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ABSTRACT

In this thesis, three methods were discussed for de-
signing error-correcting capabilities into threshold gate networks
so that the logic gates themselves will correct errors of other
gates. These methods are extensions of work presented by Bargainer
and Coates (1).

Method 1I is a procedure for taking a given threshold
logic network and finding the minimum number of gates required
to correct t errors using multiplexing techniques. It requires
that all weights remain the same as read in. Method III is also
a procedure for taking a given threshold logic network and finding
the minimum number of gates required to correct t errors using
multiplexing techniques. However, in Method III a search is
performed over the weights for one gate feeding into another
gate (Bij) in an attempt to optimize the Bij values.

Both Method II and Method III modify a given realization
by the addition of redundant gates to obtain an error-correcting
network. The methods require that an error of any specified
number of gates be corrected in the next level of logic. This
is known as a multiplexed realization. Errors of the output
gate are not corrected.

The procedure developed, in this paper, for both Method
I1 and Method III requires the minimization of some cost function.
The cost function consists of the sum of all gates required to

correct a specified number of errors, plus an error factor due

iv



to the constraints not being satisfied. The number of gates

ki in each set {Ai} are adjusted by a multi-dimensional search
technique with the minimization of the cost function as a per-
formance criterion. The search is accomplished by means of a
digital computer program. Method III goes one step further than
Method II and an attempt is made to reduce the number of gates
even further by searching for better weights for inputs from
other gates.

The results of problems run by both methods are shown
in Chapter V. Method II finds the minimum number of gates
necessary to correct the specified number of errors, using the
weights of the original realization. Method III finds the mini-
mum number of gates necessary to correct the specified number
of errors, using an optimum value for the weights of inputs from
other gates. Either method may have a minimum gap for all gates
specified, to insure that the solution have gates with a reason-
able gap width. The procedure to specify a minimum gap is also

presented in Chapter V.
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CHAPTER I
THRESHOLD LOGIC

The input-output relationship for a digital network is
expressed as a logical function of binary valued inputs and outputs.
A threshold gate has binary inputs Xl’ X2, X3, ..... Xn and a
binary output y. Associated with each Xi is an internal weight
a; - Each threshold gate has a threshold value T and a separating
function f£(p) defined in the following manner:

£(p) =
1

"W~
P

a X, (p). (1.1

Xi(p) is the value of X, at pe{0,1}™ and the sum and product
operations are the usual arithwetic ones. The output y at each

pe{0,1}" is determined by

14if f(p) 2 T
0 if f(p) < T. (1.2)

~d
It ]

Although the definition of the threshold gate might lead
one to believe that all of its inputs are independent variables,
this is not a necessary requirement. In general, a threshold gate
may have n+m inputs, some of which are independent variables and
some of which are the outputs of other threshold gates, where n
inputs are independent variables and m inputs are the outputs of
other threshold gates. The equation for the gate output can be

expressed as in Equation 1.3.
n m
={ Zz X, + I a.y. 1.3
y <i=1 a; X, (p) i a5 () T (1.3)

where the law of operation is defined by Equation 1.2. For the

convenience of notation, the weight associated with each independent



input Xi will be called a;, and the weight associated with each
input ¥i will be called Bi.

For the remainder of the paper,'it will be assumed that all
threshold gates have non-negative weights. This does hot restrict
the results. For any realization with one or more negative weights
there is an equivalent realization having all positive weights.

The threshold gate has a binary-valued output for each
compination of the binary-valued inputs; therefore the output y
is a switching function of the input variables. The Boolean-

function representation is:

y = F(XI’XZ"’°'Xn) (1.4)

in which the value of the function is expressed in terms of the

independent wvariables Xi and the Boolean operators +, ., and
Therefore, yi and Fi(p) are equivalent. The form of the function
may imply an associated realizatiom.

Each equation for the separating function implies a
particular threshold gate realization. Therefore, the notation
for the separating function can be directly related to the reali-

zation. Equation 1.5 implies the gate with threshold T, input

variables Xi’ and corresponding weights a .

n
{F(RyKys e X Do = <1£1 a;%; % 1 (1.5)
Xlx 31
Ky—2el | [~V
Xy — 1 — |71=2.5

Figure 1.1. A single gate threshold realization.



Example 1.1. For the threshold gate shown in Figure 1.1,

the output expressed in terms of the separating function is

<3x1+x +X +X4> oo

The output expressed as a Boolean function of the input variables
is

y = X1X2X3X4 + Xl 2X3X4 + X1X2X3X4 + X X2X3X4

+ X XXX, + XX XX, + XXX X, + X XXX,

This Boolean function can be simplified to the form

y = X + XXX,

There are many other separating-function realizations
which will realize the same function. Another example which will

realize the same function is

y ={6X, + 2K, + 2Ky + 2K, D ¢

An alternate rule of operation for the threshold gate

can be stated using the following definition. Define

1} and
0}

min {£(p)|F(p)
max {£(p)|F(p)

[
1t

The interval having an upper boundary u and a lower
boundary £ is referred to as the gap of the realization. Equation

1.3 requires that the threshold T be restricted as follows:

£ <T= u. (1.7)



The Boolean function that is realized by a threshold
gate with separating function f and gap u:§ is represented in

the following manner:
n
y = F(Xl’XZ’XB’ .Xn) = f <i£1 aiXi> u:f. (1.8)

Any Boolean function is defined over an n-dimensional Euclidean
space where each coordinate axis corresponds to one of the inde-
pendent variables. Each combination of values for the independent
variables plots as a vertex of a unit cube in the n space. The
function F assigns to each p = Pg> pl,...,pzn-1 a corresponding
value F(p) which is either 1 or O. Py and Pl are defined to be
the subsets of the vertices of the n cube for which F(p) is equal
to 0 and 1 respectively.

From the rule of operation established by Equations

1.1 and 1.8, the P, vertices of the n cube are separated from

the Py vertices by the hyperplane whose equation is

a.X, =T
1 11

Mg

i
where X; = 0,1. Figure l.2a and 1.2b show a separating plane

for a two variable function.

(0,1) 1.5 (1,1) (0,1 (1,1)
y=1 y=1 y=0

(0,0) (1,0) (0,0) (1,0)
y=0 y=0 ' y=0 y=1
(a) y = XX,y (b) v = XX, + XX,

Figure 1.2.(a) A linearly separable function
and (b) A function which is not linearly separable.



Not all functions can have the 2" vertices of the n
cube separated into P0 and Pl sets by a hyperplane. There-
fore, not all functions may be realized by a single threshold
gate. However, these functions can be realized by a network of
threshold gates.

Example 1.2. The realizations for the functions illustrated
by Figure 1.2 are shown in Figure 1.3. The AND function is
represented in Figure 1.2a and may be realized with one gate.

There is an allowable region so that with a threshold placed in
this region the P0 vertices will be separated from the P, vertices.

The region is defined by u = 2 and f = 1 and is represented by
1<T=< 2.

By placing a threshold anywhere in this region, the function
can be realized.

The function pictured in Figure 1.2b is not separable.
There is no allowable region where the threshold could be placed
and separate all the P, vertices from all the Py vertices. This

function may be realized with two threshold gates.

X, —1
A2 I1
%, 1
11 2 2:1 g 1_la
> ¥ 1— 2 > Y2
Xz——l —_ XZ 1
2:1 2:1
y = <X1+X2> 2:1 y = {X¥%,+2 <X1+X2> 2:1) 2:1
(a)

Figure 1.3(a) Linearly separable realization
and (b) A function which is not linearly separable,



The AND and OR functions can be realized by threshold
gates. The general representation of the AND and OR functions

respectively is as follows:

F(X;,X X)) =X

gse e Xy <X Kyt .+Xn> fnep s (1.9)

F(X1,%y, ... X)) = X #Kyt. . 4K =<xl+x2+'...+xn>1:0 . (1.10)

This implies that any function can be realized by a
network of threshold gates requiring no more gates than would
be necessary using conventional logic.

One advantage of using threshold logic over conven-
tional logic is the significant reduction in the number cf gates
required. In Example 1.1 the function would require one AND and
one OR gate for the realization, while only one threshold gate
is required. For more complex functions, the reduction in number
of gates becomes much more significant.

Every threshold gate has a specific separating Tunction
f and a logical function F both of which are defined on the vertices
of the n cube. For each vertex p there is an associated ordered
triplet [p, £(p), F(p)] where f(p) is some real number and
F(p) = 0 or 1. The set {[p, £(p), F(p)]l} of ordered triplets
is known as the map of F by £. A convenient visualization of
the map is the line graph shown in Figure 1.4 for the function

of Example 1.1, where

F(X1,X9,%5,%;,) = X; + X,X%,

f(Xl,Xz,X3,X4) = <3X1 + X2 + X3 + X4> 3.9



points p (X1X2X3X4)
1111

1011, 1101, 1110
1001, 1010, 1100
=u 0111, 1000
—Me 2-f 0011, 0101, 0110

0001, 0010, 0100

0000

Figure 1.4. Line graph of Example 1.1.

For each p, a point is located on the real line at
location f(p). The point is represented by O when F(p) = 0
and @ when F(p) = 1. The map is the result of the separating
function f mapping the vertices of the unit cube in n space onto
the real line. Each f(p) is called the image of p.

A map is divided into disjoint subsets, called the zero
and unit parts, corresponding to F(p) = 0 or 1. As indicated
earlier, u is the smallest f£(p) where F(p) =1 and f is the largest
f(p) where F(p) = 0. Then u and § comprise the gap of the function
denoted by u:f. Since the threshold may be any value within the

range

/P<TSL1



and still realize the function, it is common to indicate a range
in the equation of the separating function rather than specify a.
particular threshold T. 1In Example 1.1 the output in terms of
the gap of the separating function would be expressed as in

Equation 1.11 instead of in terms of a particular threshold value.

y = <3Xl + X, + Xy + X4>3:2 . : (1.11)

The above separating functions imply single threshold
gate realizations, but the notation for multigate networks is
quite similar. Any arbitrary logical function may be realized
by an interconnection of threshold gates. The final gate in such
a network will, in general, have independent inputs Xl’xz""'Xn’
inputs from the output of other gates Y1sY9s Yo and a single
output y of its own. 1In the one-gate case, each separating
function representation implies a threshold gate realization.
Therefore, such a representation is a realization of the logical
function.

Example 1.3 represents a typical multiple gate function.
The realization of the Boolean function is shown in Figure 1.5.

Example 1.3. A multiple gate function with a separating

function as follows:

£(p) = <xl+X2+x3+2x5+5(2§1+222+x3+3€4
L 5<x1 + Xy o+ X 4 x5>4:3>7:6 +5 <xl

Xy + Xt §5>4:3>5:4



Xl—_—-l —
X 1
5 XI___Z.._
4:3 Xy 2 A, 5
X4 1
Xc —_—2 — Xy —1—
X, —1 L9
X5 2
T 5:4
X1 ) 1
X2 5
X5 1
4:3

Figure 1.5. A five variable multigate realization of
F =X [X; XXy + X3X,) + X) Xy (Xg+X,)

+ X1X2X3X5

The corresponding line graph for each gate of Example 1.3 is
shown in Figure 1.6a, b, ¢, and d. Each gate has its own line

graph shown, and the gates correspond to those in the realization

shown in Figure 1.5.



points p (X5X 1 X3%oX1)
11101, 11111

01101, 01111, 10101, 10111, 11001, 11011,
11100, 11110

00101, 00111, 01001, 01011, 01100, 01110,
10001, 10011, 10100, 10110, 11000, 11010

00001, 00011, 00100, 00110, 01000, 01010,
10000, 10010

00000, 00010

(a) Line Graph for A

1
points p (XX, XX X;)
10 11101
9
8 10100, 11111
7 Q~-u, 10000, 11100
gap
6 {4, 00100, 10101, 10110, 11000,
5 00000, 01100, 10001, 10010, 11110
4 O 00101, 00110, 01000, 10111, 11001, 11010,
30 00001, 00010, 01101, 01110, 10011

00111, 01001, 01010, 11011

00011, 01111,

01011,

(b) Line Graph for A2



| points p (X5X4X3X2Xl)
00010, 01010,

3 _At,?3 00000, 00011, 00110, 010600, 01011, 01110,
10010, 11010, A

2 Q 00001, 00100, 00111, 01001, 01100, 01111,
10000, 10011, 10110, 11000, 11011, 11110,

10 00101, 01101, 10001, 10100, 10111, 11001,
11100, 11111

04 10101, 11101,

(¢) Line Graph for Ag

points p (X5X4X3X2X1)

14 ¢ 11111

13 ¢ 11101
12
11
10

9

8 1000

7 00010, 01010, 10100, 11100,

6

5 ©—x—u, 10011, 11011,

gap

4 O-¥_p, 10001, 10010, 10111, 11001, 11010,

3 00011, 01011, 10101, 10110, 11000, 11110
2 00001, 00111, 01001, 01111

1 00000, 00101, 00110, 01000, 01101, 01110,

00100, 01100,
(d) Line Graph for A,

Figure 1.6. Line graphs for each gate in Example 1.3.



An example of a threshold gate circuit is that given
by Coates and Lewis (3) and shown in Figure 1.7. This is a
typical circuit actually used in a computer built using threshold
gates. In this circuit the resistors RI’RZ""'Rn are inversely
proportional to the weights. The threshold is set by RT,VT, and

VBE the emitter-base drop across the transistor.

INl)"’———W\/l\-—-—-—-——
Ry

IN2>M__~“A¢¢L____~_<; 2 > OUTPUT
j ’

| l % - v

l
| L L
an \Y .VC

N >\ SNA—O O—B + j T’*

R,  + Vg | 1

Figure 1.7. A typical example of a single threshold gate;



CHAPTER II
REDUNDANCY IN THRESHOLD LOGIC

In 1956 Von Newman (8) suggested two means of correcting
errors in a logic network. These two methods were triplication
and multiplexing.

Triplication is a technique by which the entire non-
redundant network is triplicated, and the output of each of the
triplicated networks is fed into a two-out-of-three majority gate.
Figure 2.2 shows a triplicated network of the nonredundant network
shown in Figure 2.1. The outputs of the networks are binary,
therefore, two inputs to the majority gate will be the same at
any time. The majority gate will have the same output as at
least two of its inputs. Then the majority gate will have the
correct output even if one of its inputs is in error. Any number
of errors in the same network would be corrected by the majority
gate because it would only affect one of its inputs. To correct
t errors, one must duplicate the nonredundant realization 2t+1

times and use a (t+1l)-out-of-(2t+1l) majority gate.

Xy |
+
SR %, ]
+—SF
X4
X,

Figure 2.1. A nonredundant realization

F = X‘z(x1+x3) + X9%,



+
X3 K, |
+
X1— .
Xy
Xy —1 ]
+
X _ -
’ X2 M F
+
Xy
Xy
X —-———_‘
1 +
X3 X,
+
Xy ]
Ky ——

Figure 2.2. A triplicated version of the network in
Figure 2.1.

A characteristic feature of multiplexing is that the
error is corrected in the next level of logic following the occur-
rence of the error. 1In multiplexing, each gate is reproduced
three times and the output of each of the three gates is an input
to each of the three majority gates. The output of each of the
majority gates is an input to one of the three gates on the next
level of logic. An error is corrected by the majority gate imme-
diately following the error. This technique requires more gates,
but it will also correct 2n error in each set of three identical

gates., The multiplexing technique is illustrated in Figure 2.3.

—_—



The first person to study the effects of errors on
threshold gates was Muroga (7). He found that by replacing
each X input with a bundle of k inputs, each identical to X;5

the gate could correct errors of these inputs.

Xy — ] —] X, 1.{ M
% +—% M || |
3 1
— 2 HF E
X3 =N = T +
g, —
N — 2 . |
1 + M 14 —
X4 ] L —~ ] — — + M >
}-(‘ —— " |
1 S v
Xy
L]
+
K~ | 1 L |
XZ ] 1
X{— y
X, "

Figure 2.3. The multiplexed version of Network
Figure 2.1.

Liu and Liu (6) took the approach that Muroga used and
designed multiplexed realizations so that the logic gates of the
network corrected the errors. If the outputs of Gates Ai(i=l,2,.n)
are inputs to Gate Aj in a realization, Liu and Liu reproduce all
A

i the same number of times k and connect the output of these

gates to Aj' The value for k is found by taking the maximum of



all ki’ where ki is obtained by a condition similar to Theorem 1
which is stated in Chapter III. This technique sufficiently

solves the problem, but it may require more gates than are actuaily
necessary.

Three methods for designing error correcting capabilities
into threshold gate networks were presented by Bargainer and
Coates (1) in 1968. By these three methods the error correcting
capabilities are designed into the logic gates themselves. The
methods use multiplexing techniques, and the errors are corrected
by the level of logic immediately following the occurrence of the
error. The first method is quite similar to that used by Liu and
Liu.

In the redundant networks of Figures 2.2 and 2.3, the
function of the majority gate is to correct errors and the other
gates perform the computation. A threshold gate can perform the
function of both the computing gate and the restoring (error
correcting) gate. Figure 2.4 represents a nonredundant threshold
realization of Figure 2.1. Figure 2.5 represents a redundant
realization of Figure 2.4.

points p (X3 X, Xl)

Ko 2. - £(p) 3 100
X 1 2
L
Ky — 1 1 —5 2 001. 010, 101, 110
: gap
Xy —1 ] F W 1 000, 011, 111.
X5— 1
2
2:1 0
(a) (b)

F(Xy,Xp,X5) = ()Tl+x2+g< XX 4+2%,, >3:2 > 0.1

Figure 2.4. A realization with the corresponding map of
F(X1,X,,X5) = K, (X;4X4) + XX,



, .
3:2
o—
[ § ‘ 4
3:2
— -
¢ . 4 > F
I 3:2 X 1
—_— 2 2:1
“ N
¢ 4
L“-_-3:2
l —
o A
3:2
2
L (a)
1
X, X5
points X4 X, X
X; p (X3 X5 Xy)
3 100
2 001, 010, 101, 110
"8 =T
gap necessary to correct 1 error | ? 1.4
o 17 000, 011, 111
0
—_——
(b)

F(X1,Xy,X3) = {Xp#Xyt.4 < 2§2+X1+X3$ 3:2) 2:1

Figure 2.5.

map for F(XI’XZ’

A redundant realization with_the corresponding
X3) = Xé(X1+X3) + X X,

4



Figure 2.5(a) is a redundant realization for the function
shown in Figure 2.1. The superscript on the inner gate indicates
the presence of 5 identical gates. Figuré 2.5(b) is a map showing
P; and f(pj) for each ij{O,l}n. The points which are underlined
are points for which the first level gate should have an output 1.
Suppose one of the second level gates fails at 001. Then, £(001)
would be decreased by .4 from 2 to 1.6. If an error occurs at
000, then £(C00) increases from 1 to 1.4. However, if the threshold
is between 1.4 and 1.6, then there is still no error of the output
with an error in the second level of gates. Therefore, the output
gate corrects one error of the second level gates if 1.6 = T > 1.4.
Then for the network in Figure 2.5 to correct an error of the
second level gates, the gap of the output gate must be changed
from 2:1 to 1.6:1.4.

The objective of this paper is to correct errors in a
given network by using multiplexing techniques. When correcting
errors in a network, it is assumed that the given realization does
have the correct output function. Throughout the remainder of
the paper some threshold realizations will be taken and modified
by using multiplexing techniques to correct t errors, starting
with a nonredundant realization R that consists of a set of gates
[Ai] (i=1,....n). This realization is modified to obtain a redun-
dant realization‘a by using the following set of rules:

1) Each Gate A; in R will be replaced by a set.of k.
identical gates, and the set will be represented by
EX;]. The output Gate A, in R will be replaced by

. NS
a single gate A0 in R.



