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Abstract

Communication ability is an important feature of humans. Artificial Intelli-

gence is to simulate human learning, understanding, and thinking processes by a

computer program. A Learning Program System (ALPS) has been developed en-

abling computers to understand knowledge, to learn English grammar, and to read

English sentences. Here, we intend to improve the communication ability of ALPS.

The focus of this thesis is to understand and answer the decision question involving

an opinion adjective. Humans can learn notions easily, like “importance”. However,

it is difficult for a computer to understand notions well because notions are abstract

and difficult to quantify. This thesis analyzes the human's learning process of notions

and creates a logical inference algorithm to simulate the human's thinking process.

A human learns a new notion by learning the various criteria required to jus-

tify the use of an adjective of the notion. The criteria include both examples and

important factors. We created a knowledge-based method to simulate the process of

learning a notion with various criteria. In our knowledge-based method, we abstract

knowledge components of a notion: scales, factors, and examples of each factor.

Given the target, the adjective, and the reference that represent a decision question,

our inference algorithm first matches the target with the examples. If not matched,

it then measures the similarity between the target and the examples based on the

reason why each example is considered to be an example. After that, a heuristic

search will search the factors. Our program will give a “Yes” if the target can satisfy

any factor; otherwise, it will give a “No”. In addition, an associated reason is also

provided to justify the answer.
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Chapter 1

Introduction

1.1 Introduction in AI and NLP

Artificial Intelligence (AI) has been developing for more than 60 years. It has

progressed greatly, including areas in language and image recognition, robotics, logic

systems, and deep learning. This thesis intends to use AI technologies to enhance

Natural Language Processing (NLP) in A Learning Program System (ALPS). In this

section, we introduce brief histories of AI and NLP. Our solution is inspired from

successful methods.

AI research started at a workshop where researchers discussed how to simu-

late human intelligence in computers in 1956 [10]. It has progressed immensely in

four stages. After that workshop, several groups were founded for preliminary AI

research. They applied AI in programs such as checkers, and they also created a

reasoning system called Logic Theorist (LT) which can prove mathematical theo-

rems. Based on these simple applications, they contributed a couple of advanced
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AI applications: General Problem Solving (GPS) and NSS chess player. Meanwhile,

some other significant AI research achievements arose in machine learning, pattern

recognition, and AI applications design. For example, LISP, a main AI programming

language was invented [10]. Inspired by the progress, AI research has experienced

several main development stages [10].

The first stage (1952-1969): The definition of AI was proposed. Many achieve-

ments like game players, GPS, and LISP appeared. However, some applications

failed because of the limited inference reasoning ability. In this stage, people at-

tached great importance in creating methods to solve special problems and ignored

general knowledge representation and retrieval.

The second stage (1960s-1970s): The knowledge-based system (KBS) and expert

systems appear. In this stage, logical reasoning and knowledge base combination

could solve more complex problems. AI was applied in more real-life cases, like

language recognition, disease treatment, and chemistry analysis.

The third stage (1970s-1980s): The neural network, which can be used in op-

timization problems, brought significant improvements to many areas like pattern

recognition, prediction, and intelligent control.

The fourth stage (1980s-1990s): Web technology, especially the Word Wide Web

(WWW), has made revolutionary progress. AI developed from a single intelligent

agent to a multiple-agent system. The AI in this stage was applied in dynamical

networks and multi-objective optimization, which has actively influenced people's

lives in various areas.

AI has many applications in its development, and NLP is one of them. Natural
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Language Processing (NLP) enables computers to communicate with humans [1]. AI

technologies have been used in NLP work since the late 1960s with a focus on NLP's

knowledge representation [4]. The knowledge representation and logic reasoning from

AI technologies can solve the language-understanding problems in NLP.

1.2 Methods Review in AI and NLP

To develop a natural language framework in NLP, three core functions should be

achieved: reading, understanding, and writing [2]. Although numerous methods have

developed to enable computers to reach these functions, NLP faces major challenges

in understanding complex structure sentences and ambiguous language [3]. There-

fore, the key to enhance NLP is to improve its ability to understand. Currently, NLP

applications try to understand language from two main parts [12]:

1. Syntax Analysis: Check the syntax of input sentence; parse and restructure

the sentence based on grammatical rules.

2. Semantic Analysis: Generate and represent the basic meaning of the input

sentence.

Syntax defines the grammar rules that organize words in a sentence. Syntax

analysis is inspired by how humans learn a language: humans first learn individual

words then linguistic fundamentals. After that, humans practice to parse and make

up sentences so that they can use the language fluently. Similarly, Syntax Analysis

methods (such as the Context-Free Grammar) recognize grammar rules that organize

words to a sentence. However, with only a set of grammar rules, computers cannot

always correctly understand complex sentences.
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To understand the meanings of complicated sentences, semantic analysis meth-

ods are developed. One of the approaches used in the semantic analysis is logic

reasoning. It represents the knowledge from sentences and expresses the logical

structure in the represented knowledge.

In this thesis, we intend to use logic reasoning as the main approach in semantic

analysis. Our logic reasoning methods were developed in a knowledge-based system.

A knowledge-based system mainly has two types: Knowledge Base (KB) and Infer-

ence Engineer. The KB represents sentences with particular formal language. Like

a memory in the knowledge-based system, KB can be used for providing knowledge

about facts for an Inference Engineer. The KB should be able to efficiently retrieve

and maintain the knowledge from sentences, in order to represent a large number

of sentences. The Inference Engineer uses the information in KB to infer some new

facts with logic reasoning. The Inference Engineer is the learning and reasoning part

of the knowledge-based system. The relation between the knowledge-based system

and reasoning system is shown in Figure 1.1.

Figure 1.1: Knowledge base system introduction.

An example of the knowledge-based system application is an Expert System.
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It contains a knowledge base in specific domains and an inference engine for logical

reasoning. The Expert System is designed to collect and learn from experts' intelli-

gence to solve problems in various domains [13]. The Expert System has great value

in areas where experience and experts' knowledge are precious and rare, like the

medical field. The knowledge-base of an Expert System builds a knowledge database

from experts' knowledge in certain domains. The Inference Engine is like a brain in

the Expert System. The rule interpreter and logic reasoning are used to implement

the Inference Engine. The Inference Engine can understand queries from users and

then uses logical-reasoning chains to draw final conclusions for users [13]. Expert

System is a successful application of a knowledge-based system. The success of the

Expert System underlines the importance of logic reasoning. The logical-reasoning

chain should be robust and flexible to use the expert's knowledge in other cases in

the same domain.

