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Abstract

Early detection of cancer is crucial for successful intervention strategies. Mass
spectrometry-based high throughput proteomics is recognized as a major break-
through in cancer detection. Many machine learning methods have been used to
construct classifiers based on mass spectrometry data for discriminating between can-
cer stages, yet, the classifiers so constructed generally lack biological interpretability.
To better assist clinical uses, a key step is to discover biomarker signature profiles,
i.e. combinations of a small number of protein biomarkers strongly discriminating
between cancer states.

This dissertation introduces two innovative algorithms to automatically search for
a signature and to construct a high-performance signature-based classifier for cancer
discrimination tasks based on mass spectrometry data, such as data acquired by
MALDI or SELDI techniques. Our first algorithm assumes that homogeneous groups
of mass spectra can be modeled by (unknown) Gibbs distributions to generate an
optimal signature and an associated signature-based classifier by robust log-likelihood
analysis; our second algorithm uses a stochastic optimization algorithm to search for
two lists of biomarkers, and then constructs a signature-based classifier.

To support these two algorithms theoretically, this dissertation also studies the
empirical probability distributions of mass spectrometry data and implements the
actual fitting of Markov random fields to these high-dimensional distributions. We
have validated our two signature discovery algorithms on several mass spectrometry
datasets related to ovarian cancer and to colorectal cancer patients groups. For these
cancer discrimination tasks, our algorithms have yielded better classification perfor-

mances than existing machine learning algorithms and in addition,have generated
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more interpretable explicit signatures.
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Chapter 1

Introduction

1.1 Background

In proteomics, mass spectrometry is a broadly used protein profiling technology to
study the mixture of proteins/peptides present in biological tissues or fluids. Such
study provides highly efficient potential tools for protein-based identification of can-

cer diseases, disease progression monitoring, and treatment response.

The achievements of mass spectrometry in analyzing proteins is due to the de-
velopment of soft ionization techniques. There are three commonly used ionization
methods: the electrospray ionisation (ESI), the matrix-assisted laser desorption ion-
ization (MALDI), and surface-enhanced laser desorption and ionization (SELDI)
[30]. The ions are separated based on their mass to charge (m/z) ratios in another

part of the instrument, namely the mass analyzer, to generate information-rich mass



spectra. Four primary types of mass analyzers are the ion trap, the time-of-flight
(TOF), the quadrupole, and the Fourier transform ion cyclotron (FT-MS) analyzer
[3]. Due to their simplicity, accuracy, high resolution, and sensitivity, MALDI and

SELDI are popularly used in current research, usually coupled with TOF analyzer.

MALDI and SELDI generate high-dimensional mass spectra from specimens. Bi-
ological information contained in the mass spectra is investigated by expert empirical
analysis or complex statistical analysis for medical diagnosis and prognosis. Recent
development recognizes proteomic biomarkers, a non-invasive screening method, as

a breakthrough to extract such useful information from mass spectra [64].

Managing and analyzing high-dimensional data is currently a challenging task for
biomarker detection, since most mass spectra can have several tens of thousands data
points [44]. Moreover, data acquisition is blurred by variations and errors introduced
by data acquisition split into successive distinct sessions, causing difficulties in data
pre-processing. Purely empirical analysis by biologists can not satisfy such require-
ments. Mass spectra analysis is relying more and more on statistical and machine

learning technologies.

Proteomic profiles analysis aims to lower mass spectra data dimensionality, to
detect discriminating proteomic biomarkers, and to classify automatically new mass
spectra via differentially expressed biomarkers. These three basic steps are usually
referred to as the pre-processing, biomarker detection, and group classification. The
pre-processing phase is usually performed by commercial software such as Ciphergen

ProteinChip, Markerview, and PROcess, or in-house software such as LMS, LIMPIC,



SpecAlign [92], MassSpecWavelet [94], and Cromwell Package [24]. Biomarker de-
tection normally depends on in-house algorithms. Sample classification, as the final
goal of mass spectra analysis, has been actively and promisingly performed by utiliz-
ing various machine learning technique in recently years. However, there is no gold
standard in computational proteomics as these three stages are usually performed

through different proprietary algorithms tailored to particular applications [75].

