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Abstract

High resolution airborne hyperspectral imagery and high resolution, low pulse energy

bathymetric full waveform LiDAR were investigated in this dissertation to investigate their

capabilities for predicting shallow water column characteristics and bathymetry.

A continuous waveform transformation method was proposed in this dissertation and

compared with other commonly used full waveform processing algorithms. Both single

wavelength and dual wavelength bathymetry systems were investigated and the results in-

dicate that a multiwavelength system is superior to a single wavelength for shallow water

bathymetry estimation. Significant improvements in point density, multiple return detec-

tion, and accuracy were determined for full waveform bathymetric LiDAR.

Support vector regression (SVR) was proposed to retrieve shallow water bathymetry

from hyperspectral imagery and compared to an established band ratio method. SVR sig-

nificantly improved the shallow water bathymetry for the two rivers studied. Water turbidity

was also determined from hyperspectral imagery using SVR simultaneously.

The full waveform was further evaluated by using a methodology that voxelizes the

original waveforms to generate orthowaveforms that were evaluated for estimating water

bathymetry and turbidity. The orthowaveforms outperformed full waveform estimates and

were also utilized to retrieve water turbidity. Finally, the fusion of hyperspectral imagery

and orthowaveforms was investigated and slightly improved both shallow water bathymetry

and water turbidity estimations over using either dataset alone.

The hyperspectral observations were also studied in conjunction with a semi-analytical

model to retrieve water column constituent concentrations and bathymetry simultaneously

for a coastal region. Both a nonlinear optimization method and a model based SVR method

are introduced to estimate water constituents and bathymetry. The bathymetry estimated

with these two methods were compared to both bathymetric LiDAR and field measured

water depths. The results show both advantages and limitations for hyperspectral imagery

vii



bathymetry retrieval. The fusion of bathymetric LiDAR and hyperspectral imagery was

also performed; however, the accuracy evaluation was not performed due to the lack of

field water constituent concentrations measurements. More studies to optimally fuse these

two remote sensing techniques need to be performed in the future.
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Chapter 1

Introduction

1.1 Background

Mapping shallow water bathymetry is essential for monitoring benthic spatial and tem-

poral change. The evolution of shallow inland fluvial systems, such as rivers and lakes, and

near shore coastal zone environments are tightly interconnected with human environmen-

tal, agricultural and recreational activities on and near water bodies. Therefore, scientific,

resource management, defense and other communities need tools and algorithms to effi-

ciently map water bathymetry, column characteristics, and substrate composition (Marcus

and Fonstad, 2010). The use of field platforms to measure and evaluate these environments

has prevailed in the last century, but catchment research or large scale holistic views of

entire ecosystems indicate that approaches such as remote sensing are more feasible tech-

niques to assess current conditions (Mumby et al., 1999).

Acoustic sonar is a common technique used to readily produce detailed bathymetric

maps and can operate in water depths ranging from meters to thousands of meters. Acous-

tic sonar systems have been successfully used for applications such as submarine detection,

shallow and deep water bathymetric mapping, and nautical charting (Wilson et al., 2007;

Costa et al., 2009). However, it is financially ineffective to map shallow water using acous-

tic instruments due to the reduced swath with decreasing water depth, which increases ac-

quisition costs significantly (Costa et al., 2009; Guenther, 2006). The logistical difficulties

and safety risks in deploying acoustic instruments in non-accessible areas further limit its

applications (Guenther, 2006). In contrast, airborne optical methods, such as hyperspectral

imagery and bathymetric LiDAR are commonly used for shallow water bathymetric map-

ping. Passive imagery and bathymetric LiDAR sensors are installed on either aircraft or

spacecraft that provide fast and effective earth surface observations.
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1.1.1 Shallow Water Hyperspectral Imagery

Passive multispectral imagery has been utilized to retrieve bathymetry and water col-

umn characteristics for several decades (Lyzenga, 1978; Philpot, 1989; Lee et al., 1998,

1999; Brando and Dekker, 2003). Solar radiance reflects off the water surface and enters

the water column where it is attenuated exponentially and then partially reflected from the

benthic layer. The radiance arriving at the airborne or satellite platform is thus a composite

of water surface, water column, and benthic layer reflections. The received spectrum for

each pixel consequently varies with substrate types, water column characteristics and water

depth. By analyzing the received spectrum, the relationship between received radiance and

physical parameters of the shallow water can be established, allowing the retrieval of water

depth, water column characteristics and benthic reflectance simultaneously.

Satellite platforms are a major source of multispectral imagery and have previously

been shown to be effective in retrieving water bathymetry with moderate to high spatial

resolution. Pacheco et al. (2015) utilized medium resolution Landsat 8 imagery to derive

water depths for a near shore area. Lyons et al. (2011) applied Quickbird high resolution

imagery to retrieve water bathymetry using two different methods. Eugenio et al. (2015)

used Worldview-2 multispectral imagery to retrieve water bathymetry for two coastal areas.

Paringit and Nadaoka (2012) simultaneously retrieved water benthic cover and bathymetry

from high resolution IKONOS data. Satellite imagery is effective to routinely monitor

shallow water areas with relatively low cost, but suffers from acquisition difficulties due to

weather conditions (e.g. presence of clouds) and relatively coarse spectral and/or spatial

resolution (Fonstad, 2012). The flexibility of satellite imagery is also limited due to the

fixed orbits of the satellites. Generally, satellite imagery is a compromise between either

spatial or spectral resolution due to the limited number of photons detected by high alti-

tude satellite platforms (Fonstad, 2012). In contrast to spaceborne multispectral imagery,

2



airborne systems at lower altitude generally increase both spatial and spectral resolution,

enabling hyperspectral imagery collection. Hyperspectral imaging systems take advantage

of light diffraction to record the reflected radiance intensity at various wavelengths. The

spatial resolution of airborne hyperspectral imagery is partially determined by the acquisi-

tion altitude, due to a fixed field of view; however, there is still a tradeoff between spatial

and spectral resolution because a high signal-to-noise ratio for the acquired imagery is

desired (Fonstad, 2012).

The algorithms to retrieve water bathymetry from multi/hyperspectral imagery have

been well documented in the existing literature. Lyzenga (1978) and Philpot (1989) in-

troduced a radiative transfer model of the water column and a linear solution for water

bathymetry retrieval using principal component analysis. The numerical radiative transfer

model developed and implemented by Mobley (Mobley, 1994), referred to as Hydrolight,

computes radiance distribution and derives natural water characteristics. This numerical

software is widely used in the ocean color remote sensing community, but it is a forward

model and not invertible. Lee et al. (1998) therefore proposed a semi analytical radiative

transfer model for water remote sensing, and the proposed optimization scheme has also

been utilized to retrieve water bathymetry and column characteristics simultaneously (Lee

et al., 1999). However, the semi analytical method requires an extensive calibration pro-

cess of the passive imagery to achieve optimal estimation, making it difficult to implement.

To alleviate the calibration requirements, Dierssen et al. (2003) and Stumpf et al. (2003)

proposed a band ratio method to retrieve water depths from hyperspectral imagery and de-

clared its efficacy for being more sensitive to changes in bottom depth than in substrate

composition. Legleiter et al. (2004) further reviewed the underlying radiative transfer the-

ory in the passive hyperspectral remote sensing of water, and evaluated both linear and band

ratio methods to retrieve water depths for inland shallow rivers. Legleiter et al. (2009) sim-

plified the radiative transfer model for shallow water and proposed a statistical approach to

3



search for the optimal band pair for water depths retrieval. In addition to the semi analytical

model, linear solution and band ratio method, machine learning has also been investigated

for water bathymetry retrieval. Sandidge and Holyer (1998) retrieved water bathymetry

from airborne hyperspectral imagery using a neural network approach. Pan et al. (2015a)

proposed using the full image spectrum instead of a single pair of bands and combined

that with the support vector regression method to determine both water bathymetry and

turbidity from hyperspectral imagery.

Advantages of hyperspectral remote sensing

1. The most significant advantage of hyperspectral imagery is the high resolution of the

available spectral observations. For benthic substrate classification, the numerous

bands of hyperspectral imagery benefit both supervised and unsupervised classifi-

cation to distinguish different species (Cui and Prasad, 2015). Apart from species

classification, spectral unmixing is also enabled with hyperspectral imagery by in-

vestigating the spectral mixture of different species quantitatively, which is called a

"soft classification" (Legleiter and Goodchild, 2005). In addition to classification,

hyperspectral imagery has improved the derived water bathymetry compared to the

multispectral imagery (Legleiter et al., 2002); a statistical method determining the

optimal bands for bathymetry retrieval is also enabled with hyperspectral imagery

(Legleiter et al., 2009). The semi analytical model that solves for the water column

constituents concentrations also requires fine spectral observations with mathemati-

cal nonlinear optimization (Brando and Dekker, 2003; Lee et al., 1999).

2. Logistically, airborne hyperspectral imagery has higher deployment flexibility com-

pared to spaceborne systems that generally have fixed orbits. The flexibility high-

lights its efficacy for periodic environmental monitoring tasks and quick response

to natural hazard events. In addition to the logistical advantages, the use of passive

4



imagery is well documented including several algorithms to qualitatively and quan-

titatively estimate environmental characteristics. Various biophysical and environ-

mental applications have been successfully studied with hyperspectral imagery for

coastal and fluvial environments. For example, Brando and Dekker (2003) estimated

concentrations of chlorophyll, colored dissolved organic matter and suspended mat-

ter from hyperspectral imagery and Gitelson et al. (2009) estimated chlorophyll-a

concentration in turbid water using a three-band and a two-band model.

Limitations of hyperspectral remote sensing

Despite the significant advantages of the fine spectral and spatial resolution of hyper-

spectral imagery, limitations are also highlighted in its application to a range of fluvial and

coastal monitoring and estimation problems.

1. Field data is critical for hyperspectral remote sensing in order to optimally calibrate

the physical environmental parameters to the image observations. Even though meth-

ods without using field data exist (Fonstad and Marcus, 2005; Legleiter, 2015; Lee

et al., 1999; Brando and Dekker, 2003), substantial tuning of parameters and iterative

computations impose significant difficulties for bathymetry retrieval. More studies,

on the contrary, suggest the increased use of field data properly compensate for the

atmospheric correction and varying water column optical properties (Philpot, 1989;

Legleiter et al., 2009, 2015; Stumpf et al., 2003; Dierssen et al., 2003). The re-

quirement for adequate calibration samples for relating hyperspectral observations to

physical water depths is a significant constraint especially for dangerous and inac-

cessible regions. In addition water depths only are estimated from the hyperspectral

imagery and an independent estimate of the water surface is needed to provide refer-

enced elevations of the benthic layer.

2. Hyperspectral imagery records an estimate of the contiguous received radiance in
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digital numbers, which is a discrete observation. However, the received radiance

drops below the detector sensitivity for deep water. For a fixed sensitivity detector,

hyperspectral imagery generates contour-like water bathymetry whose accuracy de-

creases significantly as water depth increases (Philpot, 1989; Legleiter et al., 2004).

The degraded bathymetry products in deeper water impedes its application for bathy-

metric mapping due to difficulties in satisfying the standards given by the Interna-

tional Hydrographic Organization (IHO) (IHO, 2008).

3. Hyperspectral imagery is a passive imaging technique, and in order to ensure max-

imum penetration of the water column, optimal data collection time is near solar

noon when the local solar elevation angle is close to the maximum. In addition, an

increased sun glint around the solar noon is likely to further influence hyperspectral

imagery bathymetry retrieval. This physical limitation imposes an extra logistical

constraint on hyperspectral imagery collection. Furthermore, the optimum weather

condition for hyperspectral imagery is clear skies with the absence of excessive water

vapor in the atmosphere.

4. The radiative transfer process for downwelling irradiance in the water column is

complex because the substrate type, water column characteristics and depth all affect

the remote sensing observation simultaneously (Mobley, 1994). The maximum pen-

etration of solar light is limited due to water attenuation and therefore turbid water

further impedes the application of hyperspectral imagery. Varying substrate types

also effect the observations and the derived water depths (Legleiter et al., 2009; Pan

et al., 2015a). To acquire an accurate bathymetry map, extra consideration of water

column reflection and varying benthic composition is necessary.
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1.1.2 Airborne LiDAR Remote Sensing of Shallow Water

Airborne bathymetric LiDAR systems emit green laser pulses to penetrate the water

surface and the backscattered laser energy from the benthic layer is captured. The selec-

tion of a visible green laser is because the water column exhibits less attenuation at this

wavelength and because a green laser source (frequency doubled Nd:YAG) and detector

are commercially available (Guenther, 2006). With accurate time of flight measurements

recorded by the LiDAR system, the range is determined using the constant speed of light

in the water column. The spatial position of each target is derived by combining the range,

scan angle of the laser beam and the navigational information provided by the Global Nav-

igation Satellite System (GNSS) and Inertial Navigation System (INS) on board (Glennie

et al., 2013). The spatial resolution of LiDAR point cloud is dependent on the flight altitude,

laser pulse repetition frequency (PRF), field of view, etc. (Fernandez-Diaz et al., 2014). An

airborne bathymetric LiDAR is generally coupled with a near-infrared laser scanning sys-

tem in order to produce seamless topobathy products and accurate water surface estimates

(Fernandez-Diaz et al., 2014; Tuell et al., 2010; Allouis et al., 2010); however, only the

green laser pulses are used to measure water bathymetry.

Bathymetric LiDAR has a long history of estimating bathymetry that dates back to the

1960s when a pulsed airborne laser profiling system was first used to measure water depths

(Guenther et al., 2000). The initial impetus for airborne laser hydrography was to detect

submarines for the purpose of military defense, and the first report to the public was given

by the Syracuse University Research Center in Hickman and Hogg (1969). International

cooperation between Canada, USA, Sweden, and Australia brought airborne hydrographic

LiDAR from the experimental stage to an operational stage in the early 1980s (Guenther,

1985). In the 1990s, the Scanning Hydrographic Operational Airborne LiDAR Survey

(SHOALS) was delivered to the U.S. Army Corps of Engineers (USACE) by Optech, the
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Laser Airborne Depth Sounder (LADS) was developed by Tenix in Australia, and the

HawkEye system was developed by Saab Aerospace in Sweden. After several decades

of development, airborne bathymetry LiDAR is now commonly commercially available in

the form of large, low resolution deep water systems. High resolution shallow water air-

borne bathymetric LiDAR systems began to be commercially available in the early 21st

century. At present, there are several commercial systems available worldwide, including:

the Experimental Advanced Airborne Research LiDAR (EAARL-B) from U.S. Geological

Survey (USGS); Chiroptera, Dual DragonEye, and HawkEye systems developed by Air-

borne Hydrography AB, Sweden; Aquarius, Titan and Costal Zone Mapping and Imaging

LiDAR (CZMIL) developed by Teledyne Optech, Canada; and the VQ-820G and VQ-

880G systems developed by Riegl, Austria (McKean et al., 2009; Kim et al., 2015; Tuell

et al., 2010; Fernandez-Diaz et al., 2014; Pfennigbauer et al., 2011). The recent evolution

of single photon LiDAR detectors coupled with a green laser source also shows promising

potential for bathymetric mapping (Degnan and Field, 2014; Shrestha et al., 2012; Cossio

et al., 2009). With the exception of the single photon, EAARL-B, Riegl VQ-820G and

Optech Aquarius single wavelength sensors, all the other sensors are equipped with both

a green and a near-infrared (NIR) bands lasers. However, the green laser is always pro-

duced by doubling the near-infrared (1064 nm) output of the NdYAG laser for the dual

wavelengths systems.

Airborne bathymetric LiDAR systems have been shown to be safe, cost-effective and

accurate through many years of operation in moderate water depths (<80 m) where con-

ventional acoustic systems are less effective (LaRocque and West, 1999; Guenther, 2006).

Irish and Lillycrop (1999) showed that laser remote sensing is an integral tool for coastal

engineering by providing efficient bathymetric maps. Collin et al. (2008) derived both high

accuracy bathymetry from the SHOALS system and used the bottom backscatter to derive
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benthic characteristics by extracting statistical parameters. Wang and Philpot (2007) ex-

amined the use of features from bathymetric LiDAR to discriminate coastal substrate types

successfully. McKean et al. (2009) introduced the EAARL system for surveys of channels

and floodplains. Fernandez-Diaz et al. (2014) also showed the effectiveness of a new com-

pact high resolution bathymetric LiDAR system in various topographic and bathymetric

applications.

Depending on how the ranges to targets are determined, two types of bathymetric Li-

DAR systems are presently commercially available: discrete and full waveform LiDAR

systems. Discrete LiDAR is a system that records both the position and intensity informa-

tion for up to 5 returns for each outgoing laser pulse. The discrete LiDAR generally utilizes

a constant fraction discriminator (CFD) technique to detect returns in the backscatter laser

pulse in real time (Guenther, 1985). However, while CFD is routinely used for topographic

surveys, it is less desirable for bathymetry because of factors such as sensitivity to pulse

shape and signal baselines (Guenther et al., 2000). By contrast, full waveform LiDAR sys-

tems digitize and record the entire backscattered signal history of the reflected laser energy

for subsequent post processing. Currently, most bathymetric LiDAR systems are capable of

digital waveform recording generally at a temporal resolution of one nanosecond. Instead

of using CFD, a post-mission evaluation of the laser propagation is enabled with advanced

signal processing techniques to estimate ranges and other associated parameters from the

recorded digital full waveforms. For topographic applications, abundant studies have been

conducted to investigate the capabilities of full waveform LiDAR. For example, Parrish

et al. (2014) evaluated several full waveform shape parameters and correlated them to salt

marsh vertical uncertainty. Rogers et al. (2015) further related the full waveform shape

parameters to biological parameters of the salt marsh area. Wang and Glennie (2015) vox-

elized the full waveform and fused it with hyperspectral imagery to improve land cover

classification. Full waveform LiDAR has also been analyzed for some studies related to
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bathymetric mapping. Through post mission analysis of the return full waveform, a poste-

rior investigation on each laser pulse is possible to enable the extraction of more benthic,

water column and water surface returns and subsequently allow the derivation of water col-

umn characteristics (Tuell et al., 2010). Allouis et al. (2010) used the full waveform return

from the near infrared channel to compensate for the water surface reflection in the green

laser channel and successfully extracted a better bathymetric product. Both increased point

density and more multi-component returns from each outgoing laser pulse were acquired

through the use of full waveform processing techniques in Pan et al. (2015b).

Advantages of airborne bathymetric LiDAR

Compared to hyperspectral imagery for bathymetry retrieval, airborne bathymetric

LiDAR actively emits laser pulses to penetrate the water column, and this distinct charac-

teristic has some advantages:

1. Direct measurements of water depths are acquired by airborne bathymetric LiDAR.

LiDAR utilizes the laser time of flight in water to derive the water bathymetry with

a constant speed of light in water. Field data is not required for data calibration,

making the system ideal for areas where it is dangerous and difficult to access on the

ground. LiDAR measures the water surface and benthic layer geographical positions

instead of water depths, therefore the benthic layer can be more readily compared to

various bathymetry products without the influence of tides.

2. The principle of airborne bathymetric LiDAR indicates that its positional accuracy

is mainly dependent on the timing accuracy because of the constant speed of light

in one specific water (Legleiter et al., 2015). Despite the stretching effect of water

turbidity on the return laser pulse, water turbidity has a negligible effect on the water

bathymetry estimation.

3. Airborne bathymetric LiDAR actively emits laser pulses, and the stronger energy of
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the laser (compared to passive solar radiation) allows LiDAR to be more resilient to

water and weather conditions, such as vapor, haze, and strong water surface solar

reflections. It is also possible to customize a specific LiDAR system for deeper water

by increasing laser power or detector sensitivity. Logistically, bathymetric LiDAR

can be deployed at any time of day because it is an active energy source. Furthermore,

the resolution of airborne bathymetric LiDAR is flexible and can be planned before

acquisition.

Limitations of airborne bathymetric LiDAR

Despite the outstanding advantages of determining water depth independently using

bathymetric LiDAR, there are also several significant drawbacks with these systems.

1. A major technical limitation of current bathymetric LiDAR is its monochromatic

characteristic. In contrast to passive hyperspectral imagery, the single (or in some

cases 2 or 3) band intensity recorded by an airborne bathymetric LiDAR provides

limited spectral information. Although the substrate type has been successfully clas-

sified using water depth and benthic intensity information (Wang and Philpot, 2007),

a quantitative assessment of complex multi-benthic compositions is still challenging

with bathymetric LiDAR. The return intensity is attenuated by the water column and

is also difficult to calibrate due to the nature of laser propagation in water, especially

when multiple returns are present (Wagner et al., 2006).

2. The derived water LiDAR bathymetry performance is affected by both water column

characteristics and substrate type. More turbid water theoretically results in more

water column scattering that is non-linearly mixed with the benthic and water sur-

face returns. An increase of water turbidity degrades detection of the water surface

in single band bathymetric LiDAR, which then degrades the retrieved water depth
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accuracy (Pan et al., 2015b). Outgoing laser pulse width is also critical for discrimi-

nation of the water surface from a shallow benthic layer (< 1 m); longer pulse widths

can cause complex overlap of the benthic return, water column return and water

surface return, which results in additional uncertainty in water depth determination

(Guenther et al., 2000).

3. Due to the continuing development and system enhancements of airborne bathymet-

ric LiDAR, the standard algorithms used to analyze either the recorded full waveform

signal or discrete data are evolving. The irregular distribution of recorded points re-

quires specialized algorithms that are different from the regularized grid techniques

derived for image processing. In addition to the technical limitations, only a few

operational bathymetric LiDAR exist worldwide, and the financial cost for a bathy-

metric LiDAR survey is still relatively high compared to hyperspectral imagery col-

lection due to the lower altitude for the current bathymetric LiDAR.

1.2 Motivations and Objectives

Motivations

Determination of water bathymetry using remote sensing techniques requires optimal

strategies to analyze and extract useful information. Hyperspectral imagery provides a fine

observation of the spectral response of features and theoretically has the potential to deter-

mine water bathymetry independently. However, limitations for the current solutions are

also obvious. The linear solution proposed by (Lyzenga, 1978; Philpot, 1989) is difficult to

implement in shallow water environments because of the deep water correction required,

which is often difficult to estimate. The deep water pixels in shallow water generally have

significant spectral contributions from the benthic layer that can influence bathymetry esti-

mation. The band ratio method, given in Legleiter et al. (2009), Stumpf et al. (2003) and

Dierssen et al. (2003), utilizes a pair of optimal bands to determine water bathymetry while
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the other less-optimal bands containing less information are discarded. To fully exploit

the capability of hyperspectral imagery in terms of bathymetry estimation and remove the

need for a deep water correction, a method for determining shallow water bathymetry is

proposed and implemented in this dissertation using all of the spectral features simultane-

ously to take full advantage of all the available bands in the hyperspectral imagery.

In contrast to the empirical methods for determining shallow water bathymetry sta-

tistically, the semi analytical model proposed in Lee et al. (1999) estimates both water

column constituent concentrations and water bathymetry simultaneously. This model has

been widely used in various applications to derive water column characteristics and wa-

ter depth (Lee et al., 1999, 2001; Brando and Dekker, 2003; Brando et al., 2009; Torres-

Madronero et al., 2009, 2014; Jay and Guillaume, 2014, 2016). Its superiority has also been

demonstrated in comparisons with several empirical and analytical techniques. A nonlinear

least square based optimization approach is introduced in this dissertation to inverse hyper-

spectral imagery for water column characteristics and bathymetry retrieval. However, the

inversion approach requires an extensive mathematical model with empirically derived ap-

proximations, field measured spectra, and extensive parameter tuning to achieve accurate

results. On the other hand, machine learning has been explored extensively in recent years

for recognizing patterns and predicting attributes (Cui et al., 2012; Cui and Prasad, 2015;

Chang and Lin, 2011; Ma et al., 2010). The established correlation between bathymetry

(and turbidity) and observed spectra suggest promise for using machine learning to perform

shallow water remote sensing (Pan et al., 2015a). A model based machine learning scheme

is then proposed to examine the possibility of deriving water bathymetry and column char-

acteristics simultaneously.