As we pointed out before, logic reasoning is the central part in the Inference

Engineer of a knowledge-based system. Logic reasoning imparts intelligence to com-

puters, which simulates the process of human inference. Logic reasoning tries to

implement some procedures into different methods including basic logical-reasoning

methods (deduction, induction, abduction), First Order Logic (FOL), and produc-

tion system and frame. The basic logical-reasoning methods are introduced below.

Deduction applies one or more premises to generate a conclusion for a certain

case [7]. It is used to infer a conclusion for a particular case from the general princi-

ple. Typical reasoning systems developed from deduction are Inference Engines and

Theorem Provers. Following is a simple example for deduction:
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Rule 1: IF it rains,

THEN the ground will be wet.

Fact Information: It is raining now.

Conclusion: The ground is wet.

This example shows basic parts of deduction, rules, fact information, and con-

clusion. The rules and fact information are stored in the knowledge base. Each rule

has two parts: primes (IF part) and assertion (THEN part). After matching primes

with the fact information, the conclusion can be drawn from the stored assertion

parts.

Induction is the reverse of deduction. Deriving a general principle from some

given special cases [8], induction is mainly used in neural network and pattern recog-

nition. In this case, we know some facts will generate a conclusion based on those

collected facts.

A simple induction example:

Case 1, The first observed car has four wheels.

Case 2, The second observed car has four wheels.

Case 3, The third observed car has four wheels.

Case n,

General conclusion: All cars have four wheels.

Essential parts in induction are shown in this simple example, including observed

cases and the conclusion. To implement induction, we should observe or collect

several facts. From these facts, we can predict or summarize a general principle,

although the conclusion may not be exactly right. Also, similar to deduction, the
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conclusion in one induction can be used as the prime case and generate another

conclusion with another inductive reasoning chain.

Abduction is similar to induction; it also infers a general principle from observed

facts. However, abduction is a way to infer a principle that is the best explanation for

the observation. In another word, the conclusion drawn from abduction is the most

likely explanation for the observation. Abduction is frequently used in the Expert

System.

An example for abduction:

Hypothesis 1: Streets are wet. It has rained. (Most likely)

Hypothesis 2: Streets are wet. The sprinkler is on. (Perhaps)

Hypothesis 3: Streets are wet. The buckets leaked. (Low possibility)

In this example, if we have the fact that streets are wet, we would like to find

an explanation for it. After reviewing this fact in the knowledge base, we can get

multiple hypotheses. Then we will choose the most likely hypothesis as the conclusion

of this abduction.

Deduction, Induction, and Abduction are basic logical inference methods. With

these methods, we can implement prediction, analysis, and a reasonable assumption.

A high-level summary of these methods is shown in Figure 1.2.

With the introduced logical reasoning methods, computers can make a simple re-

sponse to the input sentences. However, to solve different kinds of practical problems,

more sophisticated interpretations should be added besides the logical reasoning. In

order to interpret more complex knowledge in real cases, more structures and items

are added to the basic reasoning methods. With the introduced logical reasoning
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Figure 1.2: Summary of logical inference methods.

methods, computers can make simple responses to input sentences. However, to

solve different kinds of practical problems, more complex interpretations should be

added besides the logical reasoning, like First Order Logic, Production System, and

Frame In complex interpretations, more structures and items are added to the basic

reasoning methods.

First Order Logic (FOL) is a deduction method with quantifiers, functions, and

relation symbols proposed by Batwise in 1977 [4]. It can support grouping, building

relations, and adding connections. It enhances the formal logic expression because it

adds variables, the range of variables, and relations between groups in representation.

Thus, the semantic meaning of the sentence can be well represented. The usage of

these items can be explained in some examples. Let us consider the statement “Every

human is mortal”. With the universal quantifier, variables, and connectives, we can

have:

∀x(human(x)→ mortal(x))

This expresses: “All x, if x is human, then x is mortal”. From this example, we

can see that we can easily express and understand the inference structure and infer-

ence rules inside the statement by FOL. FOL has great advantages in mathematical
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expressions. It is also the main method for expressing knowledge which contains

axioms and rule inferences [4].

The main difficulty in NLP is ambiguity. Researchers continue to think of bet-

ter methods to describe or express the meaning of language. To make the computer

understand the language better, it requires proper formal representation for each

sentence from natural language. Also, it requires the ability of connection and corre-

lation between different sentences. The disambiguation can be achieved by explana-

tions from other related sentences. Production System is designed to well represent

the language and make a logical connection between different production rules.

Production System, proposed by Chomsky in 1956, is a well-known method

because it simulates human logical thinking as a structured procedure. Generally, a

human analyzes a problem by using the learning experience and knowledge to draw

some internal decisions, and then a human recursively applies some suitable rules in

the internal decisions to arrive at a final decision. A Production System uses three

main components: database, a set of rules, and a control system to simulate a human-

analysis procedure. This database is different from a regular database concept. It is

a collection of known facts, intermediate status, and final conclusions. The form of

a rule in the set of rules is

Ci→ Ai

The Ci is the condition part. The Ai is the action part. The whole meaning is IF〈
Condition Ci

〉
, Then

〈
action Ai

〉
. Condition Ci determines whether a rule should

be triggered, and Action Ai determines what should be done after triggering of this

rule. Control system decides when the rules should apply to the database. Also, it
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needs to solve the conflicts when several rules are applicable at the same time. The

basic procedure of a production system is shown below with pseudo code.

Input: Database, a Set of Rules, Control System, and User Interface

Output: result for the user's request

Match the conditions in rules with User Question

WHILE(hasMatchedRules)

IF numbers of matched rules >1

Conflict Resolution : Choose the most suitable rule to apply

Apply : apply the chosen rule; update the database

IF find the answer for user's question

Stop;

END

Production System has two different inference methods: Forward Inference

Chaining and Backward Inference Chaining. Forward chaining is a data-driven in-

ference, which starts from an initial state, and then matches the conditions (IF
〈
...
〉
),

and execute the actions (THEN
〈
...
〉
). After running the recursive procedure, we can

arrive at the final result for the user's request. Backward chaining is a goal-driven

inference. It starts with the final result and then looks for matched conditions as

sub-goals. This recursive procedure runs until initial facts are obtained.

