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Abstract

In this thesis, we focused on the operator system, Sn, generated by n (2≤ n <∞) Cuntz

isometries, i.e. Sn = span{I,Si,S∗i : 1≤ i≤ n}.

We first studied the properties of Sn, such as the uniqueness, the universal property and

the embedding property. Then we constructed an operator subsystem En in Mn—the n by

n matrix algebra and proved that Sn is completely order isomorphic to an operator system

quotient of En. This result also led to a characterization of positive elements in Sn.

Next, we studied the tensor products and related properties of Sn, which was moti-

vated by the nuclearity of the Cuntz algebra On. In contrast with On, Sn is not nuclear in

the operator system category. However, we could show that it is C∗-nuclear by using the

nuclearity of On and some dilation theoerems. This implied an Ando-type theorem for dual

row contractions. With the help of shorted operator techniques, we were able to show that

Sn is C∗-nuclear without using the nuclearity of On. And this provided us with a new proof

of the nuclearity of the On.

Finally, we turned our attention to the dual operator system S d
n of Sn. By considering

S d
n , we were able to derive an alternative characterization of the dual row contractions as

well as an equivalent condition for unital completely positive maps on S d
n . Moreover, it

was a little surprising to see that S d
n is completely order isomorphic to E ′n, an operator

subsystem in Mn+1. The last result was a lifting theorem about the joint numerical radius,

which was implied by the C∗-nuclearity of S d
n .
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Chapter 1

Overview and Preliminaries

1.1 Overview

In the field of operator algebras, operator systems play a very important role and their the-

ory has seen a great deal of development since the 1970s. On the other hand, although

operator systems are very important tools that have been used to study C∗-algebras and

operator spaces, the theory of tensor products of operator systems was not systematically

studied until [12], where the foundations of the theory of operator system tensor products

was laid, together with discussions of various types of tensor products. Since then, re-

search on the tensor products of operator systems was done. In particular, the operator

system quotient was rigorously defined and studied, which led to various characterizations

of some important classes of C∗-algebras using the operator system tensor products. To be

concrete, Farenick and Paulsen [9] studied the operator system Sn generated by n universal

unitaries in C∗(Fn), where Fn is the discrete free group on n generators. They showed that
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1.1 OVERVIEW

Sn is completely order isomorphic to a quotient of the operator system Tn of tri-diagonal

matrices [9, Theorem 4.2]. By using this isomorphism, they gave a new equivalent condi-

tion for a C∗-algebra to have WEP (weak expectation property), which they called property

S [9, Theorem 6.2]. Moreover, they defined an operator system Wn ⊆C∗(Fn) and proved

that Wn is completely order isomorphic to a quotient of the matrix algebra, Mn, and this

leads to a new proof of Kirchberg’s theorem [9, Corollary 3.2]. In their proofs, the univer-

sality is one of the key elements to the construction of the isomorphism.

This is the motivation for this thesis. The Cuntz algebra On is the universal C∗-algebra

generated by n (2 ≤ n ≤ ∞) isometries S1, . . . ,Sn with relation ∑
n
i=1 SiS∗i = I, where I is

the identity operator (see [6] for details). We call such Si’s Cuntz isometries throughout

the paper. Moreover, On enjoys many nice properties (such as nuclearity and universality)

and it plays a very important role in the study of C∗-algebras (such as every separable and

exact C∗ algebra can be embedded in O2). Thus, one may hope that the universal property

of these isometries can give us some analogous results as mentioned in the last paragraph.

So we begin studying the operator system generated by Cuntz isometries, which will be

denoted by Sn (2≤ n≤ ∞) throughout, and utilize the universal property of the isometries

to derive some properties of Sn.

In Chapter 2, we first define the operator system Sn, generated by n Cuntz isometries

as:

Sn := span{I,Si,S∗i : 1≤ i≤ n}.

We can show that Sn does not depend on the choice of the set of isometries, i.e., if isome-

tries {Ti}n
i=1 with ∑

n
i=1 TiTi = I span the operator system Tn, then Sn = Tn completely

2



1.1 OVERVIEW

order isomorphically.

A subsequent result is the universality of Sn:

Theorem 1.1.1. Let (A1, · · · ,An) be a row contraction on some Hilbert space H and de-

note

Tn = span{IH ,Ai,A∗i : 1≤ i≤ n}

so that Tn is an operator system, then there exists a unital completely positive map φ :

Sn→Tn such that φ(Si) = Ai.

The main result in Chapter 2 is that Sn is completely order isomorphic to an operator

system quotient of an operator subsystem in the matrix algebra Mn+1. We define an operator

system En ⊆Mn+1 := Mn+1(C) as follows:

En = span{E00,E0i,Ei0,
n

∑
i=1

Eii : 1≤ i≤ n}.

Next, we define a map φ : En→Sn by φ(E0i) =
1
2Si, 1≤ i≤ n, φ(E00) = φ(∑n

i=1 Eii) =
1
2 I.

We can check that kerφ = span{E00−∑
n
i=1 Eii} and therefore we can form the quotient

operator system En/kerφ and we prove:

Theorem 1.1.2. [18] We have that En/kerφ is completely order isomorphic to Sn and

hence φ is a complete quotient map,.

Theorem 2.3.1 plays an important role in my subsequent paper with Paulsen [15] and it

also implies the following corollary which gives a characterization of positive elements in

Mp(Sn).

3



1.1 OVERVIEW

Corollary 1.1.3. [18] We have that A0⊗ I+∑
n
i=1 Ai⊗Si+∑

n
i=1 A∗i ⊗S∗i ∈Mp(Sn)

+ if and

only if there exists B ∈Mp such that



A0 2A∗1 · · · 2A∗n

2A1 A0

... . . .

2An A0


+



B

−B
. . .

−B


∈Mn+1(Mp)

+.

Next, in Chapter 3 we turn our attention to tensor products and nuclearity-related prop-

erties of Sn, which is motivated by the well-known fact that On (2 ≤ n ≤ ∞) is nuclear in

the sense that for every unital C∗-algebra A ,

On⊗min A = On⊗max A .

Since Sn contains all the generators of On and its C∗-envelope coincides with On, it is

natural to study tensor properties of Sn (2≤ n≤ ∞) in the operator system category.

Of course, we expect that Sn is nuclear in the operator system category. Unfortu-

nately, we can show that Sn is not (min, max)-nuclear by constructing a counter-example.

However, (min, max)-nuclearity is a strong condition for an operator system, and a finite-

dimensional operator system is (min, max)-nuclear if and only if it is completely order

isomorphic to a C∗-algebra if and only if it is injective [13, Theorem 6.11]. So we make

a concession and ask whether Sn is C∗-nuclear. Fortunately, the answer is affirmative for

this case. This fact follows from a refined version of Bunce’s dilation theorem for row-

contractions [3, Proposition 1] and the fact that On is nuclear. Thus, the operator system,

4



1.1 OVERVIEW

Sn, enjoys many nice properties such as WEP, OSLLP, DCEP and exactness (See [13]).

On the other hand, it is tempting to show directly that Sn is C∗-nuclear, that is, without

using the nuclearity of On. This is motivated by our result that On is nuclear if and only

if Sn is C∗-nuclear. We are able to show the latter directly by using operator system tech-

niques together with the theory of shorted operators. This provides us with a new proof of

the nuclearity of the Cuntz algebras. Moreover, it motivates us to approach some important

properties of the Cuntz algebra via operator system techniques.

This direct proof of the C∗-nuclearity of Sn also yields a dual row contraction version

of Ando’s theorem characterizing operators of numerical radius 1.

Theorem 1.1.4. Let A be a unital C*-algebra and (a1, . . . ,an) ∈ A be a strict dual row

contraction, then there exists a,b ∈A +
−1 with a+b = 1 such that



a a1 · · · an

a∗1 b
... . . .

a∗n b


is in Mn+1(A )+−1. Moreover, if M is a von Neumann algebra and (a1, . . . ,an) ∈M is a

5



1.1 OVERVIEW

dual row contraction, then there exists a,b ∈M+ with a+b = 1 such that



a a1 · · · an

a∗1 b
... . . .

a∗n b


is in Mn+1(M )+.

Moreover, Kavruk showed in [11] that for a finite-dimensional operator system, C∗-

nuclearity passes to its dual operator system, and vice versa. This motivates us to study

the dual operator system of Sn, which we denote by S d
n . We show that S d

n is completely

order isomorphic to an operator subsystem of Mn+1. By Kavruk’s result, we know that this

operator system is also C*-nuclear. However, we were unable to give a direct proof that

this operator subsystem is C∗-nuclear, although an operator system in the matrix algebras

seems easier to deal with.

Finally, from the general theory of operator system tensor products, we know that C∗-

nuclearity is stronger than a lifting property, the OSLLP. Since S d
n is C∗-nuclear, it has the

OSLLP and we use this fact to prove a lifting property for Popescu’s joint numerical radius

for n-tuples of operators.

Theorem 1.1.5. Let A be a unital C∗-algebra and J CA be an ideal. Suppose T1 +

J, . . . ,Tn+J ∈A /J, then there exist W1, . . . ,Wn ∈A with Wi+J = Ti+J for each 1≤ i≤ n,

such that w(W1, . . . ,Wn) = w(T1 + J, . . . ,Tn + J).

6



1.2 PRELIMINARIES

1.2 Preliminaries

In this section, we provide some basics of operator systems, operator system quotients and

operator system tensor products that will be constantly used in this paper. We suggest the

the reader refer to [14] or [10] for more details.

1.2.1 Operator Systems

Definition 1.2.1 (Concrete Operator System). A concrete operator system S is a unital

∗-closed subspace of some unital C∗-algebra A , that is, S ⊆A is a subspace of A such

that a ∈S ⇒ a∗ ∈S and 1 ∈S , where 1 denotes the unit of A .

Definition 1.2.2 (Abstract Operator System). An abstract operator system S is a matrix-

ordered ∗-vector space with an Archimedean matrix order unit.

We write Mn(S )+, n ∈N for the positive cones of S and (ai j)≥ 0 if (ai j) ∈Mn(S )+

and such elements will be called positive.

Definition 1.2.3 (Completely Positive Maps). Let S and T be operator systems. A linear

map φ : S →T is called completely positive if

φ
(n)((ai j)) := (φ(ai j))≥ 0, for each (ai j) ∈Mn(S )+ and for all n ∈ N.

