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Abstract

Early detection of cancer is crucial for successful intervention strategies. Mass

spectrometry-based high throughput proteomics is recognized as a major break-

through in cancer detection. Many machine learning methods have been used to

construct classifiers based on mass spectrometry data for discriminating between can-

cer stages, yet, the classifiers so constructed generally lack biological interpretability.

To better assist clinical uses, a key step is to discover biomarker signature profiles,

i.e. combinations of a small number of protein biomarkers strongly discriminating

between cancer states.

This dissertation introduces two innovative algorithms to automatically search for

a signature and to construct a high-performance signature-based classifier for cancer

discrimination tasks based on mass spectrometry data, such as data acquired by

MALDI or SELDI techniques. Our first algorithm assumes that homogeneous groups

of mass spectra can be modeled by (unknown) Gibbs distributions to generate an

optimal signature and an associated signature-based classifier by robust log-likelihood

analysis; our second algorithm uses a stochastic optimization algorithm to search for

two lists of biomarkers, and then constructs a signature-based classifier.

To support these two algorithms theoretically, this dissertation also studies the

empirical probability distributions of mass spectrometry data and implements the

actual fitting of Markov random fields to these high-dimensional distributions. We

have validated our two signature discovery algorithms on several mass spectrometry

datasets related to ovarian cancer and to colorectal cancer patients groups. For these

cancer discrimination tasks, our algorithms have yielded better classification perfor-

mances than existing machine learning algorithms and in addition,have generated
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more interpretable explicit signatures.
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Chapter 1

Introduction

1.1 Background

In proteomics, mass spectrometry is a broadly used protein profiling technology to

study the mixture of proteins/peptides present in biological tissues or fluids. Such

study provides highly efficient potential tools for protein-based identification of can-

cer diseases, disease progression monitoring, and treatment response.

The achievements of mass spectrometry in analyzing proteins is due to the de-

velopment of soft ionization techniques. There are three commonly used ionization

methods: the electrospray ionisation (ESI), the matrix-assisted laser desorption ion-

ization (MALDI), and surface-enhanced laser desorption and ionization (SELDI)

[30]. The ions are separated based on their mass to charge (m/z) ratios in another

part of the instrument, namely the mass analyzer, to generate information-rich mass
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spectra. Four primary types of mass analyzers are the ion trap, the time-of-flight

(TOF), the quadrupole, and the Fourier transform ion cyclotron (FT-MS) analyzer

[3]. Due to their simplicity, accuracy, high resolution, and sensitivity, MALDI and

SELDI are popularly used in current research, usually coupled with TOF analyzer.

MALDI and SELDI generate high-dimensional mass spectra from specimens. Bi-

ological information contained in the mass spectra is investigated by expert empirical

analysis or complex statistical analysis for medical diagnosis and prognosis. Recent

development recognizes proteomic biomarkers, a non-invasive screening method, as

a breakthrough to extract such useful information from mass spectra [64].

Managing and analyzing high-dimensional data is currently a challenging task for

biomarker detection, since most mass spectra can have several tens of thousands data

points [44]. Moreover, data acquisition is blurred by variations and errors introduced

by data acquisition split into successive distinct sessions, causing difficulties in data

pre-processing. Purely empirical analysis by biologists can not satisfy such require-

ments. Mass spectra analysis is relying more and more on statistical and machine

learning technologies.

Proteomic profiles analysis aims to lower mass spectra data dimensionality, to

detect discriminating proteomic biomarkers, and to classify automatically new mass

spectra via differentially expressed biomarkers. These three basic steps are usually

referred to as the pre-processing, biomarker detection, and group classification. The

pre-processing phase is usually performed by commercial software such as Ciphergen

ProteinChip, Markerview, and PROcess, or in-house software such as LMS, LIMPIC,
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SpecAlign [92], MassSpecWavelet [94], and Cromwell Package [24]. Biomarker de-

tection normally depends on in-house algorithms. Sample classification, as the final

goal of mass spectra analysis, has been actively and promisingly performed by utiliz-

ing various machine learning technique in recently years. However, there is no gold

standard in computational proteomics as these three stages are usually performed

through different proprietary algorithms tailored to particular applications [75].

In the sample classification step, popular machine learning algorithms such as

support vector machines, artificial neural networks, or k-nearest neighbors usually

generate ”black-box” classifiers, which are difficult to interpret or extend biologically.

To develop clinically usable mass spectra analysis tools, a key step is to discover ”sig-

nature profiles”, i.e. combinations of a small number of protein biomarkers strongly

discriminating between cancer states [96] [100] [3] [33]. However, to reach this goal,

the patterns of mass spectrometry datasets need to be understood in depth.

In this study, we have innovatively investigated discrimination between homoge-

neous groups of mass spectrometry datasets in the context of Markov Random Field

(MRF) models and developed several novel algorithms for automatic discovery of

biologically interpretable ”signature profiles” to solve multiple discrimination tasks.

We have tested our signature discovery algorithms on a new MALDI-TOF dataset

for colorectal cancer and two well-known ovarian cancer SELDI-TOF datasets. We

have generated explicit signatures with high discriminating power between the vari-

ous cancer patients groups involved in these data. We have compared performances

between our optimized signature-based classifiers and several benchmark machine

learning techniques.
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1.2 Literature Review

1.2.1 Pre-processing

Pre-processing software normally include more or less the same substeps, namely

data denoising (or smoothing), peak normalization, baseline removal, peak detection

and peak alignment, implemented by various well known algorithmic techniques.

Denoising (or smoothing) aims to reduce the high-frequency noise caused by

sources such as electrical interference, random ion motions, statistical fluctuation in

the detector gain, or chemical impurities [25]. The most commonly used denoising

approaches are smoothing, wavelet transform, and deconvolution filters [80]. Typical

smoothing filters are the Gaussian filter [88] [102], the moving average filter [55] [52]

[49] [40] [31], and the Savitzky-Golay filter [49] [40], which smooth out the noise

by averaging intensities over a moving window. Wavelet transform (WT) employs

widely used signal process techniques to investigate mass spectra, which includes

continuous wavelet transform(CWT) [27] [45], discrete wavelet transform (DWT)

[71] [11] [101], and undecimated discrete wavelet transform(UDWT) [24] [39]. In

[56], it is assumed that the spectra can be modeled as a sum of peaks with some

parametric form and implemented a deconvolution filter to study the true peaks and

its additive noise.

It is not feasible to compare peak intensities between different spectra directly by

magnitudes due to the differences in the protein amounts in the sample of protein.

Normalization rescales the intensities of mass spectra and, therefore, to facilitate
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mass spectra comparisons. The commonly used normalization methods within each

spectrum, involve normalization by rescaling with respect to total ion current (TIC)

[62] [74] [91] [59] [90] [7] [42] [50] [43] [63] or with respect to a specific control peak [35]

[87] [22] [65] [82]. Normalization across samples has also been studied and adjusts

intensities for all spectra with respect to a global scaling value [66] [81] [67] [78].

Mass spectra also exhibit decreasing baselines, due to the matrix material added

to the sample of interest. Methods to remove the baseline can be divided to two

categories: Heuristic or model-based [80]. Heuristic approaches estimate the base-

line by averaging or minimizing intensities over a local sliding window [7] [52] [28],

applying piecewise regression [23] [87] [60] [34] [52] [96] [11] [63] or computing the

convex hull of intensities in a region [55]. Model-based approaches design and fit a

model for the pattern of the baseline [21] [56] [27] [45].

The peak detection and peak alignment subtasks are sometimes referred to as a

whole feature extraction step, which results in a significant reduction in the number

of original peaks. It locates the true peaks that carry proteomic information. Since

peak intensities are correlated and practically a peak covers a region instead of being

located at a precise abscissa, binning is the most frequently used technique to reduce

dimensionality [7] [84] [22] [63] [52] [74] [97]. After this, peak detection is normally

based on a signal-to-noise ratio (SNR) [24] [28] [57] [40] [52] [39], local maximum

[55] [95], slopes of peaks [57], shape ratio [52] [11], or other model-based criteria [45]

[49]. Peak alignment among several mass spectra regroups neighboring peaks into

isolated single peaks, then, regroup peaks into a global list of prominent peaks to

correct misalignment and to cross reference peaks across different mass spectra [92]
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[2] [42] [43] [51] [81] [87]. A few other studies project the original space into another

low-dimensional space with principle component analysis (PCA) and extract features

from this new space, such as [97] [53].

The operation of pre-processing software is essentially user-dependable because

subjective parameters exist at almost all substeps and in addition, the order of all

substeps is subject to user’s decision [25]. Any combination of different parameters

and of preprocessing substeps may significantly alter the extracted features, which

is a drawback for reproducibility.

1.2.2 Biomarker Detection

Biomarker detection, sometimes called feature selection, focuses on identifying a

small list of peaks for discrimination purpose. The three most frequently used feature

selection methods are filter, wrappers or embedded methods [77]. Filter methods,

such as t-test [54] [93] [63], F-test [14], and peak probabilities comparison [84], rank

and select peaks based on some computed statistics. Wrapper methods (e.g., [51]

[74]), in the contest of preparation for hypothesis testing, evaluate various subsets of

features by training and testing a classification model and chooses the best one. Em-

bedded methods, just like wrapper methods, embed feature election in the training

phase of classifiers. Embedded methods have been increasingly exploited in stud-

ies based on decision trees [31], random forests [32] [93], Support Vector Machines

(SVM) [38] [68] [100], and Neural Networks [9] [74].
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1.2.3 Group Classification

For the classification phase, bioengineering papers tend to employ machine learn-

ing algorithms to automatically discover reliable classifiers from pre-processed sam-

ples. Machine learning, including unsupervised and supervised learning methods, is

a branch of artificial intelligence concerned with the design and evaluation of algo-

rithms that enable the statistical model to self-modify its own parameters in view

of previous results. Unsupervised learning aims to partition data sets into homoge-

neous subgroups based on some criteria that define how ”similar” two samples are.

A few studies based on clustering [67] [70] or self-organizing maps [65] [22] [61] are of

this type. Supervised learning, which analyzes pre-classified mass spectra data sets

to generate automated classifiers, has been extensively applied for cancer discrimi-

nation: artificial neural networks (ANN) [9] [35] [67] [68] [46], decision trees [2] [73]

[86] [10] [35] [60] [101] [68] [31] [79], boosted decision tree [72], k-nearest neighbors

[102] [35] [87] [68] [79], random forests [37] [79], linear and quadratic discriminant

analysis [93] [7] [53] [71] [87] [93] [79], and support vector machines (SVM) [93] [87]

[68] [38] [51][97] [100] [90] [79].

1.3 Outline of Dissertation

The dissertation is divided into twelve chapters including the introduction.

Chapter 2 introduces the mass spectrometry technology. It gives a brief de-

scription of two commonly used mass spectrometry technique, MALDI-TOF and
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SELDI-TOF, and the generated mass spectrometry datasets.

Because raw mass spectra are blurred by experimental variations and errors,

a typical mass spectrometry analysis starts with a pre-processing step, Chapter 3

presents a stepwise pre-processing algorithm, which includes several key steps: nor-

malization, smoothing, baseline removal and peak detection. It is quite important

to isolate not only the strong peaks, but also the peaks that are highly reliable. We

design a peak scoring method to evaluate the reliability of detected peaks, which will

be used to compare the reliability of discovered signatures. To further facilitate mass

spectra comparison and classification, we condense all detected peaks into a list of

well separated reference peaks, within which we will select adequate signatures.

It has fairly often been suggested that better classification performance can be

achieved by combining several biomarkers, yet the underlying links among peaks

are quite often investigated rather superficially. Chapter 4 innovatively studies co-

occurence patterns among peaks within a Markov Random Field framework and

proposes to fit Gibbs models to the observed empirical distributions of simultaneous

peak occurrences. Generalized from published likelihood-based techniques, three

parameter estimation methods for Gibbs model fitting are developed.

To prove the feasibility of the methodology proposed in Chapter 4, Chapter 5 then

applies these three parameter estimation methods to a group of mass spectrometry

samples in order to parametrize an underlying Gibbs distribution.

Chapter 6 derives, for a typical discrimination task between two groups G+ and

G−, an optimal classifier based on the fitting of two distinct Gibbs models to G+ and
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G−. The optimal classifier turns out to be a linear function on an extended sample

space.

The main goal of our study is to discover ”signature profiles”based on identifi-

cation of discriminating patterns between mass spectrometry samples from different

patient groups. Chapter 7 sets up the framework of signature discovery algorithm

by giving the definition of signatures and sketching a general procedure for signa-

ture based classification. Chapter 8 and 9 present, in detail, two signature discovery

algorithms.

Although the optimal classifier between two Gibbs models is known and easy to

compute, a practical problem is that it is hard to collect sufficient samples to accu-

rately estimate Gibbs models. This motivates us, in Chapter 8, to design a robust

log-likelihood (RLL) method to seek such an optimal classifier without preliminary

fitting of Gibbs models. Chapter 9 then proposes another innovative algorithm that

discovers signature profiles by Maximing Detecting Power (MDP). We implement

this optimization by Simulated Annealing. We then validate separately each of the

algorithms on simulated datasets and compute their convergence rate in the frame-

work of large deviation theory.

In Chapter 10, we introduce two real mass spectrometry datasets, which are re-

lated to colorectal cancer and ovarian cancer. Our two signature discovery algorithms

are tested on these datasets to discover signatures for cancer stage discrimination.

Group classification performance is computed for our signature-based classifiers.

To handle the high dimensionality of mass spectrometry data, and their inherent
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variability, ”machine learning” algorithms have been a popular approach to facilitate

automatic classification between mass spectra. In chapter 11, to emphasize the

advantage of our signature discovery algorithms, we compare their performances with

those of several popular machine learning algorithms on the real mass spectrometry

datasets.

Chapter 12 summarizes the achievements of our study and the advantage of our

signature based discrimination algorithms. It also points out our future research

goals in this area.
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Chapter 2

Mass Spectra Acquisition and

Cancer Discrimination

This chapter gives a brief description of the two most commonly used mass spectrom-

etry technologies (MALDI-TOF and SELDI-TOF) and the generated mass spectrom-

etry datasets. Since cancer detection is our final goal for analyzing mass spectra, we

also introduce generically the cancer discrimination problem we will be dealing with

throughout this dissertation.

2.1 Mass Spectrometry Technology

A mass spectrometer platform includes: a soft ionization system (i), a mass analyzer

(ii), an ion detector (iii), and a system to output and store spectra (iv).

11



Biological samples are first imported directly into (i) or are purified to simple

proteins by biochemical fractionation or affinity selection, which are inserted into

(i) sequentially. Samples whether degraded or not are then mixed with an energy-

absorbing matrix material that allows them to crystallize before being placed on a

steel plate. SELDI, a modification of MALDI, adds special chemistry on the surface

of the plate to capture specific proteins. The plate is placed into a vacuum chamber

(ii) where a laser hits the plate leading to ionization of proteins into particles. These

ionized particles are then accelerated by an electric field and fly into a time-of-

flight tube, where the time for the particles to fly through the tube is a function

of the molecular weight and charge of the protein. (iii) at the end of the tube,

a sensor records the number of particles with their time of flights (TOF) over a

short time interval. Each TOF is transformed into a particle mass-to-charge (m/z)

and is stored with its corresponding particle ”intensity” as a data point. A mass

spectra gathers up to tens of thousands of such (m/z, intensity) pairs for a single

biological sample. A spectrometer usually processes hundreds of biological samples

simultaneously, therefore produces a high-dimensional dataset. This massive dataset

is the mass spectra acquisition output and is stored by (iv), which is usually in a

text file.

2.2 Mass Spectra Datasets

One mass spectrometry data folder may have hundreds of .txt files, each .txt file

contains one mass spectrum from one biological sample. Two lists of numbers are

12



saved in one such .txt file: the left column lists the m/z values and the right column

lists the corresponding intensity values, as shown in Figure 2.1.

Figure 2.1: An example of a .txt mass spectrum file

Figure 2.2 displays, as an example, one mass spectrum obtained from human

protein sample by MALDI-TOF technique. This spectrum has 36,930 distinct (m/z,

intensity) points, which are connected by piecewise lines in our figure.

Two spectra from two subjects may have largely different intensity scales, even

if they are from the same group. Figure 2.3 compares two spectra from two patients

with the same cancer, one of which has a largest peak with intensity larger than 600

and the other one has all peak intensities inferior to 200. Therefore, to make spectra

13
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Figure 2.2: A raw mass spectrum

comparable, normalization is needed in pre-processing (see Section 1.2.1).

Mass spectra have high-frequency noise caused by electrical interference or ran-

dom ion motions. In order to reveal the true patterns of mass spectra, denoising (or

smoothing) is needed in pre-processing (see Section 1.2.1). For example, in Figure

2.4, the peak pattern of the original spectrum (blue) is really hard to identify be-

cause of its high frequency noise. The red curve has smoothed it to facilitate peak

detection.

Spectra display numerous oscillations, modelized as peaks above a slowly varying

baseline, which can also largely affect the intensity scale of spectra. The baseline

effect is due to the cluster of matrix material on peptide particles, which can be very

abundant in the lower mass range and decreases dramatically with the increasing of

mass range. Figure 2.5 gives an example of the baseline computed for the spectrum
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Figure 2.3: Comparison of intensity scales between two spectra
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Figure 2.4: High-frequency noise of mass spectrum
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in Figure 2.2. Baseline removal is one important step in pre-processing as well (see

Section 1.2.1).
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Figure 2.5: Baseline of mass spectrum

Horizontal perturbations of mass spectra abscissas are related to the accuracy of

a mass spectrometer machine, which affects the m/z value of each point. Namely,

at the time a mass spectrometer detects a peptide particle, the m/z value recorded

has potential deviation from the true m/z value of this particle. The deviation is

quantified by the mass spectrometer accuracy ρ, which is defined as

ρ = max
x0

|x− x0|
x0

,

where x is the reported m/z value and x0 is the true m/z value. ρ is usually provided

by the manufacture of mass spectrometer as a fixed parameter, which is normally

between 0.1% and 0.3%. Therefore, there is a roughly error window x ± ρx around
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an observed m/z value x where the true m/z value lies. Figure 2.6 displays, as

an example, a error window of a point with a m/z value 4370.2. Because of such

variation, a same peptide particle can be detected with two different m/z ratios in two

mass spectra. This makes the direct comparison between mass spectra impossible

without peak realignment. Peak alignment is often implemented by commercial

software (see Section 1.2.1).
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Figure 2.6: Error window for a m/z value

The acquisition of mass spectra is blurred by variations introduced in successions

of distinct experimental phases. Two mass spectra from one biological sample, called

replicates, can be different as shown in Figure 2.7, even though they are produced by

repeating the same experimental process. However, we can still observe that there

are obvious common peak patterns between the two replicates. A mass spectrometry

analysis approach that utilizes two or more replicates per subject can achieve a more
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reliable result (see Section 7.4).
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Figure 2.7: Two mass spectrum replicates

2.3 Cancer Discrimination Tasks

Cancer detection in our study is not only about discrimination between cancerous

patients and healthy patients, but also involves discrimination among different cancer

stages.