Another traditional method is Frame, a structured data collection. Developed

from semantic networks by Marvin Minsky in 1975 [4]. The Frame has properties

and values and different frame blocks linked with a value, which fits the requirements

of deduction reasoning. Based on the Frame theory, Marvin Minsky built a learning
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Table 1.1: Knowledge representation methods and applications

machine, the first semantic network simulator, with 40 agents and a success rein-

forcement system. Because of Frame's advantages in hierarchy and encapsulation, it

has become one of the most popular human cognition theories [30].

In general, the knowledge representation methods were developed with the tech-

nology revolution in AI. With different knowledge representation methods, more and

more different AI applications are created. The summary of development is shown

in Table 1.1.

Derived from Frame theory, Dr. Kam Hoi Cheng created A Learning Program

System (ALPS) based on an Object-Oriented Paradigm [10]. The goal of ALPS

is to learn all kinds of knowledge and communicate with humans in a natural lan-

guage. The decision question answering in this thesis is built beyond the ALPS [20]

platform. ALPS is a knowledge learning system, which simulates human learning,

thinking, and communicating procedures. It already has some basic components of

natural language processing, including learning the English language [20], parsing

and understand simple English sentences [21, 29], learning grammar [22], word-sense

disambiguation [23], and question answering [19]. The current functions within ALPS

provide a solid foundation for new function development. In this thesis, we have
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developed a knowledge-based logical inference to answer a question with a notion

adjective. Our implementation uses ALPS existing classes which built a reliable and

flexible natural language framework [2]. Our solution is designed in accordance with

the object-oriented principle [25], which facilitates extending new interfaces or new

functions. It also simulates human learning and growing procedures, meaning that

an increasing knowledge can be learned and memorized while more functions can be

added with enough knowledge for inference and actions.

1.3 Motivation and Problem Definition

In ALPS, Question Answering is a key basic component. Question Answering

(QA) is to automatically decide the answer to the human's input question, which is

one of the key problems in AI and NLP applications. A better solution for QA can

significantly improve the human-computer interaction. However, computers cannot

answer humans questions well, especially open-domain questions. The potential to

provide a better solution for QA motivates us to improve sub-problems in the QA

area.

A whole QA system consists of four parts: input sentences parser, knowledge

representation, information retrieval (IR), and answers generation from retrieved

information. In general, three methods can be used in developing a QA system,

an IR based method, a knowledge-based method, and a hybrid method [15]. In

the following discussion, We will define each method and analyze its merits and

limitations with well-known examples.
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(1) IR-based QA: An IR-based QA system first detects keywords in input ques-

tion, then it retrieves the most related documents, and finally it extracts the infor-

mation for generating answers and ranks the answers to the user. Famous IR-based

QA applications include IBM Watson and Google.

(2) KB-based QA: A KB-based QA system needs a knowledge representation

step. With the representation, text knowledge can be structured to a logical repre-

sentation. Answers are generated by logic searching through the knowledge base. A

famous KB-based QA is Apple Siri.

(3) Hybrid QA: A Hybrid QA system is a combination of IR, KB, and NLP

linguistics methods. It uses a knowledge representation method in KB-based QA,

and it also uses IR technology to find matched resources. Eventually, it will evaluate

the relevance of an input question and give a rank of possible answers. A famous

Hybrid QA application is IBM Watson.

Google is an IR-based QA system. It generates answers for each input searching

query by retrieving a lot of documents, web pages, and datasets. Google provides

answers for the searching query by ranking the linked resources. For some fact-based

questions that have only one or limited correct answers, it can answer with high

accuracy. The pipeline of IR-based QA applications, like Google, is modeled as the

form below:

Question Recognition (recognizing the type of question) −→ Question Rewriting

(filtering out the keywords and highlight the categories of question) −→ IR Searching

(extracting the related documents) −→Answers ranking (ranking N-best matched

answers)
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The IR-based QA application, like Google, has huge advantages in retrieving

matched resources from structured data and unstructured data. Also, it can give

an excellent rank for the retrieved information with PageRank algorithms. However,

it is not real AI by just providing the links that may answer the user's questions.

Besides, the IR-based QA application is difficult to explain reasons of the ranking

methodology because the ranking needs complex mathematics. These algorithms

do not simulate human thought and human communications very well. Humans

tend to answer a question directly with the most suitable sentences extracted from

memorized knowledge. Moreover, in communications, humans do not need complex

advanced mathematics to help them make sentences. The kids without mathematics

knowledge can communicate and answer the questions. These flaws motivated us to

develop a method that simulates the human logical reasoning procedures for QA.

Another pioneer KB-based QA application is Apple Siri. Compared to Google,

Siri focuses on increasing the machine's communication ability. It can give helpful,

direct, and short answers for some simple daily questions, such as “Do I need to

bring an umbrella in my way to campus now?” and “What is Xs phone number?”

The questions that Siri can answer correctly have clear semantic categories, such as

time, location, and person. The high-level model of KB-based QA is formed as:

Representing Question (reorganizing the question with name-entity form) −→

Searching Answers (only searching in structured domain data in KB) −→ Generating

answer with certain logical reference rules (answering question and explaining the

reference logics)

Apple Siri is a very thrilling product because it can communicate with humans.
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It performs very well in answering simple daily fact-based questions, giving recom-

mendations, and operating the iPhone with input queries. However, it is clear that

Siri's accuracy still needs to be improved. The fact-based questions can be parsed

clearly by machines with the name entity method [30]. After recognizing the ques-

tion type and question keywords correctly, Siri can generate answers with the simple

reasoning in the knowledge base. Siri highly relies on the third-party dataset. For

example, Siri will execute reasoning in the Yelp dataset when asked for the restaurant

related questions, and Siri will go to Wolform Alpha when asked for some general

fact questions. Such heavy dependence on many famous third party datasets brings

some disadvantages. When Siri answers questions from users, it will use existing

logics inside the data of third parties. Think about how users ask Siri for the way to

a library. After parsing the input, Siri will connect to Google map, and next Google

map will answer the shortest route to the users as the default. However, this proce-

dure does not simulate human-reasoning very well. Human-reasoning procedure for

this kind of question starts with recognizing the different situation and defining a

different purpose of the question. It is possible that people ask the route to a library

to borrow a rare book. In this situation, just answering the nearest library route is

not suitable. The disadvantages of Siri motivated us to improve the simulation of

the human-inference procedure. A better simulation of the human's inference could

improve the QA products accuracy.