In the sample classification step, popular machine learning algorithms such as
support vector machines, artificial neural networks, or k-nearest neighbors usually
generate "black-box” classifiers, which are difficult to interpret or extend biologically.
To develop clinically usable mass spectra analysis tools, a key step is to discover ”sig-
nature profiles”, i.e. combinations of a small number of protein biomarkers strongly
discriminating between cancer states [96] [100] [3] [33]. However, to reach this goal,

the patterns of mass spectrometry datasets need to be understood in depth.

In this study, we have innovatively investigated discrimination between homoge-
neous groups of mass spectrometry datasets in the context of Markov Random Field
(MRF) models and developed several novel algorithms for automatic discovery of
biologically interpretable ”signature profiles” to solve multiple discrimination tasks.
We have tested our signature discovery algorithms on a new MALDI-TOF dataset
for colorectal cancer and two well-known ovarian cancer SELDI-TOF datasets. We
have generated explicit signatures with high discriminating power between the vari-
ous cancer patients groups involved in these data. We have compared performances
between our optimized signature-based classifiers and several benchmark machine

learning techniques.



1.2 Literature Review

1.2.1 Pre-processing

Pre-processing software normally include more or less the same substeps, namely
data denoising (or smoothing), peak normalization, baseline removal, peak detection

and peak alignment, implemented by various well known algorithmic techniques.

Denoising (or smoothing) aims to reduce the high-frequency noise caused by
sources such as electrical interference, random ion motions, statistical fluctuation in
the detector gain, or chemical impurities [25]. The most commonly used denoising
approaches are smoothing, wavelet transform, and deconvolution filters [80]. Typical
smoothing filters are the Gaussian filter [88] [102], the moving average filter [55] [52]
[49] [40] [31], and the Savitzky-Golay filter [49] [40], which smooth out the noise
by averaging intensities over a moving window. Wavelet transform (WT) employs
widely used signal process techniques to investigate mass spectra, which includes
continuous wavelet transform(CWT) [27] [45], discrete wavelet transform (DWT)
[71] [11] [101], and undecimated discrete wavelet transform(UDWT) [24] [39]. In
[56], it is assumed that the spectra can be modeled as a sum of peaks with some
parametric form and implemented a deconvolution filter to study the true peaks and

its additive noise.

It is not feasible to compare peak intensities between different spectra directly by
magnitudes due to the differences in the protein amounts in the sample of protein.

Normalization rescales the intensities of mass spectra and, therefore, to facilitate



mass spectra comparisons. The commonly used normalization methods within each
spectrum, involve normalization by rescaling with respect to total ion current (TIC)
[62] [74] [91] [59] [90] [7] [42] [50] [43] [63] or with respect to a specific control peak [35]
[87] [22] [65] [82]. Normalization across samples has also been studied and adjusts

intensities for all spectra with respect to a global scaling value [66] [81] [67] [78].

Mass spectra also exhibit decreasing baselines, due to the matrix material added
to the sample of interest. Methods to remove the baseline can be divided to two
categories: Heuristic or model-based [80]. Heuristic approaches estimate the base-
line by averaging or minimizing intensities over a local sliding window [7] [52] [28],
applying piecewise regression [23] [87] [60] [34] [52] [96] [11] [63] or computing the
convex hull of intensities in a region [55]. Model-based approaches design and fit a

model for the pattern of the baseline [21] [56] [27] [45].

The peak detection and peak alignment subtasks are sometimes referred to as a
whole feature extraction step, which results in a significant reduction in the number
of original peaks. It locates the true peaks that carry proteomic information. Since
peak intensities are correlated and practically a peak covers a region instead of being
located at a precise abscissa, binning is the most frequently used technique to reduce
dimensionality [7] [84] [22] [63] [52] [74] [97]. After this, peak detection is normally
based on a signal-to-noise ratio (SNR) [24] [28] [57] [40] [52] [39], local maximum
[55] [95], slopes of peaks [57], shape ratio [52] [11], or other model-based criteria [45]
[49]. Peak alignment among several mass spectra regroups neighboring peaks into
isolated single peaks, then, regroup peaks into a global list of prominent peaks to

correct misalignment and to cross reference peaks across different mass spectra [92]



2] [42] [43] [51] [81] [87]. A few other studies project the original space into another
low-dimensional space with principle component analysis (PCA) and extract features

from this new space, such as [97] [53].

The operation of pre-processing software is essentially user-dependable because
subjective parameters exist at almost all substeps and in addition, the order of all
substeps is subject to user’s decision [25]. Any combination of different parameters
and of preprocessing substeps may significantly alter the extracted features, which

is a drawback for reproducibility.