Suppose we have gathered a group of biological samples from n1 patients with a

certain cancer and a control group of biological samples from n2 healthy patients.

(The two groups of individuals may also be patients with early stage of cancer versus

late stage of cancer in the case of discrimination between different cancer stages.)

After acquiring one mass spectrum from each of patient protein samples through
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the same process using either MALDI-TOF or SELDI-TOF technique, we have two

groups of mass spectra G+ and G−. Generally speaking, a cancer detection problem

is to discover common peak patterns of mass spectra in one group and to select

distinct peak patterns characterizing the two groups to construct an accurate and

robust classifier to differentiate G+ from G−.
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Chapter 3

Mass Spectra Pre-processing

Mass spectra can be notoriously complex, not only because of its large scale, but

also because several types of experimental noise and errors can complicate its ex-

pressions. Data pre-processing, which ”cleans up” raw mass spectra, can increase

specificity and sensitivity of protein recognition [36] as well as tease out redundant

information to save classification cost. Pre-processing principles are well known, but

implementation details vary considerably, and are often not accessible in commer-

cial software. For better context control, we have developed our own sequence of

pipelined pre-processing steps. Peaks detected after the pre-processing procedure

can not be used directly to compare spectra because of vertical and horizontal vari-

ations they have. To take account of the abscissa dependent noise affecting peaks

intensities, our algorithm designs a method to evaluate the reliability of the detected

peaks; to reduce the effect of horizontal variations, we condense all peaks to a list of

consensus reference peak peaks.
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Note: This section is based on previous work of Dr. Robert Azencott and Dr.

Chinmaya Gupta.

3.1 Stepwise Pre-processing

A point in a mass spectrum is represented by a coordinate (x, y), with x as m/z ratios

and y as intensity in Dalton. In our algorithm, we implement the same sequence of

pre-processing steps for each mass spectrum.

1. Generated by high resolution spectrometers, m/z ratios are floating points

values. To increase process speed, we calibrate each m/z ratio to its nearest

integers x; we then compute the median of all the intensities whose m/z ratios

binned to x as the new intensity value y. A mass spectrum is then defined on

points

(x1, y1), (x2, y2), · · · (xn, yn).

2. Normalization is classically performed with respect to the total ion current

(TIC), i.e., the sum of all the intensities in each mass spectrum, so that the

total intensity in a mass spectrum is 1.

3. Noise-affecting intensities are smoothed out by a moving average technique,

namely, for each point (xi, yi), we replace yi by the average value y′i of the

intensities of all the points that have abscissas within a window [x−ux, x−ux].

We use this type of sliding window because the noise linearly amplifies with
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the increase of m/z values. This gives us a smoothed mass spectrum defined

on

(x1, y
′
1), (x2, y

′
2), · · · (xn, y′n).

Noise at (xi, y
′
i) is computed as nsi = yi − y′i.

4. The local noise values of (xi, y
′
i) detected within a local noise window [xi −

vxi, xi + vxi] are truncated to eliminate the noise values below their 2.5%

empirical quantile or above their 97.5% empirical quantile. Then the empirical

standard deviation σi of these mildly censored local noise at xi can be evaluated.

5. Baseline bi at (xi, y
′
i) is computed as bi = max(0, bbi) where bbi = median of {y′i :

i ∈ I, y′i ≤ 50%(maxk∈I y
′
k)} and I = {j : xj ∈ [xi−wxi, xi +wxi]}. A baseline

removed mass spectrum is then defined on

(x1, ỹ1), (x2, ỹ2), · · · , (xn, ỹn),

where ỹi = y′i − bi.

6. Peak strength Si at (xi, ỹi) is defined as Si = ỹi/σi. A point (xi, ỹi) is detected

as a ”peak” if it is a local maximum within the window [xi − txi, xi + txi] and

Si is larger than a user-defined threshold th.

3.2 Reliability Scoring for Peaks

Peaks form the basis of discovered biomarkers and signatures. Peak intensities can be

strongly impacted by noise during each experiment, so it is quite important to isolate
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not only the most discriminating peaks, but also the peaks that discriminate with the

highest reliability across multiple experiment. To date, few studies have attempted to

explore the noise characterization. We propose an innovative algorithm that identifies

the distribution of such underlying noise and computes ”peak reliability scores” which

characterize the peak capacity to persist through random noise perturbation. Peak

reliability score provides a way to evaluate the reliability of a peak across repeated

experiments and also the foundation to compute the reliability score of signatures,

which will be described in Section 7.

Suppose we have extracted n peaks P1, P2, . . . , Pn from mass spectrum M with

intensities ỹ1, ỹ2, · · · , ỹn after pre-processing. We first compute the histogram Hi

of the local noise of each peak Pi. Then we repeat the following process K (eg.

K = 100) times. At K = k, we

1. Sample a noise rnsi by Monte-Carlo simulation from Hi, and then add it to ỹi

to obtain a new intensity ỹyi = ỹi + rnsi;

2. Compute new peak strengths SSi = ỹyi/σi(i = 1, 2, · · · , n);

3. Rank SSi(i = 1, 2, · · · , n) in ascending order; let rki = percentage of ranking

of SSi, 0 < rki < 1. The larger the rank, the larger the peak strength.

A reliability score r̄i of Pi is computed as

r̄i =
1

K

K∑
k=1

rki .

Let the random varaibles of the noise of the n peaks P1, P2, · · · , Pn be NS1, NS2,

· · · , NSn with probability distributions Q1, Q2, · · · , Qn. Let S1, S2, · · · , Sn be their
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original strengths and also assume that S1 < S2 < · · · < Sn. It is easy to see that the

relative order of two peaks Pi and Pj (i < j) is almost not affected by perturbation

if and only if

P{(ỹj +NSj)/σj < (ỹi +NSi)/σi} ∼ 1,

that is

P{Sj − Si < NSi/σi −NSj/σj} ∼ 1.

Figure 3.2 compares the histograms of NSi/σi and NSj/σj identified from two

peaks Pi and Pj (xi = 8606 and xj = 8937) in the spectrum of Figure 3.1. The

difference of strengths Sj − Si between the two peaks is about 100 while the scale

of NSi/σi or NSj/σj is about 5. Therefore, noise perturbations cannot affect the

relative order of the two peaks.

As to the two peaks in Figure 3.3 with their strength noise histograms showed in

Figure 3.4, we can compute empirically

P{NSi/σi −NSj/σj < Sj − Si} = P{NSi/σi −NSj/σj < 0.49} ≈ 27.31%,

which indicates that the relative order of the two peaks according to their strength

Si and Sj have a 27.31% chance to be incorrect. It can be seen from Figure 3.3 that

both of these peaks have comparable large local noise levels with respect to their

intensities, which highly affect their relative rank order after perturbation.

Peaks that are always top ranked across multiple noise perturbations are reli-

able peaks. Table 3.1 shows, as an example, the raw ranks, which are the ranks by
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Figure 3.1: Two reliable peaks with stable relative order
Noise perturbations cannot affect the relative order of the two circled peaks.

−10 −5 0 5 10
0

10

20

30

40

50

60

70

80

90

100

xi = 8937, Si = 44.72

−10 −5 0 5 10
0

20

40

60

80

100

120

xj = 8606, Sj = 142.05

Figure 3.2: Histograms of NSi/σi and NSj/σj of Pi and Pj with stable relative order
Sj − Si is about 100 while NSi/σi and NSj/σj can only reach 5. Therefore, noise
perturbation will almost surely not affect their relative order.
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Figure 3.3: Two reliable peaks with unstable relative order
Noise perturbations can easily affect the relative order of the two circled peaks.

increasing peak strengths Si, and reliability scores r̄i of several peaks from of the

spectrum in Figure 2.2. Some peaks have different ranks before and after perturba-

tion by noise, some don’t. Since noise to σ (σ is the standard deviation of noise)

are usually within a moderate range with probability 1, peaks which are at a low

strength level, are comparably unreliable in their raw ranks. Therefore, this reliabil-

ity score technique is more helpful in filtering out reliable peaks among those with

moderate strengths.
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Figure 3.4: Histograms of NSi/σi and NSj/σj of Pi and Pj with unstable relative
order
Sj−Si is less than 1 while NSi/σi and NSj/σj can reach 5. Therefore, their relative
order can be easily affected by noise perturbation.

xi Si Raw rank r̄i

8606 142.05 100% 100%
3226 38.98 97% 97%
6680 9.51 86% 86%
6417 4.72 75% 84%
1311 4.37 72% 85%
1562 2.23 35% 22%

Table 3.1: Raw ranks and reliability scores
This table compares the raw ranks (rank by increasing Si) and reliability scores
of several peaks from the spectrum in Figure 2.2. Reliability score is computed by
taking account of noise perturbations, therefore can be quite different from raw rank,
especially for peaks with middle level ranks.
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3.3 Reference Peak Abscissas and Activation Fre-

quencies

In repeated mass spectra acquisitions with the same spectrometer, m/z ratios cor-

responding to the same protein exhibit random small shifts around a true value,

which generates difficulty in biomarker selection and comparison across all mass

spectra. When the manufacturer accuracy of a MALDI or SELDI spectrometer is

ρ, acquisition shifts around a true m/z ratio x will be within the range x ± ρx

(see Section 2.2). Therefore, the m/z values obtained after data pre-processing can

not be directly used to compare spectra. To take account of these ”error win-

dows”, we first construct a list of ”reference peak abscissas” Ab1, Ab2, · · · , Abn at

a(1 + ρ), a(1 + ρ)2, a(1 + ρ)3, · · · , a(1 + ρ)n ≤ b, where a and b are the smallest and

largest m/z observed among all spectra. This procedure will dramatically reduce

the size of our feature space and provide a list of common m/z values over all mass

spectra to facilitate spectrum-wise comparison and efficient classification.

Throughout the following chapters, we will use the following definitions.

Definition 3.3.1. For any reference peak abscissa Abj, and any mass spectrum M ,

we say that Abj is activated by M if there is at least one detected peak (see Section

3.1) in M positioned within the uncertainty window of Abj.

We define the activation frequency of a reference peak abscissa Abj within a

group G by

fqG(Abj) =
n(Abj)

N
,
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where n(Abj) is the number of mass spectra of G which activate Abj, and N is the

number of mass spectra in G.

We also define similarly the ”activation frequency” of a pair of reference peak

abscissas.

Definition 3.3.2. A pair of distinct reference peak abscissas (Abi, Abj) is said to be

activated by M if both Abi and Abj are activated by M .

The activation frequency of a pair of abscissas (Abi, Abj) within a group G of

mass spectra is defined as

fqG(Abi, Abj) =
n(Abi, Abj)

N
,

where n(Abi, Abj) is the number of mass spectra of G which activate both Abi, Abj,

and N is the number of mass spectra in G.
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Chapter 4

Gibbs Distributions

Given the heterogeneity and complexity of cancer types, biomarkers generally have

higher discriminating power combinatorially than individually [99]. The simulta-

neous use of a small subset of markers, has been suggested to improve sensitivity

and specificity of cancer diagnosis [98], yet, the underlying co-occurence relation-

ship between biomarkers are often only superficially investigated. In this chapter,

we introduce a broad class of stochastic models, namely the Markov Random Field

(MRF) along with its probability distribution, Gibbs distribution, to model groups

of binary coded mass spectra to search for small sets of biomarkers in the context

of algorithmic discrimination between cancer stages, or between cancer and control

groups of patients. Generalizing from classical methodologies, three Gibbs parame-

ters estimation methods, MLE, MPLE and MFE are elaborated. After fitting Gibbs

models to given groups of mass spectra, we will be able to simulate large samples of

virtual data, which, as will be seen in Chapter 8 and 9, is very useful to study the
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asymptotic performance of discrimination algorithms.

4.1 Introduction

Gibbs distributions were first introduced in the context of physics, and have been

successfully used to model spatial dependencies for interacting systems distributed

on lattices. Throughout this section, the notation and symbols in [19] are used.

Let S be a finite set with elements denoted by s, called sites. Let Λ be a finite

set called phase space. A random field on S with phases in Λ is defined as a random

variable XXX = {XXX(s)}s∈S taking values in the configuration space ΛS.

Definition 4.1.1. A neighborhood system on S is a family N = {Ns}s∈S of

subsets in S such that: for all s ∈ S, (i) s /∈ Ns, (ii) t ∈ Ns ⇒ s ∈ Nt. The subset

Ns is called the neighborhood of site s and the couple (S,N) is called a graph. A

clique C of the graph (S,N) is a subset of S, for which any two distinct sites are

mutual neighbors. Any singleton {s} is also considered a clique.

Definition 4.1.2. The random field ΛS is called a Markov random field (MRF)

with respect to the neighborhood system N if for all sites s ∈ S

P{XXX(s) = xxx(s) |XXX(S\s) = xxx(S\s)} = P{XXX(s) = xxx(s) |XXX(Ns) = xxx(Ns)}.

Consider the probability distribution

πT (xxx) =
1

ZT
e−

1
T
E(xxx) (4.1)
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on the configuration space ΛS, where T > 0 is the temperature, −∞ < E(xxx) <∞ is

the energy of configuration xxx, and ZT =
∑

xxx∈ΛS πT (xxx) is called partition function.

Definition 4.1.3. A Gibbs potential on ΛS relative to the neighborhood system

N is a collection {VC}C⊂S of functions VC : ΛS → R ∪+∞.

A probability distribution (4.1) is called a Gibbs distribution if its energy

function E is derived from the Gibbs potential {VC}C⊂S, i.e.,

E(xxx) =
∑
C

VC(xxx). (4.2)

Definition 4.1.4. The local specification of a Gibbs distribution is a family

{πs}s∈S with πs : ΛS → [0, 1] such that

πs(xxx) = P{XXX(s) = xxx(s)|XXX(Ns) = xxx(Ns)}. (4.3)

Here we focus on binary phase space Λ = {0, 1}. There are multiple classes of

classically studied potentials. We restrict our discussion here to a specific class –

often called the autologistic model.

The autologistic model involves cliques of cardinality 1 and 2 and defines distri-

bution (4.1) by

πθθθ(xxx) =
1

Z
e−E(xxx), E(xxx) =

∑
s∈S

θsxxx(s)−
∑
{s,t}∈C

θstxxx(s)xxx(t), (4.4)

where x(s) ∈ Λ = {0, 1}, for all s ∈ S, C is the set of all distinct cliques of cardinality

2. We consider {s, t} and {t, s} as same clique. θθθ = (· · · θs · · · θst · · · )∗ is a parameter,

where θs, θst ∈ R. The temperature T in (4.1) has been fixed at 1 and the normalizing
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constant is

Z =
∑
xxx∈ΛS

e−E(xxx).

From now on, we denote xxx(s) by xs for simplicity.

4.2 Parameter Estimation

Two classical parameter estimation methods for Gibbs distributions are the max-

imum likelihood estimation (MLE) and the maximum pseudolikelihood estimation

(MPLE). We also propose a new method – marginal fitting estimation (MFE).

4.2.1 Maximum Likelihood Estimation (MLE)

Gibbs distribution belongs to exponential families. MLE, as a widely used parameter

estimation method, has some considerable merits for exponential families: the MLE

estimator is known to be unique, consistent, asymptotic normal and most efficient

[12] [20] [48] as the sample size tends to infinity.

4.2.1.1 MLE for Exponential Families

Recall that a canonical form of exponential families is

f(x | θ) = eθT (x)−ψ(θ))h(x),

where θ ∈ Θ = {θ :
∫
eθT (x)h(x)dx <∞}.
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Theorem 4.2.1. [12] [20] [48] Let x1, . . . , xn are i.i.d random variables with com-

mon density function f(x | θ) and let the true θ = θ0 ∈ Θ0, the interior of Θ.

Assume ψ(θ) is twice differentiable with respect to θ and that ψ′′(θ) > 0 ∀ θ ∈ Θ0.

Then,

1. for large n, a unique MLE θ̂n of θ exists, which satisfies

Eθ̂n
T(x) =

1

n
(T(x1) + . . .+ T(xn));

2. θ̂n is consistent, i.e.,

θ̂n −−−→
n→∞

θ0

in probability, where the underlying probability distribution has density f(x | θ0);

3. θ̂n is asymptotically normal and most efficient, i.e.,

√
n(θ̂n − θ0) −−−→

n→∞
N(0, I−1(θ0))

in distribution, where I(θ0) = ψ′′(θ0).

4.2.1.2 MLE of Gibbs Distribution

The autologistic model (4.4) can be displayed in vector form

π(xxx) =
1

Z
e−θθθ

∗UUU(xxx), (4.5)

where θθθ is defined as above and UUU(xxx) = (· · · xs · · · xsxt · · · )∗, s ∈ S, {s, t} ∈ C.
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Suppose we have n observations Dn = {yyy(1), yyy(2), · · · , yyy(n)}, yyy(i) ∈ {0, 1}S, then

the likelihood function is defined as L(θθθ,Dn) =
∏n

i=1 π(yyy(i)) and the MLE of θθθ is

θ̂θθ = arg max
θθθ

logL(θθθ,Dn), (4.6)

Since

logL(θθθ,Dn) = −
n∑
i=1

θθθ∗UUU(yyy(i))− n logZ (4.7)

and

∂Z

∂θθθ
= −EθθθUUU,

the first derivative of logL(θθθ,Dn) is

Gθθθ =
∂ logL(θθθ,Dn)

∂θθθ
= nEθθθUUU −

n∑
i=1

UUU(yyy(i)), (4.8)

and the second derivative is

Hθθθ =
∂2 logL(θθθ,Dn)

∂θθθ2
= −nVarθθθUUU. (4.9)

Hθθθ is a negative semidefinite matrix, which implies that logL(θθθ,Dn) is concave. Thus,

there exists only one maximum θ̂θθ of logL(θθθ,Dn), at which nEθ̂θθUUU −
∑n

i=1UUU(yyy(i)) = 0.

We can implement gradient descent method to compute the MLE numerically.

The convergent sequence θθθ(0), θθθ(1), θθθ(2), · · · of approximate values of hatθ is con-

structed by the gradient iteration

θθθ(k + 1) = θθθ(k) + εGθθθ(k) (4.10)

starting from a user selected θ(0) and using a small step size ε. One can stop such

iterations when Gθθθ(k) is less than a user-chosen sufficiently small threshold. In (4.8),
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EθθθUUU can be computed empirically from samples constructed by Gibbs sampling.

Namely, if xxx(1),xxx(2), · · · ,xxx(n) are the simulated samples,

EθθθUUU ≈
1

n
(xxx(1) + xxx(2) + · · ·+ xxx(n)).

For any fixed θθθ, Gibbs sampling proceeds as follows.

