
MINII^IZING THE NUMBER OF THRESHOLD GATES

IN AN ERROR CORRECTING NETWORK

USING 1-rJLTIPLEXING TECHNIQUES

A Thesis

Presented to

the Faculty of the Department of Electrical Engineering

The. University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science: in Electrical Engineering

by

David L. Cauthron

May 1969

501190

ACKNOWLEDGEMENT

I would like to express my deep appreciation to

Dr. J. D. Bargainer, Jr., for his many suggestions and his

encouragement during the preparation of this thesis.

I would like to thank Mr. Bob Loofbourrow and Mr.

Don Howlett, Texaco Inc., Bellaire, Texas, for their under

standing in the completion of this thesis.

I would like to thank Mrs. Tommy Weigle for her

excellent work in typing this thesis.

iii

THE KUMBER OE THRESHOLD GATES

IN AH' ERROR CORRECTING NETWORK

USING MULTIPLEXING TECHNIQUES

Ar: Abstract of ■jnesit,

^resented Tc

Faculty uf Depar"c;cfc;.c ci‘ H.'. er-Cal Er-gineerlng

Tae UaiversiLy oC Hcvcc

±a z'a^'uia^. Pullj--- --ti.

u?ie R.:qvi_-emeauS fov c

.e:.2c ir. ElectiU

;<-v_a L.

May, ^>6>

ABSTRACT

In this thesis, three methods were discussed for de

signing error-correcting capabilities into threshold gate networks

so that the logic gates themselves will correct errors of other

gates. These methods are extensions of work presented by Bargainer

and Coates (1).

Method II is a procedure for taking a given threshold

logic network and finding the minimum number of gates required

to correct t errors using multiplexing techniques. It requires

that all weights remain the same as read in. Method III is also

a procedure for taking a given threshold logic network and finding

the minimum number of gates required to correct t errors using

multiplexing techniques. However, in Method III a search is

performed over the weights for one gate feeding into another

gate i-n an attempt to optimize the values.

Both Method II and Method III modify a given realization

by the addition of redundant gates to obtain an error-correcting

network. The methods require that an error of any specified

number of gates be corrected in the next level of logic. This

is known as a multiplexed realization. Errors of the output

gate are not corrected.

The procedure developed, in this paper, for both Method

II and Method III requires the minimization of some cost function.

The cost function consists of the sum of all gates required to

correct a specified number of errors, plus an error factor due

iv

to the constraints not being satisfied. The number of gates

in each set (A^} are adjusted by a multi-dimensional search

technique with the minimization of the cost function as a per

formance criterion. The search is accomplished by means of a

digital computer program. Method III goes one step further than

Method II and an attempt is made to reduce the number of gates

even further by searching for better weights for inputs from

other gates.

The results of problems run by both methods are shown

in Chapter V. Method II finds the minimum number of gates

necessary to correct the specified number of errors, using the

weights of the original realization. Method III finds the mini

mum number of gates necessary to correct the specified number

of errors, using an optimum value for the weights of inputs from

other gates. Either method may have a minimum gap for all gates

specified, to insure that the solution have gates with a reason

able gap width. The procedure to specify a minimum gap is also

presented in Chapter V.

v

TABLE OF CONTENTS

CHAPTER PAGE

I. THRESHOLD LOGIC... 1

II. REDUNDANCY IN THRESHOLD LOGIC................................... 13

III. METHODS FOR ADDING REDUNDANCY TO
THRESHOLD NETWORKS.. 23

Method I..................... 23

Method II............................... 25

Method III. 30

IV. PROCEDURE.. 33

The Search Technique.. 35

Solution by Method II.. 42

Solution by Method III... 44

V. RESULTS AND CONCLUSIONS.. 50

Contours and R.esults of Method II.................. 50

Contours and Results of Method III................ 61

Results When Specifying Minimum Gaps............ 67

Summary of Conclusions.. 71

BIBLIOGRAPHY.. 73

APPENDIX - COMPUTER PROGRAMS 74

vi

CHAPTER I

THRESHOLD LOGIC

The input-output relationship for a digital network is

expressed as a logical function of binary valued inputs and outputs.

A threshold gate has binary inputs Xp X2, X^, X^ and a

binary output y. Associated with each X^ is an internal weight

a^. Each threshold gate has a threshold value T and a separating

function f(p) defined in the following manner:

f(p) = E a.X.(p). (1.1)
i=l 1 1

X^(p) is the value of X^ at pe[0,l}n and the sum and product

operations are the usual arithmetic ones. The output y at each

pe[0,l}n is determined by

y = 1 if f(p) t

y = 0 if f(p) < T. (1-2)

Although the definition of the threshold gate might lead

one to believe that all of its inputs are independent variables,

this is not a necessary requirement. In general, a threshold gate

may have n+m inputs, some of which are independent variables and

some of which are the outputs of other threshold gates, where n

inputs are independent variables and m inputs are the outputs of

other threshold gates. The equation for the gate output can be

expressed as in Equation 1.3.

> n m x
y = \ a^Cp) + ajyj(p)2T (1-3)

where the law of operation is defined by Equation 1.2. For the

convenience of notation, the weight associated with each independent

input will be called a^, and the weight associated with each

input will be called 8^.

For the remainder of the paper, it will be assumed that all

threshold gates have non-negative weights. This does not restrict

the results. For any realization with one or more negative weights

there is an equivalent realization having all positive weights.

The threshold gate has a binary-valued output for each

combination of the binary-valued inputs; therefore the output y

is a switching function of the input variables. The Boolean-

function representation is:

y » F(X1,X2,....Xn) (1.4)

in which the value of the function is expressed in terms of the

independent variables X^ and the Boolean operators +, ., and

Therefore, y^ and F^(p) are equivalent. The form of the function

may imply an associated realization.

Each equation for the separating function implies a

particular threshold gate realization. Therefore, the notation

for the separating function can be directly related to the reali

zation. Equation 1.5 implies the gate with threshold T, input

variables X^, and corresponding weights a^.

S aiXi>T <1-5>
=1 11/1

F(X1,X2,....Xn)>T

Xj--------- 3
x2------- 1-----

x3 —i —> y
X4 ------- 1 T=2.5

Figure 1.1. A single gate threshold realization.

Example 1.1. For the threshold gate shown in Figure 1.1,

the output expressed in terms of the separating function is

y — ^3X-^+X2+Xg+X^^ ,£=2 5

The output expressed as a Boolean function of the input variables

is

y = X1X2X3XZ. + X1X2X3X4 + X1X2X3X4 + X.XoXnX,1 Z J q-

+ XiXoXnX, + X.XoXnX,12 3 4 12 3 4 tXoX.X, + XtXoXoX,1 2 3 4 1 2 3 4

This Boolean function can be simplified to the form

y = X, + X0XQX,J 1 2 3 4

There are many other separating-function realizations

which will realize the same function. Another example which will

realize the same function is

y = ^6Xn + 2X0 + 2Xa + 2X,\ , .
17 X 1 2 3 4z 6

An alternate rule of operation for the threshold gate

can be stated using the following definition. Define

u = min (f(p)|F(p) = 1} and

Jj = max (f(p)|F(p) = 0} .

The interval having an upper boundary u and a lower

boundary^ is referred to as the gap of the realization. Equation

1.3 requires that the threshold T be restricted as follows:

< T u. (1.7)

The Boolean function that is realized by a threshold

gate with separating function f and gap is represented in

the following manner:

y = F(X1,X2,X3,Xn) = f a.X.^ u:J. (1.8)

Any Boolean function is defined over an n-dimensional Euclidean

space where each coordinate axis corresponds to one of the inde

pendent variables. Each combination of values for the independent

variables plots as a vertex of a unit cube in the n space. The

function F assigns to each p = pg, p^,...,p2n a corresponding

value F(p) which is either 1 or 0. Pg and are defined to be

the subsets of the vertices of the n cube for which F(p) is equal

to 0 and 1 respectively.

From the rule of operation established by Equations

1.1 and 1.8, the Pg vertices of the n cube are separated from

the P^ vertices by the hyperplane whose equation is

n
E a.X. = T

i=l 1 1

where X^ = 0,1. Figure 1.2a and 1.2b show a separating plane

for a two variable function.

(a) y = X1X2 2

(1,0)
"7=1

(0,0)
y=0

(b) y

(1,1)

Figure 1.2.(a) A linearly separable function
and (b) A function which is not linearly separable.

Not all functions can have the 2n vertices of the n

cube separated into Pq and P^ sets by a hyperplane. There

fore, not all functions may be realized by a single threshold

gate. However, these functions can be realized by a network of

threshold gates.

Example 1.2. The realizations for the functions illustrated

by Figure 1.2 are shown in Figure 1.3. The AND function is

represented in Figure 1.2a and may be realized with one gate.

There is an allowable region so that with a threshold placed in

this region the Pq vertices will be separated from the P^ vertices.

The region is defined by u = 2 and / = 1 and is represented by

.1 < T 2.

By placing a threshold anywhere in this region, the function

can be realized.

The function pictured in Figure 1.2b is not separable.

There is no allowable region where the threshold could be placed

and separate all the P^ vertices from all the Pq vertices. This

function may be realized with two threshold gates.

Figure 1.3(a) Linearly separable realization
and (b) A function which is not linearly separable.

o

The AND and OR functions can be realized by threshold

gates. The general representation of the AND and OR functions

respectively is as follows:

F(Xt sX9,X) = X.X^. . .X = /x.+x^.. .+X \ , (1.9)
x Is 2’ n' 12 n \ 1 2 n/ n:n-l ’ x z

F(x1,x2,....xn) = x1+x2+...+xn =<x1+x2+...+xn)>1;0 . (1.10)

This implies that any function can be realized by a

network of threshold gates requiring no more gates than would

be necessary using conventional logic.

One advantage of using threshold logic over conven

tional logic is the significant reduction in the number of gates

required. In Example 1.1 the function would require one AND and

one OR gate for the realization, while only one threshold gate

is required. For more complex functions, the reduction in number

of gates becomes much more significant.

Every threshold gate has a specific separating function

f and a logical function F both of which are defined on the vertices

of the n cube. For each vertex p there is an associated ordered

triplet [p, f(p), F(p)l where f(p) is some real number and

F(p) = 0 or 1. The set £Cp, f(p), F(p)]} of ordered triplets

is known as the map of F by f. A convenient visualization of

the map is the line graph shown in Figure 1.4 for the function

of Example 1.1, where

f(x1,x2,x3,x4) = X + x2x3x4

f (X1,X2,X3,X4) = <3X1 + X2 + X3 + X4)>
3:2

points p (X1X2X3X4)

1111

1011, 1101, 1110

1001, 1010, 1100

0111, 1000

0011, 0101, 0110

0001, 0010, 0100

0000

Figure 1.4. Line graph of Example 1.1.

For each p, a point is located on the real line at

location f(p). The point is represented by O when F(p) = 0

and O when F(p) = 1. The map is the result of the separating

function f mapping the vertices of the unit cube in n space onto

the real line. Each f(p) is called the image of p.

A map is divided into disjoint subsets, called the zero

and unit parts, corresponding to F(p) = 0 or 1. As indicated

earlier, u is the smallest f(p) where F(p) =1 and is the largest

f(p) where F(p) = 0. Then u and $ comprise the gap of the function

denoted by u:^. Since the threshold may be any value within the

range

< T u

o

and still realize the function, it is common to indicate a range

in the equation of the separating function rather than specify a

particular threshold T. In Example 1.1 the output in terms of

the gap of the separating function would be expressed as in

Equation 1.11 instead of in terms of a particular threshold value.

y = + X2 + 3 • 2 * (1.11)

The above separating functions imply single threshold

gate realizations, but the notation for multigate networks is

quite similar. Any arbitrary logical function may be realized

by an interconnection of threshold gates. The final gate in such

a network will, in general, have independent inputs X^,X2>....X ,

inputs from the output of other gates y^>y2> • • • ‘ym’ anc^ a single

output y of its own. In the one-gate case, each separating

function representation implies a threshold gate realization.

Therefore, such a representation is a realization of the logical

function.

Example 1.3 represents a typical multiple gate function.

The realization of the Boolean function is shown in Figure 1.5.

Example 1.3. A multiple gate function with a separating

function as follows:

f(p) = + Xo + Xy + 2Xt- + 5 ^2Xq + 2XO + Xq + X/
r X 1 2 3 5 X 1 2 3 4

+ 2X5 + 5 <XX + X3 + X^ + x5^4:3>7:6 + 5 <X1

+ x2 + X3 + X5^> 4.3^ 5 .4 •

4:3

Figure 1.5. A five variable multigate realization of

f = x5 [x1(x2x3 + x3x4) + x1 x?(x3+x4)

4- X1X2X3X5

The corresponding line graph for each gate of Example 1.3 is

shown in Figure 1.6a, b, c, and d. Each gate has its own line

graph shown, and the gates correspond to those in the realization

shown in Figure 1.5.

1U

points p (X5X4X3X2X1)

4 u-i 11101, 11111

gap
3 A_aL/ 01101, 01111, 10101, 10111, 11001, 11011,

1 11100, 11110

2 Q 00101, 00111, 01001, 01011, 01100, OHIO,
10001, 10011, 10100, 10110, 11000, 11010

1 0 00001, 00011, 00100, 00110, 01000, 01010,
10000, 10010

00000, 00010

(a) Line Graph for

points p (X5X4X3X2XT)
io i moi

9

8 A 10100, 11111

7 6-«-^-u2 10000, 11100

I gaP
6 A—00100, 10101, 10110, 11000,

5 A 00000, 01100, 10001, 10010, 11110

4 6 00101, 00110, 01000, 10111, 11001, 11010,

3 A 00001, 00010, 01101, OHIO, 10011

2 A 00111, 01001, 01010, 11011

1 A oooii, oiiii,

0 A 01011,

(b) Line Graph for A2

points p (XcX/XoX^t)

4 V—tjv u3 00010, 01010,
gap

3 8-M 3 00000, 00011, 00110, 01000, 01011, OHIO,
10010, 11010,

00001, 00100, 00111, 01001, 01100, 01111, 2 6
10000, 10011, 10110, 11000, 11011, 11110,

1 0 00101, 01101, 10001, 10100, 10111, 11001
11100, 11111

10101, 11101

(c) Line Graph for A3

points p (Xt.X,X3X7X1)
14

12

11

10

9

1000

00010, 01010, 10100, 11100,

6

5 O-tv-u4 10011, 11011,
gap

4 0-^4 10001, 10010, 10111, 11001, 11010,

00011, 01011, 10101, 10110, 11000, 11110

00001, 00111, 01001, 01111

00000, 00101, 00110, 01000, 01101, OHIO,

00100, 01100,

(d) Line Graph for

Figure 1.6. Line graphs for each gate in Example 1.3.

LZ

An example of a threshold gate circuit is that given

by Coates and Lewis (3) and shown in Figure 1.7. This is a

typical circuit actually used in a computer built using threshold

gates. In this circuit the resistors RpR^, • . . .R-n are inversely

proportional to the weights. The threshold is set by Rrp,V^,, and

Vgg the emitter-base drop across the transistor.

Figure 1.7. A typical example of a single threshold gate.

CHAPTER II

REDUNDANCY IN THRESHOLD LOGIC

In 1956 Von Newman (8) suggested two means of correcting

errors in a logic network. These two methods were triplication

and multiplexing.

Triplication is a technique by which the entire non-

redundant network is triplicated, and the output of each of the

triplicated networks is fed into a two-out-of-three majority gate.

Figure 2.2 shows a triplicated network of the nonredundant network

shown in Figure 2.1. The outputs of the networks are binary,

therefore, two inputs to the majority gate will be the same at

any time. The majority gate will have the same output as at

least two of its inputs. Then the majority gate will have the

correct output even if one of its inputs is in error. Any number

of errors in the same network would be corrected by the majority

gate because it would only affect one of its inputs, ^o correct

t errors, one must duplicate the nonredundant realization 2t+T

times and use a (t+1)-out-of-(2t+l) majority gate.

Figure 2.1. A nonredundant realization

F = ^(X^+Xg) + X-j^X2

Figure 2.2. A triplicated version of the network in
Figure 2.1.

A characteristic feature of multiplexing is that the

error is corrected in the next level of logic following the occur

rence of the error. In multiplexing, each gate is reproduced

three times and the output of each of the three gates is an input

to each of the three majority gates. The output of each of the

majority gates is an input to one of the three gates on the next

level of logic. An error is corrected by the majority gate imme

diately following the error. This technique requires more gates,

but it will also correct an error in each set of three identical

gates. The multiplexing technique is illustrated in Figure 2.3.

The first person to study the effects of errors on

threshold gates was Muroga (7). He found that by replacing

each input with, a bundle of k inputs, each identical to X^,

the gate could correct errors of these inputs .

Figure 2.3. The multiplexed version of Network
Figure 2.1.

Liu and Liu (6) took the approach that Muroga used and

designed multiplexed realizations so that the logic gates of the

network corrected the errors. If the outputs of Gates (i-1,2, ,n)

are inputs to Gate A. in a realization Liu and Liu reproduce all

A^ the same number of times k and connect the output of these

gates to A.. The value for k is found by taking the maximum of

lb

all k^, where is obtained by a condition similar to Theorem 1

which is stated in Chapter III. This technique sufficiently

solves the problem, but it may require more gates than are actually

necessary.

Three methods for designing error correcting capabilities

into threshold gate networks were presented by Bargainer and

Coates (1) in 1968. By these three methods the error correcting

capabilities are designed into the logic gates themselves. The

methods use multiplexing techniques, and the errors are corrected

by the level of logic immediately following the occurrence of the

error. The first method is quite similar to that used by Liu and

Liu.

In the redundant networks of Figures 2.2 and 2.3, the

function of the majority gate is to correct errors and the other

gates perform the computation. A threshold gate can perform the

function of both the computing gate and the restoring (error

correcting) gate. Figure 2.4 represents a nonredundant threshold

realization of Figure 2.1. Figure 2.5 represents a redundant

realization of Figure 2.4.

(a)

points p (Xj X2 xp

f(p) <> 3 100

—^-6 2 001. 010, 101. 110
gap
-MC-A 1 000. Oil, 111.

(b)

F(X1,X2,X3) - ^X1+X2+2<^ X1+X3+2X2 /r3;2^ 2:1

Figure 2.4. A realization with the corresponding map of
F(X1,X2,X3) = X2(X1+X3) +"X1X2

17

3 2:1

Figure

gap

F(x1,x2,x3

2.5. A redundant realization with_the corresponding
map for F(X1,X2,X3) = X^X-^+X^) + X-[X2

(b)

Figure 2.5(a) is a redundant realization for the function

shown in Figure 2.1. The superscript on the inner gate indicates

the presence of 5 identical gates. Figure 2.5(b) is a map showing

Pj and £(Pj) £°r each pje{O,l}n. The points which are underlined

are points for which the first level gate should have an output 1.

Suppose one of the second level gates fails at 001. Then, f(001)

would be decreased by .4 from 2 to 1.6. If an error occurs at

000, then f(COO) increases from 1 to 1.4. However, if the threshold

is between 1.4 and 1.6, then there is still no error of the output

with an error in the second level of gates. Therefore, the output

gate corrects one error of the second level gates if 1.6 T > 1.4.