Discrete bathymetric LiDAR has been shown to be effective for deriving shallow water

depths in previous studies (Guenther, 2006; McKean et al., 2009). However, full waveform
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LiDAR shows additional promise because it records temporal backscatter that enables pos-

terior investigation of the laser pulse interaction with targets along the laser path. Full

waveform records theoretically contain information regarding each target within the laser

beam cone of diffraction. Therefore optimal full waveform processing strategies to extract

the echoes contained in the full waveform record has the potential to improve bathymetry

estimation. For longer pulse width LiDAR systems over shallow water environments, the

resultant waveform is a complex superposition of water surface, column and benthic re-

turns. Full waveform processing requires the application of advanced signal processing

techniques to decouple the return laser pulse mixture. Thus, to fully exploit the capability

of airborne bathymetric LiDAR for shallow water bathymetry, a full waveform processing

strategy is proposed in this dissertation and the resultant performance is examined.

Recent developments for producing voxelized waveforms from the individual recorded

full waveform returns has been applied to different applications (Park et al., 2014) and

shown improved land cover classification accuracy (Jung and Crawford, 2012; Wang and

Glennie, 2015). A voxelized waveform generally requires multi-angle scanning of the tar-

get object to create a synthesized voxelized waveform due to changes in geometrical prop-

erties with look angle (Wang and Glennie, 2015). However, water is a distinct object that

is heterogeneous from any direction due to its near homogeneous attenuation in princi-

ple (Park et al., 2014). A voxelized waveform strategy is introduced in this dissertation

to produce an orthorectified waveform to remove the effect of direction on scanning. The

voxelized waveform is then examined to estimate both shallow water bathymetry and water

turbidity individually using a machine learning algorithm.

The prior listing of pros and cons for both hyperspectral imagery and bathymetric

LiDAR allows us to conclude that each optical remote sensing technique has distinct ad-

vantages and limitations. The extensive spectral observations of hyperspectral imagery

should be able to compensate for the single band spectral observations from bathymetric
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LiDAR. In addition bathymetric LiDAR provides direct measurements of water depth that

can be used to calibrate the empirical models used for processing of hyperspectral imagery.

Therefore, an evaluation of fusion techniques to combine these two remote sensing obser-

vations for optimal bathymetry estimation is also performed. Fusion of these two sensors

has been previously developed in remote sensing communities for both topographic and

bathymetric applications. Statistical methods that fuse LiDAR and hyperspectral imagery

in a feature space are common in topographic and forestry applications. For example,

Dalponte et al. (2008) demonstrated an improved tree species classification with fusion of

LiDAR and passive imagery data; Wang and Glennie (2015) used the fusion of full wave-

form LiDAR and hyperspectral imagery to enhance land cover classification significantly.

In terms of coastal or fluvial applications, the fusion of hyperspectral imagery and LiDAR

also improves the shallow water bathymetry significantly. Spectral physics based fusion

strategies that consider the distinct characteristics of these two remote sensing techniques

for derivation of both bathymetry and water column characteristics have been partially

explored but are not common. For example, Torres-Madronero et al. (2009) showed the

increase in accuracy of bioptical parameters estimation using the fusion of hyperspectral

imagery and bathymetric LiDAR. Torres-Madronero et al. (2014) presented the fusion of

both hyperspectral imagery and LiDAR derived bathymetry for improved benthic habitat

unmixing. Similarly, Tuell et al. (2010) gave an overview of the advanced bathymetric

LiDAR system: Costal Zone Mapping and Imaging LiDAR (CZMIL) which has integrated

these two optical remote sensing techniques for a more enhanced bathymetric solution, al-

though specific algorithmic details were not provided. The use of laser beam attenuation

coefficients derived from bathymetric full waveform was used to correct benthic return in-

tensity, and therefore the resultant LiDAR return intensity, water attenuation and depths

were fused with hyperspectral imagery as constraints to solve an optimization for water
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column characteristics (Tuell and Park, 2004). It is difficult to acquire water column at-

tenuation coefficients from full waveforms using compact LiDAR systems, especially for

shallow water due to the complex mixture of water surface and benthic layer returns. The

underlying optical physics in hyperspectral imagery and bathymetric LiDAR, however, still

suggest that there are benefits to fusing these two optical remote sensing techniques. This

fusion, for shallow waters, will be explored in this dissertation.

Objectives

Drawn from the motivations, the objectives of this dissertation are to propose and eval-

uate different methods for water bathymetry retrieval from hyperspectral imagery and air-

borne bathymetric LiDAR. The strategies and performance of each approach are examined

individually, and the fusion of these two optical remote sensing techniques are introduced

and evaluated in the dissertation. The original contributions of this dissertation lie in the

following areas:

1. A full waveform LiDAR processing strategy is proposed to extract more points and

multi-component returns and evaluate its performance; the comparison of several full

waveform processing strategies is performed to investigate the optimal solution.

2. A machine learning strategy for retrieving shallow water bathymetry from hyperspec-

tral imagery is proposed and compared to the commonly applied band ratio method.

The proposed method is also utilized to estimate water turbidity from hyperspectral

imagery.

3. A voxelized waveform strategy is proposed and evaluated for shallow water bathymetry

retrieval. The voxelized waveform is also examined for retrieval of water turbidity.

The comparison of voxelized waveform, full waveform and hyperspectral imagery

for shallow water bathymetry is also performed.
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4. A semi analytical spectrum model is introduced and a model based machine learn-

ing strategy is proposed and compared to the nonlinear least squares method. Vari-

ous hyperspectral water bathymetry products are compared to both LiDAR and field

measured water depths.

5. Different data fusion strategies are examined and the comparison to the performance

of each single data set alone is presented to investigate its significance.

1.3 Document Structure

The document is structured to provide background details on how to improve shallow

water bathymetry estimation from both airborne bathymetric LiDAR and hyperspectral im-

agery alone, and by fusion of these two remote sensing techniques. The two instruments

performance in terms of bathymetry and water column characteristics estimation were eval-

uated independently and as a fused set. Therefore, the rest of dissertation is structured as

follows:

• Chapter 2 reviews the radiative transfer models for hyperspectral imagery and air-

borne full waveform bathymetric LiDAR. The theoretical investigation of maximum

penetration water depth as well as an accuracy analysis of each sensor is given.

• Chapter 3 introduces the study sites and all the data used in this dissertation, includ-

ing hyperspectral imagery data, bathymetric LiDAR data and various types of in-situ

field measurements;

• Chapter 4 presents the algorithm proposed for full waveform analysis and compari-

son to different waveform decomposition algorithms against discrete LiDAR outputs,

and is based on the work presented in Pan et al. (2015a);

• Chapter 5 presents the algorithm proposed for hyperspectral imagery bathymetry and

water turbidity retrieval and the comparison to a common band ratio method, and is
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based on the work presented in Pan et al. (2015b);

• Chapter 6 presents a voxelization of bathymetric full waveforms and its application

for deriving water depths and turbidity and comparison to hyperspectral imagery

derived results. A feature fusion is also given to show enhanced bathymetry and

turbidity estimates, and is based on the work presented in Pan et al. (2016b)

• Chapter 7 presents the inversion of hyperspectral imagery for bathymetry and water

column constituent concentration estimation using a semi analytical model. A model

based support vector regression method is also given and compared to the semi an-

alytical model inversion. Various bathymetry products are compared to the LiDAR

bathymetry and field measured water depths.

• Chapter 8 provides conclusions and gives future research directions.
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Chapter 2

Theoretical Background

2.1 Optical Properties of Water

The optical properties of water are critical to understanding light propagation in the

water column. Dissolved organic and inorganic matter in the water and non-dissolved sus-

pended particles simultaneously influence the observed light field of water. Consequently,

the optical properties, especially for natural waters, show temporal and spatial variations

and seldom resemble pure water. The optical spectra also reflect the environmental and

biophysical properties of the natural waters.

The general optical properties of water can be divided into two categories: inher-

ent optical properties (IOPs) and apparent optical properties (AOPs). IOPs are properties

dependent only upon the propagation medium and therefore are invariant to the ambient

light field present. Absorption coefficients, beam attenuation coefficients and volume scat-

tering functions are examples of IOPs (Mobley, 1994). Scattering coefficients, such as

forward and backward scattering coefficients, are drawn from the volume scattering func-

tions that determine the natural water color. AOPs are properties that depend both on the

water medium (IOPs) and also on the geometric structure of the ambient light field present

(Mobley, 1994). Diffusive attenuation coefficients and observed radiance reflectance are

common AOPs used to describe water bodies. Both IOPs and AOPs are wavelength depen-

dent and can be used to describe a specific water body that displays spectral features and

stability. The IOPs and AOPs are also tightly related to the water column properties and en-

able the derivation of many biophysical and ecological parameters, such as the chlorophyll

and dissolved organic matter concentrations (Lee et al., 1998; Brando and Dekker, 2003;

Gitelson et al., 2009). The goal of this chapter is to give the basic theoretical radiative

transfer models used in the subsequent experimental analysis. Therefore, the definitions
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of IOPs and AOPs are given here for the express purpose of developing the theoretical

analysis of the radiative transfer models used in this dissertation, but the detailed descrip-

tion, physical definitions and experimental measurements can be found in the literature, for

example, Mobley (1994).

2.2 Radiative Transfer Processes

Radiative transfer describes the physical propagation of electromagnetic energy in a

medium. For radiative transfer in water bodies, both absorption and scattering affect the

propagated energy by different physical processes. Consequently, the passive nature of

hyperspectral imaging and the active nature of airborne bathymetric LiDAR show distinct

differences in radiative transfer properties. This chapter introduces these two different

remote sensing techniques and highlights the differences in the radiative transfer processes

that physically govern the interaction between incident radiance and aquatic environments.

2.2.1 Semi Analytical Model of Water Leaving Reflectance

Passive multi/hyperspectral remote sensing of water measures the visible and near

infrared reflected solar radiance that interacts with the water surface, column and ben-

thic layer. Radiative transfer for passive remote sensing has been established primarily by

oceanographers and remote sensing scientists (Mobley, 1994; Lee et al., 1998). Various at-

mospheric and water column constituents transform the incident irradiance both spectrally

and geometrically. A directional radiance is generally used to describe the underlying prop-

agation in both atmospheric and water mediums. A portion of the downwelling irradiance

is reflected by the water surface and the magnitude is described by the Fresnel equation.

The remaining radiance propagates into the water column at a refraction angle described

by Snell’s law.

IOPs and AOPs are commonly used to describe the effect of the water on radiance
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propagation. Light is attenuated exponentially with the distance traveled in the water at

an attenuation rate and spectral shape determined as a function of various IOPs and AOPs

present in solution (Legleiter et al., 2004). The water constituent, such as chlorophyll, color

dissolved organic matter and suspended sediments affect the IOPs; Lee et al. (1998) gives

an analytical model that connect the physical environmental characteristics to subsurface

remote sensing reflectance as

r(λ ) = r∞(λ )(1− exp(−(kd(λ )+ kc
u(λ ))d))+

R0,B(λ )

π
exp(−(kd(λ )+ kb

u(λ ))d), (2.1)

where r∞(λ ) is the subsurface deep water remote sensing reflectance; kd(λ ) is the water

attenuation for the downwelling irradiance; kb
u(λ ) is the water attenuation for the upwelling

irradiance after interacting with the benthic layer and kc
u(λ ) has no interaction with the

benthic layer accordingly. Lee et al. (1998) assumes that kb
u(λ ), kc

u(λ ), kd(λ ) are different

due to different photon origination and path lengths. R0,B is the normalized benthic layer

albedo, d is the physical water depth.

The attenuation coefficients kd(λ ), kb
u(λ ), kc

u(λ ) and the deep water column reflectance

r∞(λ ) are given by Lee et al. (1998) empirically as

kd(λ ) =
a(λ )+bb(λ )

cos(θs)
, (2.2)

kb
u(λ ) =

1
cos(θv)

(1.04(a(λ )+bb(λ )))(1+5.4
bb(λ )

a(λ )+bb(λ )
)0.5, (2.3)

kc
u(λ ) =

1
cos(θv)

(1.03(a(λ )+bb(λ )))(1+2.4
bb(λ )

a(λ )+bb(λ )
)0.5, and (2.4)
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r∞(λ ) = (0.084+0.17
bb(λ )

a(λ )+bb(λ )
)

bb(λ )

a(λ )+bb(λ )
, (2.5)

where a(λ ) and bb(λ ) are the absorption and backscattering coefficients and θs and θv are

the solar zenith angle and the view angle. The inherent optical properties (a(λ ) and bb(λ ))

are also modeled to include water column constituents concentrations:

a(λ ) =aw(λ )+(a0(λ )+a1(λ )ln(0.06CCHL
0.65)0.06CCHL

0.65 +

CCDOMexp(−SCDOM(λ −λ0))+CNAPa∗NAP(λ0)exp(−SNAP(λ −λ0)), and
(2.6)

bb(λ ) = bb,w(λ )+CCHLb∗b,CHL(λ1)(
λ1

λ
)YCHL +CNAPb∗b,NAP(λ1)(

λ1

λ
)YNAP , (2.7)

where the subscript w is related to the pure sea water, λ0 = 440 nm and λ1 = 542 nm, CCHL

is the concentration of chlorophyll-a (CHL) (µg·L−1), CCDOM is the a measure of the con-

centration of colored dissolved organic matter (CDOM) (m−1), CNAP is the concentration

of non algal particles (NAP) (mg·L−1), b∗b,CHL(λ1) is the backscattering coefficient at the

reference wavelength of chlorophyll-a, SCDOM and SNAP are the spectral slope constants for

CDOM and NAP respectively, a∗NAP and b∗NAP are the specific absorption and backscatter-

ing at the reference wavelength for NAP, YCHL and YNAP are the power law exponents for

the CHL and NAP, aw(λ ) and bb,w(λ ) are the pure sea water absorption and backscattering

spectra respectively, and are given by Richardson and LeDrew (2006), Pope and Fry (1997)

and Morel (1974), a0(λ ) and a1(λ ) has been reported in Lee et al. (1999) and the rest of

the parameters are taken from Brando et al. (2009) (see Table 2.1 and 2.2).

Due to the reflection of return radiance at the water-air interface, the above water
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surface reflectance (R(λ )) is modeled from the subsurface reflectance as

R(λ ) =
0.5r(λ )

1−1.5r(λ )
, (2.8)

where R(λ ) is the above surface remote sensing reflectance.

The semi analytical model above describes the correlation of water column charac-

teristics and observed remote sensing reflectance. The influence of atmospheric and water

surface are not modeled and therefore a well-developed atmospheric correction and sun

glint removal methods are essential to perform hyperspectral imagery inversion. This semi

analytical model is established through the simulation results of HydroLight, which utilizes

numerical methods and is not inversible. The significance of the semi analytical model is

that it makes it possible to inversely derive water column characteristics and bathymetry

simultaneously.

2.2.2 Simplified Radiative Transfer for Hyperspectral Imagery

The semi analytical model given in Equation 2.1 contains a significant number of em-

pirical parameters making the tuning process for a specific dataset practically quite difficult.

The requirement for accurate water leaving remote sensing reflectance spectra further lim-

its its application. A priori known benthic type and spectra is also necessary to estimate

the normalized benthic albedo. To introduce and generalize radiative transfer in the shal-

low water column, a simplified irradiance reflectance model described in (Lyzenga, 1978;

Philpot, 1989) is summarized and given here as

R(0−) = R∞[1− exp(−gd)]+Adexp(−gd)

= R∞ +(Ad−R∞)exp(−gd),
(2.9)
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Table 2.1 Wavelength dependent parameters in the bi-optical modeling (Richardson and
LeDrew, 2006; Pope and Fry, 1997; Morel, 1974; Lee et al., 1998, 1999, 2001).

wavelength (nm) aw bw a0 a1
390 0.00851 0.0084 0.5813 0.0235
400 0.00663 0.0076 0.6843 0.0205
410 0.00473 0.0068 0.7782 0.0129
420 0.00454 0.0061 0.8637 0.0064
430 0.00495 0.0055 0.9603 0.0017
440 0.00635 0.0049 1.0000 0.0000
450 0.00922 0.0045 0.9634 0.0060
460 0.00979 0.0041 0.9311 0.0109
470 0.01060 0.0037 0.8697 0.0157
480 0.01270 0.0034 0.7890 0.0152
490 0.01500 0.0031 0.7558 0.0256
500 0.02040 0.0029 0.7333 0.0559
510 0.03250 0.0026 0.6911 0.0865
520 0.04090 0.0024 0.6327 0.0981
530 0.04340 0.0022 0.5681 0.0969
540 0.04740 0.0021 0.5046 0.0900
550 0.05650 0.0019 0.4262 0.0781
560 0.06190 0.0018 0.3433 0.0659
570 0.06950 0.0017 0.2950 0.0600
580 0.08960 0.0016 0.2784 0.0581
590 0.13510 0.0015 0.2595 0.0540
600 0.22240 0.0014 0.2389 0.0495
610 0.26440 0.0013 0.2745 0.0578
620 0.27550 0.0012 0.3197 0.0674
630 0.29160 0.0011 0.3421 0.0718
640 0.31080 0.0010 0.3331 0.0685
650 0.34000 0.0010 0.3502 0.0713
660 0.41000 0.0008 0.5610 0.1128
670 0.43900 0.0008 0.8435 0.1595
680 0.46500 0.0007 0.7485 0.1388
690 0.51600 0.0007 0.3890 0.0812
700 0.62400 0.0007 0.1360 0.0317
710 0.82700 0.0007 0.0545 0.0128
720 1.23100 0.0006 0.0250 0.0054
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Table 2.2 Bi-optical parameterization (Brando et al., 2009; Jay and Guillaume, 2014).

SCDOM 0.0157
SNAP 0.0107

λ0 440
λ1 542

aNAP(λ0) 0.0048
b∗b,CHL(λ1) 0.00038
b∗b,NAP(λ1) 0.0054

YCHL 0.681
YNAP 0.681

where R(0−) is the irradiance reflectance immediately below the water surface for optically

shallow, vertically homogeneous water, R∞ is the irradiance reflectance of an optically deep

water column, g is an effective attenuation coefficient of the water (g≈ 2Kd), d is the water

depth, Ad = Eu(d)/Ed(d) is the irradiance reflectance of the bottom and Eu(d) and Ed(d)

are the upwelling and downwelling irradiance at depth d.

By including factors to account for air-water transmittance, atmospheric effects and

illumination, the above equation is transformed into an equation describing the radiance

observed at the remote detector (Philpot, 1989; Legleiter et al., 2009)

Ld =C0Ta(Ad−R∞)exp(−gd)+Ta[C0R∞ +ρaLk]+Lp, (2.10)

here, Ld is the radiance observed at the remote detector; C0 is the downward spectral ra-

diance, Ta accounts for the atmospheric transmission, ρa is the Fresnel reflectance of the

air-water interface, Lk is the sky radiance, and Lp is the atmospheric path radiance.

The radiance received at the remote sensing platform from Equation 2.10 can be gen-

erally described as (Philpot, 1989; Legleiter et al., 2004):

Ld = Lbexp(−gz)+Lw (2.11)
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with

Lb =C0Ta(Ad−R∞)

Lw = Ta[C0R∞ +ρaLk]+Lp,
(2.12)

where Lb is a radiance term which is sensitive to bottom reflectance and Lw is remotely

observed radiance over optically deep water.

Equation 2.11 is the general formulation for the retrieval of bathymetry from pas-

sive imagery. By assuming constant water optical conditions, atmospheric and water re-

flectance, Philpot (1989) proposed a linear algorithm with deep water correction as

X = ln(Ld−Lw) = ln(Lb)−gz, (2.13)

where, X is a variable linearly related to water depth, and Lw is estimated from optically

deep water pixels (pixels containing only water column reflectance) (Lyzenga et al., 2006;

Kanno and Tanaka, 2012).

For uniform water conditions and substrate type, only one spectral band is required in

Equation 2.13 to retrieve water depth from remotely sensed data with at least two known

water depths. Generally, multi-band imagery is collected and thus a principal component

analysis of the received multi/hyperspectral imagery has been proved to yield the optimal

result as (Philpot, 1989)

Y = a ·X = a·ln(Lb)− (a ·g)z, (2.14)

where, a is the leading eigen vector corresponding to the largest eigenvalue. Philpot (1989)

also mathematically shows that this method is insensitive to varying substrate types, but

varying water optical conditions impose a non-linearity that degrades the analysis signifi-

cantly.

26



Even though the linear formulation has been shown to be effective in various studies,

the use of a deep water correction limits its application in shallow water. To accommodate

passive bathymetry in shallow river studies, Stumpf et al. (2003) and Dierssen et al. (2003)

employed a simpler band ratio method by selecting a band ratio of bottom reflectance that

is approximately constant for all benthic cover types; thus the change of water depth has a

more significant effect. The band ratio is described as

ln[
Ld1− lw1

Ld2−Lw2
] = ln[

Lb1

Lb2
]− [g1−g2]z. (2.15)

The band ratio method here is a special case of the linear algorithm (see Equation 2.14)

with a = (1,−1). Legleiter et al. (2009) neglected the water column reflectance term for

shallow water (the first term in Equation 2.9 is negligible with small z) and then employed

an optimized band ratio analysis to find an optimal band pair which yields the highest re-

gression R2. This method has been applied to retrieve water depth from multi/hyperspectral

imagery for shallow fluvial environments (Legleiter, 2015); however, there are still some

limitations. First, only two bands are used to retrieve water depth while all other bands are

neglected; this differs from the linear algorithm that utilizes all available bands. Second,

the consideration of non-zero LW has the potential to improve estimation, particularly for

turbid water environments.

Maximum detectable depth

To derive the general expression for maximum detectable water depth for hyper-

spectral imagery, it is essential to understand the underlying spectral physics related to

bathymetry retrieval. The maximum detectable water depth is defined as the depth at which

the difference between the observed reflectance and deep water reflectance is at a minimum,

which can also be described as the imaging spectral resolution. The derivation of maximum

detectable water depth for hyperspectral imagery, and the subsequent accuracy analysis in
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this dissertation are for the ideal situation, therefore the presence of noise is not considered

in the simulation. Also note that the derivation presented is a summary of the work done

by Philpot (1989) and Legleiter et al. (2004), and therefore more details are available in

these studies. To acquire the estimation of the maximum detectable depth, Equation 2.9 is

revised as

dmax =
ln(dR)− ln(R)

−g
, (2.16)

where dR = R(0−)−R∞ and R = Ad −R∞. Therefore, the maximum detectable depth is

defined with respect to dR, the resolution of the imaging system in terms of reflectance;

and R is the reflectance contrast between the benthic layer and deep water reflectance. The

simulated maximum detectable depth is given in Figure 2.1 for different sensor sensitivity,

benthic contrast and effective attenuation coefficient g.

The maximum detectable depth decreases significantly with an increase of water at-

tenuation. In addition to the water attenuation coefficient, the decrease of sensor sensitivity

and decrease of benthic contrast both impose extra degradation on maximum detectable

water depth. The sensor sensitivity is dependent on the specific sensor used in the hyper-

spectral imaging system. Typically, a 12 bit sensor is more sensitive than an 8 bit sensor;

however, the more sensitive sensor also theoretically includes more reflectance noise, which

is not modeled in Equation 2.16 and Figure 2.1. A priori knowledge of the estimated water

attenuation is thus helpful to determine the effectiveness of hyperspectral imagery for depth

determination at a specific surveying site.

Water depth uncertainty

Hyperspectral imaging systems digitize the recorded radiance as a Digital Number

(DN) and usually a fixed digitizing resolution is associated with a specific system. The
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Figure 2.1 Theoretical prediction of the maximum detectable water depth for hyperspectral
imagery with varying effective attenuation coefficients.

digital number recorded by the hyperspectral imaging system thus indicates that the de-

rived water depth has a quantization interval that generally results in an uncertainty for the

derived water depth. To quantify the depth uncertainty, the derivative of received water

reflectance is used, and given as

∆d =
dR

−gRexp(−gd)
. (2.17)

Equation 2.17 shows that the uncertainty is directly proportional to sensor sensitivity

(dR), therefore, the uncertainty analysis presented in this chapter only includes the influ-

ence of benthic contrast and water attenuation. Figure 2.2 shows the depth uncertainty in

the observed reflectance with varying benthic contrast, water attenuation coefficients and
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Figure 2.2 Theoretical prediction of water depth uncertainty for hyperspectral imagery
depth retrieval, dR=0.001.

water depth. Depth uncertainty for clear water (for example, g = 0.1) increases slower

with water depth than more turbid water, however, it is noted that in very shallow water,

clear water has a larger depth uncertainty than more turbid water. The physical reason for

this is that more depth change is needed to produce a significant enough drop in observed

reflectance at the hyperspectral imaging detector. Also, an increase in benthic contrast im-

proves the depth uncertainty significantly. Comparing depth uncertainty to the maximum

detectable water depth, we conclude that turbid water significantly reduces the maximum

detectable water depth but that depth uncertainty improves for shallow turbid water. The

combination of maximum detectable depth and depth uncertainty illustrates the complexity

of applying hyperspectral imagery to bathymetry retrieval.
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Water depth accuracy

In addition to water depth uncertainty, it is also desirable to investigate water depth

accuracy in terms of different benthic contrast, water attenuation and water depth. The

water depth accuracy is given as the ratio of the depth uncertainty to the actual water depth

and therefore Equation 2.2 is revised as

∆d
d

=
dR

−gRexp(−gd)d
. (2.18)

Figure 2.3 Theoretical prediction of water depth accuracy for hyperspectral imagery,
dR=0.001.