1.2.2 Biomarker Detection

Biomarker detection, sometimes called feature selection, focuses on identifying a
small list of peaks for discrimination purpose. The three most frequently used feature
selection methods are filter, wrappers or embedded methods [77]. Filter methods,
such as t-test [54] [93] [63], F-test [14], and peak probabilities comparison [84], rank
and select peaks based on some computed statistics. Wrapper methods (e.g., [51]
[74]), in the contest of preparation for hypothesis testing, evaluate various subsets of
features by training and testing a classification model and chooses the best one. Em-
bedded methods, just like wrapper methods, embed feature election in the training
phase of classifiers. Embedded methods have been increasingly exploited in stud-

ies based on decision trees [31], random forests [32] [93], Support Vector Machines

(SVM) [38] [68] [100], and Neural Networks [9] [74].



1.2.3 Group Classification

For the classification phase, bioengineering papers tend to employ machine learn-
ing algorithms to automatically discover reliable classifiers from pre-processed sam-
ples. Machine learning, including unsupervised and supervised learning methods, is
a branch of artificial intelligence concerned with the design and evaluation of algo-
rithms that enable the statistical model to self-modify its own parameters in view
of previous results. Unsupervised learning aims to partition data sets into homoge-
neous subgroups based on some criteria that define how ”similar” two samples are.
A few studies based on clustering [67] [70] or self-organizing maps [65] [22] [61] are of
this type. Supervised learning, which analyzes pre-classified mass spectra data sets
to generate automated classifiers, has been extensively applied for cancer discrimi-
nation: artificial neural networks (ANN) [9] [35] [67] [68] [46], decision trees [2] [73]
[86] [10] [35] [60] [101] [68] [31] [79], boosted decision tree [72], k-nearest neighbors
[102] [35] [87] [68] [79], random forests [37] [79], linear and quadratic discriminant
analysis [93] [7] [53] [71] [87] [93] [79], and support vector machines (SVM) [93] [87]

[68] [38] [51][97] [100] [90] [79)].

1.3 Outline of Dissertation

The dissertation is divided into twelve chapters including the introduction.

Chapter 2 introduces the mass spectrometry technology. It gives a brief de-

scription of two commonly used mass spectrometry technique, MALDI-TOF and



SELDI-TOF, and the generated mass spectrometry datasets.

Because raw mass spectra are blurred by experimental variations and errors,
a typical mass spectrometry analysis starts with a pre-processing step, Chapter 3
presents a stepwise pre-processing algorithm, which includes several key steps: nor-
malization, smoothing, baseline removal and peak detection. It is quite important
to isolate not only the strong peaks, but also the peaks that are highly reliable. We
design a peak scoring method to evaluate the reliability of detected peaks, which will
be used to compare the reliability of discovered signatures. To further facilitate mass
spectra comparison and classification, we condense all detected peaks into a list of

well separated reference peaks, within which we will select adequate signatures.

It has fairly often been suggested that better classification performance can be
achieved by combining several biomarkers, yet the underlying links among peaks
are quite often investigated rather superficially. Chapter 4 innovatively studies co-
occurence patterns among peaks within a Markov Random Field framework and
proposes to fit Gibbs models to the observed empirical distributions of simultaneous
peak occurrences. Generalized from published likelihood-based techniques, three

parameter estimation methods for Gibbs model fitting are developed.

To prove the feasibility of the methodology proposed in Chapter 4, Chapter 5 then
applies these three parameter estimation methods to a group of mass spectrometry

samples in order to parametrize an underlying Gibbs distribution.

Chapter 6 derives, for a typical discrimination task between two groups Gt and

G, an optimal classifier based on the fitting of two distinct Gibbs models to G and



G~. The optimal classifier turns out to be a linear function on an extended sample

space.

The main goal of our study is to discover ”signature profiles”based on identifi-
cation of discriminating patterns between mass spectrometry samples from different
patient groups. Chapter 7 sets up the framework of signature discovery algorithm
by giving the definition of signatures and sketching a general procedure for signa-
ture based classification. Chapter 8 and 9 present, in detail, two signature discovery

algorithms.