2) The independent variables, feeding into each gate
of ﬂ&i] in‘ﬁ, and their associated weights will
remain the same as those feeding into Ai of R.

The Boolean function of each'xi in‘& will be the
same as that realized by Ai in R.

3) 1If the output of A; in R feeds into A, with a weight
of B;, then the output of each fgi] in R will have
an input of'@} into each‘ﬁ}, (1f the output of Ag
feeds into more gates than Aj in R, thenlgi will
be set by the gate requiring the largest value for
ki' This is no real problem, however, because in
the solution each Aj gate and its Ai input gates
are considered one at a time. The largest value
for ks required by any of the Aj gates it feeds into

is the value that is selected for the final solution.)

The realizationla“is called the multiplexed versicn of
R. Each‘Xj will correct a given number of errors that are made
in {[lelieJ}, and J is the set of integers in R where the output
of Ai is an input to Aj' It is noted thatlﬁg will correct t
errors of {[Xl]liEJ} if and only if for t or fewer errors in
fgil the output of‘ﬁ} at pe{0,1}™ is the same as the output of
Aj at pe{0,1}" with no errors in A -

Errors at the output gate are not corrected, since
errors are corrected in the level of logic immediately following
the error. Any t gate errors, with the exception of the output
gate, are corrected in the redundant realization. The inputs

to the network are assumed to be correct. A nonredundant



realization R is shown in Figure 2.6(a) and its redundant reali-
zation'a is pictured in 2.6(b). The independent variable inputs
to the gates in Figure 2.6(a) and 2.6(b) have been oﬁitted to

avoid congestion of the figure. However, each separate gate in

N A
[Ai] in R has the same independent variable inputs as Ai of R.

oF——>F

F = <Xl+x2+23+zxs+5 < 2K +2X)+K g X +2K 5 +5 <X1+X3+X4+X5 > 413 > 7:6
+5 L Ry D 413D s,

A
@_1_] '5_2
|
B ]
y 4 - 4
1 ]
re I .
® e
—
—_ ]
| |
g 2
- _[A3 20 F
S @0
o < [

L__Jeel

N

Figure 2.6(a) The gate interconnection to realize the function F.

Figure 2.6(b) The general multiplexed version of (a).



A
The notation used to relate R to R is defined as

follows:
J denotes the set of integers i in R, in which
the output of Ai is an input to Aj;
ki denotes the number of gates in the set [Ai]
A
in R;
Bi denotes the weight of the output of A; as an

input to Aj in R;
g}(or F.) denotes the Boolean function realized by’ﬁ%
in‘ﬁ (or Aj in R) and is defined on {0,1}";
gﬁ(or f.) denotes the separating function of'ﬁ} in‘E

(or Aj in R) and is defined on {0,1}";

ied denotes that Gate Ai feeds into Gate Aj;
uj:JE denotes the gap of Aj in R, and this sets the
allowable region for the threshold where
. < T. = u.;
A/ !J J uJ, "\ A
ujzfj denotes the gap of Aj in 'R, and this sets the

allowable region for the threshold where

ii ‘<<E. 51}.;
J J J
@a(or g.) denotes the gap length where
A /N

e .
By = Uy ~ 4Ly (or gy =uy ~qy)

These definitions apply for the remainder of the paper
regardless of the method being considered at any particular time.

The relation between R and‘Q has been established.
Given R one must determine‘ﬁz The values for ki and'gi must be

A
calculated in order to determine R. It will be assumed that each



gate in R is necessary for the function F to be realized. If

any gate is removed the function realized by R is changed.



CHAPTER III

METHODS FOR ADDING REDUNDANCY TO
THRESHOLD NETWORKS

A
In Reference (1) three methods for determining R,

given R are presented. Method I is a simplified procedure
which determines sufficient values for ki and 6}. This form
of multiplexed realization usually requires more gates than
are necessary, since ki for i€J is calculated independently
of all other ki‘ Both Method I and Method II require that
%} = Bi/ki. This requires that @}(p) = fj(p) for all p={0,1}"
in the absence of errors. It should be pointed out that these
separating functions in R andlﬁ do not have to be equal for the
corresponding gates to have the same output F(p). However, if
the separating functions are the same in the absence of errors,
the output would be the same.

Although Method I was not used as such in this paper,
it might prove useful to consider it briefly. This approach

will help clarify the objective of the other methods.

METHOD I
Method I is a procedure that determines sufficient
values for all ki andlg;. The following notation is used through-
out the remainder of this paper:
lA] denotes the least integer greater than A.
Theorem 1: Any gate 25 in‘a, a multiplexed version of

A
R, will correct t or fewer errors in gates {[Ai]|i€J} if

28, t
k; = 5| for a1l 1e3 ;



Bi
. TR for all icJ
i

/\

B1
A

B, = u., - max (B.tlieJ}
J J 1

A

7.

J

]

N\
!J + max {Bit|i€J}

The procedure to follow, in order to produce a redun-
dant realization'ﬁ given a nonredundant realization R, is:
1) Each A; of R should be replaced by a set EK;] of iden-
tical gates, and each‘gi should have identical inde-

pendent inputs with the same corresponding weights as

A..

i

2) 1f A; feeds into Aj in R with a weight of B/, then
A A\ A N LN
each A, of [Ai] feeds into each %j of [Aj] in R with
285t '
. AT _ i

weight B, = Bi/ki’ where k., = 3 . If the output

of some A, feeds into all A, such that jeM, then let

28.t
k., = max { L gl_JljsM} and let

* j
N\ BiJ 3
BiJ= - where BiJ is the weight of the output of
i

A A
A; into Aj' Each Aj has a gap (uj - Bmt):ﬁfj + Bmt)

A\ A
where B_ = max {B,]|ieJ}.
m i

3) All Gates Aq in R that have no other gate output feeding

t . .

A \
4) The output Gate Ay in R will be replaced by A, in R.

Liu and Liu (6) used a method quite similar to this
A
except that they have the same number of gates in each [Ai]

where ieJ. This number kJ is expressed as



. |2t
K = l_ B“’J
2.

J

where Bm = max {Bi/ieJ} . Theorem 1 indicates that if all gates
whose outputs feed into Aj are reproduced the same number of times,

more gates will probably be used than are actually needed.

METHOD IT

Method I requires a small amount of computation, but
usually requires more gates than are necessary because the value
of each ki for ieJ is calculated independently of all other gates
whose outputs may also be inputs to Aj' Method II is concerned
with multiplexed realizations that require a minimum number of
gates forla; given the realization R, and subject to the restric-
tion that‘g} = Bi/ki. As pointed out before, this restriction
requires that each separating function‘§kp) in/a‘be equal to
the corresponding separating function in R.

Calculating the minimum number of gates in a multi-
plexed realization, subject to the above restriction, requires
the simultaneous calculation of all ki for which the output of
Ai is an input to Aj and minimization of the sum of these ki'
Theorem 2 is used to accomplish this and the following notation
is required:

w;  denotes the minimum value of fj(p) where Fj(p) =
Fi(p) = 1 and the output of Ai is an input to Aj;
Z. denotes the maximum value of fj(p) where Fj(p) =
Fi(p) = 0 and the output of A; is an input to Aj'
In correcting errors in a realization that is known to

realize the correct function, without errors, only two out of



four possibilities need be considered. If Fi(p) feeds into

Gate Aj along with other inputs, Fi(p) = 1 and Fj(p) =1 1is

one possibility that is of interest, and Fi(p) = 0 and Fj(p) =0

is the other. Making an error means that an output which should

be 1 is 0 or vice versa. 1If Fi(p) should equal 1 and it is O,

then the separating function of Gate Aj will be reduced from

its proper value by Bij' However, if Fi(p) = 1 and Fj(p) = 0,

an error by Gate Ai would cause no problem because it would

reduce f(p) of Aj which is already below Ej. In the same manner,

if Fi(p) = 0 and Fj(p) = 0 and A; made an error, then £(p) of Aj

is increased by Bij which may cause an error in Fj(p). However,

if Fi(p) = 0 and Fj(p) = 1, an error caused by Fi(p) going to 1

would only increase £(p) of Aj by Bij’ and f£(p) is already = u, -
When the output of Ai feeds into Aj’ an error in the

output Fi(p) only results in an error in the output of Aj if the

outputs should be Fi(p) = 0 and Fj(p) = 0, or Fi(p) = 1 and

Fj(p) = 1. This assumes that the given realization does realize

the correct function. These conditions will be the ones primarily

dealt with for the remainder of the paper.

Theorem 2: In a realization R, consider some Gate A.

J
and the associated Gates Ai where i¢J. Define
B.t B.t
- I 8 = S
Vi SW; " kT hy = ozp 4+ s
i i

Fas
Then in the multiplexed realization R of R where @; = Bi/ki for
A ~
all ieJ, Aj will correct t or fewer errors of {[Ai]|i€J} if and

el
only if Tj has an allowable region as follows:



P
v, 2 T, for all ie{J,0},
i hj
/N
hq < Tj for all q¢{J,0}

The re%:fictﬁin that Vo = uj and hO = Ij simply requires
that the gap for Aj in R fall within the gap of Aj in R. This
restricts‘ﬁ} < uy and‘ja = fj, meaning that the gap does fall
within the original gap. Otherwise, it would be possible to find
a gap, but it would not necessarily be within an acceptable range
and the function realized would be changed.

When t errors occur in {ﬂgi]ieJ}, t; would be the
number of errors which occur in [X}]. For a given set of errors

A
e = {ti}, the minimum value for fj(p) at any p such that Fj(p) =1

which is designated fj(p)/e would be represented by

| : PitiL . Bty
tje)le = minl(w; - 59113} = v - kg
for some q&J
But t = X ¢,
jeg 1
Therefore
Bt B t
w - __g__CL ZW __ﬂ_
q kq q kq

A similar situation arises when considering the maximum
value for fj(p) at any p such that Fj(p) = 0 and a given set of
errors e = {ti} occur. Then fj(p) is designated by fj(p)le,

and would be represented by



B.t. E't
£.(p)le = max ((z; + = 113} =z + 14

ki q q

for some q€J

But t = z t.
jeg *
Therefore
B t B t
z +-949 <, 4+ -9
a . kg 1 kg

This implies that the minimum for'g}(p) at any p where
Fj(p) = 1 will occur when all t errors occur in one [2&] for ieJ.
Also the maximum for @}(p) at any p where Fj(p) = 0 will occur
when all t errors occur in one E;i] for ieJ.

Therefore this restricts E} so that it can be any

value within the following range:
. . o .
min {Vi|1°J} z Tj > max {hille} ,
Then

AN . c 1. .
uj.fj = min {vilch}. max {hille}

A
Now assume that no Tj exists because A < hq for some

i,q€J. This implies that
fj(p) min < fj(p) max.

Then,‘gs does not correct t errors of {ﬁgi]|i€J} for some p where
Fj(p) = 1 or some p where Fj(p) = 0.

The problem is to solve for a minimum gate solution
subject to the inequalities of Theorem 2. Therefore, for each

Ai the set of inequalities



b A

must be solved simultaneously for integer values of ki where
ieJ, and subject to minimizing the cost function
C= X k,

ieJ
The inequalities are nonlinear due to the variable ki appearing
in the denominator. These inequalities may be solved using
nonlinear programming with the additional constraint that ki
be an integer for all ieJ.

Although the following information provided by the
Corollary to Theorem 2 is not necessary to minimize the cost
function by nonlinear techniques, it is useful for pointing out
the difficulties in solving the problem analytically. For this
reason it is included to help point out what the problem consists
of, and what is involved in its solution.

Corollary 1: Necessary restrictions on the set
{k;]1¢J} that satisfy Theorem 2 are
(" 28t

W.=2.
1 1

B.t

k., > < 1 for all meJ
i W_-2Z.

m “i

Bit

w -
mZ

for all meJ

m

.



This sets the lower bound on ki so that

ZB t B t B t

k, =2 maxL R s 3 J
i Wi=z ' W o=Zo 0 We-zZo
i~i i i

Let this lower bound be denoted min ki'
Theorem 3: A sufficient condition on the number of

\
gates in {[A.]lieJ} is

LZB t .
z min k
qu t

Let this be the upper bound on ki and denoted max ki. This

establishes a possible range for ki which is min ki < ki < max ki.

METHOD III

Both Method I and Method 1I required that f (p) = fj(p)
for all ps {0, 13" when no errors are made. This results in the
requirement that Bi = Bi/ki for all i. Both methods yielded
realizations under this restriction. However, Method II did so
with a minimum number of gates. 1In Method III the restriction
that G; = Bi/ki is removed and the multiplexed realization R
requiring a minimum number of gates will be sought.

In Method IIT the following will be defined:

vip) = I ayXy(P) + wéJ kwﬁng(P) - E;t F:(p)

eqQ,
MR

where Fi(p) =

h.(p) = z aX () +  k B F (p) + B t F, (p)
i yeaj vy wey WWW

where Fi(P) =



and

Qj = {ilthe independent input Xi is an input to Aj in R}.

Fi(p) is the value of the Boolean function realized by
A; at pe{0,13}", and

Xy(p) is the value of the dependent input Xy at pe{0,1)".

Then
D i
vi(p) = min {fj(p)l , fj(p)} for p where F(p) =1,

A : '
and fj(p)lt denotes fj(p) when t errors occur

in in].

Likewise

A .
hi(p) = max {fj(p)ll, fj(p)} for p where F(p) = O.

Theorem 4: 1If A, is some gate in a realization R, then
NN
"in the multiplexed realization R, Aj will correct t errors if

A
and only if there exists Tj such that

]
’,—l

P
Vi(p) 2 Tj for all i€J where Fj(p)

i
o

A
hi(P) < Tj for all ieJ where Fj(p)

The minimum value forigg(p) at any p where Fj(p) = 1
will occur when all t errors are made in one [Ai] for ieJ. Also
‘the maximum value for g}(p) at any p where Fj(p) = 0 will occur
when all t errors are made in one [2;] for i€J. This restricts

Tj so that it can be any value within the following range:

A
min {Vi(p)lieJ} 2 Tj > max {hi(p)lieJ}



A _
Since the k's and B's are both variables, these

inequalities are nonlinear due to the product term g;ki' The
purpose is to find the minimum number of gates necessary to
correct t errors. The values for thezgi's and thelgi's can be
obtained by nonlinear programming by making the added restriction
that the k values be integers for all ieJ. The objective is to
calculate the ki's and the @}'s necessary to correct t errors

while minimizing the cost function

C z k,

jeg



CHAPTER IV
PROCEDURE

As indicated in Chapter III, the problem is to solve
the following inequalities simultaneously for each Ai using integer

values of ki where 1i¢eJ,

£ LA
wW. = .
i ki i
Bt
r
z_ + 4= <T
r kr i
7\ ,{P <
\ »
{3 =T =y

To solve the problem analytically would require a great
deal of calculation, and it would still involve a trial and error
solution. A procedure which might be followed is shown below.

1) Select some Aj so that Aj€R and the outputs of other gates

in R are inputs to Aj' Calculate W and z; for each i¢J where

1}

<
]

min (£;(p)/F;(p) = F,(p)

0}

z; = max [£5(p)/F;(p) = Fy(p)

2) Calculate min ki for each ieJ where

2B.t B.t
. _ i~ , i ,
min k; = max {w -
c=Z. W_-7z. . -
171 m~%i YiTZy

B.t
1

}



3) Determine max k; by

2B t
max k; = I -9 - % qpin k.
qed &3 reJ

T#i

4) Solve for the minimum value of k; by trial and error
for all ieJ such that the total number of gates is minimized,
and all the constraints are satisfied.
5) Take another Aj in R and repeat steps 1) through 4).
6) Repeat step 5) until all Aj in R have been used.
7) Take the maximum value of k, required by any Aj and this
is the required answer.
8) Interconnect the gates as in Figure 2.6(b) with
8. = 8. /k, .
i i’

A Method II analytical solution involves a great deal cf
calculation at best. To calculate Wy and z; in step 1 requires
the evaluation of fj(p) for each gate Ai where i€J, at every point
pe{O,l}n where n represents the number of independent variables.
For a five variable function there are 27 = 32 points at which the
separating function for each gate must be evaluated. After Wy
and z; are evaluated for all icJ, the min ki and max ki can be
evaluated in step 2 and 3.

When Wis Z55 min ki’ and max ki for ieJ have been
evaluated, one must search through the possible values of ki for

a set of ki that will satisfy the constraints. One must continue

to try all possible combinations of k; values to find the values
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of ki that will minimize the cost function and satisfy the con-
straints as well. This process must be followed for all Gates A..
Since the procedure that must bé followed to find a solution
by Method II is quite lengthy, a computer program was written to
solve the problem using a search technique. The problem is in-
herently a nonlinear programming problem, as was pointed out in
Chapter II1. Bargainer and Coates (l) set the problem up to be
solved by integer linear programming techniques using existing
algorithms. This technique required that the min ki and the max
ki be calculated for all ieJ, and a table of all possible ki
values be constructed. As a result this requires working with
a large number of variables. For this reason, it was felt that
a nonlinear search technique, which would minimize some cost
function, might provide a faster and more direct approach to the
solution of the problem. The program written does not consider
the possible range of k values, but solves directly for the ki

values that will minimize the cost function and satisfy the constraint:

The Search Technique

A direct search technique based on 'Optimal Search'
developed by Weisman, Wood, and Rivlin (9) was chosen. The optimal
search technique is actually an extension of the "Pattern Search"
procedure developed by Hookes and Jeeves (4). The extension
consists of the addition of constraints on the variables of the
Pattern Search. This technique was chosen because:

1) Hookes and Jeeves found it to be quite effective in
locating minima in "steep valleys', and
2) it appeared to be the most straight-forward method

of handling the constraints that had to be satisfied.



The pattern search technique is based upon the principle
that any successful parameter adjustment is worth trying agdin.

The object is to minimize a given cost function. The value of the:
function after a parameter adjustment is compared to the value
before the adjustment, and if the function has decreased, the move
is considered to be a success and the incremented parameter is
retained.

There are two basic kinds of moves in the Pattern Search
Technique; the Exploratory and the Pattern. The exploratory move
is used to obtain some knowledge about the function to be minimized
without any conéideration of the gradient of the functicn. The
exploratory search starts from some initial base point and upon
completion establishes a new base point. The pattern move starts
from the base point established by the exploratory move and uses
the information obtained by the exploratory move in an attempt to
establish still another base point.

The exploratory move increments each parsmeter one at a
time and attempts to decrease the cost function. The first parameter
is increased by some predetermined amount, and if successful, the
incremented value is retained. 1If the increased parameter adjust-
ment is unsuccessful, then the parameter is decreased by the same
predetermined amount, and if successful, the decreased value is
retained. If it is unsuccessful, the parameter is restored to its
original value. After each parameter is incremented in this manner,
one at a time, a new base point will have been reached.

The pattern move starts from the new base point estab-

lished by the exploratory move and increments every parameter at



the same time by an amount equal to the difference between the

new base point and the previous base point. If the pattern move

is unsuccessful, the parameters are all réstored to their previous
values. If the pattern move is successful, a new base point is
established. At this point, another exploratory move is performed.
However, it seems reasonable to assume that if one pattern move

is successful, another by an equal amount might be successful also.
Following this assumption, the search technique used will continue

to make a pattern move until the value of the cost function increases,
and the previous base point will then be restored.

In this procedure, any time an exploratory move is attempted
and the cost function cannot be reduced by incrementing any parameter
either positive or negative, the predetermined step increment is
reduced and another exploratory search is attempted. Wnen the
step increment falls below some predetermined minimum the search
is terminated. By setting the predetermined minimum to the proper
value, the correct value may be found to the desired accuracy.