Figure 2.3 shows the derived water depth accuracy, which improves as the water gets

deeper for clear water (g = 0.1). However, for more turbid water, water depth accuracy
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improves for shallow water (<1 m) and degrades significantly as the water gets deeper.

Similar to water depth uncertainty, clear shallow water has a less accurate derived water

depth than more turbid shallow water.

The complexity of derived water depth accuracy denotes a significant limitation of

hyperspectral imagery for water bathymetry retrieval because the accuracy is dependent

not only on the instrument but also on the specific survey site. A tool which provides a

surveying accuracy solely based on the instrument specifications and invariant to the ob-

servational environment is thus desirable for more efficient bathymetry retrieval. Airborne

bathymetric LiDAR turns out to fit these specific requirements.

2.2.3 Radiative Transfer for Airborne Bathymetric LiDAR

In contrast to passive water remote sensing, active airborne bathymetric LiDAR emits

green laser pulses to penetrate the water surface and detect the benthic layer. Instead of

measuring reflected radiance, the time difference between the emitted laser pulse and the

reflected laser energy is used to determine the water depth. This section provides a sim-

plified radiative transfer model for bathymetric LiDAR for the purpose of subsequent ra-

diometric analysis. We begin with Wagner et al. (2006), who defines the returned pulse

energy as a convolution of the target cross-section and the emitted LiDAR pulses. This

formulation was modified in Cossio et al. (2009) to give the LiDAR pulse return energy in

terms of photo-electrons, which is interchangeable with pulse energy, thus giving a more

relevant formulation for investigating radiative transfer. For topographic targets, assuming

an isotropic reflecting surface, the LiDAR link equation can be used to describe the return

pulse energy as

Er = ηrEtρλ cos(α)
Ar

πR2 (exp(−βe,λ R))2, (2.19)
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where Er is the received laser energy at the remote detector; which is normally either an

avalanche photodiode (APD) or photomultiplier tubes (PMT) (Guenther et al., 1996; Guen-

ther, 2006; Tuell et al., 2010). ηr is the receiver net efficiency, that quantifies the energy

received at the remote detector, which may also include the receiver optical and detector

quantum efficiency depending on the specific LiDAR system. Et is the transmitted laser

pulse energy, ρλ is the target spectral reflectance, α is the laser incidence angle, Ar is the

receiver aperture area, R is the range between the detector and target, and βe,λ is the at-

mospheric extinction coefficient describing laser transmittance. For multiple targets along

the laser path, the incident laser pulse energy (Et) varies with the portion received at each

target without a priori knowledge, which results in difficulty calibrating the return intensity

for physical reflectance when multiple targets are present (Wagner et al., 2006).

For most high signal-to-noise ratio (SNR) LiDAR systems currently employed, back-

ground noise has a negligible effect on the final received laser signal. However, noise

modeling is critical for more recent systems that employ low SNR single photon detection,

e.g. (Cossio et al., 2009). The bathymetric LiDAR used in this dissertation has a relatively

high laser energy, thus the noise modeling is neglected to simplify the radiative transfer

model. However, to adapt Equation 2.19 to bathymetric LiDAR, additional water surface,

column and benthic return contributions must be considered.

Equation 2.19 describes the Lambertian propagation of laser pulses, which is applied

in topographic LiDAR because the wavelength used is always much smaller than the size of

the scattering targets. However for bathymetry, specular reflection from the water surface

is a significant contribution to the laser pulse return. The wave structure of a surface can

strengthen the specular glint if it aligns with the laser propagation direction. An effective

Lambertian reflectance (rint(αs), αs is the incidence angle) for the water surface is generally

used to replace the reflectance term in Equation 2.19 to determine the water surface return

(Cossio et al., 2009; Degnan and Field, 2014). However, specular water surface returns
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are in general not desired for bathymetric LiDAR returns, and thus some LiDAR systems

employ a circular or elliptical scanning pattern, at a constant angle of incidence to the mean

water surface to reduce water surface specular reflections (Rie; Tuell et al., 2010).

In addition to the specular water surface return, echoes from the water column also

disturb bathymetry determination. As the laser light propagates through the water column,

absorption and scattering occur that cause energy loss observed at the detector. The laser

beam attenuation is described by Beer’s Law (Cossio et al., 2009) as

E(RW ) = E0−exp(−cλ RW ), (2.20)

where, E(RW ) is the laser energy at distance RW , E0− is the amount of energy refracted

into the water column, and cλ is the beam attenuation coefficient which is dependent on

water conditions and related to water absorption and backscattering characteristics. By

considering both water surface reflection and laser propagation in the water column, the

laser return energy arriving at the remote detector from the water column is described by

the following equation

Ecolumn = ηrEtβλ (π)Ωr(
1− exp(−2cλ Rw)

2cλ

)(1− rint(αs))
2(exp(−2βe,λ R)), (2.21)

where βλ is the volume scattering function, βλ (π) accounts for the backscattered laser

pulse energy which enters the remote detector, and Ωr is the field of view of the detector.

The return laser pulse from the benthic layer is the foundation for determining wa-

ter bathymetry. The benthic return energy is dependent upon the processes described by

Equation 2.19 and 2.21 and the benthic targets characteristics. Based on the previous water
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surface and column return derivations, the benthic return can be expressed as

Ebottom = ηrEtρλ cos(α)
Ar

π(R+Rw)2 (1− rint(αs))
2(exp(−2βe,λ R))(exp(−2cλ Rw)),

(2.22)

The received laser pulse at the remote detector is the sum of water surface, column

and benthic returns in terms of energy. In addition to the energy, the temporal shape of the

returned laser pulse is also recorded; this is often referred to as full waveform digitization.

The received full waveform is a time-series signal that records the backscatter of the laser

pulse. Thus the full waveform theoretically contains both the geometric and spectral infor-

mation describing the water surface, water column and benthic layer simultaneously. The

received full waveform is a composite of water surface, water column and benthic returns

which is mathematically given as

ST (t) = SS(t)+SC(t)+SB(t), (2.23)

where, ST (t) is the total laser return recorded by the remote detector, SS(t) is the water sur-

face return, SC(t) is the water column return, and SB(t) is the benthic return. Full waveform

processing algorithms generally detect water surface and benthic returns to determine the

corresponding water depths. The water surface and benthic returns are normally described

using a convolution of the incident laser pulse with target impulse response functions by

assuming an effective Lambertian water surface reflectance model (Cossio et al., 2009;

Wagner et al., 2006).

Wagner et al. (2006) gives a detailed derivation of the LiDAR cross-section of return

surfaces, and also shows the Gaussian characteristics of laser returns. Equation 2.22 indi-

cates that the water bottom is assumed to be a Lambertian surface, while the water surface

can also be treated as Lambertian if we apply an effective Lambertian reflectance (Cossio
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et al., 2009). Therefore these two components can be modeled as the convolution of the

system response with outgoing Gaussian laser pulses. The water column, however, is a

convolution of both water column attenuation and incident laser pulse scattering, assuming

a single scatter. The water column return energy is thus determined by Equation 2.20 and

the temporal shape of this energy (full waveform) is modeled as

SC(t) = S0−(t)∗ exp(−cλCt), (2.24)

where S0−(t) is the laser pulse time-series signal refracted into the water column, and C is

the constant light speed in water.

Equation 2.23 and Equation 2.24 schematically describe the temporal components of

the returned bathymetric full waveform and show that the received full waveform con-

tains both location and radiometric information. Water depth is determined by the time

difference between the water surface return and the benthic return. A measure of benthic

reflectance is also provided by the returned benthic intensity. The intensity is not read-

ily used due to the unknown water attenuation, however, the intensity as well as the full

waveform are negligibly affected by the changing illumination conditions. The incidence

angle, benthic layer type, and water column characteristics are more influential factors for

the intensity.

Maximum detectable depth

In contrast to passive hyperspectral imagery, airborne bathymetric LiDAR retrieves

water depth through the time difference between the water surface and benthic returns.

Generally, the maximum detectable depth can be simply described by the minimum amount

of energy required to trigger a successful pulse in the remote detector if we assume that a

water surface return is always available. However, we must also note that bathymetric Li-

DAR generally detects the return time-series intensity, and thus the stretching effects of
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sloped targets, off-nadir incidence angles and water scattering can all affect the derived

water bathymetry. The maximum detectable depth of a bathymetric LiDAR system is com-

plicated to predict as it is dependent on the pulse energy and the specific water surface,

column and bottom geometric conditions (Abdallah et al., 2012; Bouhdaoui et al., 2014;

Abady et al., 2014). To simplify the analysis and nominally predict the maximum de-

tectable depth for a specific bathymetric LiDAR system, we consider only the radiometric

energy transfer in the water column. In this case, Equation 2.22 gives the amount of energy

received at the remote detector and can be transformed as

Ebottomπ

ηrEtAr[1− rint]2cos(α)
=

ρλ exp(−2βe,λ R−2cλ Rw)

(R+Rw)2 , (2.25)

here, the water surface reflectance rint is determined by the Fresnel equation and it varies

slightly for a narrow scan angle system (<25◦) (Hecht, 2002), thus it is treated as constant.

The incidence angle, α , is determined by both the incident laser pulse and the benthic

topography which require prior knowledge, and thus it is not considered but set as zero to

generalize the empirical model. The maximum detectable depth is defined as the benthic

return laser pulse energy at the minimum detection threshold of the LiDAR detector, and

thus the left side of equation is treated as a constant. As for the right side of the equation,

due to the fact that R >> Rw and cλ Rw >> βe,λ R, and to simplify the equation, all the

negligible terms are canceled out, and the relationship can be approximated as

z = Rw =
ln(κR2

ρλ
)

−2cλ

, (2.26)

here, κ is the constant term for the left side of Equation 2.25. However, it is difficult to ac-

quire the specific parameters to calculate κ . To generalize the relative determination of the

maximum detectable water depth, we assume the maximum detectable water depth of a par-

ticular LiDAR is 10 m (ρλ = 0.3,cλ = 0.15), which is based on commercial specifications
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of current high-resolution bathymetric LiDAR systems from Riegl VQ820-G and Optech

Aquarius bathymetric LiDAR system (Rie; Aqu). The constant term κ is then calculated

and used to predict the maximum detectable depth with varying parameters.

Figure 2.4 Theoretical prediction of the maximum detectable water depth for bathymetric
LiDAR with varying water attenuation coefficients. Different curves represent
differing benthic layer reflectance.

Figure 2.4 shows the maximum detectable water depth derived using the semi an-

alytic method presented. The maximum detectable water depth significantly decreases as

the beam attenuation increases, which implies that water clarity characteristics are the dom-

inant factors influencing bathymetric LiDAR performance. Even though the maximum de-

tectable depth model (Equation 2.26) assumes a known maximum depth for a given water

attenuation coefficient it can still be generalized to real LiDAR systems with a calibration

of a measured water attenuation coefficient and an observed maximum water depth. How-

ever, as the approximation ignores lesser terms, such as the stretching effect of the water
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column on the incident laser pulses and the field of view loss of energy, the maximum

detectable depths is optimistically estimated in Figure 2.4.

Minimum detectable water depth and accuracy

As bathymetric LiDAR systems determine water depths through a time difference

between the water surface and benthic returns, a specific pulse width LiDAR system has a

minimum detectable water depth which is generally not determined by the radiative transfer

of laser pulse in the water column, but by the resolution of the laser pulse. The range z

calculated by a LiDAR system is given as

z =
Ct
2

, (2.27)

where C is the light speed in the water column (nominally constant), and t is the measured

time difference of returns. Therefore, the nominal minimum detectable depth is determined

by the capability of the LiDAR system to discriminate different returns. As an example,

the bathymetric LiDAR system, Aquarius, used in the subsequent analyses, has a pulse

width of 8.3 ns, which generally yields a minimum detectable water depth of 0.47 m if we

assume the system cannot discriminate two distinct returns within one full width at half

maximum (FWHM) (Legleiter et al., 2015). However, this estimated minimum detectable

water depth does not include consideration of water column scattering and therefore it is

also optimistically estimated.

The retrieved water depth accuracy is also dependent on the timing resolution of the

specific system and the positional errors introduced by the GNSS/INS systems on board

(Glennie, 2007). To estimate a nominal depth accuracy with respect to time, the derivative
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of Equation 2.27 is used and given as

∆z =
C
2

∆t. (2.28)

Considering a LiDAR system with a minimum of 1 ns timing resolution, which cor-

responds to current waveform sampling intervals; the corresponding depth accuracy is

approximately 11 cm. A more comprehensive analysis of total propagated uncertainty

(TPU) is necessary to determine the depth accuracy (Habib et al., 2009), however, most

GNSS/INS errors remain essentially constant for a small area, and thus the water depth

error is dominated by the LiDAR system but invariant to the water column conditions. This

is a strong advantage compared to passive imagery which exhibits varying depth accuracy

for specific survey sites and for various instruments.
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Chapter 3

Study Sites and Datasets

Several study areas were selected to examine the algorithms proposed in this disser-

tation, including two distinct fluvial rivers, the Snake River located in Wyoming and the

Blue/Colorado River confluence located near Kremmling, Colorado, and East Pass located

in Destin, Florida. All sites had airborne hyperspectral imagery and full waveform bathy-

metric LiDAR data collected. The two fluvial rivers were collected with an Optech Aquar-

ius bathymetric LiDAR system and East Pass was collected with the newly developed three

wavelength Optech Titan system. Airborne hyperspectral imagery data were collected with

varying spatial and spectral resolutions using a CASI-1500 with details given within this

chapter. Various in situ field observations were also collected for each site for the purpose

of validating the airborne remote sensing datasets.

3.1 Study Area Description

3.1.1 Rusty Bend of the Snake River

The Snake River is a major river in the pacific northwest of the United States and

originates in western Wyoming. A portion of the river in Wyoming’s Grand Teton National

park was selected as the study site (see Figure 3.1(a)). Water flow in this section of the river

is regulated by the Jackson Lake Dam. Coarse bed material and large woody debris deliv-

ered from the nearby tributaries produce a complex, wandering morphology that is prone to

frequent channel change. Clear water is present for the Snake River after snowmelt runoff

recedes, ideal conditions for remote sensing. The study site is focused on a sinuous, single

trend channel which is referred to as Rusty Bend that consists of a gravel bar along the

inner bank and a deep pool along the outer bank where the river has eroded into a terrace.
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The river’s bed material consists primarily of gravel and cobble, coated with varying de-

grees of periphyton and bright green filamentous algae. Field spectra from the Snake River

and other gravel bed streams indicate that where these photosynthetic organisms occur, ab-

sorption by chlorophyll produces a pronounced decrease in reflectance at 675 nm. At the

base of the high, nearly vertical outer bank, blocks of exposed clay bedrock create areas

of higher bottom reflectance, visible as bright patches. Although these heterogeneous sub-

strates might complicate remote mapping to some degree, the simple morphology of Rusty

Bend, with shallow depths over the point bar gradually increasing to a maximum of 2.82

m along the outer bank, facilitates interpretation of the airborne hyperspectral imagery and

bathymetric LiDAR capabilities.

3.1.2 Confluence of the Blue and Colorado River

The confluence of the Blue and Colorado Rivers represents a more complicated fluvial

environment, optically as well as morphologically (see Figure 3.1(b)). The Colorado River

originates in Rocky Mountain National Park and flows west past the town of Kremmling,

where the Blue River enters from the south. The confluence occurs at the base of remnant

Tertiary basin fill that stands above a low relief floodplain; dense riparian vegetation occurs

along the banks. Gradients for both rivers are lower than for the Snake and bed material

consists of sand and fine sediment; lesser amounts of gravel are exposed where the Blue

curves to the west just upstream of the confluence. In addition to this inorganic material,

portions of the streambed host abundant, dense aquatic vegetation. These plants are partic-

ularly thick along the outer bank of the sharp bend in the Blue, where the "canopy" extends

through the water column to the surface. A major contributor to water variability is the mix-

ing of waters with different optical characteristics. In addition to the Blue, another, smaller

tributary aptly named Muddy Creek enters the Colorado River from the north. Surface ero-

sion triggered by rainfall in the days preceding the data acquisition delivered fine-grained

sediment to Muddy Creek and created a plume of more turbid water extending downstream
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along the right bank of the Colorado River below the confluence. Water from the Blue River

is also distinct in this representation, with darker Colorado River water visible between the

inputs from the two tributaries. The convergence of three rivers with contrasting optical

characteristics at this site thus provided a unique opportunity to assess how water clarity

might influence bathymetric mapping performance of the two remote sensing systems.

Figure 3.1 (1) ADCP measurements for the Snake River, (2) ADCP measurements for
the Blue/Colorado River (3) (a) Snake River; (b) Blue/Colorado River; (c)
Blue/Colorado River, (4) turbidity measurements for the Blue/Colorado River.

3.1.3 East Pass of Destin

One coastal area was also selected for study within the East Pass near Destin, Florida,

USA (see Figure 3.2). The East Pass connects the Choctawhatchee bay with the Gulf of

Mexico and it was a micro tidal inlet during the airborne data collection. The water depth

for the East Pass varies from shallow to deep water (>10 m). Emerald green water and

white beaches prevail near East Pass and the benthic sand dunes in the shallow water can be
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clearly observed from both airborne and satellite imagery. The East Pass is protected from

the sifting sands of the Gulf of Mexico by twin channel jetties, which were constructed by

the U.S. Army Corps of Engineers. The East Pass channel is regularly dredged to maintain

the mean channel depth. The benthic bathymetry and the presence of clear water make it

an ideal place to investigate the performance of the airborne sensors.

Figure 3.2 The East Pass of Destin, Red points show the locations of ADCP samples.

3.2 Airborne Hyperspectral Imagery Datasets

Hyperspectral imagery was collected with an ITRES Compact Airborne Spectrographic

Imager (CASI)-1500 sensor (see Figure 3.3). CASI-1500 is a pushbroom camera with 1500

across-track pixels spanning a 40◦ field of view and has a programmable spectral range that

extends from 380 to 1050 nm with a maximum of 288 bands. The spatial resolution is de-

pendent on the flight altitude, camera frame rate and the aircraft speed and it can be as

high as 25 cm. The CASI-1500 has been fully calibrated by the manufacturer and provides

44



data in spectral radiance. The recorded data is digitized with 14 bits with a noise floor

of less than 2 digital numbers (DN). The CASI image data were directly georeferenced

using trajectory information from the GPS and inertial navigation system (INS) on board

the aircraft. A Digital Elevation Model created from airborne LiDAR is provided for the

orthorectification. The principal parameters for the two fluvial rivers and the East Pass are

reported in the Table 3.1.

Figure 3.3 Itres hyperspectral imaging system - CASI-1500 (courtesy of Itres).

45



Table 3.1 Summary of principal airborne remote sensing datasets parameters for the study areas.

Snake River Blue/Colorado River East Pass
LiDAR(532,1064nm) Optical LiDAR(532,1064nm) Optical LiDAR(532,1064,1550 nm) Optical

Pulse width (ns) 8.3,12 N/A 8.3,12 N/A 2.5, 2.5, 2.5 N/A
Field of view (◦) 40,46 40 40,46 40 30, 30, 30 N/A
Beam divergence (mrad) 1,0.8 N/A 1,0.8 N/A 0.70, 0.35, 0.35 N/A
Pulse rate (kHz) 33,100 N/A 33,100 N/A 100, 100, 100 N/A
Flight height (m) 510,580 580 580,2600 2600 300 to 500 2200
Point density (pts/m2) 4.2,6.3 N/A 4.0,2.5 N/A 4.0 ,4.0 ,4.0 N/A
Number of bands N/A 22 N/A 64 N/A 48
Pixel size (m) N/A 0.6 N/A 1.2 N/A 1.0
* For the Snake River and the Blue/Colorado River, the NIR LiDAR was collected with a separate Optech Gemini sensor.
* The Optech Titan was used to collect both the green and two NIR wavelengths LiDAR returns for the East Pass.
* The nominal flight height was varying for the East Pass to test the bathymetric LiDAR penetration capability.46



Atmospheric correction

CASI-1500 registers the recorded digital number to solar radiance (µW/(cm2 ∗ sr ∗

nm)) with radiometric calibration provided in the manufacturer software. Even though

radiance is physically meaningful, spectral reflectance is more practical for hyperspectral

imagery to accommodate comparisons of imagery with different collection times and sen-

sor types. To obtain spectral reflectance, we applied a Fast Line-of-Sight Atmospheric

Analysis of Hypercubes (FLAASH) correction (Cooley et al., 2002), implemented in the

ENVI (Environment for Visualizing Images) software package to calibrate the hyperspec-

tral imagery to spectral reflectance. The additional information required to apply FLAASH

includes the scene geographical location, sensor type and altitude, ground elevation and

pixel size, flight date and time, visibility estimation (40 km for this study), standard at-

mospheric and aerosol models from the Modtran 4 radiative transfer model (Cooley et al.,

2002), and a water vapor absorption feature wavelength. A more sophisticated approach,

contained in the Atcor4 (ReS) software package can also correct for topographic effects

with an input of a DEM, but FLAASH is adequate for the spatially small (1 km2) scenes

which contain a relatively flat water surface and negligible topographic variation. The two

fluvial rivers were atmospherically corrected with Atcor4 software due to the significant

topographic change present and the DEM was created from the near-infrared LiDAR point

cloud. The East Pass was atmospherically corrected using the FLAASH software.

The other required pre-processing tasks for the hyperspectral imagery are to define a

water mask and to apply a spatial filter (Legleiter et al., 2015). The water mask was created

based on the Normalized Difference Vegetation Index (NDVI). Water pixels generally have

negative NDVI due to the excessive absorption of near-infrared radiance (Pan et al., 2016a;

Gao et al., 2007). The resultant imagery was filtered with a 3 by 3 Wiener filter to reduce

the random noise present (Legleiter et al., 2015).
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Sun glint removal

The two river systems were calm and no obvious specular reflection observed, how-

ever, for the hyperspectral imagery collected for the East Pass coastal water, specular re-

flection for waves was obvious and therefore a sun glint removal was performed. Specular

reflection over the wavy water surface biased the benthic remote sensing reflectance ob-

served at the detector. The specular reflection results in white pixels that confound the in-

terpretation of passive hyperspectral imagery, especially for airborne high spatial resolution

imagery. Generally, the observed hyperspectral spectrum is recovered with the assistance

of reflectance observed in the near-infrared spectrum.

The method proposed by Hedley et al. (2005) was implemented in this study to reduce

sun glint present in the East Pass hyperspectral imagery. This method adjusts the observed

hyperspectral imagery with the observed near-infrared reflectance and establishes a corre-

lation between reflectance at each wavelength and near-infrared reflectance. There are two

physical reasons to apply this sun glint removal method. First, the amount of reflected solar

radiance for the near-infrared band is mostly from sun glint, a spatially constant ambient

light and a negligible contribution from the water column and benthic layer. This assump-

tion holds with the fact that water absorbs most of the near-infrared (700 - 1000 nm) light

(Mobley, 1994). Second, the near-infrared solar radiance is linearly related to the amount

of sun glint in the visible bands. This assumption holds because the water index of refrac-

tion is nearly equal for visible and near-infrared bands (Mobley, 1994). According to these

two assumptions, the remote sensing reflectance is corrected sun glint removal as

Rc = Ro− s(λ )(RNIR−MinNIR), (3.1)

where Rc is the corrected remote sensing reflectance; Ro is the original observed remote

sensing reflectance after atmospheric correction; s(λ ) is the slope coefficients estimated
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from a linear regression of the near-infrared bands and each visible band; RNIR is the ob-

served near-infrared reflectance; MinNIR is either the minimum observed near-infrared re-

flectance or the ambient near-infrared reflectance. The original and glint corrected RGB

image for the East Pass is shown in Figure 3.4.