Then for the network in Figure 2.5 to correct an error of the

second level gates, the gap of the output gate must be changed

from 2:1 to 1.6:1.4.

The objective of this paper is to correct errors in a

given network by using multiplexing techniques. When correcting

errors in a network, it is assumed that the given realization does

have the correct output function. Throughout the remainder of

the paper some threshold realizations will be taken and modified

by using multiplexing techniques to correct t errors, starting

with a nonredundant realization R that consists of a set of gates

LA^] (i=l,....n). This realization is modified to obtain a redun

dant realization'r' by using the following set of rules:

1) Each Gate in R will be replaced by a set of k^

identical gates, and the set will be represented

CA^j. The output Gate Aq in R will be replaced

a single gate in R.

2) The independent variables, feeding into each gate

of [A^] in R, and their associated weights will

remain the same as those feeding into of R.

The Boolean function of each "aX in will be the

3)

same as that realized by A^ in R.

If the output of A^ in R feeds

of then the output of each

into Aj with a weight

[A^l in R will have

an input of P. into each A.. (If the output of A.

feeds into more gates than A^ in R, then 0^ will

be set by the gate requiring the largest value for

This is no real problem,k. . however, because in

the solution each Aj gate and its A^ input gates

are considered one at a time. The largest value

for required by any of the Aj gates it feeds into

is the value that is selected for the final solution.)

The realization R is called the multiplexed version of

R. Each Aj will correct a given number of errors that are made

in {[A^]|iej], and J is the set of integers in R where the output

of A^ is an input to Aj. It is noted that Aj will correct t

errors of {[A^ljiej} if and only if for t or fewer errors in

[A^] the output of'a\ at ps{0,l}n is the same as the output of

A.
J

at pe{0,l}n with no errors in A^.

Errors at the output gate are not corrected, since

errors are corrected in the level of logic, immediately following

the error. Any t gate errors, with the exception of the output

gate, are corrected in the redundant realization. The inputs

to the network are assumed to be correct. A nonredundant

Z.M

realization R is shown in Figure 2.6(a) and its redundant reali

zation R is pictured in 2.6(b). The independent variable inputs

to the gates in Figure 2.6(a) and 2.6(b) have been omitted to

avoid congestion of the figure. However, each separate gate in

[A^] in R has the same independent variable inputs as of R.

F = <^X1+X2+X3+2X5+5 2X1+2X2+X3+X4+2X5+5 <(X1+X3+X4+X5)> 4.3)> ?.6

Figure 2.6(a) The gate interconnection to realize the function F.

Figure 2.6(b) The general multiplexed version of (a).

The notation used to relate R to R is defined as

follows:

denotes the set of integers i in R, in which

LA,.]ofdenotes the number

in R;

ofdenotes the weight as an

in R;

J

iej

R, and this
J

threshold where

R, and this sets the
J

threshold where

(or

ki

gj

the output of

Aj;

sets the

£j)f. (or
J

ei

'J J
denotes

input to Aj

denotes the

in R (or Aj

denotes the

Boolean function realized by Aj

in R) and is defined on [0,l}n;

. input to Aj;

gates in the set

Fj(or

u.
J

u.
J

uj ’
the gap length where

Uj;’J j
denotes the gap of A\ in

allowable region for the

- 1 . (or g. = u. -9 .

separating function of Aj in R

(or Aj in R) and is defined on {0,l]n

denotes that Gate A^ feeds into Gate

denotes the gap of Aj in

allowable region for the

the output of A. is an

J

J

These definitions apply for the remainder of the paper

regardless of the method being considered at any particular time.

The relation between R and R has been established.

Given R one must determine R. The values for k. and ?8\ must be
i i

calculated in order to determine R. It will be assumed that each

gate in R is necessary for the function F to be realized,

any gate is removed the function realized by R is changed.

2.5

CHAPTER III

METHODS FOR ADDING REDUNDANCY TO
THRESHOLD NETWORKS

In Reference (1) three methods for determining R,

given R are presented. Method I is a simplified procedure

which determines sufficient values for and This form

of multiplexed realization usually requires more gates than

are necessary, since for i£J is calculated independently

of all other k^. Both Method I and Method II require that

3^ = This requires that f j (p) “ fj (p) f°r p£{0,l}n

in the absence of errors. It should be pointed out that these

separating functions in R and R do not have to be equal for the

corresponding gates to have the same output F(p). However, if

the separating functions are the same in the absence of errors,

the output would be the same.

Although Method I was not used as such in this paper,

it might prove useful to consider it briefly. This approach

will help clarify the objective of the other methods.

METHOD I

Method I is a procedure that determines sufficient

values for all k^ and 3^. The following notation is used through

out the remainder of this paper:

[AJ denotes the least integer greater than A.

Theorem 1: Any gate A^ in R, a multiplexed version of

R, will correct t or fewer errors in gates {CA^J|iej} if

2 p. t
ki for 311 iGJ ;

= f j + max

The procedure to follow, in order to produce a redun

dant realization'R given a nonredundant realization R, is:

1) Each of R should be replaced by a set [A^J of iden

tical gates, and each "A^ should have identical inde

pendent inputs with the same corresponding weights as

A. .
i

2)

k.

of the output ofis the weightwhere

• J
If the output

Sj1

of some A^

If A^ feeds into A^ in R with a weight of then

each A^ of EA^l feeds into each A. of [A.] in R with

weight 3. = P./k., where k.b 1 i i’ i

feeds into all A. such that j£M, then let
i 9 8 . t- . J

max

pij

k.

A^ into Aj. Each Aj has a gap (u^

where 3 = max {P.liej}.m i1

- "p t):Cf. +'P t)
m j m

3)

4)

All Gates

into them

Aq in R that have no other gate output feeding

will have a gap q = uq:J?q-

The output Gate Aq in R will be replaced by Aq in R.

Liu and Liu (6) used a method quite similar to this

except that they have the same number of gates in each Ea^]

where iej. This number k^ is expressed as

2tP___ m
gj'

where 9 = max [P./iej] . Theorem 1 indicates that if all gates mi
whose outputs feed into Aj are reproduced the same number of times,

more gates will probably be used than are actually needed.

METHOD II

Method I requires a small amount of computation, but

usually requires more gates than are necessary because the value

of each for iej is calculated independently of all other gates

whose outputs may also be inputs to Aj. Method II is concerned

with multiplexed realizations that require a minimum number of

gates for R, given the realization R, and subject to the restric

tion that 3^ = 3^/k^. As pointed out before, this restriction

requires that each separating function f(p) in R be equal to

the corresponding separating function in R.

Calculating the minimum number of gates in a multi

plexed realization, subject to the above restriction, requires

the simultaneous calculation of all k^ for which the output of

A^ is an input to Aj and minimization of the sum of these k^.

Theorem 2 is used to accomplish this and the following notation

is required:

denoteswi

z.i

the minimum value of fj(p) where Fj(p) =

F^(p) = 1 and the output of A^ is an input to A;

denotes the maximum value of fj(p) where Fj(p) =

F^(p) = 0 and the output of A^ is an input to A^.

In correcting errors in a realization that is known to

realize the correct function, without errors, only two out of

Z.O

1 and it is 0,equal

reduced fromthen the separating

its proper value by

an error by Gate A.

reduce f(p)

is

F.(p) = 0if

When the output of

in an

0, or F.(p)0 and

realization does realize

will be the ones primarily

output F^(p) only results

outputs should be F.(p) =

F.(p) = 0

increased

of A. if the
J

= 1 and

is the other. Making an error means that

four possibilities need be considered. If F.(p) feeds into

Gate Aj along with other inputs, F^(p) = 1 and Fj(p) = 1 is

one possibility that is of interest, and F^(p) = 0 and Fj(p) = 0

an output which should

of Aj which is already

1 and F.
J

by 3. .

1 and F.
J

3^^. However,

would cause no

£ A;j by

A.
i

and Fj(p) = 0,

problem because it would

below . In the same manner,

(p) = 0 and A. made an error, then f(p) of A.
•t J

which may cause an error in Fj(p). However,

(p) = 1, an error caused by F^(p) going to 1

would only increase f(p) o

be 1 is 0 or vice versa. If F^(p) should

function of Gate Aj will be

if F.(p) = 1

Fj(p) =

Fj(p) - 1- This assumes that the given

the correct function. These conditions

\ j, and f(p) is already - •

feeds into A., an error in the
J’

error in the output

dealt with for the remainder of the paper.

Theorem 2: In a realization R, consider some Gate Aj

and the associated Gates A. where i£j. Define

qt e.t
vi - W1 - -k7 • hl - 2i + -k7

v = u. , h = f.. o J ’ o

Then in the multiplexed realization R of R where *3^ = 3^/k^ for

all iej} Aj will correct t or fewer errors of {[A^]|iej} if and

only if T. has an allowable region as follows:

v± Tj for all ie[j,0},

h < T. for all q£fj,O} .
Q J

that the gap for Aj in R

restricts s u. and 1.
3 3 a3

within the original gap.

The restriction that vo = vu and hQ “ simply requires

fall within the gap of in R. This

Pj, meaning that the gap does fall

Otherwise, it would be possible to find

a gap, but it would not necessarily be within an acceptable range

and the function realized would be changed.

When t errors occur in {[A^Jiej], t^ would be the

number of errors which occur in [A^J. For a given set of errors

e = (t^l, the minimum value for fj(?) at anY P such that Fj(p) = 1

which is designated f^(p)/e would be represented by

3. t. Pt
f.(p) e = min{(w. - ——)|iej] = w - —i1 x i k. z1 q k

A similar situation arises when considering the maximum

f.(p) at any p such that Fj(p) = 0 and a given set of

errors e = occur. Then fj(?) is designated by fj(p)|e,

and would be represented by

■J i q

for some q£j

But t = S t.
iej 1

Therefore A * * *

value for

z«

qj

for some q^J

Therefore

p wherethat the minimum forThis

for i£J.will1

occur

> max (h^|iGJ} ,

Then

= min {v^jiej}: max [h^jiej] .

This implies that

some p where

solution

f.
J

z
q

implies

occur when all t errors occur in one Ca.]

s zq

fj (p) at any

(p) min £ f j (?) rnax-

for some
q

Now assume that no T. exists because v. 5 h
J t

Then, Aj does not correct t errors of (CA^Jliej} for

Fj(p) = 1 or some p where Fj(p) = 0.

The problem is to solve for a minimum gate

E t.
iej 1

But t

Fj(p) =

Also the maximum for fj(p) at any p where Fj(p) = 0 will

when all t errors occur in one [A.] for isj.

u.
J

^qSq

kq

p t . -q q
k

q

kq

p.t.f / , 11e = max I(z^ + ——

Therefore this restricts Tj so that it can be any

value within the following range:

subject to the inequalities of Theorem 2. Therefore, for each

A^ the set of inequalities

must be solved simultaneously for integer values of where

iej, and subject to minimizing the cost function

= S k.
ej

The inequalities are nonlinear due to the variable k^ appearing

in the denominator. These inequalities may be solved using

nonlinear programming with the additional constraint that k^

be an integer for all i^J.

Although the following information provided by the

Corollary to Theorem 2 is not necessary to minimize the cost

function by nonlinear techniques, it is useful for pointing out

the difficulties in solving the problem analytically. For this

reason it is included to help point out what the problem consists

of, and what is involved in its solution.

Corollary 1: Necessary restrictions on the set

[kjjiej] that satisfy Theorem 2 are

C 26.t
■ i

for all meJ

w -zm m
for all m^J

This sets the lower bound on so that

k. ** ----- lr ill
i

Let this

gates in

I 2PHt l
k± 5 2 L-^-J - z -in kr .

x qej Sj rej r
^1

Let this be the upper bound on k^ and denoted max k^. This

establishes a possible range for k^ which is min k^ < k^ < max k^.

lower bound be denoted min k..
1

Theorem 3: A sufficient condition on the number of

[Ca. Jliej] is

METHOD III

for all

Both Method I and Method II required that fj(p)

pe {0,l}n when no errors are made. This results in

fj (P)

the

requirement that = 9^/k^ for all i. Both methods yielded

realizations under this restriction. However, Method II did so

with a minimum number of gates. In Method III the restriction

that 3^ = ^-j_/k^ is removed and the multiplexed realization R

requiring a minimum number of gates will be sought.

In Method III the following will be defined:

Vi(p) - ayXy(P) + Fi<P)
1 j

where F^(p) = 1,

h.(p) = E a X (p) + E k 3 F (p) + p.t F.(p) y yxl// w w wxr/ 1yeaj 33 wej

where Fi(p) = 0,

31

and

Fl (P) is the value of the Boolean function realized by

and

pe{O,ljn.Xxr(P)

Then

vn. (p) 1,

occur

Likewise

hn. (p) 0.

correct t errors if

and only i

vn. (p) 1,

h- (p) 0.

valueThe minimum

will occur when all t

the maximum value for

when all t errors are

at pe{0,l}n,

is the value of

Tj for all iej

T. for all iej
J

the dependent input X at

fj(p)} for p where F(p) =

Tj so that it can

where Fj(p) =

where Fj (p) =

= [ij the independent input is an input to Aj in R}.

f there exists T.
J

fj(p) at any p where Fj(p) = 0 will occur

made in one [A^] for ieJ. This restricts

be any value within the following range:

for f.(p) at any p where Fj(p) = 1

errors are made in one Ea.] for iej. Also

= max {fj(p)|^, fj(p)l for p where F(p) =

Theorem 4: If A^ is some gate in a realization R, then

in the multiplexed realization R, Aj will

such that

and fj(p)|t denotes fj (?) when t errors

in Ea** 3.

min Cv:L(p)|iej} > max {h^(p)|i£j}

Since the k's and P’s are both variables, these

inequalities are nonlinear due to the product term The

purpose is to find the minimum number of gates necessary to

correct t errors. The values for the'k.’s and the P.’s can be
i i

obtained by nonlinear programming by making the added restriction

that the k values be integers for all ieJ. The objective is to

calculate the k^’s and the ^’s necessary to correct t errors

while minimizing the cost function

C = I k.
i£J 1

CHAPTER IV

PROCEDURE

As indicated in Chapter III, the problem is to solve

the following inequalities simultaneously for each A^ using integer

values of where i^J,

wi
P.t x

aIJ

</T. u".
ij J J

and subject to minimizing the cost function

C = E k. .
iej C * * * * * 1

To solve the problem analytically would require a great

deal of calculation, and it would still involve a trial and error

solution. A procedure which might be followed is shown below.

1) Select some Aj so that AjeR and the outputs of other gates

in R are inputs to Aj. Calculate w^ and z^ for each i^J where

w. = min {f.(p)/F.(p) = F.(p) = 1}
x J ■L J

= max [fj(p)/Fi(p) = F^ (p) = 0}

2) Calculate min k^ for each iej where

28 t P.t 8.t
min k. = max {--------- ’ —- ----- ’ —- ----- }

1 Wi-Zi wm-zi wi-zra

3) max k.Determine

max
J

4) the minimum value of k. by trial and errorSolve for

iej such that the total number of gates is minimized,for all

the constraints are satisfied.and all

1) through 4).

6) been used.

7)

the required answer.is

the gates as in Figure 2.6(b) with8) Interconnect

analytical solution involves a great deal ofA Method II

calculation at best.

independent variables.of

For a five variable function = 32 points-there are at which the

function for each Afterbe evaluated.separating gate must w.

evaluated for alland z. are the min k. and max k. can be

evaluated in step 2 and 3.

for iej have been

evaluated, one must search through the possible values of k. for

to try all possible combinations of k. values to find the values

6i

25

To calculate w. and z. in step 1 requires

2P t
__ q

by any Aj and this

Take another Aj in R and repeat steps

Repeat step 5) until all Aj in R have

Take the maximum value of k^ required

- q/k..

a set of k. that will satisfy the constraints. One must continue

S min k .
red r

k^, and max k^

the evaluation of f j (p) f°r each gate An. where iGJ, at every point

pe[0,l}n where n represents the number

k. = Z
1 qeJ

When w^, z^, min

35

of that will minimize the cost function and satisfy the con

straints as well. This process must be followed for all Gates A.

Since the procedure that must be followed to find a solution

by Method II is quite lengthy, a computer program was written to

solve the problem using a search technique. The problem is in

herently a nonlinear programming problem, as was pointed out in

Chapter III. Bargainer and Coates (1) set the problem up to be

solved by integer linear programming techniques using existing

algorithms. This technique required that the min and the max

k. be calculated for all iej, and a table of all possible k.i ’ r i

values be constructed. As a result this requires working with

a large number of variables. For this reason, it was felt that

a nonlinear search technique, which would minimize some cost

function, might provide a faster and more direct approach to the

solution of the problem. The program written does not consider

the possible range of k values, but solves directly for the k^

values that will minimize the cost function and satisfy the constraint;

The Search Technique

A direct search technique based on "Optimal Search"

developed by Weisman, Wood, and Rivlin (9) was chosen. The optimal

search technique is actually an extension of the "Pattern Search"

procedure developed by Hookes and Jeeves (4). The extension

consists of the addition of constraints on the variables of the

Pattern Search. This technique was chosen because:

1) Hookes and Jeeves found it to be quite effective in

locating minima in "steep valleys", and

2) it appeared to be the most straight-forward method

of handling the constraints that had to be satisfied.

JO

The pattern search technique is based upon the principle

that any successful parameter adjustment is worth trying again.

The object is to minimize a given cost function. The value of the

function after a parameter adjustment is compared to the value

before the adjustment, and if the function has decreased, the move

is considered to be a success and the incremented parameter is

retained.

There are two basic kinds of moves in the Pattern Search

Technique; the Exploratory and the Pattern. The exploratory move

is used to obtain some knowledge about the function to be minimized

without any consideration of the gradient of the function. The

exploratory search starts from some initial base point and upon

completion establishes a new base point. The pattern move starts

from the base point established by the exploratory move and uses

the information obtained by the exploratory move in an attempt to

establish still another base point.

The exploratory move increments each parameter one at a

time and attempts to decrease the cost function. The first paramete

is increased by some predetermined amount, and if successful, the

incremented value is retained. If the increased parameter adjust

ment is unsuccessful, then the parameter is decreased by the same

predetermined amount, and if successful, the decreased value is

retained. If it is unsuccessful, the parameter is restored to its

original value. After each parameter is incremented in this manner,

one at a time, a new base point will have been reached.

The pattern move starts from the new base point estab

lished by the exploratory move and increments every parameter at

the same time by an amount equal to the difference between the

new base point and the previous base point. If the pattern move

is unsuccessful, the parameters are all restored to their previous

values. If the pattern move is successful, a new base point is

established. At this point, another exploratory move is performed.

However, it seems reasonable to assume that if one pattern move

is successful, another by an equal amount might be successful also.

Following this assumption, the search technique used will continue

to make a pattern move until the value of the cost function increases,

and the previous base point will then be restored.