In order to illustrate the search technique just described,
an example of a two-dimensional pattern move is given in Figure 4.1.
In the example, Cl’ C2, C3, C4, and C5 are equal value contours
for the cost function with Cl>C2>C3>C4>C5.

The search begin; at some initial point BO' First kl
is incremented positive by some amount & to kl+6. If the cost
function is decreased, this value of kl is retained. 1If there is
no decrease, then kl-é is tried. 1If the cost function is reduced,
the vector V, is established. k, is then incremented by the same
amount % to k2+6. If the value of the cost function is reduced,

a new base point By is established.



Figure 4.1. A two-dimensional pattern search.

From the new base point Bl a pattern move is attempted.
Both k1 and k2 are incremented by the same amount necessary to
move them from B0 to Bl' If the cost function is reduced, a new
base point B2 is established. This process is continued until
the cost function increases, then the previous base point is
restored and an exploratory search is attempted again.

This seme procedure is followed until no attempt to
increment kl or k2 either positive or negative, by an exploratory

search, is successful. 1In the procedure of Hookes and Jeeves (4),



the increment & is reduced and the entire process repeated. The
increment 6 is reduced and another attempt made to decrease the
cost function until the increment 6 drops-below some predetermined
value. The search is terminated at this point.

In the actual program the kl and k2 would represent
the number of times Gates A1 and A2 would have to be duplicated
respectively in order to add a specific redundancy to the network.
Therefore, the k values must be integer values. For a network
requiring a reasonable number of gates, it did not seem practical
to allow k to be incremented by more than one at a time. Each k
may remain constant, increment positive by one, or increment
negative by one in any given step. The value one is the only
allowable step increment.

Weisman, Wood, and Rivilin (9) used the idea of a penalty
factor in their optimal search technique to insure that constraints
were satisfied on minimization problems. The problem they solved
is very similar to this one. They wanted to minimize some function
subject to certain constraints. They took some value for the
variables and checked to see if the constraints were satisfied
and, if not, they increased some error function which is added
to the function to be minimized. Therefore, by making the penalty
factors large enough one can insure that the constraints are satis-
fied or the function can not be minimized.

The objective of Method II is to solve simultaneously

for integer values of ki which will minimize the cost function



subject to the following constraints:

B.t B.t
A
v, > T. where v, = w.--l—, h, = z. + ——
i j i i i i i ki
P
h, <T.
1 J
PaN \
1j<TjSu_] vo—uJ,ho-,pJ

Therefore, an error is made if any vy S hq where
i,qeJ. An error results when there is no required gap for the
threshold T. An error is also made if vy s,fj or hi z uj for
ieJ. This error occurs because the gap found is not within the
original gap. By subtracting hq T Vi it is possible to get an
indication of how far the constraints are from being satisfied or
how large the error is. Likewise, by subtracting,fj - v and
hi - uj, it is possible to determine how far the gap is from
the original gap.

Penalty factors are added to the cost function for the
constraints not being satisfied. The cost function then appears
as below:

C= % k., +C, Z T(h. -v.)+C v [(h,-u.) + . -v. )]
pey 0T Ol 5P TV 2 oty SDIMASE I

where Cl and C2 are positive constants which weight the penalty

factors. Only a positive error or zero can be added. If hq - Vi
hi - uj, or,?j - vy is negative, zero will be summed into the cost
function for that value. Otherwise, the error function would add

in negative error if a constraint were satisfied and this would

cancel the effect of an error elsewhere. By making C; and C,



large enough, C can only be minimized if the constraints are
satisfied.
The cost function may be expreséed in the following way:
C= X ki + EF
ieJ
where EF represents the error factor
EF = C y £ (h ~-v,) +C L (h,-u.) + (f.-v.).
L jes qeJ 4 % 2 je3 L7 fJ i
After some trials to minimize the cost function, the
best approach seemed to result when C2 was made a large constant
A
value requiring that the final gap g approach the original gap g
< k.
i

ied
would have to be small compared to the error due to any Vs <,fj

before the other factors became significant. Certainly the

or hi > uj. This technique-caused the routine to approach the
correct answer very quickly.

A solution is reached with a given initial value for
Cl’ If EF is not zero for this solution, Cl is increased and
another solution found. This procedure is continued until C is
minimized and EF is zero, meaning all the constraints are satisfied.
Once the k values are large enough for the constraints to be satis
fied EF = 0, and the k values can be minimized. In effect, this means
that the error due to any constraint not being satisfied multiplied
by its constant multipling factor (Cl or CZ) must be greater than
one. If one more gate is added to satisfy the constraint then
" the reduction in the cost function must be greater than one or

the cost function will not be reduced.



Solution by Method IT

In order to find a Method II solution using nonlinear
computing techniques, a.certain procedure must be followed. The
following procedure represents a brief outline of the steps the

program must use.

Method II Procedure:
1) Select some J so that AjeR and the outputs of other
gates in R are inputs to Aj' Calculate Wy and z; for each ieJ

where

1}

I

\%

I
[

;= min (£, )F;(p) = Fy(p)

0}

Z

; = max {fj(P)IFi(P) Fj(P)

2) Solve by the search technique for the minimum value of
ki for all ieJ which will minimize the cost function.

C= % k., + EF

ieg *t

and satisfy all the constraints, so that EF = 0.

3) Take another Aj and repeat steps 1) and 2).

4) Repeat step 3) until all,Aj in R have been used.

5) Take the maximum value of A, required by any Aj and this
is the correct answer for Ai'

6) Interconnect the gates as in Figure 2.6(a) with

By = rylky

The program follows the above procedure and solves for
the number of gates necessary to add a required redundancy to a
given network. The MAIN PROGRAM reads the information necessary

to define the original realization R. This information includes



the number of gates, the number of variables, the number of
errors, the initial k values, the weights for all the independent
variables (Avg) and their complements feeding into all gates,
the weights (Bij) for each gate feeding all other gates, and
the upper and lower limit (uj:fj) for the gap of each gate.
The MAIN PROGRAM takes the first gate and assigns it as Aj,
and then calls subroutine CONST.

The subroutine CONST takes the separating function
and evaluates it at each point pc{0,1}". Therefore, it solves
for Wi and 25 for all ieJ. Then subroutine CONST returns to the
MAIN PROGRAM which immediately calls subroutine SEARCH.

Subroutine SEARCH follows the procedure described in
the Search Technique section of this chapter. It solves for the
minimum cost function |

C= ¥ k, + EF

ieJ *
so that all the constraints are satisfied, meaning EF = 0. The
subroutine takes the initial k values which were read in and
calculates the cost function using these values. It starts the
search procedure described by beginning an exploratory search.
After indexing the first k value positive, it again calculates
the cost function to see if it has been reduced. It continues
the search technique, checking the cost function after every move
until the cost function is minimized and the constraints satisfied.
Then, it returns to the MAIN PROGRAM.

The MAIN PROGRAM takes all gates Aj one at a time and

repeats the steps of calling subroutines CONST and SEARCH until

each gate Aj has been used. Each time control is returned to the



MAIN PROGRAM it checks the ki values requiréd for the Aj gate
just finished and stores the maximum ki value required up to

that time. After all gates Aj have been used, the program prints
out all k, values, B values, u values, and values which is all

A
the information necessary to construct R.

Solution by Method III

Method III solves for the minimum multiplexed realiza-
tion R necessary to correct t errors of the given realization R.
The restriction that 3; = Bi/ki is removed, where B; is the
original Beta that was read in. This means that‘gi is free
to vary and is not restricted by the Bi of the originel function.
Therefore, the ?i.values may be searched to find those ?&'s
requiring the smallest total number of ki's necessary to correct
t errors. Since’%} is the weight of each gate of the set of
gates {2;} feeding into each‘XE and ki is the number of gates
in the set in}, the effective weight of all the gates in the
set {Ri} is still 8, = kggi at any given time, but B, may be

different from the original B read in. Thus, it is possible

to require that ?ﬁ Bi/ki and perform a search on the Bi values,
and receive the same results as would be received if the/gi
values were searched.

For the reasons given above, a search is performed

on the 8 values, and a Method II solution found using the new

Bi values specified. The minimum cost function

is found so the original function is realized and t errors are

corrected.



B

Method III Procedure:
1) Select some Aj so that AjeR and the outputs of other gates
in R are inputs to Aj'
2) Calculate and store the initial output function values
Fj(p) for Gate Aj for each point on the n cube.
3) Calculate Wy and zg for each ieJ where
j = min {£; () F; (p) Fsi(p)
g = max {£,(]F;(p) = Fy(p)

4) Perform a search on the ki values according to the search

W 1}

0}

VA

i
1l

technique described.
5) After the cost function

C = T k. + EF
jeJ

has been minimized, check to see if EF = 0. If the error functiocn
is not equal to 0, increase the constraints error multiplying
factor and return to step 3). If the error function is equal O
go on to step 6).

6) Index 8; value according to the search technique.

7) Calculate w; and z; for each ieJ where

w;, = min {fj(p)IFi(p) Fy(p)
; = max (£,()|F; (@) = F,(p)

8) Knowing the value of the output function Fj(p) for Gate

i

1}

Z

]
i

0}

Aj for each point on the n cube, calculate the minimum value of
fj(p) such that Fj(p) = 1 and the maximum value of fj(p) such
that Fj(p) = 0 without any errors being made. These two values
are the upper and lower limits for the new gap of A. and are
represented by UNE(J) and LNE(J) respectively. 1I1f UNE(J) > LNE(J)

go on to step 9), and if not return to step 6).



9) Perform a search on the k; values according to the
search technique described.

10) After the cost function

C= % k., +EF
ieJ
has been minimized, check to see if EF = 0. 1If the error function
is not equal to 0, increase the constraints error multiplying
factor and return to step 7). If the error function is equal
to 0, go on to step 11).

11) If the step increment for the Bs values is below the
predetermined minimum, go on to step 12), if not, return to
step 6).

12) Take another Aj and repeat steps 2) through 11).

13) Repeat step 12) until all Aj have been used.

14) Take the maximum value required of k., by any Aj for a
minimum cost functicn solution with the constraints satisfied,
and this is the correct ki value.

15) 1Interconnect the gates as in Figure 2.6(b).

The Method III program follows the above procedure and
solves for the minimum number of gates necessary to add a required
redundancy to a given network. The MAIN PROGRAM reads in the
information necessary to define the original realization R. This
information includes the number of gates, the number of variables,
the number of errors,the initial k values, the weights for all
the independent variables (Avg) and their complements feeding

into all gates, the weights (Bij) for each gate feeding into all



other gates, and the upper and lower limit (uj:fj) for the gap
of each gate. The MAIN PROGRAM takes the first gate and assigns
it as Aj’ and proceeds to call subroutine OUTFUN.

The subroutine OUTFUN calculates the output function
Fj(p) of Gate Aj for each point on the n cube. It stores this
information for a reference value to be used later. Then control
is returned to the MAIN PROGRAM.

The MAIN PROGRAM calls CONTRL. The subroutine CONTRL
sets initial values of the variables and calls subroutine CONST.
Subroutine CONST calculates Wy and z; and then calls subroutine
SEARCH. Subroutine SEARCH follows the procedure described in
the search technique section until the minimum for the cost
function is found. Then the program returns to subroutine CONIRL.
If the cost function due to errors is equal to zero, the program
returns to the MAIN PROGRAM, if not, the error function is in-
creased and subroutine CONST is called again. The same procedure
is followed until the cost function is minimized and the part due
to errors is zero, and the program returns to the MAIN PROGRAM.

The MAIN PROGRAM stores the information concerning Bi’
ki,/zj andj?j. Then subroutine BETA is called and the search for
the best Bi values begins. The first Bi is incremented, and the
program returns to the MAIN PROGRAM. The MAIN PROGRAM immediately
calls subroutine CONTRL. After setting initial values, subroutine
CONST is called. The calculations for Wy and z;, are made. Know-
ing what the output function Fj(p) of Gate Aj should be for each
point p on the n cube, it is possible to calculate the upper and

lower limits for the new gap which are UNE(J) and LNE(J) respectively.



If UNE(J) > LNE(J), then there is a gap and subroutine SEARCH

is called and the cost function minimized. If UNE(J) s LNE(J),
then there is no new gap and the program feturns to CONIRL which
immediately returns to the MAIN PROGRAM. 1In this situation the
program could not realize the proper function withput any error
being made. This is an unsatisfactory answer, so subroutine BETA
is called and the indexing of 8 values continues.

When UNE(J) > LNE(J), subroutine SEARCH is called, and
the cost function is minimized. Then the program returmns to
CONTRL which checks to see if the cost function, due to constraints
not being satisfied (CSAT), is zero. If CSAT # 0, the error
multiplying factor is increased and CONST is called again. The
procedure is repeated. When the cost function is minimized and
CSAT = 0, the program returns to the MAIN PROGRAM. The answers
are checked to see if the sum of the k values is less than the
previously stored answer. If the sum of the k values is reduced,
the stored answer is replaced with the better answer and the in-
dexing of the Bs values continues. If the sum of the k values
is greater than the stored value, the stored values are not changed
and subroutine BETA is called. 1If the sum of k values is exactly
equal to the previously stored sum, the gap is checked to see if
it is wider than the previously stored gap. 1If the gap is wider
the new values replace the previously stored values and BETA is
called. If the gap is narrower, then BETA is called immediately
and the incrementing of the By values continues.

This procedure continues until an exploratory move of

all B: values is unable to improve the stored results. The



increment by which the Bs values are changed in each step is
then reduced, and another attempt is made at reaching a better
solution. Each time an exploratory move'of all Bs values fails
to improve the results, the increment by Which the Bi values are
changed is reduced until the increment falls below some predeter-
mined value. When the step increment falls below its minimum
value, the search for that specific gate Aj is complete.

Once the search for the previous Aj is completed, the
MAIN PROGRAM takes the next gate and it becomes Aj’ The program
repeats the entire search procedure for each Aj’ and checks, each
time, to make sure the max ki required for any Aj was stored. The
Bi values for each Aj are also stored. After all Aj have been
considered, the program prints out all {Bi/iSJ} for each Aj, the
k. val ues required, the upper gap limit (uj), the lower gap limit
(IS), and the sum of the ki values that were required. This
includes all of tbe information necessary to construct the re-

A
dundant realization R.



CHAPTER V
RESULTS AND CONCLUSIONS

Contours and Results of Method II

Given the weights for all of the inputs to Gate Aj’
it is possible to calculate some cost function which can only
be minimized if the sum of the gates required is minimized.

This cost function is the sum of the gates plus some error
function due to constraints not being satisfied. If all the
constraints are not satisfied then the answer is not acceptable.
In the program, the error function is always checked to make sure
it is zero, and if the error is not zero when the minimum is
found, the error multiplying constant is increased and the
function minimized again.

It is desirable to generate the cost function surface
and investigate its characteristics as a function of k. For a
large number of gates, the number of points required for a mean-
ingful plot would be quite large, and the information would be
very difficult to display for more than two variables.

In order to display the function and gain some knowledge
of the nature of the surface, one ki will be varied while all the
other ki's for the realization will be held at their respective
minimum values. The function generated is the cost function
with respect to one variable being changed.

The realization shown in Figure 5.1 is a five variable
function using six gates. This is a good example to investigate

and examine the results that were obtained, since it has a wide
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Figure 5.1. A six gate, five variable threshold gate

realization.
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range of weights and relatively narrow gaps which make it more
7 difficult to solve. However, this results in a more interesting
contour for most of the values that are élotted.

In Figure 5.2, the cost function versus one ki value
at a time is plotted while all the other ki's are held at their
minimum values. The minimum k. values found by Method II in this
=23, and k

case were kl=17’ k2=9, k3=25, k4=12, k =1.

5 6
From Figure 5.2, it is observed that the cost function

is a concave function with respect to a wvariable ki' The function

almost appears to be hyperbolic. This is not the case, however,

because there is definitely a minimum value. The function has

an extremely steep descent when ki is too small and approaching

- the minimum value. After passing the minimum, the function levels

off to a steadily increasing function with a slope of 1. This

indicates that the error multiplying constant is quite large,

but decreasing that constant increases the minimum gap that could

possibly be found. Another reason for keeping the constant large

is to prevent reaching a minimum without satisfying all constraints.
A characteristic that is very important in minimizing

the cost function is the rate of convergence of the ki values.

In order to minimize the cost function successfully in a reasonable

length of time, the ki values must approach their minimum value

at an acceptable rate. Figure 5.3 shows the ki values where iceJ

versus the number of iterations plotted for the realization shown

in Figure 5.1 and Gate Aj is gate number 6. An iteration is here

defined as a pattern move or a complete exploratory move.
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It is observed, from Figure 5.3, that the gates requiring
higher ki values tend to‘carry smaller ki's with them until the
larger—ki's—approach—their required—value;-—This'isgexactiy*what—"f
would be expected from examining the contour of the cost function.
The cost function increases extremely fast if the ki values used
are too small and getting smaller, and it increases at a slow but
consistent rate if the ki values used are too large and getting
larger.

Another indication of the rate of convergence toward
an acceptable answer is the plot of the gap of the gate correcting
errors at any particular time. The plots up to this time have
been for ki's which all feed into A6' This was done for ease
of comparison of the various plots. The plot of the gap for Ag
is shown in Figure 5.4,

The plot of the gap for A6 is the contour that is ex-
pected. While the ki values are too small, the gap is a negative
value. As the ki values increase, the negative gap increases
toward zero. When the ki values with the larger minimums reach
that minimum value, the gap remains at zero until the ki with
the smaller minimum value gets back down in the range of its
proper value. There is still an error at this point, but the
error is very small. The program checks and there is still an
error at the minimum. The error multiplying constant is increased
until a minimum is found and the error is zero. At this final
point the gap is a positive value.

The program written for Method II was run with several

problems. The solutions found for the three problems chosen



S

for examples are shown in Table 5.1. Each problem was solved
using an initial starting point where all k values were equal
to_l.  Then each problem-was solved-again using a starting point
where all k values were greater than the answer originally found.
The separating functions for the example problems in

Table 5.1 are:

<2X +X +X +X +2<2X +2X

* +X4>54+2<X +X2>21>43

+5 2%, + 2%,

Prob. 1 : f£(p)

1l

Prob. 2 : £(p) CXy + Xy + Ky + 2X¢

+ X3 + X, + 2Xg + 5 <X1 Xyt X, X5> 4:3) 716

+ 5 <il + Xy 4 Xy o+ 555>4:3> 5:4

{(3.25%, + .25K, + 1.5K, + X, + 2Xg + 2

{2xy + 3k + 2Ky + K, s, + 4 KX

Prob. 3: £(p)

+ X, ). + 8 {3.25K + 25K, + 1.5%,

v %, + 2K+ 2 {2k + 3K, + 2Ky + K D,

+ 4 <X1 + iz>2:1>7-5=7>7-5=7

The realization for Problem 2 is shown in Figure 1.5 and the

realization for Problem 3 is shown in Figure 5.1.