IBM Watson is a complex open domain QA application, which is a significant

hybrid QA product [16]. In 2011, it defeated humans as the winner in the Jeopardy

Game. Watson is different from Google and Apple Siri because it must give only one
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answer with the highest confidence to each question. It cannot provide lots of links

related one question, and it needs much higher accuracy than Siri. Otherwise, it

cannot beat the human experts. To follow the rules of the Jeopardy Game, Watson

is not allowed to connect to the internet, which requires Watson to store more data

in the machine. The pipeline of Watson's working procedure was summarized [16]

and shown in Figure 1.3 as a representation of hybrid QA applications.

Figure 1.3: Pipeline of hybrid QA application.

IBM Watson has a huge advance over the expert systems in the last decades. The

success comes from several aspects: (1) ability to quickly search big data, (2) the use

of wise rules and strategies inference, (3) a good combination of many technologies

in QA, and (4) the ability to understand unstructured text data. Additionally, the

success of IBM Watson DeepQA can be used in other domains whose features are
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similar to the Jeopardy Game, like health, science, and education. However, it is not

as robotic as Apple Siri. It needs human experts to define some rules and strategies

in advance. In other words, Watson can only behave well in Jeopardy. It cannot

easily change to other problems without human experts defining the smart rules

in other domains. Apart from this, it is too sensitive for question input, because

Watson's parsing strategies only focus on Jeopardy-style question information [17].

Thus, Watson is not a general AI QA system. If it were to be extended to other

domains, it would need a large import of intelligence from human experts.

From the analysis of current well-known QA products, we can see that each QA

product has its limitations. The purpose of this thesis is to develop a more general

QA reasoning method with following the three features: first, it can answer the

question with a direct answer; second, it can deal with general and frequently asked

questions during conversations; lastly, it should be easy to change control parameters

that modify answering reasoning strategies in different situations. In general, We are

motivated in creating a method that can improve QA accuracy in general conversions

and improve its robotics in various situations.

With these motivations, We focus on the problem of understanding and answer-

ing a decision question involving an opinion adjective. The decision question, to

confirm given information in question, asks whether a subject or a target has cer-

tain aspects [18]. There are many different types of decision questions based on its

purpose. One type of decision question is to ask whether the target is a classifica-

tion, like “Is Zoologist a Scientist”. Another type of decision question includes an

adjective, like “Is John an important human”. In addition, some decision questions
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may be nonsense, like “Is the weight of John colorful” or “Is computer an important

book”. In this thesis, we also intend to check the sensibility of a question and detect

those decision questions that are nonsense. Both the “Is target classification” and

nonsense-type questions are well solved with logic reasoning methods [18, 19].

In this thesis, we develop a method to answer the decision question with an

opinion adjective, like “Is John an important human”. In this sentence, “important”,

the opinion adjective, is named as description because it is to describe a human's

opinion or thought. This sub-problem under decision questions consists of a target,

an opinion-describing adjective, and a corresponding noun. The answer for this

sub-problem would be “Yes” or “No” followed by a brief explanation. The answer is

decided by the comparison between general common knowledge for this question and

the related information retrieved from the target. For example, we know that humans

often determine whether a person is important or not by his or her occupation. Thus,

to answer “Is John an important human”, we will retrieve John's occupation from

his profile. And then we would compare his occupation with the common sense

knowledge about an important occupation to give a final decision. It is meaningful

to solve this kind of decision question since it is a direct and effective way to provide

feedback about the characteristics of a target. For example, we can ask “Is this

review is a positive review” when we are shopping online rather than reading all

words in every review. Currently, products on Amazon or Yelp have thousands of

reviews, which are meaningful to customers in decision making. However, it is hard

for customers to read all reviews. Therefore, if a customer service machine can

answer users's question directly or briefly summarize all reviews, the online shopping
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experience would improve. Also, it is an advancement of the QA system since it

can answer some questions with an opinion. In [19], a method to answer fact-based

decision questions is developed. In [18], they solve the problem and justify the

sensibility of a decision question. However, answers for opinion decision questions

are not based on the target satisfying the criteria of the adjective. The work in this

thesis extends both of them to answer an opinion decision question, and base the

decision on the target satisfying a criterion to use the adjective.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents the analysis of

data related to the problem. Specifically, the details of knowledge about notion are

presented. Chapter 3 gives the details of our Logical Inference Algorithm. The algo-

rithm uses the organized data about notion to infer the answer to a decision question

with a notion adjective. Chapter 4 describes the experiment to test the algorithm

in different cases. Chapter 5 gives a brief description of our work, conclusion, and

future work.
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Chapter 2

Data Collection for Notion

Knowledge

In this chapter, we will discuss the knowledge needed in ALPS to answer decision

questions involving an opinion adjective. Since ALPS only uses logic inference to

solve the problem rather than the statistical methods, it is not necessary for ALPS

to prepare huge training data sets. We will use an example to decide the necessary

knowledge and data needed to be collected. Figure 2.1 shows a paragraph describing

the biography of Grace Hopper as an example to reveal what knowledge is needed

and stored.

In Figure 2.1, useful knowledge about different aspects of the target can be

extracted from the raw text. Each aspect and its value may be stored as a structured

pair in the knowledge base of the computer system. The stored knowledge can easily

be retrieved when needed.

Since data organization decides the accuracy of the inference procedure, it is
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Figure 2.1: An example on the knowledge collected from a biography.

important to analyze the required data related to a notion to be stored in ALPS.

We summarize the required data by analyzing human's logic inference procedure.

Humans decide the answer to an opinion decision question based on remembered

examples in the brain and retrieved knowledge about relevant aspects of the target.

With memorized examples, humans can match examples with the target in the ques-

tion. The knowledge about different aspects of the target provides the support for

logic inference. People's inference process normally starts with matching the target
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with examples. It is simple to match them exactly. If examples are not matched

exactly, people still match target with examples by similarity. To decide whether

the target is similar to an example, we need the knowledge about the reasons why

each example is correct. If people cannot get the answer by comparing examples,

people will continue inference by using other aspects of the target. The aspects are

retrieved based on people's criteria. Therefore, in ALPS, we need to organize a list

of factors as people's criteria for the notion.

To answer an opinion question, if the target is an example known by a person,

then the answer can be readily determined to be “yes”. For example, if Grace Hop-

per is known to be an important human, then the answer is immediately available.

However, if the target is not a known example, then the person will need to make the

decision based on his/her own criteria. Since the criteria of one person can be differ-

ent from another person, each person may have his/her own opinion. Each criterion

usually spells out that the target should have a particular value for a specific aspect

in order to satisfy that criterion. In this thesis, although an opinion may have many

criteria, we will only be concerned with opinions that can be decided even when only

one criterion is satisfied. For example, if one of the criteria for an important human

is to have an important award, then Grace Hopper would be considered important

because she has received several important awards. There is no need to continue

even though she may have satisfied other criteria to be an important human.