In this procedure, any time an exploratory move is attempted

and the cost function cannot be reduced by incrementing any parameter

either positive or negative, the predetermined step increment is

reduced and another exploratory search is attempted. When the

step increment falls below some predetermined minimum the search

is terminated. By setting the predetermined minimum to the proper

value, the correct value may be found to the desired accuracy.

In order to illustrate the search technique just described,

an example of a two-dimensional pattern move is given in Figure 4.1.

In the example, C-^, C2, C^, C^, and are equal value contours

for the cost function with C,>CO>CO>C/ >CI-.1 2 3 4 5
The search begins at some initial point Bq. First k-^

is incremented positive by some amount 6 to k^+6. If the cost

function is decreased, this value of k^ is retained. If there is

no decrease, then k^-6 is tried. If the cost function is reduced,

the vector is established. k2 is then incremented by the same

amount 6 to k2+6. If the value of the cost function is reduced,

a new base point B^ is established.

J8

Figure 4.1. A two-dimensional pattern search.

From the new base point a pattern move is attempted.

Both and k2 are incremented by the same amount necessary to

move them from Bq to B^. If the cost function is reduced, a new

base point B2 is established. This process is continued until

the cost function increases, then the previous base point is

restored and an exploratory search is attempted again.

This same procedure is followed until no attempt to

increment k^ or k2 either positive or negative, by an exploratory

search, is successful. In the procedure of Hookes and Jeeves (4),

39

the increment 6 is reduced and the entire process repeated. The

increment 6 is reduced and another attempt made to decrease the

cost function until the increment 6 drops below some predetermined

value. The search is terminated at this point.

In the actual program the and would represent

the number of times Gates and would have to be duplicated

respectively in order to add a specific redundancy to the network.

Therefore, the k values must be integer values. For a network

requiring a reasonable number of gates, it did not seem practical

to allow k to be incremented by more than one at a time. Each k

may remain constant, increment positive by one, or increment

negative by one in any given step. The value one is the only

allowable step increment.

Weisman, Wood, and Rivilin (9) used the idea of a penalty

factor in their optimal search technique to insure that constraints

were satisfied on minimization problems. The problem they solved

is very similar to this one. They wanted to minimize some function

subject to certain constraints. They took some value for the

variables and checked to see if the constraints were satisfied

and, if not, they increased some error function which is added

to the function to be minimized. Therefore, by making the penalty

factors large enough one can insure that the constraints are satis

fied or the function can not be minimized.

The objective of Method II is to solve simultaneously

for integer values of k^ which will minimize the cost function

0 = Ek.
iej 1

subject to the following constraints:

> Tj where

hi "h

<?j s-2j

e.t
= W.--- i--- , h. = Z. 4---- ;---i k^’ i i.

= u., h =9. .
J ’ o j

Therefore, an error is made if any v. h where ’ J 1 q
i,qej. An error results when there is no required gap for the

threshold T. An error is also made if or h^ m for

iej. This error occurs because the gap found is not within the

original gap.

indication of

By subtracting h
q

it is possible to get an

how far the constraints are from being satisfied or

how large the error is. Likewise by subtracting - v. and
1

h^ - uj, it is possible to determine how far the. gap is from

the original gap.

Penalty factors are added to the cost function for the

constraints not being satisfied. The cost function then appears

as below:

C = X k. + C, E E (h - v.)+ C
iej 1 iej q£J q r

E [(h.-u.) + (f.-v.)]
iej 1 J J 1

where and C2 are positive constants which weight the penalty

factors. Only a positive error or zero can be added. If h^ - v^,

°r ^3 v^ is negative, zero will be summed into the cost

function for that value. Otherwise, the error function would add

in negative error if a constraint were satisfied and this would

cancel the effect of an error elsewhere. By making and C2

41

large enough, C can only be minimized•if the constraints are

satisfied.

The cost function may be expressed in the following way:

C = S k. + EF
i£J 1

where EF represents the error factor

EF = c1 F E
iej qej

(hq-vp + C2 (h-Uj) + (fj-vp.

After some trials to minimize the cost function, the

best approach seemed to result when C2 was made a large constant

value requiring that the final gap g approach the original gap g

before the other factors became significant. Certainly the

would have to be small compared to the error due to any v.
J

L k.
iej 1

or h^ > uj• This technique caused the routine to approach the

correct answer very quickly.

A solution is reached with a given initial value for

C-^. If EF is not zero for this solution, is increased and

another solution found. This procedure is continued until C is

minimized and EF is zero, meaning all the constraints are satisfied.

Once the k values are large enough for the constraints to be satis

fied EF = 0, and the k values can be minimized. In effect, this means

that the error due to any constraint not being satisfied multiplied

by its constant multipling factor (C-^ or C2) must be greater than

one. If one more gate is added to satisfy the constraint then

the reduction in the cost function must be greater than one or

the cost function will not be reduced.

Solution by Method II

In order to find a Method II solution using nonlinear

computing techniques, a certain procedure must be followed. The

following procedure represents a brief outline of the steps the

program must use.

Method II Procedure:

1) Select some J so that A^eR and the outputs of other

gates in R are inputs to Aj. Calculate w^ and for each ieJ

where

wi = min {fj(p)|Fi(p) = Fj (p) =

Zj, = max [fj(p)|Fi(p) = Fj (p) = 0} .

2) Solve by the search technique for the minimum value of

for all iej which will minimize the cost function.

C = E k. + EF
iej x

and satisfy all the constraints, so that EF = 0.

3) Take another Aj and repeat steps 1) and 2).

4) Repeat step 3) until all .A,, in R have been used.

5) Take the maximum

is the correct answer for

6) Interconnect the

The program follows the above procedure and solves for

the number of gates necessary to add a required redundancy to a

given network. The MAIN PROGRAM reads the information necessary

to define the original realization R. This information includes

value of A^ required by any Aj and this

gates as in Figure 2.6(a) with

the number of gates} the number of variables, the number of

all the independent

into all gates,

the

the

The

and then calls subroutine CONST.

errors, the initial k values, the weights for

variables (^g) an<^ their complements feeding

weights f°r each gate feeding all other gates, and

upper and lower limit (uj:^j) for the gap of each gate.

MAIN PROGRAM takes the first gate and assigns it as A,

The subroutine CONST takes the separating function

and evaluates it at each point ps{0,l}n. Therefore, it solves

for w^ and for all iej. Then subroutine CONST returns to the

MAIN PROGRAM which immediately calls subroutine SEARCH.

Subroutine SEARCH follows the procedure described in

the Search Technique section of this chapter. It solves for the

minimum cost function

C = E k. + EF
i£j "L

so that all the constraints are satisfied, meaning EF = 0. The

subroutine takes the initial k values which were read in and

calculates the cost function using these values. It starts the

search procedure described by beginning an exploratory search.

After indexing the first k value positive, it again calculates

the cost function to see if it has been reduced. It continues

the search technique, checking the cost function after every move

until the cost function is minimized and the constraints satisfied.

Then, it returns to the MAIN PROGRAM.

The MAIN PROGRAM takes all gates Aj one at a time and

repeats the steps of calling subroutines CONST and SEARCH until

each gate Aj has been used. Each time control is returned to the

MAIN PROGRAM it checks the values required for the Aj gate

just finished and stores the maximum k^ value required up to

that time. After all gates A. have been used, the program prints

out all k^ values, 3 values, u values, and

the information necessary to construct R.

values which is all

Solution by Method III

Method III solves for the minimum multiplexed realiza

tion R necessary to correct t errors of the given realization R.

The restriction that 3^ = is removed, where is the

original Beta that was read in. This means that is free

to vary and is not restricted by the 3^ of the original function.

Therefore, the 3^ values may be searched to find those 8^'s

requiring the smallest total number of k^’s necessary to correct

t errors. Sinceis the weight of each gate of the set of

gates [A^J feeding into each A^ and k^ is the number of gates

in the set (A^}, the effective weight of all the gates in the

set {A^} is still 3^ = ^^3^ at any given time, but 3^ may be

different from the original 8^ read in. Thus, it is possible

to require that 3^ = and perform a search on the 3^ values,

and receive the same results as would be received if the 3^

values were searched.

For the reasons given above, a search is performed

on the 8,j- values, and a Method II solution found using the new

values specified. The minimum cost function

C = E k.
i£J 1

is found so the original function is realized and t errors are

corrected.

Method III Procedure:

1) Select some Aj so that and the outputs of other gates

in R are inputs to .

2) Calculate and store the initial output function values

Fj(p) for Gate Aj for each point on the n cube.

3) Calculate w. and for each isJ where

wi = min {fj(p)|Fi(p) = F^ (p) = 1)

= max (fj(p)|Fi(p) = Fj (?) = 0}

4) Perform a search on the values according to the search

technique described.

5) After the cost function

C = L k. + EF
iej :L

has been minimized, check to see if EF = 0. If the error function

is not equal to 0, increase the constraints error multiplying

factor and return to step 3). If the error function is equal 0

go on to step 6).

6) Index th value according to the search technique.

7) Calculate and z^ for each i£j where

Wj, = min (p)|Fi(p)

Zj^ = max {fj (p)| Fi(p)

8) Knowing the value

= Fj(p) = 1}

= Fj(p) = 0]

of the output function Fj(p) for Gate

Aj for each point on the n cube, calculate the minimum value of

such

values

areof A. and
J

f.
J

that Fj(p) = 0 without any errors being, made.

are the upper and lower limits for the new gap

(p) such that Fj(p) = 1 and the maximum value of fj(p)

These two

represented by UNE(J) and LNE(J) respectively. If UNE(J) > LNE(J)

go on to step 9), and if not return to step 6).

k. values according to the9) Perforin a search on the

search technique described.

10) After the cost function

C = E k. + EF
iej 1

has been minimized, check to see if EF = 0. If the error function

is not equal to 0, increase the constraints error multiplying

factor and return to step 7). If the error function is equal

to 0, go on to step 11) .

ID If the step increment for the values is below the

predetermined minimum, go on to step 12), if not return to

step 6).

12)

13)

14)

Take another Aj and repeat steps 2) through 11).

Repeat step 12) until all A. have been used.

Take the maximum value required of k^ by any Aj for a

minimum cost function solution with the constraints satisfied,

and this is the correct k. value.
i

15) Interconnect the gates as in Figure 2.6(b).

The Method III program follows the above procedure and

solves for the minimum number of gates necessary to add a required

redundancy to a given network. The MAIN PROGRAM reads in the

information necessary to define the original realization R. This

information includes the number of gates, the number of variables,

the number of errors,the initial k values, the weights for all

the independent variables (A) and their complements feeding vg
into all gates, the vzeights (8..) for each gate feeding into all

<*!

other gates, and the upper and Lower limit (u j) for the gap

of each gate. The MAIN PROGRAM takes the first gate and assigns

it as A.
J

and proceeds to call subroutine OUTFUN.

The subroutine OUTFUN calculates the output function

Fj(p) of Gate A^ for each point on the n cube. It stores this

information for a reference value to be used later. Then control

is returned to the MAIN PROGRAM.

Subroutine CONST calculates w. and z. and then calls subroutine

the procedure described in

the minimum for the costthe search technique section until

If the cost function due to errors is equal to

returns to the MAIN PROGRAM, if not, the error function is in

creased and subroutine CONST is called again. The same procedure

is followed until the cost function is minimized and the part due

to errors is zero, and the program returns to the MAIN PROGRAM.

The MAIN PROGRAM

lower limits for the new gap which are UNE(J) and LNE(J) respectively.

sets initial values of the variables and calls subroutine CONST.

zero, the program

z. are made. Know-
i

The MAIN PROGRAM calls CONTRL. The subroutine CONTRL

SEARCH. Subroutine SEARCH follows

calls subroutine CONTRL. After setting initial values, subroutine

function is found. Then the program returns to subroutine CONI’RL.

CONST is called. The calculations for w. and i
ing what the output function F^(p) of Gate A^ should be for each

point p on the n cube, it is possible to calculate the upper and

stores the information concerning 3^,

k., u. and S .. Then subroutine BETA is called and the search fori J A J
the best fk values begins. The first P. is incremented, and the

program returns to the MAIN PROGRAM. The MAIN PROGRAM immediately

48

If UNE(J) > LNE(J), then there is a gap and subroutine SEARCH

is called and the cost function minimized. If UNE(J) LNE(J),

then there is no new gap and the program returns to CONTRL which

immediately returns to the MAIN PROGRAM. In this situation the

program could not realize the proper function without any error

being made. This is an unsatisfactory answer, so subroutine BETA

is called and the indexing of 8^ values continues.

When UNE(J) > LNE(J), subroutine SEARCH is called, and

the cost function is minimized. Then the program returns to

CONTRL which checks to see if the cost function, due to constraints

not being satisfied (CSAT), is zero. If CSAT + 0, the error

multiplying factor is increased and CONST is called again. The

procedure is repeated. When the cost function is minimized and

CSAT = 0, the program returns to the MAIN PROGRAM. The answers

are checked to see if the sum of the k values is less than the

previously stored answer. If the sum of the k values is reduced,

the stored answer is replaced with the better answer and the in

dexing of the values continues. If the sum of the k values

is greater than the stored value, the stored values are not changed

and subroutine BETA is called. If the sum of k values is exactly

equal to the previously stored sum, the gap is checked to see if

it is wider than the previously stored gap. If the gap is wider

the new values replace the previously stored values and BETA is

called. If the gap is narrower, then BETA is called immediately

and the incrementing of the (3^ values continues.

This procedure continues until an exploratory move of

all 8^ values is unable to improve the stored results. The

49

increment by which the values are changed in each step is

then reduced, and another attempt is made at reaching a better

solution. Each time an exploratory move of all values fails

to improve the results, the increment by which the Ek values are

changed is reduced until the increment falls below .some predeter

mined value. When the step increment falls below its minimum

value, the search for that specific gate is complete.

Once the

MAIN PROGRAM takes

repeats the entire

time, to make sure

3. values for each

search for the previous Aj is completed, the

the next gate and it becomes Aj. The program

search procedure for each Aj, and checks, each

the max k^ required for any Aj was stored. The

A. are also stored. After all A. have been
J J

considered, the program prints out all {3./i£j} for each A., the

k^ values required, the upper gap limit (uj)> bhe lower gap limit

(^.), and the sum of the k^ values that were required. This

includes all of the information necessary to construct the re

dundant realization R.

JU

CHAPTER V

RESULTS AND CONCLUSIONS

Contours and Results of Method II

Given the weights for all of the inputs to Gate A^,

it is possible to calculate some cost function which can only

be minimized if the sum of the gates required is minimized.

This cost function is the sum of the gates plus some error

function due to constraints not being satisfied. If all the

constraints are not satisfied then the answer is not acceptable.

In the program, the error function is always checked to make sure

it is zero, and if the error is not zero when the minimum is

found, the error multiplying constant is increased and the

function minimized again.

It is desirable to generate the cost function surface

and investigate its characteristics as a function of k. For a

large number of gates, the number of points required for a mean

ingful plot would be quite large, and the information would be

very difficult to display for more than two variables.

In order to display the function and gain some knowledge

of the nature of the surface, one k^ will be varied while all the

other k^’s for the realization will be held at their respective

minimum values. The function generated is the cost function

with respect to one variable being changed.

The realization shown in Figure 5.1 is a five variable

function using six gates. This is a good example to investigate

and examine the results that were obtained, since it has a wide

5:4

f(p) = 3.25X, + .25X9 + 1.5Xo + X, + 2X. + 2 <(2X, + 3X?

+ 2X3 + X4> 5 ,4 + 4 <(X1 + X2 />2.1 + 8 <(3.25^

+ .25X9 + 1.5X9 + X, + 2X. + 2 <(2X, + 3X9 + 2X„

+ \ >5:4 + 4<CX1 + X2 > 2:1 > 7.5 :7 > 7.5:7

Figure 5.1. A six gate, five variable threshold gate

realization.

COST
FUNCTION

(CFT)

Figure 5.2. The cost function versus one k. value while other k ’q
1 iare at their optimum value and A- is Ag. Ln

N)

range of weights and relatively narrow gaps which make it more

difficult to solve. However, this results in a more interesting

contour for most-of the values that are plotted.

In Figure 5.2, the cost function versus one value

at a time is plotted while all the other k^'s are held at their

minimum values. The minimum k^ values found by Method II in this

case were k-^=17, k2=9, kg=25, k^=12, k^=23, and kg=l.

From Figure 5.2, it is observed that the cost function

is a concave function with respect to a variable k^. The function

almost appears to be hyperbolic. This is not the case, however,

because there is definitely a minimum value. The function has

an extremely steep descent when k^ is too small and approaching

the minimum value. After passing the minimum, the function levels

off to a steadily increasing function with a slope of 1. This

indicates that the error multiplying constant is quite large,

but decreasing that constant increases the minimum gap that could

possibly be found. Another reason for keeping the constant large

is to prevent reaching a minimum without satisfying all constraints.

A characteristic that is very important in minimizing

the cost function is the rate of convergence of the k^ values.

In order to minimize the cost function successfully in a reasonable

length of time, the k^ values must approach their minimum value

at an acceptable rate. Figure 5.3 shows the k^ values where isj

versus the number of iterations plotted for the realization shown

in Figure 5.1 and Gate Aj is gate number 6. An iteration is here

defined as a pattern move or a complete exploratory move.

26

Figure 5.3. Contours showing the rate of convergence of the values
for the problem shown in Figure 5.1.(Aj = A^).

u

+.1
Gap

L
L

A6

Figure 5.4. The contour of the gap for gate Ag for the realization
in Figure 5.1, solved by Method II.

56

It is observed, from Figure 5.3, that the gates requiring

higher k values tend to carry smaller k.*s with them until the
i •

larger-k^’s approach-their required-value.—This is exactly what------

would be expected from examining the contour of the cost function.

The cost function increases extremely fast if the k^ values used

are too small and getting smaller, and it increases at a slow but

consistent rate if the k^ values used are too large and getting

larger.

Another indication of the rate of convergence toward

an acceptable answer is the plot of the gap of the gate correcting

errors at any particular time. The plots up to this time have

been for k.'s which all feed into A,. This was done for ease i o
of comparison of the various plots. The plot of the gap for Ag

is shown in Figure 5.4.

The plot of the gap for Ag is the contour that is ex

pected. While the k^ values are too small, the gap is a negative,

value. As the k^ values increase, the negative gap increases

toward zero. When the k^ values with the larger minimums reach

that minimum value, the gap remains at zero until the k^ with

the smaller minimum value gets back down in the range of its

proper value. There is still an error at this point, but the

error is very small. The program checks and there is still an

error at the minimum. The error multiplying constant is increased

until a minimum is found and the error is zero. At this final

point the gap is a positive value.

The program written for Method II was run with several

problems. The solutions found for the three problems chosen

for examples are shown in Table 5.1. Each problem was solved

using an initial starting point where all k values.were equal

to 1. - Then- each problem-was solved-again using a starting point

where all k values were greater than the answer originally found.