Although the optimal classifier between two Gibbs models is known and easy to
compute, a practical problem is that it is hard to collect sufficient samples to accu-
rately estimate Gibbs models. This motivates us, in Chapter 8, to design a robust
log-likelihood (RLL) method to seek such an optimal classifier without preliminary
fitting of Gibbs models. Chapter 9 then proposes another innovative algorithm that
discovers signature profiles by Maximing Detecting Power (MDP). We implement
this optimization by Simulated Annealing. We then validate separately each of the
algorithms on simulated datasets and compute their convergence rate in the frame-

work of large deviation theory.

In Chapter 10, we introduce two real mass spectrometry datasets, which are re-
lated to colorectal cancer and ovarian cancer. Our two signature discovery algorithms
are tested on these datasets to discover signatures for cancer stage discrimination.

Group classification performance is computed for our signature-based classifiers.

To handle the high dimensionality of mass spectrometry data, and their inherent



variability, "machine learning” algorithms have been a popular approach to facilitate
automatic classification between mass spectra. In chapter 11, to emphasize the
advantage of our signature discovery algorithms, we compare their performances with
those of several popular machine learning algorithms on the real mass spectrometry

datasets.

Chapter 12 summarizes the achievements of our study and the advantage of our
signature based discrimination algorithms. It also points out our future research

goals in this area.
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Chapter 2

Mass Spectra Acquisition and

Cancer Discrimination

This chapter gives a brief description of the two most commonly used mass spectrom-
etry technologies (MALDI-TOF and SELDI-TOF) and the generated mass spectrom-
etry datasets. Since cancer detection is our final goal for analyzing mass spectra, we
also introduce generically the cancer discrimination problem we will be dealing with

throughout this dissertation.

2.1 Mass Spectrometry Technology

A mass spectrometer platform includes: a soft ionization system (i), a mass analyzer

(ii), an ion detector (iii), and a system to output and store spectra (iv).

11



Biological samples are first imported directly into (i) or are purified to simple
proteins by biochemical fractionation or affinity selection, which are inserted into
(i) sequentially. Samples whether degraded or not are then mixed with an energy-
absorbing matrix material that allows them to crystallize before being placed on a
steel plate. SELDI, a modification of MALDI, adds special chemistry on the surface
of the plate to capture specific proteins. The plate is placed into a vacuum chamber
(i) where a laser hits the plate leading to ionization of proteins into particles. These
ionized particles are then accelerated by an electric field and fly into a time-of-
flight tube, where the time for the particles to fly through the tube is a function
of the molecular weight and charge of the protein. (iii) at the end of the tube,
a sensor records the number of particles with their time of flights (TOF) over a
short time interval. Each TOF is transformed into a particle mass-to-charge (m/z)
and is stored with its corresponding particle ”intensity” as a data point. A mass
spectra gathers up to tens of thousands of such (m/z, intensity) pairs for a single
biological sample. A spectrometer usually processes hundreds of biological samples
simultaneously, therefore produces a high-dimensional dataset. This massive dataset
is the mass spectra acquisition output and is stored by (iv), which is usually in a

text file.

2.2 Mass Spectra Datasets

One mass spectrometry data folder may have hundreds of .txt files, each .txt file

contains one mass spectrum from one biological sample. Two lists of numbers are
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saved in one such .txt file: the left column lists the m/z values and the right column

lists the corresponding intensity values, as shown in Figure 2.1.

TOB.627R6T79RRB387 42.11764587836914
TH8.7360459302854 46.19607925415835
798.B468315461018 46.431373596191486
TOB.9567247204817 42.82353218445215
799.06662546226825 45.9607B45912105375
799.1765337716517 3B.B2353218445215
799. 2864496484455 46.50598037715972656
799.3963730928187 43.37255096435547
799.5063041846045 58.98035245605465
799.6162426841184 44 . BE274T7159238281
799.7261BEE305285 46.352543420410156
799.8361425454458 41.72549057B06E36
799.5461038274878 48.878433990478516
BRB.B560T26T0ERES 47.92156982421875
BRR.166049R80337036 37.96@7B4912100375
BRB.2T76R33ATE3I65T 48.39215B58830878
BRR.3B6024630382 68.31372833251953
BBB.40960237495885 41.89804153442383
ERD.606R3R43T1EEZ 48.8

BRB. 7160446918376 37.17647171828508
BRB.B260665140833 42.5059803771572656
BRB.53609559037E3 47.2156B67980957
BR1.P46132B610827 46.2745132446285906
BB1.1561773858401 48.31372B33251953
BR1.2662294783462 46.B835921B982587E8S9
BR1.3762B91381652 3B8.431373596191486
BR1.4B63563657445 48.B62T74T19238281
BR1.59643116086408 34.98035245605465
BB1.7@65135232532 43.2156B67980957
BR1.B8166034534145 48.31372B33251953
BR1.5267089511522 34.90156228027344
BRZ.P36EB06R163624 37.B82354736328125

Figure 2.1: An example of a .txt mass spectrum file

Figure 2.2 displays, as an example, one mass spectrum obtained from human
protein sample by MALDI-TOF technique. This spectrum has 36,930 distinct (m/z,

intensity) points, which are connected by piecewise lines in our figure.