(a) (b)

Figure 3.4 (a) RGB (R: 641.63nm, G: 556.14 nm, B: 456.34 nm) imagery before sun glint
removal; (b) RGB (R: 641.63nm, G: 556.14 nm, B: 456.34 nm) imagery after
the sun glint removal. The land area was masked out of the original imagery.

From a visual inspection, this algorithm removes most of the sun glint in this area and

preserves a more consistent deep channel and coastal area. Unfortunately, a quantitative

assessment of this sun glint removal algorithm was not implemented due to the absence of

field measured water leaving spectra.

3.3 Airborne Bathymetric LiDAR Datasets

The airborne LiDAR datasets for the two fluvial rivers were collected by the National

Center for Airborne Laser Mapping (NCALM) with Optech Aquarius and Gemini systems

(see Figure 3.5). The Aquarius sensor is a single band LiDAR based on a Q-switched

frequency doubled Nd:YAG laser with a resultant wavelength of 532 nm, programmable
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pulse repetition frequencies (PRFs) of 33, 50, and 70 kHz, a pulse energy of 30 µJ (at

70 kHz), and a beam divergence of 1 mrad. The scanner is a conventional side-to-side

oscillating mirror (saw-tooth pattern) with an adjustable field of view up to ±25◦ and a

maximum mirror frequency of 70 Hz. The return signal is both analyzed in real time by

a constant fraction discriminator (CFD) and stored using a waveform recorder (see Figure

3.6) with 12 bit amplitude quantization and a sampling speed of 1 GHz. The Gemini system

is similar to the Aquarius system with an Nd:YAG laser at 1064 nm, smaller and adjustable

divergence angle (0.25 mrad or 0.8 mrad) and PRF up to 167 kHz. Table 3.1 shows the

principal data acquisition parameters for both fluvial project sites.

Figure 3.5 Optech Aquarius bathymetric LiDAR (courtesy of Optech Inc.).

It should be noted in Table 3.1 that there is no NIR data listed for the Blue/Colorado

River. NIR was collected for this study, but unfortunately was acquired at a high flight ele-

vation (2,600 m AGL); laser pulses on the water surface were mostly absorbed. Effectively

no water surface returns were found and therefore the NIR data for the Blue/Colorado River
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Figure 3.6 Optech full waveform digitizer (courtesy of Optech).

was not used. It should also be noted that flights with the Gemini system and Aquarius sys-

tem cannot be performed at the same time. The NIR LiDAR and the hyperspectral imagery

data were collected simultaneously on Aug 21st, 2012 for the Snake River and Sept 6th,

2012 for the Blue/Colorado River. The green LiDAR was collected separately on Aug 26th,

2012 for the Snake River and Sept 5th, 2012 for the Blue/Colorado River.

Both the airborne LiDAR bathymetry and hyperspectral imagery for the East Pass

were taken on August 20th, 2015 with sunny skies present. The airborne LiDAR bathymetry

was collected with the Optech Titan multiwavelength LiDAR system which utilizes three

wavelengths lasers simultaneously (532 nm, 1064 nm and 1550 nm). Each laser beam

has up to 300 kHz effective pulse repetition frequency (PRF) for a combined PRF of 900

kHz. The green laser light, 532 nm, physically has the capability to penetrate the water

surface and detect shallow water bathymetry. The simultaneous collection of near-infrared

laser pulses enables a more accurate water surface detection (Pan et al., 2015b). Each laser

beam has the capability to record full waveform returns with a separate waveform digi-

tizer. The two near-infrared wavelength channels have 0.35 mrad beam divergence while

51



the green channel has a 0.70 mrad beam divergence. The high PRF of the Optech Titan

multiwavelength LiDAR system enables dense point cloud collection up to 45 points/m2.

The point cloud for near-infrared and green channels were classified to define the benthic

layer and water surface respectively using the method described in Axelsson (2000) and

implemented in the Terrascan software package. A refraction correction was applied to the

green channel benthic layer returns to account for refraction at the air water interface to

improve the accuracy of the final bathymetry product.

3.4 Acoustic Doppler Current Profiler Data

To assess the ability of full waveform bathymetric LiDAR and hyperspectral imagery

for measuring river morphology, in situ ground reference datasets were collected with a

Sontek RiverSurveyor S5 Acoustic Doppler Current Profiler (ADCP) (see Figure 3.7) de-

ployed from a kayak. SonTek reports a depth resolution of 0.001 m and an accuracy of

1% over the range of 0.2-15 m. ADCP data is our primary ground reference data, as the

accuracy should be better than 3 cm for the two fluvial river sites as most water was shal-

lower than 3 m. The ADCP depth observation locations for both projects are shown in

Figure 3.1. The distribution of ADCP water depths for the Snake River (Figure 3.1.3(a))

and Blue/Colorado River (Figure 3.1.3(a)) show that most water depths for the Snake River

are less than 2 m while most water depths for the Blue/Colorado River are less than 1.5

m. ADCP measurements were collected from Aug 14th to Aug 22nd, 2012 for the Snake

River; all data (including both ADCP and water turbidity data) were collected on Sept 4th

and Sept 5th, 2012 for the Blue/Colorado River. A real time kinematic (RTK) GPS base

station was co-located with the ADCP and the measurements were cross-calibrated with a

separate wading RTK GPS survey. An adjustment was made to account for the depth of

the ADCP probe beneath the water surface, the position of the ADCP on the kayak and

any datum offset for the ADCP measurements. To estimate the influence of temporal gaps
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between the field and airborne data collections, water discharge rates provided by the U.S.

Geological Survey (USGS) stream gauges for both rivers over the field collection campaign

dates were used. The actual gauge water surface height data is only available for the most

recent collection. However, the USGS gauging station at the downstream edge of the flight

area shows that there was a roughly 100 cfs (cubic feet per second) change in flow rate

between August 23rd and August 26th (see Figure 3.8), 2012, which results in approxi-

mately a 1.5 cm change in water surface elevation. There was a discharge change of 60

cfs (see Figure 3.9) between September 4th and 5th for the Blue/Colorado River, which is

approximately a 3 cm water surface elevation change.

Figure 3.7 Sontek RiverSurveyor S5; 5 transducers measure the water depth at different
angles. Only the measurements produced by the center transducer were used to
derive water depth for each site.

For the East Pass survey site, a SonTek RiverCAT system with an Acoustic Doppler

Profiler was also used to collect the field measured water depths deployed from a pontoon

boat. The RiverCAT system has three transducers and measures water depth for every 5

seconds. A real-time GPS antenna was co-located with the RiverCAT system for registering

water depths to a geographical coordinate frame. SonTek reports a depth resolution of
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Figure 3.8 Discharge rate at USGS gauge station 13013650, on the Snake River at Moose,
WY.

0.001 m and an optimistic accuracy of 1% over the range of 0.2 to 15 m. The ADP data

was collected at the same time as the airborne missions and the tidal difference between the

datasets is therefore negligible. The 423 ADP samples located in the study area are shown

in Figure 3.2. Because white sand prevails in this area, field measured white sand spectra

were also collected with an ASD FieldSpec4 spectroradiometer which is shown in Figure

3.11 for determination of the benthic normalized albedo.

3.5 Water Turbidity Data

Water attenuation is a sum of absorption (a) and scattering (b), and the backscattering

(bb) can be represented by the scattering that is composed of the scattered radiation redi-

rected toward to the optical detector (Legleiter et al., 2015). In this study, a WET Labs

EcoTriplet (see Figure 3.12) was deployed from a kayak on the Blue/Colorado River to

measure the portion of the total back-scattering (bb(700nm)) associated with particulates

(i.e., suspended sediment and organic material) in the water column. Turbidity, a common

metric of water clarity, is derived from the measured backscatter. Figure 3.1.4 shows the

54



Figure 3.9 Discharge of USGS gauge station 09058000 on the Colorado River near
Kremmling, CO.

Figure 3.10 The histogram of ADCP measured water depths for the East Pass.
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Figure 3.11 White sand field spectrum measured with ASD FieldSpectra4.

spatial distribution of turbidity measurements across the Blue/Colorado confluence with

distinct levels of water clarity. The northern part of the river is distinctly more turbid than

the southern portion of the river. Note that turbidity measurements and ADCP measure-

ments were collected on separate deployments of the kayak. Figure 3.1.3(c) shows the

bimodal distribution of the turbidity measurements.

Figure 3.12 WET Labs EcoTriplet.
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Chapter 4

Performance Assessment of High Resolution Airborne Full

Waveform LiDAR for Shallow River Bathymetry

4.1 Overview

Full waveform LiDAR (FWL) records the full backscatter for each laser pulse and

therefore it contains both geometric and radiometric information (Allouis et al., 2010).

Full waveform LiDAR has received considerable attention for topographic applications.

Recently, the analysis of FWL processing has focused on evaluating different waveform

decomposition methods in parallel to find superior algorithms for specific applications.

For example, Wu et al. (2011) compared three deconvolution methods: Richardson-Lucy,

Wiener filtering, and nonnegative least squares to determine the best performance using

simulated full waveforms from radiative transfer modeling; the Richardson-Lucy method

was found to have superior performance for deconvolution of the simulated full waveforms.

Parrish et al. (2011) presented an empirical technique to compare three different meth-

ods for full waveform processing: Gaussian decomposition, Expectation-Maximization

(EM) deconvolution and a hybrid method (deconvolve-decompose). Using precisely lo-

cated screen-targets in a laboratory, they arrived at the conclusion that there is no single

best full waveform method for all applications.

Despite the recent focus on applications of FWL for topographic studies, it was first

evaluated for the processing of LiDAR bathymetry (Guenther et al., 2000). However, full

waveform bathymetric LiDAR has not received much attention in the literature, especially

compared to topographic FWL. This is likely due to the lack of available bathymetric Li-

DAR data-sets for the scientific community and the more complicated modeling required
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for LiDAR bathymetry to compensate for factors such as water surface reflection and re-

fraction, water volume scattering and turbidity that can complicate the propagation mod-

els and attenuate return strength resulting in a lower signal to noise ratio (SNR). Water

volume scattering can be difficult to rigorously model, especially for shallow water en-

vironments where water surface backscatter, water volume scattering, and benthic layer

backscattering are mixed in a single complex waveform that makes discrimination of indi-

vidual responses from a single return difficult (Abady et al., 2014). The complex waveform

signals in a bathymetric environment demand a noise-resistant and adaptive signal pro-

cessing methodology. In order to reduce the complexity of bathymetric LiDAR, multiple

wavelength (usually a NIR LiDAR system for water surface detection, and a green LiDAR

system for water penetration) systems are normally used to facilitate benthic layer retrieval

(Irish et al., 2000). For example, Allouis et al. (2010) compared two new processing meth-

ods for depth extraction by using near-infrared (NIR), green and Raman LiDAR signals.

By combining NIR and green waveforms, significantly more points are extracted by full

waveform processing and better accuracy is achieved. Even though multi-wavelength Li-

DAR systems are common for bathymetry, single band systems have emerged recently as

well (Fernandez-Diaz et al., 2014; McKean et al., 2009; Pfennigbauer et al., 2011; Shrestha

et al., 2012). Wang et al. (2015) has compared several full waveform processing algorithms

for single band shallow water bathymetry using both simulated and actual full waveform

data, and concluded that Richardson-Lucy deconvolution performed the best of the tested

waveform processing techniques. However, the performance with the actual full waveform

data was not verified with comparison to external high accuracy truth data. There have also

been several studies which have examined the performance of single band full waveform

bathymetry using simulated LiDAR datasets. Abady et al. (2014) proposed a mixture of
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Gaussian and quadrilateral functions for bathymetric LiDAR waveform decomposition us-

ing nonlinear recursive least squares. Both satellite and airborne configurations were sim-

ulated and examined and the algorithm showed significant improvement for bathymetry

retrieval, however, the simulation has not to date been validated with observations from

real-world studies, especially for very shallow water bathymetry in turbid conditions. The

performance of full waveform LiDAR in shallow water has received little attention in the

literature beyond the study by McKean et al. (2009). Limited water depths and signifi-

cant turbidity impose challenges for bathymetric LiDAR, especially for longer pulse width

laser systems where water surface, water column and benthic layer return mix together.

A bathymetric full waveform processing strategy to account for the longer pulse width

and the excessive noise present in the bathymetric waveform would enable more accurate

bathymetry determination.

In this chapter, we first propose a novel full waveform processing algorithm using

a continuous wavelet transformation (CWT) to decompose single band bathymetric wave-

forms. The seed peak locations acquired from CWT are then used as input to both an empir-

ical system response (ESR) algorithm and a Gaussian decomposition. As a benchmark for

comparison, a common Gaussian decomposition algorithm is also used with candidate seed

locations acquired from second derivative peaks, similar to that presented in (Wagner et al.,

2006; Chauve et al., 2007). The waveform processing methods are applied to two distinct

fluvial environments with varying degrees of water turbidity. Water depths extracted from

both a discrete point cloud and full waveform processed point clouds are then compared to

water depths measured in the field with Acoustic Doppler Current Profiler (ADCP). Finally,

we analyze the accuracy of water surfaces extracted from the discrete point cloud and full

waveform processed point clouds using both green wavelength and near-infrared detected

water surfaces compared to GNSS RTK field measurements.
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4.2 Method and Mathematical Model

FWL return profiles are normally a fixed length discrete time signal containing backscat-

ter information along the laser cone diffraction. For return profiles where the echoes are

clustered in a short range window, a significant portion of the full waveform does not carry

useful information (i.e. the profile represents the noise threshold); an effective method to

pre-process the full waveforms that removes this extraneous information from the original

waveform will reduce the total amount of processing time required. A noise level can be

defined as the minimum amplitude and can be estimated from the full waveform data itself;

for example as the median absolute deviation for each waveform (Persson et al., 2005).

For our study, amplitudes within 10% of the return gate are considered to be within the

noise level (Figure 4.1). The return gate is an instrument specific configuration parameter

used to reduce the effect of sun glint and noise returns. Herein, all the bins below the noise

level were removed, and only the remaining signal was examined. The removal of data

below the noise threshold significantly speeds up the calculations due to the decreased data

volume to be analyzed. It should be noted that bathymetric LiDAR waveforms can have

quite complicated return energy profiles. To demonstrate this, representative samples of

bathymetric waveforms are given in Figure 4.2.

4.2.1 Continuous wavelet transformation

The wavelet transformation can be used to project a continuous time signal into mul-

tiple subspaces consisting of wavelets (Vetterli and Herley, 1992). By examining this pro-

jection, objectives such as denoising, compression, filtering and other applications can be

achieved. A continuous wavelet transformation (CWT) projects the signal into a contin-

uous time and scale subspace (instead of discrete subspaces) whereby the signal can be

reconstructed from the resulting continuous components (Vetterli and Herley, 1992; Heil

and Walnut, 1989). CWT is a very effective method to detect the peak locations in an
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Figure 4.1 Pre-processing of the return waveform by removing data below the noise thresh-
old of the original waveform. The noise level is defined as 10% above the return
gate which is given by the manufacturer specifications.

overlapped waveform (Gregoire et al., 2011). Extending the use of CWT to FWL thus is

natural since the return waveforms can be highly mixed due to potentially closely spaced

backscatters along the laser path.

CWT can construct a time frequency representation of a signal that offers very good

time and frequency localization, making it suitable to localize peak locations as initial

approximations for subsequent peak estimation algorithms. The mother wavelet template

should be continuously differentiable and compactly support scaling and capture of a high

vanishing moment. Because most FWL systems have Gaussian-like output signals, the

Lorentzian of Gaussian mother wavelet has been used in this study (Gregoire et al., 2011),

and is given in Equation 4.1

ωa,b(t) = [1− (
t−b

a
)2]exp[−(t−b√

2a
)2], (4.1)

61



Figure 4.2 Typical bathymetric return waveforms. (a)-(d) clear water; (e), (f) contain more
subtle evidence of multiple peaks; (g)-(i) overlapped returns; (j) single peak.
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here, ωa,b is the mother wavelet used in CWT, a dilates the mother wavelet and b translates

the mother wavelet, and t is time. Special caution is needed for determination of a and b. A

smaller a can assist in discriminating highly overlapped peaks, but a slight undulation of the

waveform may result in a false peak. Larger values of a can resist disturbing undulations

(i.e. noise) but could miss weak returns and result in single returns for multiple echoes;

however, the smallest a cannot be less than the digitizing interval of signal. The ridge

defined in Gregoire et al. (2011) is a good implementation for the detection of peaks (and a

determination of a) but requires a significant amount of computation, so instead we directly

chose a single value for a to detect potential peaks. In our studies, a is set to 1.0 ns because

the interval of full waveform samples is 1.0 ns and b was set to 0.1 ns for both study sites.

A value of 0.1 ns for b is equivalent to 1.5 cm in air. Parameters a and b can be adjusted to

fit different applications and different FWL systems. The wavelet decomposition process

is a good noise-resistant subspace representation of a signal, and therefore a simple local

maximum filter can be used to find the peak locations after a wavelet transformation. In

our study, a window with a size of 15 ns was used to detect the local maxima for the peak

locations as the Full Width at Half Maximum (FWHM) is 8.3 ns for the Optech Aquarius

LiDAR system used in this study (Fernandez-Diaz et al., 2014).

4.2.2 Gaussian decomposition method

Gaussian decomposition is a popular approach for FWL processing as it can simulta-

neously provide estimates of peak location and width. Gaussian decomposition is imple-

mented using Expectation-Maximization (EM) in this study. EM is an iterative method,

normally used in signal and image processing, to estimate the maximum probability for a

set of parameters in a statistical model. As the name indicates, there should be an expecta-

tion (E) step and a maximization (M) step, and EM iterates between the E step and the M

step until a convergence criterion is satisfied (Persson et al., 2005; Oliver et al., 1996).
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A LiDAR waveform return can be represented as the sum of multiple Gaussian distri-

butions (Wagner et al., 2006), and mathematically this can be expressed as

f (t)∼ Σ
n
i=1N(µi,σi), (4.2)

here, f (t) is the full waveform that is the sum of multiple Gaussian components (n), t is

time, and N(µi,σi) represents a Gaussian component with an individual mean (µi) and a

standard deviation (σi). The number of peaks and the initial peak locations are needed as

initial values for the EM algorithm described by the following equations:

Qi j =
p j fi(i)

Σk
j=1 p j fi(i)

, (4.3)

p j =
ΣS

i=1NiQi j

ΣS
i=1Ni

, (4.4)

µi =
ΣS

i=1NiQi ji
p jΣ

S
i=1Ni

, and (4.5)

σi =

√
ΣS

i=1NiQi j(i−µi)2

p jΣ
S
i=1Ni

, (4.6)

here, p j is the relative weight of the component distribution fi(x); Qi j is the probability

that sample i belongs to component j; Ni is the amplitude for sample i; S is the number of

samples in the waveform; µi is the mean peak location; and σi is the standard deviation for

that component, which is proportional to the pulse width or FWHM.

As EM is a local maximum searching method, peaks with spurious µi or σi are re-

moved to ensure a reasonable result. Also, extremely weak returns, for example, peaks
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with p j less than 0.05 are removed to guarantee algorithm convergence. From Equation

4.3 to 4.6, it is evident that EM is actually a Gaussian decomposition because its under-

lying model is a Gaussian mixture model. For the purpose of assessing performance of

Gaussian decomposition with different peak seeding locations, both CWT detected peak

locations and peaks acquired from a second derivative analysis (Chauve et al., 2007) are

applied to initialize the EM estimation.

4.2.3 Empirical System Response Waveform Decomposition

An alternative to the Gaussian model for waveform decomposition is an empirical sys-

tem response (ESR) model that represents the convolution of the emitted pulse shape and

the sensor response. Decomposition with an ESR model has the potential to reduce resid-

uals and improve ranging precision compared to Gaussian decomposition (Hartzell et al.,

2014). The method described in Hartzell et al. (2014) requires an ESR model spanning the

dynamic range of a terrestrial LiDAR sensor to accommodate nonlinear response character-

istics. However, for an FWL sensor with a predominantly linear response, which includes

the airborne systems used in this study, a simplified ESR waveform decomposition method

can be derived.

In lieu of an ESR model spanning the sensor dynamic range, a single empirical re-

sponse model can be approximated by averaging waveforms from a single, diffuse, ex-

tended target illuminated at normal incidence. Using standard nonlinear least squares, the

model is iteratively shifted (µ parameter), scaled in amplitude (A parameter), and scaled in

width (w parameter) until the parameter corrections are negligible, i.e., the model is fit to

the observed waveform in an optimal sense. An un-weighted Gauss-Newton least squares

expression can be written in matrix form as (Ghilani, 2010):

JX = K +V and (4.7)
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X = (JT J)−1JT K, (4.8)

where J is the m×3 matrix (m = number of waveform data points) of partial derivatives of

the ESR model with respect to the µ , A, and w parameters evaluated at each waveform data

point; K is the column vector of differences between the observed waveform amplitudes

and the amplitudes computed from the ESR model; V is the column vector of residuals;

and X is the column vector of ESR model parameter corrections. The partial derivatives

required to populate the J matrix are numerically computed from the ESR model using the

current parameter values at each iteration in the adjustment. Figure 4.3 illustrates the nu-

meric partial derivatives. As with Gaussian decomposition, the least squares algorithm can

be extended to accommodate a superposition of multiple ESR models when overlapping

return echoes are detected in the observed waveform.

4.2.4 Water Depth Generation

Because the field measurements used in the study are water depth records collected

with an acoustic doppler current profiler (ADCP), we need to infer water depths from the

3D LiDAR points as a basis of comparison. We also need to segment the raw point clouds

from each of the target extraction techniques to separate water column and bottom returns

and properly identify the benthic layer. The basic strategy for benthic classification is to

first classify the last of multiple returns as initial candidate benthic returns, and then use

a region growing method with the initial benthic points and regionally lowest elevation

points to refine the total benthic surface points using the TerraScan software package. The

classification algorithm is similar to that used to determine ground returns in topographic

LiDAR surveys and is based on the methodology presented in (Axelsson, 2000). It should

be noted that each of the green LiDAR returns from below the surface of the water has

been corrected for both refraction of the pulse at the air/water interface, and for the change

in the speed of light within water (Guenther et al., 2000). To define the water boundary a

66



Figure 4.3 Graphical representation of numeric partial derivatives necessary for the empir-
ical system response least squares waveform decomposition algorithm.
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fluvial river-line is acquired from aerial orthoimages by visually identifying and digitizing

the land/water border.

To convert the benthic layer points extracted from the point cloud to water depths, a

water surface is required to subtract the benthic layer elevation from the water surface ele-

vation for each benthic point. To highlight the differences in depth determination between

single and multiple band bathymetric LiDAR sensors we examine two realizations of the

water surface for each river: the first water surface is extracted from alternative sources

(NIR water surface for the Snake River, RTK water surface for the Blue/Colorado River)

and the second water surface is extracted from each green LiDAR point cloud alone. For

green LiDAR point clouds, the water surface can be defined as the remaining LiDAR re-

turns within the boundary of the water body after benthic classification. The NIR water

surface was acquired by extracting all NIR returns within the water boundary, as NIR LI-

DAR can theoretically only be retro-reflected from the water surface (Irish et al., 2000).

Point clouds created by airborne LiDAR are generally irregularly distributed, and

therefore conventional image processing techniques which assume raster input are not suit-

able for posterior analysis. As an alternative, we utilized a point to plane distance to com-

pute the distances between an individual LiDAR returns and its neighbor points (Hauser,

2013). Figure 4.4 shows the schematic steps to compute the point to plane distance. For

each specific candidate point, neighbor points are selected within the cylinder with a spe-

cific search radius R, and thus a fitted plane is constructed by least squares estimation. The

distance from the candidate point to the fitted plane is defined as the point to plane distance

d. The point to plane distance is used in this study to calculate the water depth given a

cloud of water surface (reference points) and benthic points (target points).
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Figure 4.4 Definition of point to plane distance.