1. Select randomly a configuration in ΛS.

2. for i = 1, 2, · · · , n (n is the number of sites)

Create a new configuration yyy by updating the ith coordinate of the current

configuration xxx (1 is updated to 0 and 0 is updated to 1);

Select a random number u with uniform distribution on [0,1];

Replace the current configuration xxx by yyy if u < Pθθθ{XXX = yyy | XXX = xxx} (Pθθθ{XXX =

yyy | XXX = xxx} is the conditional probability of XXX = yyy given XXX = xxx); otherwise,

keep xxx as the current configuration.

3. Repeat step (2) N times (N is called iteration step).

4. After b (b < N) iteration steps (b is called warm-up period) are completed,

extract then one configuration after every c iteration steps have been completed

(c is called spacing).

This gives us (N − b)/c random configurations having approximately an autolo-

gistic distribution (4.5) with parameter θθθ.
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4.2.2 Maximum Pseudolikelihood Estimation (MPLE)

Maximum pseudolikelihood estimation (MPLE), introduced by [13], has played an

important role in parameter estimation of spatial models such as (4.4) before the

advent of Monte Carlo methods. It is still a generally preferred method because it

requires no simulation, leading to fast speed.

The pseudolikelihood function of one observation is defined as the product of all

local specifications

L(θθθ,xxx) =
∏
s

Pθθθ(xs|xxx(Ns)), (4.11)

and the log pseudolikelihood function

logL(θθθ,xxx) = −
∑
s

xs(θs +
∑
t∈Ns

θstxt)−
∑
s

log(1 + e−(θs+
∑

t∈Ns
θstxt)). (4.12)

To maximize (4.12), we take its first derivative with respective to θs and θst for

each s and t:

∂logL(θθθ,xxx)

∂θs
= −xs +

e−(θs+
∑

t∈Ns
θstxt)

1 + e−(θs+
∑

t∈Ns
θstxt)

,

∂logL(θθθ,xxx)

∂θst
= −2xsxt +

xte
−(θs+

∑
r∈Ns

θsrxr)

1 + e−(θs+
∑

r∈Ns
θsrxr)

+
xse
−(θt+

∑
r∈Nt

θtrxr)

1 + e−(θt+
∑

r∈Nt
θtrxr)

,

and then take its second derivatives:

∂2logL(θθθ,xxx)

∂θ2
s

= − e−(θs+
∑

r∈Ns
θsrxr)

(1 + e−(θs+
∑

r∈Ns
θsrxr))2

,

∂2logL(θθθ,xxx)

∂θ2
st

= − x2
se
−(θt+

∑
r∈Nt

θtrxr)

(1 + e−(θt+
∑

r∈Nt
θtrxr))2

− x2
t e
−(θs+

∑
k∈Ns

θsrxr)

(1 + e−(θs+
∑

r∈Ns
θikxk))2

,

∂2logL(θθθ,xxx)

∂θs∂θt
= 0,

∂2logL(θθθ,xxx)

∂θs∂θst
= − xte

−(θs+
∑

k∈Ns
θsrxr)

(1 + e−(θs+
∑

k∈Ns
θsrxr))2

.
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Suppose the size of S and C are l1 and l2 respectively. Let X̄ =

I

J

 where I is

the l1 ∗ l1 identity matrix corresponding to the first l1 parameters, and J is a sparse

l2 ∗ l1 matrix in the form of

J =



column s column t

000 0 000 0 000

row θst 000 xt 000 xs 000

000 0 000 0 000

.
Each line of J corresponds to a parameter θst for some s and t. In addition, let

Ωθθθ =


π̄1
θθθ(xxx)− x1

...

π̄l1θθθ (xxx)− xl1

 ,

and

Γθθθ = diag{π̄1
θθθ(1− π̄1

θθθ), ..., π̄
l1
θθθ (1− π̄l1θθθ )},

where

π̄sθθθ(xxx) = Pθθθ(xs = 1 | xxx(Ns)) =
e−(θs+

∑
r∈Ns

θsrxr)

1 + e−(θs+
∑

r∈Ns
θsrxr)

, s = 1, 2, ..., l1,

the gradientGθθθ and second derivative Hessian matrix of logL(θθθ,xxx) can be represented

in vector forms

Gθθθ = X̄Ωθθθ, (4.13)

Hθθθ = −X̄ΓθθθX̄
∗. (4.14)
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With n observations Dn = {yyy(1), yyy(2), · · · , yyy(n)}, (4.12) becomes

∑
n

logL(θθθ,yyy(n)) =
∑
n

∑
s

logPθθθ(yyy
(n)(s) | yyy(n)(Ns)). (4.15)

The gradient and Hessian matrix of the new loglikelihood function are

Gθθθ =
∑
n

G
(n)
θθθ =

∑
n

X̄(n)Ω
(n)
θθθ , (4.16)

Hθθθ =
∑
n

H
(n)
θθθ = −

∑
n

X̄(n)Γ
(n)
θθθ X̄(n)∗ , (4.17)

where the superscript n of a matrix denotes its value evaluated at observation yyy(n).

We can utilize the gradient descent method (4.10) or the Newton-Raphson descent

method

θθθ(k + 1) = θθθ(k) +H−1
θθθ(k)Gθθθ(k) (4.18)

to estimate the maximum θ̂θθ of (4.12). One can stop iterating when Gθθθ(k) is less than

a user-chosen sufficiently small threshold.

4.2.3 Marginal Fitting Estimation (MFE)

We propose a new method to estimate parameter by fitting on marginal distributions.

As before, we still assume that there are n observations Dn = {yyy(1), yyy(2), · · · , yyy(n)}.

We compute the empirical marginal probabilities (dimension 1 and dimension 2) of

each site s and each pair of sites {s, t} by

qδs(Dn) =
#{yyy ∈ Dn : ys = δ}

n
, qδ1δ2st (Dn) =

#{yyy ∈ Dn : ys = δ1, yt = δ2}
n

,
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where δ ∈ {0, 1}, {δ1, δ2} ∈ {0, 1}2. Let

pδs(θθθ,Dn) =
∑

xxx∈A(Dn;s,δ)

1

Z
e−θθθ

∗UUU(xxx), pδ1δ2st (θθθ,Dn) =
∑

xxx∈B(Dn;s,t,δ1,δ2)

1

Z
e−θθθ

∗UUU(xxx),

where A(Dn; s, δ) = {yyy ∈ Dn : ys = δ} and B(Dn; s, t, δ1, δ2) = {yyy ∈ Dn : ys =

δ1, yt = δ2}. pδs and pδ1δ2st are marginal probabilities of dimension 1 and dimension 2

computed from model (4.5) with estimated parameter θθθ (we call them parameterized

marginal probabilities).

The objective function of MFE is the sum of square errors between empirical

probabilities and parameterized probabilities, which is defined as

SSE(θθθ,Dn) =
∑
s

∑
δ

(pδs(θθθ,Dn)− qδs(Dn))2

+
∑
{s,t}∈C

∑
{δ1,δ2}∈{0,1}2

(pδ1δ2st (θθθ,Dn)− qδ1δ2st (Dn))2

= 2
∑
s

(p0
s(θθθ,Dn)− q0

s(Dn))2 +
∑
{s,t}∈C

∑
{δ1,δ2}∈{0,1}2

(pδ1δ2st (θθθ,Dn)− qδ1δ2st (Dn))2.

(4.19)

The parameter is estimated by minimizing the error SSE(θθθ,Dn). We take the first

derivative of SSE(θθθ,Dn) with respect to θθθ

Gθθθ =
∂SSE(θθθ,Dn)

∂θθθ
=4

∑
s

(p0
s(θθθ,Dn)− q0

s(Dn))
∂p0

s(θθθ,Dn)

∂θθθ

+ 2
∑
s,t

∑
δ1,δ2

(pδ1δ2st (θθθ,Dn)− qδ1δ2st (Dn))
∂pδ1δ2st (θθθ,Dn)

∂θθθ
. (4.20)

Since

∂p0
s(θθθ,Dn)

∂θθθ
= p0

s(θθθ,Dn)(EθθθUUU − Eθθθ(UUU | xs = 0)), (4.21)

∂pδ1δ2st (θθθ,Dn)

∂θθθ
= pδ1δ2st (θθθ,Dn)(EθθθUUU − Eθθθ(UUU | xs = δ1, xt = δ2)), (4.22)
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plugging (4.21) and (4.22) into (4.20) and letting p0
s(θθθ,Dn)T 0

s and pδ1δ2st (θθθ,Dn)T δ1δ2st

be the right side of (4.21) and (4.22), we have

Gθθθ =4
∑
s

p0
s(θθθ,Dn)(p0

s(θθθ,Dn)− q0
s(Dn))T 0

s

+ 2
∑
s,t

∑
δ1,δ2

p
δ1δ2(θθθ,Dn)
st (pδ1δ2st (θθθ,Dn)− qδ1δ2st (Dn))T δ1δ2st .

The MFE estimator θ̂θθ is numerically computed by gradient descent method (4.10),

to find θ̂ such that Gθ̂θθ is approximately 0. At any θθθ(k) during the iterations, p0
s,

pδ1δ2st , EθθθUUU , Eθθθ(UUU | xs = 0), Eθθθ(UUU | xs = δ1, xt = δ2), s, t = 1, ..., l1, δ1, δ2 = 0, 1 are

computed empirically from the samples simulated by Gibbs sampling. For example,

if V = {xxx(1),xxx(2), · · · ,xxx(n)} is the simulated sample set,

p0
s ≈

1

n
#{xxx ∈ V : xs = 0},

EθθθUUU ≈
1

n
(xxx(1) + xxx(2) + · · ·+ xxx(n)),

Eθθθ(UUU | xs = 0) ≈
∑

xxx∈V,xs=0UUU(xxx)

#{xxx ∈ V : xs = 0} .

Gibbs sampling can be proceeded as described in the outline of the MLE algorithm.

Although we have only attempted to fit marginals of dimensions 1 and 2 , this

method is extendable to marginals of higher dimensions, but of course at higher

computational expense.
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Chapter 5

Fitting Gibbs Distributions to

Mass Spectrometry Datasets

In this section, we apply the parameter estimation methods described in Chapter 4

to fit Gibbs distributions to real mass spectrometry datasets. Taking a group G of

80 mass spectra acquired from patients with late colorectal cancer as an example, we

will show how one can model the empirical distribution of a group of binary coded

mass spectra by a Gibbs distribution. To show the versatility of our methodology, we

randomly select a small number of reference peak abscissas generated in Section 3.3

as key features. However, to ensure the significance of the model, we should avoid

selecting the abscissas that are activated in none of the mass spectra of the group G.

Therefore, here we randomly select 19 reference peak abscissas which have at least

15% activation frequencies in G:

A = {3033, 8734, 7363, 8325, 6650, 4642, 2195, 1209, 3088, 6630, 2764, 3588, 1691,
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2926, 2156, 3878, 4118, 5725, 8275}.

We index these abscissas by Ab1, ..., Ab19. We code each mass spectrum M by a

vector xxx = xxx(M) ∈ ΛS, s ∈ S = {1, 2, ..., 19} with Λ = {0, 1}: the sth coordinate of

xxx(M) equals 1 if Abs is activated by M and equals 0 otherwise.

5.1 Clique Discovery

We use mutual information (discrete case) to quantify the strength of the stochastic

link between two sites. The entropy of a discrete random variable ξ with possible

values ξ1, ..., ξn is defined as

H(ξ) = −
∑
ξi

p(ξi)log(p(ξi)),

and the conditional entropy of ξ with respect to another random variable η taking

values η1, ..., ηm respectively is defined by

H(ξ|η) = −
∑
i,j

p(ξi, ηj)log(p(ξi|ηj)).

For two random variables ξ, η, the mutual information is defined by

I(ξ; η) = H(ξ)−H(ξ|η) =
∑
i,j

p(ξi, ηj)log
p(ξi, ηj)

p(ξi)p(ηj)
, (5.1)

I(ξ; η) = I(η; ξ),

I(ξ; η) ≥ 0.

”I(ξ; η) = 0 ”indicates that ξ and η are independent.
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Within the observation space V = {xxx(1) = xxx(M1),xxx(2) = xxx(M2), · · · ,xxx(n) =

xxx(Mn)} ∈ {0, 1}19 of the binary coded mass spectra M1,M2, · · · ,Mn of G, we com-

pute the mutual information of any two coordinates Xs and Xt of a random variable

XXX ∈ {0, 1}19 (s, t ∈ {1, 2, · · · , 19}). The larger the mutual information, the stronger

the predictive link between two sites. As an example, some of the pairs of abscissas

that have large mutual information are listed in Table 5.1, along with their empirical

joint probabilities qδ1,δ2st , δ1, δ2 ∈ {0, 1}. qδ1,δ2st is computed by

qδ1,δ2st =
#{xxx ∈ V : xs = δ1, xt = δ2}

n
.

s t q00
st q01

st q10
st q11

st I(s; t)

5 10 0.36 0.01 0.06 0.56 0.42
3 19 0.39 0.18 0.09 0.35 0.12
7 13 0.50 0.26 0.03 0.21 0.12
1 11 0.26 0.00 0.43 0.31 0.12
3 13 0.19 0.38 0.34 0.10 0.10

15 18 0.33 0.28 0.05 0.35 0.10
8 14 0.73 0.18 0.01 0.09 0.09
4 13 0.40 0.48 0.13 0 0.09
1 19 0.21 0.05 0.26 0.48 0.08

13 14 0.48 0.05 0.26 0.21 0.08

Table 5.1: Empirical joint probabilities and mutual informations of pairs of sites

We consider the two sites whose mutual information are larger than 0.04 as sig-

nificantly related pairs and recognize them as cliques of cardinal 2. We choose 0.04

as the cutoff because every pair that has mutual information less than 0.04 is decided

to be independent by χ2 test. There are 38 cliques {s, t} of cardinal 2. The neighbors

of each site are listed in Table 5.2.
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s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3 18 1 1 10 3 9 14 3 3 1 4 3 3 1 6 2 1
4 6 12 14 17 13 15 7 5 15 13 4 4 5 14 15 3

11 9 13 15 14 13 15 19 7 5 8 4
15 10 14 14 9 7 9 9
19 13 19 15 12 8 10 11

14 19 14 9 11 13
19 19 13 18

15
17

Table 5.2: Neighbors of sites
This table lists, for each site s, its neighbors sites. The site 16 has no neighbors
because it is not included in any cliques of cardinal 2.

In an autologistic model such as (4.4), there is no canonical parameter that give

zero marginals (e.g., in Table 5.1, q0,1
1,11 = 0 and q11

4,13 = 0). When zero marginals are

obtained empirically, one can attempt to estimate a model which gives very small

parametrized marginals correspondlingly. This approach is reasonable considering

the variation of empirical probabilities computed from limited samples.

5.2 Estimated Parameters

We give the parameter estimation results for each one of the three methods MLE,

MPLE and MFE. All of them use iterations, which require a starting point in the pa-

rameter space. We here choose a starting parameter point θθθ(0) = (· · · θs · · · θst · · · )∗,

where

θs = −log(
P{xs = 1}
P{xs = 0}), s = 1, 2, ..., 19,
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and θst = 0, for all {s, t} ∈ C. Namely, this parameter perfectly fits all marginals of

dimension 1 but assumes that pairs of sites are independent.

5.2.1 Maximum Likelihood Estimation (MLE) Results

We implemented a gradient descent method for MLE, in which we took 1000 iteration

steps with a step size ε = 0.05. During the Gibbs sampling, we picked a warm-up

period of b = 500 and subsampled 2000 samples with a regular spacing c = 4. The

computing time on a standard laptop was about 20 minutes. The estimated θ̂s and

θ̂st in θθθ are given in Table 5.3 and Table 5.4.

s 1 2 3 4 5 6 7 8 9 10

θ̂s -0.68 0.29 0.29 2.49 0.85 -2.96 2.66 2.52 -0.16 2.02

s 11 12 13 14 15 16 17 18 19

θ̂s 1.92 1.86 -0.33 1.58 0.43 -3.67 0.74 0.70 0.78

Table 5.3: Gibbs parameter estimated by MLE (coefficients of singletons)
For each site s, this table lists the estimated coefficient θ̂s by MLE.

In order to monitor the maximization of the objective function (4.7), we can

monitor its values during iterations. However, the computation is expensive due to

the requirement of visiting all configurations for computing Z. To circumvent this, we

monitor the gradient of the objective function, whose norm is supposed to converge

to zero. However, the maximum cannot be reached exactly. We could only expect

the norm of the gradient to become smaller than some reasonable small threshold.

We plot the decrease of the norm of the gradient in Figure 5.1. We stopped when
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{s, t} {5,10} {3,19} {7,13} {1,11} {3,13} {15,18} {8,14} {4,13}
θ̂st -2.88 -1.27 -1.44 -1.12 0.98 -1.71 -1.63 1.50

{s, t} {1,19} {13,14} {13,19} {10,15} {7,9} {9,14} {1,15} {5,15}
θ̂st -1.12 -0.95 1.05 -0.95 -1.02 -0.81 1.75 -0.87

{s, t} {11,19} {3,9} {3,14} {2,18} {4,12} {8,15} {3,6} {14,15}
θ̂st -1.16 0.76 1.11 -1.19 -1.40 1.18 1.15 1.06

{s, t} {9,13} {9,19} {7,14} {9,15} {6,17} {1,3} {4,19} {12,13}
θ̂st -0.50 0.82 -0.56 1.10 -0.68 -1.14 -0.67 1.16

{s, t} {3,10} {5,14} {14,17} {1,4} {4,14} {11,15}
θ̂st -0.78 1.13 -1.00 -0.60 0.95 1.22

Table 5.4: Gibbs parameter estimated by MLE (coefficients of neighbors)
For each pairs of sites {s, t}, this table lists the coefficient θ̂st of xsxt estimated by
MLE.

the norm of the gradient became smaller than 0.1.

5.2.2 Maximum Pseudolikelihood Estimation (MPLE) Re-

sults

We implemented gradient descent method for MPLE and took 200 iteration steps

with a step size ε = 0.01. The computing time was about 30 seconds. The estimated

vector of parameters ˆthetas and θ̂st are given in Table 5.5 and 5.6.