Accordingly, our solution will first build some basic knowledge on an opinion

of a notion. These include a list of criteria and a list of examples in order for the

opinion to be true. To answer the opinion question, our solution will first check

22



whether the target is one of the memorized examples. If the target is an example,

then the answer to the question is “yes”. Otherwise, our solution will then check

the list of criteria, going through them one by one. Once a criterion is verified to be

satisfied by the target, our solution will stop and give a “yes” answer. If the target

fails to satisfy any criterion, our solution will give a “no” answer.

2.1 The Notion Class

As pointed out earlier, this thesis focuses on how to decide the answer to an

opinion of a notion using ALPS as our platform. To answer this kind of question, we

need to know how to represent knowledge with an adjective of the notion that will

express an opinion, what relevant knowledge is needed for the inference, and how to

organize those data in ALPS knowledge base. ALPS organizes data into different

classes to express an opinion of a notion. ALPS also requires relevant knowledge of

that notion. The class, notion, is developed to store relevant knowledge. For each

notion, it has many adjectives that can be used. Some adjectives convey a positive

sense of the notion, while some convey a negative sense. For example, the notion of

importance, the adjective important conveys positively for the notion importance,

while the adjective trivial conveys negatively. We will use an object of the class scale,

a class of ALPS, to store all the adjectives that can be used to express an opinion of

that notion. The relation between notion and scale in shown in Figure 2.2.

The adjectives in a scale are maintained as a linear list. Since there may be

several adjectives describing the same sense of a notion each with a different degree

of emphasis, insertions of additional adjectives into the scale are allowed. Three
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Figure 2.2: Relation between notion and scale in ALPS.

operations: “insert between”, “insert before”, and “insert after” are provided by

the class to accomplish these actions. The use of a scale object allows the system

to properly maintain the relationship among the various adjectives describing the

notion. It also allows the system to decide whether a given word is an adjective for

the notion.

2.2 Factors List and Examples List

Humans may be asked different kinds of questions. One kind of questions is

a factual question. The answer to this kind of questions is based entirely on some

known facts, and is simply a “yes” or “no” answer without the need to give an

explanation or a reason. For example, for the question “Is John an Oscar winner”,

the answer is “yes” if John has won an Oscar award, and “no” if he did not. Another
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kind of questions is an opinion question, e.g., “Is John a charming man”. Each human

may have his/her own opinion, and that may be the same or different from another

human's opinion. In addition, even if the opinion is the same, different humans may

have different reasons to support their opinions. Therefore, a human will normally

answer the question and followed that by an explanation. As a result, the answer to

an opinion-related question needs to be generated by reasoning from multiple data

sources [26]. The explanation could be generated through the reasoning linkage in

the found data source that satisfy a criterion.

Given a sentence which is a decision question, the parser in ALPS can parse

it correctly and determine its type easily [18]. Several logical components can be

identified, namely, the target, the description, and the reference. For example, for

the question “Is John an important human”, the target is “John”, the description is

“important”, and the reference is “human”. If the reference is omitted in a decision

question, ALPS will use either the category or the parent category of the target as

the reference. For example, for “Is John important”. “human” is used because it is

the category of John. Once these logical components have been identified, one may

start to decide the answer to the question.

As pointed out earlier, a human can answer questions about a notion only af-

ter that notion has been learned and understood. A notion is considered learned

and understood if the following two conditions are satisfied. First, adjectives for the

notion must be known. Second, one must be able to decide whether an adjective

has been used correctly or not. Knowing the adjectives can easily be achieved by

storing a scale that contains a list of adjectives usable for the notion. To know if
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an adjective has been used correctly, one way is to check with known examples. For

instance, the adjective “important” in “John is an important human” is considered

to be used correctly if John is known as an example of “important human”. Another

way is to verify the factor that justifies the use of the adjective. For example, if one

factor for an important human is an important award, then John can be considered

to be important if he has received a Nobel prize. Note that the adjective “impor-

tant” can also be used to describe the aspect “award”. Obviously, the examples and

factors for “important human” are different from “important award”. For instances,

some examples of “important human” are Albert Einstein and Grace Hopper. Some

factors required to be an “important human” may include having some great ac-

complishment or having received some important awards. On the other hand, Nobel

prize and Academy awards are examples of an important award, while a factor to be

an important award is a broad recognition. Thus, for each aspect an adjective can

describe, the notion needs to store two additional lists, one for the examples and the

other for the factors.

We will collectively call the list of examples and the list of factors as the criteria.

A criterion can only be added if the adjective is known to be usable for the notion.

In other words, an adjective for the notion has to be taught before it can be used for

an aspect. Since humans learn knowledge over time, additional examples and factors

can be added.

The list of factors is maintained as a linear ordered list. The reason is that hu-

mans normally consider some factors are more important than other factors although

any one factor would be sufficient to justify the use of the adjective. Consequently,
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the functions that add additional factors are “insert before”, “insert after”, and “in-

sert between”. This implies that at least one factor must be taught initially so that

additional factors can be added later.

The list of examples is stored as a map provided by C++ using the example

name as the key so examples can be recalled based on their names. Since we want to

provide a reason to justify our answer, if the answer is decided by using an example,

we need the reason to be available. Besides just storing the names of the examples,

we also need to store the reason why the example is correct. However, based on the

same fact, humans may give different reasons. For example, given the fact that Albert

Einstein discovered the general theory of the relativity, there are many possible valid

reasons that a person may give to justify that Albert Einstein is important. These

include, “He had great achievement”, “He discovered the general theory of relativity”,

and “He made a scientific discovery”. The first reason is a high-level reason, which

uses one of the factors for an important human, namely “have great achievement”.

The second reason is a low-level reason, which uses the detail fact directly. The

third reason is a middle-level reason, which uses a category that is a special case of

a high-level reason and it includes the detail fact as an example.