Two spectra from two subjects may have largely different intensity scales, even
if they are from the same group. Figure 2.3 compares two spectra from two patients
with the same cancer, one of which has a largest peak with intensity larger than 600

and the other one has all peak intensities inferior to 200. Therefore, to make spectra
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Figure 2.2: A raw mass spectrum

comparable, normalization is needed in pre-processing (see Section 1.2.1).

Mass spectra have high-frequency noise caused by electrical interference or ran-
dom ion motions. In order to reveal the true patterns of mass spectra, denoising (or
smoothing) is needed in pre-processing (see Section 1.2.1). For example, in Figure
2.4, the peak pattern of the original spectrum (blue) is really hard to identify be-
cause of its high frequency noise. The red curve has smoothed it to facilitate peak

detection.

Spectra display numerous oscillations, modelized as peaks above a slowly varying
baseline, which can also largely affect the intensity scale of spectra. The baseline
effect is due to the cluster of matrix material on peptide particles, which can be very
abundant in the lower mass range and decreases dramatically with the increasing of

mass range. Figure 2.5 gives an example of the baseline computed for the spectrum
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in Figure 2.2. Baseline removal is one important step in pre-processing as well (see

Section 1.2.1).
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Figure 2.5: Baseline of mass spectrum

Horizontal perturbations of mass spectra abscissas are related to the accuracy of
a mass spectrometer machine, which affects the m/z value of each point. Namely,
at the time a mass spectrometer detects a peptide particle, the m/z value recorded
has potential deviation from the true m/z value of this particle. The deviation is

quantified by the mass spectrometer accuracy p, which is defined as

B |z — x0]
p = max ————,
o ZTo

where z is the reported m/z value and x is the true m/z value. p is usually provided
by the manufacture of mass spectrometer as a fixed parameter, which is normally

between 0.1% and 0.3%. Therefore, there is a roughly error window = 4 px around
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an observed m/z value z where the true m/z value lies. Figure 2.6 displays, as
an example, a error window of a point with a m/z value 4370.2. Because of such
variation, a same peptide particle can be detected with two different m/z ratios in two
mass spectra. This makes the direct comparison between mass spectra impossible
without peak realignment. Peak alignment is often implemented by commercial

software (see Section 1.2.1).
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Figure 2.6: Error window for a m/z value

The acquisition of mass spectra is blurred by variations introduced in successions
of distinct experimental phases. Two mass spectra from one biological sample, called
replicates, can be different as shown in Figure 2.7, even though they are produced by
repeating the same experimental process. However, we can still observe that there
are obvious common peak patterns between the two replicates. A mass spectrometry

analysis approach that utilizes two or more replicates per subject can achieve a more
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reliable result (see Section 7.4).
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Figure 2.7: Two mass spectrum replicates

2.3 Cancer Discrimination Tasks

Cancer detection in our study is not only about discrimination between cancerous

patients and healthy patients, but also involves discrimination among different cancer

stages.

Suppose we have gathered a group of biological samples from n; patients with a
certain cancer and a control group of biological samples from ns healthy patients.
(The two groups of individuals may also be patients with early stage of cancer versus
late stage of cancer in the case of discrimination between different cancer stages.)