The objective function (4.15) is expensive to calculate during the optimization

process, so instead of monitoring it, we output the norm of its gradient (4.16) during

the process, which is plotted in Figure 5.2. The gradient norm of gradient is supposed

47



0 100 200 300 400 500 600 700 800 900 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Steps

N
o
rm

o
f
g
ra
d
ie
n
t

Figure 5.1: Decrease of the norm of the gradient in MLE

s 1 2 3 4 5 6 7 8 9 10

θ̂s -0.75 0.49 -0.18 3.91 1.68 -3.55 3.88 3.25 -0.73 3.92

s 11 12 13 14 15 16 17 18 19

θ̂s 3.41 1.95 -0.63 2.03 0.88 -3.66 2.27 0.98 1.24

Table 5.5: Gibbs parameter estimated by MPLE (coefficients of singletons)
For each site s, this table lists the estimated coefficient θ̂s by MPLE.
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{s, t} {5,10} {3,19} {7,13} {1,11} {3,13} {15,18} {8,14} {4,13}
θ̂st -4.99 -1.33 -2.32 -2.45 1.50 -2.14 -2.76 2.73

{s, t} {1,19} {13,14} {13,19} {10,15} {7,9} {9,14} {1,15} {5,15}
θ̂st -1.46 -0.84 0.70 -1.75 -1.75 -0.77 2.64 -1.20

{s, t} {11,19} {3,9} {3,14} {2,18} {4,12} {8,15} {3,6} {14,15}
θ̂st -1.33 0.98 1.18 -1.49 -2.05 2.43 2.29 0.51

{s, t} {9,13} {9,19} {7,14} {9,15} {6,17} {1,3} {4,19} {12,13}
θ̂st 0.20 1.10 -0.52 1.33 -2.21 -1.88 -1.20 1.94

{s, t} {3,10} {5,14} {14,17} {1,4} {4,14} {11,15}
θ̂st -1.17 0.92 -1.20 -1.61 1.79 0.90

Table 5.6: Gibbs parameter estimated by MPLE (coefficients of neighbors)
For each pairs of sites {s, t}, this table lists the coefficient θ̂st of xsxt estimated by
MPLE.
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to decrease to zero, but we could only expect the gradient norm to become smaller

than some reasonable small threshold. We stopped when the gradient norm became

smaller than 1.
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Figure 5.2: Decrease of the gradient norm for MPLE

5.2.3 Marginal Fitting Estimation (MFE) Results

The starting point gives us a good estimation on marginals of dimension 1 but not

on those of dimension 2. Since the pairs of sites that have small mutual information

are remotely affected by each other and practically independent, there is no need

to take account of their joint marginals in the cost function SSE 4.19. Specifically,

the joint marginals of 65 pairs that have mutual information larger than 0.008 are

included in S in addition to the 17 one-dimensional marginals.
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We took N = 2000 iteration steps with a step size ε = 0.05. During the Gibbs

sampling, we picked a warm-up period of b = 500 and subsampled 2000 samples

with a regular spacing c = 4. We stopped when S became smaller than 0.4. The

computing time was about 2.5 hours. The estimated parameter vector ˆtheta is given

in Table 5.7 and 5.8. The evolution of the cost function during minimization is shown

in Figure 5.2.3.

s 1 2 3 4 5 6 7 8 9 10

θ̂s -0.69 0.04 0.47 2.05 0.37 -2.81 2.27 2.34 0.01 1.43

s 11 12 13 14 15 16 17 18 19

θ̂s 1.45 1.89 -0.30 1.38 0.55 -3.69 0.15 0.42 0.43

Table 5.7: Gibbs parameter estimated by MFE (coefficients of singletons)
For each site s, this table lists the estimated coefficient θ̂s by MFE.

5.3 Quality of Fit

We propose a methodology for quantifying the quality of fit of a model on a real set

X of n observed configurations. We first simulate 1000 virtual sets V1,V2, · · · ,V1000,

where each Vj contains n random configurations generated by the Gibbs distribution

πθ̂. We then compute a log likelihood value L̂i on each sample set Vi as well as a

log likelihood value L on X . The histogram of all L̂1, L̂2, · · · , L̂1000 approximate the

distribution of the log likelihood. The quantile of L on the histogram can be used to

compare the quality of fit of different parameters. The closer the quantile to 50%,

the better quality of fit the parameter has.
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{s, t} {5,10} {3,19} {7,13} {1,11} {3,13} {15,18} {8,14} {4,13}
θ̂st -1.77 -1.16 -0.94 -0.69 1.06 -1.22 -0.52 0.69

{s, t} {1,19} {13,14} {13,19} {10,15} {7,9} {9,14} {1,15} {5,15}
θ̂st -0.90 -0.88 1.20 -0.94 -0.79 -0.88 1.32 -1.01

{s, t} {11,19} {3,9} {3,14} {2,18} {4,12} {8,15} {3,6} {14,15}
θ̂st -0.94 0.85 1.07 -0.82 -0.26 0.47 0.47 0.98

{s, t} {9,13} {9,19} {7,14} {9,15} {6,17} {1,3} {4,19} {12,13}
θ̂st -0.88 0.83 -0.61 0.90 -0.03 -0.70 -0.48 0.39

{s, t} {3,10} {5,14} {14,17} {1,4} {4,14} {11,15}
θ̂st -0.81 1.39 -0.86 -0.21 0.44 1.18

Table 5.8: Gibbs parameter estimated by MFE (coefficients of neighbors)
For each pairs of sites {s, t}, this table lists the coefficient θ̂st of xsxt estimated by
MFE.
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Figure 5.3: Minimization of the cost function for MFE
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We then utilize this technique to compare the quality of fit of our Gibbs distri-

bution with the three parameters θ̂θθMLE, θ̂θθMPLE and θ̂θθMFE. The histogram of the

1000 log likelihoods with the three parameters are displayed in Figures 5.4, 5.5, and

5.6. The log likelihood value on the true dataset is indicated by red lines on the

three figures. The three quantile 99.7%, 40.2%, and 99.8% naturally suggest that

the Gibbs model with θ̂θθMPLE has a better quality of fit than that with the other two

parameters on our dataset.
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Figure 5.4: Quality of fit of πθ̂θθMLE

The red line indicates the quantile of the log likelihood on the true dataset.
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Figure 5.5: Quality of fit of πθ̂θθMPLE

The red line indicates the quantile of the log likelihood on the true dataset.
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Figure 5.6: Quality of fit of πθ̂θθMFE

The red line indicates the quantile of the log likelihood on the true dataset.
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Chapter 6

Optimal Discrimination between

Gibbs Distributions

The theoretical and numerical construction of Gibbs models on mass spectra leads us

to the conclusion that we can characterize any mass spectrometry group by a Gibbs

distribution. Knowing the distribution of two groups, there is an optimal classifier

discriminating between the two groups derived from Neyman-Pearson lemma. We

derive such an optimal classifier to two Gibbs distributed groups. We also introduce

the Kullback-Leibler distance to quantify the difference between Gibbs distributions.

6.1 Discriminating Power of a Classifier

Let x be an observations. x can belong to one of two groups G+ (labeled by +1) and

G− (labeled by -1) with distribution densities π+(x) and π−(x). Any classifier g on
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x produces two types of errors

L+(g) = P (g(x) = −1|x ∈ G+), L−(g) = P (g(x) = +1|x ∈ G−). (6.1)

Sensitivity Sens(g) and specificity Spec(g) are commonly used statistical measures

of the performance of a binary test, which are equivalent to 1−L+(g) and 1−L−(g)

respectively. To compare performances among classifiers, we define the ”discriminat-

ing power” of a classifier by the average of sensitivity and specificity

DP =
Sens(g) + Spec(g)

2
. (6.2)

6.2 Optimal Classifier and Optimal Discriminat-

ing Power

Let’s first introduce the classical Neymann-Pearson approach to hypothesis testing.

For any observation x of the random variable X ∈ X , consider the two hypothesis

H0 : x ∈ G+, H1 : x ∈ G−.

Lemma 6.2.1. Neyman-Pearson lemma[47] Given a threshold t > 0, the test

which rejects H0 in favor of H1 when

π+(x)

π−(x)
< t

gives the most powerful test of size (Type I error) L+. Namely, it maximizes the

power of test ρ = 1− L− as L+ is fixed. L+ and L− are defined by Equation 6.1.
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With a similar proof of Neyman-Pearson lemma, we have the following theorem.

Theorem 6.2.2. The decision rule

g̊(x) =

+1, if
π+(x)

π−(x)
> 1, (6.3)

−1, otherwise.

is the optimal classifier that minimizes the error (L+(g) +L−(g))/2, or equivalently,

maximizes the discriminating power

DP (g) =
Sens(g) + Spec(g)

2
= 1− (L+(g) + L−(g))/2.

Proof: Let ρ = 1− L−(g) and state the problem as seeking g̊ such that

g̊ = arg min
g

L+(g) + L−(g) = arg max
g

ρ− L+(g)

In fact, one seeks the region R = {x : H1 is accepted} that maximizes the objective

function

L(L+(g), ρ) = ρ− L+(g)

=

∫
R

(π−(x)− π+(x))dx.

The region that maximizes L(L+(g), ρ) is

R = {π
+(x)

π−(x)
< 1},

because π−(x)−π+(x) > 0 on R and π−(x)−π+(x) ≤ 0 on (−∞,∞)\R. This gives

the classifier (6.3).

We call the classifier (6.3) the ”optimal classifier” and its discriminating power

the ”optimal discriminating power”.
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6.3 Optimal Discrimination between Two Gibbs

Distributions

Given two Gibbs distributions πθθθ+(xxx) and πθθθ−(xxx) on a configuration xxx

πθθθ+(xxx) =
1

Z+
e−θθθ

+∗UUU(xxx) =
1

Z+
e−

∑
s∈S θ

+
s xs−

∑
{s,t}∈C θ

+
stxsxt , (6.4a)

πθθθ−(xxx) =
1

Z−
e−θθθ

−∗UUU(xxx) =
1

Z−
e−

∑
s∈S θ

−
s xs−

∑
{s,t}∈C θ

−
stxsxt , (6.4b)

where θθθ+ = (· · · θ+
s · · · θ+

st · · · )∗, θθθ− = (· · · θ−s · · · θ−st · · · )∗ are parameters,

UUU(xxx) = (· · · xs · · · xsxt · · · )∗, S and C are the cardinal-1 and cardinal-2 cliques of

the two groups. Since

πθθθ+(xxx)

πθθθ−(xxx)
> 1

implies

(θθθ−∗ − θθθ+∗)UUU(xxx) > logZ+ − logZ−,

the optimal classifier is

g̊(xxx) =

+1, if f̊(xxx) > 0, (6.5)

−1, otherwise.

where f̊(xxx) = (θθθ−∗ − θθθ+∗)UUU(xxx)− logZ+ + logZ−.

If the singletons or cliques are different between two distributions, we can always

construct a set of cliques of cardinal 1 and 2 which is the union of the corresponding

sets of cliques for π+ and π−. In those cases, θθθ− and θθθ+ may have some of their

coordinates equal to zero.
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6.4 Kullback-Leibler Distances between Two Gibbs

Distributions

We here utilize Kullback-Leibler (KL) divergence (relative entropy) to quantify the

distance between two probability distributions P and Q. In a discrete measure space,

the divergence is defined by

D(P‖Q) =
∑
x

P (x) ln
P (x)

Q(x)
.

Since D(P‖Q) is non-symmetric and non-negative, we define the Kullback-Leibler

distance between P and Q to be

dis(P,Q) = D(P‖Q) + D(Q‖P).

This distance takes values in the range [0,∞] and dis(π1, π2) = 0 if and only if

π1 = π2.

Given two Gibbs distributions

π1(xxx) =
e−θθθ

∗
1UUU1(xxx)

Z1

,

π2(xxx) =
e−θθθ

∗
2UUU2(xxx)

Z2

,

we compute their distance by

dis(π1, π2) = D(π1‖π2) + D(π2‖π1)

=
∑
xxx

e−θθθ
∗
1UUU1(xxx)

Z1

(ln
Z2

Z1

+ θθθ∗2UUU2(xxx)− θθθ∗1UUU1(xxx))

+
∑
xxx

e−θθθ
∗
2UUU2(xxx)

Z2

(ln
Z1

Z2

+ θθθ∗1UUU1(xxx)− θθθ∗2U2(xxx))

=
∑
xxx

(θθθ∗2UUU2(xxx)− θθθ∗1UUU1(xxx))(π1(xxx)− π2(xxx)).
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Thus, the distance between two Gibbs distributions is

dis(π1, π2) = Eπ1(θθθ
∗
2UUU2 − θθθ∗1UUU1) + Eπ2(θθθ

∗
1UUU1 − θθθ∗2UUU2). (6.6)

If UUU(xxx) = UUU1(xxx) = UUU2(xxx), for all xxx, (6.6) becomes

dis(π1, π2) = Eπ1((θθθ
∗
2 − θθθ∗1)UUU) + Eπ2((θθθ

∗
1 − θθθ∗2)UUU). (6.7)

The KullbackLeibler divergence D(p(x|H1)‖p(x|H0)) can also be viewed as the

mean information for discrimination betweenH1 andH0 per observation from p(x|H1)

[69]. The Kullback-Leibler Distance we define here sums the mean information per

observation from both p(x|H1) and p(x|H0) for discrimination between H1 and H0.
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Chapter 7

Signatures and Signature-based

Classification

One of the drawbacks of using machine learning algorithms to generate proteomic

classifiers is that the biological interpretation of ”black-box” classifiers is generally

hard or impossible to decipher. To develop clinically usable mass spectrometry anal-

ysis tools, a key step is to discover ”biomarker signature profiles”, i.e. combinations

of a small number of protein biomarkers which strongly discriminate between cancer

states. To circumvent this, we develop two innovative signature discovery algorithms

to automatically identify small groups of biomarkers with nearly optimal power of

discrimination between two groups G+ and G−. These two methods will be illus-

trated in details in Chapters 8 and 9. In this chapter, we set up the framework of

signature discovery algorithm by giving the definition of signatures and sketching

the general procedure of signature-based classification.
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7.1 Selection of Biomarker Target Pools by NP

Lemma

A biomarker, generally refers to as an m/z value in proteomic study, which can be

used as an indicator of some biological states. However, individual m/z values often

are only weakly discriminating. Therefore, here we take into consideration not only

single m/z values, but also pairs of m/z values. The reason adding pairs of m/z

values into the scope will be further explained in next section. Our approach is also

easily extendable to groups of three or more m/z values, although there is a trade

off between computational cost and increased discriminating power.

A biomarker B is defined here as either a single reference peak abscissa Ab or as a

pair of distinct reference peak abscissas (Abi, Abj), called a single-peak biomarker or

a double-peak biomarker. The activation frequency for a single or a pair of reference

peak abscissas in Section 3.3 also applies to a biomarker. To select a small set of opti-

mal biomarkers, called ”biomarker target pool” from the whole set of biomarkers for

highly efficient signature discovery, we introduce a threshold on ratios of biomarker

activation frequencies.

Activation frequencies statistically describe the discriminating nature of a biomarker

across mass spectra in distinct groups. Considering the discrimination task between

two distinct groups G+ and G−, each biomarker B has then two well defined acti-

vation frequencies: fq+(B) among the mass spectra of G+, and fq−(B) among the

mass spectra of G−.
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The NP lemma (Lemma 6.2.1) indicates that the most powerful test to dis-

criminate between G+ and G− on the basis of presence or absence of a single

biomarker B is achieved by adequate thresholding for the ratio of activation fre-

quencies fq+(B)/fq−(B).

Definition 7.1.1. We say that B is a GGG+ biomarker if fq+(B)/fq−(B) > 1 and a

GGG− biomarker if fq−(B)/fq+(B) > 1.

For a fixed k, we rank allG+ single-peak biomarkers and double-peakG+ biomark-

ers by descending fq+(B)/fq−(B) respectively, and also rank all single-peak G−

biomarkers and double-peak G− biomarkers by descending fq−(B)/fq+(B) respec-

tively; within each of the four ranked biomarker groups, we pick the top k biomarkers.

The integer k is a parameter and will be optimized later (refer to Section 7.4).

7.2 Binary Coding of Mass Spectra

We code every mass spectrum based on r pre-selected biomarkers B1, B2, · · · , Br.

Call W the set of all ”binary vectors” of dimension r, having all their coordinates

equal to either 0 or 1. We systematically code each mass spectrum M as a binary

vector WWW = WWW (M) belonging to W , by setting each coordinate Wj of WWW equal to 1

if the biomarker Bj is activated by M and to 0 if Bj is not activated by M . This

binary coding transforms each high-dimensional spectrum M into a low-dimensional

vector WWW (M) of dimension r.

Assume in a Gibbs model (4.4), a clique {s} or {s, t} corresponds to a biomarker
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defined on Abs or (Abs, Abt), then xs = 1 or xsxt = 1 corresponds to the activation

of Abs or (Abs, Abt). In Chapter 6, the optimal classifier to discriminate between two

Gibbs distributed groups involves an extended configuration space U (with config-

urations such as (· · · , xs, · · · , xsxt, · · · )) instead of the original configuration space

X (with configurations such as (x1, · · · , xs, · · · )). Therefore, we take into consider-

ation of double-peak biomarker in addition to single-peak biomarkers in our coding

scheme, for the reason that a binary configuration space W constructed by coding

mass spectra with both single-peak and double-peak biomarkers is just an extended

configuration space V constructed by coding mass spectra with only single-peak

biomarkers.

Two groups G+ and G− of mass spectra will give two subsets of W . In the

following sections, we will be dealing with the two subsets.

7.3 Signatures and Signature-based Classifiers

It has been generally accepted that using a small number of biomarkers combi-

natorially yields higher discriminating power than when they are used individually.

Therefore, within the biomarker target pool just constructed, we aim to extract small

lists of the biomarkers to construct high performance classifiers. Furthermore, for

clinical usage and biology studies, one naturally requests more interpretability and

biological significance to be provided by the discrimination method. Therefore, the

discovery of ”signature profiles” yielding efficient cancer group classifiers is currently

a key step to facilitate clinical diagnosis.
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Given a training dataset involving two pre-classified groups of mass spectra G+

and G−, a signature Sig will be any fixed list of biomarkers picked within the target

pool TP (r) = {B1, B2, · · · , Br}, namely, Sig ⊆ TP (r). One naturally seeks signa-

tures which characterize the key patterns of protein expression levels and hence can

potentially discriminate between distinct cancer patient groups. An interesting goal

is to associate a weight to each one of these biomarkers.

To each signature Sig = {B1, B2, · · · , Bq} (q < r), for example, we associate a

function fSig on a binary coded mass spectrometry configuration space W based on

{B1, B2, · · · , Bq}

fSig :W 7−→ R.

This function defines a classifier gSig on two subsets of W , labeled by +1 and -1,

from two groups of mass spectra G+ and G−

gSig(xxx) =

+1, if fSig(xxx) > 0, (7.1)

−1, if fSig(xxx) ≤ 0.

The function fSig is related to Sig because its domain W is constructed by coding

mass spectra with biomarkers in Sig. For any mass spectrum M , which is coded

into WWW (M) ∈ W , (7.1) is equivalent to the decision rule

M ∈

G+, if fSig(WWW (M)) > 0, (7.2)

G−, if fSig(WWW (M)) ≤ 0.

As proved in Chapter 6, the optimal f̊Sig between two Gibbs distributed binary

sets in W should be a linear function

f̊Sig(xxx) = aaa∗xxx+ b =

q∑
i=1

aixi + b. (7.3)
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Therefore, we restrict our search for f̊Sig on the class of linear functions in our study.

For B1, B2, · · · , Bq of Sig, the weights ai evaluates the impact of the activation of Bi.