4.3 Results

4.3.1 Experiment I: Snake River Bathymetry Study

Distribution of Number of Full Waveform Returns

Four different full waveform processing algorithms have been applied in this study.

The full waveform data for the Snake River was first preprocessed to reduce computational

load by thresholding the raw waveform returns. To analyze the effect of the initial peak

location estimates on nonlinear least square Gaussian decomposition, peak locations that

were detected with a second derivative and peak locations that were detected with a CWT

were both used as initial approximations for Gaussian decomposition. The resulting point

clouds are referred to as s_G (Gaussian decomposition initiated with second derivatives)

and c_G (Gaussian decomposition initiated with CWT) respectively. The peak locations

detected by CWT are also used as initial seed values for the ESR pulse fitting. A point cloud

was also generated by using just the peak locations derived from CWT without further

Gaussian or ESR refinement. The four point clouds from these full waveform fittings are

then used for further analysis.
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Figure 4.5 Distribution of the number of full waveform returns using different peak detec-
tion methods for the Snake River. CWT and s_G methods are better able to
detect multiple returns while almost all discrete points are single return.

The CWT and s_G algorithms generated 24.32% and 43.35% more points respectively

compared to the discrete points based on CFD provided by the manufacturer software, for

the Snake River. The distribution of the number of returns for discrete points, CWT and

s_G are shown in Figure 4.5. This suggests that s_G performs better than CWT for peak

detection in the fluvial environment of the Snake River. More importantly, both CWT and

s_G methods are markedly better at resolving multiple returns; almost all discrete points are

composed of single return points. More return points have a direct benefit for bathymetric

mapping as better coverage and higher density data is the result. In addition, multiple

returns are also critical for shallow water bathymetric mapping as the surface returns and

benthic returns are more likely both represented with multiple reflections. It should be

noted that the ESR and c_G methods are not given in Figure 4.5 because they were both

seeded by the CWT peak locations and therefore theoretically have the same statistics as

the CWT results.
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Water Depth Analysis

To avoid local anomalies (e.g., floating wood, submerged objects, facets of waves,

etc.), for each benthic point, the point to plane distance is calculated as water depth with a

search radius of 10 m for both the NIR and green water surfaces. To evaluate full waveform

bathymetric LiDAR performance, the retrieved water depths have been compared to field

measured ADCP depths. Figure 4.6 shows all the possible combinations of water depths

compared to ADCP water depths and Table 4.1 shows the statistical comparison results for

each water depth estimate.

Figure 4.6 Comparison of LiDAR depths to ADCP depths for the Snake River. (a) discrete
points, (b) s_G points (c) c_G points, (d) CWT points, (e) ESR points.

Table 4.1 Comparison of LiDAR retrieved water depths to field measured ADCP water
depths for the Snake River. Results in meters.

Point Type: discrete s_G c_G CWT ESR
Water Surface: NIR Green NIR Green NIR Green NIR Green NIR Green
Mean(Z f -Zr)(m) -0.02 0.13 -0.02 0.18 0.13 0.32 -0.11 0.06 -0.13 0.17
Std.(Z f -Zr)(m) 0.17 0.20 0.16 0.18 0.14 0.17 0.15 0.14 0.13 0.14
Slope 1.08 1.16 0.93 0.79 0.91 0.75 1.12 1.08 1.08 0.95
Intercept (m) -0.06 -0.29 0.09 0.04 -0.04 -0.06 0.00 -0.14 0.05 -0.12
R2 0.87 0.87 0.87 0.81 0.90 0.83 0.91 0.92 0.92 0.88

∗Z f is ADCP water depth and Zr is LiDAR derived water depth

With the NIR water surface, ESR performs the best with the lowest standard deviation
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(Std.) of 13 cm and the highest R2 of 0.92; water depths retrieved from discrete points

have slightly higher Std. of 17 cm and lower R2 of 0.87. With a green water surface, CWT

performs the best with a Std. of 14 cm and the highest R2 of 0.92 while s_G water depths

and c_G water depths have the worst performance with 18 cm and 17 cm for Std., 0.81

and 0.83 for R2 respectively. The mean bias of water depth using a NIR water surface is

lower than the mean bias with a green water surface except for CWT derived points; this

is likely caused by water volume scattering and the overlap of benthic and surface returns

for shallow water. In addition, the R2 values for water depths retrieved with a NIR water

surface are higher than those for water depths retrieved with a green water surface with the

exception of the CWT points (0.87 vs. 0.87 for discrete points, 0.87 vs. 0.81 for s_G points,

0.90 vs. 0.83 for c_G points, 0.92 vs. 0.88 for ESR). These differences indicate that NIR

returns give a more accurate water surface than green returns. The CWT methodology is

the lone outlier, and shows the opposite performance as water depths retrieved with a green

water surface are better than water depths retrieved with a NIR water surface (-11 cm vs. 6

cm for mean depth error, 15 cm vs. 14 cm for Std., 0.91 vs. 0.92 for R2 respectively). This

suggests that the CWT is more effective than the other methods for green LiDAR waveform

processing as it provides a better estimate of the water surface.

The water depths retrieved from c_G points are slightly better than water depths re-

trieved from s_G points (with NIR water surface: 14 cm vs. 16 cm for Std., 0.90 vs.

0.87 for R2 respectively; with green water surface: 17 cm vs. 18 cm for Std., 0.83 vs.

0.81 for R2 respectively). This suggests that the initial peak location estimates have an

effect on the final least square estimates, and that CWT provides marginally better seed

locations. The green shaded areas (depths < 0.8 m) in Figure 10 indicate that all shallow

water depths retrieved from LiDAR observations have been underestimated. Theoretically,

LiDAR can underestimate water depth because of overlap between the surface return and

benthic return for extremely shallow water. Also, any suspended particulate matter in the

72



water body, or a rough benthic layer can stretch the incident laser pulse. For very shallow

water (green shaded area), the final laser return will be a superposition waveform of water

surface backscatter, water volume backscatter and benthic layer backscatter.

Because Table 4.1 shows significant differences between water depths with either an

NIR or green water surface definition, a further inspection of these water surface defini-

tions is warranted. The NIR water surface shows the best overall internal consistency, with

a Std. of 11.76 cm for planar fits of points within a 2 m search radius. Therefore the NIR

water surface is used as a common basis for comparison for all the green water surfaces

by calculating the point to plane distance with a 2 m search radius from the green LiDAR

points to the NIR surface plane. As Table 4.2 shows, different green water surfaces have

significantly different mean vertical errors with ESR having the largest at 45 cm and c_G

the smallest at 17 cm. The discrete water surface has only a 10 cm of Std., indicating that

the discrete point cloud estimates the water surface well (at least for the Snake River con-

ditions). However, the overall performance (i.e. determining water depths) from discrete

returns is not as good as CWT and has a Std. of 24 cm for the water surface; this implies

that a CFD is unable to properly estimate benthic returns in the presence of water column

backscatter. The c_G method performs better than s_G for water surface detection with 17

cm versus 34 cm for mean vertical error, and 28 cm and 31 cm for Std. respectively. Again,

this is further evidence that an accurate initial peak estimate is necessary for nonlinear

Gaussian decomposition.

Table 4.2 Statistical mean vertical error and Std. for different green water surfaces. NIR
water surface has an 11.76cm Std..

Water Surface discrete s_G c_G CWT ESR
Mean (m) 0.18 0.34 0.17 0.29 0.45
Std. (m) 0.10 0.31 0.28 0.24 0.33
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4.3.2 Experiment II: Blue/Colorado River study

Distribution of Number of Full Waveform Returns

To further assess full waveform bathymetric LiDAR performance, we performed an-

other study on the Blue/Colorado River, which has significantly more turbid water than

the Snake River. Similar to the Snake River analysis, all four full waveform processing

algorithms were applied to extract individual point clouds. Only 4.6% more points were

detected with a CWT over discrete returns. The s_G method actually gave 2.07% fewer

points than the discrete. The distribution of returns for this fluvial environment is shown in

Figure 4.7. Note that, CWT extracted significantly more multiple returns while almost all

discrete returns are single return. Again, more multiple returns in general mean better sep-

aration between water surface and benthic layer. The same region growing classification

methodology described for the Snake River was also applied to the Blue/Colorado River

point clouds.

Figure 4.7 Distribution of the number of full waveform returns for different peak detection
methods on the Blue/Colorado River. CWT and s_G methods are better able to
detect multiple returns while almost all discrete points are single return.
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Water Depth Analysis

After extracting benthic returns from the full waveform and discrete point clouds, a

water surface was required to retrieve water depths for comparison with the ADCP mea-

surements. In contrast to the Snake River, no effective NIR water surface was acquired

during the airborne LiDAR data collection because of high flight altitude (2.6 km above

ground) of the NIR collection (see Fig.3 (b) in Fernandez-Diaz et al. (2014)). Therefore,

instead of using a NIR water surface we have used a field measured RTK water surface.

The RTK water surface locations were recorded during the ADCP water depth collection as

shown in Figure 3.1. In addition, the water surface returns from the discrete CFD derived

bathymetric points proved to have extremely low density, and therefore no water surface

was estimated from the discrete returns. Therefore, for the Blue/Colorado River only four

sets of water depths were compared with the green water surface. For each benthic point,

the point to plane distance is calculated with a search radius of 10 m for both RTK water

surface and green water surface. The comparison between the LiDAR and ADCP depths

are given in Figure 4.8 and Table 4.3.

Figure 4.8 Comparison of LiDAR depth to ADCP depth for the Blue/Colorado River. (a)
discrete points, (b) s_G points (c) c_G points, (d) CWT points, (e) ESR points.

All waveform algorithms performances have degraded in the turbid water of the Blue/Colorado
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Table 4.3 Comparison of LiDAR retrieved water depths to field measured ADCP water
depths for the Blue/Colorado River. Results in meters.

Point Type: discrete s_G c_G CWT ESR
Water Surface: RTK Green RTK Green RTK Green RTK Green RTK Green
Mean(Z f -Zr)(m) -0.17 N/A -0.03 0.60 -0.04 0.55 -0.16 0.35 -0.10 0.35
Std.(Z f -Zr)(m) 0.29 N/A 0.27 0.27 0.25 0.24 0.27 0.24 0.28 0.22
Slope 0.67 N/A 0.54 0.45 0.70 0.63 0.85 0.84 0.39 0.48
Intercept (m) 0.42 N/A 0.37 -0.12 0.26 -0.21 0.28 -0.22 0.49 -0.01
R2 0.44 N/A 0.41 0.29 0.53 0.43 0.57 0.58 0.25 0.39

∗Z f is ADCP water depth and Zr is LiDAR derived water depth

River. The mean biases for s_G and c_G water depths with green water surface are signifi-

cantly higher than that of the Snake River with values of 60 cm and 55 cm respectively. The

Std. for all water depths retrieved with a green water surface is slightly lower than the Std.

of water depths with RTK water surface, but with significantly higher mean biases. The

highest R2 of 0.58 was achieved by CWT water depths with a green water surface while

CWT still gave the highest R2 of 0.57 with the RTK surface. The more consistent results

from the purely peak finding CWT algorithm suggests that the water turbidity substantially

distorts the return waveform shape, which causes significant problems for algorithms such

as Gaussian decomposition or ESR that make assumptions about the shape of the return

energy profile. ESR performed relatively poorly in the Blue/Colorado River with only a R2

of 0.25 for water depths with an RTK water surface and R2 of 0.39 for water depths with

green water surface.

The overall Std. for the c_G method is slightly better than the s_G method (with RTK

water surface: 25 cm vs. 27 cm, with green water surface: 24 cm vs. 27 cm) and has a

higher R2 value (with RTK water surface: 0.53 vs. 0.41, with green water surface: 0.43

vs. 0.29). This difference reinforces that accurate initial peak estimates are critical for

nonlinear least square Gaussian decomposition.

The differences in depth estimation between an RTK water surface and a green wa-

ter laser surface necessitates a further assessment of the water surfaces used to infer water
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depths. Given the water turbidity, we would expect the RTK water surface to have better

performance. Therefore, we compare each green LiDAR water surface using the RTK sur-

face as a common reference. For each green water surface point, the RTK points within

10 m are used to form a water surface plane and each green water surface point to plane

distance to the RTK surface is defined as the planar uncertainty. Table 4.4 shows that all

green water surfaces from the Blue/Colorado River have high mean error (s_G: 82 cm,

c_G: 79 cm, CWT: 72 cm, ESR: 63 cm). The Std. (s_G: 16 cm, c_G: 13 cm, CWT: 17

cm, ESR: 18 cm) of all water surfaces are marginally better than those for the Snake River

because the RTK water surface is less noisy than the NIR water surface used for compar-

ison on the Snake River (NIR has 11.76 cm Std., RTK has 4.11 cm Std.). The significant

mean vertical bias highlights the overall poorer performance of bathymetric LiDAR for the

Blue/Colorado River. By comparing the results from Table 4.8, water depths calculated

by using an RTK water surface has a smaller mean bias than green water surfaces. This

suggests that the increasing amount of water volume scattering caused by the turbid water

has skewed the mixture of water surface and volume scattering toward the bottom causing

a larger mean error for green water surfaces. The relatively poor performance of green

water surface extraction is troubling because it suggests that an independent accurate water

surface, i.e. NIR water surface, is a necessity for turbid water depth determination.

Table 4.4 Statistical mean vertical error and Std. for different green water surfaces com-
pared to a GPS RTK water surface. RTK water surface has a 4.11cm Std..

s_G c_G CWT ESR
Mean (m) 0.82 0.79 0.72 0.63
Std. (m) 0.16 0.13 0.17 0.18

Water Surface Detection Performance Analysis

In order to better study the impacts of water turbidity, we collected a few representative

waveforms with CWT detected peaks and actual water surface locations calculated from

RTK surveyed points. Figure 4.9 displays these individual bathymetric waveforms under
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different water conditions, varying from shallower to deeper water and also varying from

lower to higher turbidity. A single peak can be detected for shallow water with lower

turbidity (Figure 4.9, (a) to (b)), shallow water with higher turbidity (Figure 4.9, (f) to

(h)) and deeper water with higher turbidity (Figure 4.9, (i) to (j)). CWT detected peaks

are closer to the actual water surface for more turbid water (Figure 4.9, (f) to (h)) and

they move away from the actual water surface for lower turbidity water (Figure 4.9, (a) to

(b)). The different behavior of full waveform detection in less turbid and more turbid water

suggests that a significant amount of water volume scattering for more turbid water skewed

the bathymetric returns toward the actual water surface.

However, a further analysis of Figure 4.9 shows the actual water surface (as measured

by RTK) is located at the very beginning of the waveform. Therefore, it would appear that

a simple leading edge detection method would be able to accurately estimate the actual

water surface. We have set a leading edge detector with an amplitude threshold of 210

to define the water surface. Figure 4.10 shows the leading edge detected water surface as

well as the CWT detected water surface. A significant vertical bias is present for the CWT

detected water surface in profile A and profile B. This visual vertical bias confirms the

significant increase of water surface error in Table 4.4. The leading edge detected water

surface matches the RTK water surface very well, confirming that leading edge detection

is effective for estimating the water surface in the Blue/Colorado River. In order to gener-

alize the leading edge detection, the same method was also applied to the Snake River to

independently assess performance. Figure 4.11 shows two profiles of the Snake River with

leading edge water surface detection. A significant vertical bias is present in the Snake

River leading edge water surface; the CWT detected water surface agrees much better with

the NIR detected water surface. This result confirms that the biases in the waveform wa-

ter surfaces for the Blue/Colorado River are caused by the increased water turbidity, and

not by the waveform processing methodology. The different performance of leading edge
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Figure 4.9 CWT peaks (red lines) and actual water surface location (blue lines). (a)∼(b)
shallow water with low turbidity; (c)∼(e) deep water with low turbidity; (f)∼(h)
shallow water with high turbidity; (i)∼(j) deep water with high turbidity.

79



water surface detection and the CWT water surface indicates that there may be no single

solution that can be applied to all rivers to accurately estimate the water surface for single

band LiDAR bathymetry.

Figure 4.10 Profiles for leading edge detected water surface on the Blue/Colorado River.
Coordinates are in UTM 13N (NAD83).

Table 4.5 Statistical mean vertical error and Std. for leading edge detected water sur-
faces. RTK water surface and NIR water surface are used as reference for the
Blue/Colorado and Snake Rivers respectively.

Blue/Colorado river Snake river
Mean (m) -0.01 -0.60
Std. (m) 0.19 0.27

Table 4.5 lists the statistical results for leading edge water surface detection for both

the Blue/Colorado and the Snake River. For each leading edge detected point, the point to

plane distances (RTK points are reference points for the Blue/Colorado River, NIR points

are reference points for the Snake River) were used to form a plane by least squares esti-

mation and the point to water surface plane distance is defined as the error. The leading
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Figure 4.11 Profiles for leading edge detected water surface on the Rusty Bend of Snake
River. The water surface detected with CWT matches the NIR water surface
well. Coordinates are in UTM 12N(NAD83).

edge detection is poorer than the waveform derived surfaces for the Snake River as the wa-

ter volume scattering with low turbidity is not significant. However, if the water becomes

more turbid, then leading edge detection performs better than peak detection or waveform

fitting methods.

4.3.3 Best Performance for Single Band Bathymetric LiDAR

If we specify only single band (green) LiDAR observations, then Table 4.2 shows

that the most consistent water surface estimate for the Snake River is given by the discrete

returns with an 18 cm mean bias and a 10 cm Std., and Table 4.5 indicates that leading edge

detection yields the best representation of the water surface for the Blue/Colorado River

with 1 cm of mean bias and 19 cm Std. Therefore, we can assess the best performance for

single band green LiDAR in each study by combining the best estimate of water surface
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with the best discriminator of benthic layer returns. For the Snake River, we combined

a discrete water surface with CWT benthic layer returns to infer water depth. For the

Blue/Colorado River we used leading edge detection for the water surface and combined it

with CWT benthic layer returns. The optimal single band water depth maps are shown in

Figure 4.12. Both optimized estimates of depth were compared to field measured ADCP

water depth respectively, and the results are shown in Table 4.6.

Figure 4.12 Optimal single band water depth map for the Snake River (a), Coordinates are
in UTM 12N(NAD83) and the Blue/Colorado River (b), Coordinates are in
UTM 13N(NAD83)).

Table 4.6 Best Performance for single band bathymetric LiDAR for both the Snake River
and the Blue/Colorado River

Snake River Blue/Colorado River
Mean(Z f -Zr) (m) 0.06 -0.16
Std.(Z f -Zr) (m) 0.14 0.27

Slope 1.11 0.85
Intercept (m) -0.06 0.27

R2 0.93 0.58

The Snake River water depth inferred from a combination of discrete water surface

and CWT benthic layer results in a 6 cm mean bias and 14 cm Std. with an R2 of 0.93.

82



The results are comparable to the CWT water depth using a NIR water surface estimate

in Table 4.1. The water depth inferred from a combination of leading edge detected water

surface and CWT detected benthic returns for the Blue/Colorado River also shows similar

performance to the CWT water depth with RTK water surface given in Table 4.3 (16 cm

for mean bias and 27cm for Std. with R2 of 0.58). This reinforces the fact that the leading

edge detected water surface is close to the RTK water surface and the relatively significant

errors present in the Blue/Colorado River results are heavily dependent on the accuracy of

the benthic layer estimation.

4.4 Discussion

The objective of this study was to evaluate the performance of a single band full wave-

form bathymetric LiDAR with different processing algorithms and water surface definitions

in two distinct fluvial environments. We proposed a novel full waveform processing algo-

rithm based on a continuous waveform transformation; the detected peaks from CWT are

used as candidate seed peaks for both Gaussian and ESR decomposition. The wavelet

transformation was assessed in comparison with a more standard approach using Gaussian

decomposition with initial peak estimates from a second derivative analysis. Water depths

from each waveform method, along with discrete points produced by the real-time constant

fraction discriminator were compared to field measured water depths. All the methods have

been applied to two fluvial environments: the clear and shallow (mostly < 2 m) water of

the Snake River and the turbid and shallow (mostly < 1.5 m) fluvial environment of the

Blue/Colorado River.

Full waveform LiDAR processing is able to produce a significantly denser point cloud

with more multiple return reflections than CFD for bathymetry. The ability to recover

multiple returns by the waveform methods is especially significant, because the additional
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returns are more probable benthic returns. Multiple returns can also benefit the classifica-

tion of the benthic layer as the last return of multiple returns are assigned as seed benthic

positions for region growing classification algorithms. This algorithm is different from the

method proposed by Allouis et al. (2010) who used NIR returns to estimate the water sur-

face; here the mixed LiDAR signal produced by water surface and water bottom reflections

was directly processed through the CWT to extract both surface and benthic locations. One

of the challenges for single band bathymetric LiDAR is to recover both the water surface

and bottom position from the full waveform. The longer pulse width laser used in the

Aquarius system exacerbated the mixture of water surface, water column and benthic re-

turns. In the future we plan to examine our methodology on short pulse width bathymetric

full waveform LiDAR systems such as the Riegl VQ 820-G, AHAB Hawkeye III, EAARL,

and Optech Titan.

The results of the study also suggest that there is no superior full waveform process-

ing algorithm for all bathymetric situations, which agrees with the conclusions of Parrish

et al. (2011). ESR performed the best in the Snake River using a NIR water surface, with

an R2 of 0.92 and the lowest Std. of 13 cm. However, the c_G and CWT results for the

Snake River with the NIR surface were statistically quite similar to the ESR results. With

a green water surface the CWT performed marginally better than ESR with an R2 of 0.92

versus 0.88, with an identical Std. of 14 cm. LiDAR for the Blue/Colorado River did not

perform nearly as well as the Snake River study due to the significant water turbidity. CWT

water depths with either an RTK or green water surface gave the best performance (R2 of

0.57 and 0.58 respectively). In general the approaches that model expected signal shape

(Gaussian and ESR) performed quite poorly for the Blue/Colorado River, suggesting that

the water turbidity causes significant distortion in the return waveform shape. Based on this

we can safely conclude that CWT is more stable than the other full waveform processing

algorithms for shallow water fluvial environments. Both the ESR and CWT showed good
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bathymetric performance for different cases, confirming that it is critical for commercial

software to include a variety of full waveform processing strategies. However, unfortu-

nately, the optimal processing strategy is not available a priori, and therefore a certain level

of performance assessment is necessary for users to determine the best processing strat-

egy for their study conditions. We have also compared water surfaces estimated by both

NIR and Green LiDAR returns. There is a definite vertical bias between the two surface

estimates. The comparison of the NIR and green water surfaces for the Snake River study

showed a maximum mean vertical offset of 45 cm and 33 cm of Std. for ESR. The mini-

mum average of 18 cm of vertical offset and 10 cm Std. are observed for the discrete green

water surface. Overall, it appears that the NIR water surface gives slightly better results

than using a green surface (for clear water). Turbid water greatly degraded the green water

surface performance with large mean error (s_G: 82 cm, c_G: 79 cm, CWT: 72 cm, ESR:

63 cm). The deterioration of water surface performance compared with the clear Snake

River indicates that turbidity can skew the return full waveform toward the benthic layer.

McKean et al. (2009) suggested that suspended sediment and dissolved organic materials

can scatter and absorb incident laser radiation. They also reported that turbid water exacer-

bates laser penetration for the EAARL system when turbidity reached 4.5 to 12 NTU. This

agrees with our results, the Blue/Colorado River presented turbidity ranging from 2 to 12

NTU, which negatively impacted Aquarius performance due to substantial water column

scattering. It also further confirms that a multiple wavelength LiDAR may be essential

for bathymetric applications, especially for turbid water. A leading edge detection method

was proposed and tested over these two river conditions; it was found that leading edge

detection is effective if more water volume scattering is present (i.e., high turbidity), but

waveform fitting methods are more effective for low turbidity due to the identification of

more water surface returns.

