 1). The ratio of
3xpen aRNA to 5S rRNA after 8 and 24 h of incubation
was 1.07 and 0.46, respectively, as determined by elec-
trophoresis and imaging as described above. Thus, the
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Figure 2 3xpen aRNA cleavage by Pen17zyme1, Pen17zyme1B
or Pen17zyme1C. Cleavage reaction products were analyzed on
denaturing 8% PAGE. The expected cleavage products are 94-nt 5’
terminal and 66-nt 3’ terminal halves of 160-nt 3xpen aRNA. Lane 1,
3xpen aRNA cleavage with Pen17zymel; Lane 2, 3xpen aRNA
cleavage with Pen17zyme1B; Lane 3, 3xpen aRNA cleavage with
Pen17zyme 1C. Cleavage reactions were set up as follows: RNA
substrate and indicated DNAzyme were annealed in 50 mM MOPS-
NaOH (pH 7.2), 500 uM spermine by incubating the mixture at 90°C
for 2 min followed by cooling to 23°C within 10 min. After
annealing, the composition of the mixture was adjusted to 125 mM
KCl, 500 mM NaCl, 7.5 mM MgCl,, 15 mM MnCl,, 150 uM spermine,
and 50 mM MOPS-NaOH (pH 7.2), with 3xpen aRNA: DNAzyme
molar ratio 1: 5. The reaction was performed at 23°C for 16 hours,
and stopped by ethanol precipitation of the products.

accumulation of 3xpen aRNA after an 8-hour incubation
slightly exceeded that of native 5S rRNA but subse-
quently declined, suggesting selective degradation of the
recombinant RNA over time. Isolation of 3xpen aRNA
from 8-hour bacterial cultures routinely yielded 2.5 - 2.6
mg of the chimeric RNA from 1 g of wet cells.

Excision of specific small RNA using DNAzymes

In order to optimize the cleavage reaction, multiple
reaction conditions were examined (Table 2) by varying
DNAzymes, RNA substrate to DNAzymes ratio, addi-
tives, Mn>* concentration, reaction temperature, and
incubation time. In some cases, alternating denaturation
and renaturation cycles were introduced to examine
whether this increased the overall yield of the desired
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RNA products. Equal amounts of 3xpen aRNA were
used in each reaction condition, and the reaction pro-
ducts were analyzed by denaturing PAGE. Four DNA-
zymes (Penl7zymel, -1B, -1C and -2) were investigated
for their ability to excise small RNAs from the 55 rRNA
expression scaffold. Their predicted excision sites on the
3xpen aRNA are shown in Figure 1, and cleavage at
these two sites was expected to produce a 71-nt pro-
duct. As revealed by electrophoresis, the overall yield of
the desired RNA products was higher with Penl17zy-
melB than with Pen17zymel, while Pen17zymelC was
found to be inactive (Figure 2). Thus, Pen17zymelB,
which cleaves GA dinucleotides, and Penl7zyme2,
which cleaves GG dinucleotides (Figure 1), were used in
subsequent cleavage reactions. Additionally, the 5-bioti-
nylated DNAzymes were found to cleave with equal effi-
ciency as their unmodified forms, and the expected
71-nt product was obtained likewise by cleavage reac-
tions using 5’-biotinylated bioPen17zymelB and bio-
Penl7zyme2 (Figure 4, Lane 3). Intensity of the 3xpen
aRNA band on the polyacrylamide gel (Figure 3)
decreased when the concentration of Pen17zymelB and
Penl7zyme2 increased in the reaction mixtures, indicat-
ing that 3xpen aRNA was being efficiently cleaved by
these DNAzymes. Complete excision was achieved after
72 h incubation at 23°C and a molar ratio of [3xpen
aRNA]: [Penl7zymelB]: [Penl7zyme2] of 1:10:10
(Table 3).