The discriminating power of a signature is defined to be the discriminating power

of its associated classifier. Therefore, searching a signature with high discriminating

power between two groups of mass spectra G+ and G− is equivalent to searching

for one signature associated classifier on their binary coded configuration space with

high discriminating power.

Typically, there are two types of biomarkers in a signature for the discrimination

task G+ versus G−: the biomarkers whose activation by a binary vector WWW = WWW (M)

points towards the decision M ∈ G+ and the biomarkers whose activation indicates

the group G−. A natural choice is that the weight aj of a G+ biomarker should be

positive and weight aj of a G− biomarker should be negative. This conclusion can

also be inferred from the results presented in Chapter 6.

In a Gibbs model (4.4), a clique xs or xsxt corresponding to a biomarkers defined

on Abs or (Abs, Abt) with high activation frequency should have large marginals

P{xs = 1} or P{xs = 1, xt = 1}, therefore is expected to have large coefficient −θs
or −θst in a Gibbs model

πθθθ(xxx) =
1

Z
e−

∑
s∈S θsxs−

∑
{s,t}∈C θstxsxt .

Assume that we have fitted a Gibbs model

πθθθ+(xxx) =
1

Z+
e−θθθ

+∗UUU(xxx)

to the data set G+ as in Chapter 4, then the coefficients of −θθθ+ corresponding to

G+ biomarkers should be large and those corresponding to G− biomarkers should be
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small. Similarly, in −θθθ− of a G−model

πθθθ−(xxx) =
1

Z−
e−θθθ

−∗UUU(xxx),

the coefficients corresponding to G− biomarkers should be large and those corre-

sponding to G+ biomarkers should be small. Therefore, the coefficents of θθθ− − θθθ+

that corresponding to G+ biomarkers should be positive and that corresponding to

G− biomarkers should be negative.

7.4 Performance Evaluation and Model Selection

For a data mining model generated from a dataset, its capacity to fit into new

example sets is known as its generalization capacity, which is an important goal in

data mining [15].

A practical method to compute the generalization capacity of a model is to divide

the available examples into two completely distinct sets, one is used to train a model,

called training set, and the other one is used as a testing set to validate the model,

called testing set. To get an accurate evaluation of the generalization capacity of

this model, one needs a large number of training and testing examples.

In the case of limited example size, k-fold cross validation [83] is a powerful model

validation technique to assesses the performance of a model. in this approach, one

randomly partitions original samples into k equal size example subsets V1, V2, · · · , Vk,

of which, a single subset Vi is retained as the validation dataset and the rest subsets

are used as training set. This process is then repeated k times until each of the

67



Vi(i = 1, · · · , k) subsets has been used exactly once as the validation set. Leave-one-

out cross validation is one particular case of k-fold cross validation method where

k = 1.

We propose here a modified leave-one-out cross validation method, called leave-

two-out cross validation to further explore the potential of cross validations on

datasets of small size. Suppose G+ and G− have N1 and N2 examples. In the

”leave-two-out” technique, we select at random two examples, x+ in G+ and x− in

G− as the validation data and the other examples are used as a training set. This

process is then repeated N1 ∗N2 times until each pair of examples (one from G+ and

one from G−) is used exactly once as the validation set.

To evaluate the generalization capacity of our signature discovery model for the

discrimination task G+ vs G−, we implement our leave-two-out cross validation tech-

nique. Still assume that G+ and G− have N1 and N2 subjects. We select at random

two subjects A+ in G+ and A− in G− as the validation data and the other subjects

are used as a training set to generate a signature Sig and a signature related classifier

gSig. After each pairs of subjects is used exactly once, we obtained N1 ∗N2 results of

classification of subjects in G+ and also N1 ∗ N2 results of classification of subjects

in G−. The sensitivity and specificity can be then computed from these results.

In some cases, where we have two replicate spectra M1 and M2 per subject, we

classify a subject according to the average value of fSig(WWW (M1)) and fSig(WWW (M2)) of

any classifier gSig we obtained. Using more replicate spectra for each subject is more

reliable than using only one replicate per subject in in order to reduce the effects of

experimental variations and errors.
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The integer k (see Section 7.1) controls the complexity of our model. To seek

for optimal ”signatures” combining small numbers of biomarkers and having high

discrimination capacity, we consider a range of appropriate values for k, and find the

best one that gives the model with largest generalization capacity for each particular

discrimination task [15].

7.5 Signature Reliability Score

Peak detection during pre-processing is impacted by data acquisition noise. There-

fore, the activation of any specific biomarker is not fully stable across repeated data

acquisitions. Since biomarkers are the bases of a signature, the reliability of a sig-

nature is then questionable. To quantify the stability of a signature across multiple

data acquisitions, we compute a signature ”reliability score” as follows.

During pre-processing, we have already computed a reliability score for each detected

strong peak (See Section 3.2). The reliability score R(Sig) of any signature Sig is

then defined as the average of R(P ) over all peaks P (detected in the last step of

Pre-processing) that are within the error window of any biomarkers in Sig. Among

all signatures with similar discriminating power between G+ and G−, we naturally

prefer to select signatures with higher reliability scores.
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Chapter 8

Signature Discovery by Robust

Log-likelihood (RLL)

As numerically proved in Chapter 5, Gibbs models can be used to describe the

distribution of homogeneous groups of mass spectra based on the activation/non-

activation of a moderate number of well selected biomarkers. Given two groups

of mass spectra G+ and G− with Gibbs distributions π+ and π−, we have derived

in Chapter 6 that the optimal classifier to discriminate between the two groups is

(6.5). In this chapter, we introduce a signature discovery method to search for this

optimal classifier and simultaneously generate a signature profile for two groups in

a discrimination task. This signature discovery technique will be called a ”robust

log-likelihood” (RLL) algorithm.
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8.1 Robust Log-likelihood Algorithm

Recall that discriminating between two Gibbs models π+ and π−, the optimal clas-

sifier

g̊(xxx) =

+1, if f̊(xxx) > 0, (8.1)

−1, otherwise.

where

f̊(xxx) = (θθθ− − θθθ+)∗UUU(xxx)− logZ− − logZ+,

can be naturally generated when models π+ and π− are already explicitly parametrized

by θθθ+ and θθθ−

π+ = πθθθ+(xxx) =
1

Z+
e−θθθ

+∗UUU(xxx),

π− = πθθθ−(xxx) =
1

Z−
e−θθθ

−∗UUU(xxx).

Estimating a Gibbs model is not very accurate, especially when we have only a small

number of mass spectra in our dataset. Therefore, after code each mass spectrum

M into a binary vector WWW (M) = (W1,W2, · · · ,Wr) in a binary space W(r) as in

Section 7.2, we can avoid Gibbs modeling and blindly search for a function f in a

family of linear functions F(r) = {f : f(xxx) = aaaxxx+ b =
∑r

i=1 aixi + b} on W(r), with

which the classifier (8.1) has a largest discriminating power. We call this signature

discovery technique robust log-likelihood (RLL).

Recall that a G+ biomarker is a biomarker B with fq+(B)/fq−(B) > 1 and a G−

biomarker is a biomarker B with fq−(B)/fq+(B) > 1, where fq+(B) and fq−(B)

are activation frequencies of B in G+ and G−. In f̊ , the coefficients corresponding to
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G+ biomarkers should be positive and those corresponding to G− biomarkers should

be negative.

The optimal classifier (8.1) indicates that the best choice of aaa and b should be

respectively proportional to θθθ− − θθθ+ and to logZ+ − logZ−. Theoretically, if the

underlying Gibbs distributions are already parametrized (by direct estimation of

coefficiemts for instance) in π+ and π−, there should exists a λ ∈ R such that

aaa = λ(θθθ− − θθθ+), b = λ(logZ+ − logZ−). (8.3)

Given a target pool TP (r) of r biomarkers, our signature discovery by RLL for

two groups of mass spectra G+ and G− proceeds as follows.

1. Code all mass spectra of G+ and G− into binary vectors in W(r) based on

current r biomarkers. The vectors corresponding to mass spectra of G+ are

labeled by +1 and those corresponding to mass spectra of G− are labeled by

-1.

2. Search for a function f(xxx) =
∑r

i=1 aixi+b in the family of linear functions F(r)

with which the classifier (8.1) classifies two classes of vectors in W(r) with a

largest discriminating power.

3. Then

• If any G+ biomarker has a negative coefficient or any G− biomarker has

a negative coefficient, delete it from current biomarker pool TP (r); The

remaining r′(r′ < r) biomarkers constitute a new biomarker target pool,

denoted by TP (r′). Let TP (r) = TP (r′) and go to Step 1.
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• Otherwise, end of the algorithm.

The remaining G+ biomarkers and G− biomarkers at the end of the algorithm define

a signature Sig ⊆ TP (r). Their corresponding coefficients in the final classifier are

their weights.

8.2 Performance of RLL Classifiers (Simulated Data)

With large enough number of training samples, an efficient classification algorithm

is expected to find the nearly optimal classifier (see Section 6.3) when the biomarker

pool is correctly given. A correct biomarker pool should include biomarkers corre-

sponding to all cliques in the two Gibbs models. The following experiment evaluates

the performance of RLL signature discovery algorithm on a large simulated dataset

and demonstrates its efficiency numerically. Although the following simulation based

analysis is carried out only for two particular Gibbs distributions, it is easily extend-

able to any pair of Gibbs distributions.

Two groups V + (labeled by +1) and V − (labeled by -1) of random binary vectors

of lengths 10 are simulated from two pre-defined virtual Gibbs distributions

πθθθ+(xxx) =
1

Z
e−θθθ

+UUU(xxx)

and

πθθθ−(xxx) =
1

Z
e−θθθ

−UUU(xxx).

There are 10 sites {1, 2, · · · , 10} and 6 cardinal-2 cliques {1, 2}, {1, 3}, {2, 3}, {6, 7},
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{6, 8} and {7, 8} in the two models. θθθ+, θθθ− and UUU(xxx) are set to

θθθ+ = (−1 · · · − 1 − 0.3 · · · − 0.3 − 1 − 1 − 1 − 0.3 − 0.3 − 0.3)∗,

θθθ− = (−0.3 · · · − 0.3 − 1 · · · − 1 − 0.3 − 0.3 − 0.3 − 1 − 1 − 1)∗,

UUU(xxx) = (x1 · · · x5 x6 · · · x10 x1x2 x1x3 x2x3 x6x7 x6x8 x7x8)∗.

The distance between the two Gibbs distributions computed by equation (6.7) is

dis(πθθθ+ , πθθθ−) = 3.43. The optimal discriminating power (see formula (6.1)) between

the two Gibbs distributions when θθθ+ and θθθ− are fully known is D̊P = 81.6%.

Using these two explicit models, we simulated 1000 random binary configurations

xxx(1), · · · ,xxx(1000) from πθθθ+ and 1000 random binary configurations yyy(1), · · · , yyy(1000) from

πθθθ− . This gives us two virtual data sets V + and V − of binary vectors in R10. We

randomly chose a training set TR+ of size 500 within V + and a training set TR− of

size 500 within V −.

Then we implemented our RLL signature discovery algorithm on TR+ ∪ TR− to

train a classifier g. The biomarker target pool was simply set to be all the biomark-

ers corresponding to 10 singletons and 6 pairwise cliques. We didn’t include extra

biomarkers because in that case, a new problem related to verification of the efficiency

of selecting biomarkers will be raised. Here we ONLY want to check the efficiency

of our RLL algorithm. We utilize linear kernel SVM to facilitate linear classification

in this algorithm. Other algorithms, such as Perceptron [76], that support linear

classification can be used too. A Matlab toolbox LIBLINEAR-1.91[89] is used to

implement linear kernel SVM.

The discriminating power of the classifier g tested on the rest of the 1000 samples
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V + ∪ V −\(TR+ ∪ TR−) is 81.6 %, which coincides with the optimal discriminating

power D̊P . All the 16 biomarkers have been included by RLL algorithm in the

discovered signature. In addition, the parameters in the classifier g approximately

satisfy equations (8.3). These has successfully verified the efficiency of our RLL

signature discovery.

8.3 Convergence Rates of RLL Classifiers (Simu-

lated Data)

A natural question now is how fast the RLL signature discovery algorithm converges

with respect to the sample size n. The answer to this question enables us to estimate

the smallest but sufficient number of samples to reach any classification performance

level with a certain algorithm. Due to the small size of real mass spectrometry

samples, we still need to study simulated datasets. This section provides a numerical

approach to analyze the convergence rate of an algorithm on a given dataset of binary

coded mass spectra in the context of large deviation theory.

8.3.1 Large Deviation Framework

We follow the framework in [8]. Suppose TN is a consistent estimate of g. Namely,

for any ε > 0,

αN(ε)→ 0 as N →∞,
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where

αN(ε) = Pθ{|TN − g| > ε}. (8.4)

Large deviation theory implies that if the distribution of the g has finite expo-

nential moments, then TN is asymptotically normal distributed,

− logαN(ε)

N
→ γ(ε), as N →∞,

where γ(t) is the Cramer transform of distribution of g

γ(t) = sup
ξ>0

(ξt− λ(ξ)), λ(ξ) = lnE(eξg).

This indicates that the convergence rate of TN to g is e−Nγ(ε) when N is large enough.

8.3.2 Numerical Study

We still study the two Gibbs models in Section 8.2. For increasing N , we sys-

tematically implemented the following simulations. For each N , we perform 1000

simulations SIM1, SIM2, · · · , SIM1000. In each simulation SIMj, we generate N/2

binary vectors of size 10 drawn from the Gibbs distribution π+ and N/2 binary vec-

tors of size 10 drawn from the Gibbs distribution π−. We then implemented our RLL

signature discovery on this training set TRj of total size N samples. The biomarker

target pool is still set to be all the biomarkers corresponding to the 10 single sites and

6 pairwise cliques. The discriminating power DP (j) of the obtained classifier gj can

be computed by utilizing the formula (6.1). After repeating this for j = 1, · · · , 1000,
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we obtain 1000 simulated values DP (j) of the classifier gj. We can then compute the

mean discriminating power DPN = [DP (1) + · · · + DP (1000)]/1000 and the asso-

ciated standard error ErrN of DP (j)(j = 1, · · · , 1000). DPN and ErrN for several

values of N are listed in Table 8.1. With the increasing size N of the training set, the

discriminating power DPN achieved by RLL converges to the optimal discriminating

power 81.6% achievable when π+ and π− are already known and the standard error

of estimation ErrN on DPN decreases to zero. The optimal discriminating power

81.6% is practically reached for N = 200. We also checked the obtained signatures

after every training process. The signatures generated by RLL are short when N is

small. With the increasing of N , the signatures contain more and more biomarkers.

When N is around 1400, the signatures converge to the true one, which includes the

whole set of biomarkers.

In the formula (8.3.1), let TN = DPN , then Figure 8.1 shows the value of

−log(αN(ε)) as a function of N when ε = 0.1%, 0.5%, 1%, 5%. Comparing the four

plots in Figure 8.1, we conclude that γ(ε) is an increasing function.

Note that every curve stops earlier before as N increases. The reason is that as N

increases, the theoretical αN(ε) decreases; when αN(ε) is small enough, its estimation

using only 1000 simulations is essentially always equal to 0. In order to observe the

large deviation behavior at large values of N , one needs to sample huge numbers of

simulations SIMj, which are very expensive computations. Due to the limitation of

current computer capacity and time restraints, we didn’t complete this study. But

by comparing figures like Figure 8.1 for different algorithms, we can still get an idea

about the different convergence rates of various types of algorithms (see Figure 9.1).
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n DPN(%) ErrN(%)

2 70.8 7.4
4 73.4 5.2
6 74.6 4.8
8 75.2 4.1
10 76.5 3.8
12 76.6 3.2
14 77.2 2.9
16 77.3 2.5
18 77.2 2.3
20 77.6 2.4
40 78.5 1.7
60 79.2 1.4
80 79.5 1.1
100 80.0 1.0
120 80.2 0.8
140 80.6 0.8
160 80.6 0.8
180 80.8 0.7
200 80.9 0.6
400 81.3 0.3
600 81.5 0.2
800 81.6 0.1
1000 81.6 0.1
1200 81.6 0.1
1400 81.6 0.0
1600 81.6 0.0
1800 81.6 0.0
2000 81.6 0.0

Table 8.1: Performance of RLL signature discovery
At each N , we simulate a training set of size N using π+ and π− and test our RLL
signature discovery on this dataset. This process is repeated 1000 times for each
N . We can then estimate the mean discriminating power DPN achieved by RLL
algorithms with N training examples. We estimate also the standard error ErrN of
DPN . We report DPN and ErrN as percentages in the above table.
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Figure 8.1: Convergence rate of RLL signature discovery
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Chapter 9

Signature Discovery by

Maximizing Detecting Power

(MDP)

In this chapter, we present another innovative algorithm for signature discovery. We

first seek two signatures, Sig+ optimized to detect G+ patients and Sig− optimized

to detect G− patients. We then combine Sig+ and Sig− to generate an optimal

signature for discrimination between G+ and G−. Separate searches for Sig+ and

Sig− are implemented by a stochastic optimization method, Simulated Annealing, to

handle efficiently the high combinatorial complexity. As our results show, Simulated

Annealing is a powerful optimization tool for signature discovery. Other stochastic

optimization methods, such as genetic algorithms, possibly could be substituted to

Simulated Annealing in our algorithm, but we have not studied these alternative
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stochastic optimization techniques.

9.1 Stochastic Optimization of Group Detecting

Power

9.1.1 The Two Scoring Functions of a Signature

Given a training dataset involving two pre-classified groups of mass spectra G+ and

G−, and a biomarker target pool TP (r) = {B1, B2, · · · , Br}, we associate to any

tentative signature Sig ⊆ TP (r) two scoring functions

M 7→ s+(M,Sig), M 7→ s−(M,Sig),

defined for all mass spectra M as follows.

Definition 9.1.1. Given any spectrum M , we count, within the given fixed signature

Sig, the number u+(M) of G+ biomarkers activated by M and the number v+(M)

of G− biomarkers which are NOT activated by M . The GGG+ score of M for signature

Sig is then defined by s+(M,Sig) = (u+(M)+v+(M))/card(Sig), card(Sig) denotes

the number of biomarkers in Sig.

We count, within Sig, the number u−(M) of G− biomarkers activated by M and

the number v−(M) of G+ biomarkers which are NOT activated by M . TheGGG− score

of M for signature Sig is then defined by s−(M,Sig) = (u−(M)+v−(M))/card(Sig).

We then define the ”G+ detecting power” and ”G− detecting power” of the sig-

nature Sig.
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Definition 9.1.2. For each fixed threshold 0 < c < 1, the signature Sig determines

a G+ classifier by assigning any observed spectrum M to G+ if s+(M,Sig) ≥ c and

to G− otherwise. Denote the discriminating power of this classifier by DP (c, Sig).