TABLE 5.1

RESULTS OF THE METHOD

ITI PROGRAM

PROB. | INITIAL k VALUES | FINAL k VALUES | EINAL FINAL GAP OF GATE NO. #UN TIME
NO. OF GATE NO. OF GATE NO. SUM OF 1.2.3.4.5.6 IN MIN
1,2,3,4,5,6 1,2,3,4,5,6 VA§UES YT Te T

1 |1,1,1 5,5,1 11 .0,1.0,0.2 1.16

1 ]9,9,1 5,5,1 11 .0,1.0,0.2 1.16

2 1,1,1,1 6,6,6,1 19 .0,0.1666,1.0,0.1666 1.22

2 |11,11,11,1 6,6,6,1 19 .0,0.1666,1.0,0.1666 1.22

3 1,1,1,1,1,1 17,9,25,12,23,1 87 .0,1.0,0.0294,1.0,1.0,0.0061] | 1.20

3 17,9,29,9,18,1 83 .0,1.0,0.0294,1.0,1.0,0.0019| 1.32

27,15,37,15,37,1

QC



The Method 11 separating functions required to correct

one error of the problems in Table 5.1 are:

Prob. 1 : £(p) (X + %,y + %g + X, + 2 L 2% + 2%, + Xq

3

+ 5(4>55:4 + 2 <X1 + X§2:1>3.6:3.4

<X1 + Xy + Xg o+ 2X5 + 5 <2X1 + 2X,

Prob. 2 : f£(p)

¥ Xy + X, + 2o + 5 <xl+x3+x4
6 6 - -
+X5> 4:3) 7:6.83 * 5 <X1 + Xy + Xy

+ Xg >64:3 > 5:4.83

Prob. 3 : £(p) = <3.25%; + .25%, + 1.5X5 + X, + 2X

5

9 F &3+ X, ) 5.y

- = 23 —
r o T 4%, 2 8 {3258 + 25K

+2 2%, + 3K

2

+ 1.5%y + X, + 2K, + 2 {2%; + 3K, + 2K,
- 9 = 17 25

+ X4> 5. t 4 <X1 + X2> 2:1/ 7.264:7.235
>7.326:7.320

Upon examining the data everything seems to be as
expected in the case of Problems 1 and 2. The run times vary
slightly with different starting points, but the minimum found
is the same. In the case of Problem 3 the final results are not
the same. "Some of the individual k values are different and the
sum of the final k values is not exactly the same for runs with
different starting points. This appears to be an error in the

Method II Program, but both of these answers may be checked and



A

both are minimums for the function. A minimum is defined as any

solution so that the reduction of any ki value will result in

some_constraint not being satisfied.- . —_— —

The results of Table 5.1 point out that with more
complex realizations the cost function is not a contour. having
a single minimum. In problems that are more difficult to solve
there appear to be '"local minima'" very close in value to the
absolute minimum of the cost function. Gate A6 is the only gate
in Problem 3 which shows any variation in the ki values feeding
into it. The reason for this is the wide variation in the input
weights to A6 and the low relative gap. A low relative gap means
that the gap is narrow compared to the distance it is away from
the origin on the map of the separating function.

On the basis of the contours plotted and the data
tabulated in Table 5.1, some conclusions may be drawn concerning
the surface of the cost function and the performance of the
Method II Program. These conclusions are:

1) The program for Method II may be started at any initial
starting point for the k values, and it will find a
minimum sum of k values.

2) As the complexity of the problem increases there is
a higher probability that this could be a local minimum
in the near vicinity of the absolute minimum. However,
the sum of the k values for this minimum should be
close to the sum of the k values for the absolute

minimum.



3) By starting the program at widely varying initial values

of k, it is possible to check, and see if the absolute

minimum has-been foundi— —— — —
4) Method II finds the minimum number of gates necessary
to correct t errors using the weights that were read

in for all the inputs in the realization.

Contours and Results of Method ITII

Method III attempts to improve the solution of Method II
by reducing the number of gates required to correct the same
number of errors. Method II takes a given realization and
attempts to find the minimum number of gates necessary to
correct a specified number of errors using multiplexing tech-
niques. Method III finds a Method II solution and then changes
the Bij values in an attempt to minimize even further the number
of gates necessary to correct the same number of errors. A
Method III solution must realize the original output function.

In effect, Method III performs a Method II search after each
Bij change except that it must calculate the new gap in the
absence of errors for Gate Aj using the new Bij values.

The Method III Program would have a cost function similar
to that shown for Method II during each search for the minimum
k values. The k values are searched after every change of each
Bij' A characteristic that helps point out how a solution is
reached is a plot of the ki values versus the number of iterations

required. However, in Method III an iteration is considered to

be each pattern move or completed exploratory move on the By s values.



Therefore, the ki value plotted is the ki value in the minimum
sum of gates necessary to correct the specified number of errors
for a partiecular set of Bi.'s. —

]
In Method II11 a more meaningful plot is a plot of By s

J
and its respective ki with each iteration. In order to minimize
the number of gates required, both ki and Bij for all ie€J must
approach an optimum value in a reasonable number of iterations.
Figure 5.5 shows the contour cf a ki and the respective Bij for
the realization shown in Figure 5.1 and previously referred to as
Problem 3.

The contours plotted in Figure 5.5 show the variation
of the k; and Bi values with each iteration of the Method IIIL
Program. The values plotted are the best results found up to some
particular iteration. Each iteration is a pattern move or a
completed exploratory move of the Bij values. It is shown by
these plots that the program converges fairly rapidly to the final
solution. The curves point to the fact that the correct answer
may be searched out quite reliably.

For a comparison, it would be interesting to show a plot
of the variation in the results of the ki and Bij values with each
change of any Bij' The plot of this curvé for k3 and B3g of
Problem 3 is shown in Figure 5.6. This curve shows that the results
found vary quite erratically for variations in Bi.. This curve
shows the contour from which the program must select the correct
values. Figure 5.6 may be compared to the corresponding values

in Figure 5.5
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The program written for Method III was run with the
same problems that were run on Method II. The results of these
runs for the three problems are shown in Table 5.2. Each problem
- was solved using an initial starting point of all k values equal
to 1. Then each problem was solved again using the same starting
point used in Method II where all k values were greater than the
answer originally found. Shown in Table 5.2 are the values re-
quired for correcting one error of Problems 1, 2, and 3 by
Method III.

The Method III solutions of the separating functions

of Problems 1, 2, and 3 are as follows:

Prob. 1 : £(p) <2§i + X, + X3 + X, + 2.668 <2Xl + 2X

2

+ X3+ i4>45:4 +2.0 <X1 + X2>32:l>4:3.667

{xy + Xy + Xy + 2% + 4.0 {2X| + 2%

Prob. 2 : f£(p) 9

i

3 + X4 + 2X5 + X4

+ X5>64:357:6.801 + 4.0 <}"’Il + X, + X,

+ 5(5>54:3>5:4.800

<3.25X1 + .25)(2 + 1.5X3 + X4 + 2}(5

— — 8
r 2.2 <zx ¥ 3x2 + 2%+ x, B8+ 40

+ X + 4.804 X, + X

3

Prob. 3 : f£(p)

<x 2 1+ 5.3 <3.25‘>Zl + .25%,

+ 2X

+ X, + 2% + 2.008 <2x + 3% 3

3 4 5

= \ 10
X, 5:4*“092<X + Xp3. D 2 .209:7.292

>7.2894:7.2789

+1.5X 9



TABLE 5.2

RESULTS OF THE METHOD III PROGRAM
INITIAL k FINAL k FINAL FINAL GAP FOR RUN
PROB VALUES FOR VALUES FOR SUM - GATE NO. NEW BETA VALUES TIME
o GATE NO. GATE NO. OF k 1,2,3,4,5,6 OTHER THAN 0 IN MIN.
1,2,3,4,5,6 1,2,3,4,5,6 VALUES
1 1,1,1 4,3,1 8 .0,1.0,0.3330 B14=2.668,8,,=2.0 | 2.52
1 9,9,1 4,3,1 8 .0,1.0,0.3330 Bl3=2.668,823=2.0 2.65
2 1,1,1,1 6,5,5,1 17 .0,0.19933,1.0,  [8;,=4.804,6,,=4.0 | 3.04
2 .
. Bas = 4.0
2 | 11,11,11,1 6,5,5,1 17 .0,0.19933,1.0,  |8;,=4.804,8,,<4.0 | 2.89
.2 =
834_ .O
Byq=4.092,8,5=2.008
3 1,1,1,1,1,1 14,10,19,8,19,1 | 71 0,1.0,.00692,1.0,}5" o o 5“2, , 5.89
_ 0,0.01053 36 "7 46 < °
813=4.092,823=2.008
3 27,15,37,15, 14,10,19,8,19,1| 71 ' {1.0,1.0,0.00692,1.05 > s 5 5 2.5, | s5.89
37,1 .0,0.61053 367207 PueT4: .




Upon examining the data of Table 5.2, everything seems’
to be about as one would expect. 1In the case of Problem 3, it
is found that the Method III Program is able to find the minimum
at either starting point. The more difficult problem does not
prevent the minimum from being found. It appears that the tech-
nique used in Method III not only allows the problems to be solved
with fewer gates, but it apparently enables the absolute minimum
to be found with better accuracy.

On the basis of the contours plotted and the data
tabulated in Table 5.2, some conclusions may be drawn concerning
the performance of the Method III1 Program. These conclusions are:

1) The program for Method III may be started at any initial
starting point for the k values, and it will find a minirum sum
of k values.

2) Method II1 improves on the Method II Program because it
is allowed to change the Bij values in order to improve the
results. Method III performs a search on the Bij values in an
attempt to optimize them.

3) By starting the program at widely varying initial
values of k it is possible to check and see if the absolute
minimum has been found.

4) Method III finds the minimum number of gates necessary
to correct t errors using the original realization which was read

in, but it then allows the Bij's to take on an optimum value.

Results When Specifying Minimum Gaps

All of the previous results were solutions which had

no minimum gap specified. Any gap that was found by the programs,



regardless of how small, was accepted. It is possible to specify
a minimum gap and require all gates in the realization to have at
least that wide a gap. This means a practical or a realizable
limit may be specified.

Before any minimum géps were specified, an error was
made if any vy S hq where i1,q¢J. An error resulted if there was
no required gap for the threshold T. An error was also made if
vy = (the lower limit for the gap) or h, = (the upper limit for
the gap).

In order to specify a minimum gap, the gap must be at
least as wide as the gap specified. Therefore, v; must be =
hq 4+ MINGAP where i,q&J and MINGAP is the minimum gap required.
Also v, must be 2 (the lower limit for the gap + MINGAP and
hi < (the upper limit for the gap + MINGAP). Some constraint
will not be satisfied if the gap is not at.least as wiae as the
minimum gap specified.

To specify a minimum gap for all the gates in a reali-
zation requires changing the same three cards in either program.
The cards calculating ELL, EUL, and EFG must be modified in the
SEARCH subroutine of either program. The three cards before the
mcdification read as follows:

Method II;
ELL = L(J)-V(12)

EUL = H(I2)-U(J)

EFG

(Z(13)+A(IG,J)*ERR) /KT (13))~(W(JL1)
-(A(IH,J)*ERR) /KT (J1)).



Method I11;

ELL = LNE(J)-V(12)
EUL = H(12)-UNE(J)
EFG = (Z(I3)+(BT(I3,J)*ERR)/KT(13))-(W(J1)

-(BT(J1,J)*ERR) /KT (J1)).
After the modification to specify the minimum gap, they read
as follows:
Method IT;

ELL= L(J)-V(I12)+MINGAP

EUL= H(I2)-U(J)+MINGAP

EFG= (Z(13)+A(IG,J)*ERR)/KT(13))-(W(J)

-(A(IH,J)*ERR) /KT (J1)-MINGAP)
Method III;

ELL= LNE(J)-V(I2)+MINGAP

EUL= H(I2)-UNE(J)+MINGAP

EFG= (Z(I3)+BT(I3,J)*ERR)/KT(I3)-(W(JL)

-(BT(J1,J)*ERR) /KT (J1)-MINGAP)
where MINGAP is the minimum gap specified as a floating point
number.

For a basis of comparison of the problems with and
without a minimum gap specified, a minimum gap of 10% of the
smallest input weight to any gate was chosen. However, for
Problems 1 and 2 the gap found by Methods II1 and III for any gate
was already greater than 107 of the smallest weight into any gate.
Then as a random value, a minimum gap of (.5) for both Problem 1

and 2 was chosen. The gap already found for Problem 3 was very



TABLE 5.3.

(a) RESULTS OF THE PROBLEMS USING SPECIFIED MINIMUM GAPS BY METHOD II.
(b) RESULTS OF THE PROBLEMS USING SPECIFIED MINIMUM GAPS BY METHCD III.

(a)
orop.| INITIAL k VALUES FINAL k VALUES (500 OF FINAL GAP MIN. | pun TIME
"Ya>c|  FOR GATE NO. FOR GATE NO. ) FOR GATE NO. GAP IN MIN
' 1,2,3,4,5,6 1,2,3,4,5,6 vabues|  1.2,3,4,5,6 REQ.
1 |1,1,1 9,9,1 19 |1.0,1.0,0.5555 5 1.37
2 |1,1,1,1 11,11,11,1 34 [1.0,0.545,1.0,0.545| .5 1.17
3 |1,1,1,1,1,1 17,9,25,13,26,1 91 [1.0,1.0,0.0294,1.0, 025 ]  1.20
1.0.0.0262
(b)
prop. | INITIAL k VALUE§ FINAL k VALUES |FINAL FINAL GAP NEW BETA MIN. |RUN
ROB.| "'FOR GATE NO. | FOR GATE NO. |SUM OF| FOR GATE NO. VALUES OTHER |GAP |TIME
: 1,2,3,4,5,6 1,2,3,4,5,6 K 1,2,3,4,5,6 THAN O REQ. | IN
VALUES MIN,
1 {1,1,1 6,5,1 12 |1.0,1.0,0.6 B13=2.4,8,3=2.0 |.5 [2.55
2 |1,1,1,1 10,8,8,1 27 |1.0,0.555,1.0  |B1,=h.448,8,,=35| 5 |3.04
: Bay=3.5
3 {1,1,1,1,1,1 15,10,23,9,17,1 | 75 |1.0,1.0,.02773, |P13™%4-072 .02517.53
1.0,1.0,0.03294 |8,,=2.008
Byg=5.3239
846=2.0 4
BS6=4.004

N7



close to the minimum gap specified but slightly lower. The
results for the three problems run, with minimum gaps specified,
are tabulated in Table 5.3 (a and b).

The results shown in Table 5.3 (a and b) confirm the
results that are expected. A larger number of gates are required
to make the gaps of the gates in the problem wider. Any reason-
able minimum gap may be specified. It is not reasonable to ask
the program to leave a wider minimum gap than the gap originally

read in for any gate on the realization.

Summary of Conclusions

Two procedures have been developed, using two different
methods, and the programs written for minimizing the number cf
gates required to correct t errors in a threshold realization
using multiplexing techniques. Both of these methods require
that some original realization be read in as input data. In
obtaining these realizations it was found that:

1) Method II always finds a minimum number of gates re-
quired to correct t errors using the weights originally read in.

2) Due to "local minimums'" it is possible in some situations
for Method II to find a minimum sum of gates which is not the
qbsolute minimum sum of gates. However, this minimum sum of gates
is probably close to the actual minimum sum of gates.

3) Method III finds a minimum number of gates required to
correct t errors by optimizing the Bij values of the realization.

4) The minimum found by Method III should always be as good

or better than the minimum found by Method II.



5) The cost function of both programs will always have a
minimum. Therefore, there is a solution assuming the original
realization read in was correct. |

6) Either method allows a minimum gap to be specified for

all gates in the realization found.
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[ ]

UN(J)

VAR

GAP(J,
KT(1)

KBP (1)

KU1

Z(1!)

VAR(1)
Vil

H(1)
CKT

CRr

Th

VARTAELE LIST FOR METHOD IT PROGRAM

PRBGRAM DACUMENTATIEN

VARIABLE LJST

m8UTPUT FUNCTISN VALUE FER GATE le({ BR 0)

=UPPER LIMIT FOR THE THRESHALD BF GATE J.

*LAWER LIMIT FER TRE THRESHOLD BF GATE J»

«UPPER LIMIT FOR THE THRESHSLD 8F GATE J NECESSARY T8 CERRpCT
ERR ERRSRS,

*LOWER LIMIT FOR TwE TWRESHELD B8F GATE J NECESSARY T8 CBrRECT
ERR ERRSRS,

= ACTUAL GAP BF GATE J AT A PARTICULAR TIME,

=TEMPIRARY « VALUES BEING USED IN AN ATTEMPT T8 REDUCE THE
C9ST FUNCTISN :

»THE BEST K VALUES FBUND IN PRECEEDING ITERATISNSe(BAST POINT
K VALUES)

»TEMPIRARY STORAGE FBR THE [MPRBVED KT VALUES DURING AN
EXPLARATARY SEARCY, BEFERE CBVPARING THE KT VALUES T8 ThE
KRP VALUFES,

=THE MAXIMUM VALUE BF THE SEPARATING FUNCTIBN 6F GATE J SUCH
THAT Fry)=1 AND F(lys1, WHERE THE QUTPUT 8F GATE 1 IS AN
INPUT T3 GATE Jo

=THE MINI™UM vALUE BF THE SEPARATING FUNCTION SF GATE J SUCH
THAT F(J)=0 ANC F(1)=c, WHERg THE QUTPUT 6F GATE I IS AN
INPUT T5 GATE Jo

*THE yALUE BF THE INDEPENDENT INPUT X(1) AT A PARTICULAR PoINT
BN THE N CUBE«(1 BR Q)

=THE VALUE 8F THE INDEPENDENT [NPUT XN8T(1) AT A PARTJCULAR
PEINT BN THE N CUBE.{4 B8R 9)

=Ng aF GATES IN TkE RE&LIZATIGNG

=N§ OF INDEPENDENT yARTABLES IN THE REALIZATION,

eN3 8F ERRARS THAT ARE T8 Bp CERRECTED,

=MATRIX 8F WEIGHTS FER ALL [NPUTS 1 FEEDING INTB GATE Jo ({1
THRU NV)§ WEIGHTS FgR INDEPENDENT INPUTS X(1) THRU X(NV),
TINV+1 THRY 2NV) 1 WEIGHTS FOR INDEPENDENT INPUTS XN(1) THRU
XN(NV), {2V THRU 2NV+NGYt WEIGHT FER GATE | FEEDING INT®
GATE J,

=VALUE B¢ INPUT I pEECING INTO GATE Jo(t SR 0)

=MINIMUM VALUE BF THE SEPARATING FUNCTIBN 8F GATE J WITH ERR
ERRORS MADE IN THE | SET BF GATES, WHERE F(I)zq AND F(J)=q,

eMAXIMUM VALUE BF THE SEPARATING FUNCTIBN 8F GATE J WITH ERR
ERRBRS MADE IN THE | SET 8F GATES, WHERE F(l)z0 AND F(J)=g,

~THE TEMPRRARY VALUE gF THE ConSTRAINTS ERRAR MULTIPLYING
:ACTSQ, ERR3RS LU T8 THERE NBT BEING A GAP AR MULTIPLIED
3Y CKTy

»THE PReVIBUS VALUE 8F THE CENSTRAINTS pRRBR MULTIPLYING
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FACTSR,

KSC <A FLAS INDICATING THE SEARCH FOR Thg MINIMUM K VALUES 1s
COMPLETE

KSUMT  =SUM BF KT VALUES AT ANY TIME

ESG  =THE ERRER DUE T8 THE GAP w(TH ERR ERRERS N3T BEING
WITHIN THZ GAP p£STASLISHED WHEN N8 ERR3SS ARE MACE,

EFGT  «THE ERR2R pug TR THERE NBT SEING A GAP FBR TWE THRESHELD
WHEN ERR ERRSRS ARE MaDE, , : ,

RESP  =A FLAS INDICATING THAT THE SEARCH RBUTINE 1S PERFEBRMING AN
EXPLSRATERY Mave,

“PH®  =A FLAG INDICATING THAT THE SEARCH RSUTINE 15 PERFBRMING A
PATTERN MSVE,

KPES  =A FLAG INDICATING WHETHER A KT VALUE WAS INDEXED PBSITIVE B8R
NEGATIVE IN TKE LAST sTER, ‘

IWS8  wA FLAG [NDICATING WHETHER ANY KT vALUE REDUCED THE CesT
FUNCTIBN IN THE LasT EXPLBRATBRY MavE,

KBSUM  «SUM §F THE 3EST K VALUES FaUND

UBUT () =THE LPPER LIMIT F8R ThE THRESHELD 8F GATE J USING THE REpST
K VALUES. '

LEUTCI=THE [S4ER | IMIT £oR The THRESHELD &F GATE y ySING THE sESY
K ALUFS

Ksur(;)-rhg E%Q?”UH NUBER OF GATES IN SET | RpQUIRED 18 CERRECT ERR
ERRSRS IN THE GlvpN ReALTIZATIBN,

N3TE: GATEs MusT 8¢ NUMERED IN ASCEARING 6RDFR T8 THp SBUTPUT GATE,
(NB GATE CAN FEED INTB A GATE WITH A LBWER NUMBER THAN 119 BN
NUMBER,



FL@W CHART F@R THE METH@D 2 PREGRAM

ke

NG, NV
((A(11,J1),I1=1,KA),J1=1,NG)
(U(12),I2=1,NG)
(L(13),I3=1,NG)

ERR

(KBP(15)=1,NG)

WRITE

NG, NV, ERR
((A(17,J2),17=1,KA),J2=1,NG)
(U(18),18=1,NC)
(L(I9),19=1,NG)
(KBP(J3),J3=1,NG)

A4
SET INITIAL VALUES

28 L
J<1,NG

N
5
J5< 1,10

lr

IS THE K v
SEARCH C@MPLETE? F

N

This secticn of the
program selects the Gate
Aj that must correct the
errors. When the answer
is returned, it is checke:
to see if all comstraints
were satisfied.

o
i

IS THE ERR@R v
UNCTI@N (CSAT) = 07?