Out of the three levels of reason, we choose to store both the high-level and

middle-level reasons. The high-level reason is an adequate justification if one is not

interested in the detail. For example, one would be satisfied that a person is impor-

tant if he/she has great achievement. As for the middle-level reason, it may be used

to decide on other cases which are similar to the current example. For instance, one

can decide that Newton is also important, similar to Albert Einstein, since both have
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scientific discoveries; Einstein discovers relativity while Newton discovers gravity. By

finding similarity between the target and the known examples, we may be able to

draw the correct conclusion without the need to go through the list of factors. When

the problem domain is open, there is no universal method to find similarity. Some re-

searchers use the past and known reasoning to offer clues for handling unknown cases

[27]. We propose to use category and hierarchical relationships to find similarity.
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Chapter 3

Algorithms Implementation

3.1 Object-Oriented Design in ALPS

ALPS [20] is designed using Object-Oriented design (OOD) methodology. Cur-

rently, ALPS is able to learn a subset of English grammar and use it to parse and

understand sentences based on the learned grammar. Given a thought, it can also

write an English sentence according to the learned grammar. An example of items

in ALPS is an implementation of Class, ClassDef, which encapsulate attributes and

methods of a group of similar objects. Classes are basic and important units in

ALPS since all objects are instantiated from classes. The class in ALPS represents

the knowledge of a unit in the natural language. Each class in ALPS is named with

a noun, including the knowledge for a category, such as descriptions, aspects, oper-

ations, and structured knowledge. The Unified Modeling Language (UML) is used

for modeling classes’ structures in a software design. A simple example of UML for

ALPS design is shown in Fig.3.1.
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Figure 3.1: A simple example of UML for ALPS.
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Fig.3.1 shows the related components in ALPS to add and search a class. The

ClassDef is used for creating a class. The basicKnHandler maintains instances of a

class. It can add a new class instance to the respective list. The KnNameMap stores

a special kind of knowledge to a list.

The base class in ALPS is a class called knowledge. Every kind of knowledge

to be learned by ALPS is modeled by a child class of knowledge. For example, the

class concept is to model knowledge about physical concepts that can be measured.

The knowledge base class provides several polymorphic functions to be used for all

knowledge subclasses. Some functions allow the addition of new knowledge to the

knowledge base of ALPS. The create function allows objects of that class to be created

based on information provided. One add function adds the newly created knowledge

object to an appropriate object responsible for maintaining all knowledge objects of

that class. Several other add functions allow knowledge to be added to an object of a

class. Based on the provided information, hierarchical relationships among different

knowledge objects may be established. The change function changes an existing

knowledge about an object of the class. Several search functions are provided to find

sub-knowledge within an object using different amounts of provided information. The

isA function allows ALPS to decide whether the hierarchical relationship between

two pieces of knowledge is true or not.

In ALPS, a language class is provided to allow the system to learn natural

languages, An object of the language class has been created to learn English. It

allows details of the language to be acquired by the system, such as the grammatical

structures, roles, and rules of the language. By using the learned grammar, ALPS is
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able to parse English sentences and translated those into thoughts. Different kinds

of sentences have been translated into different kinds of thoughts. For examples, a

declarative sentence has been translated into a declaration, while a decision question

has been translated into a decision question. Based on the different kinds of thought,

ALPS will respond differently. For instance, if the given sentence is a question, the

thought created will first attempt to find the answer, then create a thought for the

answer, and finally, will use the learned grammar to produce a response sentence.

To facilitate the recognition of the knowledge corresponding to the given words in

the English sentence, every subclass of knowledge has to implement the polymorphic

function, parse. The parse function of each class is responsible for matching the

given English words to the knowledge objects where those words are the names of

the objects.

3.2 Notion, Factors List, and Examples List Im-

plementation

In this section, we discuss the methods to implement different components in

teaching notion knowledge to ALPS. To implement whole notion learning and an-

swering process with those items in ALPS, we need to create a user interface for

collecting data from users. Next, with OOD principle, different types of data should

be stored by different collections and with different data structures in C++. More-

over, after organizing the data, the answer to a user's input question should be

generated from inference through data. Consequently, users can teach ALPS the
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knowledge about a notion and their opinions in different aspects through the user

interface. After that, ALPS can use the learned knowledge to infer answers to the

user's questions.

The notion user interface is one component in ALPS that allows users to com-

municate with ALPS for their own opinions about notions. Each user can teach

ALPS notion knowledge based on their special understanding. The user interface for

the notion class contains multiple options for users to teach notion-related knowl-

edge to ALPS. The options include “create notion”, “add scale”, “add factor”, “add

additional factor”, and “add additional example”, which are designed based on the

earlier analysis for notion class data collection. The options are added to ALPS with

ioObj class in ALPS. The ioObj class in ALPS is designed for collecting information

from users to perform operations on knowledge objects. With the ioObj class, notion

names and notion criteria can be collected into ALPS. As for “add factor”, a list of

related factors and examples should be taught by the users. Therefore, we need to

choose another class, getSeqIoObj class for information collection. The getSeqIoObj

class, inherited from ioObj class, can read an input string to ALPS, which meets the

requirements for adding a list of factors and examples.

Factors list is one key component of the notion class which contains the criteria

for one description of the notion and the reference. For example, under the notion

“importance”, one factor list may be for “important human”, which contains “impor-

tant” description and “human” aspect. The user needs to teach ALPS a list of factors

that are regarded as important criteria to justify this classification. As pointed out

earlier, the factors list should store factors in the order from the most important
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factor to the least important factor. Therefore, after getting the factors from users,

we choose to use one class, knNameList in ALPS, to store the collection of factors.

The knNameList is designed to store elements in a total-order sorted list, which fits

our requirements for factors list. To insert the factors from users to one instance

of the knNameList class, we can use the methods developed in knNameList, such

as “insert after”, “insert between”, and “insert begin”. When inferring the answer

to a question, the knNameList class also provides retrieval methods for searching a

piece of knowledge, like “search before” and “search after”. The retrieval methods

can help us to traverse the factors list in the correct order.

The examples list is another knowledge component in the notion class for users

to teach ALPS knowledge about the notion. Examples in the notion are used for

matching with the target in the question, which is required to be retrieved efficiently.

Consequently, the knNameMap class in ALPS is a suitable collection for storing the

list of examples. The knNameMap class can efficiently get access to the knowledge

information with the knowledge’s name as index. As pointed out earlier, besides

storing the unique name of each example, we also need to teach ALPS the reason

the example is correct. Since we need to store the name of an example and its

associated reason, the add function should contain at least two items, the key to the

knowledge and the contents of the knowledge. In knNameMap class, the add function

is constructed by a name to locate the knowledge and a pointer to the contents of

the knowledge. Consequently, for each example, we can create a piece of knowledge

with the example's name and reason. The add method from knNameMap class can

insert the generated knowledge to ALPS with the examples name as the key and a
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pointer to the created knowledge. When retrieving a stored example, we can also

easily get its reason.