In summary, full waveform processing can produce more points than discrete CFD
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processing to provide better coverage and more multiple returns for better discrimination

of benthic and water surface returns. However, with all approaches it is difficult to ac-

quire good quality data for turbid water, especially when the water is shallow. The pro-

posed CWT method shows better stability through varying water clarity conditions than

the Gaussian or ESR decomposition methods also tested. A single band full waveform

bathymetric LiDAR does not appear to be as accurate as a two wavelengths system that

recovers the water surface using a NIR laser. However, with an appropriate full waveform

processing algorithm, the error in determining the water surface from a single band green

LiDAR can be mitigated; these results are encouraging because they seem to indicate that

with improved detection of the water surface from the green LiDAR we can expect a sin-

gle band LiDAR bathymetry system to perform similarly to a two band (NIR and green)

bathymetric system. For this to be realized however, we must successfully extract the water

surface from the relatively complex backscatter at the air/water interface, which we were

unable to do with the waveform processing algorithms tested. In Abady et al. (2014), they

proposed a quadrilateral signal to model the effect of water column scattering, and show

it to be effective with simulated bathymetric LiDAR data. However, our initial analysis of

this methodology has not shown a significant improvement in water surface estimation for

the Aquarius data-sets examined. Future work will therefore focus on decoupling the water

surface and water column scattering at the air/water interface.
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Chapter 5

Estimation of Water Depths and Turbidity from Hyperspectral

Imagery Using Support Vector Regression

5.1 Overview

The radiative transfer process described Chapter 2 showed that extracting water bathymetry

from hyperspectral imagery is possible with both linear and band ratio methods (Legleiter

et al., 2009; Philpot, 1989; Stumpf et al., 2003; Dierssen et al., 2003). However, in the

shallow fluvial systems present for the Snake and Blue/Colorado River, the linear solution

including a deep water correction is difficult to implement (due to the absence of deep

water), and therefore, only the band ratio method was implemented and evaluated herein.

The band ratio method described by Legleiter et al. (2009) and Ma et al. (2014) has been

shown in the literature to be simple to use and provide accurate bathymetric results from

hyperspectral imagery, with a minimum number of tuning parameters. The main draw-

back of the band ratio method is that only a portion of the spectral information is utilized;

however, all bands theoretically are attenuated by the water column with specific but wave-

length dependent attenuation coefficients. Therefore all spectral bands should potentially

contain water bathymetry information. A more generalized model, which takes advantage

of a number of spectral channels, should improve bathymetric estimates. However, a spe-

cific model would be difficult to construct due to the complex and unknown relationship

between spectral bands and water column response. A non-parametric method that utilizes

all spectral information can be formulated, and could potentially improve bathymetry re-

trieval. It would also be preferable, if like the OBRA method the algorithm could be easily

implemented without a requirement for extensive radiative transfer modeling.

Support vector machine (SVM) is a supervised machine learning algorithm used to an-

alyze patterns within data, and support vector regression (SVR) is a realization of a support
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vector machine for prediction (Smola and Vapnik, 1997). SVR is a non-parametric regres-

sion method and a data dependent learning scheme and thus no explicit model is required

to fuse the observations with the physical measurement quantities. The regression model is

generalized, and can be used to estimate any spectrally related parameters where no explicit

physical model exists. A review of support vector machines and regression can be found in

Mountrakis et al. (2011). Bruzzone and Melgani (2005) have estimated biophysical param-

eters from remotely sensed data using a multiple estimator system that incorporated SVM

in combination with a multilayer perceptron (MLP) neural network. Camps-Valls et al.

(2006) utilized the SVR method to estimate ocean chlorophyll concentration with satellite

remote sensing data to provide a more accurate, less biased, and noise resistant model.

In this chapter, we propose and test SVR as an alternative method for bathymetric

retrieval in order to more accurately account for the nonlinearity existing in the observed

hyperspectral data. A conventional band ratio bathymetry retrieval method is used as a

baseline for comparison with the proposed SVR method, and a comparison with in-situ

water depth observations is presented. To demonstrate the generality of the SVR method,

we also evaluate its ability to predict other water column parameters empirically by using

it to estimate water turbidity from hyperspectral imagery. We again compare the results to

in-situ measurements of turbidity.

5.2 Support Vector Regression

Support Vector Regression (SVR) is a non-parametric regression technique and there-

fore no assumptions regarding the underlying data model are required. SVR can transform

a nonlinear regression problem into linear regression through the implementation of a ker-

nel function, which projects the original feature space into a higher dimensional space. A

hyperplane is then used to fit the projected space, and the estimated parameters can be used

for subsequent prediction (Chang and Lin, 2011).
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SVR is a supervised machine learning algorithm and therefore calibration samples are

essential. First we define (x1,z1),(x2,z2), · · · ,(xn,zn) where xi∈RN is the feature vector and

zi∈R1 is the target output. Here, N is the dimension of the feature space and n denotes the

number of samples. With ε − SV regression, the goal is to find a hyperplane f (x) for the

calibration data-set. The linear function f (x) can be described as

y = f (x) = 〈w·φ(x)〉+b =
n

∑
i=1

wiφi(x)+b , (5.1)

where y is the predicted value, w is the weight vector, φ is the nonlinear mapping function

for reprojection, and b is the bias term. More details for SVR can be found in Smola and

Schölkopf (2004). All bands are used as the feature vector in this study.

Figure 5.1 Slack variable ξ for soft-margin SVR; ε is the maximum allowed deviation.

Slack variables ξi and ξ ∗i are introduced to accommodate a soft-margin SVR (Smola

and Schölkopf, 2004), see Figure 5.1. Under given parameters C > 0 and ε > 0, the standard
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form of support vector regression is

Min:
1
2
‖w‖2 +C

n

∑
i=1

(ξi +ξ
∗
i ) and (5.2)

Subject to



yi− f (xi)≤ ε +ξ ∗i ;

f (xi)− yi ≤ ε +ξi;

ξi,ξ
∗
i ≥ 0, i = 1, · · · ,n,

(5.3)

here, C is the penalty parameter which tunes the tradeoff between the generalization of the

functional relationship and the accuracy of the fitted hyperplane and ε is the maximum

allowed deviation from the fitted hyperplane.

Kernel functions also introduced into SVR to accommodate nonlinear relationship in

the linear formulation above. The kernel function projects the original feature space into

a higher dimensional space that allows SVR to fit a hyperplane in a transformed feature

space. There are many commonly used kernel functions including linear, polynomial, ra-

dial basis function (RBF) and hyperbolic tangent (Cui and Prasad, 2015). RBF is widely

used and implemented here because of its good performance and smaller number of input

parameters. The RBF kernel can be described as

K(xi,x j) = exp(−λ‖xi− x j‖2) , (5.4)

here, K denotes the kernel of two samples vectors xi and x j, and λ is related to the kernel

width which requires tuning to achieve the best performance. The performance of SVR

with the RBF kernel is highly correlated to the three input parameters: C, ε , and λ . To

optimize the selection of these parameters, a general k-fold cross-validation method as

well as a grid searching scheme are used (Ma et al., 2010).
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5.3 Results

We studied the accuracy of SVR for bathymetry retrieval using hyperspectral im-

agery, and compared its performance to the Optimal Band Ratio Analysis (OBRA) method

(Legleiter et al., 2009). To investigate the influence of calibration sample size, we increased

the number of training samples from 100 to 500 in increments of 100, with the validation

sample size fixed at 1000 to maintain the same comparison baseline. The calibration sam-

ples and validation samples were randomly selected from the in-situ measurements. The

calibration samples were first used to estimate the OBRA parameters for water depth re-

trieval; the retrieved parameters were applied to estimate water depths at the validation

sample locations. The same calibration samples were then fed into SVR for estimation

of water depths; the retrieved water depths from both OBRA and SVR estimation were

compared to the validation samples to calculate RMSE and R2.

In order to ensure consistent and stable results from both algorithms, the experiment

was repeated 20 times. Also, to maintain a good model fit across all depths, the field

measured water depths were first categorized into different depth bins with an interval of

0.1 m (see Figure 3.1.3(a) and Figure 3.1.3(b)). The random calibration samples were

chosen to have the same relative percentage as the water depths distribution. The RMSE

and R2 between retrieved water depth and validation samples were calculated for each

iteration and the average value was used for the result.

The RMSE for SVR decreases as the calibration sample size increases for the Snake

River, while the R2 also increases (see Figure 5.2). OBRA shows a fairly consistent per-

formance with all training sample sizes. SVR outperforms OBRA with both lower RMSE

and higher R2 regardless of the training sample size. Both SVR and OBRA depth estimates

degraded in the more turbid Blue/Colorado River as the overall RMSE is higher and R2

for both algorithms are lower than the Snake River (see Figure 5.3). However, SVR still
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significantly outperforms OBRA with a lower RMSE and higher R2 value.

Figure 5.2 RMSE (m) and R2 of OBRA and SVR for the Snake River water depths.

To further investigate the influence of water depth on the accuracy of depth determi-

nation for both OBRA and SVR, Figure 5.4 (Snake River) and Figure 5.5 (Blue/Colorado

River) show the RMSE associated with varying water depths. The SVR results show sig-

nificantly better RMSE for both shallower (<1.5 m) and deeper water (>2.5 m) for the

Snake River, however, SVR results only show notable improvement in RMSE for deeper

water (>1.5 m) in the Blue/Colorado River. RMSE increases for deeper water (>2 m for

the Snake River, >1.5 m for the Blue/Colorado River) due to the saturation of the water

column radiance over the bottom radiance signal in deeper water.

Finally, we briefly demonstrate the application of SVR for estimation of water turbid-

ity from hyperspectral imagery. As the relationship between optical turbidity and observed

spectrum remains unknown, a physical model to predict turbidity is difficult to establish.

Therefore, we use the same k-fold cross validation and calibration-validation procedures to

train a SVR model for extraction of water turbidity. From our in-situ turbidity observations

we again varied the number of training samples from 100 to 500 in 100 sample increments,
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Figure 5.3 RMSE (m) and R2 of OBRA and SVR for the Blue/Colorado River water depths.

and kept 1000 observed turbidity measurements as validation samples. Figure 5.6 shows

that the RMSE between retrieved water turbidity decreases as the calibration sample size

increases and is matched by a corresponding increase in R2.

5.4 Discussion

In this chapter, bathymetry extraction using SVR was proposed and applied to two

hyperspectral imagery data-sets in two distinct fluvial environments. The retrieved water

bathymetry was compared to a band ratio method. SVR incorporates all available spectral

bands instead of only examining the ratio of a pair of bands. This is important, as all spec-

tral bands were influenced by both benthic reflection and water attenuation. The band ratio

method, OBRA, establishes a physical model and then uses an empirical method to find the

optimal pair of spectral bands and neglects all other spectral channels. The physics-based

water depth retrieval characteristic of OBRA makes it more generalized. The results also

show that OBRA provides consistent results with relatively few training samples; however

unfortunately its performance does not improve with an increase in the training sample
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Figure 5.4 RMSE (m) with varying water depth of OBRA and SVR for the Snake River
water depths.

size. As an empirical method, a band ratio method may not be optimal for the accurate

estimation of bathymetry. In contrast SVR does not require a physical model to bridge the

observed data with the desired product. The bathymetry retrieved from SVR outperforms

OBRA with a lower RMSE and better R2 for both the Snake and Blue/Colorado Rivers.

The increase of training sample size was shown to improve SVR water depth estimation

performance as well. Because no explicit relationship is required between the observa-

tions and the estimated physical parameters, SVR can be potentially extended to estimate

other spectral based physical parameters. We also demonstrated how SVR can be used to

estimate water turbidity, and the results show that hyperspectral imagery can be used to

estimate turbidity with a low RMSE and high R2.

For depth determination, the RMSE for both SVR and OBRA degrade in deeper water

(>2.0 m for the Snake River, >1.5 m for the Blue/Colorado River); this is caused by the

nonlinear influence of the water column radiance in deeper water. However, for both rivers,

SVR still outperforms OBRA, likely because it exploits all spectral radiance measurements.

94



Figure 5.5 RMSE (m) with varying water depth of OBRA and SVR for the Blue/Colorado
River water depths.

Both SVR and OBRA are less effective in the more turbid Blue/Colorado River (SVR

has a R2 of 0.5), however, the estimated water turbidity shows an obvious coherence with

the observed radiance (SVR has a R2 of 0.87 when estimating turbidity). This is due to

the assumption that for spectral bathymetric retrieval the observed benthic radiance is the

more dominant term compared to the water column radiance. However, the substantial

turbidity of the Blue/Colorado River resulted in significant water column radiance that

masked radiance from the benthic layer.

In summary, the proposed SVR method is effective at extracting water depths from

hyperspectral imagery and outperforms the band ratio method. Due to its non-parametric

formulation, SVR has also been successfully used to retrieve water turbidity from the ob-

served hyperspectral imagery with high coherence with the physical measured water tur-

bidity.
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Figure 5.6 RMSE (NTU) and R2 of OBRA and SVR for Blue/Colorado River water turbid-
ity.
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Chapter 6

Fusion of LiDAR Orthowaveforms and Hyperspectral Imagery

for Shallow River Bathymetry and Turbidity Estimation

6.1 Overview

Chapter 2 introduced the background radiative transfer model for airborne bathymetric

LiDAR in the water column, and Chapter 4 showed the comparison of several full wave-

form processing strategies. The conventional approach to utilizing full waveform LiDAR is

to decompose the sampled waveform into multiple distinct returns to extract echo locations

(Allouis et al., 2010). Chapter 4 showed the benefits of using a representative single band

full waveform LiDAR system for shallow river bathymetry. In addition to decomposing

the full waveform for return locations, the shape of the return pulse energy can also be ex-

ploited because it contains information related to environmental parameters, e.g. (Parrish

et al., 2014). Rogers et al. (2015) also found good correlation between full waveform shape

parameters and biophysical characteristics for a salt marsh area. However, the parameters

derived from full waveform decomposition do not preserve all the information contained

in the backscattered return profile because they are normally derived from a model based

assumption of how the return energy should behave. Furthermore, the majority of recorded

full waveforms have a varied and irregular sampling of look angles that make it difficult

to apply conventional image processing algorithms for full waveform analysis. Hence,

Park et al. (2014) proposed a voxelization of full waveform returns to transform them into

an equivalent 3D image with subsequent detection of underwater environmental parameters

using the generated 3D voxelized waveforms. The voxelized full waveform approximates a

nadir laser pulse interaction with targets and facilitates the use of image processing strate-

gies. A voxelized waveform was also shown to have potential for enhancement of land
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cover classification (Wang et al., 2015). However, the potential of voxelized full wave-

forms for shallow water bathymetry and estimation of water characteristics has not been

explored.

In this chapter, we propose a new methodology to encapsulate the full waveform Li-

DAR return signal in a voxelized structure we refer to as an orthowaveform. To investigate

the potential of orthowaveforms for bathymetry and turbidity estimation, we exploit the

use of support vector regression (SVR), introduced in Chapter 5, as a supervised learning

method to analyze the generated voxelized full waveforms. To validate the orthowaveform

performance, we compare it against hyperspectral imagery (Chapter 5) and traditional full

waveform LiDAR (Chapter 4). We also investigate the fusion of hyperspectral imagery and

orthowaveforms for both bathymetry and water turbidity estimation.

6.2 Generation of Orthowaveforms

Because airborne LiDAR systems usually use both mirrors to direct laser pulses across

the field of view of the scanner, and a forward tilt angle or a circular scan pattern to maintain

a fixed incidence angle on the water surface, the return full waveform is generally along a

slanted laser path. This variable slant direction makes the application of conventional im-

age processing algorithms problematic. An orthorectified waveform (referred to here as an

orthowaveform) would be preferable for extracting features using image processing tech-

niques and for fusion with hyperspectral imagery. The concept of voxelizing an irregular

point cloud has been used previously in topographic LiDAR studies to determine structural

characteristics of forests to estimate biomass parameters (Jung and Crawford, 2012), and

to fuse hyperspectral imagery and LiDAR for land cover classification (Wang and Glen-

nie, 2015) To illustrate the voxelization process used in this study, Figure 6.1 conceptually

shows the generation of orthowaveforms from slanted full waveforms. Each waveform am-

plitude in the full waveform is georeferenced in space and the ground and water surfaces
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are used to convert all waveform samples to an equivalent above ground height (AGH).

The ground layer (DTM) is extracted from the discrete point cloud using a classification

algorithm in the Terrascan software package similar to the approach described in Axelsson

(2000). The benthic portion of the waveform will reside under the 0 m (AGH) surface

while features such as vegetation and buildings will be above it.

To produce a 3D image, a gridding method, referred to as voxelization, was applied

to the irregularly distributed waveform samples (Park et al., 2014). The pixel size and

vertical resolution of the voxels are critical for generating orthowaveforms as larger pixel

sizes and vertical resolution results in more samples belonging to the same voxel. For

our purpose, to accommodate the subsequent comparison with hyperspectral imagery and

fusion strategies, the generated orthowaveforms have the same spatial pixel size as the

hyperspectral imagery (see Table 3.1). The vertical resolution was set as 0.2 m; this is

slightly larger than the waveform sample resolution (1 GHz for full waveform digitization).

The mean amplitude value of all points falling in one voxel is used as the approximate

voxel amplitude due to the relatively low water depths (Figure 3.1.3 (a) and (b)) and small

scan angles (see Table 3.1). The voxelization process averages nearby full waveforms and

thus the generated orthowaveforms approximate the geometric and spectral information

contained in the waveform assuming homogeneous characteristics of the water at the pixel

scale.

Figure 6.2 shows the hyperspectral imagery and generated orthowaveform 3D cube

for the Snake River. The spatial resolution of the orthowaveforms is 0.6 m and vertical

resolution is 0.2 m; only the portion of AGH less than 0 m was used for subsequent analysis.

The generated orthowaveform has texture similar to hyperspectral imagery and the river

channel is clearly observable feature with the dark pixels denoting the deeper portion of

the channel.

Figure 6.3 shows the average hyperspectral spectrum and orthowaveform for varying
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Figure 6.1 Schematic generation of orthowaveform (AGH: Above Ground Height).

(a) (b)

Figure 6.2 (a) Hyperspectral imagery 3D cube for the Snake River using true RGB; (b)
generated orthowaveform 3D cube for the Snake River with three bands (R:-1.0
m, G: -1.4 m, B: -1.8 m).
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water depth measurements. Both hyperspectral and orthowaveform features vary with wa-

ter depth. The visible spectrum radiance (500 nm 700 nm) decreases with an increase

of water depth due to more attenuation in the water column (Figure 6.3(a)). The average

LiDAR intensity at 2.0 m has more backscatter energy from the water column due to the

presence of more specular reflection (see Figure 6.3(b)).

(a) (b)

Figure 6.3 (a) Average hyperspectral spectrum with varying water depth for the Snake
River; (b) average orthowaveform with varying water depth for the Snake River.

Figure 6.4 shows the hyperspectral imagery and generated orthowaveform 3D cube

for the Blue/Colorado River. The spatial resolution of the orthowaveforms is 1.2 m and the

vertical resolution is set as 0.2 m; only the portion of AGH less than 0 m is extracted for

subsequent analysis. The channel is also clearly observable with dark blue pixels denoting

the deeper channel.

Figure 6.5 shows the average hyperspectral spectrum and orthowaveform features for

varying water depth measurements. The average features are more complicated due to the

varying turbidity present in the Blue/Colorado River, but the features clearly vary with wa-

ter depth. Also, Figure 6.6 shows the average hyperspectral spectrum and orthowaveform

101



(a) (b)

Figure 6.4 (a) Hyperspectral imagery 3D cube for the Blue/Colorado River with true RGB;
(b) generated orthowaveform 3D cube for the Blue/Colorado River with three
bands (R:-1.2 m, G:-1.6 m, B:-2.0 m).

features for varying water turbidity measurements. Hyperspectral spectrum shows increas-

ing observed radiance and orthowaveform displays more energy near 0 m which indicates

significant surface scattering.

To evaluate the performance of both orthowaveform LiDAR and hyperspectral im-

agery for prediction of bathymetry and turbidity, root mean square error (RMSE) and R-

squared (R2) values are used to compare the predicted values with in-situ measured ref-

erence data. The field measured reference data-set was gridded using averaged values to

ensure it was at the same spatial resolution as the hyperspectral imagery and generated

orthowaveforms.

6.3 Experimental Setup and Results

To investigate the capability of orthowaveforms and their fusion with hyperspectral

imagery, each individual data-set was first regressed using SVR and then the orthowave-

forms were also concatenated to the hyperspectral imagery to form a fused feature set. The
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(a) (b)

Figure 6.5 (a) Average hyperspectral spectrum with varying water depth for the
Blue/Colorado River; (b) average orthowaveform with varying water depth for
the Blue/Colorado River.

(a) (b)

Figure 6.6 (a) Average hyperspectral spectrum with varying water turbidity for the
Blue/Colorado River; (b) average orthowaveform with varying water turbidity
for the Blue/Colorado River.
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calibration sample size was incrementally increased from 100 to 500 with an interval of

100 while the validation sample size was fixed at 1000. Both the calibration and validation

samples were selected through random sampling. A 5-fold cross validation scheme was

implemented to search for the optimal SVR parameters through a grid search. The same

calibration and validation data-sets were applied for each individual feature (hyperspectral

imagery and orthowaveforms) and the fused feature set. Each experiment was repeated

20 times and the average RMSE and R2 were calculated; the standard deviation calculated

from the 20 iterations for each experiment are also reported.

6.3.1 Snake River Bathymetry Estimation

Table 6.1 shows the results for the Snake River bathymetry estimation and Figure 6.7

shows the generated water depth maps. Each individual data-set shows improved perfor-

mance with increased calibration data-set size. The best average RMSE for hyperspectral

imagery is 11 cm with 3 cm of standard deviation, and an R2 of 0.96 with a standard devi-

ation of 0.03; the best average RMSE for orthowaveforms is 17 cm with a 1 cm standard

deviation, and an R2 of 0.91 with standard deviation of 0.01. The orthowaveforms showed

acceptable accuracy for water depth prediction but were outperformed by hyperspectral

imagery. However, the standard deviation of the orthowaveforms is lower than that of the

hyperspectral imagery, indicating that the orthowaveforms are a more consistent measure-

ment of depth for the Snake River.

The fused feature set showed the best performance with an average RMSE of 10 cm, a

standard deviation of 1 cm and an R2 of 0.96 with a standard deviation of 0.01. Comparing

the fusion results to hyperspectral and orthowaveforms respectively, the average RMSE and

R2 are similar to that of the hyperspectral imagery, which showed superior performance,

but the standard deviation of both the RMSE and R2 are smaller than the hyperspectral

imagery alone which indicates that the fused feature set is more stable than hyperspectral
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Table 6.1 Snake River SVR bathymetry results for hyperspectral imagery, orthowaveforms
and the fused feature set. (standard deviation in brackets, κ : calibration sample
size)

Hyperspectral Orthowaveforms Fusion
κ RMSE(m) R2 RMSE(m) R2 RMSE(m) R2

100 0.16(0.07) 0.91(0.08) 0.21(0.02) 0.86(0.03) 0.13(0.01) 0.94(0.01)
200 0.16(0.07) 0.91(0.07) 0.18(0.01) 0.89(0.01) 0.12(0.01) 0.96(0.01)
300 0.12(0.03) 0.95(0.02) 0.18(0.01) 0.90(0.01) 0.11(0.01) 0.96(0.01)
400 0.12(0.02) 0.95(0.02) 0.17(0.01) 0.90(0.01) 0.11(0.01) 0.96(0.00)
500 0.11(0.03) 0.96(0.03) 0.17(0.01) 0.91(0.01) 0.10(0.01) 0.96(0.01)

Figure 6.7 Water depth maps: (a) hyperspectral imagery; (b) orthowaveforms; (c) fusion.
Water depth error: (d) hyperspectral imagery; (e) orthowaveforms; (f) fusion
(Z f : ADCP water depth, Zr: remotely sensed water depth).
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imagery for water depth estimation.

To further investigate bathymetric estimation for the Snake River, Figure 6.8 shows the

distribution of RMSE for varying water depths. The RMSE increases dramatically after the

water is deeper than 2 m, likely because of the saturation of the optical radiance signal in

deeper water such that further increases in depth produce less significant changes (Legleiter

et al., 2015). Hyperspectral imagery performs better than the generated orthowaveforms for

most depth ranges, and the fused feature performance is similar to hyperspectral imagery

alone, but does improve the spike in hyperspectral imagery RMSE at 0.9 m water depth.

Figure 6.8 RMSE distribution of water depths with varying water depths for the Snake
River.