N

/
CKT = CKT*5.0

CALCULATE THE
@UTPUT VALUES




24
<§3€l,2**NV>K

y

STEP THE INDEPENDENT
INPUTS T@® THE NEXT P@INT
@N THE N CUBE.

4

CALCULATE THE
@UTPUT @F EACH GATE.

CALCULATE W(I) & Z(I)
F@R EACH GATE I
FEEDING INT@ GATE J.

22
E

CALCULATE KSUMT

|

CALCULATE E@G

The following section of
the program calculates the
Wy and zZ; values for each
Gate Ai feedipg into Aj'

The following section of
the program (1 thru D)
calculates the cost
function and the error
due to constraints not
being satisfied.

¢

W

CSAT=E@G+EFGT

CALCULATE EFGT

A4

CFT=CSAT+KSUMT

&



The following section of the program
performs the search of the k wvalues.

% AND CFT<CFP
4 N
MAKE A
PATTERN M@VE Y /7 IS ‘j)

\\¥ CFT<CFP

N

‘2 -

KU(I) = KT(I) KT (I)=KU(I) J
F@R ALL I FOR ALL I

4
INDEX N ARE ALL K VALUES
kT(W) € ( EXPLORED?
. \LY
K SEARCH N WAS ANY KT '
IS C@MPLETE. VALUE CHANGED?
CALCULATE THE NEW

UPPER & L@WER GAP
LIMITS.

O

The final answer is

printed out.

WRITE
CSAT,CKT
(RUT(L1),L1=1,NG)
(UGUT (L.2) ,L2=1,NG)
L@UT(L3),L3=1,NG
K@SUM

ST@P
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METHOD IT PROGRAM

PROGRAM DECUMENTATIEN

VARIABLE | IST

Fely =RUTPUT FUMNCTIBN VALUE FER GATE [e¢l B8R C)
Ly =UPPER LIMIT FER THE THRESHRLD efF GATE J»
L(J) “LE34FR LIMIT FOR THE THRFSHALL OF GATE Je

WNIJ)  eLPPER LIMIT FOR ThE THRESHOLD BF GATE J NECESSARY T6 CARRECT
ERR CRRACS,
L Od) =LEaEx LIVMIT FER ThE TRRES.OLE BF GATE U NECESSARY T8 CPRrrECT
ERR ERRARS.
J) = ACTUAL SAP ¢F GATE J AT A PARTICULAR TIME.
b =TEMERRATY K VALUFS REING USEC IN AN ATTEMPT T8 REDUCE THE
CasST FL~CTIAN. :
KEP(1) «THE REST K yaLUFS FEUND IN PRECEEDING ITERATIONZ . (BASE PRINT
K VALUES)
KULT)  <TE"P9RARY STEPAGE FSR T IMPREBVED KT VALUES DURING AN
EXPLORATORY SEARCHs BEFERE CEGMPARING TLE KT VALUES T8 TuE
KRap VALLES.,
21 =THE YAXTYUM VALUE 8F THE SEPARATING FUNCTISN 8F GATE J SUCH
THAT F(JY=1 AND F(l)=1, WHERE THE BUTPUT 8F GATE I IS AN
INPUT T GATE Jo
WD) =THE MINI™U™ VALUE €% THE SERPARATING FUNCTION 9F GATE J SUCH
THAT F(J)=0 AND F(1)=0, WHERE THE QUTPUT BF GATE I IS AN
' INPUT T8 GATE Je
Xt1) =THE VALUE 8F ThE [NDERENDENT INPUT X(I1) AT A PARTICULAR PHINT
8N TRE ' CUSEe(1 8R p)
XNCD) - =THE VALUE 9F THE INDEPENDENT INPUT XNBT(1) AT A PARTICULAR
P3INT 9N THE N CUREL (1 oR Q)

e =\NY TF GATES IN THWE REALIZATIEN,

B =N3 SF INPEPINSENT VARIABRIES [N THE REALIZATISEN,

FRR =\3 aF pRReR3 THAT ARE T° BE CARRSECTED.

ACL,J) =MATRIX 3F WeElGHTS FOR ALL [NPUTS ] FEEDING INTBE GATE Ja (I(1

THRU NV)LI wo1GHTS FaR [MDEPEADENT INPUTS X(1) THRU X(NV),
TIANV+1 THRRU 2MNV)I WEIGHTS FAR INDEPENDENT INPUTS XN(L) THRU
ANCAVD s TU2NY TERY 2NV+NG) D LEI1GHT SR GATE 1 pEEDING INTS
GATE Ja

VERCTY «VALUE 2F IM3UT 1 FEEDING INTH GATE Je (1 ER )

VD =YINIVUM VALJE BF ThE SEPARATING FUNCTIBN SF GATE J WITH ERR
ERRORS wAnE IN TWE | SET Af GATES, WHERE F(I)=1 ANp F(J)=1e

(1) <YAXI¥UM VALJE BF THE SEPARATING FUNCTISN BF GATE J WITH ERR
ERIIPS MADE IN ThC | SET BF GATESs WHERE F(I1)=0 AND F(J)=0e

T -THE TEMoRRARY VALUF 8F THE CONSTRAINTS ERRSF MULTIpPLYINg
FACT3R. FRR9RS DUE T8 THERE NAT BEING A GAP ARE MULTIPLIED
BY CKTa

CxP =ThE PREVISUS VALUE 8F The CENSTRAINTS ERRSR MULTIPLYING
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FACTSR.

KsC <A FLAG INDICATING THE SEARCH FBR THE MINIMUM K VALUES IS
CaMPLETE

wSUMT  =3UM 9F 4T VALUES AT ANY TIME.

£33 =THE ZXRIR DUE TS TFZ GAP W]Th ERR ERRAR3 N3T B ING
NITHIN THE SAP ESTABLISHED YFEN N9 ZRRORS ARE MADE.

cFGT =THE ERRIP DUE T THERE NoT BEING A GAP FBR THE THRESHELD
WHEN ERT ERPRRS ARE MADE,

Keso =A FLAS JADICATING THAT ThE SEARCH RBUTINE 1S PERFBRMING AN
EXPLYRAT2RY MAVE,

PMP <A FLAS [MDICATING THAT THE SEARCH RSUTINE IS PERFBRMING A

PATTERY Meveo,
wbag <A FLAS INDICATING WHETHER A KT VALUE WAS INDEXED PBSITIVE 8R
NEGATIVE IN THE LLAST STEP,.
1WSy =A FLAG I\DICATING AHETFER ANY KT VALUE REDUCED THE CesT
FUNCTISN IN THE LAST EXPLBRATORY MBVE.
=SUM 8F TRE 2EST K VALUES FBUJND.
J)=TRE UPPLR LIMIT FOR THE THRESHELD 68F GATE J USINgG THE BEST
K VALUES,
LAUT(U)eThE [IWER LIMIT FSR THE THRESHEBLD eF GATE J USING THE BEST
K VALUES,
KIUT(I) =THE ~INIMGM NUMRER AF GATES N SET 1 REGUIRED T8 CBRRECT ERR
ERRSES [N T=E GIVEN REALIZATISN

T X
1S/ 8]

N
~ £

LT

N

! 3ATES VUST 2 AUMZERED IN ASCENDING BRDER T8 THE 8UTPUT GATE
N3 GATE CAM FEED INTE A GATE A4ITH A LAWER NUMEBER THAN [TS 6wN
NUMBER,

THIS 1S A PR
CATES IN AN ERR
THE REALIZATISN
C2S™ FLMCTISN IS
CUE T8 CENSTRAIN

Rav WRITTEN T8 MINIMIZE THE NUMBER BF THRESKHOLD
SREFECTING NETWRRK, USIANG MULTIPLEXING TECRNIQUES,
S FILMD USING THE 3PTIMAL SEARCH TECHNIGUE, AND THZ
THz NUMBER OF GATES RESUIRED PLUS AN ERR8R FUNCTIBN
TS

MBT ZEING SATISFIED

A
C

N

G
-
=
[

Al

PROGFAM LISTING

Tho MAIN PROTGRAM REALS [N THE [NPUT DATA AND SELECTS THE GATE J
bEITH MUST CARRECT THE SPECIFIED NUYBEFR SF ERRBRS AT ANY PBINT BN THE
P CUPE.  THE MAIN PRECRAM DETERMINES WHETHER THE ANSWER FURNISHED BY
THE SUBRRUTINES SATISFIED THE CONSTRAINTSe IF S8, IT PRINTS 8UT ThE
ANSAER,

MAIN PREGRAM
MAIN FRECRAM FAR MULTIPLEXING WITH THRESHGLL GATES USING METHBD 2

DIMENSTIeN KD(PO);KBUT(EO);LEUT(23),L8UT(20),GB(20)

ZEMMay F(’C)nA(43:20))U(?O)lL(?”):GAD(EC);KT(EO);KBP(EO):Z(EC);
1ﬂ(?ﬁ);V(??);“(?Q);X(lﬁ)JXN(10):VAR(QQ)JKU(2071UN(EO)JLN(20):NV:
ETFJC(T;CSAT:E?Q:CFT)CFF;KSC

REAL LaLM,LeuT

INTEGER FaX, XN

THE »EXT 17 CARDS READ IN TKE INpUT DATA AND SET THC INITIAL EUTRUT

VALUES .

1 Fex¥aT(215)

CASZENVHNG

\.vzﬁ_:*\v

READ(E,3) (CACTLLJ1) S 11=1,KA)»JL=14NG)

3 FeRMAT(ZF{Ceb)
SEAD(S, 4 (U(I?):I2=1:NG)
READ(E,4) (L{I3),13=1,\0)
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=

FERMAT(8F12.4)
5 RFAD(S,56)ERR
6 FERVMAT(F102)
D8 7 las1,NG
KSUT(14)=1
CAUT (1= 14s)
7 L8UT(TaysL(14)
READ(E,8) (K2P(15)s15=212N0)
FERMAT(171D)
28 e 16=1,NG
<0 (18)Y=k3p(14)
2 (T(IA)-<‘9(IL)
THE NEXT 1% CARDS PRINT aUT THE INFARMATISN READ IN.
uNITt(éplq) \NGaNVIERR
10 FORMAT(1RD,'NG=,15,3X,INV=",15,5%,'N3, 9F ERR=',F10,2)
JRITE(611)
11 FARMAT ({Ho, ' A MATRIX VALUES!,
SRITECESSY  ((A(172002)217215%KA)2d2:19NG)
ARITE(5212)
12 FERMAT(1F2s U VaLUESY)
,DITE(é,‘*) ('.,(18)11231;‘46)
RITELE613)
FRRMAT(1h0s ! L VALUESY)
FRITECR ) (LO19)2193140NG)
4"&'*(0) L)
th FERVMAT (1~0, <35 VALUESY)
SRITE(822) (4RO J3)2J3=4,NG)
THE T8 L=e3P TERVINATED 2V STAuE‘F\T 2g SELECTS THE GATE J THAT MLST
CERFECT TAE FPREXS AT A PARTICULAR TIvE.
R 22 J=i,NG
CSAT=1.0E4+15
TE 1T J4=1aNG
KUY zKD(Jh)
KT{Jb) =KD (J4)
15 <2P({us)=<n(Js)
CKTS2C8C
C«P=20C
«eCsn
THE NEXT 11 CARDS SPECIFY THE VALUE €F CkT AND CALL SUEREBUTINE CBNST.
THEY ALSS CRECK TP SEE THAT ALL ZHONSTRAINTS WERE SATISFIED. IF
CSAT %AS A2T n» THEN CXT 1S INCRCASED AND CBNST CALLED AGAIN,
ce 2R UB=1a4n
IF(KBCES2) 18 79 16
IF(CSATSE+Ce) G TH 24
16 CTKP=7KT

o

[y
w

[§ (

4

93

Y

L}

C‘(T=:‘<T*5n
CFT=1e%E+15
'F:sloCE+15
(JC—\_

Iwstl

TALL CANSTIJs TW,KASNYD)
'\L'-Z r-a\ TI\ i
THE SEXT 7 CARDS FIND THE MAXIMUM K(1) REQUIRED BY ANY GATE J Tg
. C?E“ECT FRR CRRA~Se THFESE CARDS ACCUMULATE THE SUTPUT INFBRMATISN.,
£8Sliv=_
T8 27 Jbsli\T
TF(K2P(JE) e GT X0, T(JS)) «BT(JA)=KEP(U6)
.((QL'V <o~.’\4+<glvT(J¢\)
27 CANTINUE
IFCUNCUY L ToUrUT(Y)) LAUT(UY=UN(D)
TEALM{ ) enToellPUT(Y)) LBUT(Y)=LN(Y)
e (Jy=LeuTldy-LeuT(dy

~N)



AN N

0

n

M

4
[y

-

-

w
tn

Y]

8 .
[
THE MEXT 19 CARNS PRINT BUT THE FINAL VALUES FBR CBRRECTING ERR ERRIRS

-
.

t-hlj\

f‘c

NN

rl)

TeNTINUE

IN TwE REALIZATION
RITE(6,20) CSAT,CKT ,
FERMAT (LX) CSAT='2F1Ce4,5Xs! CKT=',F1Ce4)
2RITE(631) (SUT(L1Y,L1=1,80)
FARMAT (1490, FINAL K VALUES ARE',10X,1C13)
AwRITE(6132) (LAUT(L2)YL2=1,NG)
FESMAT(1H2s " FINAL U VALUES ARE',10Xs10F10e4)
SRITE(E,33) (LIUTIL3)SL3=1,N0)
FERMAT(1mC,'FINAL L VALUES ARE',1C0X,10F1C,4)
SRITE(4234) (JQ(L#)JL4 1,N3)
FORVMAT(/,1NEL GARS ARE',10F1045)
RITE(4,75) <95y

A

Tg GATE J

NSTRAINTS

sHgULD

FRRUATI/, 1SUM 9F FINAL K VALUES 15:',15)
qTae

LER=JTIvE CengT DETERMIMEg WHETHER THE [NPUTg

SR 0 AT EATH PoINT AN TH" N CUBEe IT THEN CALCULATES THE MINI=-
OAND TaE MAXYIMUM 2 VALUES FoR EACH GATE | FEEDING INTE GATE Je

sUBReUTINE CENST

UTINE CoNST FER CALCULATING VALUES FAR THE C8

USROUTINE CONST(JaInakKA,NV2)



CIMEMSIeN IFL1(22)s1FL2(20)

CoMMEN F(20),A(40,20),Ul20)sL(201,GAP(20),KT(20),XBP(20),2
L0200, V022), 14120}, X0120) ,XN(10), VAR(40) ,KU(20),UN(22),LN(20
2NCaCATHCSATIERRICFTIZFO,KSE

REAL L,LAM

INTEGER F,X, XM

C  THE NEXT 4 CARCS SET INITIAL VALUES.

(2¢
s

2
#

ERYINATED 3Y STATEMENT 22 PERFSRMS THE FUNCTIBM BF A
PUNTEZR INDEXING THE INDEPENDENT INPUTS THRBUGH ALL PBINTS
e

I
RnS ASSIGN THE PREPER VALUE T® INgEPENGENT INPUTS X

OO0

AVD XN,

IF(X(1)elLEel) GP TE &
X(1)=n

X{(2)=sx(2)+1

[FIX(2)s Eel) G2 TO 4
x(21=23

x(3Yzx(3)+12

[FIX(3)elLEel) 32 T2 4
X(3)=D

X{4)=X(4)+1q
[F(A{L)LELL) GA T2 &4
X{(4)=0

X(D)=x(5)+1
IFIX(S)elEel) 39 TE 4
X(5)=2

X(6)=X(5)+12
[FIX(&)4LEWL) GR T2 &

Y(&)=s2
X{7)sX(7)+1
IF(A{7)elEel) G TB 4

A47)yzD

X{3)=xX(R)y+1
IF(X(R).LEOI) G TE 4
X(2)=12

X(Z3)=x(2)+1
IF(X(9)YelLTs1) g°
Xx{2)=z7
X(1D)=x(1C)+1
4 2% Z Tazi,Ny
AN(TSY=lex(T4)
S IeNTINMUE
C  THE “EXT 19 CARDS CALCULATE THE FUTPUT AF EACH GATE({ B8R 0)s» AND CON=
C STIJIT THE MATTIX SF INPUT VARIAZLES F8R gpACH PBINT 8N THe N CuBe,
DT A IS:i;KA
6 VAR(IZ)=zC.

-4
[/
S

2 3 laz1aNY
TAAET 44ty
VAR TAAY=XN(TR)
7 NAR(IE)=((16)
8 CENTINUE
VAL=D
SR 17 17=10N3
08 9 Jils1,KA



@)

()

TN

0

VAL=A( U1, 17)*VAR(JL ) +VAL
IF(VAL-LT.U(I7)) G8 T2 10

r— 7)=1

368 Ta 11

F(I7)=2

TA3=T7+42%0Y

VAR(TAR) =g (]17)

VAL=EZ

12 CoNTINVE

THE \EXT 25 CARS3 ”‘LCULATE THZ MINIMUM W AND MAXIMUM Z FBR EFACH GATE
I »AICE FEERS IMNTR GATE Je

T2 21 I8=1s\G

[AC=Z2*rV+18

IF(A(TIAL pJ)o'Fo(nl)) G3 T8 21
TF(E(J)eEmel e ANDSF(IR)4EQe1) G TS 16
IF(F(J)eER01«PReT([%)eEQH1) 38 TO 24
SF2s0.

o% 13 19=1s%4
SF2=A(192J)«yAR([9)+3F2

CANTINLE

IFCIFLI(IR)«E2e1) GA T2 15

[l
- O

—
oW
oy
1
.
-
—

| D
on
—-—
n
U)o

un N}y

s
8,
[9)]
n
-
1]
@}
°

28 17 J2=1,<4A
SF1sA(_2,J)=VvAaR(J2)+531
17 CeNTINLE
IF(IFL2(15)sE%etly G2 7B 19
1€ IFL2(I8) =1

<(13)Y=8F1
19 IF(SF1eGC«w{12)) GO T 24
2C “(IRy=z5F}
21 IoNTINUE
X(1)l=X(1)41
2 TH~NTINUE
o8 22 3s14NG
IFL1(U3)=0
23 IFL2(J3)=7
CALL SEchu(J)IVIKA)VVE)
THE MNgXxT 10 ¢ARDS CALCULATE THE NEW UPPER AND LR2WER LIMITS FBR THE
TRREQAALD SF GATE J IN ARDER TE CBRRECT FERR ERRSRS.