The separating functions for the example problems in

Table 5.1 are:

Prob. 1 : f(p) = <f2X, + Xo + XQ + X, + 2 2X, + 2X0
x 1 v 2 3 .4 x 1 2

+ X3 + X4/ 5:4 + 2 XX1 + X2 / 2:1/ 4:3

4 2X, + 3X0 + 2XQ + X, /-. , + 4 <C X,
x 1 2 3 4'5:4 x 1

+ X2/>2*1 + 4 * * * 8 ^C3-25*! + -25X2 + 1-5x3

+ X, + 2X. + 2 <(2Xn + 3XO + 2X" + X, .
4 5 x 1 2 3 4Z 5:4

+ 4 ^X]_ + X2/>2;l/>7.5:7^7.5:7

The realization for Problem 2 is shown in Figure 1.5 and the

realization for Problem 3 is shown in Figure 5.1.

Prob. 2 : f(p) = <X, + X9 + X. + 2X. + 5 <2X, + 2X9

+ X3 + X4 + 2X5 + 5 <X1 + X3 + X4 + X5> 4;3> 7:6

+ 5 <X1 + X2 + x3 + X5 > 4.3> 5.4

Prob. 3: f(p) = ^3.25X3 + .25XO + 1.5XQ + X, + 2X,- + 2
^ 1 2 3 4 5

TABLE 5.1

RESULTS OF THE METHOD II PROGRAM

PROB.
NO.

INITIAL k VALUES
OF GATE NO.
1,2,3,4,5,6

FINAL k VALUES
OF GATE NO.
1,2,3,4,5,6

FINAL
SUM OF

k
VALUES

FINAL GAP OF GATE NO.
1,2,3,4,5,6

ILUN TIME
IN MIN

1 1,1,1 5,5,1 11 1.0,1.0,0.2 1.16

1 9,9,1 5,5,1 11 1.0,1.0,0.2 1.16

2 1,1,1,1 6,6,6,1 19 1.0,0.1666,1.0,0.1666 1.22

2 11,11,11,1 6,6,6,1 19 1.0,0.1666,1.0,0.1666 1.22

3 1,1,1,1,1,1 17,9,25,12,23,1 87 1.0,1.0,0.0294,1.0,1.0,0.0061 1.20

3 27,15,37,15,37,1 17,9,29,9,18,1 83 1.0,1.0,0.0294,1.0,1.0,0.0019 1.32

u
ex

The Method II separating functions required to correct

one error of the problems in Table 5.1 are:

Prob. 1 : f(p) = <2^ + X2 + X3 + + 2 <^2X1 + 2X£ + X3

+ X4^55:4 + 2 ^X1 + X2^2:l/>3.6:3.4

Prob. 2 : f(p) = <(x1 + X2 + X3 + 2X5 + 5 <^2^ + 2X2

+ XQ + X, + 2X,- + 5 <Cx, + Xq + X,
3 4 5 x 1 3 4

+ X5'/>64:3/>67:6.83 + 5 ^X1 + X2 + X3

- v \6 \
+ A5 / 4:3 / 5:4.83

Prob. 3 : f(p) = <(3.25X1 + .25X2 + 1.5X3 + X4 + 2X5

/ — — — \ 12+ 2 <2X1 + 3X2 + 2X3 + X4 2 5.4

< x 9? / —
X1 + X2 / 2-1 + 8 X3-25xi + -25X2

+ 1.5X3 + X4 + 2X5 + 2 ^2X1 + 3X2 + 2X3

— X Q / — x17 X 95
+ X4Z 5:4 + 4 XX1 + 2:1/ 7.264:7.235

>7.326:7.320

Upon examining the data everything seems to be as

expected in the case of Problems 1 and 2. The run times vary

slightly with different starting points, but the minimum found

is the same. In the case of Problem 3 the final results are not

the same. Some of the individual k values are different and the

sum of the final k values is not exactly the same for runs with

different starting points. This appears to be an error in the

Method II Program, but both of these answers may be checked and

both are minimums for the function. A minimum is defined as any

solution so that the reduction of any value will result in

some constraint not being-satisfied. -------- --------

The results of Table 5.1 point out that with more

complex realizations the cost function is not a contour having

a single minimum. In problems that are more difficult to solve

there appear to be "local minima" very close in value to the

absolute minimum of the cost function. Gate is the only gate

in Problem 3 which shows any variation in the values feeding

into it. The reason for this is the wide variation in the input

weights to A^ and the low relative gap. A low relative gap means

that the gap is narrow compared to the distance it is away from

the origin on the map of the separating function.

On the basis of the contours plotted and the data

tabulated in Table 5.1, some conclusions may be drawn concerning

the surface of the cost function and the performance of the

Method II Program. These conclusions are:

1) The program for Method II may be started at any initial

starting point for the k values, and it will find a

minimum sum of k values.

2) As the complexity of the problem increases there is

a higher probability that this could be a local minimum

in the near vicinity of the absolute minimum. However,

the sum of the k values for this minimum should be

close to the sum of the k values for the absolute

minimum.

O J-

3) By starting the program at widely varying initial values

of k, it is possible to check, and see if the absolute

-----------------------minimunrdias-been found.------ ----- --------- — -

4) Method II finds the minimum number of gates necessary

to correct t errors using the weights that were read

in for all the inputs in the realization.

Contours and Results of Method III

Method III attempts to improve the solution of Method II

by reducing the number of gates required to correct the same

number of errors. Method II takes a given realization and

attempts to find the minimum number of gates necessary to

correct a specified number of errors using multiplexing tech

niques. Method III finds a Method II solution and then changes

che eij values in an attempt to minimize even further the number

of gates necessary to correct the same number of errors. A

Method III solution must realize the original output function.

In effect, Method III performs a Method II search after each

hj change except that it must calculate the new gap in the

absence of errors for Gate A. using the new 3.. values.J &
The Method III Program would have a cost function similar

to that shown for Method II during each search for the minimum

k values. The k values are searched after every change of each

. A characteristic that helps point out how a solution is

reached is a plot of the k^ values versus the number of iterations

required. However, in Method III an iteration is considered to

be each pattern move or completed exploratory move on the
i-J

values.

Therefore, the value plotted is the value in the minimum

sum of gates necessary to correct the specified number of errors

for a particular set of B^j's.

In Method III a more meaningful plot is a plot of

and its respective k^ with each iteration. In order to minimize

the number of gates required, both k^ and 3^ for all iej must

approach an optimum value in a reasonable number of iterations.

Figure 5.5 shows the contour of a k^ and the respective for

the realization shown in Figure 5.1 and previously referred to as

Problem 3.

The contours plotted in Figure 5.5 show the variation

of the k^ and 3^ values with each iteration of the Method III

Program. The values plotted are the best results found up to some

particular iteration. Each iteration is a pattern move or a

completed exploratory move of the 3^ values. It is shown by

these plots that the program converges fairly rapidly to the final

solution. The curves point to the fact that the correct answer

may be searched out quite reliably.

For a comparison, it would be interesting to show a plot

of the variation in the results of the k. and 3.. values with each

change of any . The plot of this curve for k^ and 3^^ of

Problem 3 is shown in Figure 5.6. This curve shows that the results

found vary quite erratically for variations in 3... This curve

shows the contour from which the program must select the correct

values. Figure 5.6 may be compared to the corresponding values

in Figure 5.5

ki

32/8

Figure 5.5. Contours of kg, ar>d kg versus the number of iterations
to reach a solution of Problem 3. (A^=Ag)

cn
Lu

48

Number of Iterations

Figure 5.6. Plot showing the variations in kg and Pg^ for attempted
values on Problem 3. (Aj = A^)

The program written for Method III was run with the

same problems that were run on Method II. The results of these

runs for the three problems are shown in Table 5.2. Each problem

was solved using an initial starting point of all k values equal

to 1. Then each problem was solved again using the same starting

point used in Method II where all k values were greater than the

answer originally found. Shown in Table 5.2 are the values re

quired for correcting one error of Problems 1, 2, and 3 by

Method III.

The Method III solutions of the separating functions

of Problems 1, 2, and 3 are as follows:

Prob. 1 : f(p) = -^2^ + X2 + X3 + X4 + 2.668 <(2X1 + 2X2

— \ L / \ 3 \
3 4/ 5:4 x 1 2/ 2:1/4:3.667

Prob. 2 : f(p) = ^X], + X2 + X3 + 2X5 + 4.0 <2X1 + 2X2

+ XQ + X, + 2Xq + 4.804 X, + XQ + X, 3 4 5 x 1 3 4
+ Xq\6 ''K +4.0 ^X, + x9 + Xo

D/ 4:3/7:6.801 i z j

+ V \5 X
+ A5 / 4:3/5:4.800

Prob. 3 : f(p) = <3.25Xi + .25XO + 1.5X0 + X, + 2X, r > 1 2 3 4 5

2Xn + 3XO + 2XQ + X, \ c , +4.0 1 2 3 4/ 5:4

<
— — \ 1Q / —
X1 + X2/ 2-1 + 5,3 \3-25xi + -25x2

+1.5X, + X, + 2X. + 2.008 X2Xn + 3XO + 2X0 3 4 5 x 1 2 3
+ X4/> 5:4 + 4-092 ^X1 + X2^2:l/> 7.299:7.292

7.2894:7.2789

TABLE 5.2

RESULTS OF THE METHOD III PROGRAM

PROB.
NO

INITIAL k
VALUES FOR

GATE NO.
1,2,3,4,5,6

FINAL k
VALUES FOR

GATE NO.
1,2,3,4,5,6

FINAL
SUM

OF k
VALUES

FINAL GAP FOR
GATE NO.

1,2,3,4,5,6
NEW BETA VALUES

OTHER THAN 0

RUN
TIME

IN MIN.

1 1,1,1 4,3,1 8 1.0,1.0,0.3330 913=2.668,023=2•0 2.52

1 9,9,1 4,3,1 8 1.0,1.0,0.3330 9i3=2.668,^23=2•® 2.65

2 1,1,1,1 6,5,5,1 17 1.0,0.19933,1.0,
0.2

e12=4.804,924=4.0
9iZu = 4.0

3.04

2 11,11,11,1 6,5,5,1 17 1.0,0.19933,1.0,
0.2

312=4.804,924=4.0
P34=4.0

2.89

3 1,1,1,1,1,1 14,10,19,8,19,1 71 1.0,1.0,.00692,1.0,
1.0,0.01053

@..,=4.092, S23"2.008
P36=5-3> P46=2-2
@56=4.0

5.89

3 27,15,37,15,
37,1

14,10,19,8,19,1 71 * 1.0,1.0,0.00692,l.C
1.0,0.01053

913=4.092, 323=2.008
836=5.3, 946=2.2
1356=4.0

5.89

c
c

0/

Upon examining the data of Table 5.2, everything seems'

to be about as one would expect. In the case of Problem 3, it

is found that the Method III Program is able to find the minimum

at either starting point. The more difficult problem does not

prevent the minimum from being found. It appears that the tech

nique used in Method III not only allows the problems to be solved

with fewer gates, but it apparently enables the absolute minimum

to be found with better accuracy.

On the basis of the contours plotted and the data

tabulated in Table 5.2, some conclusions may be drawn concerning

the performance of the Method III Program. These conclusions are:

1) The program for Method III may be started at any initial

starting point for the k values, and it will find a minimum sum

of k values.

2) Method III improves on the Method II Program because it

is allowed to change the 3^ values in order to improve the

results. Method III performs a search on the values in an

attempt to optimize them.

3) By starting the program at widely varying initial

values of k it is possible to check and see if the absolute

minimum has been found.

4) Method III finds the minimum number of gates necessary

to correct t errors using the original realization which was read

in, but it then allows the to take on an optimum value.

Results When Specifying Minimum Gaps

All of the previous results were solutions which had

no minimum gap specified. Any gap that was found by the programs.

regardless of how small, was accepted. It is possible to specify

a minimum gap and require all gates in the realization to.have at

least that wide a gap. This means a practical or a realizable

limit may be specified.

Before any minimum gaps were specified, an error was

made if any h^ where i,qej. An error resulted if there was

no required gap for the threshold T. An error was also made if

(the lower limit for the gap) or h^ (the upper limit for

the gap).

In order to specify a minimum gap, the gap must be at

least as wide as the gap specified. Therefore, must be

hq + MINGAP where i,qeJ and MINGAP is the minimum gap required.

Also must be s (the lower limit for the gap + MINGAP and

h^ (the upper limit for the gap + MINGAP). Some constraint

will not be satisfied if the gap is not at least as wide as the

minimum gap specified.

To specify a minimum gap for all the gates in a reali

zation requires changing the same three cards in either program.

The cards calculating ELL, EUL, and EFG must be modified in the

SEARCH subroutine of either program. The three cards before the

modification read as follows:

Method II;

ELL = L(J)-V(I2)

EUL = H(I2)-U(J)

EFG = (Z(I3)+A(IG,J)*ERR)/KT(I3))-(W(J1)

-(A(IH,J)*ERR)/KT(J1)).

Method III;

ELL = LNE(J)-V(I2)

EUL = H(I2)-UNE(J)

EFG = (Z(I3)+(BT(I3,J)*ERR)/KT(I3))-(W(J1)

-(BT(JI,J)*ERR)/KT(JI)).

After the modification to specify the minimum gap, they read

as follows:

Method II;

ELL= L(J)-V(I2)+MINGAP

EUL= H(I2)-U(J)+MINGAP

EFG= (Z(13)+A(IG,J)*ERR)/KT(I3))-(W(J)

-(A(IH,J)*ERR)/KT(J1)-MINGAP)

Method III;

ELL= LNE(J)-V(I2)+MINGAP

EUL= H(I2)-UNE(J)+MINGAP

EFG= (Z(I3)+BT(I3,J)*ERR)/KT(I3)-(W(J1)

-(BT(JI,J)*ERR)/KT(JI)-MINGAP)

where MINGAP is the minimum gap specified as a floating point

number.

For a basis of comparison of the problems with and

without a minimum gap specified, a minimum gap of 10% of the

smallest input weight to any gate was chosen. However, for

Problems 1 and 2 the gap found by Methods II and III for any gate

was already greater than 107= of the smallest weight into any gate.

Then as a random value, a minimum gap of (.5) for both Problem 1

and 2 was chosen. The gap already found for Problem 3 was very

TABLE 5.3.

(a) RESULTS OF THE PROBLEMS USING SPECIFIED MINIMUM GAPS BY METHOD II.
(b) RESULTS OF THE PROBLEMS USING SPECIFIED MINIMUM GAPS BY METHOD III.

(a)

PROB.
NO.

INITIAL k VALUES
FOR GATE NO.
1,2,3,4,5,6

FINAL k VALUES
FOR GATE NO.
1,2,3,4,5,6

SUM OF
FINAL

k
VALUES

FINAL GAP
FOR GATE NO.
1,2,3,4,5,6

MIN.
GAP
REQ.

RUN TIME
IN MIN.

1 1,1,1 9,9,1 19 1.0,1.0,0.5555 .5 1.37

2 1,1,1,1 11,11,11,1 34 1.0,0.545,1.0,0.545 .5 1.17

3 1,1,1,1,1,1 17,9,25,13,26,1 91 1.0,1.0,0.0294,1.0,
1.0,0.0262

.025 1.20

(b)

PROB.
NO.

INITIAL k VALUE!
FOR GATE NO.
1,2,3,4,5,6

1 FINAL k VALUES
FOR GATE NO.
1,2,3,4,5,6

FINAL
SUM OF

k
VALUES

FINAL GAP
FOR GATE NO.
1,2,3,4,5,6

NEW BETA
VALUES OTHER

THAN 0

MIN.
GAP
REQ.

RUN
TIME

IN
MIN.

1 1,1,1 6,5,1 12 1.0,1.0,0.6 r13=2.4,P23=2.0 .5 2.55

2 1,1,1,1 10,8,8,1 27 1.0,0.555,1.0
.5625

B12=4.448,B24=35
S34-3.5

.5 3.04

3 1,1,1,1,1,1 15,10,23,9,17,1 75 1.0,1.0,.02773,
1.0,1.0,0.03294

TD
 XD

"C
D
 CD W

Ln

LD

 to H
Cx

 Ox
LO

 W
II

II
11

II
II

4>

N
 L

n
M

4>

O

O
 c

o
O

0

0
ro

 0
-~

j
4>

to

 00
ro .025 7.53

close to the minimum gap specified but slightly lower. The

results for the three problems run, with minimum gaps specified,

are tabulated in Table 5.3 (a and b).

The results shown in Table 5.3 (a and b) confirm the

results that are expected. A larger number of gates are required

to make the gaps of the gates in the problem wider. Any reason

able minimum gap may be specified. It is not reasonable to ask

the program to leave a wider minimum gap than the gap originally

read in for any gate on the realization.

Summary of Conclusions

Two procedures have been developed, using two different

methods, and the programs written for minimizing the number of

gates required to correct t errors in a threshold realization

using multiplexing techniques. Both of these methods require

that some original realization be read in as input data. In

obtaining these realizations it was found that:

1) Method II always finds a minimum number of gates re

quired to correct t errors using the weights originally read in.

2) Due to "local minimums" it is possible in some situations

for Method II to find a minimum sum of gates which is not the

absolute minimum sum of gates. However, this minimum sum of gates

is probably close to the actual minimum sum of gates.

3) Method III finds a minimum number of gates required to

correct t errors by optimizing the values of the realization.

4) The minimum found by Method III should always be as good

or better than the minimum found by Method II.

5) The cost function of both programs will always have a

minimum. Therefore, there is a solution assuming the original

realization read in was correct.

6) Either method allows a minimum gap to be specified for

all gates in the realization found.

BIBLIOGRAPHY

1. Bargainer, J. D., Jr. and Coates, C. L., "Minimal Multiplexed
Threshold Gate Realizations," I,E,E.E. Transactions on
Computers, Vol. EC-17, No. 6, pp. 566-578, June, 1968.

2. Coates, C. L. and Lewis, P. M., "Linearly Separable Switching
Functions," J. Franklin Inst., Vol. 272, pp. 366-419,
November, 1961.

3. Coates, C. L. and Lewis, P. M., Ill, "Donut: A Threshold
Gate Computer," I.E.E.E. Transactions on Electronic Computers,
Vol. EC-13, No. 3, pp. 240-248, June, 1964.

4. Hooke, R. and Jeeves, T. A., "'Direct Search* Solutions of
Numerical and Statistical Problems," Association for Computing
Machinery Journal, Vol.8, pt. 2, April, 1961, pp. 212-229.

5. Lewis, P. M. and Coates, C. L., Threshold Logic. New York:
Wiley, 1967.

6. Liu, C. L. and Liu, J. W., "On A Multiplexing Scheme for
Threshold Logical Elements," Information and Control, Vol. 8,
pp. 282-294, 1965.

7. Muroga, S., Toda, I., Ikasu, S., "The Theory of Majority
Decision Elements," J. Franklin Institute, Vol. 272,
pp. 376-419, May, 1961.

8. Von Newmann, J., "Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Components," in Automata
Studies, Shannon, C. E. and McCarthy, J., Eds Princeton, N. J.:
Princeton University Press, pp. 43-98, 1956.

9. Weisman, J. and Wood, C. F., "The Use of 'Optimal Search*
for Engineering Design," Recent Advances in Optimization
Techniques, pp. 219-228, Wiley, 1966.