Definition 1.2.4 (Complete Order Isomorphism, Complete Order Injection). Let S and T

be operators systems. A map φ : S →T is called a complete order isomorphism if φ is

a unital linear isomorphism and both φ and φ−1 are completely positive, and we say that

7



1.2 PRELIMINARIES

S is completely order isomorphic to T if such φ exists. A map φ is called a complete

order injection if it is a complete order isomorphism onto its range with φ(1S ) being an

Archimedean order unit. We shall denote this by S ⊆c.o.i T .

Theorem 1.2.5. Let S be an abstract operator system, then there exists a Hilbert space

H , a concrete operator system S1 ⊆ B(H ), and a unital complete order isomorphism

ϕ : S →S1. Conversely, a concrete operator system is also an abstract operator system.

Due to this theorem, we can always identify an abstract operator system with a concrete

one.

Definition 1.2.6 (Dual Operator System). Let S be an operator system and S d be the

space of all bounded linear functionals on it. We define an order structure on S d by

( fi j) ∈Mp(S
d

n )
+⇐⇒ ( fi j) : Sn→Mp is completely positive .

We call S d with the above operator system structure the dual operator system of S .

Remark 1.2.7. It is a well-known result by Choi and Effros [5, Theorem 4.4] that with

the order structure defined above, the dual space of a finite-dimensional operator system is

again an operator system with an Archimedean order unit, and indeed, any strictly positive

linear functional is an Archimedean order unit.

1.2.2 Operator System Quotients

Definition 1.2.8 (Kernel in an Operator System). Given an operator system S , we call

J ⊆ S a kernel, if J = kerφ for an operator system T and some (unital) completely

8



1.2 PRELIMINARIES

positive map φ : S →T .

Proposition 1.2.9. [13, Proposition3.4] Let S be an operator system and J ⊆ S be a

kernel. If we define a family of matrix cones on S /J by setting

Cn ={(xi j + J) ∈Mn(S /J) : for each ε > 0, there exists (ki j) ∈Mn(J)

such that ε⊗ In +(xi j + ki j) ∈Mn(S )+},

then (S /J,{Cn}∞
n=1) is a matrix ordered ∗-vector space with an Archimedean matrix unit

1+ J, and the quotient map q : S →S /J is completely positive.

Definition 1.2.10 (Operator System Quotient). Let S be an operator system and J ⊆S be

kernel. We call the operator system (S /J,{Cn}∞
n=1,1+ J) the quotient operator system.

Definition 1.2.11 (Complete Quotient Map). Let S , T be operator systems and φ : S →

T be a completely positive map, then φ is called a complete quotient map if S /kerφ is

complete order isomorphic to T .

Definition 1.2.12 (Completely Order Proximinal). Let J be a kernel and define

Dn ={(xi j + J) ∈Mn(S /J) : there exists yi j ∈ J

such that (xi j + yi j) ∈Mn(S )+}.

Then J is completely order proximinal if Cn = Dn for all n ∈ N.

Remark 1.2.13. This means that if a kernel J is complete order proximinal, then

Mn(S /J)+ = Mn(S )++Mn(J).

9



1.2 PRELIMINARIES

1.2.3 Operator System Tensor Products

Definition 1.2.14. Given a pair of operator systems (S ,{Pn}∞
n=1,e1), (T ,{Qn}∞

n=1,e2), by

an operator system structure on the algebraic tensor product S ⊗T , we mean a family

of cones τ = {Cn}∞
n=1 ⊆Mn(S ⊗T ), such that:

1. (S ⊗T ,Cn,e1⊗ e2) is an operator system denoted by S ⊗τ T , and

2. Pn⊗Qm ⊆Cnm, for all n,m ∈ N, and

3. If φ : S →Mn and ψ : T →Mm are unital completely positive maps, then φ ⊗ψ :

S ⊗τ T →Mnm is a unital completely positive map.

Definition 1.2.15 (Operator System Tensor Product). By an operator system tensor prod-

uct, we mean a mapping τ : O ×O → O , where O denotes the the category of operator

systems, such that for every pair of operator systems S and T , τ(S ,T ) is an operator

system structure on S ⊗T , denoted S ⊗τ T .

1. We call τ1 ≤ τ2 if Mn(S ⊗τ2 T )+ ⊆Mn(S ⊗τ1 T )+ for every n ∈ N.

2. We call τ functorial if for any four operator system S1, S2, T1, T2, we have that if

φ : S1→S2, ψ : T1→T2 are unital completely positive, then φ ⊗ψ : S1⊗τ T1→

S2⊗τ T2 is unital completely positive.

3. We call τ symmetric if θ : x⊗ y 7→ y⊗ x extends to a complete order isomorphism

between S ⊗τ T and T ⊗τ S .

10



1.2 PRELIMINARIES

4. We call τ associative if for any three operator systems S , T , R, the natural Iso-

morphism from (R⊗τ S )⊗τ T onto R⊗τ (S ⊗τ T ) is indeed a complete order

isomorphism.

5. Let α and β be two operator system tensor products. An operator system S is called

(α , β )-nuclear if the identity map between S ⊗α T and S ⊗β T is complete order

isomorphic for every operator system T .

There are several different types of tensor products introduced in [12], but we will

mainly use the following three:

Definition 1.2.16 (The Min Tensor Product). The minimal operator system structure on

S ⊗T is defined as

Cmin
n ={(pi j) ∈Mn(S ⊗T ) :

(
(φ ⊗ψ)(pi j)

)
∈M+

nkm,

for all φ ∈ Sk(S ),ψ ∈ Sm(T ), for all k,m ∈ N},

where Sk(S ) denotes the set of all completely positive maps from S to Mk. We call the

operator system (S ⊗T ,(Cmin
n )∞

n=1,1⊗1) the minimal tensor product of S and T and

denote it by S ⊗min T .

It can be shown that the min-tensor product is injective, associative, symmetric and

functorial. Moreover, it coincide with the operator system arising from the embedding

S ⊗T ⊆c.o.i B(H ⊗K ).

Definition 1.2.17 (The Max Tensor Product). The maximal operator system structure

11



1.2 PRELIMINARIES

on S ⊗T is defined as the Archimedeanization of the following cones:

Dmax
n ={a(P⊗Q)a∗ : P ∈Mk(S )+,Q ∈Mm(T )+,a ∈Mn,km,k,m ∈ N}.

We denote the Archimedeanization of Dmax
n as Cmax

n , then the maximal tensor product of

S and T , denoted by S ⊗max T , is the operator system (S ⊗T ,(Cmax
n )∞

n=1,1⊗1).

The max-tensor product is symmetric, associative and functorial. We will also see later

that it is projective.

Definition 1.2.18 (The Commuting Tensor Product). Let {S ,T } be operator systems. We

set

CP(S ,T ) ={(φ ,ψ) : φ is CP from S to B(H ),

ψ is CP from T to B(H ), and φ(S ) commutes with φ(T )}

We define φ · · ·ψ : S ⊗T → B(H ) as φ ·ψ(x⊗ y) = φ(x)ψ(y).

The commuting operator system structure on S ⊗T is defined as:

Cc
n = {u ∈Mn(S ⊗T ) : (φ ·ψ)(n)(u)≥ 0, for all (φ ,ψ) ∈ CP(S ,T ).

We call the operator system (S ⊗T ,(Cc
n)

∞
n=1,1⊗1) the commuting tensor product

of S and T and denote it by S ⊗c T .

The commuting tensor product is symmetric and functorial.

12



1.2 PRELIMINARIES

Given operator systems S and T and two possibly different operator system structures

S ⊗α T and S ⊗β T on their tensor product, we shall write S ⊗α T =S ⊗β T to mean

that the identity map is a complete order isomorphism.

The tensor products of operator systems we will use in this paper are: min, max, c (See

[12] for their definitions). The relationship between these tensor products is min ≤ c ≤

max, that is, the identity maps id : S ⊗max T →S ⊗c T , id : S ⊗c T →S ⊗min T are

completely positive. Also, please note that the ”=” signs in the following propositions and

definitions all mean completely order isomorphic.

Definition 1.2.19. An operator system S is called (min, max)-nuclear if S ⊗min T =

S ⊗max T , for every operator system T .

Definition 1.2.20. An operator system S is called C∗-nuclear if S ⊗min A = S ⊗max A

for every unital C∗-algebra A .

Proposition 1.2.21. [10, Proposition 4.11] An operator system S is C∗-nuclear if and

only if S ⊗min T = S ⊗c T for every operator system T .

Proposition 1.2.22. [12, Corollary 4.10 and Theorem 5.12] Let A and B be unital C∗-

algebras, then A ⊗min B ⊆c.o.i A ⊗C∗−min B and A ⊗max B ⊆c.o.i A ⊗C∗−max B, where

the ⊗C∗−min, ⊗C∗−max denote the the tensor products in the C∗-algebra category.

Proposition 1.2.23. [12, Theorem 6.7] Let A be a unital C∗-algebra and S be an operator

system, then S ⊗c A = S ⊗max A .

Proposition 1.2.24. [12, Theorem 4.6][Injectivity of the min tensor product] The min ten-

sor product is injective in the sense that for every choices of four operator systems S and

13



1.2 PRELIMINARIES

T , S1, T1 with inclusions S ⊆c.o.i S1 and T ⊆c.o.i T1, we have that

S ⊗min T ⊆c.o.i S1⊗min T1.

Proposition 1.2.25. [9, Proposition 1.6][Projectivity of the max tensor product] The max

tensor product is projective in the following sense: Let S , T , R be operator systems and

suppose ψ : S → R is a complete quotient map, then the map ψ ⊗ idT : S ⊗max T →

R⊗max T is also a complete quotient map.

14



Chapter 2

The Operator System Generated by

Cuntz Isometries

This chapter is based on [18].

2.1 Properties of the Generated by Cuntz Isometries

The readers can refer to [6] for the properties of the Cuntz algebra . In this paper, we will

mainly use its universal property.

Let S1, . . . ,Sn be n (2 ≤ n < +∞) Cuntz isometries that generate On, I be the identity,

and we define the operator system Sn as:

Sn := span{I,Si,S∗i : 1≤ i≤ n}.

15



2.1 PROPERTIES OF THE OPERATOR SYSTEM SN

Similarly, we denote S∞ as the operator system generated by the isometries that generate

O∞. Also, for n = 1, we let S1 be the three-dimensional operator system generated by the

a universal unitary (for example, z ∈C(T)).

Also, let Ŝ1, · · · , Ŝn be n (1 ≤ n < +∞) Toeplitz-Cuntz isometries (that is, Ŝ∗i Ŝ j = 0 if

i 6= j and ∑
n
i=1 ŜiŜ∗i < I), and we set

Ŝn = span{I, Ŝ1, . . . , Ŝn, Ŝ∗1, . . . , Ŝ
∗
n}.