Jdy=o )
Lt =0
29 24 Js=1aNS
MM Y2+ b
IFLA(YMIJYsEZeDe) GA T9 =4
VIJd#)=s, (Jed={a(Mv, J)®ERR)/KRD({ J4)
S{JayzZ(dey+a(My, Jy*ERR)/KERP(J4)
SARP(L)Y=M L) =Nt D)
TFOV(gs) o TayN(d)) UNCJY =V (J4)
TF(Hede) o TN (JY) LAN(L) sH{JS)

24 CANTINUE
RETURN
END
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SL.32OUTING SEARCH DETERVINES THE v AND H VALLES £9R £ACH GATE 1

85

FEETING [NWT3 3ATE J, USING THE GIVEN < VALUES, AND CALCJOLATES THE CAST

FLNCTI2N, [T THEN PERFARYS THE SPTIMAL SEARCH, CALCULATING TrE C3ST
FUNCTISY AFTER EACH STEP.

SUBRAUTINE SEARCH

SUBRRAUTING SEARCH(Js [WyKANNV2)

CAMVAN F(20),A(49,20),U(2C),L(20),0AP(20),4T(20),K8P(22),2(23),
1.(20),VI20),H(22),X110),XN(1C), VAR(40) ,KU(20),UN(22),LNL20),NY,
2LGscRTscSATSERR, cFTocFPA<Se

KEAL LaLA

THE “EXT 4 CARDS SET INITIAL VALUES,

CFT=143E+15

CFP=143E+1C

<P98z42

<ovP=g

1 «SuMT

™ £
- e

L]
(o]

")
—

1=21,NG
2 KSUMT=<S vVT+<T(11)

THE_NEXT 45 CARDS CALCULATE V AND H VALUES, AND DETERMINE THE ERRER
QUZ TS Teg GAP AITH ERR ERRGRS NBT BEING WITHIN THE GAP 9F GATE U
YHEN N9 ERRAIE ARE MADE.

FErRrGel

e N 12st.d

TTaty24]2

IF(A{TI,J)elLFa2al) 33 T 3

VEIZ2)Yzal12)=(Aa( 11 sJ)*FRRY/KT(I2)

(e :Z(IQ)+(A(II,J)*EQR)/KT(IE)
THE FSLLAA1%5 2 CARDS MUST BE MEDIFIED IF A MINIMUM GAP IS T8 B
SPECIFICL.

Ellsl(u)av(]2)



(@ XS]

oy ()

(@)

aOn

Mo

(@ NS]

(@

aNa]

TULsR({I2Y-U() .
IF(ELL Eoequ) ELL=1'CE‘C4
IF(EpL'L;.Oc?) EUL=1’OE'O4
IF(ELL«LT+0eQ) ELLSDeD
IF(EVLaLTaCe?) EUL=sCen
PQJ-FQP+”LL+EUL
3 TONTINUE
THE NEXT 13 CARDS CALCULATE THWE ERRSR DUE TS THERE NAT BEING A GAP;
IF ANY v VALUES ARE LESS THAN ANY H VALUE.
24 EFGT=D,
”E‘ Q. I3-;.lu'
[GsMV24+13
IF(ALIGIUYeLE0De1) G2 T &
o8 20 Jl=1,4J
ITH=NV2+J1
[F(A(IHIJ)«LE«De1) G2 TE 20
THE FSLLASAING CARD MUST g MEDIFI1ED IF A MINIMUM GAP IS 1B BE
SRECTFIED,
EFSg(2(13 )+(A(Iu;J)*FpQ)/<T(13))-(N(u1)’(A(IH s Yy *ERRY /KT (J1y)
IF(EFGSLET.T4D) EFGS1.0F=2y
IF(EFGe Tede?) FcGs0el
FFGT=EF3T4+EFS

THE ‘EVT 4—bAQ“5 CAICULATE THE C35T FUNCTION USING XT VALUES.

CSAT=533+5F3T
CFT=CSAT+XS T
THE RIMAINING STATEMENTS COMPRISE THE SEARCH TECKNIgUE FEBR THE K
VALUES,
IF(CFToLT-CFPeANDKPMPLERCL) 538 T8 15
[IFICFTe3ECF2) g3 TR &5
THE KU VALJES ARE SET EJUAL T8 THE KT VALUES BgCAUSE THE CBST FUANC.
TI3N wAS REDUCEN,
Df B0 J4=1aNG
2C KUlJa)s<T(Ja)
IF(XKEA3eE7a1) ITwzlu+l
<r3c=z7

86

THE LZXT 4 CARTS START AN FXPLERATPRY SEARCH IF 8Ng IS N8BT ALRZADY
IN PR2GRESS.
53 JF(KZSF«AEel) G99 T9 &
IF(IYaGTeNG) G2 T8 12
5 <E3Ps
<pmP=0
[FICFTALTWCFPy B T9 7
THE AT VALJES ARE RpSTIReC T8 THE VALUE THEY HAD BpFSRg THE STEP
SECAUSE ThE C£3GT FULNCTIBN INCREASED,
22 06 lasq,\NG
6 <Tlla)=<Ut(l4)
3% T3 &
THE BIZST PRCyISUS C3ST FUNCTIBN IS SET EqQUAL T8 CFT BECAUSE THE SEARCH
nAS SUCCESSFUL s
7 CFR=CFT
1.SG=1
RIF(K=2a3,7%61) G99 75 1
TRE NZXT 2 ZARDS INZEX KT(Iw) PgSITIVE BY 1.
9 KT =<T(Iw)+1
<P2S=1
o2 T8 1
T=E NEXT 4 CARTS INDEX TWE KT(l4) NEGATIVE Ry 1 AND INDEX Iw FOR THE
NEXT PASS,
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m

10 «<P4S=z0
IF(KT(IAYoLE«y) 59 T2 11
T A)=a<T(IwW)al
TasToe
538 79 1
11 <T(lv)=y
[w=1 i+
IF(IweLE«NG) G8 T9 ©

—
n
i
—-

Rl

(TwSBeE~+C) 68 TE 13
14

—
'D

e
z

DG .

S -
+ w
= AN e 4] N L) e

TLTLCFP) G3 T9 14
2 CARDS RESTHRE THE KT VALUES Tsg TuE VALUES THEY KAD REFQRF
\r%?gz STe=, SINCE THE LAST STeP FAILED T9 REDUCE THE CBST
15 Jz2=1.M%
<T(J2)Ys<(d2)
WEXT 11 cARRS AccOMPLISH THE PATTERN MOVE.
S0 1R U3=1aNT
IF(CFTaLTCFR) CEP=CFT
DELEKT(J3) =420 (J3)
KRP(J3)=s<T(JN)
<L) =T (U3
IF(KT(J3)«LEs1) 33 T9 17
<T(J3)=<T(J3)+TEL
A Ta is
17 «T(J3y=1
18 CENTINUE
«PMP=z1
50 T2
END

._‘
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F(I)
Utd)
LEd)
UNCJ)
LNGD)

GAP(J)
KT(1)

KBP(1)

KULT)

2(1)

wil)

X1
XN 1)
NG
NV

ERR
Al(l, )

VAR(I)
Vily

H(T)

CKT

CKP

VARTABLE LIST FOR METHOD IIT PROGRAM

PREGRAM DBCUMENTATIEN

‘ VARIABLE L1ST

~QUTPUT FUNCTIEBN VALUE FBR GATE le(y SR 0)

=UPPER LIMIT FBR THE THRESHBLD BF GATE Je

rLBWER LIMIT FBR THE THRESHALD 8F GATE Jo

*UPPER L IMIT FBR THE THRESHALD B8F GATE J NECESSARY T8 CBRRECT
ERR ERRHRS,

=L8WER LIMIT FBR THE THRESHBLD B8F GATE J NECESSARY T3 CHORRECT
ERR ERRBRS.

= ACTUAL GAP BF GATE J AT A PARTICULAR TIME,

=TEMPARARY K VALUES BEING USFD IN AN ATTEMPT T8 REDUCE THE
CARST FUNCTIEN,

eTHE REST K VALUES FBUND IN PRECFEDING [TERATIONS«{BASE POINT
K VALUES)

»TEMPSRARY STBRAGE F8R THE [MPREVED KT VALUES DURING AN
EXPLARATERY SEARCH, BEFBRE COMPARING THE KT VALUES T8 THE
KBP VALUES,

»THE MAXIMUM VALUE BF THE SEPARATING FUNCTION 8F CATE  SUCH
TRAT F(J)=1 AND F(1)=1) WHERE THE gUTPUT gF GATE [ IS AN
INPUT T8 GATE Js

*THE MINIMUM VALUE B8F THE SEPARATING FUNCTIBN B8F GATE J SUCH
THAT F(J)=0 AND F(1)=0, WHERE THE egUTPUT BF GATE ! 1S AN
INPUT TR GATE J»

=THE VALUE 8F THE INDEPENDENT INPUT X({1) AT A PARTICULAR PgINT
BN THE N CUBE«(! 38R Q)

=THE VALUE 8F THE INDEPENDENT INPUT XNBT(I1) AT A PARTICULAR
PaINT BN THE N CUBE.l1 ER 0)

*NG B8F GATES IN THE REALIZATIGON,.

eNg BF INDEPENDENT VARIABLES IN THE REALIZATISN,

»N3 SF ERRARS THAT ARE T8 BE C8RRECTED.

=MATRIX 9F WEIGHTS FOR ALL INPUTS I FEEDING INTS GATE Je (1(1
THRU NVI! WEIGHTS FSR INDEPENDENT INPUTS X(1) THRU X(NV),
T(NV+1 THoU 2NV)E WEIGHTS FAR INDEPENDENT INPUTS XN(1) THgU
XN(NVY, 1(2NV THRU 2NV+NG): WEIGHT FBR GATE I FEEDING INTS
GATE J

~VALUE BF INPUT 1 fEEDING INTH GATE Ja(1l 8R O)

PMINIMUM VALUE BF THE SEPARATING FUNCTIAN BF GATE J WITH ERR
ERRORS MADE IN THE 1 SET O6F GATES, WHERE F({l)=q AND F(Jl=q.

»MAXIMUM VALUE BF THE SEPARATING FUNCTIBN BF GATE J WITH ERR
ERRERS MADE IN THE 1 SET BF GATES, WHERE F(I)=0 AND F(J)=0.

«THE TEMPE2RARY VALUE BF THE CONSTRAINTS ERRAR MULTIPLYING
FACTBR. ERRARS DUE T8 THERE NoT BEING A GAP ARg MULTIPLIED
BY CKTs

*THE PREVIBUS VALUE B8F THE CONSTRAINTS gRRBR MULTIPLYING
FACTBR
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KSC *A FLAG INDICATING THE SEARCH FBR THE MINIMUM K VALUES IS
CeMPLETE .

KSUMT  =SUM 8F KT VALUFS AT ANY TIMF.

ESG *THE ERRBR DUE T8 THE GAP w]TH ERR ERRERS NBT BEING
WITHIN THE GAP ESTARLISHED WHEN N8 ERRBRS ARE MADE.

EFGT =THE ERRIR DUE T8 THERE NST BEING A GAP FSR THE THRESHELD
WHEN ERR ERRARS ARE MADE,

KESP *A FLAG INDICATING THAT THE SEARCH RBUTINE 1S PERFORMING AN
EXPL3RATBRY MABVE,

KPMP *A FLAG IMDICATING THAT THE SEARCH ROUTINE 1S PERFBRMING A
PATTERN MBVE.

KPBS =A FLAG INDICATING WHETHER A KT VALUE WAS INDEXED PBSITIVE 8R
NEGATIVE IN THE LAST STEP,

IWSq mA FLAG INDICATING WHEATRER AyY KT VALUE REDUCED THE CqST
FUNCTIBN IN THE LAST ExPL.3RATaRY MgyE,

KBSUM =SUM BF THE BEST K VALUES FSUND.

UBUT(J)=THE UPPCR LIMIT FaR THE THERSHBLD §F GATE J USING THE BREST
K vALUES

LOUT(U) =THE LOWER LIMIT F9R THE THRESWSLD 8F GATE J USING THE BcsST
K VALUES.

KSUT(1)=ThHE MINIMUM NUMBER 8F GATES IN SET I REQUIRED T8 CBRRECT ERR
ERRARS IN THE GIVzIN REALIZATION,

AMETaJd)=SAME AS A(I,J) EXCEPT THAT IT CONTAINS THE INDEXED VALUES FBOR
THE WEIGHT 8F THE GATES ! FEEDING INTS GATE Ja

UNE(J) «UPPER LIMIT F8R THE THRESHELD 6F GATE J AFTER THE BT VALUES
HAVE BgpN CHANGED, ANC WITHIUT ANY ERRRS MADE,

LNE(J) = BWER LIMIT FBR THE THRESHIL D 8F GATE J AFTER THE BT VAL UES

' HAVE BEEN CHANGED, AND WITW3UT ANY ERRBRS MADE,

GNE(J) -ACTUAL GAP 3F GATL J WITH N9 gRRORs CRRRECTED AFTER THE BT
VALUES HAVE BEEN CHANGED,

BEP(1,J)=BASE PSINT VALUES FBR THE WEIGHT S¢ GATE 1 FEEDING INTE GATE Je
BT(12Jd)~TEMPORARY VALUES F9R THE WEIGHT &F GATE 1 FEECING INTE GATE Ja
BUCT,J)»TEMPIRARY STORAGE BF THE BT VALUES DURING AN EXPLORATERY BETA

SEARCH,
SIG "TWE VALUE 8F THE BETA INCREMENT AT ANY TIME.
NGF *THE INPUT RETA yALUE FEEDING INTS GATE J THAT IS BEING INDEXED
AT THE TIME.
KSUMP  »TkE BEST PREVIBUS SUM BF K VALUES,
IFVIN) =MATRIX 8F THE INITIAL FyNcTIen VA LUES BF THE GATE J AT EAcH
PSINT B8F THE N CUBE.
CFNR *A FLAG INDICATING THE PRSPER BUTPUT FUNCTIBN IS NSBT REA-
LIZEC F3R EACH PHINT 5N THE N CUBE,
KRI{1) =THE X VALUES READ [N
IBv =A FLAG INDICATING THAT THg REALIZATIBN IS BEING USED JUST AS
IT WAS READ IN
IMPS3L =A FLAG INDICATING TWAT TRE REALIZATISN CALCULATED IS AN
IMPR3VED SBLUTION,
ILLSEL =A FLAG INDICATING THAT THE BRIGINAL SUTPUT FUNCTISN IS NBT
REAL1ZED BR THE CANSTRAINTS WERE N8BT SATISFIED WHEN ERRSRS
WERE MADE

NBTE! GATES MUST RE NUMBERED IN ASCENDING BRDER T8 THE BUTPUT GATE.
NS GA;E CAN FEED INTS A GATE WITH A LEWER NUMBER THAN ITS 8wN
NUMBER .
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FL@W CHART F@PR THE METH@D 3 PR@GRAM

READ

NG, NV
((A(I1,J1),1I1=1,KA),J1=1,NG)
(U(12),I2=1,NG)
(L(13),13=1,NG)

ERR
(KRI(I4),I4=1,NG)

WRITE

NG, NV,ERR
((A(15,32),15=1,KA),J2=1,NG)
(U(16),16=1,NG)
(U(17),17=1,NG)
(KRI(I8),I8=1,NG)

N\
25
@‘ '"'" ><J<—- 1,NG >

y
SET INITIAL VALUES

4
- 15
13< 1,IPC

4
STEP THE INDEPENDENEL
INPUTS T¢ THE NEXT
P@INT ¢N THE N CUBE

N4

CALCULATE THE @UTPUT

@¢F GATE J AT EACH

P@INT ¢N THE N CUBE.
F(J)=IFV(13)

I4

The next section of the
program (thru A) calculate
the output Aj should have
for each point on the

n cube.



The following section of the program performs the search of the
Bij values.

WRITE F(J) F@R EACH
PPINT @N THE N CUBE.

) !
N]/" C@ULD THE FUNCTI@N BE
\\&_ REALIZED USING THE

LAST BT VALUES?

Y
BT (1)=BU(1) -
FéR ALL I F%-— <:j IS IMPS@L=1 ?4:>y | MKE A
AND IBPMz =17 JT| PAIIE
N

-—il<: IS IMPS@L=12 j)
= Y

[-ﬁGF=1
y .

BU(I)=BT(I) F@R ALL I,
NGF=NGF+1, AND
KSUMP=KSUMT

N ("  HAVE ALL THE BT ‘:>

l \\ VALUES BEEN INDEXED?
Y
INDEX .
BT (NGF,J) WAS ANY BT Y
VALUE CHANGED? ‘
lN
SET INITIAL £
C@NDITI@NS DECREASE THE
: BETA INCREMENT

A

| N IS THE BETA
INCREMENT < .001

Lo




The following section of the
program (thru E) selects the
best answer found up to that

time.

10
—{ 12< 1,10

/

IS THE SEARCH FOR N
CKT = CKT*5.0
K VALUES COMPLETE? .
N

Y
4

1S THE C@ST \ N

ERR@RS (CSAT)=07?
Y

FUNCTI¢N DUE T¢ ‘//V,

@

@s THE FUNCTIGN REALIZABLE?}— ILLSGL

i
'._l
|

I N

Y

(:_ IS KSUMT >KSUMP? M/

( IS KSUMT = KSUMP? )_.__1‘_‘___> IMPSGL = 1

Y

IS THE NEW GAP WIDER \ v
THAN THE WIDEST PREVIQ@US

GAP? /

N




p—— —

. )
"“><f13<%f1,IP

STRBuTEE S RERENRENT

P@INT @GN THE N CUBE

|

CALCULATE THE
@UTPUT ¢F EACH GATE]

!

The following section of the
program (thru 23) calculate
Wy and z; for each Gate Ai*
and finds the new gap.

(: IS IFV(13) = 17

1)

CALCULATE
EACH Z(I)

CALCULATE EACH
W(I) AND FMAXO.

23

AND FMIM1.

(:fs GNE(J) >0 -\
b

®<_

FUNCTION CAN'T BE
REALIZED USING THE
LAST BT VALUES.

CALCULATE KSUMT

The section of the program
(1 thru H)calculates the
cost function due to errors.

CALCULATE E@G

CALCULATE EFGT

(:::>s—-—-— CSAT=E(@G+EFGT




The following section of the program
calculates the cost function and
performs the search of the k values.

CFT=CSAT+KSUMT

4

IS KPMP=1 AND Y , MAKE A
CFT<CFP? PATTERN M@QVE

N

(15 crr<cre? 4:}_____._ Y ~
‘iN "5>"<.:')
/ A -

KTéI)=KU(I) I)—KT(I)
F@R ALL I R'ALL I
i INDEX KT (IW)

ARE ALL K N
VALUES EXPLQRED? /

i’Y

<:_ WAS ANY KT N\ Y

VALUE CHANGED? /

JF
K SEARCH -
IS CPMPLETE,

)

CALCULATE THE NEW UPPER WRITE

J' (LPUT (N12),N12=1,NG)
IS THE SEARCH USING THESE\y (GPUT (N13),N13=1,NG)
BETA VALUES C@MPLETE? " ((B@(N14, N15),N14 1,
NG),N15=1.NG)
N (K@ (N16),N16=1,NG)

‘ii’ 1!") KESUM

0
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METHOD IIT PROGRAM

PR33RAM DACUMENTATISN

VARIASLE LIST -

Feh =BUTPUT FUNCTIBN VALUE F8R GATE l.(1 SR 0)

L{J) © <UPPER LIMIT FBR THE THRESHILL B8F GATE J.