Apart from implementing each component in notion class, it is necessary to

check the validity of users-teaching inputs for building a reliable knowledge base.

One validation is to check whether the teaching is sensible or not for the notion. In

this validation, we need to search for the existence of the adjective in the notion. If

the search for the adjective fails, an unknown exception is thrown, and the teaching is

not added to ALPS. For examples, for the notion “importance”, “important human”

can be added because “important” is a known adjective for the notion, “importance”;

however, “beautiful human” cannot be taught since “beautiful”does not exist in the

notion of “importance”. Another validation is to check whether the factors in a

factors list have already been taught because ALPS cannot use unknown knowledge.

This validation operation is done during the inference procedure since users can

continue to add new factors to the notion before answering the question. When

inferring an answer, linkages between different factors can be constructed. To link

with a new factor, our methods validate if this factor has been taught. If the factor

is an unknown factor, our methods will stop further heuristic inference from this

factor.

In general, the whole notion class and the related implementation extends the

ALPS' question-answering ability. With this implementation, ALPS can answer

a decision question with an opinion adjective. The implementation uses different

kinds of classes to organize the data and search for knowledge while inferencing. The

attributes and operations in the notion class are summarized in Fig 3.2.
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Figure 3.2: The UML for the notion class.

3.3 Logical Inference Algorithm

3.3.1 The Reason for Logical Inference

ALPS intends to simulate human deduction thought and judgment. We use

the term notion to describe abstract concepts which humans use to explain their

own judgment. Individuals have different criteria for the same notion. For example,

people will have different opinions about happiness, since it is more related to their

own personal history, values, and goals. Some people tend to put salary in the

first place when considering happiness, while others attach more importance to their

beliefs. Thus, abstractness is difficult for a machine to apply simple statistics to

make a judgment, humans have rather different criteria for the same notion.

To solve this issue, we extend the prior work of classification inference [19] and

design a process to better simulate human logical judgment of a notion. The human
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judgment process of a notion is based on a set of criteria, including related factors and

examples. The factors reflect human values, goals, or personalities. The examples are

human knowledge pools. The criteria are implemented by the factors and examples

lists. The factors list is designed to be the trigger to search for representative criteria

of a specific notion. The examples list is to provide reliable and specific cases for

each factor. For example, ALPS can tell Thomas Edison is an important person

if the user believes the “important invention” is one of the factors for “important

human”; and the user knows that Edison's light bulb invention is one example of the

important inventions. However, if the user believes “important invention” should

not become a factor of “important human”, then Edison, in this case, cannot be

regarded as an important human. In another case, the user believes the “important

invention” is a factor for “important human”, but Edison's light bulb is not an

example of “important invention”. Then the system will go to the next level of

the user's criteria, the influential result, a factor of the “important invention”. If

the light bulb invention had an influential result, the light bulb invention would be

regarded as an important invention. Consequently, Thomas Edison is identified as

an important human based on this user's criteria. We believe that this process can

better imitate human judgment system. The factors list will be the logical line to

trigger the knowledge pool in each individual judging scenario, and the program will

follow the factors list to search the corresponding criteria.

A simple example for the notion judgment in ALPS is shown in Figure 3.3 and

Figure 3.4. In Figure 3.3, we can see an example of factors linkages between different

notions. Factors can link with each other because one factor can be a feature of
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another factor. Under each factor, it contains a set of learned examples. In Figure

3.4, a special inference example is shown. With the profile of the target Picasso

and the factors linkages file in Figure 3.3, the searching traversal paths for justifying

whether Picasso is an important human are generated in Fig 3.4. As shown in Figure

3.4, if we cannot find the content of one factor, we will stop and prune this branch.

The meaning of a factors list under a criterion is that those factors can serve as

features of this criterion. If the target's profile has no content for the aspect of this

criterion, it is nonsense to continue searching the criterion's factors list.
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Figure 3.3: An example of factors linkages.
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Figure 3.4: An example of searching procedure with factors linkages.
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3.3.2 The Logical Inference Algorithm

In this thesis, the logical inference process follows a tree searching structure.

The tree traversal is based on linkages between different factors. In each factor, a

set of supporting examples will be stored. For example, the important achievement

factor can have the “innovation of quantum computer”, the “discovery of relative

theory”, and the “painting of Mona Lisa” as examples. Each example will contain a

reason explanation. The answer is generated by inference through factors lists and

examples lists. In general, the answer can be reached in two ways: a direct match

or an example's categories match. The different inference methods are summarized

in Table 3.1.

41



Table 3.1: Summary of the inference methods

A direct match will occur if the search target or the search target's aspect already

exists. The example's categories match occurs if one or more examples are similar to

the search target. As shown in Table 3.1, the similarity between examples and search

target is measured if the search target can match an example category or the search

target's hierarchy can match an example category. For example, if the knowledge

base does not have the “discovery of gravity field” as an example under important
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achievement but it has the “discovery of magnetic field”, the “discovery of gravity

field” will also be regarded as the important achievement as both of them belong

to the discovery of a science category. If the target cannot match with examples in

both ways, the inference process will go to the next criteria level. If all criteria have

been traversed and without a “Yes” decision, the algorithm will return “No”.

The logical inference algorithm in our solution uses a Breadth First Search (BFS)

schema. The algorithm is shown in Table 3.2. The criteria are traversed level by

level with BFS. While linking to one factor in the traversal process, a comparison

between the search target’s respective aspect and supporting examples under this

factor will be executed. Moreover, to avoid connecting to nonsense factors in the

traversal process, each linked factor will be checked for its sensibility.

3.4 Answer Generation

A “Yes” or “No” answer is not enough in communication. Humans often explain

reasons for their decisions. This is one of the major challenges for developing an

opinion question-answering system [26]. In this thesis, our solution not only provides

a “Yes” or “No” answer, but provides a supporting reason to the answer. Humans

can have many different explanations for the same decision. The exact explanation

depends on which criterion is satisfied by the target. Since the criteria used by

different humans may be different, they may disagree on their answers. It is also

possible that they arrive at the same answer but with different reasons to support

their answers. The explanation provided by our solution depends on how the answer

arrives. We use four different cases of explanations.
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Table 3.2: Algorithm: Logical Inference Algorithm in Decision Question Answering

44



The first case is the target of the question or its relevant aspect is one of the

stored examples in the knowledge base. For example, assume that Abraham Lincoln

is an example of “important human” and is known by ALPS. Then the answer to

the question “Is Abraham Lincoln an important human” is “Yes”, and the reason

provided by our system will be “Abraham Lincoln is the exact example of important

human”. This reason will be given for all situations when our solution decides the

answer by matching an example in the example list.