Remark 2.1.1. By the uniqueness of the Cuntz algebra, we know that if Sn and Tn are

two operator systems generated by n Cuntz isometries, then Sn is unitally completely or-

der isomorphic to Tn, that is, any n isometries satisfying the Cuntz relation give rise to the

same Sn. Similarly, the universal property of Toeplitz-Cuntz algebra also implies that any

n isometries satisfying the Toeplitz-Cuntz relation give rise to the same Ŝn. Conversely, it

is not hard to show by using Choi’s multiplicative domain techniques that if Sn is unitally

completely order isomorphic to Tn, then C∗(Sn) ∼= C∗(Tn), which would lead to a new

proof of the uniqueness of the Cuntz algebra. This reveals that we may prove some proper-

ties of the Cuntz algebra via Sn. It is also interesting to explore how many nice properties

Sn can inherit from On.

Lemma 2.1.2. Suppose T1, . . . ,Tn are n (2 ≤ n ≤ +∞) isometries on a Hilbert space H

with ∑
n
i=1 TiT ∗i < IH , then they can be dilated to n isometries T̃1, . . . , T̃n on some Hilbert

space K with ∑
n
i=1 T̃iT̃ ∗i = IK .

Proof. Let M = Ran(∑n
i=1 TiT ∗i ) and hence M⊥ = Ran(IH −∑

n
i=1 TiT ∗i ). Note that since

Ti’s are isometries, dimM⊥ ≤ dimM. Let PM⊥ be the projection onto M⊥ and we define
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2.1 PROPERTIES OF THE OPERATOR SYSTEM SN

operators Xi : H →H as the following:

Xi =


PM⊥, i = 1

0, 2≤ i≤ n
.

Correspondingly, we choose n operators Yi : H →H where Y1 is a partial isometry with

initial space M and Yi (2≤ i≤ n) are isometries such that ∑
n
i=1YiY ∗i = IH .

Next, let K = H ⊕H , we define T̃i : K →K by

T̃i =

Ti Xi

0 Yi

 ,

and it is easy to check that

T̃ ∗i T̃i =

T ∗i Ti T ∗i Xi

X∗i Ti X∗i Xi +Y ∗i Yi

=

IH 0

0 IH


n

∑
i=1

T̃iT̃ ∗i =
n

∑
i=1

TiT ∗i +XiX∗i XiY ∗i

YiX∗i YiY ∗i

=

IH 0

0 IH

 .

Hence, T̃1, . . . , T̃n are the desired dilations.

Corollary 2.1.3. The operator system Ŝn is unitally completely isomorphic to Sn in the

canonical way, that is, there exists a unital complete order isomorphism φ : Ŝn→Sn such

that φ(Ŝi) = Si.

Proof. Let Si’s (1≤ i≤ n) be Cuntz isometries and Ŝi’s (1≤ i≤ n) both in B(H ), then it

17



2.1 PROPERTIES OF THE OPERATOR SYSTEM SN

is easy to see that Si⊕ Ŝi’s on H ⊕H are Toeplitz-Cuntz isometries which dilate Si’s. So

the corollary follows by the fact that compressions are completely positive.

Corollary 2.1.4. We have that Sn ⊆c.o.i Sm via the natural embedding, for 1 ≤ n < m ≤

+∞.

Corollary 2.1.5. Let 1≤ n≤+∞, 1≤ i≤ n, and define ρi : Sn→Sn, X 7→ S∗i XSi, then we

have that ρi is a completely positive projection whose range is completely order isomorphic

to S1.

Proof. Clearly ρi is completely positive. Due to the Cuntz relation, it is easily seen that ρi◦

ρi = ρi, and Ranρi = span{I,Si,S∗i }. However, Si is a single Toeplitz-Cuntz isometry and

hence span{I,Si,S∗i }= S1 completely order isomorphically by the above corollary.

Definition 2.1.6. The n-tuple of operators (A1, . . . ,An) is called a row contraction if

∑
n
i=1 AiA∗i ≤ I ,where I is the identity operator.

Bunce proved in [3] that any family of n operators {Ai}n
i=1 with ∑

n
i=1 A∗i Ai ≤ I can be

dilated to n coisometries with orthogonal initial spaces. Here, we rephrase that proposition

for isometric dilation of row contractions.

Proposition 2.1.7. Let (A1, . . . ,An) be a row contraction on some Hilbert space H , then

there exists isometries W1, . . . ,Wn with W ∗i Wj = 0 if i 6= j, such that PH Wi|H = Ai.

The above proposition implies the following universal property of Sn:

Theorem 2.1.8. The operator system Sn has the following universal property:

18



2.2 THE OPERATOR SYSTEM EN AND ITS QUOTIENT

Let (A1, · · · ,An) be a row contraction on some Hilbert space H and denote

Tn = span{IH ,Ai,A∗i : 1≤ i≤ n}

so that Tn is an operator system, then there exists a unital completely positive map

φ : Sn→Tn such that φ(Si) = Ai.

Proof. By Proposition 2.1.7, we can dilate A1, · · · ,An to W1, . . . ,Wn with orthogonal ranges,

which implies ∑
n
i=1WiW ∗i ≤ I. Let Wn = span{I,Wi,W ∗i : 1 ≤ i ≤ n}, then the universal

property of the Teoplitz-Cuntz algebra implies that there exists a unital completely positive

map from Ŝn to Wn which sends Ŝi to Wi. As compressions are always completely positive,

we have a unital completely positive map from Ŝn to Tn mapping Ŝi to Ai. Now the

conclusion follows from Remark 2.1.3.

2.2 The Operator System En and its Quotient

We define an operator system En ⊆Mn+1 := Mn+1(C) as the following,

En = span{E00,E0i,Ei0,
n

∑
i=1

Eii : 1≤ i≤ n},
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2.2 THE OPERATOR SYSTEM EN AND ITS QUOTIENT

where Ei j’s are matrix units in Mn+1. So every element in En is of the form,



a00 a01 · · · a0n

a10 b
... . . .

an0 b


.

By representing the Cuntz isometries S1, . . . ,Sn on some Hilbert space H , we define an

operator R : H (n+1)→H by R := (
√

2
2 I,

√
2

2 S∗1, . . . ,
√

2
2 S∗n). So we know that

R∗R =



1
2 I 1

2S∗1 · · · 1
2S∗n

1
2S1

...
(1

2SiS∗j
)

1
2Sn


,

is positive in Mn+1(B(H )) .

Now, we can define a map ψ : Mn+1→ B(H ) by

ψ(Ei j) = (R∗R)i j,

where (R∗R)i j denotes the i, j-th entry of R∗R, and extend it linearly to Mn+1. It is straight-

forward that φ is unital. Then we know that ψ is unitally completely positive by a theorem

of Choi (see [14, Theorem 3.14]).

Next, we can easily calculate that kerψ = span{E00−∑
n
i=1 Eii}, which will be denoted

as J throughout the rest of the paper.
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2.3 A CHARACTERIZATION OF POSITIVE ELEMENTS IN MP(SN)

Proposition 2.2.1. [10] Let J be a finite-dimensional ∗-subspace in a operator system S

which contains no positive elements other than 0, then it is a completely order proximinal

kernel.

Lemma 2.2.2. The kernel J is completely order proximinal.

Proof. According to Proposition 2.2.1, we just need to show that J contains no positive

elements other than 0. This is clear by considering the first and second diagonal entries of

any nonzero element in J. Hence, J is completely order proximinal.

Now, let φ =ψ|En , then φ : En→Sn is unitally completely positive whose kernel is also

J. By Proposition 1.2.9 we can form the operator system quotient En/J, and the induced

map

φ̃ : En/J→Sn, x+ J 7→ φ(x)

is unitally completely positive and bijective.

2.3 A Characterization of Positive Elements in Mp(Sn)

We now state the main result of this section:

Theorem 2.3.1. We have that En/J is completely order isomorphic to Sn and hence φ is

a complete quotient map, where Sn is the operator system generated by Cuntz isometries

and J = span{E00−∑
n
i=1 Eii}.

To prove the theorem, we need to show that φ̃−1 is also completely positive, which will

imply that φ̃ is a complete order isomorphism.
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2.3 A CHARACTERIZATION OF POSITIVE ELEMENTS IN MP(SN)

To this end, we first notice the following from the definition ψ̃:

φ̃
−1(Si) = 2Ei0 + J,

φ̃
−1(I) = In+1 + J = 2E00 + J = 2

n

∑
i=1

Eii + J.

We can embed En/J in B(K ) completely order isomorphically. Let the embedding be γ ,

and denote

Ti := γ(2Ei0 + J), IK := γ(In+1 + J),

it is equivalent to show that the map

φ̂ : Sn→ B(K ), Si 7→ Ti, S∗i 7→ T ∗i , I 7→ IK

is completely positive.

The proof of the following lemma is quite similar to that of Lemma 3.1 in [14], so we

omit the proof.

Lemma 2.3.2. Let H ,K be Hilbert spaces and T ∈ B(H ,K ). Also, denote IH and IK

as the identity operators on H and K respectively. Then we have ‖T‖ ≤ 1 if and only if

IH T ∗

T IK


is positive in B(H ⊕K ).

Using this lemma, we can prove the following.
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2.3 A CHARACTERIZATION OF POSITIVE ELEMENTS IN MP(SN)

Proposition 2.3.3. We have that (T1, . . . ,Tn) is a row contraction, i.e., ∑
n
i=1 TiT ∗i ≤ IK .

Proof. We represent Ti’s on a Hilbert space H via some unital injective ∗-homomorphism,

so (T1, . . . ,Tn) ∈ B(H (n),H ). By the above lemma, equivalently, we show the following,



IK T1 · · · Tn

T ∗1 IK
... . . .

T ∗n IK


≥ 0.

Notice that E00 +∑
n
i=1 Eii = In+1 and E00 + J = ∑

n
i=1 Eii + J, so

E00 + J =
n

∑
i=1

Eii + J =
1
2

In+1 + J.

Since the quotient map q : Mn+1→Mn+1/J is completely positive, we just need to show



2∑
n
i=1 Eii 2E10 · · · 2En0

2E01 2E00

... . . .

2E0n 2E00


≥ 0.
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2.3 A CHARACTERIZATION OF POSITIVE ELEMENTS IN MP(SN)

To this end, we write this matrix as a sum of n matrices



∑
n
i=1 Eii E10 · · · En0

E01 E00

... . . .

E0n E00


=



Enn 0 · · · 0 En0

0 . . . 0
... . . . ...