10. Wilde, D. J., Optimum Seeking Methods, Englewood Cliff, N. J.:
Prentice-Hall, Inc., 1964.

APpE??nrx

nn
nn

nn
nn

nn
no

on
no

no
 nn

 on
 no

on
 n

o
no

n
oo

no
no

oo
nn

on
no

 n
o

7^

VARIABLE LIST FOR XSTHOD II PROGRAM

PROGRAM DsCUMENTATieN

variable list
FC I) -OUTPUT FUNCTI9N VALUE F6R GATE 1.(1 RR 0)
U(J) -UPPER LImIT F9R THE THRESHOLD OF GATE J.
L(J) -LOWER LIMIT FOR Thf THRESHOLD OF GATE J.
UN(j) -upper li^it for the threshold of gate j necessary to correct

ERR ERRORS,
Ln(j) .-lower limit for the Threshold of gate j necessary to correct

err errors,
GAP(U) - ACTUAL gap of GATE J AT A PARTICULAR Tl^E.
kt(!) -Temporary < values being used in an attempt to reduce the

cost function,
KBP(I) -THE BEST K VALUES FOUND IN PReCEEDING ITERATI6NS.(BAS- POINT

K VALUES)
kuci) -temporary storage for thc improved kt values during an

exploratory search, before comparing TuE kt values to the
, KBP VALUES.

Z(I) -the maximum value of the separating function of gate u such
THAT F(J)=1 and F(I)*1, WH^Re the OUTPUT of gate I IS AN
INPUT TO GATE J.

W(I) -the minimum vaLUe qf tHe SepARat^q function of gate u such
that R(J)=o and F(i)«o, where the qUtput of gate I Is an* Input to gate j.

X(i) -the value of the independent input X(d at a particular point
vk, ON THE N CUBE.(1 OR 0)
XN(D »the value of the independent input xnot(I) at a particular

point on the n cube«(i or o)
ng »Nq of gates In the realization*
Nv -Nq OF INDEPENDENT VARIABLES IN THe REALIZATION,
err -Ng of errors that are to be Corrected,
a(i,j) -matrix qf weights for all inputs i feeding into gate j, (iu

THRU NV): WEIGHTS FOR INDEPENDENT INPUTS X(l) THRU X(NV),
I(NV+1 THRU 2NV): WEIGHTS FOR INDEPENDENT INPUTS XN(1) THRU
XN(NV),I(2NV THRU 2NV+NG); WEIGHT for GATE I FEEDING INTO

„ gate j,
VAR(I) -VALUE Op INPUT I FEEDING INTO GATE Je(l 3R 0)
V(i) -Minimum value of the sepaRating function of gate J with err

ERRORS MADE IN THp I SET OF GATES, wHERE F(I)=i AND F(J)»ie
hci> eMAxi^uM value of the separating function of Gate J with err

ERRORS MADE IN THE I SET OF GaTES, WHERE FCI)»0 AND F(j)=o,
CKT -ThE TEMPgRARY VALUE qF ThE C0nSTr AI \'TS ERRqR MULTIPLYING

factor, errors due to tHfre not being a gap are multiplied
— QY CKT,
CKF „The previous VALUE eF THe CONSTRAINTS errOR MULTIPLYING

KSC

kesp
KPMd
KP9S

I WS9

K0SU^

gate j using the best

c
c

" c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

KSUHT
E9G

SEARCH R9UTIN'E

THF * '<T VAUUE WAS INDeXE:> POSITIVE 6Pi n i rt. u Ab i S TLF e

FACT3R,
'r«MPlArTrNDlCATING THE SEARCW FeR the Minihum k values IS

U!jnr i m, e
’SUM 15F KT values at any time*
’wTTM^RTXDrAPT® THEI GAP WITH ERR ERReRS N3T Being
-ril cddIo'^^ xFSta3EISHED when N0 ERR3RS ARE MADE,

being a gap fqr the threshsld
that the SEARCH R8UTINE IS PeRFSRMING an

IS PeRFSRMinG a

"The ERROR DUE TP thcRp Npt
when err errsrs are made,

’A flag INDICATING
ExPLORATPRy have,

"A flag INDICATING that the
pattern msve.

*A FLAG INDICATING
negative r - z

■puNc??er?^^rL^s^A;8^ mva^ reouced ™e c6st
uoor,,,:^ ^ME- rvalues

< VALUES.
L.UT<J)-TtiE 3 lI„it f„r Tke twes d er gaTe g s

T,II"ER^Rr^U^UG!^6PEA^^Ti^=ET ’ REaU1RED T» EeRRECT ERR

Mie: gates -L'ST Br NUMBERED in ascending eRDrR TO the OUTPUT eatt-
number' FEE !NTe A GATE W1TH A WBER thaTnUIts

76

FL0W CHART F0R THE METH0D 2 PROGRAM

/read

NG,NV
((A(I1,J1),I1=1,KA),J1=1,NG)
(U(I2),I2=1,NG)
(L(I3),I3=1,NG)
ERR

(KBP(I5)=1,NG)

This section of the
program selects the Gate
Aj that must correct the
errors. When the answer
is returned, it is checker
to see if all constraints
were satisfied.

C 2§ V\ J<-1,NG p

N N

WRITE
NG,NV,ERR
((A(I7,J2),I7=1,KA),J2=1,NG)
(U(I8),I8=1,NG)
(L(I9),I9=1,NG)
(KBP(J3),J3=1,NG)

_______ Y_______
SET INITIAL VALUES

CALCULATE THE
Output values

77

STEP THE INDEPENDENT
INPUTS T0 THE NEXT P0INT

0N THE N CUBE.

CALCULATE THE
0UTPUT 0F EACH GATE.

__________ ik__________
CALCULATE W(I) & Z(I)

F0R EACH GATE I
FEEDING INT0 GATE J.

The following section of
the program calculates the
w. and z. values for each i i
Gate Aj_ feeding into A^ .

CALCULATE EFGT

The following section of
the program (1 thru D)
calculates the cost
function and the error
due to constraints not
being satisfied.

78

79

METHOD II PROGRAM

C
C
C
C
C
C
C

C
C
r
C
C
c
c
r
C
c
c

c
c
c
c
c
c

c
c
c

c
c
c
c
cr
c

DeCUME^TATIO\

VARIABLE LIST

F(I)
L(J)
L(J)

LL< J)

GAP, j;
K T (r)

KEP(I)

Z(I)

'< (I)

X(I)

y 11)

EG
> V
rRR
A (I > J)

VAR(J)
\, (I)

P(I)

CkT

C<p

-OUTPUT FUE'CTieX' VALUE EPP GATE 1.(1 6R C)
-UPPER LImIT FOR TR'e threshold OF GATE J.-LS.'-tr LIVIT FOP T^E TH^FSHOLL OF GATE J.
-UPPrR LIyIT FOR THE THRESHOLD OF GATE J NECESSARY TO CORRECT

E R R E P " O ~ S •
-LCvEr lIvIt ECr T^e THRE3HeLD CF GATE J nECESSArY TO CORRECT

ERR ERR9-S.
- ACTUAL GAD f;F CATE J at A DARTICULAR TIME.
-TE^-O-RARY K VALUES BEING used IN AN ATTFNRT TO REDUCE the

COST FU‘-CTI-?N.
-the best k vaLUfs found in preceeding Herat ions.(base point

K VALUE?)
-temporary storage for the improved <t values during an
exploratory SEArCh> BEFORE CeNPARl^.G TuE KT VALUES T9 TrE
K3P VALUES. M
-the vAXIvUv value of the separating function 9F gate J SUCH
That F(J)=1 and F(I) = 1, 'aHERE The OUTPUT 9F gate I IS an
INPUT to gate J-
THE mINImUm VALUE OR THE SEdARATING FUNCTIO
that F(J)=O AND F(I)-o, nHeRE the 0UTPUT OF Input tp Gate J.

N OF gate j SUCH
GATE I IS AN

-THE value of the INDEPENDENT INPUT X(l) at A PARTICULAR PgiNj
8N THE N Cube.(1 OR c)

-THE VALUE OF THE INDEPENDENT INPUT XN8T(I) AT A PARTICULAR
P3INT ON The N CUOE.Cl OR Q)

-NO OF GATES IN THr REALIZATION,
-NO =-7 I\>FPENDF,NT VARIABLES IN THE REALIZATI5N>
-N? «F ERF°RS THAT APE TO BE CORRECTED.
-MATRIX OF XFIGHTS F^R ALL INPUTS I FEEDING INTO GATE J. (Hl

THRU NV): '.•'EIGHTS Far P'DePeNDeNt INPUTS X(l) thru X(NiV).
HNV+l THRU PNV): WEIGHTS FOR INDEPENDENT inputs XN(1) THRU
XNH V), I (BN'V THRu ENV + NG)! a'EIQhT f5r GATE I REEDING INTO

-VALUE OF
-MINIVUV

FRR^RS v
-MAX J .VUV

FRR‘JPS v
-THE TENd

F A C T 5 R .
BY CKT.

P'-’L'T I FEEDING INTO GATE J.<1 OR 0)
VALUE 9" THe SEPARATING FUNCTION OF GATE J WITH ERR
ADE IN THF i set *e GATES. WHERE F(I)=1 ANd F(J)=1.
VALUE PF THF SEPARATING FUNCTION 9F GATE J WITH ERR
ADE IN THr I SET OF GATES. WHERE F(I)=O AND F(J)=C.
ORARV VALUF OF THE CONSTRAINTS ERR0R MULTIpLYIN's
ERRORS DUE TO THrRE NOT BEING A GAP A?E MULTIPLIED

THE PREVIOUS VALUE OF THf CONSTRAINTS ERROR MULTIPLYING

80
FACT?^.

-A FLAG IXDICATI^G T^E SEARC-* FOR JkF MINIMU^ K VALUES IS
complete*

-SUM OF <T VALUES AT ANY TIME.
-THE fRR.OP CJE TO Tr'E GAP WJTH E^R ERRORS NOT BEING

'•JITL-lN^Ti-ir GAP ESTABLISHED -.’HEN NO ERRORS ARE MADE.
-the eRR"jd djf t° there not Being a gap fqr the threshold
xhen ERR ERp°RS ARE MADE.
-a flag indicating that the search routine is performing an
exploratory hove.
-a flag indicating that the search routine is performing a
pattern vove.

-a flag indicating whether a kt value was indexed positive or
NEGATIVE in the LAST step.
-a flag indicating whether any kt value reduced the cost
function in the last exploratory move.

-sum OF THE BEST K VALUES FOUND.
C UOUT(J)-THE UPPER LIMIT FOR THE THRESHOLD OF GATE J USING THE BEST
C K VALUES.

LeJT(.)-T^E lower limit for the threshold of gate j using the best
C < VALUES,
C K5UT(D-THE ylNfMij^ Num3ER OF GATES IN SET I REDuIRfD TO CSRRErT ERR
C errors in The given Realization.

C KSC

C k-SUHT
C EOG

C rFGT

C <ESP
C
C ^PMR

C ^P?S
c
C IWS'-'
c
C KOS_;V

C
C
C
c

c
c

note: gates vust be numbered in ascending order to the output gate,
no gate can feed into a gate with a lower number than its own
NUMBER.

THRESHOLDTHIS IS A PROGRAM written TO MINIMIZE THE NUMBER OF
a"vE^R3R CORRECTING NETWORK, USING MULTIPLEXING TECHNIQUES,

rnc ’'rAuJZA' is F‘9|jVD USING The OPTIMAL SEARCH TECHNIQUE, and the Function is the number of gates reguirfd plus an eRr8R function
due TO CONSTRAINTS NOT BEING SATISFIED.

D I MEN'S 10 s KD(PO) , OUT (20), LOUT (20). LOUT (20), GO (SO)
C£ ^M-^N F (PO) , A (43,20) , U(20) 1L (20 >» GAD * * * * 1 (20) ,KT(20) , KRP (20), Z (20) ,

1 • (2...) > V (20), p (20), X (IQ), XN (10) , V AR (40), ku (2o) , UN (20) , LN (20) , NV,
c'.G, c<T,cGAT,FPR, cFT, CFP, KSC

REAL L,LN,lout
INTEGER F,X,XN-

c THE "'EXT 17 CAROS READ IN THE INpU'T DATA AND SET THE INITIAL OUTPUT
C VALUES.

READ(5*1) NG,W
1 p0RvAT(2l5)

,<.A = 2*\V + X3
N v 2 e 2 * N
READ(5# 3) ((A(11,JI),11 = 1,KA),U1 = 1,NG)

3 FORMAT(EF10.4)
READ(5,4) (U(I?),12=1,NG)
READ(5,4) (L(13),I3 = 1,NG)

C
| PROGRAM LISTING

c the main program reads in the input data, and selects the gate j
c UHKH MUST CORRECT the SPECIFIED NUVBFR of ERRORS at any POINT ON the
c h Cube. thE main program determines whether the answer furnishe-d by
C THE SUBR°UTINES SATISFIED THE CONSTRAINTS. IF SO, IT PRINTS OUT THE
c answer.
U MAIN PROGRAM
C vain program for MULTIPLEXING with THRESHOLD GATES USING METHOD 2

81

4 r5R4!AT(8F13,4)
5 RFAD(5#6)ERR
6 FPRYAT(F10-2)

D? 7 IA=1,\G
K?UT(14)=1
i,9UT(14) =U(IM

7 LPUT(I4)=L(IM
R F A ? (5 / S) (|<:Bd(Is5)^I5s1>\G)

8 FeRMAT(l:l5)
s I 6= IMG

<L'(I6)=K5P(14)
9 zT(I 6)=<3=(IP)

C THE \EXT !4 CARDS PRINT PUT THE INFPRNATISK READ IN.
R I T t (6! i /*.) \G>NVjERR

10 F?R.uAT(l^d, I I5,5X, 'NV= 15,5X, 'N3. 8F E^R’SFlO.S)
..RITE(6M1)

H rPRvAT(1^2#* A MATRIX VALUES')
aRITE(6>3) ((A(17/Jp)» I7=ir<A),J2=1#NG)
■'PITE(6/1?)

ip F^RVAT(1H:,' u VALUES')
-cITE(6/-+) (L(Ig)/ I8MM.C)
MITE(6/13)

13 F°R^AT(inr,i L VALUES')
/RItE(6/4) (L(19)/I9=ixNG)
•s1 T E (6 > 1 4)

14 RFRV AT (Ir-.Q, ' <9P VALUES')
xRITE(6/3) (MM J3)/J3-1MG)

C the DO L03P TERvINATeD ?Y STATEMENT 28 SELECTS THE GATE J THAT MUST
C CC^PECT Tr.E FURORS AT A PARTIqULAR TImE.

DO 2s JzlM'G
CSAT = 1 .QF + IE

IE J4=1,\G
'<U(J4)SKD(J'M
<T(J4)=<r(J4)

15 <5P(J4)=<?(J4)
C4.T-20C* CkPMOC
KSC = 2

C THE NEXT 11 CARDS SPECIFY THE VALUE 6F C<T AND CALL SUBROUTINE CONST.
c T^'EY also Check to see that all CONSTRAINTS were SATISFIED. if
C CSAT >.AS o/ THEN CM IS INCREASED AND CONST CALLED AGAIN,

DO 25 J5 = 1/12
IFfKSC.EMM) 'go TO 16
IF(CSAT.LE»C.) GO TO 26

16 CK = C<TD 1
CKT = C'<T*5 .
CFTM-CEM5CFd51.OE+15
•<SCsC
IW = 1
CML CONST(J. IW,<A/NV2)

25 CONTINUE
C THE \E>T 7 CARDS FI\D ThE MAXIMUM K(I) REQUIRED BY Any GATE J To
c CORRECT ErR ERRO-S. THESE cards ACCUMULATE the OUTPUT INFORMATION.

26 <PSUV=O
DO 27 J6=1/NG
IF (K3R{ J6) .GT.'KOjTC J6)) KOljT (J6) =KBP (J6)
KSSUV=K5SUM+<nUT(J6)

?7 CONTINUE
IF(UN(J).LT.UPUTfJ)) UOUT(J)=UN(J)
IF (LN'(j) .gT.LOUT(j)) L9UT(J) =LN(J)
G0(J)=U0UT(J)-LOUT(J)

02

23
c the \EXT 10 CAROS PRINT PUT THE FINAL VALUES FgR CQRReCTING Err Err9rS
C t\; t^e REALIZATION.

29 ■RITE(6/?c) CRAT.CKT
30 rpRvAT(lx#' CSAT= FIQ.4>5X^ C<T=«/F10.A)1 1

C SU9RPUTIME CFNST
C CLSEPUTINE CONST FOR CALCULATING VALUES FgR THE CONSTRAINTS

SU3R°UTINE CONST(J/IajKA'NVS)

aRITE(6j31) (XSIJT(L1),L1 = 1^G)
31 F5RmAT(1h0j' FINAL K VALUES ARE'/1 OX> 10 15)

aRITE(6>3?) (U9UT(L2),L?=1»NG)
32 FOR AT(1HC*' FINAL U VALUES ARE’i10*t 1 OF 10•4)

sRITE(6/33) (L9UTCL3)iL3=l>NG)
V

33 RSR^AT (IrnO, ' RINAL L VALUES ART > 1CX, 1 0F10,4)1
".RITE(6,34) (3?(L4)/L4 = 1'N3)

34 rgRvAT (/, • n'ex GARS APE’/1CF1O»5)
•.RITE(6'35) <oGU‘i

35 RpRUAT(/,'SU PF FINAL X VALUES ISI'^Id)
STS?

M

c c;IE;-=JTI'E C^^c^T DETERvI^Es 'a'^EThER THE iNPUTg To GATE J gHgULD
C El 1 OR o AT EACH Point o\ Thr N CU3E. IT THEN CALCULATES THE NIM-
C V ANO Trip XAXIMUV z VALUES FgR EACH GATE I FEEDING INT0 GATE J. C * *

83
DIMEV'SI?\ IFL1 (20)> irL2(?0)

r(20),A(4.3,20),U(20) jL(20)/GA?(20) jKT(2C) j<BP(20)#Z(2C)^
r.; (22) , V(2?) , ;-U 20 }, X (io) , XN(10) , VAR(40) 4 KU (20) * UN (20) * LN (20) , NV>
2!1'G'C;<T.,;2SAT#rr?R,rp-Tj0F"D,i<Sr

REAL L/LN
INTE0E2 E,X,KM

C THE NEXT 6 CAPOS SET INITIAL VALUES*
DO 1 I1=1,\G
V(11) =U(J)

1 U)=L(J)
DO 2 I2=1jNv
* (12) =0

2 XN(12)=0
C THE_D9 La^d TERmIXateD 3y stat£meNt 22 pERtrgRMg tHe fUNCTI6N 0(7 A
C SlNAPY C°UNTEt? INDEXING tHr INDEPENDENT INPUTS THRQUGH ALL POINTS
C T^E N CJ3E*

I P C = * ♦ \ V
DO 22 13=1,1^0

I TWEak'£XxV3C cA^d^ assign the proper value t? independent inputs x
IF(X(1).LE*1) GO TO 4
X(1) =n
X(2)=X(2)+l

. IF(X(2) »L-’l> GO TO 4
X(2)=O
X < 3)=X(3)+1
IF(X(3) *LE♦1) GO TO 4
X(3)=0
X (4) = X (4) + 1
IF(X(4) .lf,1) GO TO 4
X (4) = 0
X(5)=X(5)+1
If<X(5).lf . 1) GO TO
X(5)=0
X (6) = X (6) +1
IF(X(6) .LE*1) GO TO 4
X (6) = 0
X(7) =x(7) + 1
IF(X(7) .LE*1) GA TO 4
X (7) = 0
X (3) = X (S) + 1
IF(X(R).LE• 1) GO TO 4
X(3) =0
X(D)=XO) + 1
IF(X(9)*LE*1) TO 4
X (?) =o
X (1 0) = X (1 0) + 1

4 5 I *1 = 1 , NV
Xv(14)=1-X(14)

5 CONTpJUE
c THE NEXT 19 CARDS CALCULATE THE OUTPUT OF EACH GaTE<1 6R 0>» AND CQN-
c STRUCT tHE NatRjx of iNRjt VaRIaDLeS FOR EACH POINT ON THe N CUBc.D0AI5=i,<a

6 VAR(15) = :.
DO 3 16 = 1/NV
T A A s I 6 + N v

AR(IAA) =XN(IA)
7 V A R (I 6) = X (16)
? continue

V A L = 0 .
DO 12 I7=i/N3
DO 9 J1=1,KA

84

9 VAL = A(Ji, 17) *VAR(JD+VAL
IF(VAL,LT.'J(17)) G9 T« 10
F(I7)=1
GP U

10 r(17)=o
11 Ia9=I7+2*\V

VAR(I AB)=p(17)
VAL=0.