The second case is the target and its relevant aspects are not examples in the

knowledge base, but a certain aspect of the target can match the reason for an

example. In other words, one aspect of the target belongs to one category of the

reason for an example. In this case, our system can give a reason that the target

has similarity with an example. Assume that John is not an example of important

human nor his occupation of politician an example of important occupation. As a

result, neither the target nor a relevant aspect of the target matches the examples.

In addition, assume that one example of an important human is Abraham Lincoln

with the reason that his occupation is a politician. To answer the question “Is John

an important human”, our system compares John with examples and finds out that

Johns occupation matches with the occupation of Abraham Lincoln. Thus, we can

stop inference here and give a “Yes” decision with the reason that John is similar

to the example Abraham Lincoln because their occupations match. This is a simple

and direct example for using similarity to get a “Yes” answer.

The third case corresponds to the situation such that the given question is

nonsense. In this case, our solution gives a “No” decision rather than going through
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the logical inference linkage. For example, assume that Tom is a dog, but the question

is “Is Tom an important human”. Since the target “Tom” is a dog but not a human,

thus the answer is “No” because Tom is not a human. In [18,23,28], they give a deep

analysis of nonsense sentences, but we focus on generating an explanation here.

The fourth case corresponds to the situation such that the target does not satisfy

any criteria to be an important human. Since no criteria are satisfied, our solution

will search through all the criteria without getting a “Yes”. As a result, the answer

is “No” and the reason given is that we cannot find an aspect of the target to satisfy

the criteria.
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Chapter 4

Experiments

To demonstrate our algorithm works correctly, we created a simplified user inter-

face to simulate the input of a decision question: “Is a target an adjective category”,

The user interface simply asks for the target, the adjective, and the category. For

example, if the question is “Is John an important human”, then the input for the

target, adjective, and category is John important and human, respectively. We will

show several examples to decide whether a given target is an important human or

not. Before testing each example, the knowledge about the notion “importance”

such as the criteria to be an important human and the relevant knowledge about the

targets are assumed to exist in the knowledge base of ALPS.

The first example demonstrates that a “yes” answer is obtained by a direct match

with an existing example in the knowledge base. The adjective is important, the

category is human, and the target is Abraham Lincoln. The given input corresponds

to the question, “Is Abraham Lincoln an important human”. Since Abraham Lincoln

is an example of an important human in the knowledge base, the answer is “yes”.
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The second example also demonstrates a match with an existing example but

the match is indirect. The target is not a direct example of the question, but an

aspect of the target matches an example of a factor. Assume that Marie Curie is

not an example of an important human, but she has an award of a Nobel Prize.

Assume further that one factor for an important human is to have an important

award, and an example of the important award is Nobel Prize. For the question “Is

Marie Curie an important human”, although Marie Curie is not an example of an

important human, she is still important because Nobel Prize is an example of the

important award, which is a factor to be an important human.

Our third example corresponds to that case that neither the target nor any

aspect of the target matches an example, but one aspect of the target matches

with the reason of an example. Assume that Abraham Lincoln is an example of an

important human, and the reason is that his occupation is a politician. In addition,

although an important occupation is a factor to be an important human, a politician

is not known to be an example of important occupation. Now assume that Gandhi

is not an example of an important human, and his occupation is a politician. For the

question “Is Gandhi an important human”, although neither Gandhi nor politician

is an example, Gandhi is still an important human since he is similar to an example

of an important human, Abraham Lincoln. They are similar because they have the

same reason, namely the same occupation.

Our fourth example is similar to our third example except that the occupation

of the target is not exactly the same as the occupation of an example, but instead it

is a subcategory. Assume that the occupation of John is governor, and assume that
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governor is known by ALPS as a child category of politician. Using this hierarchical

relationship, our algorithm concludes that John is important because John is similar

to Abraham Lincoln.

Our fifth example shows that we can decide a “Yes” answer based on a unique

and significant detail of the target. The information about the special detail can

directly match a criterion. Consider the question “Is Picasso an important human”.

Assume that the knowledge base has no examples of an artist or criteria about famous

artists, but an article that has a tremendous effect can satisfy a criterion to be an

important human. In addition, assume that the knowledge base of ALPS has the

knowledge that Guemica, a picture from Picasso, has a tremendous effect. Even

though we cannot find direct matching or similarity of Picasso with any examples

of important human, our program can still give a ”Yes” answer when the reasoning

line finds the special detail of Guemica.

Finally, we demonstrate an example that the “No” answer is decided. Assume

that Tom is a human who does not satisfy any of the given criteria of an important

human. Our algorithm correctly gives a “No” answer.
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Chapter 5

Discussion

In this thesis, we discuss a method to answer a decision question with an opinion

adjective. We solve this problem by addressing it to several sub-problems: the

knowledge representation of opinion or notion, data organization in the knowledge

base, logical inference through all the criteria. Notion knowledge representation is

developed based on several classes and collections in ALPS. Data organization is

inspired by human thinking and inferring procedures. By summarizing the general

data that humans need in inference, we organize the data in a respective format.

Logical inference algorithm simulates human inference. It can search through the

criteria linkage and justify whether it matches or is similar to criteria and examples

that can answer the question. Finally, the questions could be answered correctly

with sensible criteria, enough examples, and some common sense knowledge learned

in ALPS.

Our experiments show the evidence that our solution is a reliable part of ALPS

in answering opinion OR decision questions. Different users can teach ALPS their
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own opinions. Our experiments cover several common teaching styles. Our system

can answer test questions correctly with different teaching files. Moreover, our system

can operate error-checking in users' notion-teaching procedures and users' questions

to avoid an incorrect inference.

Our method is a complementary solution for the statistics-based method. It can

solve some problems that statistics methods cannot. For example, in a recommenda-

tion system application, statistics methods give recommendations based on training

in huge data set. However, our method can analyze each user's shopping criteria

and justify whether one product is suitable for the user. Our method can provide

recommendations without lots of data.

There are still issues that need to be solved. For example, in the sentence with

more than one adjective, the problem will be a combination of logic or and logic and

problem. For example, the question could be “Is John a charming and important

man”. To answer this question, we need to apply the logic or method to make a final

decision.
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