0 . . . 0

E0n 0 · · · 0 E00



+



En−1,n−1 0 · · · 0 En−1,0 0

0 0 · · · · · · 0 0
... . . . ...

...

0 0 0
...

E0,n−1 0 · · · 0 E00 0

0 0 · · · · · · 0 0


+

· · ·+



E11 E10 0 · · · 0

E01 E00 0 · · · 0

0 0 0 · · · 0
...

... . . . ...

0 0 · · · · · · 0


.

From the equation above, we can see that each summand on the right is positive, so the

block matrix on the left is positive and the conclusion follows.

Proof of Theorem 2.3.1. By Proposition 2.3.3 and Theorem 2.1.8, we know that there ex-

ists a unital completely positive map which sends Si to Ti. However, this map is necessarily
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2.3 A CHARACTERIZATION OF POSITIVE ELEMENTS IN MP(SN)

φ̂ .

Theorem 2.3.1 implies the following corollary which gives a characterization for posi-

tive elements in Mp(Sn).

Corollary 2.3.4. We have that A0⊗ I+∑
n
i=1 Ai⊗Si+∑

n
i=1 A∗i ⊗S∗i ∈Mp(Sn)

+ if and only

if there exists B ∈Mp such that



A0 2A∗1 · · · 2A∗n

2A1 A0

... . . .

2An A0


+



B

−B
. . .

−B


∈Mn+1(Mp)

+

Proof. By Theorem 2.3.1, equivalently, we consider

M = A0⊗ (In + J)+
n

∑
i=1

Ai⊗ (2Ei0 + J)+
n

∑
i=1

A∗i ⊗ (2E0i + J) ∈Mp(En/J)+.

If Ak = (ak
i j)

p
i, j=1 for 0≤ k ≤ n, then

M =

(
a0

i j(In+1 + J)+
n

∑
k=1

ak
i j(2Ek0 + J)+

n

∑
k=1

ak
ji(2E0k + J)

)p

i, j=1
.

Lemma 2.2.2 together with definition of positivity in a quotient operator system imply

that there exists (Ji j) ∈Mp(J) such that

M = (a0
i jIn+1 +

n

∑
k=1

2ak
i jEk0 +

n

∑
k=1

2ak
jiE0k)+(Ji j) ∈Mp(En)

+.
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2.3 A CHARACTERIZATION OF POSITIVE ELEMENTS IN MP(SN)

Now we let Ji j = bi j(E00−∑
n
k=1 Ekk) and M corresponds to

(a0
i j)⊗ In+1 +

n

∑
k=1

2(ak
i j)⊗Ek0 +

n

∑
k=1

2(ak
ji)⊗E0k +(bi j)⊗ (E00−

n

∑
k=1

Ekk) ∈Mp(En)
+.

Finally, using the isomorphism Mp(En)∼= En(Mp), we know that M corresponds to the

following positive block matrix in Mn+1(Mp),



A0 2A∗1 · · · 2A∗n

2A1 A0

... . . .

2An A0


+



B

−B
. . .

−B


,

where B = (bi j). Since isomorphism is used in each step, we know that our conclusion is

in fact an “if and only if” statement.
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Chapter 3

Tensor Products of the Operator System

Generated by Cuntz Isometries

This chapter is based on [15].

3.1 Tensor Products and C∗-nuclearity of Sn

We begin this section with the following proposition which shows that Sn (2 ≤ n ≤ ∞) is

not (min, max)-nuclear.

Proposition 3.1.1. Sn is not (min, max)-nuclear, for 2≤ n≤ ∞.

Proof. It is known in that the operator system S1 generated by a universal unitary is not
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(min, max)-nuclear because of the following [8, Theorem 3.7]:

S1⊗min S1 6=S1⊗max S1.

On the other hand, we have that S1 =S1 [18, Corollary 3.3], so we know that

S1⊗min S1 6= S1⊗max S1.

Now, for n≥ 2, if Sn⊗min Sn = Sn⊗max Sn, then [18, Corollary 3.4 and 3.5] imply that

S1⊗min S1 = S1⊗max S1,

which is a contradiction. Thus, Sn is not (min, max)-nuclear.

Lemma 3.1.2. For 2 ≤ n ≤ ∞, we assume that Ŝ ⊆ On is an operator system containing

Sn and A is a C∗-algebra. If we have that

Ŝ ⊗min A = Ŝ ⊗max A ,

then

On⊗min A = On⊗max A .

Proof. We first represent On⊗max A on some Hilbert space H . By the definition of the

max tensor product of operator systems, the canonical embedding map from Ŝ ⊗max A

into On⊗max A is completely positive. Thus we have a completely positive map ρ : Ŝ ⊗min

A → B(H ), such that ρ(a⊗b) = a⊗b for each a ∈ Ŝ and b ∈A .

28



3.1 TENSOR PRODUCTS AND C∗-NUCLEARITY OF SN

The injectivity of the min tensor product of operator systems implies that Ŝ ⊗min

A ⊆c.o.i On⊗min A , and we can extend ρ to a completely positive map ρ̃ : On⊗min A →

B(H ) by the Arveson’s extension theorem.

Next, we use the Stinespring’s dilation and obtain a unital ∗-homomorphism γ : On⊗min

A → B(K ) and V : H →K for some Hilbert space K such that

ρ̃(a) =V ∗γ(a)V, for each a ∈ On⊗min A .

The map ρ being unital implies that ρ̃ is unital and hence V ∗V = IH , i.e. V is an isometry.

By identifying H with VH , we can assume that H ⊆K .

Now, if we decompose K = H +H ⊥, then ρ̃ is the 1− 1 corner of γ . Further, we

have that

γ(Si⊗1A ) =

ρ̃(Si⊗1A ) Ci

Bi Di

 , for every i ∈ {1, . . . ,n}

Here, Bi ∈ B(H ,H ⊥), Ci ∈ B(H ⊥,H ), Di ∈ B(H ⊥,H ⊥). Since Si⊗1A is an isome-

try, it follows that γ(Si⊗1A ) and ρ̃(Si⊗1A ) are isometries, and we immediately have that

Bi = 0.

Moreover, the condition that ∑
n
i=1 SiS∗i = IH (n finite) or ∑

k
i=1 SiS∗i ≤ IH for every

1≤ k < ∞ (n infinite) implies that

n

∑
i=1

γ(Si⊗1A )γ(Si⊗1A )∗ = γ(
n

∑
i=1

SiS∗i ⊗1A ) = 1K ,
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or

k

∑
i=1

γ(Si⊗1A )γ(Si⊗1A )∗ = γ(
k

∑
i=1

SiS∗i ⊗1A )≤ 1K , for every 1≤ k < ∞,

which means that∑
n
i=1 ρ̃(Si⊗1A )ρ̃(Si⊗1A )∗+CiC∗i ∑

n
i=1CiD∗i

∑
n
i=1CiC∗i ∑

n
i=1 DiD∗i

= 1K ,

or ∑
k
i=1 ρ̃(Si⊗1A )ρ̃(Si⊗1A )∗+CiC∗i ∑

k
i=1CiD∗i

∑
k
i=1CiC∗i ∑

k
i=1 DiD∗i

≤ 1K , for every 1≤ k < ∞.

Thus, we have that Ci = 0 for every i ∈ {1, . . . ,n} and hence,

γ(Si⊗1A ) =

ρ̃(Si⊗1A ) 0

0 Di

 .

On the other hand, for each unitary u ∈A , similarly, we have that

γ(IH ⊗u) =

ρ̃(IH ⊗u) 0

0 v

 ,

where v is a unitary in B(H ⊥).

Because A is spanned by its unitaries, and every X ⊗ z ∈ On⊗min A can be written as

X ⊗ z = (X ⊗ 1A )(1H ⊗ z), we see that γ is diagonal on all elementary tensors. Then by
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continuity of γ , we know it is diagonal on On⊗min A .

We now have that the compression of γ onto the 1,1 corner is a ∗-homomorphism

from On⊗min A to B(H ), and this compression is exactly ρ̃ . Moreover, ρ̃(Ŝ ⊗min A )⊆

On⊗max A . Then, ρ̃ being a ∗-homomorphism implies that ρ̃(On�min A )⊆ On⊗max A ,

where �min denotes the algebraic tensor product of On with A endowed with the minimal

tensor norm. The continuity of ρ̃ implies further that ρ̃(On⊗min A ) ⊆ On⊗max A . Form

this, we can conclude that ρ̃(On⊗min A ) = On⊗max A , because by the way ρ̃ is defined,

Ran ρ̃ is dense in On⊗max A .

Finally, ρ̃(X⊗z) = X⊗z for every X⊗z∈On⊗min A forces that the identity map from

On�min A to On⊗max A extends to a ∗-homomorphism from On⊗min A onto On⊗max A .

Thus, On⊗min A = On⊗max A .

Let T1, . . . ,Tn be the generators of the Toeplitz-Cuntz algebra T On and Tn be the op-

erator system generated by Ti’s. By Corollary 3.3 in [18], we know that Tn = Sn via the

natural isomorphism.

Theorem 3.1.3. Let A be a unital C∗-algebra, then we have that

Sn⊗max A ⊆c.o.i T On⊗max A ,

where T On is the Toeplitz-Cuntz algebra.

Before proving this theorem, we need the following refined version of Bunce’s result

[3, Proposition 1.].
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Lemma 3.1.4. Let (A1, . . . ,An) ∈ B(H ) be a row contraction, then there exist isometric

dilations W1, . . . ,Wn ∈ B(K ) of A1, . . . ,An such that W ∗i Wj = 0 for i 6= j, where K =

H ⊕ (⊕∞
k=1H

(n)). Moreover, Wi can be chosen as the following form,

Wi =

Ai 0

Xi Y Zi

 ,

where the entries of Xi, Y and Zi are all from C∗(I,A1, . . . ,An).

Proof. The fact that the entries of Xi and Y are from C∗(I,A1, . . . ,An) is directly from

Bunce’s construction. On the other hand, by his construction, Zk’s can be any set of Cuntz

isometries on ⊕∞
k=1H

(n) so we can choose a particular one as:

Zk = (Zi j) =


I(n) if i = ( j−1)n+ k

0 otherwise,

where I(n) denotes the identity operator on ⊕∞
k=1H

(n).

Proof of Theorem 3.1.3. By Proposition 1.2.23, we can show instead that Tn satisfies that

Tn⊗c A ⊆c.o.i T On⊗c A .