There is an easily computable optimal threshold c maximizing DP (c, Sig). This

maximized performance J+(Sig) = max0<c<1DP (c, Sig) defines the GGG+ detect-

ing power of Sig. Exchanging G+ and G−, as well as the scores s+(M,Sig) and

s−(M,Sig) we similarly define the GGG− detecting power J−(Sig) of Sig.

Among all signatures Sig included within our biomarkers target pool TP (r), we

will now seek two signatures Sig+ and Sig− respectively by maximizing separately

the detecting powers J+(Sig) and J−(Sig).

But J+(Sig) and J−(Sig) have many local maxima, and the set of all signatures

included within TP (r) has very large cardinal. To solve this combinatorial challenge,

we implement the separate maximizations of J+(Sig) and of J−(Sig) by Simulated

Annealing as described in the following.

9.1.2 Simulated Annealing (SA) Algorithm

Simulated Annealing, a powerful stochastic optimization method, searches for a

global optimum of a function U defined on a large and often discrete space E [6]

[41][1]. It randomly explores the configurations in the configuration space E with a

probabilistic acceptance rule parametrized by a very slowly decreasing virtual ”tem-

perature”, and converges almost surely to a global optimum of U .

Given an arbitrary function U : E 7→ R, where E is an arbitrary finite set, called
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configuration space and U is called the energy function, the generic Simulated An-

nealing algorithm generates a stochastic sequence Xn ∈ E , such that Xn concentrates

on the set of absolute minima of U as n tends to infinity. There are three mathe-

matical structures to be defined in order to implement a Simulated Annealing (SA)

algorithm: the transition probabilities, a neighborhood system and a cooling sched-

ule. The transition probability q(i, j) is the probability that SA algorithm explores

the configuration j when its current configuration is i. In principle the choice of tran-

sition probabilities q(i, j) is arbitrary but q should be symmetric and irreducible. The

set of the neighbors of configuration i is the set Vi = {j ∈ E | q(i, j) > 0}. Define

a cooling schedule {Tn}, where the sequence of numbers Tn > 0 are called tempera-

tures, and satisfies Tn ≥ Tn+1, ∀n ≥ 0. The cooling sequence Tn should in principle

decrease very slowly to zero.

The SA algorithm for maximization of U(x) starts from an arbitrary configuration

X0. At step n, one selects a random neighbor Yn of Xn, such that P (Yn = j |

Xn) = q(Xn, j). Then if U(Yn) > U(Xn), set Xn+1 = Yn; if U(Yn) ≤ U(Xn), let

p = e−
1
Tn

(U(Xn)−U(Yn)) and make a random choice between Xn+1 = Yn and Xn+1 = Xn

with

P (Xn+1 = Yn) = p, P (Xn+1 = Xn) = 1− p.

9.1.3 Implementation of Signature Search by Simulated An-

nealing

We optimize J+(Sig) by Simulated Annealing as follows.
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1. Select any initial signature Sig0 ⊆ TP (r)

2. Fix a periodic sequence j(n) visiting integers 1 to r repeatably

3. At step n, define a new signature S̃ig by:

• If Bj(n) ∈ Sign, let S̃ig = Sign ∪ {Bj(n)}

• Otherwise, let S̃ig = Sign\Bj(n)

Then

• If J+(S̃ig) > J+(Sign), set Sign+1 = S̃ig

• Otherwise, select a random number u with uniform distribution:

– if u < e−
1

0.95n
(J+(Sign)−J+(S̃ig)), set Sign+1 = S̃ig

– Otherwise, set Sign+1 = Sign

4. Repeat Steps 3 until J+ stabilizes

Typically, J+ will stabilize after 200 × r repetitions of Steps 3. This completes

one time of Simulated Annealing search and gives one (or more) signature(s) that

maximize(s) J+(Sig). To enhance performance, we implement multiple Simulated

Annealing searches and retain the signature Sig+ achieving the highest maximum

for J+(Sig).

The optimization of J−(Sig) is implemented similarly.
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9.1.4 Signature-based Classifier

After computing signatures Sig+ and Sig−, one can focus on the two scores s+ =

s+(Sig+,M) and s− = s−(Sig−,M) of a mass spectrum M . Consider the decision

M ∈
{
G+, if s+ ≥ C s− +D, (9.1)

G−, otherwise,

C,D can be easily computed by any algorithm that searches for linear classifier (such

as SVM with linear kernel).

When we have two replicate spectra M1,M2 per patient, we replace s+(Sig+,M1)

and s+(Sig+,M2) by their average s+ and do the same for s−, before constructing

as above the best linear separator based on the sign of s+ − (C s− +D).

To fit into the framework of Chapter 7, we state here that the decision rule (9.1)

is a particular case of (7.2). Recall that in Section 7.3, the optimal decision rule

(7.2) is

M ∈

G+, if fSig(WWW (M)) > 0,

G−, if fSig(WWW (M)) ≤ 0.

where

f̊Sig(xxx) = aaa∗xxx+ b =

q∑
i=1

aixi + b.

Note that given two lists of biomarkers Sig+ and Sig− and a mass spectrum M , both

s+(M) and s−(M) can be represented as linear combinations of the coordinates of

the binary vectorWWW (M). This is simply because u+(M), v+(M), u−(M) and v−(M)

are all linear combinations of some coordinates ofWWW (M). Therefore, s+−(C s−+D)

can be rephrased as a linear function in the form of f̊Sig(xxx).
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9.2 Performance of MDP Classifiers (Simulated

Data)

We follow the same process in Section 8.2 to evaluate the efficiency of MDP signature

discovery algorithm on simulated data. Similarly, using these two explicit models,

we simulated 1000 random binary configurations xxx(1), · · · ,xxx(1000) from πθθθ+ and 1000

random binary configurations yyy(1), · · · , yyy(1000) from πθθθ− . This gives us two virtual

data sets V + and V − of binary vectors in R10. We randomly chose a training set

TR+ of size 500 within V + and a training set TR− of size 500 within V −.

Then we implemented our MDP signature discovery algorithm on TR+∪TR− to

train a classifier g. The biomarker target pool was simply set to be all the biomarkers

corresponding to 10 singletons and 6 pairwise cliques. The discriminating power of

the classifier g tested on the rest of the 1000 samples V + ∪ V −\(TR+ ∪ TR−) is is

80.7%, which, taking account of the error of estimations, is not really distinguishable

from the optimal discriminating 81.6%. We can say that these simulations do validate

the efficiency of this signature discovery method.

9.3 Convergence Rates of MDP Classifiers (Sim-

ulated Data)

Under the same framework of Section 8.3, we discuss about the convergence rate

of this signature discovery algorithm. Similarly, for increasing N , we systematically
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implemented the following simulations. For each N , we perform 1000 simulations

SIM1, SIM2, · · · , SIM1000. In each simulation SIMj, we generate N/2 binary vec-

tors of size 10 drawn from the Gibbs distribution π+ and N/2 binary vectors of size

10 drawn from the Gibbs distribution π−. We then implemented our MDP signature

discovery on this training set TRj of total size N samples. The biomarker target

pool is still set to be all the biomarkers corresponding to the 10 single sites and 6

pairwise cliques. The discriminating power DP (j) of the obtained classifier gj can

be computed by utilizing the formula (6.1). After repeating this for j = 1, · · · , 1000,

we obtain 1000 simulated values DP (j) of the classifier gj. We can then compute

the mean discriminating power DPN = [DP (1) + · · · + DP (1000)]/1000 and the

associated standard error ErrN of DP (j)(j = 1, · · · , 1000). DPN and ErrN for

several values of N are listed in Table 8.1. With the increasing of sample size, the

mean of the discriminating power DPN converges to 80.7% which is very close to

the optimal discriminating power 81.6%. The error of estimation on DPN decreases

and stabilizes at 1.1%. We also checked the signature Sig+, Sig−, and Sig for each

N . The signatures obtained for small N are short. For increasing N , the signatures

contain more and more biomarkers. When n reaches 2000, the signatures are almost

the same as the true one, which includes the whole set of biomarkers.

In the fomula (8.3.1), let TN = DPN , Figure 9.1 shows the value of −log(αN(ε))

as a function of N when ε = 0.1%, 0.5%, 1%, 5%. The comparison of the four plots

indicates that γ(ε) does not change much at low level ε but has a dramatic increasing

around ε = 5%. However, comparing the four plots to those in Figure 8.1, we

conclude that signature discovery by MDP, at least in this simple case, converges
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n DPN(%) Errn(%)

2 71.1 10.1
4 76.3 6.2
6 77.9 3.6
8 78.3 3.1
10 78.1 3.1
12 78.1 3.2
14 78.2 3.0
16 78.6 2.6
18 78.2 3.0
20 78.2 3.0
40 78.9 2.0
60 79.6 1.9
80 79.6 1.7
100 80.0 1.6
120 80.2 1.4
140 80.3 1.5
160 80.2 1.3
180 80.4 1.3
200 80.6 1.1
400 80.7 1.1
600 80.7 1.1
800 80.7 1.1
1000 80.7 1.1
1200 80.6 1.1
1400 80.6 1.1
1600 80.7 1.1
1800 80.6 1.1
2000 80.7 1.1

Table 9.1: Performance of MDP signature discovery
At each N , we simulate a training set of size N using π+ and π− and test our MDP
signature discovery on this dataset. This process is repeated 1000 times for each
N . We can then estimate the mean discriminating power DPN achieved by MDP
algorithms with N training examples. We estimate also the standard error ErrN of
DPN . We report DPN and ErrN as percentages in the above table.
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slower than signature discovery by RLL on all ε levels.
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Figure 9.1: Convergence rate of MDP signature discovery
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Chapter 10

Mass Spectrometry Data Study

Colorectal cancer (CRC) and Ovarian cancer (OC) are two of the commonly diag-

nosed type of cancer worldwide. In this study, we validate our signature discovery al-

gorithms described in Chapter 8 and 9 on a new experimental MALDI-TOF dataset,

acquired from 3 groups of colorectal cancer patients (3 stages) and one control group,

and two well-known SELDI-TOF datasets on ovarian cancer patients and control pa-

tients. For all the homogeneous patient groups in these datasets we have generated

explicit signatures functional in each discrimination task with high discriminating

power.
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10.1 Mass Spectrometry Datasets

10.1.1 Mass Spectra of Colorectal Cancer

104 colorectal cancer (CRC) samples and 15 control samples were provided by Sec-

tion of Surgical Clinic II, Department of Surgical Oncology and Gastroenterological

Sciences, University of Padova, Padova, Italy. Between 2002 and 2005, the 104 can-

cer patients underwent surgeries and histopathological diagnosis. Among them, 27

were diagnosed with colorectal pre-cancer lesion (Adenoma), 40 with early colorectal

cancer (stage I or II), and 37 with late colorectal cancer (stage III or IV). The 15

healthy patients all received colonoscopy and were diagnosed to be unaffected.

A 10 ml blood sample was collected from each patient into a DB Vacutainer

during the surgery or colonoscopy and transferred to the laboratory within 4 hours

of collection, to be centrifuged at 3,000 rpm for 10 min. Plasma samples were then

collected from the supernatant and stored in aliquots at -80◦C in the Tumor Tissue

Biobank of Surgical Clinic I as well as during transportation, until analysis.

For efficient removal of high molecular weight proteins and for specific isolation

and enrichment of LMW species present in 15µl of plasma, we used (see [16]) a novel

three steps size-exclusion strategy based on Mesoporous Silica Chips, fabricated by

Dept of Nanomedicine (Methodist Hospital Research Institute, Houston, Texas).

Mass spectra were acquired in linear positive-ion mode (range 800-10,000 ”m/z” ra-

tio) on a Voyager-DE-STR MALDI TOF Mass Spectrometer (Applied Biosystems,

Framingham, MA, USA) at Research Center of Protein Chemistry Core Laboratory
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(University of Texas Health, Houston, Texas). The manufacturer provided spectrom-

eter accuracy was ρ = 0.3% (see Section 3.3). Only one blood plasma sample was

extracted from each subject, but two ”replicate” mass spectra were acquired from

each blood plasma sample.

In total, 238 mass spectra replicates were acquired from 4 patients groups, with

2 mass spectra replicates per patient: the Control group CTR of 15 patients, the

Adenoma group ADE of 27 patients with precancer lesions, the group ECR of 40

patients with Early ColoRectal cancer (stage I-II), the group LCR of 37 patients with

Late ColoRectal cancer (stage III-IV). We also studied the whole cancerous group

CRC of 104 patients pooling together all three cancer groups ADE, ECR, and LCR.

Each mass spectrum provides about 36,900 m/z values between 800-10,000 on the

x-axis and the associated ”peptide intensities” on the y-axis.

10.1.2 Mass Spectra of Ovarian Cancer

Two well-known ovarian cancer (OVC) datasets can be freely downloaded from NCI-

FDA clinical proteomics databank (http://home.ccr.cancer.gov /ncifdaproteomics

/ppatterns.asp). The dataset obtained on 04/03/02 consists of 116 control (normal

or benign) samples and 100 cancer samples, collected using the WCX2 protein chip

and a Ciphergen PBS1 SELDI-TOF mass spectrometer. The dataset obtained on

08/07/02 gathers 91 control and 162 cancer samples, also collected using the WCX2

chip but with an upgraded PBSII SELDI-TOF mass spectrometer. The samples were

prepared manually for the dataset of 04/03/02 and by robotic hardware for dataset
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of 08/07/02. These two mass spectrometers had ρ = 0.1% accuracy (see Section 3.3)

and each mass spectrum listed 15,154 distinct m/z values in the 0-20,000 range. In

dataset of 04/03/02, baselines have been removed prior to display for public access.

The dataset of 04/03/02 has been studied in [65], [102], and [5], which reported

classification accuracies of 97.5%, 100%, and 86.66%. The dataset of 08/07/02 was

studied by [102], [82], [4], and [5], which reported classification accuracies of 100%.

In our study, we denote the ovarian and control groups in the dataset of 04/03/02

by ”OVC04” and ”CTR04” and those in the dataset of 08/07/02 by ”OVC08” and

”CTR08”.

10.2 Signature Discovery for Cancer Discrimina-

tion

Throughout this thesis, we consider on CRC dataset, the 4 discrimination tasks ADE

vs ECR, ADE vs LCR, ECR vs LCR, and CRC vs CTR, where CRC denotes the

union group of the three cancer groups: ADE, ECR, and LCR; and consider on

the two OVC datasets, the 2 tasks ”OVC04 vs CTR04” and ”OVC08 vs CTR08”.

Generically, we denote a discrimination task by G+ vs G−.

We validated our two signature discovery algorithms elaborated in Chapter 8 and

Chapter 9 on CRC and OVC datasets. There are slight differences between the two

experiments. We systematically implemented the two separate steps pre-processing

and signature discovery on the two datasets and present them in two sections.
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10.2.1 Pre-processing

The 238 MALDI mass spectra in our colorectal dataset were restricted to m/z ratios

from 800 to 10,000. We plot one spectrum in each of the colorectal groups (ADE,

ECR, LCR, and CTR) in Figures 10.1, 10.2, 10.3, and 10.4.

There are obviously several large peaks that are common to all the four mass

spectra, which might represent some peptides that can be seen in every patient’s

plasma proteins. They are not useful for discrimination between groups. Only those

that tends to present in one group rather than the other have high value to achieve

a discrimination goal. Those peaks might have comparably smaller intensity, which

are not easy to be detected only by looking at these spectra. Our pre-processing

algorithm intends to detect all the significant peaks (no matter with ”small” or

”large” intensity) in every spectrum, which will be used later for signature discovery

and group classification.

At m/z abscissa x, the half window widths ux, vx, wx, and tx (see Section 3.1)

for spectrum smoothing, noise extraction, baseline computation, and peaks selection

were implemented with values u = 0.0003, v = 0.017, w = 0.025, and t = 0.0005.

Our peak detection was based on a peak strength threshold th = 2. After setting

these parameters, our pre-processing algorithm was implemented on all the 238 mass

spectra sequentially and automatically.

We take a piece of the mass spectrum in Figure 10.4 from 1800 to 2000 m/z ratios

as an example to explain the pre-processing procedures. Normalization, smoothing,

and baseline removal have vertically rescaled mass spectra and have diminished the
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Figure 10.1: A raw mass spectrum of ADE
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Figure 10.2: A raw mass spectrum of ECR
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Figure 10.3: A raw mass spectrum of LCR
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Figure 10.4: A raw mass spectrum of CTR
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Figure 10.5: Pre-processing on a mass spectrum of CTR
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Figure 10.6: Detected peaks of a mass spectrum of CTR
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effect of vertical variations. Figure 10.5 exhibits the normalized, smoothed, and

baseline removed version of this mass spectrum. 6 peaks were detected on this piece

of spectrum as shown in Figure 10.6. Each of the peaks has a stronger strength than

2.

Corresponding to the spectra in Figures 10.1, 10.2, 10.3, and 10.4, Figures 10.7,

10.8, 10.9, and 10.10 present the pre-processed spectra.

For the groups ADE, ECR, LCR, and CTR, the detected peaks per spectrum

ranged between 250-374, 247-384, 230-375, and 219-318.

Two mass spectrum replicates from one subject are expected to have two similar

sets of peaks. Figure 10.11 shows the detected peaks in two mass spectrum replicates

from one subject of CTR between the m/z range of 4550 and 4650. Six peaks are

detected on each of the two spectra. The two sets of peaks are not perfectly matched,

but considering spectrum variations, it is reasonable to believe that they represent

the same set of peptide particles. If one peak that is detected from one spectrum

replicate is not present in other replicates of the same subject, this peak might be a

noisy peak. Therefore, using more replicates for one subject minimizes the possibility

of detecting false peaks.
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Figure 10.7: A pre-processed spectrum of ADE
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Figure 10.8: A pre-processed spectrum of ECR
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Figure 10.9: A pre-processed spectrum of LCR
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Figure 10.10: A pre-processed spectrum of CTR
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Figure 10.11: Detected peaks of two mass spectrum replicates

The 216 and 253 MALDI mass spectra in our ovarian datasets of 04/03/02 and

08/07/02 were restricted to m/z ratios from 0 to 20,000. A raw mass spectrum

example from each of the groups OVC04, CTR04, OVC08 and CTR08 is displayed

in a figure as an example (see Figures 10.12, 10.13, 10.14, and 10.15).

We implemented similarly the pre-processing procedure on each mass spectrum

in OVC04, CTR04, OVC08, and CTR08. The spectrum smoothing, noise extraction

window ratio, baseline computation window and the peak strength threshold are

u = 0.0003, v = 0.017, w = 0.025, t = 0.0005, and th = 2 as for the previous dataset.

Baseline removal was skipped on OVC04 and CTR04 because it had been performed

before the dataset of 04/03/02 was posted.