In most cases, the presence of additional components
in the annealing buffer including ethanol, PEG 8000,
potassium acetate, LiCl and increased concentrations of
KCI or NaCl did not affect the overall yield of the
desired RNA product. However, the addition of 500 uM
spermine improved the total cutting percentage signifi-
cantly. It is thought that the spermine may stabilize the
DNAzyme/RNA hybrids [48]. Spermine-mediated stabi-
lization of DNA helices [49] and DNA-RNA hybrids
[50,51] has been extensively reported in the literature.
Previous studies of DNAzymes have shown that sub-
strate cleavage required divalent metal cations such as
Mgz*, Ca2* or Mn?* [52-55]. Here, the effects of four
different Mn?* conditions (0, 7.5, 15 and 45 mM) were
tested. We confirmed that in the absence of Mn*",
essentially no cleavage was seen and that the highest
total cutting percentage was observed at 15 mM Mn**,
With respect to the reaction temperature, it was found
that 23°C was superior to 40°C in producing efficient
RNA processing (data not shown). Introducing dena-
turation/renaturation cycles into the reaction did not
improve the overall yield of the desired RNA products.
Perhaps not surprisingly, it was also found that longer
incubation time greatly improved the total cutting per-
centage when the same concentration of DNAzymes
was added in the reaction mixture (Table 3).
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Figure 3 3xpen aRNA cleavage by Pen17zyme1B and Pen17zyme2. Cleavage reaction products were analyzed on denaturing 8% PAGE.
Incubation of 3xpen aRNA (160 nt) with the Pen17zyme1B and Pen17zyme2 resulted in accumulation of 71-nt final excision product and 137-nt
semi-product. (A) Lane 1, total RNA from E. coli JIM109(DE3)/pCP3x3 enriched for low molecular weight RNAs (total RNA); Lane 2, low molecular
weight DNA ladder (LWM); Lane 3, 3xpen aRNA; Lanes 4-6, Cleavage products of 3xpen aRNA after 17 hours of incubation with 3xpen aRNA:
Pen17zyme1B: Pen17zyme2 molar ratio 1:1:1, 1:10:1, and 1:10:2, respectively. (B) Lane 1, total RNA; Lane 2, LWM; Lane 3, 3Xpen aRNA; Lane 4,
Cleavage products of 3xpen aRNA after 40 hours of incubation with 3xpen aRNA: Pen17zyme1B: Pen17zyme2 molar ratio 1:10:1. (O): Lane 1, total
RNA; Lane 2, LWM; Lane 3, 3xpen aRNA; Lane 4, Cleavage products of 3xpen aRNA after 40 hours of incubation with 3xpen aRNA: Pen17zyme18:
Pen17zyme2 molar ratio 1:10:10. (D): Lane 1, LWM; Lane 2, total RNA; Lane 3, equimolar mixture of Pen17zyme1B and Pen17zyme2; Lane 4,
3xpen aRNA; Lane 5, Cleavage products of 3xpen aRNA after 72 hours of incubation with 3xpen aRNA: Pen17zyme1B: Pen17zyme2 molar ratio
1:10:10. Cleavage reactions were performed under conditions described in legend to Figure 2 except for the incubation time and 3xpen aRNA:
L DNazymes molar ratio, which were as indicated above.

«— 3Xpen aRNA (160nt)

- «— Semi-product
' {137nt)

<= Desired RNA product
: (71nt)

«— penDNAzyme 1B, 2
(44nt)

«+— Complementary DNA oligo
' bioantiPEN (32nt)

Figure 4 Separation of the products of 3xpen aRNA cleavage using streptavidin agarose beads. Collected fractions were analyzed on
denaturing 8% PAGE. Lanel, LWM; Lane 2, 3xpen aRNA; Lane 3, Original cleavage reaction mixture; Lanes 4-5: Isolation of biotinylated
DNAzymes, first and second elutions from the beads, respectively; Lane 6: Isolation of 71-nt excision product on the beads saturated with
biotinylated complementary deoxyoligonucleotide, bioantiPEN; Lane 7: Recovery of bioantiPEN from the beads. Cleavage reaction was performed
for 72 hours under conditions described in legend to Figure 2, with 3xpen aRNA: bioPen17zyme1B: bioPen17zyme2 molar ratio 1:10:10.
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Table 3 Quantitative analysis of total cleavage percentage P of 3xpen aRNA by Pen17zyme1B and Pen17zyme2

Molar ratio of 3xpen aRNA: Reaction 71-nt final product yield related to  137-nt semi-product yield related to P (Total
Pen17zyme1B: Pen17zyme2 time the initial 3xpen aRNA amount the initial 3xpen aRNA amount cleavage
(hours) percentage)
1:1:1 17 30% 15% 45%
1:10:1 17 39% 16% 55%
1:10:2 17 42% 15% 57%
1:10:1 40 70% 22% 92%
1:10:10 40 77% 23% 100%
1:10:10 72 90% 10% 100%

Cleavage reactions were performed under conditions described in legend to Figure 2 except for the reaction time and 3xpen aRNA: DNazymes molar ratio, which

were as indicated above.

In summary, the best conditions among those tested
were as follows: (i) a substrate to enzyme molar ratio
([3xpen aRNA]:[Pen17zymelB]:[Pen17zyme2]) of 1:10:10,
(i) denaturation and annealing in 50 mM MOPS-NaOH
(pH 7.2), 500 uM spermine at 90°C for 2 min with subse-
quent cooling to 23°C over a period of 10 min, (iii) incuba-
tion in 125 mM KCl, 500 mM NacCl, 7.5 mM MgCl,, 15
mM MnCl,, 150 uM spermine, and 50 mM MOPS-NaOH
(pH 7.2), at 23°C for 72 h. As suggested by Table 3, longer
incubation time is likely to further improve overall yield of
the desired RNA fragment.