To this end, it is enough to show that for any pair of unital completely positive maps ϕ :

Tn→B(H ) and ψ : A →B(H ) with commuting ranges, there always exists an extension

ϕ̃ : T On of ϕ such that the range of ϕ̃ and ψ commute.
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Since ϕ is unitally completely positive, (ϕ(T1), . . . ,ϕ(Tn)) is a row contraction and

hence can be dilated to isometries W1, . . . ,Wn with orthogonal ranges, by Lemma 3.1.4.

Then, there is a ∗-homomorphism π : T On → B(K ) such that π(Ti) = Wi. Meanwhile,

we set ψ̃ : R → B(K ) as ψ̃ = ψ ⊕ (⊕∞
k=1ψ(n)), where ψ(n) denotes the direct sum of n

copies of ψ .

It is easy to see that ψ̃ and π have commuting ranges. Clearly, ψ = PH ψ̃|H . Now, let

ϕ̃ = PH π|H , then it follows that ϕ̃ is a unital completely positive extension of ϕ and ψ

and ϕ̃ has commuting ranges. Thus, we have shown that Tn⊗c A ⊆c.o.i T On⊗c A .

Corollary 3.1.5. Let A be a unital C*-algebra. If T On⊗min A = T On⊗max A , then

Sn⊗min A = Sn⊗max A .

Proof. By the assumption and the injectivity of the min-tensor product, we have the fol-

lowing relations:

Tn⊗min A ⊆c.o.i T On⊗min A

=

Tn⊗c=max A ⊆c.o.i T On⊗c=max A .

This implies that Tn⊗min A = Tn⊗max A , so, equivalently, we know that Sn⊗min A =

Sn⊗max A .

Corollary 3.1.6. Let A be a unital C*-algebra. If On⊗min A =On⊗max A , then Sn⊗min

A = Sn⊗max A .
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Proof. Since On = T On/K [6, Proposition 3.1] (K denotes the algebra of compact opera-

tors), we have the following commuting diagram:

K⊗max A

��

// T On⊗max A

��

// On⊗max A

��
K⊗min A // T On⊗min A // On⊗min A .

By assumption, we have that On⊗min A = On⊗max A . Also, we know that K is nuclear,

so K⊗min A = K⊗max A . This implies that the first and third vertical map in the above

diagram are indeed isomorphisms. Hence, the second vertical map is also an isomorphism,

that is, T On⊗min A = T On⊗max A . Now the conclusion follows from the Corollary

3.1.6.

Combining Corollary 3.1.6 with Lemma 3.1.2, we have

Theorem 3.1.7. Let A be a unital C*-algebra. Then On⊗min A = On⊗max A if and only

if Sn⊗min A = Sn⊗max A .

Since On is nuclear, we immediately have the following corollary.

Corollary 3.1.8. We have that Sn is C∗-nuclear.
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3.2 Equivalent Conditions of the C∗-Nuclearity of Sn and

the Dual Row Contraction Version of Ando’s Theorem

In this section, we prove some necessary and sufficient conditions for On⊗minA =On⊗max

A . We first recall that we denote En = span{E00,∑
n
i=1 Eii,Ei0,E0i : 1≤ i≤ n}, where Ei j’s

are the matrix units in Mn+1, and we have proved in Section 2.3.1 that

Theorem 3.2.1. The map φ : En→Sn defined by the following:

φ(Ei0) =
1
2

Si, φ(E0i) =
1
2

S∗i , φ(E00) =
1
2

I, φ(
n

∑
i=1

Eii) =
1
2

I, 1≤ i≤ n

is a complete quotient map, that is, En/J ∼= Sn completely order isomorphically, where

J := Kerφ = span{E00−∑
n
i=1 Eii}.

The next proposition shows that the operators system En is C∗-nuclear. Before proving

it, let us recall a useful result [8, Lemma 1.7].

Lemma 3.2.2. Let S and T be operator systems, then u ∈ (S ⊗max T )+ if and only if

for each ε > 0, there exist (Pε
i j) ∈Mkε

(S )+, (Qε
i j) ∈Mkε

(T )+, such that

ε1S ⊗1T +u =
k

∑
i, j=1

Pε
i j⊗Qε

i j.

Proposition 3.2.3. We have that En⊗min A = En⊗max A for every unital C∗-algebra A .

Proof. What we need to show is that Mp(En⊗min A )+⊆Mp(En⊗max A )+, for each p∈N.

By the symmetry and associativity of the min and max tensor products of operator systems,
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and the nuclearity of Mp, we have that

Mp(En⊗min A ) = En⊗min Mp(A )

Mp(En⊗max A ) = En⊗max Mp(A ).

Notice that Mp(A ) is also a C∗-algebra, so it suffices to show that for each A ∈ (En⊗min

A )+, we have that A ∈ (En⊗max A )+.

Since the min tensor product is injective, we have that En⊗min A ⊆ Mn+1⊗min A =

Mn+1(A ). So for A ∈ (E ⊗min A )+, we know that it has the form

A =



a0 a1 · · · an

a∗1 b
... . . .

a∗n b


.

Without loss of generality, by considering εIn+1⊗1A +A, we can assume that a0 and b are

invertible. According to Cholesky’s lemma, we have



a0 a1 · · · an

a∗1 b
... . . .

a∗n b


=



a0−∑
n
i=1 aib−1a∗i 0 · · · 0

0 0
... . . .

0 0


+



∑
n
i=1 aib−1a∗i a1 · · · an

a∗1 b
... . . .

a∗n b


.

The first matrix on the right side is positive in Mn+1(A ) and is easily seen to be in (En⊗max

A )+. What we need is to show that the second matrix also lies in (En⊗max A )+.
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To this end, we use Proposition 3.2.2 and construct the following two matrices,

P = (Pi j) =





0 0 · · · 0

0 1
... . . .

0 1





0 0 · · · 0

1 0
... . . .

0 0


· · ·



0 0 · · · 0

0 0
... . . .

1 0



0 1 · · · 0

0 0
... . . .

0 0





1 0 · · · 0

0 0
... . . .

0 0


... . . .

0 0 · · · 1

0 0
... . . .

0 0





1 0 · · · 0

0 0
... . . .

0 0





,

Q = (Qi j) =



b a∗1 · · · a∗n

a1

... B

an


,

where B = (Bi j) = (aib−1a∗j).

Then it is not hard to check that P ∈Mn+1(En)
+ and Q ∈Mn+1(A )+. Also, we have
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that 

∑
n
i=1 aib−1a∗i a1 · · · an

a∗1 b
... . . .

a∗n b


=

n+1

∑
i, j=1

Pi j⊗Qi j.

This shows that the matrix on the left side is in (En⊗max A )+, and the lemma is proved.

Lemma 3.2.4. Let A be a unital C∗-algebra, then we have that id : Sn⊗min A →Sn⊗max

A is completely positive if and only if φ ⊗ idA : En⊗min A →Sn⊗min A is a complete

quotient map.

Proof. We have the following diagram:

En⊗min A

φ⊗idA
��

∼= // En⊗max A

φ⊗idA
��

Sn⊗min A id //Sn⊗max A

.

By Proposition 1.2.25, we have that φ ⊗ idA : En⊗max A → Sn⊗max A is a complete

quotient map, and hence if φ ⊗ idA : En⊗min A →Sn⊗min A is a complete quotient map,

then every positive element A in Mp(Sn⊗min A ) has a positive pre-image in Mp(En⊗min

A ), and therefore A is in Mp(Sn⊗max A ). So id : Sn⊗min A →Sn⊗max A is completely

positive. Conversely, if id : Sn⊗min A →Sn⊗max A is completely positive, then Sn⊗min

A = Sn⊗max A . Also, we have En⊗min A = En⊗max A . Thus, φ ⊗ idA : En⊗max A →

Sn⊗max A being a complete quotient map means that φ ⊗ idA : En⊗min A →Sn⊗min A

is a complete quotient map.
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The next theorem is now immediate:

Theorem 3.2.5. We have that On⊗min A =On⊗max A if and only if φ⊗ id : En⊗min A →

Sn⊗min A is a complete quotient map, where A is any unital C*-algebra.

We now prove a concrete condition on a unital C*-algebra that is equivalent to Theorem

3.2.5. Given an operator system S we will write p >> 0 provided that there exists ε > 0

such that p− ε1 ∈S +, and we set S +
−1 = {p ∈S : p >> 0}.

The reason for this notation is that if A is a unital C*-algebra and ψ : S → A is a

unital completely positive map, then p ∈ S +
−1 implies ψ(p) is positive and invertible in

A . Moreover, S +
−1 is exactly the set of elements of S + for which this is true for every

unital completely positive map into a C*-algebra. Moreover, if ψ : T →S is a quotient

map, then p ∈S +
−1 if and only if it has a pre-image, i.e., ψ(r) = p with r ∈ T +

−1 (see [7,

Proposition 3.2]).

Theorem 3.2.6. Let A be a unital C*-algebra, then On⊗min A = On⊗max A if and only

if for all p ∈ N, whenever I⊗ 1+∑
n
j=1 S j⊗ a j +∑

n
j=1 S∗j ⊗ a∗j >> 0 in On⊗min Mp(A ),

there exists a,b ∈Mp(A )+−1 with a+b = 1, such that



a a∗1 · · · a∗n

a1 b
... . . .

an b


is in Mn+1(Mp(A ))+−1.
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Proof. If On⊗min A = On⊗max A then q⊗ id : En⊗min Mp(A )→Sn⊗min Mp(A ) is a

quotient map. Hence, I⊗ 1+∑
n
j=1 S j⊗ a j +∑

n
j=1 S∗j ⊗ a∗j ∈ q⊗ id

(
(En⊗min Mp(A ))+

)
.

Choosing any strictly positive element in the pre-image yields the conclusion.

Conversely, the lifting formula shows that every element of the form I⊗1+∑
n
j=1 S j⊗

a j +∑
n
j=1 S∗j ⊗a∗j >> 0 has a positive pre-image in En⊗min Mp(A ).

Let R = I⊗ r+∑
n
j=1 S j⊗a j +∑

n
j=1 S∗j ⊗a∗j be an arbitrary element in Sn⊗min Mp(A )

and let ε > 0.

Then T = I⊗1+∑
n
j=1 S j⊗ (r+ ε1)−1/2a j(r+ ε)−1/2 +∑

n
j=1 S∗j ⊗ (r+ ε1)−1/2a∗j(r+

ε1)−1/2 >> 0, and so by the hypothesis has a lifting. Pre- and post-multiplying the entries

of that lifting by (r + ε)1/2 gives a lifting of R+ ε(I⊗ 1). This proves that the mapping

q⊗ id : En⊗min Mp(A )→Sn⊗min Mp(A ) is a quotient map, and since p was arbitrary,

this map is a complete quotient map.