6.3.2 Blue/Colorado River Bathymetry Estimation

The Blue/Colorado River is more turbid than the Snake River and the overall bathy-

metric performance degrades due to excessive water column radiance. Table 6.2 shows

the results for the Blue/Colorado River bathymetry estimation and Figure 6.9 shows the
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retrieval of water depths. Again each individual feature retrieval shows improved perfor-

mance with an increase of calibration sample size. The best performance for hyperspectral

imagery is an average RMSE of 26 cm with a standard deviation of 1 cm and an average

R2 of 0.55 with a standard deviation of 0.03. The best orthowaveforms performance is an

average RMSE of 21 cm with a standard deviation of 2 cm and the best average R2 is 0.70

with a standard deviation of 0.04. The orthowaveforms show superior depth retrieval in the

more turbid water of the Blue/Colorado River because they are less affected by water tur-

bidity. However, the higher standard deviation of the orthowaveforms indicates that water

turbidity still has a significant influence on the accuracy of depth retrieval.

Table 6.2 Blue/Colorado River bathymetry results for hyperspectral imagery, orthowave-
forms and fused feature sets using SVR. (standard deviation in brackets, κ : cal-
ibration sample size)

Hyperspectral Orthowaveforms Fusion
κ RMSE(m) R2 RMSE(m) R2 RMSE(m) R2

100 0.33(0.03) 0.40(0.09) 0.25(0.03) 0.60(0.07) 0.25(0.02) 0.60(0.04)
200 0.28(0.02) 0.50(0.05) 0.23(0.03) 0.66(0.06) 0.23(0.02) 0.65(0.04)
300 0.27(0.02) 0.52(0.05) 0.21(0.01) 0.70(0.03) 0.22(0.01) 0.69(0.03)
400 0.26(0.01) 0.55(0.03) 0.21(0.01) 0.71(0.02) 0.21(0.01) 0.70(0.03)
500 0.26(0.01) 0.55(0.04) 0.21(0.02) 0.70(0.04) 0.21(0.01) 0.71(0.03)

The fusion of the imagery and orthowaveforms feature sets yields the best average

RMSE of 21 cm with a standard deviation of 1 cm and the best average R2 of 0.71 with

a standard deviation of 0.03. A marginal improvement is found with fusion (compared to

orthowaveforms alone), however, the lower standard deviation of the RMSE and R2 for the

fused feature set results indicate that the results are more consistent.

Figure 6.10 shows the RMSE distribution of depth retrieval error with varying water

depths for the Blue/Colorado River. RMSE increases significantly for water depths larger

than 1.5 m likely because the observations are approaching the maximum detectable depth

(see Figure 6 in Legleiter et al. (2015)). Overall, the fused feature set shows similar perfor-

mance to the orthowaveforms.
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Figure 6.9 Water depth maps : (a) hyperspectral imagery; (b) orthowaveforms; (c) fusion.
Water depth error: (d) hyperspectral imagery; (e) orthowaveforms; (f) fusion
(Z f : ADCP water depth, Zr: remotely sensed water depth).

Figure 6.10 RMSE distribution of water depth errors with varying water depths for the
Blue/Colorado River.
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6.3.3 Comparison of full waveform and orthowaveform for bathymetry

According to chapter 4, full waveform bathymetric LiDAR processing significantly

improves water depth estimation compared to depths estimated solely from discrete bathy-

metric LiDAR point clouds. Therefore, it is reasonable to compare the full waveform

derived water depths to water depths retrieved from the orthowaveforms. Ideally, if the

full waveform processing algorithms were correctly modeling the return pulse energy we

would expect similar performance between the use of orthowaveforms and full waveform

processing. The depth estimates produced with orthowaveforms are compared to the full

waveform LiDAR processing results presented in Table 4.1 and Table 4.3, which presented

a detailed analysis of full waveform LiDAR processing for the sample data-sets captured

over the Snake and Blue/Colorado Rivers. The best full waveform LiDAR processing re-

sults (see Table 4.1 and Table 4.3 in chapter 4) are provided in Table 6.3 for comparison

with the orthowaveform bathymetry estimates.

Table 6.3 Comparison of full waveform to orthowaveform derived water depths for both
the Snake and Blue/Colorado River.

Snake River Blue/Colorado River
Full waveform Orthowaveform Full waveform Orthowaveform

Mean (Z f -Zr, m) -0.13 -0.04 -0.16 -0.01
Std (Z f -Zr, m) 0.13 0.16 0.27 0.20
Slope 1.08 0.93 0.85 0.84
Intercept 0.05 0.12 0.28 0.15
R2 0.92 0.92 0.57 0.73
∗Z f is the field measurement, Zr is LiDAR derived water depth, Std: standard deviation

For the clear water of the Snake River, the bathymetry estimates from full waveform

LiDAR shows similar performance to the orthowaveforms, but with a slightly smaller stan-

dard deviation. Both bathymetry estimates show strong correlation to the field measured

water depths. However, for the more turbid water of the Blue/Colorado River study site,

the bathymetry estimates from the orthowaveforms show significantly better performance

than the bathymetry estimates from full waveform processing. The standard deviation is
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reduced to 20 cm from 27 cm while the R2 increases to 0.73 from 0.57. This indicates

that the physically based full waveform processing algorithm needs to more effectively re-

move the effect of water column on the full waveform shape to accurately estimate depths.

The superior performance of the orthowaveforms indicates that the water column effect is

indeed encapsulated in the LiDAR return pulse profiles, and that it can be used to more

accurately estimate bathymetry.

6.3.4 Blue/Colorado River Turbidity Estimation

Theoretically, the observed hyperspectral imagery and orthowaveforms both contain

information pertaining to water column characteristics. However, it is difficult to explicitly

define a physical model to relate the remote sensing observations to field measured turbid-

ity. The availability of field measured water turbidity for the Blue/Colorado River enables

us to investigate the applicability of both the individual and fused features for prediction

of turbidity using a nonparametric SVR approach. Table 6.4 shows the results for tur-

bidity estimation for the Blue/Colorado River and Figure 6.11 shows the retrieval of water

turbidity. Similar to the bathymetry estimation results, the average RMSE and R2 of turbid-

ity estimation are improved with an increase in the calibration sample size; hyperspectral

imagery yields the best RMSE of 1.20 NTU with a R2 of 0.88; orthowaveforms yields a

best RMSE of 1.32 NTU with a R2 of 0.86. Both hyperspectral and orthowaveforms show

similar performance indicating that the hyperspectral and orthowaveforms observe similar

water column characteristics for the Blue/Colorado River. Comparing Table 6.4 to Table

6.2, we can conclude that orthowaveforms are more applicable to water depth estimation

than hyperspectral imagery for the turbid Blue/Colorado River, however, the hyperspec-

tral imagery performs better for water turbidity estimation than orthowaveforms with a

higher R2 relating to turbidity. This again implies that bathymetric LiDAR is less affected

by water turbidity, but also suggests that the additional observed spectral channels from

110



hyperspectral imagery are better able to estimate turbidity than the single spectral band re-

flectance of the bathymetric LiDAR. However, both hyperspectral imagery and orthowave-

form show stronger correlation to water turbidity than water depth (i.e., higher R2 value)

indicating that the excessive water column reflectance overwhelmed the benthic return for

the Blue/Colorado River.

Figure 6.11 Water turbidity maps: (a) hyperspectral imagery; (b) orthowaveforms; (c) fu-
sion. Water turbidity error: (d) hyperspectral imagery; (e) orthowaveforms; (f)
fusion (Z f : field measured water turbidity, Zr: remotely sensed water turbid-
ity).

Table 6.4 Blue/Colorado River turbidity results for hyperspectral imagery, orthowaveforms
and a fused feature set using SVR.(standard deviation in brackets, κ : calibration
sample size)

Hyperspectral Orthowaveforms Fusion
κ RMSE(NTU) R2 RMSE(NTU) R2 RMSE(NTU) R2

100 1.59(0.22) 0.81(0.04) 1.52(0.12) 0.82(0.02) 1.45(0.13) 0.84(0.02)
200 1.42(0.13) 0.84(0.03) 1.50(0.10) 0.82(0.02) 1.37(0.11) 0.85(0.02)
300 1.31(0.07) 0.86(0.01) 1.41(0.09) 0.84(0.02) 1.23(0.05) 0.88(0.01)
400 1.25(0.08) 0.87(0.02) 1.38(0.06) 0.84(0.01) 1.21(0.05) 0.88(0.01)
500 1.20(0.08) 0.88(0.01) 1.32(0.08) 0.86(0.02) 1.16(0.08) 0.89(0.01)

The fused feature set shows an optimal performance of 1.16 NTU RMSE with a R2

of 0.89. The fusion has marginally improved the performance compared to using either the

hyperspectral imagery or orthowaveforms alone; the standard deviation of the RMSE and

R2 are better for the fused data-set and therefore give a more consistent turbidity prediction.

Figure 6.12 shows the RMSE distribution of turbidity estimation error with varying
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Figure 6.12 RMSE distribution of water turbidity errors with varying water turbidity for
the Blue/Colorado River.

water turbidity for the Blue/Colorado River for each observation type. The RMSE of the

retrieved water turbidity is lowest, in the areas where the training samples had sufficient ob-

served turbidity (i.e., at approximately 2 and 10 NTU). The actual turbidity measurements

showed a bimodal distribution (see Figure 3.1.3(c)), and therefore limited training samples

were available outside the bands at ∼2 and 10 NTU.

6.4 Discussion

Orthowaveforms generated from full waveform bathymetric LiDAR contain both the

shape and amplitude information of the reflected energy within the laser cone of diffraction,

and SVR is an effective method to bridge this observation to physical water depths and tur-

bidity. Orthowaveforms did not perform as well as hyperspectral imagery for water depth

retrieval in the clear water of the Snake River, but outperformed hyperspectral imagery in

the more turbid water of the Blue/Colorado River study site. The water depths retrieved
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from orthowaveforms were similar to water depths retrieved from full waveform bathy-

metric LiDAR processing for the Snake River, however, the water depths retrieved from

orthowaveforms were significantly better than water depths retrieved from full waveform

processing for the Blue/Colorado River. The comparison of the full waveform processing

results and the orthowaveform depth determination clearly showed that for more turbid

water, the encapsulation of the entire waveform shape better estimates depths than deter-

mination of return locations from full waveform processing. This suggests that for turbid

water, full waveform LiDAR processing needs to be extended to properly model the non-

Gaussian LiDAR energy returned from the water column. There has been some initial work

on this using simulated data (Abady et al., 2014), but detailed studies using actual bathy-

metric LiDAR data-sets are required in order to develop a physical model for the return

energy from the water column. The regression between generated orthowaveforms with

water turbidity shows its capability to derive additional environmental characteristics. The

promising capability of machine learning coupled with orthowaveforms suggests that this

approach could be extended to estimate other biophysical and ecological parameters, which

currently can be estimated through full waveform analysis (Rogers et al., 2015).

In contrast to conventional processing strategies for bathymetry from hyperspectral

imagery, the SVR approach used in this study is purely data driven. As a supervised learn-

ing method, calibration samples are necessary to connect the observations with the results;

the improvement of prediction with an increase of calibration sample size indicates that bet-

ter regression can be found with more calibration samples if we can neglect the increased

computational load. However, the optimal number of field measurements as training sam-

ples is still unknown, and is likely highly correlated to the variability in water depths, tur-

bidity and bottom reflectivity found in the fluvial environment under study. The projection

of features into a high-dimensional mathematical space and the fitting with a hyperplane

gives remote sensing users a new tool for data analysis and interpretation. However, the
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one obvious disadvantage of using SVR is that accurate field data is required to build the

mathematical models, whereas the primary motivation for using remote sensing is to di-

rectly quantify physical and environmental characteristics remotely. Thus the collection

of field measurements is not always feasible, especially for non-accessible areas, where

temporal changes in observational parameters and difficult measurement environments are

present. Even for accessible sites, the requirement of excessive field measurements can

limit the applicability of using SVR, and therefore, it is also necessary to develop strategies

with fewer field observations or which only require remotely sensed data. The success of

combining hydraulic principles with a linear relationship between image and water depth

to derive river bathymetry without field data demonstrates outstanding potential in fluvial

remote sensing studies (Legleiter, 2015).

Both the orthowaveform and hyperspectral imagery showed better correlation to water

turbidity than water depth for the Blue/Colorado River, a consequence of a major limitation

of optical remote sensing: returned radiance from the benthic layer is required for accurate

depth estimation. Pre-flight planning for data collection is critical to acquire the desired

quality of data, and to ensure that the acquisition is done under ideal conditions (e.g. low

water flow and low turbidity). However, overall the orthowaveforms show better correla-

tion to water depth than hyperspectral imagery, while hyperspectral imagery shows better

connection to water turbidity than the orthowaveforms. This indicates that active optical

airborne bathymetric LiDAR is more tolerant to water turbidity.

Data fusion on the other hand is also currently a hot topic for the remote sensing com-

munity. As Hossain et al. (2014) concluded, there is no single remote sensing strategy that

is suitable for all remote sensing tasks, and therefore an optimal combination of all avail-

able observations has the potential to improve the quantitative determination of physical

parameters from remote observations. Although the fused feature sets in this study only

marginally improved estimates for both clear and turbid water, it did stabilize the overall
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solution by yielding smaller standard deviation (i.e., more consistent results). This would

suggest that additional analysis of fused feature sets, including consideration of the physical

radiative transfer models, may allow additional improvement to the fused observations.
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Chapter 7

Radiative Transfer Modeling of Remote Sensing Observations

to Determine Shallow Water Characteristics

7.1 Overview

Deriving shallow water bathymetry from hyperspectral imagery has been shown to be

effective using the statistical methods presented in chapter 5 and 6 with known field mea-

sured water depths used as training samples. The correlation of water depths and observed

spectrum is statistically established and applied to predict shallow water bathymetry. The

implementation of statistical methods is straightforward and the accuracy is significant with

invariant water constituents and substrate types. However, empirical or statistical methods

also have substantial limitations. First, field measured water depths are not always avail-

able, especially for non-accessible areas, which make it impossible to establish the underly-

ing statistical relationships. Second, the calibrated model is specific to each study case and

is not applicable to other study areas or sensor types. Furthermore, varying water column

characteristics and substrate types within a study area can affect the efficiency and accuracy

of empirical methods, as previously demonstrated in (Philpot, 1989; Legleiter et al., 2015).

A spectral model that considers all parameters simultaneously and analytically is a

promising approach to determine shallow water column constituents and estimate bathymetry.

Water column constituents contribute to observed remote sensing reflectance and have been

extracted using different empirical band ratio or analytical methods (Gitelson et al., 2009;

Cannizzaro and Carder, 2006; O’Reilly et al., 1998; Brando and Dekker, 2003; Jay and

Guillaume, 2014). The contributions of water column characteristics and benthic layer

bathymetry to remote sensing reflectance are correlated. The water column contributes

negligible reflectance in shallow water and the benthic layer contributes an insignificant
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amount in optically deep water (Cannizzaro and Carder, 2006). Because of this interdepen-

dence the optical radiative transfer process for shallow water environments is complicated.

HydroLight is a numerical radiative transfer model that solves for a water radiance

distribution and derives a variety of water column related quantities. With numerically

developed bi-optical models and input baseline absorbing and scattering properties, it is

used to synthesize modeled spectra to validate remote sensing observations of the ocean

(Mobley, 1994). Mobley et al. (2005) constructed a database of remote sensing reflectance

spectra corresponding to various water column constituent concentrations and bottom re-

flectance spectra. This forward model compares the observed spectra with the database

and solves for the water column characteristics and bathymetry simultaneously. However,

a relatively large amount of simulated spectra are required to fully cover varying water

column and benthic conditions to retrieve constituent concentrations with acceptable ac-

curacy. As an alternative, Lee et al. (1998) developed a semi-analytical model that has

been widely used to estimate bathymetry and water column constituents in shallow water.

The semi-analytical model generally uses three water constituent concentration parame-

ters (chlorophyll (CHL), colored dissolved organic matter (CDOM) and non-algal particles

(NAP)) along with the water depth to calculate the water-leaving reflectance. Since each

parameter has a unique effect on the water leaving reflectance a retrieval of these parame-

ters is possible. The efficiency and accuracy of this method has been previously reported in

many studies, e.g., (Dekker et al., 2011; Brando and Dekker, 2003; Brando et al., 2009; Lee

et al., 1999; Torres-Madronero et al., 2009; Jay and Guillaume, 2014, 2016). The model

uses an inversion technique to solve for both water column characteristics and bathymetry

simultaneously by minimizing the difference between modeled and observed spectra. The

method has also been shown to outperform empirical algorithms for some applications

(Dekker et al., 2011).
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In chapter 5 and 6, support vector regression (SVR) was shown to be effective for wa-

ter bathymetry and turbidity retrieval. SVR is a supervised method that requires calibration

samples to learn the pattern in the observed spectra. The forward model proposed by Lee

et al. (1998) and the HydroLight software; however, enable us to artificially create calibra-

tion samples. By assuming that we can generate accurate artificial spectra as training sam-

ples we can then investigate SVR performance in deriving water column constituents and

bathymetry from hyperspectral imagery. Therefore, we evaluate the semi-analytical model

and propose a forward model based SVR approach to extract water column constituent

concentrations and shallow water bathymetry. The comparison of these two methods and

the conventional SVR method with LiDAR bathymetry samples are given in this chapter.

Fusion is also performed for both inversion and model based SVR method to investigate its

effect on the estimates.

7.2 Methods

7.2.1 LiDAR Bathymetry

The study area for this chapter is located in the East Pass, Destin, FL, and the principal

characteristics of the datasets were introduced in Chapter 3. Airborne LiDAR bathymetry

was retrieved from the Optech Titan multi-wavelength LiDAR point cloud. The point cloud

acquired from channel 3 (532 nm) was first classified using the ground filtering algorithm

described in (Axelsson, 2000). The water surface returns were retrieved from the simul-

taneously collected channel 1 and 2 (1550 nm and 1064 nm respectively) observations.

Details regarding bathymetry retrieval from LiDAR can be found in chapter 4. A model for

water refraction was applied to the benthic layer point cloud to correct for the true water

depth. Land points were removed after classification using a simple elevation threshold.

Figure 7.1(a) shows the resultant LiDAR derived water bathymetry map.
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Figure 7.1 (a) Acquired airborne LiDAR bathymetry and the maximum detected water
depth is about 6 m; (b) comparison of LiDAR derived water depths and field
measured water depths.

Because LiDAR bathymetry is used as a comparison baseline and also for investiga-

tion of water bathymetry derived from bathymetric LiDAR only, we performed a compar-

ison of LiDAR depths and field ADCP water depths, and the results are shown in Figure

7.1(b). LiDAR depths agree with field measurements well with a R2 of 0.93 and a RMSE

of 16 cm.

7.2.2 Nonlinear Least Square Optimization (nLSQ)

The water leaving remote sensing reflectance model is given in chapter 2 by Equa-

tions 2.1 to 2.8. Except for the water constituent concentrations, all the other empirical

parameters were given in Tables 2.1 and 2.2. The water leaving remote sensing reflectance

is therefore summarized as a function of four unknown parameters

R(λ ) = f (CCHL,CCDOM,CNAP,d) , (7.1)

where CCHL,CCDOM,CNAP are concentrations for CHL, CDOM, and NAP respectively and

d is the optical water depth.
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Generally, at least 4 spectral bands are required, however, the extra spectrum in hyper-

spectral imagery allow for an optimization when solving for the unknown parameters. The

optimization is formulated to derive all four parameters in Equation 7.1 using the objective

function:

arg min Σ
n
i=1

√
(R− r)2

R
, (7.2)

where n is the number of spectral bands in the hyperspectral imagery (n>4). This inversion

optimization method is attributed to Lee et al. (1999), Brando et al. (2009) and Dekker et al.

(2011) and solved with nonlinear least squares using the MATLAB optimization toolbox.

An example of modeled spectra with estimated parameters and the original spectra is shown

in Figure 7.2.

Figure 7.2 A sample hyperspectral spectrum and modeled spectrum with nLSQ estimated
parameters.

The nLSQ approximates the observed spectrum by altering the four parameters, and

then the parameter set that fits the spectrum best are extracted to represent the water column

constituents and bathymetry. nLSQ is a pixel-wise method and therefore parameters for

each pixel are determined independently.
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7.2.3 Model based Support Vector Regression (mSVR)

SVR is a supervised learning scheme that requires known training samples to establish

the correlation between observations and physical parameters. Equation 2.1 to Equation 2.8

describe a possible methodology to create artificial truth data using known empirical pa-

rameters. A database of remote sensing reflectance is constructed corresponding to various

parameters combinations. Figure 7.3 shows a sample of generated spectra with varying

water depth and fixed water column characteristics. Because this method utilizes a forward

model without inversion of hyperspectral spectra, it is referred to as model based support

vector regression (mSVR) to separate it from conventional SVR calibrated with field mea-

sured samples.

Figure 7.3 Modeled hyperspectral spectra with varying water depth but fixed water column
characteristics.

Instead of an extensive database, we constructed a database with randomly chosen

combinations of these four parameters to create a realistic range of spectra samples. The

calibration sample size was first determined through a sensitivity analysis. By increasing

the randomly chosen calibration samples from 100 to 1000 and fixing the validation sample
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size at 1000 within a specified range (will be explained in the result section), we investi-

gated the sensitivity of estimating these four parameters. Each experiment was repeated 10

times and the root-mean-square-error (RMSE) was reported. Figure 7.4 shows the RMSE

with each calibration sample size. The results show that RMSE decreases with increasing

calibration sample size, however, the reduction slows down significantly after 700 samples.

Therefore, we conservatively chose to use 1000 random calibration samples as a reason-

able trade-off between accuracy and computation speed. The machine learning process

is performed on the calibration data and applied to the 1000 randomly generated valida-

tion samples to seek the optimal parameters. The derived optimal model is then applied

to the hyperspectral imagery to estimate the physical parameters. Because there are four

unknown parameters for each spectrum, independent SVR estimation was run to solve for

each parameter individually.

7.3 Results

7.3.1 nLSQ

According to Brando et al. (2009), the initial values and estimation range are critical

for optimization because nLSQ only provides a local minima solution. Unfortunately, no

field data was available to provide the initial estimates for water column characteristics and

bathymetry. Therefore, the initial values and the constraints given in Table 7.1 were used;

they were determined from an unbounded least square solution, and therefore should be

representative ranges to ensure that the nLSQ solutions converges.

Table 7.1 Parameter constraints and initial values for the nLSQ solution.

Parameters Range Initial value
CCHL (µg ·L−1) 0.0-2.2 0.07

CCDOM(m−1) 0.0-1.0 0.5
CNAP(mg ·L−1) 0-15 10

d(m) 0-7 2
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Figure 7.4 Error bar plots of RMSE variation with increasing calibration sample size: (a)
RMSE of CHL; (b) RMSE of CDOM; (c) RMSE of NAP; (d) RMSE of water
bathymetry. κ is the calibration sample size.
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The nLSQ method is a pixel-wise method and therefore four parameters were derived

for each pixel. Figure 7.5 shows spatial plots of all four parameters estimated for the study

area.

Figure 7.5 Water column characteristics estimated with hyperspectral imagery inversion
with nLSQ: (a) concentration of CHL (µg · L−1); (b) measure of the CDOM
(m−1); (c) concentration of NAP (mg ·L−1); (d) water bathymetry (m).

Comparing Figure 7.5(a) and (d), the concentration of chlorophyll-a is higher for shal-

lower coastal water and decreases in deeper water. NAP concentration (Figure 7.5(c)) is

more or less consistent. The concentration of CDOM (Figure 7.5(b)), however, shows that

the East Pass channel water has higher concentration than the coastal water, which is reg-

ulated by the twin jetties. The plume of CDOM also clearly shows that inlet water affects

the coastal water at the jetty opening. The water column characteristics agree with intu-

ition because the East Pass is a coastal area with many recreational boats on the inlet water

that may produce more dissolved organic matters in the inlet water. The water bathymetry

124



retrieved from nLSQ also shows a clear bottom structure.

From Equation 7.1 and Table 7.1, the bathymetry derived from LiDAR can be used to

constrain the nLSQ by fixing the water depth d. nLSQ was therefore implemented, with

LiDAR depths constrained using the same water constituent parameters. The solution for

the water column characteristics are shown in Figure 7.6. Note that areas where there was

no LiDAR bathymetry observations were masked out of the computation.