For the groups OVC04, CTR04, OVC08, and CTR08, the detected peaks per

spectrum ranged between 929-766, 737-954, 648-838, and 626-791.
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Figure 10.12: A raw mass spectrum of OVC04
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Figure 10.13: A raw mass spectrum of CTR04
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Figure 10.14: A raw mass spectrum of OVC08
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Figure 10.15: A raw mass spectrum of CTR08
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10.2.2 Target Pools of Biomarkers

Both of the two signature discovery methods start with the selection of biomarker

target pools. We present here the highly ranked biomarkers in each of the biomarker

pools selected for each of the discrimination task before implementing signature

discovery algorithm.

Given 0.3% as the accuracy of MALDI mass spectrometer, we focused on 844

reference peak abscissas Abj = 800×1.003j for all 4 discriminating tasks in colorectal

dataset, ranging from 800 to 10,000. Tables 10.1, 10.2, 10.3, and 10.4 list for the

task ADE vs ECR, ADE vs LCR, ECR vs LCR, and CRC vs CTR, the top 10

ranked G+ and G− biomarkers based on the ratios of activation frequencies fq+/fq−

and fq−/fq+ respectively. In general, the biomarkers in CRC vs CTR have larger

fq+/fq− or fq−/fq+ ratios than those in the other three tasks. That is the reason

why the discrimination task CRC vs CTR is easier than the other three.
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ADE Biomarkers

Ab fADE(Ab) fECR(Ab) (Abi, Abj) fADE(Abi, Abj) fECR(Abi, Abj)

1146 0.45 0.18 (1565, 1146) 0.39 0.07
1192 0.31 0.12 (1368, 1192) 0.28 0.06
1845 0.88 0.55 (1851, 1146) 0.44 0.12
1579 0.55 0.30 (1392, 1146) 0.23 0.05
2475 0.58 0.32 (6397, 1146) 0.45 0.13
1397 0.29 0.14 (1579, 1146) 0.29 0.07
1188 0.33 0.16 (1368, 1188) 0.29 0.07
6377 0.77 0.50 (1372, 1192) 0.29 0.07
1851 0.90 0.62 (2475, 1579) 0.39 0.10
6397 0.74 0.49 (2475, 1845) 0.56 0.17

ECR Biomarkers

Ab fADE(Ab) fECR(Ab) (Abi, Abj) fADE(Abi, Abj) fECR(Abi, Abj)

8813 0.10 0.27 (6915, 4282) 0.12 0.38
7984 0.10 0.24 (3985, 4282) 0.15 0.43
2782 0.13 0.29 (1470, 8630) 0.17 0.45
4168 0.26 0.45 (3145, 3985) 0.13 0.39
4282 0.31 0.51 (7254, 8630) 0.20 0.51
3985 0.47 0.70 (1977, 1261) 0.09 0.27
6283 0.28 0.47 (6283, 4168) 0.10 0.31
2773 0.31 0.50 (6283, 3985) 0.13 0.38
1261 0.17 0.31 (3599, 3985) 0.15 0.40
1288 0.17 0.31 (918, 1470) 0.09 0.26

Table 10.1: Biomarkers for ADE vs ECR
This table lists the top ranked ADE biomarkers, which have largest fADE/fECR

ratios and the top ranked ECR biomarkers, which have largest fECR/fADE ratios.
These biomarkers contain both single-peak biomarkers Ab and double-peak biomark-
ers (Abi, Abj). f

ADE and fECR are activation frequencies computed empirically.
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ADE Biomarkers

Ab fADE(Ab) fLCR(Ab) (Abi, Abj) fADE(Abi, Abj) fLCR(Abi, Abj)

1146 0.45 0.09 (6377, 1146) 0.44 0.05
1143 0.28 0.08 (1845, 1146) 0.42 0.06
1150 0.31 0.11 (1116, 1146) 0.36 0.05
1192 0.31 0.12 (4180, 1146) 0.36 0.05
1570 0.48 0.23 (6731, 1146) 0.36 0.05
1343 0.34 0.15 (2001, 1146) 0.39 0.06
2001 0.61 0.33 (7542, 1146) 0.39 0.06
7542 0.69 0.39 (5187, 1146) 0.39 0.06
1112 0.31 0.14 (2007, 1146) 0.39 0.06
1136 0.31 0.14 (4193, 1146) 0.33 0.05

LCR Biomarkers

Ab fADE(Ab) fLCR(Ab) (Abi, Abj) fADE(Abi, Abj) fLCR(Abi, Abj)

1812 0.17 0.38 (1296, 3145) 0.15 0.52
891 0.10 0.26 (8630, 3145) 0.17 0.54
3145 0.31 0.57 (7254, 8630) 0.20 0.61
8813 0.10 0.25 (3420, 8630) 0.20 0.61
8630 0.56 0.89 (819, 8630) 0.09 0.32
4168 0.26 0.49 (2651, 3145) 0.10 0.35
3844 0.13 0.29 (4081, 7587) 0.18 0.54
839 0.15 0.32 (4282, 8630) 0.15 0.46
1246 0.09 0.21 (5156, 4168) 0.09 0.31
7984 0.10 0.23 (1296, 1812) 0.10 0.34

Table 10.2: Biomarkers for ADE vs LCR
This table lists the top ranked ADE biomarkers, which have largest fADE/fLCR

ratios and the top ranked LCR biomarkers, which have largest fLCR/fADE ratios.
These biomarkers contain both single-peak biomarkers Ab and double-peak biomark-
ers (Abi, Abj). f

ADE and fLCR are activation frequencies computed empirically.
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ECR Biomarkers

Ab fECR(Ab) fLCR(Ab) (Abi, Abj) fECR(Abi, Abj) fLCR(Abi, Abj)

1953 0.21 0.06 (1570, 4180) 0.29 0.08
7542 0.67 0.39 (3524, 1288) 0.30 0.09
8376 0.55 0.31 (2589, 1112) 0.23 0.06
1112 0.29 0.14 (2998, 4180) 0.45 0.16
4180 0.65 0.39 (2998, 8376) 0.40 0.14
6320 0.43 0.25 (6301, 8401) 0.19 0.05
921 0.44 0.26 (3524, 921) 0.40 0.15
2589 0.66 0.44 (5187, 8376) 0.40 0.15
6894 0.61 0.42 (5187, 1953) 0.18 0.05
6915 0.68 0.48 (6711, 1112) 0.24 0.08

LCR Biomarkers

Ab fECR(Ab) fLCR(Ab) (Abi, Abj) fECR(Abi, Abj) fLCR(Abi, Abj)

7889 0.09 0.26 (1210, 2143) 0.05 0.25
2807 0.15 0.34 (3856, 2807) 0.07 0.28
2143 0.26 0.48 (1213, 2143) 0.05 0.21
3856 0.43 0.69 (1032, 3856) 0.06 0.23
1210 0.26 0.45 (9386, 1812) 0.09 0.32
1032 0.13 0.26 (3856, 7889) 0.05 0.20
1029 0.32 0.52 (9386, 5829) 0.07 0.26
819 0.17 0.32 (4684, 7889) 0.06 0.22
1213 0.26 0.43 (3080, 7889) 0.06 0.22
6226 0.34 0.52 (3164, 3856) 0.14 0.40

Table 10.3: Biomarkers for ECR vs LCR
This table lists the top ranked ECR biomarkers, which have largest fECR/fLCR

ratios and the top ranked LCR biomarkers, which have largest fLCR/fECR ratios.
These biomarkers contain both single-peak biomarkers Ab and double-peak biomark-
ers (Abi, Abj). f

ECR and fLCR are activation frequencies computed empirically.
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CRC Biomarkers

Ab fCRC(Ab) fCTR(Ab) (Abi, Abj) fCRC(Abi, Abj) fCTR(Abi, Abj)

4155 0.96 0.20 (1556,4155) 0.88 0.13
1802 0.62 0.13 (1556,3697) 0.84 0.13
3183 0.77 0.18 (2832, 4155) 0.84 0.13
3708 0.85 0.23 (5725, 3708) 0.84 0.13
3697 0.90 0.25 (1556, 3708) 0.80 0.13
1380 0.53 0.13 (5725, 8301) 0.79 0.13
8451 0.59 0.15 (4057, 3697) 0.79 0.13
8276 0.78 0.23 (5725, 3697) 0.89 0.15
1551 0.91 028 (3697, 4155) 0.88 0.15
1983 0.63 0.18 (4143, 3183) 0.77 0.13

CTR Biomarkers

Ab fCRC(Ab) fCTR(Ab) (Abi, Abj) fCRC(Abi, Abj) fCTR(Abi, Abj)

1439 0.09 0.85 (8813,805) 0.02 0.82
1657 0.04 0.45 (805,1439) 0.02 0.80
1202 0.05 0.52 (1243,2497) 0.02 0.80
1652 0.03 0.35 (2331,1439) 0.02 0.77
805 0.09 0.82 (2359,1439) 0.02 0.75
2359 0.09 0.77 (2497,805) 0.02 0.75
2497 0.11 0.80 (2331,805) 0.02 0.75
1435 0.12 0.80 (1243,805) 0.02 0.82
1246 0.12 0.82 (2338,805) 0.02 0.70
1662 0.08 0.57 (1246,1439) 0.02 0.80

Table 10.4: Biomarkers for CRC vs CTR
This table lists the top ranked CRC biomarkers, which have largest fCRC/fCTR

ratios and the top ranked CTR biomarkers, which have largest fCTR/fCRC ratios.
These biomarkers contain both single-peak biomarkers Ab and double-peak biomark-
ers (Abi, Abj). f

CRC and fCTR are activation frequencies computed empirically.
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Since all mass spectra in two SELDI datasets have already been aligned to a

reference list of 15,154 peak abscissas, there is no need to construct a new list of

reference peak abscissas. Thus, we took advantage of this consensus peak abscissa

list and computed the activation frequencies for each of the abscissas by an alternative

strategy: a strong peak detected in a mass spectrum M that located within x±0.1%x

range indicates the activation of abscissa x in M , given that the mass spectrometer

accuracy is 0.1%.

Tables 10.5 and 10.6 list the top 10 ranked G+ and G− biomarkers of the discrim-

ination tasks OVC04 vs CTR04 and OVC08 vs CTR08. In general, the biomarkers

in OVC08 vs CTR08 have larger fq+/fq− or fq−/fq+ ratios than those in OVC04

vs CTR04. Therefore, OVC08 vs CTR08 is an easier discrimination task.
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OVC04 Biomarkers

Ab fOV C04(Ab) fCTR04(Ab) (Abi, Abj) fOV C04(Abi, Abj) fCTR04(Abi, Abj)

328 0.32 0.03 (3249, 494) 0.57 0.07
582 0.27 0.04 (593, 547) 0.32 0.03
494 0.71 0.18 (383, 328) 0.31 0.03
276 0.28 0.06 (6883, 494) 0.40 0.05
2412 0.33 0.07 (1076, 494) 0.53 0.07
959 0.36 0.08 (607, 242) 0.27 0.03
2128 0.27 0.06 (855, 3249) 0.32 0.04
1576 0.35 0.09 (1598, 3249) 0.26 0.03
3249 0.77 0.24 (242, 1576) 0.26 0.03
1941 0.24 0.06 (1443, 3249) 0.34 0.05

CTR04 Biomarkers

Ab fOV C04(Ab) fCTR04(Ab) (Abi, Abj) fOV C04(Abi, Abj) fCTR04(Abi, Abj)

649 0.04 0.37 (594, 678) 0.04 0.36
1246 0.05 0.37 (678, 661) 0.04 0.36
661 0.06 0.42 (2139, 661) 0.04 0.33
1468 0.06 0.40 (661, 649) 0.04 0.31
1569 0.04 0.29 (2336, 678) 0.05 0.36
1540 0.06 0.38 (824, 661) 0.04 0.30
1144 0.05 0.32 (784, 1144) 0.04 0.28
1083 0.04 0.25 (2987, 661) 0.04 0.28
377 0.05 0.29 (1098, 1144) 0.04 0.27
1292 0.05 0.28 (970, 661) 0.04 0.27

Table 10.5: Biomarkers for OVC04 vs CTR04
This table lists the top ranked OVC04 biomarkers, which have largest fOV C04/fCTR04

ratios and the top ranked CTR04 biomarkers, which have largest fCTR04/fOV C04 ra-
tios. These biomarkers contain both single-peak biomarkers Ab and double-peak
biomarkers (Abi, Abj). f

OV C04 and fCTR04 are activation frequencies computed em-
pirically.
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OVC08 Biomarkers

Ab fOV C08(Ab) fCTR08(Ab) (Abi, Abj) fOV C08(Abi, Abj) fCTR08(Abi, Abj)

435 0.74 0.04 (546,435) 0.70 0.04
442 0.72 0.06 (647,435) 0.62 0.04
828 0.71 0.06 (442,435) 0.59 0.04
647 0.82 0.09 (828,442) 0.55 0.04

10539 0.43 0.04 (1146,828) 0.55 0.04
668 0.41 0.04 (870,435) 0.52 0.04
1336 0.44 0.05 (5283,647) 0.47 0.04
2450 0.50 0.06 (693,442) 0.46 0.04
762 0.45 0.06 (13016,442) 0.46 0.04
227 0.45 0.07 (762,435) 0.41 0.04

CTR08 Biomarkers

Ab fOV C08(Ab) fCTR08(Ab) (Abi, Abj) fOV C08(Abi, Abj) fCTR08(Abi, Abj)

667 0.02 0.64 (544,667) 0.02 0.60
681 0.02 0.54 (650,667) 0.02 0.56
555 0.02 0.44 (831,544) 0.03 0.65
1115 0.03 0.44 (4001,667) 0.02 0.54
695 0.04 0.49 (681,667) 0.02 0.48
4001 0.05 0.67 (3681,650) 0.02 0.48
650 0.06 0.70 (840,831) 0.03 0.57
1333 0.04 0.47 (877,650) 0.02 0.42
877 0.04 0.46 (695,667) 0.02 0.41
463 0.02 0.30 (15564,667) 0.02 0.40

Table 10.6: Biomarkers for OVC08 vs CTR08
This table lists the top ranked OVC08 biomarkers, which have largest fOV C08/fCTR08

ratios and the top ranked CTR08 biomarkers, which have largest fCTR08/fOV C08 ra-
tios. These biomarkers contain both single-peak biomarkers Ab and double-peak
biomarkers (Abi, Abj). f

OV C08 and fCTR08 are activation frequencies computed em-
pirically.
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10.2.3 Kullback-Leibler Distances

Kulback-Leibler distance (6.7) measures the distance between two Gibbs distribu-

tions; therefore, it evaluates the separability of two groups (see Section 6.4). Quanti-

fying the separability of two groups before implementing the construction of a good

classifier is an interesting and useful step for any classification problem. However,

there is a delicate question about how to perform a fair comparison because the

Kullback-Leibler distance can be largely affected by the dimension of the parameter

vector. The larger the dimension of the two parameters θθθ+ and θθθ− are, the larger

the distance tends to be.

In our study, we have computed the Kulback-Leibler distance for the tasks ADE

vs ECR, ADE vs LCR, ECR vs LCR, and CRC vs CTR. In each task G+ vs G−,

we constructed two separate Gibbs models on G+ and G− with the 3 top ranked G+

biomarkers and 3 top ranked G− biomarkers of single peaks. We consider in addition

each pair of G+ biomarkers and each pair of G− biomarkers as a clique of cardinal 2.

The dimension of all the parameter vectors is then 12 is then 12. We computed the

Kulback-Leibler distance of the two Gibbs models by (6.7). The distances between

ADE and ECR, ADE and LCR, and ECR and LCR were quite similar, respectively

equaling 0.68, 0.79, and 0.69. The distance between CRC vs CTR was much larger,

equaling 2.07. This predicts that discrimination between CRC vs CTR is a much

easier classification task than the other three. This conclusion is compatible with

the results we have got from the following signature discovery algorithms.
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10.2.4 Signature Discoveries

10.2.4.1 Signature Discovery by Robust Log-likelihood (RLL)

For each benchmark discrimination task ADE vs ECR, ADE vs LCR, ECR vs LCR,

CRC vs CTR, OVC04 vs CTR04, and OVC08 vs CTR08, we successively extracted

target pools TP (4k) of 4k highly discriminating biomarkers, with 4k = 4, 8, · · · , 80.

For each benchmark task and each k, we implemented our RLL signature discov-

ery within TP (4k) and computed the discriminating power of this signature based

classifier. The discriminating power of each signature-based classifier reached its

plateau at 4k = 48, 72, 64, 8, 48, and 28 for the tasks ADE vs ECR, ADE vs LCR,

ECR vs LCR, CRC vs CTR, OVC04 vs CTR04, and OVC08 vs CTR08. Table 10.7,

10.8, 10.9, 10.10, 10.11 and 10.12 list the optimal signatures obtained for each of

the tasks. Each signature is presented by two columns, the left and right column

respectively listing the G+ and G- biomarkers G+ and G− biomarkers. The corre-

sponding weights of all of all the biomarkers in a classifier are listed as well. Under

each signature, we have also reported its reliability score R(Sig) computed by the

technique of Section 7.5.