Corollary 3.2.7. The C*-algebra On is nuclear if and only if whenever A is a unital C*-

algebra and I⊗1+∑
n
j=1 S j⊗a j +∑

n
j=1 S∗j⊗a∗j >> 0 in On⊗min A there exists a,b∈A +

−1

with a+b = 1 such that 

a a∗1 · · · a∗n

a1 b
... . . .

an b


(3.2.1)

is in Mn+1(A )+−1.

Definition 3.2.8. Let A be a unital C∗-algebra, then an n-tuple (a1, . . . ,an) in A is called
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a dual row contraction if

I⊗1+
n

∑
j=1

S j⊗a∗j +
n

∑
j=1

S∗j ⊗a j ≥ 0,

where the Si’s are Cuntz isometries. Moreover, it is called a strict dual row contraction if

I⊗1+
n

∑
j=1

S j⊗a∗j +
n

∑
j=1

S∗j ⊗a j >> 0.

Remark 3.2.9. Note that a dual row contraction is a row contraction, since

I⊗1+
n

∑
j=1

S j⊗a∗j +
n

∑
j=1

S∗j ⊗a j ≥ 0

implies that

I⊗1+ z
n

∑
j=1

S j⊗a∗j + z̄
n

∑
j=1

S∗j ⊗a j ≥ 0, for all z ∈ T,

which is equivalent to

w(
n

∑
j=1

S j⊗a∗j)≤
1
2
,

where w means the numerical radius. So, we have that

∥∥∥∥ n

∑
i=1

aia∗i

∥∥∥∥= ∥∥∥∥( n

∑
i=1

Si⊗min a∗i

)∗( n

∑
i=1

Si⊗min a∗i

)∥∥∥∥≤ (2w(
n

∑
j=1

S j⊗a∗j))
2 ≤ 1.

But not every row contraction is a dual row contraction. A counterexample can be easily

constructed. In particular, n (2 ≤ n < ∞) Cuntz isometries form a row contraction but not

dual row contraction, since ∑
n
i=1 Si⊗S∗i is a unitary whose spectrum is the whole unit circle.

41



3.2 EQUIVALENT CONDITIONS AND DUAL ROW CONTRACTIONS

Again, since On is nuclear, Corollary 3.2.7 is indeed a (strict) dual row contraction ver-

sion of Ando’s theorem (See [2] for the original version). Moreover, when M is a von

Neumann algebra, we can replace “strict dual row contraction” by “dual row contraction”

and “strictly positive” by “positive” by taking weak*-limits. We summarize these state-

ments below. This result is a dual row contraction version of Ando’s theorem on numerical

radius.

Theorem 3.2.10. Let A be a unital C*-algebra and (a1, . . . ,an) ∈A be a strict dual row

contraction, then there exists a,b ∈A +
−1 with a+b = 1 such that



a a1 · · · an

a∗1 b
... . . .

a∗n b


is in Mn+1(A )+−1. Moreover, if M is a von Neumann algebra and (a1, . . . ,an) ∈M is a

dual row contraction, then there exists a,b ∈M+ with a+b = 1 such that



a a1 · · · an

a∗1 b
... . . .

a∗n b


is in Mn+1(M )+.
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3.3 An Alternative Proof of the Nuclearity of On

We now give a new proof of the nuclearity of On, by showing directly the existence of

operators a,b mentioned in Corollary 3.2.7, which will prove that On is nuclear.

To this end, we shall need the notion of “shorted operators”, which was introduced in

[1]. Here, we briefly quote some results we will need in our proof.

Definition 3.3.1. [1] Let H be a Hilbert space and A∈ B(H ) be positive. Assume S⊆H

is a closed subspace, then the shorted operator of A with respect to S, denoted as S(A) is

defined as the maximum of the following set:

{T ∈ B(H ) : 0≤ T ≤ A,RanT ⊆ S}.

Also, we denote S0(A) = S(A)|S.

The shorted operator always exists [1, Theorem 1]. Moreover, we have that

Proposition 3.3.2. [1] For each x ∈ S, we have that

〈S0(A)x,x〉= inf
{〈

A

x

y

,

x

y

〉 : y ∈ S⊥
}
.

We now prove that the condition of Corollary 3.2.7 is met for n = 2 without using the

nuclearity of O2.

A proof of the nuclearity of O2. Let A ⊆ B(H ) be a unital C∗-algebra and (a1, . . . ,an) be
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a strict dual row contraction in A , that is,

A = I⊗1+
2

∑
j=1

S j⊗a∗j +
2

∑
j=1

S∗j ⊗a j >> 0, in O2⊗min A .

By Corollary 3.3 in [18] the operator system spanned by the Toeplitz-Cuntz isometries is

completely order isomorphic to the operator system spanned by the Cuntz isometries. Thus,

we can take the Si’s to be Toeplitz-Cuntz isometries. Moreover, it suffices to consider the

following specific choice of Toeplitz-Cuntz isometries:

Si ∈ B(l2), Si(ek) = ekn+i, k = 0,1,2, . . . , i = 1,2,

where {ei : i = 0,1,2, . . .} is the orthonormal basis of l2.

We write l2⊗H = ⊕+∞

i=0Hi, where Hi = H for all i. Thus, A corresponds to the
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following operator in B(l2⊗H ),

A =



1 a1 a2 0 0 0 0 0 0 · · ·

a∗1 1 0 a1 a2 0 0 0 0 · · ·

a∗2 0 1 0 0 a1 a2 0 0 · · ·

0 a∗1 0 1 0 0 0 a1 a2 · · ·

0 a∗2 0 0 1 0 0 0 0 · · ·

0 0 a∗1 0 0 1 0 0 0 · · ·

0 0 a∗2 0 0 0 1 0 0 · · ·

0 0 0 a∗1 0 0 0 1 0 · · ·

0 0 0 a∗2 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...



.

Set Rk =⊕+∞

i=kHi. We then write A as the following block form:

A =

A11 A12

A21 A22

 ,

where A11 ∈ B(H0), A12 ∈ B(R1,H0), A21 ∈ B(H0,R1), A22 ∈ B(R1).

Now, let B = H0(A), then by Proposition 3.3.2, we have that

〈Bh0,h0〉= inf
g∈R1

{〈
A

h0

g

,

h0

g

〉}
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= inf
h1∈H

inf
h2∈H

inf
z∈R3

{〈
A



h0

h1

h2

z


,



h0

h1

h2

z


〉}

= inf
h1∈H

inf
h2∈H

inf
z∈R3

{
〈h0 +a1h1 +a2h2,h0〉+ 〈a∗1h0,h1〉+ 〈a∗2h0,h2〉

+

〈
A22


h1

h2

z

,


h1

h2

z


〉}

.

We claim that

inf
z∈R3

{〈
A22


h1

h2

z

,


h1

h2

z


〉}

= 〈Bh1,h1〉+ 〈Bh2,h2〉.

Assuming this claim for the moment, we have

〈Bh0,h0〉= inf
h1∈H

inf
h2∈H

{〈h0,h0〉+ 〈a1 f ,h0〉+ 〈a2h2,h0〉+ 〈a∗1h0,h1〉+ 〈a∗2h0,h2〉

+ 〈Bh1,h1〉+ 〈Bh2,h2〉}

= inf
h1∈H

inf
h2∈H

{〈
1 a1 a2

a∗1 B 0

a∗2 0 B




h0

h1

h2

,


h0

h1

h2


〉}

.
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So we have that 
1−B a1 a2

a∗1 B 0

a∗2 0 B

≥ 0.

To justify the claim, we write N as the disjoint union of N1 = {1+2(2k−1),1+3(2k−

1) : k ≥ 0} and N2 = {2+ 3(2k− 1).2+ 4(2k− 1) : k ≥ 0}. Set Nk = ⊕i∈NkHi so that

R1 = N1⊕N2. Observe that both of these subspaces are reducing for A22 and that with

respect to the obvious identification of Nk ∼⊕+∞

i=0Hi we have that A22 ∼ A⊕A.

Hence,

inf
z∈R3

〈
A22


h1

h2

z

,


h1

h2

z


〉

= inf
z1∈N1	H1

〈
A22


h1

0

z1

,


h1

0

z1


〉

+ inf
z2∈N2	H2

〈
A22


0

h2

z2

,


0

h2

z2


〉

= inf
z∈R1

〈
A

h1

z

,

h1

z

〉+ inf
z∈R1

〈
A

h2

z

,

h2

z

〉

=〈Bh1,h1〉+ 〈Bh2,h2〉.
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It remains to show that B ∈A . Since −Si’s are also Cuntz isometries, we have that

I⊗1−
2

∑
j=1

S j⊗a∗j −
2

∑
j=1

S∗j ⊗a j >> 0.

It follows that ‖∑
2
j=1 S j⊗a∗j−∑

2
j=1 S∗j ⊗a j‖< 1, and therefore ‖1−A22‖< 1. According

to the proof of [1, Theorem 1], the shorted operator B has an explicit formula: B = A11−

A12A−1
22 A21. So what left for us to show is that all the entries of A−1

22 are in A . To see

this, we first use the Neumann series to write A−1
22 = ∑

∞
n=0(1−A22)

n. Since each row and

column of 1−A22 only has finitely many nonzero entries, we must have that the entries of

(1−A22)
n are in A for each n∈N. Since the Neumann series is norm convergent, we have

that each entry of A−1
22 is in A and since A12 and A21 are only non-zero in finitely many

entries, B ∈A .

Finally, we can repeat the above process for A−ε1⊗1 >> 0 and see that we can make

both B and 1−B strictly positive with


1−B a1 a2

a∗1 B 0

a∗2 0 B

>> 0.

The proof that On for n≥ 3 is nuclear can be done in a similar fashion. In the following

we write down the details of the proof.

A proof of the nuclearity of On. Let A ⊆ B(H ) be a unital C∗-algebra and (a1, . . . ,an) be
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a strict dual row contraction in A , that is,

A = I⊗1+
n

∑
j=1

S j⊗a∗j +
n

∑
j=1

S∗j ⊗a j >> 0, in On⊗min A .

Then, by Corollary 3.3 in [18], we can take Si’s as Toeplitz-Cuntz isometries. Moreover, it

suffices to consider the following specific choice of Toeplitz-Cuntz isometries:

Si ∈ B(l2), Si(ek) = ekn+i, k = 0,1,2, . . . , i = 1,2, . . . ,n,

where {ei : i = 0,1,2, . . .} is an orthonormal basis of l2. Thus, A corresponds to the follow-

ing operator on B(H (∞)),

A =



1 a1 · · · an

a∗1 1 a1 · · · an

... . . .

a∗n 1

a∗1 1
... . . .

a∗n 1
. . .