IE C“.\'TI\"JE
c the \ext 25 ca^os calculate tpe and maximum z fqr each gate
c I /.HIGH FEEDS int? gate J.

D5 21 I8=1/\G
I A c = 2 * \ V + I 5
IF(A(IAG>J)-L^-i•!)) G3 TS 21
IF(F(J) ,r-.i. AN'DtFt T8) .E2.1) G9 T5 16
IF(F(J).ED•1•#r(IR),EC•1) G9 T? 21
g c 2 6 .0 e
D? 13 19 = 1 r<\
SF2 = A(I9jiJ)»vAR(IA)+SF?

13 CONTINLE
IF(IFL1 (IB) <0.1) G9 T? 15

IP IFL1(I8)=1
Z(I?)=SF?

15 IF(SF2.lE.Z(IB)) GO T? 21
Z(IB)=SF2
G? TO 21

16 SF1=C.
DO 17 J2=1/<A
SFleAt^, j)*VAD(j2)+3rl

17 CONTINUE
IP(IFL2(IB) <0.1) GO TO 19

1? IFL2(I-S)=i
I5) = SF1

19 If(Sri .GE.',- (IB)) GO TP 21
20 ■(I8)=SF1
?1 continue

X (1) = X (1) +1
2c COT I ‘ 1 uE

0° 23 J3 = 1/\‘G
IFL1(J3)=0

23 IFL2(J3)=0
CALL SEAFC^Ij<m,<A,\V2)

C THE NEXT 10 CAROS CALCULATE THE NEW u^PER AND L9WER LIMITS F0R THE
C THRESHOLD 9F GATE J IN 9RDER TO CdRRECT FRR ERR9RS.

JK(J)=u(J)
L<J)=L(J)
■D‘? 2^ J4 = 1/NG
HV = W2 + J4
IF (A('1MO <0.0.) G9 T9
V(J4) = ,. (JA)-(A (MM, J)*ERR)/i<Bd(J4)
H(J4)=Z(JA)+(A(HM, J}*ERR)/KBP(Ja)
3AP(J)=U’' (J)-LN (J)
IF(V(JA) .LT.!JN(J)) UN(J)=V(JA)
IF(H(J4) .GT.Lk- (J)) LN(J)=H(JL)

?4 CONTINUE
RETURN

O
 L>

<_ ! O L> L>
LJ

L) I)
L>

85

S'.^^^UTIXE DFTrc?^i\rS T^e v AX'D H VALLES EACH GATE I
FEE^lxG I'.T" GATr j, USIXG the GIVeX < VALUES/ AXD CALCULATES THE C?ST
ELX'UTiex, IT T.^ES' PERrF1^vS THE SPTIT.aL SEARCH, CALCULATING T^E C9ST
PUXCTI9X AFTEG EACH STEP.

SuSPAUTIxe SEARCH
SU?R9UTI\E SEA^ChI J# I a', KA/XV2)
CAvmAn. e(2C), A(U9,2O)/U(PC) A(20)/GAD(20)/<T(20.)/<3P(20)/Z(23)/

I.. (20),V(20),h(P0),X(10),XX(1C),VAR(40),KU(20>,UN(20),LN(20),XV,2X3/g^T/qSAT/ERR/gET/qeP>^Sq
real l.lx

THE ‘.EXT A CARDS SET initial values.
CrT=i«3E*i5
CEP=1.3E+15
<D9S = C
:<- D V D - G

1 <SgvT=o
D? 2 11-1/ng

2 KSUMT = KSJVT*KT(11)
the next 15 CARDS CALCULATE V AND H VALUES/ AND DETERMINE THE ERReR

DUE TG Tr<E GAP /jJTH ERR rRRQ-RS NGT Being WITHIN THE GAP 9F GATE J
■'HEN NR ERRORS ARE HADE.
ECG=O•
D° '3 12 = 1, J
y t sn'v2 + 12
IF(A(I I, J).LE.3.1) 3? TO 3
V(12) = a (I?) - (A(I I , J) •ERR)/I<T(12)
'!(I?)=Z(IP)*(A(II,J)*ERR)/KT(I2)

C the FULL^aING 2 CARDS MUST BE MODIFIED IF A MINIMUM GAP IS T8 Be
c specified.

ELL = L(J)-v(II3)

86
EUL=H(I2)-U(J)
IF(ELL.E2»D.O) ELL = 1-•CE-C't
IF(EUL*E"*O.?) EUL=1,0E-04IFCELL.lt.0.0) ELL=0.0
IF(EUL.LT.O.O) eul=c«o
E?3 = E5G+ELL+EL'L

3 CONTI VUE
c the next 13 calculate the error due to There not being a gap,
c IF any v values are less than any h value*

?6 EF3T=0.
DO 4 13=1, J
ICi = vv2 + I3
IF(A(IG,J).LE.Q.1) G? T5 4
DO 20 J1=1,J
IH=NV2+J1
IF(A(IH,J).LE.0.1) GO T6 20

c THE FOLLOWING CA»O YUST °e NeDlFjED JF A MiNlMUN GaP IS TO Be
C SPECTFIED.

EF3,(Z(I3) + (A(IG, J)*ERR)/:<T(13) } - (W (Jl) - (A (IP, J) *ESR }/KT (JI))
IF(EF3.E?.G.D) ER3s1.CF-04
IfCEcG.lT.O.0) ErG=O.C
ffgt=efgt+efg

SO CONTINUE
4 CONTINUE

C THE NEXT A CARDS CALCULATE the C93T FUNCtISN USING KT VALUES.
F?G = F03*l.CE-|-05
EF3T=EFGT*CKTV

CSAT=E53+eF3T
CFTsrSAT+KSjMT

c the Regaining statements comprise the search technique for the k
C VALUER.

IF(CRT.LT.CFP.AND.KP'’P.EC.l) go to 16 IF(CFT.ge.CFD) g.? tq 55
c thE <u values are set edual to the kt values Because- the cost func-
C. TI9N \AS REDUCED.

DO 50 J4 = 1/NG
5C <u(J4) =;<T(J4)

IF (KC9S.ED. 1) I Vi = I .'I + 1
KP9S=J

c T-E NEXT 4 CARDS START AN EXPLORATORY SfARCH IF 8Nr 1$ NOT ALREADY
c in progress.

55 IFtKESF.NE-l) GO TO 5
IF(Ih.gt.nG) GO TO 12

5 KE5d=1
zpYp=0
IF (CFT.LT.CFP) G-v TO 7

c the kt values are Restored to the value they had before the step
c BECAUSE The C^ST FUNCTION INCREASED.

DC 6 I4=1,N3
6 <T(I 4)= < J(I 4)

3° T5 8
C THE BEST PREVIOUS COST FUNCTION IS SET EqUAL TO CFT BECAUSE THE SEARCH
C aAS SUCCESSFUL’

7 CFd=CFT
I >. S 0 = 1

8 IF£<CHS.rQ.i) yg iq
c the ,\r_xT 2 cards index ktciw) pqsitive by 1.

9 KT(I'-.) =<T(I •,.') +1
KDOS=1
3^ TO 1

C THE NEXT 4 CARDS INDEX T^r KT(I^) NEGATIVE By 1 AND INDEX Iw pSR THE
C ’’•.EXT pASS .

10 <P‘7$ = 0
IF (KT (N) ,LE«1 > 09 T9 U

'■< T (I -J) = < T (I k) - 1
I I -X + l
09 TO 1

11 <T(I m) -1
I>'=I ■.'+1
IF" (I.n.LE.^G) GO TO ?

12 Ia=1
IF"(b-.SS.E”»C) GO TO 13
30 TO 19

13 <301
Pr TLR\'

14 1x30=0
<E3D=0
IF(CFT.LT.CFP) GO TO 16

C ThE \EXT 2 CAR3S PEST9PE THE <T VALUES Tg ThE VALUES ThE* HAQ EEFqrE
o the last $ted, si^ce tue last step failed to reduce tfc- cost
C th\CTI9Nj.

D9 15 J2=1/VG
15 <T(J2)=<l(J2)

C THE \EXT 11 ca3dS ACcOmPlISH the pattern MOVE*
16 ?9 IE J3=1j\G

IF(CFT.LT.Cfp) crp=CFT
DEL = <T(J3)-<3C'(J3)
<SP(J3)=<T(J3)
<U(j3)=<T(j3)
IF(KT(J3)*LE*1) GO TO 17
<T(J3)=<T(J3)+DEL

TO is
17 ^T(J3)=1
18 CONTINUE

<P-P = 1
GO TO 1
E\D

VARIABLE LIST FOR METHOD IIT PROGRAM

c PROGRAM DGCU^ENTATIBN
c
c
c variable list
C F(I) -9UTPUT FUNCTION VALUE FOR GATE 1.(1 OR O>
C U(J) -UPPER LImIT F0R THE THRESHOLD OF GaTF J.
C L(J) -lower li^it for the threshold of gate j.
C UN(J) -UPPER LI^IT FOR THE THRESHOLD OF GATE J NECESSARY TO CORRECT
C ERR ERRORS.
C LN(J) -lower liyit for the threshold of gate j necessary to correct
C Err Errors.
C GAP(J) - ACTUAL gap of gate j at a PARTICULAR tine.
C KT(I) -TEMPORARY k VALUES BEING USED IN AN ATTEMPT TO REDUCE THE
r COST FUNCTION,
C KBP(I) -THE BEST K VALUES FOUND IN PReCFEDING ITERATIOnS<(BASE POINT
c K VALUES)
c ku(i) -TEMPORARY STORAGE for the IMPROVED KT VALUES DURING AN
f* exploratory search, before comparing the kt values to the
c KBP VALUES.
C 2(1) -the maximum VALUE OF THE SEpARATlNG FUNCTION OF GATE J SUCH
c that f(J) = i and fcdsi, where the qutpuT gR gate i is an
c input to gate j.
c m) -the minimum VALUE of THE SEPARATING FUNCTION OF GATE J SUCH
c THAT F(J)=O and F(I)=O/ WHERE the OUTPUT OF gate I IS AN
c INPUT TO GATE J«
C X(I) -the value of the independent input x(d at a particular point
c on the n cube.(1 or O)
C XN(I) -the value of THE INDEPENDENT INPUT XNOT(I) At a PARTICULAR
c point on the n cube.(i or o)
C NG •No OF GATES IN the REALIZATION,
C NV •NO OF INDEPENDENT VARIABLES In THE REALIZATION.
C ERR -NO OF ERRORS THAT ARE TO BE CORRECTED.
C A(I,J) -matrix of weights for all inputs i feeding into gate u« H(1
C THRU NV): WEIGHTS for INDEPENDENT INPUTS X(l) thru X(NV),
C KNV+l THrU 2NV): WEIGHTS FOr INDEPENDENT INPUTS XN(1) THrU
C XN(NV)#I(2NV THRU 2NV+NG); WEIGHT FOR GATE I FEEDING INTO
C gate j.
C VAR(I) -VALUE Of IN°UT I FEEDING InTO GaTE J»(l OR 0)
C V(I) -MINIMUM VALUE of THE SEPARATING function OF gate j WITH ERR
C ERRORS MADE IN THE I SET OF GATES# WHERE FlDaj AND F(J)=le
C HI) .maximum value op the separating function of gate J with err
C ERRORS MADE IN THF I SET OF GATES# WHERE F(I)=O AND F(J)=O.
C CKT -THE TEMPORARY VALUE of The CONSTRAINTS ERROR MULTIPLYING
C factor, errors due to there n?t being a gap are multiplied
C by ckt.
C CKP ,THE PREVIOUS VALUE OF THE CONSTRAINTS E^OR MULTIPLYING
C factor.

89
KSC

efgt
KESP THAj THE SEARCH R9UTINE IS PERFeRMING AN

KPMp THAT THE SEARCH RSUTI^E IS PERF9RMING a
KP5S WHETHER A kt VALUE WAS INDEXED POSITIVE 8R

K VALUES FgUNDe
gate u using the best

UNE(J)

L^E(J)

GNE(J)

CFNR

Realization is being used just asthe

That The REALIZATION CALCULATED IS An
the

when ERRORS

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

KSUNP
IFV(N)

KSUMT
EOG

K9SUM
U0UT(

WHEN N9 ERRqRS ARE made*
BEING A GAP F9R THE THRESHGLD

0F ThE BETA INCREMENT AT ANY TIME'
BETA vALUE FEEDING JNT9 GATE U THAT IS BEING INDEXED

IN.
that

IWSq

WEIgHT^F^GATE. I FEEDING INT6_GATE J
fl

N9 gate CAN FEED INT9 A GATE WITH A LOWER NUMBER
number.

ORIGINAL OUTPUT FUNCTION IS N6t
S WERE N9T SATISFIED

Search,
"T^e value
iTHE input
AT THE TImE. ' ' "-The best previous sum bf k values,
-matrix of the initial function values bf the gate j at EArH
point gf the n cube*

-A FLAG INDICATING the PROPER 9UTPUT FUNCTION Is NOT REA
LIZED FOR EACH POINT ON THE N CUBE*

KRI(I) -THE K VALUES READ
IBV ,A FLAG INDICATING

IT WAS READ IN'
impsol -a flag indicating

improved solution,
ILLSOL -A FLAG INDICATING THAt

Realized or the constraint
were made*

-A FLAG INDICATING the SEARCH for THE MINIMUM K VALUES is
complete*

eSUM OF kt VALUES AT ANY TIME.
-the error due to the gap with err errors not being

WITHIN THE GAP ESTABLISHED " -
-the error due to there not
when err errors are made,-a FLAG INDICATING
EXPLORATORY MOVE,

’A FLAG INDICATING
PATTERN MOVE,

-A FLAG INDICATING
negative in the last step,
-a flag Imdicati^g wheather asy kt value reduced the c^st
function in the last exploratory move,-sum of the best... - - ■ '

U)-ThE UPPER LIMIT For The THERSHOLD of
K VALUES*

L9UT(J)-THe LOWER LIMIT For the THRESHOLD PF Gate J USING the Bcst
K VALUES*

K9UT(I)-The minimum NUMBER OF GATES IN SET I REQUIRED T9 CORRECT FRR
errors IN the given Realization. " '

AM(I,U)-SAME AS Ad,J) EXCEPT that IT C9NTAINS THE INDeXcD VALUES F8R
The weight 9F the gates I FEEDING into gate u.

note: gates MUST Be NUMBERED IN ASCENDING order To the OUTPUT GATE*
THAN ITS 0WN

-upper limit for the threshold of gate j after the bt values
have been changed, and without any eRRqRS made*

•lswer lImit for the threshold bf gate j after the bt values
have been changed, and without any errors made, w
-actual gad gr gate J with no eRPqrs CORRECTED AFTER THF Bt

VALUES HAVE BEEN CHANGED,
BBP(I,U)-BASE POINT VALUES FOR THE-nE:u:.- 4 r ,,xIL.. uw|t.

BT(J,J)-TEMPARARY VALUES FOR THE WEIGHT OF GATE I FEEDING INTO GATE U
Bu<l#U)-temporary storage of the bt values during an exploratory beta
SIG
NGF

90

FL0W CHART F0R THE METHOD 3 PROGRAM

READ
NG, NV
((A(I1,J1),I1=1,KA),J1=1,NG)
(U(I2),12=1,NG)
(L(I3),I3=1,NG)
ERR
(KRI(I4),I4=1,NG)

WRITE
NG,NV,ERR
((A(I5,J2),I5=1,KA),J2=1,NG)
(U(I6),I6=1,NG)
(U(I7),I7=1,NG)
(KRI(I8),I8=1,NG)

SET INITIAL VALUES

15
13 1,IPC

STEP THE INDEPENDENT
INPUTS T0 THE NEXT
P0INT 0N THE N CUBE

The next section of the
program (thru A) calculate
the output Aj should have
for each point on the
n cube.

The following section of the program performs the search of the
B.. values.

The following section of the
program (thru E) selects the
best answer found up to that
time.

IS THE C0ST
FUNCTION DUE T0
ERR0RS(CSAT)=O?

IS THE SEARCH FOR
K VALUES COMPLETE?

ILLS0L = 1 -------

IS KSUMT >KSUMP?

N

NIS KSUMT = KSUMP? IMPS0L = 1

IS THE NEW GAP WIDER
THAN THE WIDEST PREVI0US

GAP?

WAS THE FUNCTI0N REALIZABLE?)---- --

N

The following section of the
program (thru 23) calculate
w^ and for each Gate A^^_
and finds the new gap.

FUNCTION CAN’T BE
REALIZED USING THE

LAST BT VALUES.

The section of the program
(1 thru H)calculates the
cost function due to errors.