LtJ)y  -LSwER LIMIT FBR THE THRESHILD 8F GATE Je

UNCJ)  =UPPER LIMIT FBR THE THRESHBLD €F GATE J NECESSARY T8 CBRRECT

' ERR ERR9RS, - _

LN(J)y -L®AER LIMIT FOR THE THRESHALC BF GATE J NECESSARY T9 CBRRECT
ERR ERRARS,

CAP(J) - ACTUAL GAP SF GATE J AT A PARTICULAR TIME.

KTUD)  =TEMP2RARY K VALUFES 3EING USEC IN AN ATTEMPT T8 REDUCE THE
C3ST FUNCTIAN.

KEP(1) =T-E BEST K VALUES FSUND IN PRECEEDING ITERATISNS«(BASE PBINT
K VALUES) ,

<U(1) -~TEMPIRARY STARAGE FAR THE [MPROVED KT VALUES NDURING AN
EXPLSRATSRY SEARCH, BEFSRE CHMPARING THE KT VALUES T8 THE
KBP VALES.

Z(Iy  =TRE MAXI™UM VALUE OF THE SEPARATING FUNCTISN 8F GATE J SUCH
THAT F(JU)=1 AND F(1)=1, WHERE THE BUTPUT BF GATE I IS AN
INPUT T SATE J» - -

WOLY o =TRE MINIYUM yALUS SF THE SEPARATING FUNCTIBN 8F GATE J SUCH
THAT F(J)=0 AND F(1)=0, WHERE THE BUTPUT 6F GATE I [S AN
INPUT T2 GATE J.

¥ty =THE VA JE 8F THE INDEPENCENT INPyT X(I1) AT A PARTICyU AR PBINT
BN THE N CUBEs«(1 9R 0) , ‘

XNET)  =THE VALUE 8F THE INDEPENDENT INPUT XNBT(I) AT A PARTICULAR
PINT 8N THE N CLBE.(1 o] 9)

\G =N3 SF GATES IN THE REALIZATION,
YV =N3 °F INCEPeNMIENT VARTABLES IN THE REALIZATIAON,
ERR <N3 SF ERRBRS THAT ARE T2 BE CBRRECTED.

AL, J) =¥ATRIX °F WEIGHTS FBR ALL INPUTS I FEEDING INTB GATE Je (I(1
THRJ V)T WETGHTS FAR INDEPFNDENT [NPUTS X(1) THRU X(NV),
TWVl THRy 2AV) 1 WETGHTS FIR INDEPENDENT INPUTS XN(1) THRU
XN(NV) 2 102NV THRU 2NV+NG) 1 JEIGHMT FOR GATE 1 FEEDING INTS

GATE Ja
VAR(T) =VALJZ BF INPUT I FECDING INTE GATE Je(i SR 0)
VII)  <MINIMUM VALUE 5F THF SEPARATING FUNCTIAN 8F GATE J WITH ERR
ERRIRS MADE IN THE 1 SET BF GATES, WHERE F(I)=1 AND F(J)=1e
(I =¥AXIMUM VALUE BF THE SEPARATING FUNCTIBN BF GATE J WITH ERR
ERRGRS MADE IN THE 1 SET 8F GATES, WHERE F(1)=sg AND F(J)=zQs
CXT =THE TEMPIRARY VALUE B8F THE CGNSTRAINTS ERRSR MULTIPLYING
gA:T?Q- ERRQORS DUZ T8 THERE NET BEING A GAP ARE MULTIPLIED
Y CKTe

=THE PREVI3US VALUE 2F THE CANSTRAINTS ERRSR MULTIPLYING
FACTIR,

(]
A
Ry
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KSC =A FLAG INDICATING THE SEARCH FBR THE MINIMUM K yALUES IS
COMPLETE »
XSUMT  =8LM 8F KT VALUES AT ANY TIME. .
£E63 -THE ERRAR DUE T9 THE GAP WITH ERR ERRBRS NBT BEING
WITHIN THE GAP ESTA3LISHED WHEN NO ERR3IRS ARE MADE,.
EFST =THE EXIRIR NUE T8 THERE N9T 3ZING A GAP FBR THE THRESHBLD
WHEN ERR ERR3IRS ARE MADE.
KESD =A FLAG INDICATING THAT THE SEARCH RAUTINE 1S PERFBRMING AN
EXPLARATYRY M3IVE. '
KPMD =A FLAG. INDICATING THAT THE SEARCH ROBUTINE IS PERFBRMING A
PATTERN M3VE.
KPasg =A FLAS INDICATING WHETHER A KT VALUE WAS INDEXED PBSITIVE B8R
NESATIVE IN THE LAST STEP.
IWS9 -A FLAG INDICATING WHEATHER ANY KT VALUE REDUCED THE CasT
FUNCTIBN IN THF LAST EXPLSRATSRY MSVE.
K8SUM =3SUM 9F THE BEST K VALUES FRUND.
LUAJT(J) =THE YPPER L IMIT F2R THE THERSHBLD 8F GATE J USING THE BEST
K VALJESe _
LIUT(I)=THE L9WER LIMIT F3R THE THRESHBLD 8F GATE J USING THE BEST
X VALUES,
KAUT(I)-THE “INIVYUM NUMBER OF GATES IN SET I REGUIRED T9 CBRRECT ERR
ERRARS N The GIVEN RpALIZATISN,
AMUTSJ) =SAUE AS A(1,J) EXcEPT THAT IT ANTAINS THE INDEXED VALUES ESR
THE JEIGHT 9F THE GATES I FEEDING INTS GATE Jo
UNE(JU) ~UPPEQ LIMIT FO9R THE THRESHALD BF GATE J AFTER THE BT VALUES
HAVE BERN CHANGED, AND WITHAUT ANY FRRARS MADE,
LNE(J) =L94ZR LIMIT FBR THE THRESHBLD BF GATE J AFTER THE BT VALUES
HAVE BpoN CHANGED, AND WITHRUT ANY pRRBRS MADg,
GNE(J) =AcTUAL GAP gF GATE J WITH N® ERRBRS (ORRECTED AFTER THE BT
VALUES HAVE B3EEM CHANGED, .
32P(1,J)-2A3E 29INT vALUES FQR THE WEIGHT &F GATE I FEEDING INTB GATE J.
RT(1,J)=TEMPARARY VALUES F8BR THE WEIGHT §5F 3ATE I FEEDING INTO GATE Je
BUC1,J)=TEMPARARY STARAGE €F THE 3T VALUES DURING AN EXPLORATORY BETA
SEARCH
SIa =THE VALUE 9F THE 2ETA INCREMENT AT ANY TIME.
NG =THE INPUT BETA VALUE FEEDING INTS GATE J THAT IS BEING INDEXED
AT THE TIME.
KSUVMP  =THE BEST PREVIAUS SUM B8F K VALUES.
IFV(N) «MATRIX 9F THE INITIAL FUNCTIBN VALUES 8F THE GATE J AT EACH
FEINT SF THE N CuREg,
CFNR -A FLAG INDIZATING THE PR9PER BUTPUT FUNCTIAN IS NBT REA-
LIZFC FRR EACH PRINT B8N THE N CUREe.
KRPI(]) =THE < VALUES READ IMo
1BV =A FLAG INDICATING THAT THE REALIZATIABN IS BpING USED JUST AS
IT VAS READ IN.
IMPS3L =A FLAS I\DICATING THAT THE REALIZATION CALCULATED IS AN
I[MPRAVED SALUTIAN
TLLSAL <A FLAG INDICATING THAT THE SRIGINAL EUTPUT FUNCTIEBN IS NaT
REALIZED BR THE CANSTRAINTS AERE NBT SATISFIED WHEN ERRARS
FERE MADE
MNOTEZt GATES MUST SE NUMREZRED IN ASCENDING BRDER T8 THE SUTPUT GATE.
NS GATE CAN FEED INTB A GATE AITH A LBWER NUMBER THAN ITS 8WN
NUMBER

m

THE MAIN PRIGRAM READS IN THE INPUT DATA AND SELECTS THE GATE J
LHICH MUST CoRRIECT FRR ERRARS AT ANY POINT 8N THE N CUsE. THE MAIN
DRESRAM ALS® DETERMINES WHETHER THE ANSAER EBTAINED 8Y THE SUBRSU=-
TINES IS Trmi BFST ANSYWER ABTAINED UP T THAT TIME, AND CONTINUES T8
CALL THE 3U3R2UTIMES T2 TRY AND FIND A BETTER ANSWER, AFTER ALL GATES
J HAVE SFEN USED TR COBRRECT ERRERS, THE FINAL RESULTS ARE PRINTED 6UT.
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MAIN PRAGRAM
N PR83RAM FIR MULTIPLEXING USING METH3D 3

DIMENSION 39(20,20)s<8(20),UB(20),LE8(20):KD(20),68(22)

COMMIN AM(40,20).A(40,20 tU(ZO)JL(EO):UAP(ZO)lUNE(EO):LNE(EO)l
1”*F(’O)JJ\(EC)JL\(ZO):Z(?O)JJ(ZO)JV( DYaH(20YsX(19),XN(10)sEMAX
212323201 ,VAR(42),38P(20,20),8T(20, 20).8U(20,2C),NG,NV,CKT,CKP,CSAT,
351G “CF;(;JMr;KSUMTICQQJIFV(1EOO)JCFVQIKAJNV2)KT(29)JKRI(20)1
GKRP (20, Js IPCHIRVSKU(27)

SEAL L)IKOLTEDTI|S’|Kr

INTEGER X, XM

C THE NEXT 14 CARDS READ IN THE INPUT DATA,

1

o O+ W

TAD(S,1) NG,V
F“?“AT(EID)
<AsSZ*NV+NG
NV252 %Ny
IPCz2xaNy - ‘
READ(3,2) ((A(I1aJ1)r11210KA)SUL=12NG)
”“?“AT(SFlO 4
READ(5,3) (U(12),12=1, \G)
PEAD(S,3) (L(IB),I3=1 NG
FARMAT(301242)
ECAD(5,5) ERR
CopM T(plﬂ.p)
READ(E,6) (KIT(14)s14=1,NG)
FARMAT(1013)

c  THE MOXT 13 £ARZ3 WRITE EUT THE INpUT DATA THAT WAS READ.

7

2

0

11

(@

=

ARITE (627) NGINV,ERR
FSQVAT(lhoj' NG, 158X, 'NVS!, 155X, NS BF ERRe=1,F1ge2)

F;Q“AT(lHQ.f A MATRIX VALU;S')
“RITE(E42) ((A(135J2)515=212KA)sJ2=1sNG)
A#RITE(£,2C)
FERMAT(1RO, ' U VALUES")
N;ITE(élB) (UtI6)s1E21NG)

RITE(6s212) :
f“P“A’<*H\ * L VALUES")
WRITE(E,3) (LUI7)Y,17=1,N5)
ARPITE(5,11) (KRI(I8)21821,NG)
FERMAT(1402 " XKRD VALUES!,5X%Xs1015)

THE “NEXT 23 CAXIDS SgT CERTAIN INITIAL CBNDITIONS,

22 12 Js=1N5

KC(Jds)=1

<B(JsY=1

oo 23 JUsiaNG

7% 52 I8=1.J

e B2 JR=1.d

TADE JR+NY2

B3P (JR,I3)sA( 1A, 18)

BT(US,TR)=2RP(JR, IR)
3U(Jq.l°)~3%P(Jg.Ig)
CENTINGE

28 51 J8=1,\G
<RP(JR)=ART(JR)

DA 1 K3=1s%A
AV(K2,JR)1=A(43, %)
CANTINUE

SI5=2e3

NGF =1

18V=}

<SUMP=1070

(Ra] -
MEC=D



CALL PUTFUN
38 T2 16
14 CALL BETA(MBZ,ILLSSL,IMPS3L)
15 IF(¥AC.E3.1) 59 T8 28
16 CALL CSNTRL
THE NEXT 25 CcARDS PICK THE BEST RESYLTS fFRem ALL THE TRIALS MADE.
IF(CDAT _a-O.-AVD CFNR. EQ 'O') G T8 17
ILLSeL=1 .
38 TS 14
17 Ie(*S MTe5Te<Symm) G3 T8 14
IF(XSUMT«ETKSUMR) G5 TB 19
s (Jd)y=yuNn(id)
Letdr=sLriey)
58 (J)=UB(J)=LR(J)
IMPS8L =1
72 12 J4s1.NG
KD{JaY=K3P(J4)
13 20(J4,0) =0T (J4sd)
78 T8 14
19 UTEST=UN(J)
LTEST=LMOY)
STEST=UTFSTALTEST
380 =B (J) =Lt
[F(STESTLEG2(JY) G3 TH 14
U (d)=LTEST
LS(J)-LTEST
geldrsLRe ()= )
9 2“ \JS 11 VJ
<D(J5)=<3PKJ5)
20 29(J%,J)=RT(J52U)
IVPSIL=1
58 T3 14
THE NEXT 5 CARDS DETERMINE THE PREPER BUTPUT DATA,
21 (Q ”V'h
22 24 J7=11NG
FIKD(J7) BT eKS(JT7)) K2U(JT7)I=KD(JT7)
KBSUM=KAISUMLKR (J7)
CenTINLE
ceyTINYE
E “NEXT 14 CARDS PRINT 8UT THE FINAL GUTPUT VALUES.
ARITE(E3Y)
FORMAT(1HD,30X, Y FIMAL VALUES!)
SPITE(5,32) (20011)0N11=1,NG)
TERMAT(/2'NEN U yALUES,10F1C«5)
WRITE(€,33) (LOIN12)AN12:21,MG)
2 FORMAT(/,'NEY L vALUES!',1CF10,.5)
SRITE(6,34) (5R(1N13)2M1321,N06)
R4 FOIMAT (/2 'NEW GAPS ARE,10F10,5)
SRITE(/535) (R (N1L4,N1D)YaNT4=1,NGYaNLS=1,NG)
33 FARMAT(/.'NEW BETA VALUES ARE1,10F1053)
ARITF{6,36) (K8(N16),N16=21,NG)
36 FORMAT(/,'FINAL < VALUES AREI',10215)
ARITE(6437) K230
Q7 FHBR¥AT(/,'SuM AF FINAL K VALUES [S:1,15)
373P
CA\D

W -4 NN
=) TN &

12)
n

[y
V)
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SUBRAUTINE SUTFUN CALCULATES THE CBRRECT BUTPUT FBR GATE J AT EACH
PSIMT BN THE N CUBE AND STSRES THE INFERMATISN FSR CAMPARISON LATER,

SU3RIUTINE BUTFUN
SL3R2UTINE 8UTFUN

QIMENSION F(20) ' A
CcoMMay Aﬂ<4c'23)‘A(qo,ao),u(gg),L(QO),GAP(EO)‘UNE(EO)ILNE(EO)’

lﬁNE(EC);UN(EO);LN(20),2(23);N(20),V(20),H(EO),X(10),XN(10>;EMAX
E(EQJZO)IVAQ(“?)JQBD(ECJEO)tBT(23120))BU(20020)JNGJNV:CKTJCKPJCSATI
3SI31VGF;<SU”9;<SUMT:EQQ)IFV(1203);CFNR;KA;NVEJKT(EO);KRI(EO);
<8P (20,0, 1°PC, IRBY,XUl27)
REAL L,LN,LNE
INTEGER FaXa¥y
THE NEXT 3 CARDS SET INITIAL VALUESS
S8 2 lp=i.NV
X(12)=29
2 x~(12)z)
THE ~E T THE vALUES BF THE INDEPENDENT INPUTS X AND XN

\EXT 32 CARDS S
TR ThE PRaPEXR VA
2% 1% 13=1:1PC
IF(X(I).LFcl) 59 19 4
X(1)=n

X(2)=xX(2)+1

IF(X(2)e Esl) 38 TO 4
x(2)=D

e
LUES F3R EACH P3INT &N THE N CUBE.
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X(3)=X(3)+1
IFIX(3)elEel) G2 T2 4
X(3)=0
X(4)Y=x(4)+1 -
IF(X{(%)sLEel) G2 T8 4
X(4)=0
X(5)=X{5)+1
IF(X(S5)e LE 1) G9 T8 4
"(B}Y=3
X(6)Y=¥Y(6)V+1
[F(X({A)YeLEel) GR TH 4
X(6)=0
X(7)YsX{7)+1
D IF(X(7)eLES1) G2 TS 4
X(7)=0
A(81=X(g8)+1
[F(X(8)e Esl) GB TB 4
x{(%)=0
x(9)=x(9)+1
[FIX(2)eLFEr1)
X(2y=0
A(13)=x(10)+1
b 08 3 T4staNy
XN(IG)z1=X(14)

)
@
—.‘
(@]
&

5 CeaNTINLE
C THE NEXT 19 CARDS CALCULATE THE 8UTPUT FUNCTISN 8F EACH GATE AND
c CENSTRUCT THE VARIABLE MATRIX AT EACH PSINT 8N THE N CUBE

D% 6 I5s1,4A
6 VAR(IS)=D,.
o8 8 lé=1,NV
[AA= g +NY
VAR(TAA)=XN(14)
VAQ(Ié)-((Ié)
re uT'NL,L
VAL=Do
28 12 17=1,J
0B 9 Jis1,XA
9 VAL=A(UL1,17)»VAR({JL)+VAL
IF(VALSLTLU(T7))Y GB T9 10
F(I7)=1
7 T3 11
CFLL7)Yy=C
JAS=S 742NV
VAR(IAR)=F(]7)
VAL‘:' '
12 CANTINUE
THE INITIAL FUNCTIAN VALUE BF F(Jy IS CALCULATED AT EACH PBINT 8N
THE N CUBRE FaR GATE J.
IFVIIR)Y=sF(J)
X(1)Y=X(1)+1
CANTINUE
CETURYN
I ND]

n~d

NG
-
- )

tn

[
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SURRSUTINE BETA SEARCHES THE RETA VALUES (wEIGHTS pR3m THE BUTPUT
F_SNE SATE T8 THE INPUT 8F ThRE STHER) T8 TRY AND FIND A REALIZATIaw
REILIRING FENER CATESe .

SUBRAUTINE RETA

SUBRAUTINE BTA(MEC,ILLSAL, IMPSAL)

CaMMAaN AM(40,20)28(40,20),U(20),L(20),GAP(20),UNE(20)+LNE(20),
1GNE(20), Un{20)LNI20) ,2(20) 20 (20),VI20),H(20), X103, XN(10),EMAX
2(22s20) VAR (40 2R3F(20,20)4BT(20:20)28BU(20s2C)2NG sNV,CKTSCKP,CSAT,
351G, NGF ) K3UMP,KSUMTIERR, IFV (12001, CFRRIKASNY22KT(20),KRI(20),
4XBP(2CY,IG,IRC,IDVaAKU(ED)

SREAL Lol NLNE

INTEGER X, XN

IF(ILLSARL.ES«1) 58 T9 5

1 IF(IVPSPLL.EN.1«ANDLIRPYP,EQWL) GB TE 16
IF A EXPLERATARY SZARCH IS NST [N DRAGRESS BNE SHAYULD 8E STARTED.
SINCE THE PRsVISUS 3ETA STEP WAS UVSQCCESanL THE BEST -PREVIBUS VALUES

AL FESTPREC.