After acquiring one mass spectrum from each of patient protein samples through

18



the same process using either MALDI-TOF or SELDI-TOF technique, we have two
groups of mass spectra G and G~. Generally speaking, a cancer detection problem
is to discover common peak patterns of mass spectra in one group and to select
distinct peak patterns characterizing the two groups to construct an accurate and

robust classifier to differentiate Gt from G~.
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Chapter 3

Mass Spectra Pre-processing

Mass spectra can be notoriously complex, not only because of its large scale, but
also because several types of experimental noise and errors can complicate its ex-
pressions. Data pre-processing, which "cleans up” raw mass spectra, can increase
specificity and sensitivity of protein recognition [36] as well as tease out redundant
information to save classification cost. Pre-processing principles are well known, but
implementation details vary considerably, and are often not accessible in commer-
cial software. For better context control, we have developed our own sequence of
pipelined pre-processing steps. Peaks detected after the pre-processing procedure
can not be used directly to compare spectra because of vertical and horizontal vari-
ations they have. To take account of the abscissa dependent noise affecting peaks
intensities, our algorithm designs a method to evaluate the reliability of the detected
peaks; to reduce the effect of horizontal variations, we condense all peaks to a list of

consensus reference peak peaks.
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Note: This section is based on previous work of Dr. Robert Azencott and Dr.

Chinmaya Gupta.

3.1 Stepwise Pre-processing

A point in a mass spectrum is represented by a coordinate (z,y), with = as m/z ratios
and y as intensity in Dalton. In our algorithm, we implement the same sequence of

pre-processing steps for each mass spectrum.

1. Generated by high resolution spectrometers, m/z ratios are floating points
values. To increase process speed, we calibrate each m/z ratio to its nearest
integers x; we then compute the median of all the intensities whose m/z ratios
binned to x as the new intensity value y. A mass spectrum is then defined on

points
(‘Th yl)’ (w27 y2)> te (l’n, yn)

2. Normalization is classically performed with respect to the total ion current
(TIC), i.e., the sum of all the intensities in each mass spectrum, so that the

total intensity in a mass spectrum is 1.

3. Noise-affecting intensities are smoothed out by a moving average technique,
namely, for each point (x;,y;), we replace y; by the average value y, of the
intensities of all the points that have abscissas within a window [z —ux, x —uzx].

We use this type of sliding window because the noise linearly amplifies with
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the increase of m/z values. This gives us a smoothed mass spectrum defined
on

('rh yi)? (sz, yé)? e (In7 y;“L)
Noise at (z;, ;) is computed as ns; = y; — y..

4. The local noise values of (x;,y;) detected within a local noise window [z; —
vx;, T; + vx;] are truncated to eliminate the noise values below their 2.5%
empirical quantile or above their 97.5% empirical quantile. Then the empirical

standard deviation o; of these mildly censored local noise at x; can be evaluated.

5. Baseline b; at (z;, y}) is computed as b; = max(0, bb;) where bb; = median of {y; :
iel,y, <50%(maxkery,)} and I = {j : x; € [z; —wx;, x; +wx;]}. A baseline
removed mass spectrum is then defined on

(xla 'gl)v (IQa g2)7 Tty (x’na gn)a
where g; =y} — b;.
6. Peak strength S; at (x;,7;) is defined as S; = §;/0;. A point (z;, ;) is detected

as a "peak” if it is a local maximum within the window [x; — tz;, z; + ta;] and

S; is larger than a user-defined threshold th.

3.2 Reliability Scoring for Peaks

Peaks form the basis of discovered biomarkers and signatures. Peak intensities can be

strongly impacted by noise during each experiment, so it is quite important to isolate
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not only the most discriminating peaks, but also the peaks that discriminate with the
highest reliability across multiple experiment. To date, few studies have attempted to
explore the noise characterization. We propose an innovative algorithm that identifies
the distribution of such underlying noise and computes ” peak reliability scores” which
characterize the peak capacity to persist through random noise perturbation. Peak
reliability score provides a way to evaluate the reliability of a peak across repeated
experiments and also the foundation to compute the reliability score of signatures,

which will be described in Section 7.

Suppose we have extracted n peaks P, Ps, ..., P, from mass spectrum M with
intensities ¥y, 92, -+ , Y, after pre-processing. We first compute the histogram H;
of the local noise of each peak P;,. Then we repeat the following process K (eg.

K =100) times. At K =k, we

1. Sample a noise rns; by Monte-Carlo simulation from H;, and then add it to y;

to obtain a new intensity yy, = y; + rns;;
2. Compute new peak strengths SS; = yy,/o:(i = 1,2,--- ,n);

3. Rank SS;(i = 1,2,--- ,n) in ascending order; let 7¥ = percentage of ranking

of 8S;, 0 < rf < 1. The larger the rank, the larger the peak strength.