.

We then write A as the following block form:

A =

A11 A12

A21 A22

 ,
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where A11 ∈ B(H ), A12 ∈ B(H (∞)	H ,H ), A21 ∈ B(H ,H (∞)	H ), A22 ∈ B(H (∞)).

Now, choose δ > 0 such that A− δ1⊗ 1 ≥ 0 and let B = H0(A− δ1⊗ 1), then by

Proposition 3.3.2, we have that

〈(B)h,h〉= inf
g∈H ∞	H

{〈
(A−δ I)

h

g

,

h

g

〉}

= inf
f1∈H

· · · inf
fn∈H

inf
z∈H ∞	H (n)

{〈
(A−δ I)



h

f1

...

fn

z


,



h

f1

...

fn

z



〉}

= inf
f1∈H

· · · inf
fn∈H

inf
z∈H ∞	H (n)

{
〈(1−δ )h,h〉+

〈
A12



f1

...

fn

z


,h

〉

+

〈
A21h,



f1

...

fn

z


〉
+

〈
(A22−δ I)



f1

...

fn

z


,



f1

...

fn

z


〉}
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= inf
f1∈H

· · · inf
fn∈H

inf
z∈H ∞	H (n)

{
〈(1−δ )h,h〉+

〈
A12



f1

...

fn

0
...


,h

〉

+

〈
A21h,



f1

...

fn

0
...



〉
+

〈
(A22−δ I)



f1

...

fn

z


,



f1

...

fn

z


〉}

.

Next, we partition N\{0} as N\{0}= N1∪·· ·∪Nn, where

Nm = m+[n+(m−1)(n−1)]
(nk−1)

n−1
, . . . ,m+[n+m(n−1)]

(nk−1)
n−1

, k = 0,1,2, . . . .

Then, we write A22−δ I = A1
22 + · · ·+An

22, where

(Am
22)i j =


(A22−δ I)i j, if i, j ∈ Nm

0,else
,

where (A22−δ I)i j denotes the i, j-th entry of A22−δ I, same for (Am
22)i j, 1 ≤ m ≤ n. It is

not hard to see that Am
22 is unitarily equivalent to A22−δ I for each m.

Decompose H ∞ = ⊕n
m=1Hm according to the partition N \ {0} = N1 ∪ ·· · ∪Nn, we
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have that

〈Bh,h〉= inf
f1∈H

· · · inf
fn∈H

{
〈(1−δ )h,h〉+

〈
A12



f1

...

fn

0
...


,h

〉

+

〈
A21h,



f1

...

fn

0
...



〉
+ inf

z=z1+···zn,zi∈Hm

{〈
A1

22

 f1

z

,

 f1

z

〉+ · · ·

+

〈
An

22

 fn

z

,

 fn

z

〉}}

= inf
f1∈H

· · · inf
fn∈H

{
〈(1−δ )h,h〉+

〈
A12



f1

...

fn

0
...


,h

〉
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+

〈
A21h,



f1

...

fn

0
...



〉
+ inf

z1∈H1

{〈
A1

22

 f1

z1

,

 f1

z1

〉}+ · · ·

+ inf
zn∈Hn

{〈
An

22

 fn

zn

,

 fn

zn

〉}}

= inf
f1∈H

· · · inf
fn∈H

{
〈(1−δ )h,h〉+

〈
A12



f1

...

fn

0
...


,h

〉

+

〈
A21h,



f1

...

fn

0
...



〉
+ inf

z∈H ∞

{〈
(A−δ I)

 f1

z

,

 f1

z

〉}+ · · ·

+ inf
z∈H ∞

{〈
(A−δ I)

 fn

z

,

 fn

z

〉}}
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= inf
f1∈H

· · · inf
fn∈H

{
〈(1−δ )h,h〉+

〈
A12



f1

...

fn

0
...


,h

〉
+

〈
A21h,



f1

...

fn

0
...



〉

+ 〈B f1, f1〉+ · · ·+ 〈B fn, fn〉
}
.

Thus, 

1−B−δ1 a1 · · · an

a∗1 B
... . . .

a∗n B


≥ 0.

Then, by adding δ

2 I to the above matrix, we have that



1−B− δ

2 1 a1 · · · an

a∗1 B+ δ

2 1
... . . .

a∗n B+ δ

2 1


>> 0.

In addition, we have that 1−B− δ

2 1,B+ δ

2 1 >> 0.

Having an alternative proof of the nuclearity of On (2 ≤ n < ∞), we can give an alter-

native proof of the nuclearity of O∞ with just a little effort. Here is the proof.
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Theorem 3.3.3. The Cuntz algebra O∞ is nuclear.

Proof. Using Lemma 3.1.2, we just need to show that S∞ is C∗-nuclear.

It suffices to show that (S∞⊗min A )+ = (S∞⊗max A )+ for every unital C∗-algebra

A .

To see this, we choose A ∈ (S∞⊗min A )+, then A has the form,

A = I⊗X + ∑
i∈F

Si⊗Xi + ∑
i∈F

S∗i ⊗X∗i , Xi ∈A ,

where F is a finite subset of N. So there exists N ∈ N, such that F ⊆ {1, . . . ,N}. This

means, by the injectivity the min tensor product, we have that A ∈ (SN⊗min A )+.

But we have just shown that Sn is C∗-nuclear for n finite, so we have that

A ∈ (SN⊗min A )+ = (SN⊗max A )+ ⊆ (S∞⊗max A )+.

Thus, we know that S∞⊗min A = S∞⊗max A .

3.4 The Dual Operator System of Sn

In this section, we prove some properties of the dual operator system of Sn, denoted by

S d
n , which is the operator system consisting of all (bounded) linear functionals on Sn.

First, we choose a basis for S d
n as the following,

{δ0,δi,δ
∗
i : 1≤ i≤ n},
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where

δ0(I) := 1,δ0(Si) := δ0(S∗i ) = 0, for all i;

δi(I) := 0,δi(S j) := δi j,δi(S∗k) := 0, for all k;

δ
∗
i (I) := 0,δ ∗i (S

∗
j) := δi j,δi(Sk) := 0, for all k,

where δi j is the Kronecker delta notation. So we have S d
n = span{δ0,δi,δ

∗
i : 1≤ i≤ n}.

Then, we define an order structure on S d
n by

( fi j) ∈Mp(S
d

n )
+⇐⇒ ( fi j) : Sn→Mp is completely positive .

It is a well-known result by Choi and Effros [5, Theorem 4.4] that with the order structure

defined above, the dual space of a finite-dimensional operator system is again an operator

system with an Archimedean order unit, and indeed, any strictly positive linear functional

is an Archimedean order unit.

We claim that δ0 is strictly positive. To see this suppose that p ∈S +
n with δ0(p) = 0.

Then p = ∑
n
i=1 aiSi+∑

n
i=1 aiS∗i , Using the fact that, if Si are Cuntz isometries, then −Si are

also Cuntz isometries, we see that −p ∈S +
n . Thus, p = 0.

Hence, S d
n is an operator system with Archimedean order unit δ0.

The following characterizes positive elements in Mp(S d
n ) of the form

Ip⊗δ0 +
n

∑
i=1

Ai⊗δi +
n

∑
i=1

A∗i .
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Proposition 3.4.1. An element Ip⊗δ0 +∑
n
i=1 Ai⊗δi +∑

n
i=1 A∗i ⊗δ ∗i ∈Mp(S d

n ) is positive

if and only if (A1, . . . ,An) is a row contraction.

Proof. Let M = Ip⊗δ0+∑
n
i=1 Ai⊗δi+∑

n
i=1 A∗i ⊗δ ∗i , and view M as a completely positive

map from Sn to Mp, it satisfies M(I) = Ip, M(Si) = Ai. Thus, since M us unitally com-

pletely positive, we have that (A1, . . . ,An) is a row contraction.

Conversely, if (A1, . . . ,An) is a row contraction, then there exists a unital completely pos-

itive map which sends Si to Ai, S∗i to A∗i , by the universal property of Sn. But this map is

necessarily M : Sn→Mp, and this means M ∈Mp(S d
n )

+.

Proposition 3.4.2. Let A be a unital C∗-algebra and φ : S d
n →A be a unital linear map.

Then φ is completely positive if and only if φ is self-adjoint and

w(A1⊗φ(δ1)+ · · ·+An⊗φ(δn))≤
1
2
,

for each row contraction (A1, . . . ,An) ∈ Mp, each p ∈ N, where w denotes the numerical

radius.

Proof. Suppose φ is unitally completely positive, then for

M = Ip⊗δ0 +
n

∑
i=1

Ai⊗δi +
n

∑
i=1

A∗i ⊗δ
∗
i ∈Mp(S

d
n )

+,

we must have

Ip⊗φ(M) = Ip⊗ I +
n

∑
i=1

Ai⊗φ(δi)+
n

∑
i=1

A∗i ⊗φ(δ ∗i )
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= Ip⊗ I +
n

∑
i=1

Ai⊗φ(δi)+
n

∑
i=1

A∗i ⊗φ(δi)
∗ ≥ 0.

By Proposition 3.4.1, M is positive if and only if (A1, . . . ,An) is a row contraction. Noting

that (zA1, . . . ,zAn) is also a row contraction, we then have that

Ip⊗ I + z
n

∑
i=1

Ai⊗φ(δi)+ z̄
n

∑
i=1

A∗i ⊗φ(δi)
∗ ≥ 0,

which means that w(∑n
i=1 Ai⊗φ(δi))≤ 1

2 , for each row contraction (A1, . . . ,An) ∈Mp and

each p ∈ N.

Conversely, we suppose w(∑n
i=1 Ai⊗φ(δi))≤ 1

2 , for each row contraction (A1, . . . ,An)

in Mp and each p ∈ N, and this implies that

Ip⊗ I +
n

∑
i=1

Ai⊗φ(δi)+
n

∑
i=1

A∗i ⊗φ(δi)
∗ ≥ 0,

for each row contraction (A1, . . . ,An) ∈Mp and each p ∈ N.