CSAT=E0G+EFGT

The following section of the program

METHOD III PROGRAM

PR93RAM DSCUMFNTATieN

T VARIA3LE LIST
HI) -OUTPUT- FUNCT19N VALUE FOR GATE 1.(1 SR 0)
L(J) ' -UPPER LI^IT F8R THE THRESHOLD QF GATE J.
L(J) -LSx'FR LImIT F5R THE THRESHOLD OF GATE J«
UN(J) -upper LIvIT F6R the THRESHQLD 6F GATE J NECESSARY T0 CORRECT

ERR ERRORS.
LN(J) -LO^ER LImIT F9R TH^ THRESH9LD 0F GATE J NECESSARY T9 CORRECT

ERR ERRORS.
GAR(J) . ACTUAL GAP 9F GATE J AT A PARTICULAR TIME.
<T(I) -TEmp9PARY K VALUES 3EING USED IN AN ATTEMPT T8 REDUCE THE

casT function.
KR°(t) -The 9EST '< VALUES FOUND IN PRECEEDJNG ITERAT15NS. (BAS^ POINT

< VALUES)
KU(I) -TEMPORARY STORAGE F9R the IMPRgVrD KT VALUES DURING AN

EXPLORATORY SEARCH, 3ER9RE COMPARING THE KT VALUES TB THE
K 3 P VALUES.

z(i) -the MAXr'uM value or the separating functibn ap gate j such
That F(J)=1 and F(I)=1, XHERE the output bf gate I IS AN
INPUT T? GATE J* '

■•.‘(I) -T^E VINIVUM vALUE'9F THE SEPARATING FUNCTIBN BF GATE j SUCH
THAT F(J)=o AND F(D=0j '/JHeRe T^e OUTPUT BF GATE I IS AN
input to gate J.

Y(l) -the VAluE Be the INDEPENDENT INPjT X(l) AT A PARTlcuiAR PBI-NT
ON THE N CU3E*(1 OR 0)

XN(j) -THE VALUE OF THP INDEPENDENT INPUT XNBT(I) AT A PARTICULAR
POINT BN THE N CUBE-d BR 0)

NG -Ng OF GATES IN THE REALIZATION.
NV -no °F INDEPENDENT VARIABLES IN THE REALIZATION,
ERR -no OF ERRORS that ARE TO Be CORRECTED.
A(I,J) -^ATRIX ’’F .^eights for ALL INPUTS I FEEDING INTO GATE J. (1(1

THRU NV)! WEIGHTS FgR INDEPENDENT INPUTS X(l) THRU X(NV),
KNV+l THRU ENV): WEIGHTS FBR INDEPENDENT INPUTS XN(1) THrj
XN(.NV) * I (2NV THRU 2NV + N3): WEIGHT FBR GATE I FEEDING INTO
GATE J.

VAR(T) -VALUE 9F INPUT I FEEDING INTO GATE J.(l BR 0)
V(I) -MINIMUM VALUE OF THF SEPARATING FUNCTIBN BF GATE J WITH ERR

ErrBrS nadE IN The I SET of GATES/ where F(I)=1 ANd F(J)=1.
HI) -vaXImUM VALUE of the SEPARATING FUNCTION OF GATE U WITH ERR

ERRORS ^ADE IN THE I SET OF GATES/ WHERE F(I)=q AND F(J)=o»
CKT -the TEMPORARY VALUE OF THE CONSTRAINTS ERRBR MULTIPLYING

factor, errors due to there not being a gap are multiplied
BY CKT.

CKP -the PREVIOUS VALUE OF the CONSTRAINTS ERROR MULTIPLYING
factor.

96

C KSC -A FLA3 INDICATING THE SEARCH F0R THE MINIMUM K VALUES IS
3 complete.
c '<suyT -sum eF kt values at any time.
C E93 -THE ERR9R Due T9 THE gap WITH ERR ERR9RS NQT BEING
C WITHIN THE GAP ESTABLISHED WHEN NO ERRORS ARF MADE.
C EF3t -the ERROR due Ta THERE N9T BEING A GAP FgR THE THRESHOLD
C WHEN err errors are Made.
c <es? -a flag indicating that the search routine is performing an
c exploratory move.
c <pmo -A elag. indicating that the search routine is performing a
c pattern move.
C KPOS -A FLAG INDICATING WHETHER A KT VALUF WAS INDEXED POSITIVE OR
C NEGATIVE IN THE LAST STEP.
c I'XSo -A FLAG INDICATING WheaTHER any kt value reduced the cost
c function in the last exploratory move.
C KOSJM -SUM OF THE BEST K VALUES FOUND.
C UOJT(J)-THr ijPpeR LIMIT FOR THE THERSHOLD OF GATE J USING THE BEST
C K VALUES.
C LOUT(J)-THE LOWE0 LIMIT FOR THE THRESHOLD OF GATE J USING THE BEST
C K VALUES.
C KOUT(I)-THE MINIVUM NUMBER OF GATES IN SrT I REQUIRED TO CORRECT ERR
c errors in the given realization,
c Am(I/J)-SAvE AS A(I,j) EXCEpT that it CONTAINS the INDEXED VALjES F8r
c THE ‘-'EIGHT OF THE GATES I FEEDING INTO GATE J*
c UnE(J) -UPPFq LIMIT F0d ThE ThREShOLD OF GATE J AFTER ThE BT VALUES
c HAVE BEEN CHANGED, and WITHOUT any errors made.
c LNE(J) -LOWER limit FOR THE THRESHOLD of gate J AFTER the BT VALUES
C HAVr Been changed, and without ANY eRR8rS MADE.
c gne(j) -actjal gap of gate j with no errors c8rr£cted after the st
c VALUES. HAVE BEEN CHANGED, .
c BSP(I,J)-BA3E dOINT VALUES FOR The WEIGHT OF GATE I FEEDING INTO GATE J.
C RT(I,J)-TEMPORARY VALUES FQR THE WEIGHT 0F GATE I FEEDING INTO GATE J.
C BU(I,J)-tEm=rRARY STORAGE 0° THE ST VALUES DURING AN EXPLORATORY BETA
C SEARCH.
C SIG -the VaLUE of the BETA INCREMENT AT ANY TIME*
C NGF -the INPUT BETA VALUE FEEDING INTO GATE J THAT IS BEING INDEXED
C AT THE TIME.
C KSU'-’P -THE BEST PREVIOUS SUM OF K VALUES.
C IFV(N) -MATRIX OF THE INITIAL FUNCTION VALUES 0F THE GATE J AT EACH
C POP-T OF THE N CURE.
C CFNR -a flag INDICATING THE PROPER output function is not rea-
c LIZFD FOR EACH POINT ON THp N CUBE.
C <PI(I) -THE K VALUES READ IN.
C I6V -a FLAG INDICATING THAT THE REALIZATION IS BeI-NG USED JUST AS
C IT JAS READ IN.
C iMPs-SL -A FLAG INDICATING THAT THE REALIZATION CALCULATED IS AM
C IMPROVED SOLUTION.
C ILLSf-L -A flag INDICATING THAT THE ORIGINAL OUTPUT FUNCTION IS N0T
c Realized or thf constraints were not satisfied when err8rs
c were made.
c
C note: GATES MUST be NUMBERED IN ASCENDING order to the OUTPUT gate.
c NO GATE CAN FEED INTO A GATE WITH A LOWER NUMBER THAN ITS OWN
c NUMBER.
c
C THE MAIN PROGRAM READS IN THE INPUT DATA AND SELECTS THE GATE J
C WHIC1-1 MUST CORRECT eRR ERRORS AT ANY POINT ON THE N CUBE* THE MAIN
c pr?3rau als° determines whether the answer obtained by the subrsu-
c TINES IS TnE BEST ANSWER OBTAINED U° TO THAT TIMEj AND CONTINUES TO
C CALL the SUBROUTINES TO TRY AND FIND A BETTER ANSWER, AFTER ALL GATES
c j have seen used to correct errors, the final results are printed out.
c

97
c MAIN PR9GRAM
C MAIm P = F3q ^'JLTIDl.EX ING USING METHGD 3

dimension >kd(20),g9(20)
C9MM-3N AM (40.P0) »A(A2/20)/U(20)-L(20)>GAP(20)*UNE(20) jLNE(20),

1 G^'E (pq) » Uk'. (20) » LN < 20) * Z (20) » A (20) , N (2q) * H (20) * X (10) » XN (10) « EMAX
2(23>20),VAR(42),3BP(20,20),BT(20»20),BU(20420),NG,NV4CKTjCKP,CSAT,
3SIG-NGFr<SjMP/!<SuMT>ERR/ IFV (1200) » CFN'R/ KA;> NV2/KT (20) » KRI (20) /
4KRP(?C),J,I PC-IBV-KU(20)

REAL L-LN.LTEST,L9>LNE
integer x,xn

C THE NEXT 14 CARDS READ IN THE INPUT DATA.
READ(5'1) NG-NV

1 F^RMATfzCIS)
KAs2»NV+NG
Nv2=?*Nv
IPC»2**fjy
read(5-2) '((a(11-jd - ii = i-ka)-ji = i-ng)

2 E?Rmat(8F10»4)
READ(5-3) (U(12),12 = 1-NG)
=EAD(5,3) (L(13),13=1,NG)

3 FORMAT(SfIO-2)
4 READ(5,5) ERR
5 PeRMAT(FlO.P)

READ (5-6) (KRI (1^)-I4 = 1,N'G)
6 F9RMAT(10l5)

C THE NEXT 13 CARDS WRITE OUT THE INPUT DATA THAT vjAS READ-
WRITE(6-7) NG-NV,ERR

7 FORMAT(• \G='-I5-5X-'NV='-I5-5X-’N9. 9F ERR - = ’iFjq* 2)
WRITE(6/3)

8 F9RMAT(1HO-' A MATRIX VALUES’)
-'RITE (6- 2) ((A(15- J2), 15 = 1-KA)- J2 = 1'Nq)
WRITE(6-9)

9 F0RmAT(1H0,' U VALUES')
•-RITE (6-3) (u(I6)- 16 = 1, NG)
WRITE(6-10)

10 FDRMAT(lR0-' L VALUES')
^RITE(6,3) (L(17)- 17 = 1,NG)
«PITE(a,11) (KRI(18),IR=1,NG)

11 F0RMAT(1H0-' KPI VALUES'-5X,1015)
C THE NEXT 23 CARDS SET CERTAIN INITIAL CONDITIONS.

D? 12 J6=1-NG
KD(J6)=1

12 <rD(J6)=l
DO 2d j=1jNG
DO 50 18=1,J
D« 52 J8=1,J
IAD=J8+NV?
B«P(J?.I8)=A(I AD,18)
BT(J.?, T8)=3RP(J8, 18)
2U(J = ,13)=3SP(Jp- 18)

50 CD'NTINUE
De 51 J8=1,N3
KSP(J8)=KrI(J8)
D9 51 K3=1,KA
A“(K3, J8)=A('K3-J8)

51 CONTINUE
S I G = 0 • 5
NGF = 1
iev=i
<SUMP=1000

98

CALL PLTFIIN
G3 T.? 16

1A CALL BETA(M3C,ILLS9L,I^PS9L)
15 in^C.EG.l) 39 T5 21
16 CALL C8NTRL

C THE \EXT 26 cARDS PIcK THE 3EST RESULTS fR6m ALL THE TRIALS maDE.
IF(CSAT.EQ«O«.AND.CFMR.E3tO*) GO T9 17
ILLS9L=1
30 T^ 14

17 If(*S.jmT-3T.<Sjm=) G9 T9 14
IF (KSU^T • EG . KSUHt3) G9 T9 19
U9(J)=UN(J)
L9(J)=LM(J)
39(J)=UO(J)-L9(J)
I^PS9L=1
D9 1’ J4=1/NG
<D(JA)=<3P(J4)

13 =9(J4,J)=PT(J4>J)
39 TO 14

19 UTEST=UN(J)
LTEST=LM(J)3TE5t=uTFST.lTEST
3?(J)=U9(J)-l9(J)
IC"(3TEST.LE.-39(J)) G3 TO 14. .
U9(J)=LTEST
L3(J)=LTEST
39(J)=U9(J)-L9(J)
DO 23 J5=1,N3
<D(J5)=<3P(J5)

20 J5,J)=RT(J)
IVPS3L=1
30 T3 14

C thf VEXT 5 CARDS DETERMINE THE PROPER OUTPUT DATA.
21 <9SUV=C

DO 24 j7=1,MG
If(<D(J7).GT.KOtJ7)) K0(J7)=KD(J7)
K9Sl.i*i = K9SU^ + ^0(J7)

P4 CONTINUE
25 CONTINUE

C THE NEXT 14 CARDS PRINT OUT THE FINAL OUTPUT VALUES.
30 .*■ R I E (6 / 31)T
31 ^OR^ATdh-OjrSOX/' Flk,AL VALUES')

.^ITE(6/32) (L'9(N11)>N11 = 1,NG)
32 "OR^ATt/,'NE'.< U v ALUES ’ > 1CF10.5)

sRIT(6,33) (L9(N12)iN12=1#NG)
33 'aR‘TT(/, 'N'E -I L VALUES'/10F10.5)

>RITF(6,34) (30(\13)T13=1/NG)
34 FORMAT(/>'MEN GA^S ARF',1OF10.5)

."RITE(6>35) ((99(NlA,Ni5),N14sl,NG)>N15=liNG)
35 FORMAT (/# «NE'*.' BETA VALUES ARE ' » 1 OF 10 *5)

aRITF(6,36) ('<0(M16),N16 = l,NG)
36 f9RmAT(/. 'FINAL < VALuES AREldlOIS)

^RITE(6#37) <9SUM
37 FORMAT(/,'SUM OF FINAL K VALUES IS:'>15)

3T9R
END

99

SU33.?UTI\E e'JTF'J.N CALCULATES TH£ CSRReCT OUTPUT FQR GATE J AT EACH
PSx-'T e\ the N cube A^D STORES the INF8RHATI5N FOR COMPARISON LATER.

SUBROUTINE OUTFUN

SUBROUTINE 9UTF|j»j
DIMENSION FfPO)

A'-! (40,20)/ A (40* 20) # U (20) / L (20) # GAP (20) j UNE (20) / LNE (20) ,
1GNE (iO),u\'(20),ln(20), 2 (20),^(20),v(20)*N(20)jX(10),XN(10),EMAX
-(7r,.L2),VAc?(Z,,,:>,^B:D(2c-,20>,BT(2^),23),3U(20/20) *nG*\]V*CKT*CKp' CSAT#
3SIo, ^F,<SUMP,<SUMT,ERR,IFV(1200)>CFNR, <A, NV2*KT(20)*KRI(20)*
4<BP(20)*U,I?C*ISV,<U(2O)

REAL L/LNjLN'E
INTEGER F,X,y\

TUE NEXT 3 CARDS SET INITIAL VALUES.
DO 2 I2=1*W
X(12) =0

2 XN(I?) =0
the next 32 CARDS SET Thr VALUES OF THE INDEPENDENT INPUTS X AND XN

T» p-5pr- VALUES FOR EACH PgiNT ON THE N CUBE.
D* 15 I3=1*IPC
IF(X(1).LF.1) GO TO 4
X(1) =0
X(2)=X(2)+1
IF(X(2).lE*1) GO TO 4
>(2)=0

100
X(3)=X(3)+1
IF(X(3).LE.l)
X(3)=0
X(4)=X(4)+1

GO TO 4

IF(X(4).LE’l)
X(4)=0
X(5)=X(5)+l

GO TO 4

IF(X(5).LE*1)
X(5)=C
X(6)=X(6)+l

GO TO 4

IF(X(6).LE«1)
X(6)=0
X(7)=X(7)+1

GO TO 4

IF(X(7).LE.l)
X(7)=0
X(s)=x(s)+1

G* TO 4

IF(X(8).LE . 1)
X(3)=C
X(9)=X(9)+1

GO TO 4

IF(X(9).LE»1)
X(9)=0
X(13) =x(10) + l

G9 TO 4

4 Di? 5 I 4 = 11 \v
XA(14) -1 -X(14)

5 C°\TI\l,E
C THE XEXT 19 CARDS CALCULATE THE BUTPUT FUNCTION 9F EACH GATE AND
V. CONSTRUCT THE VARIABLE MATRIX AT EACH PQINT ON THE N CUBE.

D? 6 15=1,<A
6 VAR(15)=0 .

D9 8 16=1.NV
IAA=I 6 + NV
VAR(IAA)=XN(I6>

7 VAR(I6)=X(16)? c^ntixul
V A L = 3 .
D9 12 17=1.J
D9 9 J1=1,XA

9 VAL = A(Jl, I7)*VAR(JI)+vAL
IF(VAL.LT.U(17)) G9 T9 10
F(I7)=l
G4 T9 U

1C F (I 7) = 0
11 lAd=I7+2*xV

VAR(IAB)=f(I 7)
V A e 3 •

1? C^NTINUE
C the INITIAL FUNCTION VALUE SF F(J) IS CALCULATED AT EACH POINT ON
c - THE n CUBE FOP gate J.

IFV(I3)=F(J)
X(1)=X(1)+l

15 CONTINUE
P E T U R \
END

101

c SUBROUTINE BETA SEARCHES T^E BETA VALUES (^EIGHTS rROm the OUTPUT
C or ►JNE. 3ATE to the INPUT OF THE OTHER) TO TRY A^'D FIND A REALIZATION
C REQUIRING FFLER GATES.
c
c subroutine beta

SUBROUTINF [3ETA(^BC, ILLSOL, IMPSOL)
COMMON AM?4c j 20) » A (4r., 20) , u (20 > / L (20 > > G AP (20) > UNE (20 > * LNE (20) *

13NE(?0), J\(20) ,LX(20),Z(20)r.s(20),V(20),H(20),X(10),XN(10) >EMAX
2(23/20)/VAP(40), r3BP(20/20)#BT(20,20)/BU(20,20)/NG,NV/CKT^CKPvCSAT^
3SIG,NGF,<SU^P,XSUvT,ERR,IFv(1200),CFNR,KA,Nv2,KT(20),KRI(20),
4<EP(2C),13/PC,I GV,KU(20)

REAL L,LX,LNE
INTEGER X,XM
IF(ILLSOL.EQ.l) GO TO 5

1 IP(PPSOL.EO.I.AMD.IRP^P.EG.I) GO TO 16
C IF A’< EXPLO-aTPRY SEARCH IS NOT IN “ROGRESS ONE SHOuLD BE STARTED.
C SINCE T-E pREvI9US BETA STEP kAS UNSUCCESSFUL THE BEST PREVIOUS VALUES
C ARE RESTORED.

IF(IbESp.NE.I) go to 2
IFfNGF.GE.13) GO TO 13

2 I?ESP=1
J O p m D = 0

3 iFPTtMGF, IG) .GT.O) CO TO 4
ET(\GF,IG)=O.
\GF='CF+1
lF(k-GF.3E. IG) GO TO 13
GO TO 3

4 IF(r-’PSOL.EC. 1) GO TO 7
5 D° 6 11 = 1,NG
6 =T(II, IG)=3ij(U# IG)

IFCBTtNGF,IG).LE.O.) GO TO 3
GO TO 9

c THE next 6 CARDS CHANGE the bu values to those of BT, SINCE the SEARCH
C ,.AS SUCCESSFUL. THEY ALSO SET P-ITIAL CONDITIONS AGAIN.