IF(12ESp"Esl) g2 T8 2

IF(~CF-u--Iu) ﬁq Ts 13

) (Y

3 IF(RT(NGF,1GYeGT«Cs) C9 T8 4

ET(NGF,»13)=0,

NGF = CF+1

IF(MNGFeSEIG) GR TO 13

38 T2 3

IF(I“PSeL.5C«1) 3P T3 7

Lo 6 11=21,NC

ET(I121G)=3y(I1,13)

IF(“T(\GF IG)eLEsQs) GB TEB 3

53 T2 9

THE REXT & CARDS CHANGE THE BU VALUES TO THRSE ©F BT, SINCE THE SEARCH

AS SUCCESSFUL. THEY ALSE SET IMNITIAL cewDITlaMs AGAIN

7 4SUMFP=XSUMT

o+



[@]

DS 8 U2:=1,N\G
2 BU(JZ,1G)=8T(J2,13)
CIF(IRPISECLG) Ga TR 39
[RPAS=9
“GFENGE+1

3C IF(I%v.ET.0) 1C92=1
2 IF(]I2PASER.) 35 TR 14
10 STINCF,13)=3T(NGF,1G)+516
I123P&S=
G2 T2 19
11 18P83=)

RT(NGFs15)=RT(NGF»16) =515
IF(BT(NG:;IG)-LE.OQ) BT(NGFIIG)=O'
NGFENGFR+
3 T3 13

13 [F(IvPS3_«E720) 39 T3 33
KSLMPzKSMT
£8 32 J4=14N3

32 BU(J4,15)=8T(J4,1G)

'\‘GFEI

W )
V8]

Tel) GB T8 14

+20021) 38 T8 29

IF(I¥PSHLE2+1) 63 TH 16
C8 15 12=1sN\G

12 37(12,13)=3U(12,138)
LSUMT=KS j~P

THE NEXT 10 CARNS ACCBMPLISH THE PATTERN SEARCH BF THE BETA VALUES.

16 22 12 C33¢2NG
<SUMBzkSU™T
CELERT (U3, 16)-RRD(U3,15)
2EP(JU3,13)38T(J3,136)
2U(J3215)=RT (U3, 16)
IF(37(U35153)4LEw40) G2 T8 17
3T(0J3,15)=3T(Jy3,[3)+2EL
533 T2 113

17 37T(J3,15)=24"

13 CaNTINUE
IQPNF:l

19 1vPS3L=Q
ILLS3L=2
[Av=?D
PETURN

20 “1RCx1
RETURN
\D

102
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SURRBUTINE CANTRL
SVERUTIAE COMNTRL SETS INITIAL VALUES AND THE CBNSTRAINTS ERRBR
MULTIPLYING FACTERe  THIS SUBRSUTINE DETERMINES WHETHER THE
CANSTRAINTS KAYE REEN SATISFIED, AND IF S8, RETURNS T8 THE MAIN

DRAIRAM,

SUBR3UTINE CANTRL

(@] O0Onnnn

CaMMaN A”(“C:EO)pA(43;20):U(23))L(2C);GAP(EC)JUNE(EO)JLNE(EO);
13NE(23),UN(2;),L\(EC),Z(?C):W(EO):V(EO);H(EO);X(lO);XN(10))EMAX
E(EGIEO)JVAQ(QC)JBRP(ECoaC)ABT(EOJEO)AEU(EO;EO))NG:NV:CKT:CKP:CSAT:
35!3)\GF)(SUVDlKSUMTIEQQlIFV(1EOC)JCFNRJKAJNVEoKT(2O):KRI(20)1
L<EP(23),JsIPCs18V,KU(2D) :

REAL LapsaLnE

IMTEZER X2 XN

C THE NEXT 12 CARDS SZT INITIAL CBNDITIENS,

22 1 T1=1,NG

T3 & «3=1,NG
IA33<3+Ny2
AMITAR,U)=8T(K2, )
6 CANTIAUE
C THE NZXT 12 CARDS SCT THE CAONSTRAINTS ERRER FACTBRs WHEN
C CENTIOL 1S REZTURNEL T2 CSNTRL, THE RESULTS ARE CHECKED T9 SEE THAT
C THE CANSTRAINTS JERC SATISFIED.
o6 12 12=1,10
IF(LXSC.E3.0) 56 TO R”
IF(CSATe _Eele) G3 TE 11
2 CYP=CKT
CKT=CXT*3.
TFT=sl,CE+1s
CFP=1.0E+15
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L S 4

LSC=2
Twsl
CALL CoaNgsT(Iw)
IF(CFANR.EQe1.2) 38 T8 11
10 CONTINGE
11 RFTURN
£ND

SUSPZUTINE CANST DETERMINES WHETHER THE INPUTS T3 GATE J SHAULD
BE ¢+ 8R p AT EACH PAINT SN THE N CUSBEe IT THEN CALCULATES THE MINIMUM
w AND TeE MAXIMUM 2 VALUES FBR EACH GATE I FEEDING INTE GATE Je

SURR2UTINE CBNST

SCBRAUTINE CRNST(IW)

DIME\SIQ [FLI(2D) L IFL2(20)2F (20)

CEMMEN A (4T, Z0) s A(4C,2002U(27),L(20),GAP(20),UNE(20)2LNE(20),
14 E(E“):V (20 )N (2“);2("0)) (2“);V(?ﬁ))H(ZO))X(IQ);XN(1O)IEVAX
2(23,75),VAF(AA),dapffc,EO);ET(pO 2C),3U(20,20) ,NG,NY,CKT,CKP,CSAT,

S1GUNGF LS MPIKS MTHERR, IFV(1200),CFANRIKA, NVEIKT(EO)tKRI(EO)I
bKEP(20)2ds 1P I8y, KU(22D)

REAL LsLN,LME

INTEGER FaX)¥N

THE NEXT 10 CARIS SEZT INITIAL CBNDITIENS,

IFL3=0

[FL&=C

IFLg=C

1FLé=D
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C SP TERMINATED RBY STATEMENT 23 PERFERMS ThE FUNCTIEBN 8F A
c BINARY C2UNTER INDEXING THE INDEPENDENT INPUTS THRBUGH ALL PSINTS
o EN THE N CURE.
D“ 23 [3=1.]1PC
C THE “EXT 31 ZARDS ASSIPN THE PREPER VALUE T8 INEDPENDENT INPUTS X AND
C XN
TF(X(1)sLFel) GB TE 4
X(1)=q
X{2)=x(2)+1
IF(X(2)- Eel) GO TO 4
¥(2)=
Y(3)=¥(3)+1
[F(X(3)eLEsl) 59 TO &
X{(3)="
X{4)=X(4)+1
IF(X(4)e Esl1) GA TE 4
x{4)=0
x(E)=X(S)+1
Ir(x<=).Lr 1) & T8 &
(510 ..
x(A)=x(56)+1
IF(X(6)eLEel) gf TO &
X{6)=0
X(7)=X(7)+1
IF(X(7)eLEeq) GA TE 4.
X(7)=C
X(8)=X(8)+1
IF(X(R)eLEeLl) G2 TG &
X(8)=0
X(9)=xX(9)+1
[F(X(3)eLE«1) GP TB 4
X(9)=0
X(13)=Xx(10)+1
4 22 5 lasi,Nv
INCIG)Y=1-X(]14)
& CoNTINUE
C THE “EXT 2) CARNDS CALCULATE THE 8UTPLT 8F EACH GATE (1 8R 0), AND CBN-
C STRUCT THE MATRIX BF INPUT VARTAZLES FBR EACH PBINT B8N THE N CUBE.
£ & 15:1,KA
6 VAR(I5)=C.
P8 1h=1sNV
IAAGTA+NY
VAR(TAA) =XN(1g)
7 VAR(I6)=X(]6)
8 ZENTINUE
VAL= D,
J¥l=U=1
n% 12 17=1,J41
DA 9 Jl=1,KA
VALSA( 117 ) *»VAR(J1)+VAL
[FOVALLLTLU(I7)) GB T8 10
F—(I7):1
GRTO 11
10 F(17)=0
11 148=17+0y2
VAR(IAR)=F(17)

\0
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VAL=D.
12 CONTINMUE
[FCIFV(I3)+ER1) GB TE 17
THE NEXT 22 CARDS CALCULATE THE MAXIMUM Z FBR EACH GATE 1 WwHICH FEEDS
INTE GATE Jo THE MAXIMUM FER F(l)z1 AND F(J)=0 IS ALS8 CALCULATED.
CR 156 US5=1.2J
IF(BT (U5, ) eLEOLC) G2 T 1g
IF(F(JS)+EQe1) Gy Ty 40
SF2:z0«
DB 13 19=1,KA
SF23AM(19,J)*VAR(Ig)+SF2
13 CONTINGE
[F(IFLLI(J5)+ETe1) GO TB 15
14 IFLI(US) =
) 2(J5)=5F2
15 IF(SF2«EeZ(JB)) G/ TR 18
2(JE)=3F2
58 T2 14
40 SFE=z0,
T8 41 K2=1,KA
SFZ=AM{K2,J)*VAR(K2Y+SFS
41 CAONTINLE
IF(IF SeE0e1) 58 T8 43
42 [FLS=1
FYAX2=SFg
43 IF(FMAXD# L TeSFS) FMAXD=SF5
16 CANTIMNUE
38 T3 22
THE “EXT 22 CARDS CALCULATE THE MINIMUM W FBR EACH GATE 1 WHICH FEEDS
INTA GATE Jo  THE MINIMUM FBR F(1)=0 AND F(J)=1 IS ALS6 CALCULATED.
17 D8 21 Ub=1s4
’I;(%T(dle).LE'OOO
[F(F{J6)«EQen) GR
3Fl=C,
SF1sAM(J7,J)*VAR(J7)+SF
18 Co~NTINULE
IFCIFL2(Ja) eEGel) GS T2 19
IFL2tJe) =1
N(JbY=SF1
19 IF(SF1.GE.(J&)) GS TR 21
w{J&)=SF]
GA T9 21
50 SF5=x3.
02 51 Ki=z1s<A
SFS3AM(K] ) J)*VAR(K]1 ) +5F
51 CaNTINUE
IFCIFLAeEnel) GB TB 53
2 IFL&=1
FMIN1I=5FS
83 IF(F1INL1aGTe53Fg) FMIN1=SFg
21 ZeNTINUE
22 x{1)=x(1)+1
23 CONTINLE
THE NExT 26 CARDS SPECIFY THE NEW MINIMUM AND MAXIMU% FBR THE GAP 6F
SATE Je
DB 28 J2=14J
IF(BT(J2,4),LE.C,0) 37 Ta 2§
IF(IFL3420e1) G TO 25
24 1IFL3=1
IMAX=2(J2)
25 IF(ZMAXeLTeZ(JR)) ZMAX=Z2(J2)
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IF(IFL4.ER.1) GB T9 27
26 IFL4=1
Ay1y=u(Ja)
27 IF(WWIN-}T.J(JE)) WMIV:W(JE)
28 CANTINUE
IF(IFLBeENeD) FMAXCz7MAX
IFCIFL6eER ) FMINT=wMIN
IF(FYIN fGT 4 aMINY FMINI=WMIN
TF(FvAXDa TaZuwAX) FMAXO=ZMAX
IF(IEV'E?ci) 38 T§ 31
GNE(J)=sFMINT=FMAXQ
29 LNE(J)=FvAXD
UNE(JYspulNy
00 3¢ J3:1sN3
IFL1(J3) =g
[FL2(J3)=0C
VU3 = mIN
H(J3)=2ZMAYX
UN(JIysF™MINg
32 LMUJ3)YsFMaAXD
IF(GAE(J)e3TeDe3) GO T3 34
SINCE THE RzALIZATISN WILL NET REALIZE THE FUNCTION WITHSUT ERRSRS
v THERF IS N8 NEED TS 5B FURTHER. CFNR IS SET EQUAL T8 1
AND 1T RETURNS T9 CONTRL.
CFhR=140
FETUSN
THE “EXT 10 CARDS CALCULATE NEW UPPER AND LBWER LIMITS FBR THE NEW
GAP 3F GATE J IN THE REALIZATIEN
31 LAE(D =LY
LNECD)=U ()
GNE() =u(Jd) = (J)
DB 33 J4=1,N3
IFL1(U4)=)

IFL2(J4)=2
VIidJday=u(d)
HiJE)Y=L ()

N e = ()

33 LM(Jdéy=L ()

34 CALL SFARCH( ')

THE NEXT g CaRDS CALCULATE THE NEW UPPER AND L8WER LIMITS FaR THE
GAP 2F GATE J USING THE BEST K VALUES FOUND, BEFSRE RETURNING T8
TANTRL .

DR 3% Ki1=1sN5

TF(3T(K1,J)eLEaZ.) 5% T9 35

VKDY= 0 (1) = (3T(K12J)*ERR) /KBP (K1)
HIKL1)=Z(<1)+(3T(<1+J)*ERR) /KBD (K1)
[FOVIKL) o LToUN ()Y UNCAY 2V (KLY
[F(H{<1) eGTelLN (D)) LNCJ) =H(KY)
AP suN(J) =N )

35 CENTINUE
RETURN
EAD
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SUBRSUTINE SFARCH DETERMINES THE VvV AND H VALUES F3R £ACH GATE I
FEERING INTE GATE J, USING THE GIVEN K VALUES, AND CALCULATES THE CAOST
FUNCTI®N, IT THEN PERFORMS THE BPTIMAL SEARCH, CALCULATING THE C8sT
FUNCTIBN AFTER EACH STEP.

SUBREUTINE SEARCH
SEARCH SJUSROJUTINE USING 8PTIMAL SrAQCH TECHNIGUE
SUBRBUTINE SEARCH(IW)
CIMEMNSTIAN UD(20}),LD(20)
gcoMMaN A”(“O:EO):A(“ 220)2U(20),L(20),GAP(20)sUNE(20)sLNE(20),
15NE(20 ):JN(?O):LV(EO).7(20).N(EO),V(Eo),H(EO);X(10),XN(10) EMAX
2(201?0),VAqgaa),%8°<20120),BT(ao.ao):au(eo,EO): v;cKT,cKp;cSAT:
381G, CGFIKSUMP ) KSUMTHERRS IFy(1200)2CFNRIKASNYZ2.K (20);<RI(20);
4KRP(20)2Ja 1PC IBV,KU(29)
REAL L,LN,LNE
INTERER ¥ XN
THE MEXT 5 CARDS SET INITIAL VALUES.
CFTeleCE+1D
CFpa*'uE+13
KPas=C
KP-Pz0
1 «SUMT=p
ne 2 11=1,\G
UD(I1)=UNE(TL)
Lo(Il)=LNECID)
2 KS MT=xSymMT+<T(11)
THE NExT 15 CARTS CALCULATE v AND H VALUES, AND CETERMINE THE ERRBR
CUE T9 TRE GAP W]TH ERR ERRBRS N2T BEING WITHIN THE GAP 6F GATE J
WHEN N8 ERRSXS ARE MADE.

£8G=2,

LS 3 12=:1,J
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IF(3T(12s4)«LE«D40) G9 T9 3
VII2)=wl(12)=(3T(12,J)*ERR) /KT(12)
HOIZ2)=Z(12)+(3T(12,J) *ERR) /KT(12)
IF(VEI2) e Taryn(d)) untd)=vilia)y
TF(H(T2)eGTaLD( J)) LD( ) =H(12)

THE FILLSWING 2 CARDS MUST BE MSDIFIED IF A MINIMUM GAP 1S T8 Bg

SPECIFIER. . '
ELL=LNE( Y=V (12}

ELL=Y(12)<UNE(J)
IFCELLeER«0e0) EL=1.0E=04
IF(ELULeEQ+CeN) EUL=1+0E=04
IF(ELLOLTOOOO) ELL=O¢O
[F(EUL LTeCa0) EyL=0,0
ERPGEERG+ELL+ELL

3 CANTINUE

THE NEXT 11 CARDS CALCULATE THE ERRSR DUE TO THERE NS8T BEING A GAP,
[F ANY V VALUES ARE LESS THAN ANY H VALUE
E:GT=OQ
DR 4 13=1,J
IF(BT(I3:J).LEOO~O) Ge T8 &

08 22 Ji=1.d
IF(3T(J1,U)eLE«Q.Q) 38 TA 20

THE FeLIL®~ING CARp MyST 3¢ MBpIFIED IF A MINIMyM GAP IS T8 BE

SPECIFIES.
gr3=<z<13)+(%r(13,J)»Eaa)/KT<13))-(w(JlJ-(BT<J1,J)*EQR)/KT(J1))
IF(EFG,E3,9,.2) EFG=1,0c.24
IF(EFGe Te0e2) ErG=0.90
EF3T=CF3T+2FG

20 CoNTINUE

4 CcANTINUE )

THE MEXT 4 CARDS CALCULATE THE C5ST FUNCTIBN USING KT VALUES,
ESG=E9G%140E+23 s
FFS3T=EFGT+CKT
CSAT=E£3G+EFGT
CFT=lSAT+LSUMT

THE REMAINING STATEVENTS C8MPRISE THE SEARCH TECHNIQUE FB8R THE K
VALUES.,

[FICFTLTJCFR0ANDWKPMPGET V1) GB TB 156
IF(CFTJ3E.,CFP) G9 T8 585

THE Kij VALUES ARE SET EQUAL T9 THE <T VALUES BECAUSE THE C8ST FyNC-
TI3N AAS REDYCED. :

R 50 Jk=1,M3
UN(J4) =Us(J4)
LAN(J4) =D (JY)

50 <UlJ4)=<T(J4)
[F(KPRS,E7¢1) IW=lW+l
“P35=0

THE MEXT 4 CARDS START AN ExPLERATRRY SpARCH IF SN& IS NBT ALRZ ADY
IN PRSGR7ISS,

5 IF(KFSPeMNEs1) G/ T2 5§

IFC1aeGTaNG) G2 T 12
5 KESP=1 :

KP4P=0

IF(CETLTCrry 068 T8 7

THE KT VALUSZS ARE RCSTSRED T THE VALUE THEY HAD BEFSRE THE STEP
3ECAUSE THE COST FUMCTISN INCREASEDS
N3 4 Ta=1,NG '

6 KT(laYeki(ls)
G8 T2 3

THE BZST PRZIVIaUSs CasT FUNCTIEN 15 SET EQUAL Tg CFT BECAUSE THE SEARCH
“AS SUCCEZS3FUL

7 CFP=CFT
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1253=1
8 IF(LKPR3,ENs1) G8 T8 10
THE NEXT 2 CARDS INDEX KT(IwW) PESITIVE BY 1.
9 KT(I4)skT(Iw)+l
KFR38=1 )
58 Te 4 - :
THE “ExT 4 CARDS IMDEx THE KT(IW)y NEGATIyE BY 1 AND INDEy IW FBR THE
“EXT PASS.
10 KPSS=O
[FIKT(IW)sLE-1) G T8 11
KT{IAYsKT(IW)al
IwzIa+l
Ge TS5 1
11 XT(14)=1
Ivslwel
IF(IweLENG) 58 T8 9
12 l4=1
IF(IAS3.E2.C) GB TS 13
58 T3 14
13 «<8C=1
RETJRN
14 [wS8=2
KESP=)
IF({CFT«LT«CFPY Ga T8 156
THE NEXT 2 CARDS RESTARE THE KT VALUES T8 THE VALUES THEY HAD 3f£F8RE
TrE LAST STEP, SIMCE THE LAST STEP FAILED T8 REDUCE THE CBST
LNCTION
CS 1% U2s1sN3
15 KT({JdP)=<{J2)
THE NEXT 11 CARDS ACCOMPLISH THE PATTERN MBVE.
16 08 18 U3=1sN\%
IF(CFTQLT.CFP) CFPsCFT
TEL=XT(J3)=XK3P(J3)
KEP{J3)Y=¢T(U3)
kU(J3r=sT(J3)
IF(LKT(23)sLEL) G TS 17
KT(J3) sKAT(J3)Y+DEL
SR T3 18
17 KT(J3)=1
18 CENTINUE
KPMB =9
e Te 1
D