Choose an arbitrary N = B0⊗ δ0 +∑
n
i=1 Bi⊗ δi +∑

n
i=1 B∗i ⊗ δ ∗i ∈ Mp(S d

n )
+, then for

each ε > 0,

εIp⊗δ0 +N = (εIp +B0)⊗δ0 +
n

∑
i=1

Bi⊗δi +
n

∑
i=1

B∗i ⊗δ
∗
i ≥ 0,

which implies

Ip⊗δ0 +
n

∑
i=1

(εIp +B0)
− 1

2 Bi(εIp +B0)
− 1

2 ⊗δi +
n

∑
i=1

(εIp +B0)
− 1

2 B∗i (εIp +B0)
− 1

2 ⊗δ
∗
i ≥ 0.
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By Proposition 3.4.1, we have that ((εIp+B0)
− 1

2 B1(εIp+B0)
− 1

2 , . . . ,(εIp+B0)
− 1

2 Bn(εIp+

B0)
− 1

2 ) is a row contraction, and therefore

Ip⊗ I+
n

∑
i=1

(εIp +B0)
− 1

2 Bi(εIp +B0)
− 1

2 ⊗φ(δi)

+
n

∑
i=1

(εIp +B0)
− 1

2 B∗i (εIp +B0)
− 1

2 ⊗φ(δi)
∗ ≥ 0.

Thus,

φ(εIp⊗δ0 +N)≥ 0, for each ε > 0.

So we have that φ(N)≥ 0, and this completes the proof.

Remark 3.4.3. Since compressions of row contractions are still row contractions, it follows

that if

w(A1⊗φ(δ1)+ · · ·+An⊗φ(δn))≤
1
2
,

for each row contraction (A1, . . . ,An)∈Mp, each p∈N, then for Cuntz isometries S1, . . . ,Sn,

w(S1⊗φ(δ1)+ · · ·+Sn⊗φ(δn))≤
1
2
,

where Si’s are Cuntz isometries and the tensor product is the minimal one so that S1⊗a∗1+

· · ·+ Sn⊗ a∗n ∈ On⊗min A . Conversely, using the universal property of Sn, we have that

for each row contraction (A1, . . . ,An) ∈ Mp, the map sending Si to Ai, S∗i to A∗i , I to Ip is

completely positive and hence

w(S1⊗φ(δ1)+ · · ·+Sn⊗φ(δn))≤
1
2
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implies that

w(A1⊗φ(δ1)+ · · ·+An⊗φ(δn))≤
1
2
.

On the other hand, we have that

w(S1⊗φ(δ1)+ · · ·+Sn⊗φ(δn))≤
1
2

if and only if

I⊗1+
n

∑
j=1

S j⊗a∗j +
n

∑
j=1

S∗j ⊗a j ≥ 0.

So we have proved the following corollary.

Corollary 3.4.4. A unital linear map φ : S d
n →A is completely positive if and only if φ is

self-adjoint and

w(S1⊗φ(δ1)+ · · ·+Sn⊗φ(δn))≤
1
2
,

where S1, . . . ,Sn are Cuntz isometries if and only if (φ(δ1)
∗, . . . ,φ(δn)

∗) is a dual row con-

traction.

In [17], the joint numerical radius for n−tuple of operators (T1, . . . ,Tn) ∈ B(H ) is

defined as:

w(T1, . . . ,Tn) := sup
∣∣∣∣ ∑
α∈F+

n

n

∑
j=1
〈hα ,Tjhg jα〉

∣∣∣∣,
where Fn is the free group on n generators g1, . . . ,gn, and the supremum is taken over all

families of vectors {hα}α∈F+
n
⊆H with ∑α∈F+

n
‖hα‖2 = 1.
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It is shown in the same paper that w(T1, . . . ,Tn) =w(S1⊗T ∗1 + · · ·+Sn⊗T ∗n ) [17, Corol-

lary 1.2], where w on the right hand side is the numerical radius of an operator on H de-

fined in the usual way. Thus, it is natural to extend the notion of joint numerical radii of

n-tuples to the category of C∗-algebras.

Definition 3.4.5. Let A be a C∗-algebra. The joint numerical radius of (a1, . . . ,an), an

n-tuple in A , is defined as:

w(a1, . . . ,an) := w(S1⊗a∗1 + · · ·+Sn⊗a∗n),

where Si’s are Cuntz isometries.

Remark 3.4.6. Let A be a C∗-algebra. Then the n-tuple (a1, . . . ,an) ∈ A is a dual row

contraction if and only if

w(a1, . . . ,an)≤
1
2
.

Theorem 3.4.7. Let E ′n = span{In+1,Ei0,E0i : 1 ≤ i ≤ n} ⊆Mn+1, then S d
n is completely

order isomorphic to E ′n via the map θ : S d
n → E ′n, with θ(δ0) = In+1, θ(δi) = E0i, θ(δ ∗i ) =

Ei0, for 1≤ i≤ n.

Proof. We first show that θ is completely positive. By Corollary 3.4.4 and Remark 3.4.6,

we just need to show that for n Cuntz isometries S1, . . . ,Sn,

w
(


0 S1 · · · Sn

0 0
... . . .

0 0


)
≤ 1

2
,
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which is equivalent to



I zS1 · · · zSn

z̄S∗1 I
... . . .

z̄S∗n I


≥ 0 for all z ∈ T

which clearly holds since (zS1, . . . ,zSn) is row contraction.

Next, we show that θ−1 is also completely positive. Let p ∈ N and note that Mp(E ′n) =

E ′n(Mp), we can write a positive element A ∈Mp(E ′n) as



A0 A1 · · · An

A∗1 A0

... . . .

A∗n A0


,

where Ai ∈ Mp. Consider εIp⊗ In +A, where Ip denotes the identity matrix in Mp, for

ε > 0, and let B = (εIp +A0)
− 1

2 , we have that



Ip BA1B · · · BAnB

BA∗1B Ip

... . . .

BA∗nB Ip


≥ 0.
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This implies that (BA1B, . . . ,BAnB) is a row contraction, and hence

(θ−1)(p)
(


Ip BA1B · · · BAnB

BA∗1B Ip

... . . .

BA∗nB Ip


)
=Ip⊗δ0 +

n

∑
i=1

BAiB⊗δi

+
n

∑
i=1

BA∗i B⊗δ
∗
i ≥ 0,

by Proposition 3.4.1. Thus,

(εIp +A0)⊗δ0 +
n

∑
i=1

Ai⊗δi +
n

∑
i=1

A∗i ⊗δ
∗
i ≥ 0, for all ε > 0,

which is the same as (θ−1)(p)(εIp⊗ In +A)≥ 0, for all ε > 0. Since θ is unital, we know

that (θ−1)(p)(A)≥ 0. Hence, θ−1 is also completely positive.

We recall the following result of Kavruk:

Theorem 3.4.8. [11, Theorem 4.1] Let S be a finite-dimensional operator system. Then

S is C∗-nuclear if and only if S d is C∗-nuclear.

Corollary 3.4.9. We have that E ′n is a C*-nuclear operator system.

Proof. Since Sn is C*-nuclear, S d
n is C*-nuclear by the above theorem. But E ′n = S d

n up

to complete order isomorphism.

Remark 3.4.10. The operator system E ′n seems more elementary to deal with and if we

could show directly that E ′n is C*-nuclear, then that would imply by Kavruk’s result that
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Sn is C*-nuclear, which in turn would give another proof of the nuclearity of the Cuntz

algebras. However, we have been unable to prove directly that E ′n is C∗-nuclear.

3.5 A Lifting Theorem for Joint Numerical Radius

The local lifting property of an operator system S is defined in [13]:

Definition 3.5.1. Let S be an operator system, A be a unital C∗-algebra, I CA be an

ideal, q : A →A /I be the quotient map and φ : S →A /I be a unital completely positive

map. We say φ lifts locally, if for every finite-dimensional operator system S0 ⊆S , there

exists a completely positive map ψ : S0→A such that q◦ψ = φ . We say that S has the

operator system locally lifting property (OSLLP) if for every C∗-algebra A and every

ideal I ⊆A , every unital completely positive map φ : S →A /I lifts locally.

Theorem 3.5.2. [13] Let S be an operator system, then the following are equivalent:

1. S has the OSLLP;

2. S ⊗min B(H ) = S ⊗max B(H ).

We have seen that the operator system S d
n is C∗-nuclear (Theorem 3.4.8). In particular,

we have that for a Hilbert space H ,

S d
n ⊗min B(H ) = S d

n ⊗max B(H ).

Thus, the operator system S d
n has the lifting property (LP).
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By using the LP of S d
n , we are able to derive the following result concerning the joint

numerical radius.

Theorem 3.5.3. Let A be a unital C∗-algebra and J CA be an ideal. Suppose T1 +

J, . . . ,Tn+J ∈A /J, then there exist W1, . . . ,Wn ∈A with Wi+J = Ti+J for each 1≤ i≤ n,

such that w(W1, . . . ,Wn) = w(T1 + J, . . . ,Tn + J).

Proof. Suppose w(T1 + J, . . . ,Tn + J) = K. If K = 0, then clearly Ti + J = 0 for each 1 ≤

i≤ n. So we can choose Wi = 0 for every 1≤ i≤ n.

So we consider the case when K > 0. A little scaling shows that

w(
T1

2K
+ J, . . . ,

Tn

2K
+ J) =

1
2
.

So the linear map φ : S d
n →A /J defined by

φ(δ0) = I + J, φ(δi) =
T ∗i
2K

+ J, φ(δ ∗i ) =
Ti

2K
+ J

is unitally completely positive.

We have known that S d
n has the LP, so there exists a unitally completely positive map

φ̂ : S d
n →A such that π ◦ φ̂ = φ , where π denotes the canonical map from A onto A /J.

Let W ∗i = 2Kφ̂(δi), we have that W ∗i + J = Ti + J. Moreover, by proposition....., we know

that (W1
2K , . . . ,

Wn
2K ) is a co-row contraction. Hence, we have that

w(W1, . . . ,Wn)≤ K.
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Now, to complete the proof, we need to show that w(W1, . . . ,Wn) = K. Suppose that

w(
W1

2K
, . . . ,

Wn

2K
)<

1
2
.

Then there exists an ε > 0, such that

w(
(1+ ε)W1

2K
, . . . ,

(1+ ε)Wn

2K
)<

1
2
.

However, this implies that

I⊗1+
n

∑
i=1

Si⊗
(1+ ε)W ∗i

2K
+

n

∑
i=1

S∗i ⊗
(1+ ε)Wi

2K
≥ 0,

in Sn⊗min A . Since id⊗π is completely positive, we further have that

I⊗1+ J+
n

∑
i=1

Si⊗
(1+ ε)T ∗i + J

2K
+

n

∑
i=1

S∗i ⊗
(1+ ε)Ti + J

2K
≥ 0.

It now follows that

w(T1 + J, . . . ,Tn + J)≤ K
1+ ε

,

which is a contradiction.
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