7 ,<SUk‘P = <SJMT

102

DS 8 J2=1,NG
8 3U(J2iIG)=9T(J2,IQ)

IF (r = P3S.'EC.G) GP T9 30
TRP9S=0
*;gf = -gf+i

30 IFtPv.E'j.Ol TC9P=1
9 Ic(I9PQS.E2.1) G9 T9 n

10 3T (XGF, I 3) =3T (\’GF, IG) +SIG
I9P9S=1
G? T3 19

11 IBP93=o
oT(Ngf/lG)=3T(NGr,IG)-SIG
IP(8T(.\GP, IG) ,LEiO«) 6T(\'GF, IG) =0.\GFs\gf+1
39 T-3 19

13 imyPS9i_.EQ.O) 39 Td 33
<SuMp = KS'JMT
09 32 J4=l,\3

32 -3U(Jti, IG) =3T(J4, IG)
33 \GP«1

IP(1099.EG.1) G9 T9 14
SIG=SIG/5.O
IP(SIG.LT. .001) 39 T9 20
I3P9S=0
3° T9 3

I* IC-33 = O
ISE SP = 0
IF(IyPS9L-E0.1) G9 T0 16
D9 15 I2=1/NG

15 3T(12,IG)=PU(12/IG)
KSU^T=KSJmD

TPE \EXT io CAPOS ACC9MPLISH THE PATTERN SEARCH OF THE BETA VALUES.
16 09 i? J3=t/NG

<SUH = = kS'JMT
?EL = BT(J3,IG)-Bpd(J3, IG)
3PP(03/IG)-BT(03/IG)
20(03/I3)=BT(J3/IG)
IF(3T(j3,13).LE.3.O) GS T9 17
3T(J3/IG)=3T(03/IG)+OEL
39 T5 13

17 ST(03/IG)=0.?
13 CONTINUE

Inpyp=1
19 I PS3L=0v

ILLS9L=0
T r» V = n
PETURN

20 ‘-1PC«1
RETURN

103

c SUrRSUTIVE C^NTRL
c SL'ER?UTI^E C?kTRL Sets INITIAL VALUES AND the CONSTRAINTS ERR9R
C MULTIPLYING FACTOR. THIS SUBROUTINE DETErNINFS whether the
C CONSTRALNTS have been SATISFIED, AND If so, returns TO the main
CD*,<?3PAMe
c

c

c

SUBc?UTPE contrl

next iE CARDS SET INITIAL CONDITIONS,
DO 1 11 = 1,NQ

A^(40,20),A(40,EO),U(20),L(EC),GAP(2C),UNE(20),LNE(20),
1DNc(2j) ,uv(20),LN(20),Z(20),W(20),V(20),h(20),X(10),XN(10),EMAX
ol^O/’O),VAR(40),3RP(2C,20),5^(20,20),bU(20,20),Ng,NV,CKT,CKp,CSAT,
3b I J,\jF, <SUmp,KSUMT,ERR,IFV(1200),CFNR,KA,NV2,KT(20),KRI(20),

*<U(11) =<RP(11)
1 <T(U)S<RP(II)

CSAT=1,OE*1O
•CFNR = 0,0
:<sc=o
C-<T = 200.
CKP»200.
DO 6 <3=1,NG
I ASsO + WS
AM(I AR,J)=BT(<3,J)

6 CONTINUE
C THE NEXT 12 CARDS SET THe CONSTRAINTS ERROR FACTOR, WHEN
c control is returned to cbntrl, the results are checked to see that
c THE CONSTRAINTS a'ERE SATISFIED.

DC 10 12=1,10
IF(<SC.ED.O) GO TO 8
IF(CSAT.LE*C.) GO TO 11

p C<P=CKT
C<T=CKT*5.
cft=i,oe+i-
CFP=1.0E+15

<SC = C
I Xs 1
CALL CSNSTd'r.)
IF(CF\R.EQ.1.O) 38 Te 11

10 CP^TIVuE
11 ’FTU’V

EXD

C SU9P3,JTP'.E CONST DETERMINES WHETHER THE INPUTS T9 GATE J SHOULD
C PE 1 SR o AT EACH p8INT °N THE N CU3E« IT THEN CALCULATES THE MINIMUM
C >• AND Tnr .NAXIMU^* Z VALUES F8R EACH GATE I FEEDING INT8 GATE U.
C
C SUBR8UTINE C8NST
C

SuBPSUTINE C“NST(1^)
DI HE' SI 8\ IFL1 (23)dFL2(P0) jF(PO)

A-'(4C,?O) »A(OC,20)/U(20),L(20)/GAp(20)^UNE(20)>LNE(20),
1 ONE (2D) » UN (Ec) > LN (20) # Z (pq) ^a' (So > # V (2o) / H (20) # X (1 o) , XN (10) / E^AX
2(20,20), VAR(40),B3P(2C,2C),BT(20/2C),RU(20,20),NG,NV,CKT4CKP,CSAT/
3SIG,\GF, <S'JMP,KSjmT,ERR, IFV (1200) # CFNR, K A, NV2/KT (20) , KR I (20),
AKHPtPo)' J/IPCiI9^KU(?0)

REAL L,LN,Lh-E
INTEGER F#X,YN

C THE NEXT iq CARDS SET INITIAL C8NDITI8NS.
IFL3=0
IFL4=c
IFL5=0
IFL6=O

105
Dp 1 11 = 1# \|G
a (11) = o.:

1 Z(I1)=O,J
De 2 12 = 1,\'V
X(I2)=0

2 ,x\(I?) =0
c the ?e Leep terminated by statement 23 performs the function qf a
C BINARY C2UNTEr INDEXING the INDEPENDENT inputs through all P5INTS
C &N THE N CURE.

DO 23 I3=1#IDC
C THE NEXT 31 CARDS ASSIGN the PROPER VALUE TO INeDPENDpNT INPUTS X AND
C XN.

IF(X(1).Lr*l) G? TO A
X(1) =o
X(2)=X(2)+1
IF (X (2) •'UE • 1) G? TO A
X (2) =0
X(3)=x(3)+1
IF(X(3).LE.l) g9 T9 A
X(3)=0
X (4) = X (A) +1
IF (X (4) .[_E • 1) GO T9 A
x (A) = 0
x(5)=X(5)+l
Ir(X(5).LE«l) GO T9 4
X(5)=O
X (6) = x (6) +1
IF(X(6) «LE«1) q5 TO A
X (6) = 0
X(7)=X(7)+1
IF(X(7).LE’1)G9T9A-
X(7)=2
X(S)=X(S)+1
Ip(X(«).LE.l) G9 T9 A
X(8) =0
X(9) =X(9) + 1
IF (X (9) .UE.D GO T9 4
X(9) =0
X(10)=X(1Q)+1

A 29 5 14=1,NV
XN(I4)=l-X{14)

5 CONTINUE
C THE ^EXT 20 CARDS CALCULATE THE OUTPUT 9F EACH GATE (1 OR 0)# AND C9N-
C STRUCT The MATRIX 5F INPUT VARIA3LES F9R EACH POINT ON THE N CUBE.

DO 6 I5=1#<A
6 VAR(I5)=2.

D9 8 I6=1#NV
I AAe 16 + NV
VAR(IAA)=XN(I6)

7 VAR(I6)=X(16)
8 CONTINUE

VAL=O.
JV1=J-1
DO 12 17=1,JmI
DO 9 J1 = 1,'<A

9 VAL=A(Jl,T7)»VAR(JI)+VAL
IF(Val.LT.U(I?)) GO TO 10
F(17) = 1
GO to u

10 F(I7)=0
11 IAB=l7+N/2

VAR(IAS)=p(17)

106

VAL=0i
is continue

IF(IFV(I3).EQ.l) G6 T6 17
C THE NEXT 22 CARDS CALCULATE THE mAXImUm Z F6R EACH GATE I WHICH FEEDS
c imtp gate J. t^e maximum for f(ij-i and F(J)=o is alsq calculated.

De 1.6 J5 = l/J
IF(8T(J5,J).LE.O.O) Ge TS 16
IF(F(J5)«F2.1) Gd Tg AO
SF2=o.
De 13 I9=1/KA
SF2=Am(19,j)»VAR(I9)+SF2

13 contp^e
IF(IFLKJ5)•ED*1) 69 TQ 15

14 IFL1(J5)=1
Z(J5)=SF2

15 IF(SF2.LE.Z(J5)) G9 T« 16
Z(J5)=3F2
39 Tg 1_6

40 SF5=0.
DS *+1 K2 = 1>KA
SF5=Av(X2,J)*VAR(K2)+SF5

41 continue
IF(IfL5.E0»1) G9 TO 43

42 IFL5=1
FmAX2=SF5

43 IF(FyAX0»LT»SF5) FHAX0=SF5
16 continue

Ge T9 22
c THE \EXT 22 CARDS CALCULATE THE MINIMUM W F6R EACH GATE I WHICH FEEDS
c Into GATE J. the mINImijm F6R F(I)«o AND F(J) = 1 IS ALSO CALCULATED.

17 DO 21 J6=1^J
IF(8T(J6.J).LE-O.O) 39 TO 21
IF(F(J6).EG«O) Ge TS 50
3F1=C,
DO 18 J7=1/<ASF15Am(j7,j)»VAR(J7)+SF1

18 CONTINUE
IF(IFL2(J6).EC.l) G9 TO 19
IFL2(J6)=l
X(J6)=SF1

19 IF(SF1.GE.^(J6)) G5 TO 21
«-(J6)=SF1
3^ TO 21

50 SF6«0•
DO 51 Kl=l/<A
SF6$AN(<1,J)*VAR(<1)+SF6

51 CO NT I ’'JJE
IF(IFL6.EC*1) GO T9 53

52 IFL6=t
FVIM=SF6

53 IF(FMJM.GT.3^6) FMIN1=SF6
21 CONTINUE
22 \(1)=X(1)+l
23 CONTINUE

C THE NEXT 26 CARDS SPECIFY THE NEW
C GATE J.

DO 28 J2=1>J
IF(BT(J2,J).LE.C.O) 39 T? 2g
IF(IFL3.EQ»1) GO T9 25

24 IFL3=1
ZMAX=Z(J2)

25 1F(ZMAX.LT.Z(J2)) ZMAX=Z(J2)

MINIMUM AND MAXIMUM FOR THE GAP OF

107
IF(IFL4.EQ.1) GQ TO Sy

26 IFL*=1
.-^I\ = V(JO)

27 IF (i.V'i J \. 3T • sj (J2)) WMIN = W(J2)
28 CONTINUE

IF(IFL5.EQ.0) FMAXOzZ^AX
IF(I FL6 .Fp-.j) Fmjxjis-^im
IFCF^IM .GT, .<MIN) FMJNIs'a'MIN
IF(FvAXO^lT.ZmAX) FmAXO=ZmAX
IF(I=vE-.l) GO TO 31gnl(J)=fmi\i-fmAX0

2g L^E(J)sF^aXO
ljNE(J) =RmI\'i
DO 3C J3 = 1^'G
IFL1(J3)=0
IFL2(J3)=0
V(J3)=aMI\
H(J3)=ZMAX
UX(J3)sF^jni

30 LX't J3) sF^aXO
r IF(GXE(J).ST.0.0) GO TO 34
v- SIXCr the RfaLIzATIOX' :XILL NOT REALISE THE FUNCTION WITHOUT ERRORS
c x T^ERF IS NO need TO GO FURTHER. CFNR IS SET EQUAL TO 1
C AND IT RETURNS T? CONTRL.

CFNR=1.0
return

C THE ‘.'EXT 19 CARDS CALCULATE N'E'W UpPER AND LOWER LIMITS FOR THE NEW
C GAP OF GATE J IN THE REALIZATION.

31 LNE(J)=L(J)
U‘;E(J) =u(J)
G\E(J)=u(J)-L(J)
DO 33 J4 = 1#n-3
IfLI(J4)=0
IFL2(J4)=0
V(J4)=U(J)
H(J4)=L(J)
jN(J4)=j(J)

33 LN'(J4)=L(J)
34 CALL SEARCHf I'-1)

C THE NEXT g Cards CALCULATE the NEW UPPER AND lower LIMITS For the
U GAp OF GATE J USING THE 9EST K VALUES FOUND/ BEFORE RETURNING TO
c CONTRL.

DO 35 i< 1 = 1» N3
I F (GT ('<1, j) ,|_E.O.) GO TO 35
V(K1)=n(<1)-(3T(X1>J)*ERR)/<5P(K1)
p (KI) = Z (< 1) + (?;T (<1 , J) *ERR)/’Or (<1)
IF(V(<1),jT.JN(J)) UN(J)=V(<1)
IF(H(K1).ST.LN(J)) LN(J)=H(K1)
GAP(J)=UN(J)-LN(J)

35 CONTINUE
return"
END

108

c s^5R?uti\e sfarch determines t^e v and h values raR each gate i
C FEEDING INTS GATF J, USING THE GIVEN K VALUES# AND CALCULATES THE C9ST
C FUNCTION, IT THEN PE^R^R^S THE 8PTIMAL SEARCH, CALCULATING THE C9ST
C FUNCTIBN AFTER EACH STEP*
C
c subroutine search
C SEARCH subroutine USING OPTIMAL search technique

SUBROUTINE SEARCH!IW)
DIMENSION UD(20),LD(2O
C5Mm?n A"!40#20)#A(A0#20)#U(20)>L(20)#GAP(20>#UNE(20)#LNE(20) #

1GNE(?O)#'JN(2D)#LN(2O) # Z(20) #N(20),V(20)#H(20)#X(10)#XN(10)#EMAX
2(20#20)#VA^(40)#RBD(20#20)#BT(20#20)#BU(20#20)#mG#nV#CKT#cKP*CSAT#
3SIG#N'GF#'KSUM=','<SUMT#ERR# IFv(1200) # CFNR# KA# Ny2# KT (20) # KR I (20) #
4KBP(2C)'J.* IpC# IBV,KU(20)
real l,ln,lne
INTEGER x#xn

C THE NEXT 5 CARDS SET INITIAL VALUES*
CFTS1 .CE + 15
CFP-1.CE+15
KPOS=C
KPHP=0

1 .<SUMT = o
DO 2 I1=1#NG
UD(Il)=UNE<11)
LD(ID=LNE(ID

2 KSuMT=KSumT+KT(II)
C THE NEXT 15 CARDS CALCULATE V AND H VALUES# AND DETERMINE THE ERROR
C DUE T^ THE GAP '#JITH ERR ERRORS NOT BEING WITHIN THE GAP OF GATE J
C WHEN NO ERRORS ARE MADE*

EOG=0.
DO 3 12=1,U

109

c

c
c

c

c

c
c

c

c
c

c

IF(3T(12,J).LE-O,O) G5 T9 3
V(12) =’a(Ip)-(3T< I2> J)*ERR)/KT(12)
4(I3)=Z(I2)+(3T(IE,J)*£RR)/KT(12)
IF(V(I?) .LT.ljD(J)) UD(J)=V(I2)

j_IF(H(12) «GT.LD(j)) LD(j)=H(I2)
THE F9LL9M\3 2 CARDS MUST 3E MODIFIED IF A MLNIMUM GAP IS TO Be
specified.

ELL«LNE(J)-V(12)
EL'L = ,-'(I2)-'J\T(J)IFCElL'EG.O.O) Ell=1*0E-D4
IF(EUL.Ed.O.O) EUL=1.CE-OA
IF(ELL.LT,0 • D) ELL = 0.0
IF (E'JL.LT.O.O) EiJL = 0.0
E0GeE9G + ELL*EL'L

3 CO\'TI\UE
THE N-EXt n CARDS CALCULATE THE E^R9R DU£ TO THERE NOT BEING A GaP,

IF ANY v VALUES ARE LESS THAN ANY H VALUE.
EFGT=Q»
DO 4 13=1,J
IF(9T(13,J) .| E.0.0) G9 TO 4
co 2: J1=1jJ'

THE
SPE

IF(3T(JI,J).LE.O.O) GO TO 20
P^LI

CIFIED.
ING CARq .must 3E N6[)IFIE[) IF A MINIMUM GAP IS TO BE

E'-j=(Z(I3) + (pt(I3,J)*EPR)/KT(I3))-(W(J1)-(Bt(J1,J)*ERR)/KT(J1))IF(EFG,eG,O.O) EF3=1.0E-04
IF(Efg.lT.O.O) ErG=0.0
EFGT=EFGT+EFG

20 CONTINUE
* CONTINUE

the next cards calculate the cost function using kt values.
EOG=EOG*l.QE+Od
EF3T = EFGT *C'<T
CSAT=E93+EFGTCFTxCSAT+KSUMT

THE REMAINING STATEMENTS COMPRISE THE SEARCH TECHNIQUF FOR THE K
VALUES. " j
IF(CFT.LT.CF=.AND.KdMP,E2.1) GO TO 16
IF(CPT.3E.CFp) 39 TO 55

THE Ku VALUES ARE SET EGjAl TO THE KT VALUES BECAUSE THE COST FuNr
TION XAS REDUCED. •
DO 50 J4s1,*;g
JN(J4)=uD(J4)
LN(J4) =LD(J'+)

50 KLJ(J4) =<T(J4)
IF(KdoS.ED.1) IW=IW+1
*'P'3S = 0

THE NExT 4 CARDS START AN EXPLORATORY SEARCH IF 9Nr Jg NOT
PROGRESS.

55 IF(KFSP..\E. 1) GO TO 5
IF(I/j.GT.nG) GO TO 12

5 KESP=1
KPM°=0
If(CfT.LT.Cfp) GO to 7

THE KT VALUES ARF RESTORED TO THE VALUE THEY HAD BeFqRe THE
BECAUSE THE COST FUNCTION INCREASED.
03 6 14=1,NG

6 KT(I4)=KJ(U)
GO TO 5

THE BEST PREVIOUS CogT FUNCTION IS SET EQUAL Tg CFT BECAUSE
KAS SUCCESSFUL.

7 CFP=CFT

ALREADY

STEP

THE SEARCH

no

1X33 = 1
8 If(<P5S.E,CI*1) 39 T9 10

C THE NEXT 2 CARDS INDEX <T(I>J) PGSITIVE BY 1«
9 <T(IX)5<T(IX)+1

kP5S=l
39 TO 1

C THE HExT 4 CA^DS INDEX THE KT(IW) NEGATIvE BY 1 AND INDEX Iw F9R THE
c next pass.

10 kP9S=0
IP(<T(IW).LE«1> GO T9 H
'<T(I X) =KT(IW) -1
Is I X +1
39 T9 1

11 X T(I x)=1
r.’siw+i
IF(Iw.LE.NG) GO T9 9

12 IX=1
IF(IaSO.ED.O) 39 T9 13
33 T9 14

13 <SC=1
PETJFX

14 J I*. S 9 = 0
<ESP = O
IF(CFT.LT.CFP) 39 TO 16

c the NEXT 2 CaFDS Regtope THE KT VALUES TQ the VALUES THEY had 3EF8RE
C The LAST STEPj SINCE THE LAST STEP FAILED T8 REDUCE THE C8ST
C FUNCTION.

DO 15 J2=l/N3
15 KT(J?) 5<.j(Jg)

C TmE next 11 C*PDS AcCSMPLlSw THE PATTERN M9VE*
16 D5 18 J3=1>NG

IF(CFT.LT.CFP) CFP=CFT
DEL=KT(J3)-KSP(J3)
KEP(J3)=<T(J3)
!<U(J3) =<T(J3)
IP(<T(J3).LE*1) 39 T9 17
KT(J3)=KT(J3)*DEL
3P TO 13

17 <T(J3)=1
18 CONTINUE

< p M 3 - |
3° Tg i
k N'D