RNA and DNAzyme Recovery by Affinity Capture

It is desirable that the isolation of the RNA product and
recovery of DNAzymes avoid labor-intensive procedures.
Following the cleavage reaction, the 5’-biotinylated
Penl7zymes 1B and -2 were successfully removed from
the reaction mixture by affinity chromatography, heat
eluted (Figure 4, lane 4 & 5) and could presumably be
reused in new cleavage reactions. After removal of the
DNAzymes, the reaction mixture was purified by hybri-
dization affinity capture on an immobilized oligonucleo-
tide bioantiPEN, which is complementary to the desired
RNA product. Figure 4 illustrates that the RNA eluate
from the affinity matrix contained the 71-nt excised
RNA fragment, indicating the expected digestion of
3xpen aRNA. The RNA product was found to be 82%
pure as determined by electrophoresis and imaging as
described above. The overall yield of the purified RNA
fragment was 0.72 mg from 1 g of cells. However, trace
amounts of deoxyoligonucleotide bioantiPEN were
found in the RNA elution fraction (Figure 4, lane 6). If
desired, this contamination could be easily removed by
DNase treatment of the excised RNA fraction. Alterna-
tively, this contamination could be prevented by cova-
lent immobilization of the capture oligo on rigid
supports like glass or silica.

Conclusions
The feasibility of an E. coli based in vivo expression sys-
tem capable of producing small RNAs using a 55 rRNA

scaffold has been demonstrated. The DNA construct is
recognized as essentially a normal RNA coding region
and the resulting transcript is processed into a single
RNA species of defined sequence and length. The strong
expression of chimeric 3xpen aRNA here and in nearly
twenty other 5S rRNA/insert chimeras examined in pre-
vious studies [36,56] demonstrates that the 5S rRNA
scaffold is robust and can accommodate many RNA
inserts of diverse sizes.

Here, we have also described a new method for total
RNA isolation. Compared to traditional RNA isolation
methods such as Trizol™ [57,58] or hot phenol extrac-
tions, the new method does not involve toxic chemicals.
Thus, it is safer to the user, more environmentally
friendly, and might be particularly advantageous for
scale-up. The new method also displays some degree of
desirable size selectivity, in that low molecular weight
RNAs appeared to have been enriched, while the
amount of larger RNAs had been reduced at the end of
the RNA isolation procedure.

In addition, we demonstrated the successful excision
of a 3xpen aRNA from the scaffold using 8-17 DNA-
zymes Penl7zymelB and Penl7zyme2. Since DNA-
zymes can be readily obtained from various
commercial sources, and the reaction preferentially
occurs at room temperature (23°C), it constitutes an
attractive method for the large scale preparation of
small RNAs through fermentation of E. coli. Under
best reaction conditions, nearly all the 3xpen aRNA
was digested, and 90% of it was further processed to
yield the desired 71-nt RNA product after 72 h.
Depending on the requirements, the rate of cleavage
can be manipulated by adjusting the DNAzyme-to-
RNA ratio to either speed up the process or conserve
DNAzymes. In an industrial environment, the priority
might be given to reducing the costs of reagents vs.
the reaction rate. Manufacturing processes usually
involve continuous operations, and under such circum-
stances the time for individual reaction cycles may not
be as important as the cost for labor, chemicals, and
equipment.
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In a further step towards improving the economical
attractiveness of the method, we have shown recovery of
both the RNA product and the DNAzymes through affi-
nity chromatography. Although DNA oligomers can be
chemically synthesized, the ability to readily recycle the
DNAzymes will substantially reduce the cost of the
whole procedure. In the present study, affinity chroma-
tography of streptavidin agarose beads was employed to
demonstrate the possibility of recovering DNAzymes.
Future studies may include covalent immobilization of
DNAzymes on more durable and less expensive sup-
ports such as glass or silica, which would be more com-
patible with industrial applications. In addition, it was
shown that a longer incubation time greatly improved
the overall yield of desired RNA product with equal
concentration of DNAzymes in the reaction mixtures.
Therefore, the cost of DNAzymes can be further
reduced by trading off speed for cost.

In summary, a fermentation-based approach to large
scale RNA production of functional RNAs using the 5S
rRNA scaffold strategy is described. The approach com-
bines high levels of in vivo expression, convenient purifi-
cation of chimeric RNAs and cost-efficient excision of
insert RNA from the chimera and therefore offers a pro-
mising alternative for large scale RNA manufacturing.
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