Figure 7.6 Water column characteristics estimated with nLSQ and LiDAR depths con-
straint: (a) concentration of CHL (µg ·L−1); (b) measure of the CDOM (m−1);
(c) concentration of NAP (mg ·L−1); (d) water bathymetry (m).

The water depth map given in Figure 7.6(d) is identical to the LiDAR bathymetry

map (see Figure 7.1(a)) because it was constrained. An examination of Figure 7.6 (a),

(c) and (d),shows that the concentrations of CHL and NAP were changed by the LiDAR

bathymetry constraint, while the estimated chlorophyll is close to 0 for the entire image,
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which may be reasonable because the chlorophyll is not expected to be significant in this

area. The concentration of colored dissolved organic matter shows a consistent pattern

compared to Figure 7.5(b).

7.3.2 mSVR

The mSVR method requires calibration samples to estimate parameters from the ob-

served hyperspectral spectra. For comparison with nLSQ, the parameters ranges listed in

Table 7.1 were also applied to mSVR. The calibration samples were randomly generated

with random concentrations and depths within the specified ranges. Because mSVR is a

statistical method, the experiment for each parameter estimation was run 40 times. 1000

calibration samples and 1000 validation samples were created for each iteration to search

for the optimal parameters using a grid search (see chapter 5). The trained model was

then applied to derive parameters from the observed hyperspectral imagery and the average

estimates for each parameter are shown in Figure 7.7.

Figure 7.7(a) show that the concentrations of chlorophyll-a is higher for the shallow

water area and Figure 7.7(c) shows the NAP is nearly consistent for the entire area, which is

similar to the results obtained using nLSQ (see Figure 7.5). The concentration of CDOM is

consistent with the nLSQ estimate showing the East Pass water with higher concentration

than the coastal water. The bathymetry results from the mSVR method (Figure 7.7(d))

show similar structure to the nLSQ result.

For nLSQ the significance of fusing LiDAR bathymetry and hyperspectral imagery

was investigated by adding LiDAR depths as a constraint to the optimization. However, a

similar approach is not applicable for mSVR because a constraint cannot be added to the

statistical estimation. Therefore, to investigate the significance of LiDAR bathymetry for

hyperspectral inversion in mSVR, the hyperspectral feature set was expanded by adding

bathymetry acquired by LiDAR as an additional feature. The calibration and validation
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Figure 7.7 Water column characteristics estimated from hyperspectral imagery with
mSVR: (a) concentration of CHL (µg ·L−1); (b) measure of the CDOM (m−1);
(c) concentration of NAP (mg ·L−1); (d) water bathymetry (m).
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samples were generated using the same strategy as above to estimate the water column

parameters for the fused feature dataset and the results are shown in Figure 7.8.

Figure 7.8 Water column characteristics estimated with mSVR and LiDAR depths con-
straint: (a) concentration of CHL (µg ·L−1); (b) measure of the CDOM (m−1);
(c) concentration of NAP (mg ·L−1); (d) water bathymetry (m).

In Figure 7.8 the concentration estimated for chlorophyll is close to 0 for the entire

image while NAP is almost constant for the entire area. The map of CDOM shows higher

concentration for the East Pass water and also clearly indicates the influence of the twin

jetties. The bathymetry product is highly close to the LiDAR bathymetry with slight varia-

tions because it is estimated from the combined feature data-sets.
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7.3.3 Comparison of nLSQ, mSVR and Conventional SVR

Even though we lack in-situ field observations of water column constituent to fully

assess the accuracy of both nLSQ and mSVR for water column characteristics estima-

tion, the water depths collected with ADCP and LiDAR give us an opportunity to as-

sess the performance of these approaches for bathymetry retrieval. To compare differ-

ent bathymetry products, we also derived water bathymetry estimates from hyperspectral

imagery with calibration samples from both ADCP and LiDAR bathymetry respectively

using a conventional SVR approach. All 423 ADCP samples were used in the deriva-

tion of bathymetry, and the result is referred to as ASVR. 1000 calibration samples and

validation samples were extracted from the LiDAR only bathymetry map. These results

are therefore referred to as LSVR because of the use of LiDAR bathymetry (see proce-

dure in Chapter 5). Four different water bathymetry products are then available: ASVR

bathymetry, LSVR bathymetry, nLSQ bathymetry (no constraint) and mSVR bathymetry

(no constraint). These four bathymetry products are shown in Figure 7.9. Figure 7.9(a), (c)

and (d) show that ASVR, nLSQ and mSVR both show detailed structure in the deeper wa-

ter area. LSVR failed in the deeper water area due to the lack of deeper water observations

from LiDAR.

Because only a handful of ADCP samples are available and because the LiDAR

bathymetry was shown to be reliable in Figure 7.1(b), the four bathymetry maps derived

from hyperspectral imagery were compared to LiDAR bathymetry to investigate their er-

ror distribution (see Figure 7.10). Statistics including median and the interquantile range

(IQR) are reported in Table 7.2 for all error estimates.

Figure 7.10 and Table 7.2 show that the small number of calibration samples from

ADCP yielded a poor estimate of bathymetry compared to the other methods. LSVR

yielded the best bathymetry with 0 median and 14 cm IQR. nLSQ and mSVR have similar
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Figure 7.9 (a) Depth map derived from ASVR estimation; (b) depth map derived from
LSVR estimation; (c) depth map derived from nLSQ optimization; (d) depth
map derived from mSVR estimation.

Table 7.2 Statistical comparison of hyperspectral imagery derived bathymetry products to
LiDAR bathymetry (dh-dL, dh is the hyperspectral bathymetry, dL is the LiDAR
bathymetry).

ASVR LSVR nLSQ mSVR
Mean (m) 0.25 0.01 -0.28 -0.40
Standard deviation (m) 0.51 0.13 019 0.20
RMSE (m) 0.57 0.13 0.34 0.44
Median (m) 0.15 0.00 -0.29 -0.41
IQR (m) 0.75 0.14 0.22 0.23
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Figure 7.10 Histograms of different water bathymetry products compared to LiDAR
bathymetry. Zd is the derived water depths and ZLiDAR is the LiDAR
bathymetry

IQR but mSVR has a lower median error. The differences between mSVR and LSVR also

indicates that discrepancies exist between the bi-optical model and the actual hyperspec-

tral data. To further evaluate bathymetry retrieval performance for the three hyperspectral

imagery derived water bathymetry products (ASVR is excluded due to poor results), they

were also compared against ADCP depth samples to examine performance in deeper water

because LiDAR only contained depth measurements for water up to 6 m deep in this study.

The comparisons are shown in Figure 7.11.

Although Table 7.2 shows that LSVR performs excellently for shallow water bathymetry

retrieval, its performance degrades after 5 m because there are less available LiDAR sam-

ples for deeper water. The performance of ASVR and LSVR suggest a significant limitation

for field data based bathymetry retrieval; a representative distribution of training samples

including deep water observations are essential to retrieve accurate bathymetry from hyper-

spectral imagery. The model based methods nLSQ and mSVR do not have this limitation

because artificial calibration samples are generated that can cover all desired water depths.

However, both nLSQ and mSVR show that the model based water depths derived from
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Figure 7.11 Comparison of derived bathymetry products with ADCP water depth samples.

hyperspectral imagery saturate if the water is deeper than 7 m because of the significant

decrease of benthic contribution. This also suggests a significant limitation for inversion

because a well-defined parameter range is essential if we hope to maintain an accurate

hyperspectral inversion using either nLSQ and mSVR. According to Chapter 2, depth un-

certainty increases with increasing water depth (see Figure 2.17), which suggests that an

improperly defined parameter range, especially an overestimated range, can result in sig-

nificant errors for the estimated parameters.

7.3.4 Fusion of LiDAR and Hyperspectral Imagery

An examination of Figures 7.5 to 7.8, shows that both nLSQ and mSVR have the ca-

pability to predict water column characteristics and bathymetry simultaneously. However,

the fundamental concepts underlying these two methods are different: nLSQ is an inversion

method where the parameters are estimated through the fitting of hyperspectral spectrum

with an established model; whereas mSVR learns the pattern in derived artificial spec-

tra and predicts each parameter from the hyperspectral imagery independently. To further
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compare these two methods, the parameters estimated are used to compute fitting spectra

and then an R squared value map is calculated by comparing the generated and observed

spectra from each method.

Figure 7.12(a) and (b) show the R squared value maps for nLSQ and mSVR respec-

tively using hyperspectral imagery only. nLSQ shows good agreement between the mod-

eled and observed spectra with relatively high R2, however, the deep water areas show

relatively lower R2 due to the low signal to noise ratio (SNR). mSVR has slightly lower R2

compared to nLSQ because it estimates each parameter independently. Figures 7.12(c) and

(d) show the R2 value maps for nLSQ and mSVR using a fused input dataset. nLSQ still

shows better agreement between the modeled and observed spectra compared to mSVR.

However, the performance of both nLSQ and mSVR degrade with the fused dataset. The

reason for this phenomena is that water depth is the dominant factor in the observed hy-

perspectral spectra, and any random or systematic discrepancies between the hyperspectral

imagery derived bathymetry and LiDAR bathymetry (see Figure 7.11) resulted in less op-

timal nLSQ and mSVR performance.

Because both nLSQ and mSVR can use LiDAR bathymetry as either a constraint or an

extra feature respectively, the significance of the contribution of LiDAR for parameter esti-

mation from hyperspectral imagery is critical to investigate. Unfortunately, a conventional

accuracy assessment is not feasible for this study because of the lack of field measurements

of the other three water column constituent. However mSVR, which is a statistical method,

enables us to investigate the distributions of standard deviations for all iterations to partially

assess the significance of data fusion; the results are displayed in Figure 7.13.

The addition of LiDAR bathymetry to the feature space actually makes the water con-

stituent estimation standard deviation higher than with hyperspectral imagery only. How-

ever, the bathymetry estimates standard deviation decreases with the fused dataset. This

is consistent with the results in Figure 7.12 because of the discrepancies between LiDAR
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Figure 7.12 (a) R2 map for nLSQ (hyperspectral imagery only); (b) R2 map for mSVR
(hyperspectral imagery only); (c) R2 map for nLSQ (fusion); (d) R2 map for
mSVR (fusion).
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Figure 7.13 (a) Standard deviation distribution for CHL; (b) standard deviation distribution
for CDOM; (c) standard deviation distribution for NAP; (d) standard deviation
distribution for water depth.

135



and hyperspectral derived bathymetry products. However, the higher estimation standard

deviation does not necessarily mean that fusing bathymetric LiDAR and hyperspectral im-

agery is insignificant. The benthic layer of this study area is mostly white sand which

represents an ideal observation case and may mask the influence of the LiDAR observa-

tions. There is evidence elsewhere that the LiDAR constraint is significant to hyperspec-

tral imagery for shallow water remote sensing when considering the varied substrate types

(Torres-Madronero et al., 2009, 2014)

7.4 Discussion

This Chapter presented different methods to estimate water column constituent con-

centrations and bathymetry from hyperspectral imagery. Four bathymetry products were

derived from hyperspectral imagery with different methods: ASVR, LSVR, nLSQ, and

mSVR. The hyperspectral imagery derived bathymetry products were compared to Li-

DAR bathymetry and also to field measured ADCP depths. ASVR didn’t produce accurate

and consistent results due to the inadequate number of ADCP samples. LSVR, however,

showed overall best performance with a 14 cm IQR. nLSQ and mSVR showed similar re-

sults with 22 cm and 23 cm IQR respectively. Comparisons with LiDAR only bathymetry

showed that LSVR yielded the best results for bathymetry retrieval with the highest accu-

racy. Both nLSQ and mSVR performance degrade for deeper water areas (>6 m) due to

decreased benthic contribution in the observed reflectance. LiDAR bathymetry can also be

used as a constraint in the hyperspectral imagery inversion optimization or as an extra fea-

ture for the derivation of water column characteristics using mSVR. Without in situ field

measured water column parameters, the accuracy of both methods for the estimation for

water column constituent was unfortunately not assessed in this study.

The estimated water column constituent concentrations for optically shallow water are
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larger than in the deeper water areas in this study, especially for CHL products. This is be-

cause water column constituents have less effect on the observed remote sensing spectrum

and thus the estimation uncertainty is higher (Cannizzaro and Carder, 2006). In addition,

water depth estimation has higher uncertainty in deeper water because there is less benthic

reflectance observed in the remote sensing spectrum (Jay and Guillaume, 2016), which can

be seen from the comparison with ADCP water depths. More constrained and regular-

ized methods have been proposed to inverse hyperspectral spectrum with both spatial and

spectral proximity (Jay and Guillaume, 2014, 2016) on more complex scenes with vary-

ing substrate types. Also, Torres-Madronero et al. (2014) showed the possibility of using

the bi-optical model for linear unmixing of substrate types. The more parameters included

in the model, the more complexity and uncertainty in the resultant estimated parameters

(Jay and Guillaume, 2016). Even though we lack the field measured water constituent con-

centrations to demonstrate that there are accuracy improvements through fusing LiDAR

bathymetry and hyperspectral imagery, the mathematical advantages for data fusion imply

that the LiDAR bathymetry constraints are likely to improve the estimation of other param-

eters. The fusion of LiDAR bathymetry and hyperspectral imagery was implemented for

both the nLSQ and mSVR methods. LiDAR bathymetry either constrains the optimization

solution or adds an extra feature respectively. The derived water column constituent con-

centrations were different, but unfortunately are not verified for their accuracy due to the

lack of independent field measurements. We did however briefly evaluate the statistical in-

fluence by comparing the standard deviations from the mSVR method before and after the

addition of the LiDAR bathymetry feature set. The water constituent estimation standard

deviation degraded with the addition of LiDAR features due to the differences between

the hyperspectral and LiDAR derived bathymetry. The significance of data fusion remains

unknown, but the other references in the literature reported improvements with the fusion

of LiDAR and hyperspectral imagery for bathymetry (Tuell and Park, 2004; Park et al.,
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2010; Torres-Madronero et al., 2009, 2014). Therefore, a validation of the significance of

fusing LiDAR and hyperspectral imagery with the proposed methods is a future research

direction.

In a conclusion, both nLSQ and mSVR methods can estimate shallow water column

characteristics and bathymetry, and nLSQ is slightly better than the mSVR method with

slightly better R2 goodness of fit. However, the significance of mSVR is that it uses the

forward modeling of hyperspectral spectrum and therefore is possible to include other ra-

diative transfer models, for example, the forward HydroLight software. The nLSQ and

mSVR both need the benthic spectra and spatial distribution to correctly estimate the wa-

ter column constituent concentrations, which is also a limitation of the semi analytical

method.
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Chapter 8

Conclusions and Future Research Directions

8.1 Conclusions

This dissertation has evaluated the performance of full waveform bathymetric Li-

DAR and hyperspectral imagery for shallow water bathymetry estimation. Two distinct

river systems and one coastal area were investigated and different processing algorithms

were proposed for analyzing the remote sensing data. Significant improvements were real-

ized compared to conventional processing strategies presented in the literature that analyze

bathymetric LiDAR and hyperspectral imagery separately. The fusion of bathymetric Li-

DAR and hyperspectral imagery was also performed and assessed for bathymetry, but not

fully assessed for water column constituent concentrations due to the lack of correspond-

ing field measurements. The major conclusions are briefly summarized in the sections that

follow.

From discrete to full waveform bathymetric LiDAR

Full waveform LiDAR processing produces a significantly denser point cloud with

more multiple returns than discrete bathymetric LiDAR. The presence of multiple returns

improves bathymetric estimation and enables the recovery of a more accurate benthic layer.

In contrast to conventional Gaussian decomposition methods, the proposed CWT method

showed better stability through varying water clarity conditions. However, a single wave-

form algorithm was not found to be superior for all water conditions, which indicates that in

the future LiDAR full waveform processing packages should include many full waveform

processing strategies, allowing the user to select the most appropriate algorithm that yields

the best performance for their specific project. A single band full waveform bathymetric

LiDAR system doesn’t appear to be as accurate as a multi-wavelength system that utilizes
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NIR LiDAR returns to detect the water surface. The degraded performance of the single

band bathymetric LiDAR over the turbid river showed the significant influence of the water

column return on the water depth determination. Therefore, the addition of water column

backscattering in the full waveform modeling has a promising potential to further improve

the performance of single band shallow water bathymetric LiDAR.

From band ratio to full spectra hyperspectral imagery bathymetry

Compared to the band ratio method commonly used for shallow water bathymetry re-

trieval (Legleiter et al., 2009), the proposed SVR algorithm utilizes the full image spectra

to retrieve water bathymetry. The generalized OBRA establishes a physical model and then

uses an empirical method to find the optimal pair of spectral bands and neglects all other

spectral channels. Its performance unfortunately doesn’t improve with an increase in the

training sample size. The proposed SVR algorithm investigates the intrinsic connection

between physical parameters and the observed dataset and improves the bathymetry esti-

mation significantly. The nonparametric regression characteristics of SVR also enabled the

retrieval of water turbidity from hyperspectral imagery; further validating its superior appli-

cability for water column characteristics retrieval. However, the requirement of supervised

regression for SVR is also a limitation because sufficient training samples are required for

a successful bathymetry retrieval.

From full waveform to orthowaveform bathymetric LiDAR

The conventional full waveform returns collected by airborne LiDAR systems are gen-

erally decomposed to determine the water surface and benthic returns to infer water depth

with a constant speed of light in water. However, the assumption of a model may remove

significant backscatter information encapsulated in the full waveform profile which could

be exploited. Inspired by the research described in Park et al. (2014), Wang and Glennie
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(2015) and Jung and Crawford (2012), we proposed an orthowaveform that was gener-

ated from overlapping full waveforms and investigated its performance for retrieving water

bathymetry and turbidity. The generated orthowaveforms preserved most of the informa-

tion contained in the full waveform, and when trained using in situ field measurements,

SVR correlated well with water depths and turbidity measurements. The comparison be-

tween hyperspectral imagery and orthowaveform derived bathymetry showed a substantial

improvement with orthowaveforms for more turbid water. The comparison between the

orthowaveforms and the full waveform processing algorithms also shows a significant im-

provement for more turbid water when using the orthowaveforms. Water turbidity was also

successfully retrieved from the orthowaveforms showing that there is potential to extract

other water column parameters from full waveform LiDAR.

From statistical algorithms to spectral physics based algorithms for hyperspectral

imagery remote sensing

The statistical methods presented in chapter 5 and 6 successfully estimated water

bathymetry and turbidity from hyperspectral imagery. The bind between water column

constituents and bathymetry makes it difficult to isolate any single parameter physically.

The semi-analytical method shown in chapter 2 established a relationship between wa-

ter column characteristics, bathymetry and remote sensing reflectance. This analytical

model enables a hyperspectral inversion that estimates all water column characteristics

and bathymetry simultaneously. The significance of the analytical modeling is that it does

not only improve estimation of shallow water bathymetry, but also enables environmen-

tal assessment of fluvial and coastal areas. Lee et al. (2001), Brando et al. (2009) and

Torres-Madronero et al. (2009) have further proved the efficiency of this model for sub-

strate types classification. It is a promising approach to estimate water bathymetry, water

column characteristics and substrate types simultaneously for a complete remote sensing

solution for fluvial and near coastal region monitoring. In contrast to the inversion method,
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the proposed model based SVR method learns the existing pattern from artificial spectra

data, and then the derived optimal model was applied to observed hyperspectral imagery

for the derivation of the water column constituents and bathymetry estimation. Comparable

performance was achieved, and this forward model has high adaptability to other forward

radiative transfer models, for example, HydroLight.

Fusion of bathymetric LiDAR and hyperspectral imagery

The fusion of bathymetric LiDAR and hyperspectral imagery was implemented both

in chapters 6 and 7. In Chapter 6, the generated orthowaveforms were combined with hy-

perspectral imagery to estimate water bathymetry and water turbidity. The results show

a slight improvement when compared to either orthowaveforms or hyperspectral imagery

alone. In the analytical method present in chapter 7, LiDAR bathymetry was used to con-

strain the hyperspectral imagery inversion and also used to expand the feature set of the

hyperspectral imagery. The fusion results did influence the estimation of water column

characteristics, but the actual evaluation of the significance was not performed because of

the lack of field measured water column constituents. However, the concept and the qualita-

tive visual results suggest a promising potential for future fluvial or coastal remote sensing

to implement fusion to acquire more accurate environmental parameter estimates.

In conclusion, LiDAR provides a direct and accurate measurement of water depth.

Full waveform bathymetric LiDAR provides optimal shallow water bathymetry informa-

tion and therefore we suggest to include the waveform capability for future LiDAR sys-

tems. The limitations of monochromatic spectrum for current bathymetric LiDAR systems

suggest that hyperspectral imagery is an important supplement for shallow water remote

sensing, especially when more than just depths are required. The derived water column

characteristics and substrate types can further derive more products for many applications,
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such as hydrodynamics modeling, coastal and fluvial systems change detection, and re-

source management. The in situ field measurements are necessary to calibrate the acquired

hyperspectral imagery, and also, the semi analytical modeling of the water spectra shows

promising potential for the shallow water remote sensing community. The fusion of bathy-

metric LiDAR and hyperspectral imagery has a promise as well because of each method’s

distinct advantages and disadvantages and it can improve the overall performance and fa-

cilitate shallow water remote sensing applications.

8.2 Future Work Directions

Bathymetric full waveform modeling

Chapter 4 presented full waveform processing for shallow water bathymetric LiDAR.

The improvement in both accuracy and point density were encouraging for future appli-

cation of full waveform capability from other bathymetric LiDAR systems. However, the

accuracy of benthic layer retrieval for a single wavelength bathymetric LiDAR remains a

challenge due to the difficulty in isolating the water surface from the water column returns.

Abady et al. (2014) showed a simulation result to improve bathymetry performance with

the modeling of the water column return, enabling better separation of the water surface.

This research direction needs to be expanded beyond simulation and also examined for

other bathymetric LiDAR systems. With this potential enhancement, single wavelength

bathymetric LiDAR performance may be comparable to dual wavelengths systems that use

NIR returns to define the water surface. The modeled water column return would also

enable an evaluation of water column characteristics, which would benefit hyperspectral

imagery inversion by providing additional potential constraints.
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Feature extraction from orthowaveforms

In contrast to conventional full waveform processing techniques, the orthowaveforms

generated from the full waveforms preserve both the shape and spatial features encapsu-

lated in the full waveform. Turbidity extraction from orthowaveforms with SVR showed

that they could be efficiently applied to water column characteristics extraction. In addition

to the orthowaveform generation presented in this dissertation, the optimal way of creating

orthowaveforms from full waveforms to preserve contained feature still remains unknown.

Orthowaveforms also have the capability to determine the shallow water bathymetry using

3D filtering techniques and some preliminary results have been shown in Park et al. (2014);

therefore the investigation of the optimal way to determine shallow water bathymetry from

orthowaveforms is a good research input for shallow water full waveform study. Even

though the optical physics behind the orthowaveforms or full waveform is not defined,

which would require complex laser temporal and spectral radiative transfer models, the ap-

plication of advanced machine learning methods still shows great potential for generating

water bathymetry and classifying substrate types. More advanced machine learning meth-

ods are promising to investigate and improve the information extraction from the generated

orthowaveforms. More machine learning tools should also be examined to extract water

column characteristics and water depth from the orthowaveforms, for example, a context

based machine learning technique is expected to perform the extraction better than the pixel

based technique used in the dissertation.

Fusion of LiDAR and hyperspectral imagery

The fusion of LiDAR and hyperspectral imagery is implemented in both chapter 6 and

7. However, only a slight improvement was found in Chapter 6, and Chapter 7 showed a

degraded performance for the fusion strategy. Despite the neutral to negative effect of data

fusion, the general advantage is that bathymetric LiDAR can provide the essential direct
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water depth measurements to calibrate the shallow water hyperspectral imagery. More

fusion studies are necessary in the future to fully assess its efficiency. Furthermore, it

is also necessary to expand the semi nalytical model coupled with LiDAR bathymetry to

more areas with varying substrate type and water column characteristics. These varying

parameters can help to investigate the capability of the fusion on the complete shallow

water remote sensing solution: water constituent concentration estimation, shallow water

bathymetry extraction, and benthic layer classification. More in situ field measurements,

including water constituent concentrations and water sample spectra, are also necessary to

calibrate the semi analytical model, examine the performance of water column parameters

extraction, and fully assess the performance of the fusion strategies.
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