A reliability score 7; of P; is computed as
1K

~ Z k

"TK P S

Let the random varaibles of the noise of the n peaks P;, P, -+, P, be NS;, NS,

-+, NS, with probability distributions Q1,Qs, - ,Q,. Let S,S5,,---,.5, be their
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original strengths and also assume that S; < Sy < --- < S5,,. It is easy to see that the
relative order of two peaks P, and P; (i < j) is almost not affected by perturbation

if and only if
P{(g; + NSj)/o; < (§i + NSi)/oi} ~ 1,
that is

P{Sj —SZ‘ < NSZ‘/O'i—NSj/O'j} ~ 1.

Figure 3.2 compares the histograms of N.S;/o; and NS;/o; identified from two
peaks P, and P; (z; = 8606 and x; = 8937) in the spectrum of Figure 3.1. The
difference of strengths S; — S; between the two peaks is about 100 while the scale
of NS;/o; or NS;/o; is about 5. Therefore, noise perturbations cannot affect the

relative order of the two peaks.

As to the two peaks in Figure 3.3 with their strength noise histograms showed in

Figure 3.4, we can compute empirically

which indicates that the relative order of the two peaks according to their strength
S; and S; have a 27.31% chance to be incorrect. It can be seen from Figure 3.3 that
both of these peaks have comparable large local noise levels with respect to their

intensities, which highly affect their relative rank order after perturbation.

Peaks that are always top ranked across multiple noise perturbations are reli-

able peaks. Table 3.1 shows, as an example, the raw ranks, which are the ranks by
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Figure 3.1: Two reliable peaks with stable relative order
Noise perturbations cannot affect the relative order of the two circled peaks.

x; = 8937,8, = 44.72 z; = 8606, 5; = 142.05
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Figure 3.2: Histograms of N.S;/o; and NS;/o; of P, and P; with stable relative order
S; — S; is about 100 while NS;/o; and NS;/o; can only reach 5. Therefore, noise
perturbation will almost surely not affect their relative order.
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Figure 3.3: Two reliable peaks with unstable relative order

Noise perturbations can easily affect the relative order of the two circled peaks.

increasing peak strengths S;, and reliability scores 7; of several peaks from of the
spectrum in Figure 2.2. Some peaks have different ranks before and after perturba-
tion by noise, some don’t. Since noise to o (¢ is the standard deviation of noise)
are usually within a moderate range with probability 1, peaks which are at a low
strength level, are comparably unreliable in their raw ranks. Therefore, this reliabil-
ity score technique is more helpful in filtering out reliable peaks among those with

moderate strengths.
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Figure 3.4: Histograms of N.S;/0; and NS;/o; of P, and P; with unstable relative

order
S; —S; is less than 1 while N.S;/0; and NS;/o; can reach 5. Therefore, their relative
order can be easily affected by noise perturbation.

T; S; Raw rank 7

8606 142.05 100% 100%
3226  38.98 97% 97%
6680  9.51 86% 86%
6417  4.72 75% 84%
1311 4.37 2% 85%
1562 2.23 35% 22%

Table 3.1: Raw ranks and reliability scores
This table compares the raw ranks (rank by increasing S;) and reliability scores
of several peaks from the spectrum in Figure 2.2. Reliability score is computed by
taking account of noise perturbations, therefore can be quite different from raw rank,
especially for peaks with middle level ranks.
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3.3 Reference Peak Abscissas and Activation Fre-

quencies

In repeated mass spectra acquisitions with the same spectrometer, m/z ratios cor-
responding to the same protein exhibit random small shifts around a true value,
which generates difficulty in biomarker selection and comparison across all mass
spectra. When the manufacturer accuracy of a MALDI or SELDI spectrometer is
p, acquisition shifts around a true m/z ratio = will be within the range = + px
(see Section 2.2). Therefore, the m/z values obtained after data pre-processing can
not be directly used to compare spectra. To take account of these "error win-
dows”, we first construct a list of "reference peak abscissas” Abq, Aby,--- , Ab,, at
a(1+p),a(l+p)% a(l+p)3, -+ ,a(l+ p)™ < b, where a and b are the smallest and
largest m/z observed among all spectra. This procedure will dramatically reduce
the size of our feature space and provide a list of common m/z values over all mass

spectra to facilitate spectrum-wise comparison and efficient classification.

Throughout the following chapters, we will use the following definitions.

Definition 3.3.1. For any reference peak abscissa Ab;, and any mass spectrum M,
we say that Ab; is activated by M if there is at least one detected peak (see Section

3.1) in M positioned within the uncertainty window of Ab;.

We define the activation frequency of a