10.2.4.2 Signature Discovery by Maximizing Detecting Power (MDP)

We successively implement our signature discovery by MDP described in Section

9.1.1 with target pools TP (4k) of 4k = 4, 8, · · · , 48 highly discriminating biomarkers

on discrimination tasks CRC vs CTR, ADE vs ECR, ADE vs LCR, ECR vs LCR,

OVC04 vs CTR04, and OVC08 vs CTR08. For each benchmark task and each k,
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ADE ECR
biomarker weight biomarker weight
1188 0.24 1288 -0.36
1579 0.39 2782 -0.27
1851 0.20 3985 -0.07
2475 0.24 6283 -0.49
5064 0.37 7984 -0.13
(1368, 1188) 0.24 8630 -0.28
(1368, 1192) 0.24 8813 -0.97
(1372, 1192) 0.24 (855, 4560) -0.23
(1372, 3675) 1.33 (855, 7254) -0.60
(1392, 1146) 0.42 (2651, 870) -0.39
(1565, 1146) 0.79 (2651, 873) -0.39
(1851, 1146) 0.15 (3145, 3985) -0.50
(2001, 1146) 0.74 (3420, 918) -0.22
(2475, 1579) 0.30 (6283, 4168) -0.39
(2475, 1845) 0.18 (6915, 4282) -0.26
(6397, 1146) 0.12

R(Sig) = 0.6

Table 10.7: Signature of ADE vs ECR by RLL
ADE biomarker and ECR biomarkers of the signature are displayed separately with
their corresponding weights. The signature reliability score R(Sig) is also computed.
The full list of reference peak abscissas included in the signature is: 855, 870, 873,
918, 1188, 1192, 1146, 1288, 1368, 1372, 1392, 1565, 1579, 1845, 1851, 2001, 2475,
2651, 2782, 3145, 3420, 3675, 3985, 4168, 4282, 4560, 5064, 6283, 6397, 6915, 7254,
7984, 8630, 8813.
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ADE LCR
biomarker weight biomarker weight
1112 0.26 891 -0.11
1116 0.06 2651 -0.20
1143 0.29 3844 -0.22
1146 0.09 7587 -0.52
1192 0.40 8630 -0.52
1570 0.07 8813 -0.78
2000 0.04 (817, 8630) -0.42
2007 0.10 (819, 8630) -0.42
4193 0.87 (873, 1029) -0.28
5187 0.53 (1089, 3844) -0.22
8032 0.10 (2296, 3145) -0.49
(1116, 1146) 0.14 (3420, 8630) -0.38
(1845, 1146) 0.01 (3985, 3145) -0.05
(1851, 1146) 0.09 (4081, 7587) -0.18
(2001, 1146) 0.01 (6264, 8630) -0.32
(2007, 1146) 0.01 (7254, 8630) -0.03
(2892, 1146) 0.14
(3524, 1146) 0.22
(4180, 1146) 0.14
(4193, 1146) 0.14
(5187, 1146) 0.01
(5202, 1146) 0.01
(6377, 1146) 0.22
(6397, 1146) 0.22
(6731, 1146) 0.22
(7386, 1146) 0.09
(7542, 1146) 0.22
(8104, 1146) 0.01
(8376, 1146) 0.22

R(Sig) = 0.6

Table 10.8: Signature of ADE vs LCR by RLL
ADE biomarker and LCR biomarkers of the signature are displayed separately with
their corresponding weights. The signature reliability score R(Sig) is also computed.
The full list of reference peak abscissas included in the signature is: 817, 819, 873,
891, 1029, 1089, 1112, 1116, 1143, 1146, 1192, 1570, 1845, 1851, 2000, 2001, 2007,
2296, 2651, 2892, 3145, 3420, 3524, 3844, 3985, 4081, 4180, 4193, 4180, 4193, 5187,
5202, 6264, 6377, 6397, 6731, 7254, 7386, 7254, 7542, 7587, 8032, 8104, 8376, 8630,
8813. 115



ECR LCR
biomarker weight biomarker weight
921 0.25 819 -0.46
2558 0.61 1210 -0.13
2589 0.24 1213 -0.36
6894 0.30 2143 -0.38
6915 0.20 2331 -0.40
7542 0.61 2628 -0.60
8401 0.33 2807 -0.24
(1570, 4180) 0.67 4944 -0.57
(2589, 1112) 0.59 5829 -0.26
(2643, 1953) 0.43 6226 -0.23
(2840, 1953) 0.43 (1032, 3856) -0.49
(2998, 4180) 0.25 (1862, 1032) -0.49
(2998, 8376) 0.61 (2143, 7889) -0.57
(3524, 1288) 0.10 (3080, 7889) -0.57
(3524, 921) 1.01 (3379, 5590) -0.84
(5187, 1953) 0.43 (3400, 1478) -0.82
(5202, 1953) 0.43 (3493, 2143) -0.12
(5265, 6320) 0.44 (3856, 2143) -0.18
(6301, 8401) 0.42 (3856, 7889) -0.08
(6711, 1112) 0.10 (4684, 7889) -0.95
(9386, 1812) -0.34
(9386, 5829) -0.11

R(Sig) = 0.5

Table 10.9: Signature of ECR vs LCR by RLL
ECR biomarker and LCR biomarkers of the signature are displayed separately with
their corresponding weights. The signature reliability score R(Sig) is also computed.
The full list of reference peak abscissas included in the signature is: 819, 921, 1032,
1112,1210, 1213, 1288, 1478, 1570, 1812, 1862, 1953, 2143, 2331, 2558, 2589, 2628,
2643, 2807, 2840, 2998, 3080, 3379, 3400, 3493, 3524, 3856, 4180, 4684, 4944, 5187,
5202, 5265, 5590, 5829, 6226, 6301, 6320, 6711, 6894, 6915, 7542, 7889, 8376, 8401,
9386.
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CRC CTR
biomarker weight biomarker weight
1802 0.11 1439 -0.44
4155 0.27 1657 -0.79
(3183, 4155) 0.52 (805, 1439) -0.50
(3697, 4155) 0.11 (2359, 1439) -0.24

R(Sig) = 0.9

Table 10.10: Signature of CRC vs CTR by RLL
CRC biomarker and CTR biomarkers of the signature are displayed separately with
their corresponding weights. The signature reliability score R(Sig) is also computed.
The full list of reference peak abscissas included in the signature is: 805, 1439, 1802,
1657, 2359, 3183, 3697, 4155.

we computed the optimized signature and the discriminating power of this signature

based classifier.

Signature based discrimination between cancerous and control group (CRC vs

CTR) reached perfect performance level 100% for 4k = 8. For cancer stages dis-

crimination tasks ADE vs ECR, ADE vs LCR, ECR vs LCR, OVC04 vs CTR04,

and OVC08 vs CTR08, our signature-based classifiers reached their respective per-

formance plateaus for 4k = 36, 28, 28, 40, and 28.

We display in Figure 10.16 the maximization of ADE detecting power J+(Sig) =

JADE(Sig) by a simulated annealing search with 200×4k = 7200 temperature cooling

steps. The optimal list of biomarkers SigADE achieves correct classification of single

spectrum replicates with sensitivity 90.7% and specificity 98.7%, yielding an ADE

detecting power of 94.7%. The second optimized list of biomarkers SigECR achieves

an ECR detecting power of 94.7% as well. Figure 10.17 displays the maximization

of ECR detecting power J−(Sig) = JECR(Sig). The optimal ECR detecting power

117



OVC04 CTR04
biomarker weight biomarker weight
328 0.31 377 -0.76
494 0.01 649 -0.13
547 0.21 661 -0.32
582 0.85 902 -0.68
1598 0.33 1083 -0.32
1941 0.11 1246 -0.54
2128 0.25 1262 -0.74
2412 0.49 1292 -0.43
(383, 328) 0.31 1468 -0.51
(593, 547) 0.91 1569 -0.21
(607, 242) 0.31 (1934, 678) -0.58
(825, 494) 0.60 (2139, 661) -0.13
(855, 3249) 0.07 (2336, 678) -0.58
(915, 383) 0.74 (2987, 661) -0.13
(1598, 3249) 0.33 (9288, 678) -0.58
(1856, 547) 0.47
(2455, 3249) 0.54
(6883, 494) 0.90

R(Sig) = 0.7

Table 10.11: Signature of OVC04 vs CTR04 by RLL
OVC04 biomarker and CTR04 biomarkers of the signature are displayed separately
with their corresponding weights. The signature reliability score R(Sig) is also com-
puted. The full list of reference peak abscissas included in the signature is: 242, 328,
377, 383, 494, 547, 582, 593, 607, 649, 661, 678, 825, 855, 902, 915, 1083, 1246, 1262,
1292, 1468, 1569, 1598, 1856, 1934, 1941, 2128, 2139, 2336, 2412, 2455, 2987, 3249,
6883, 9288.
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OVC08 OVC08
biomarker weight biomarker weight
435 0.09 667 -0.04
442 0.71 681 -0.46
828 0.08 555 -0.89
647 0.33 1115 -0.11
10539 0.07 695 -0.73
668 0.37 4001 -0.09
1336 0.45 650 -0.48
(647, 435) 0.07 (650, 667) -0.03
(442, 435) 0.09 (15564, 667) -0.03
(828, 442) 0.07
(1146, 828) 0.09
(5283, 647) 0.07
(762, 435) 0.07
(1336, 435) 0.07

R(Sig) = 0.8

Table 10.12: Signature of OVC08 vs CTR08 by RLL
OVC08 biomarker and CTR08 biomarkers of the signature are displayed separately
with their corresponding weights. The signature reliability score R(Sig) is also com-
puted. The full list of reference peak abscissas included in the signature is: 435,
442, 555, 647, 650, 667, 668, 681, 695, 762, 828, 1115, 1146, 1336, 4001, 5283 10539,
15564.
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is achieved at around 4300 steps. Another example of such optimization step can be

found in Figure 10.18 and 10.19, where the maximization of OV C04 detecting power

JOV C04(Sig) and JCTR04(Sig) are displayed.

Tables 10.13, 10.14, 10.15, 10.16, 10.17, and 10.18 exhibit the optimal signature

obtained for CRC vs CTR, ADE vs ECR, ADE vs LCR, ECR vs LCR, OVC04 vs

CTR04, and OVC08 vs CTR08 through 100 such simulated annealing each and their

reliability scores underneath.

ADE biomarker ECR biomarker
1397 1261
1845 2773
1851 2782
2475 4168
6377 6283

(1368, 1188) 8813
(1368, 1192) (918, 1470)
(1372, 1192) (1470, 8630)
(1565, 1146) (3145, 3985)
(1579, 1146) (3610, 4168)
(2475, 1579) (3985, 4282)

(6283, 3985)
(6283, 4168)
(7254, 8630)

R(Sig) = 0.6

Table 10.13: Signature of ADE vs ECR by MDP
ADE biomarker and ECR biomarkers of the signature are displayed separately with
their corresponding weights. The signature reliability score R(Sig) is also computed.
The full list of reference peak abscissas included in the signature is: 918, 1146, 1188,
1192, 1261, 1368, 1372, 1397, 1470, 1565, 1579, 1845, 1851,2475, 2773, 2782, 3145,
3610, 3985, 4168, 4282, 6283, 6377, 7254, 8630, 8813.
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Figure 10.16: ADE vs ECR: simulated annealing search for SigADE
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Figure 10.17: ADE vs ECR: simulated annealing search for SigECR
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Figure 10.18: OVC04 vs CTR04: simulated annealing search for SigOV C04
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Figure 10.19: OVC04 vs CTR04: simulated annealing search for SigCTR04
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ADE biomarker LCR biomarker
1143 891
1146 3844
1192 4168

(1116, 1146) 8630
(2001, 1146) 8813
(4180, 1146) (819, 8630)
(5187, 1146) (2651, 3145)
(6377, 1146) (3420, 8630)
(7542, 1146) (4081, 7587)

(4269, 7254)
(7254, 8630)
(8630, 3145)

R(Sig) = 0.7

Table 10.14: Signature of ADE vs LCR by MDP
ADE biomarker and LCR biomarkers of the signature are displayed separately with
their corresponding weights. The signature reliability score R(Sig) is also computed.
The full list of reference peak abscissas included in the signature is: 891, 1116, 1143,
1146, 1192, 2001, 2651, 3145, 3420, 3844, 4081, 4168, 4180, 4269, 5187, 6377, 7254,
7542, 7587, 8630, 8813.
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ECR biomarker LCR biomarker
921 1210
1112 2143
1953 2807
6320 7889
7524 (1032, 3856)
8376 (1210, 2143)

(921, 7542) (3080, 7889)
(1570, 4180) (3856, 2807)
(2998, 4180) (3856, 7889)
(2998, 8376) (4684, 7889)
(6301, 8401)
(6320, 7542)

R(Sig) = 0.6

Table 10.15: Signature of ECR vs LCR by MDP
ECR biomarker and LCR biomarkers of the signature are displayed separately with
their corresponding weights. The signature reliability score R(Sig) is also computed.
The full list of reference peak abscissas included in the signature is: 921, 1032, 1112,
1210, 1570, 1953, 2143, 2807, 2998, 3080, 4684, 3856, 4180, 6301, 6320, 7524, 7542,
7889, 8376, 8401.

CRC CTR
1802 1439
4155 1657

(3183, 4155) (805, 1439)
(3697, 4155) (2359, 1439)

R(Sig) = 0.9

Table 10.16: Signature of CRC vs CTR by MDP
CRC biomarker and CTR biomarkers of the signature are displayed separately with
their corresponding weights. The signature reliability score R(Sig) is also computed.
The full list of reference peak abscissas included in the signature is: 805, 1802, 1439,
1657, 2359, 3183, 3697, 4155.
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OVC04 CTR04
276 377
328 649
494 661
583 1083
1576 1144
1941 1246
2128 1292
2412 1468
3249 1540

(242, 1576) 1569
(383, 328) (594, 678)
(593, 547) (661, 649)
(607, 242) (678, 661)
(855, 3249) (784, 1144)
(1076, 494) (824, 661)
(1444, 3249) (970, 661)
(1598, 3249) (1098, 1144)
(3249, 494) (2139, 661)
(6883, 494) (2336, 678)

(2987, 661)
R(Sig) = 0.7

Table 10.17: Signature of OVC04 vs CTR04 by MDP
OVC04 biomarker and CTR04 biomarkers of the signature are displayed separately
with their corresponding weights. The signature reliability score R(Sig) is also com-
puted. The full list of reference peak abscissas included in the signature is: 242, 276,
328, 377, 383, 494, 547, 583, 593, 594, 607, 649, 661, 678, 784, 824, 855, 970, 1076,
1083, 1098, 1144, 1246, 1292, 1144, 1444, 1468, 1540, 1569, 1576, 1598, 1941, 2128,
2139, 2336, 2412, 2987, 3249, 6883.
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OVC08 CTR08
435 555
442 650
647 681
668 695
828 1115
1336 (650, 667)
10539 (681, 667)

(442, 435) (695, 667)
(646, 435) (877, 650)
(762, 435) (4001, 667)
(1146, 828) (13329, 667)
(1336, 435) (15564, 667)
(5283, 647)

R(Sig) = 0.8

Table 10.18: Signature of OVC08 vs CTR08 by MDP
OVC08 biomarker and CTR08 biomarkers of the signature are displayed separately
with their corresponding weights. The signature reliability score R(Sig) is also com-
puted. The full list of reference peak abscissas included in the signature is: 435, 442,
555, 646, 647, 650, 667, 668, 681, 695, 762, 828, 877, 1115, 1146, 1336, 4001, 5283,
10539, 13329, 15564.
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10.2.5 Group Classification

With a signature obtained by RL, any new subject is classified by the optimal clas-

sifier which generates this signature.

With a signature obtained by MDP, each subject has an G+ score s+ and an G−

score s−. The signature-based classifier linearly separate to classify all the (s+, s−)

points. In each of the Figures 10.20, 10.21, 10.22, 10.23, 10.24, and 10.25, the 67, 64,

77, 119, 216, and 253 patients composing ADE and ECR, ADE and LCR, ECR and

LCR, CRC and CTR, OVC04 and CTR04, and OVC08 and CTR08 are displayed as

planar points (s+, s−), which are separated into two groups by a line.
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Figure 10.20: ADE vs ECR: graphical display of subjects

We have implemented the leave-two-out evaluation technique in section 7.4 to

both of our signature-based classification methods to compute realistic estimates for
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Figure 10.21: ADE vs LCR: graphical display of subjects
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Figure 10.22: ECR vs LCR: graphical display of subjects
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Figure 10.23: CRC vs CTR: graphical display of subjects
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Figure 10.24: OVC04 vs OVC04: graphical display of subjects
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Figure 10.25: OVC08 vs OVC08: graphical display of subjects

their generalization on new dataset, which are summarized in Table 10.19. Apply-

ing classical bootstrapping methods [29], we have also computed a 95% confidence

interval for sensitivity and specificity respectively.

10.2.6 Feasibility of Constructing Gibbs Based Classifier

In Chapter 5, we have set up a methodology to fit Gibbs distributions to mass spectra

groups. In this section, we want to

1. Check the feasibility of fitting Gibbs distributions to groups of mass spectra

acquired from cancer patients with a decent quality of fit,

2. Compute the optimal Gibbs based classifier g̊ associated to the pair π+ and

π− of Gibbs distributions fitted to two groups G+ and G− of cancer mass spectra
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Sig by RLL Sig by MDP
Task Sens. Spec. Sens. Spec.

ADE vs ECR 93% 100% 88% 95%
87-99% 96-100% 80-96% 89-100%

ADE vs LCR 96% 95% 89 % 99%
90-100% 89-100% 81-97% 93-100%

ECR vs LCR 95% 81% 85% 87%
89-100% 71-91% 76-94% 80-94%

CRC vs CTR 100% 100% 100% 100
100-100% 100-100% 100-100% 100-100%

OVC04 vs CTR04 94% 92% 97% 92%
88-100% 88-96% 94-100% 87-97%

OVC08 vs CTR08 100% 100% 100% 100%
100-100% 100-100% 100-100% 100-100%

Table 10.19: Cross validation of signature based classifiers
This table lists the results of leave-two-out cross validation of Signature discovery by
MDP and by RLL on six discrimination tasks. For one signature discovery algorithm
on one discrimination task, both sensitivity and specificity are reported with their
confidence interval underneath.
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data,

3. Estimate the performance of the Gibbs based classifier g̊ by our leave two-

out technique (see Chapter 7.4) and compare it to the performance of our signature

based classifiers,

4. Compare the signature deduced from g̊ to the best signatures we discovered

earlier.

As an example, we take the discrimination task between two groups of colorectal

cancer data G+ = ECR versus G− = LCR. The two groups contain respectively 80

and 74 mass spectra.

Table 10.9 lists the signature discovered for this discrimination task by our RLL

algorithm. In Section 10.2.4.1, we had explored a biomarker target pool (including

double-peaks biomarkers) of size 64. The sensitivity and specificity of this signature

based classifier are 95% and 81%.

We then proceeded to fit two Gibbs models π+ and π− to the data setsG+ = ECR

and G− = LCR, namely

π+(xxx) =
1

Z+
e−θθθ

+∗UUU+(xxx), π−(xxx) =
1

Z−
e−θθθ

−∗UUU−(xxx).

We chose 20 top ranked G+ markers and 20 top ranked G− markers according to

activation frequency ratios.

For the model π+, the singletons are the 20 G+ markers. We computed the

mutual information for every pair of markers within the 20 G+ markers and used

0.04 as a cutoff to select size-2 cliques. This generated 12 size-2 cliques for π+.
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For π−, the singletons are the 20 G− markers and with a similar clique selection

technique, we obtained 17 size-2 cliques.

We implemented the fast estimation algorithm MPLE (see Section 4.2.2) to es-

timate the parameter vectors θθθ+ and θθθ− of our two Gibbs models. These estimated

parameters are listed in Table 10.20.

We then evaluated the quality of fit of these two Gibbs models by the technique

described in Section 5.3. As shown in Figure 10.26 and 10.27, the quantiles of the

log-likelihoods on the true datasets are 68% and 32%, which indicate a reasonable

quality of fit for our two estimated Gibbs models.
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Figure 10.26: Quality of fit of π+

The red line indicates the quantile of the log likelihood on the true dataset.

Recall that the optimal classifier between two Gibbs models π1 and π2 where

π1(xxx) =
e−θθθ

∗
1UUU(xxx)

Z1

, π2(xxx) =
e−θθθ

∗
2UUU(xxx)

Z2

,
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ECR LCR
Cliques (Markers) Coeffs of θθθ+ Cliques (Markers) Coeffs of θθθ−

1953 2.63 7889 1.21
7542 -0.79 2807 1.09
8376 1.29 2143 1.73
1112 4.11 3856 -0.29
4180 0.67 1210 1.78
6320 2.36 1032 3.96
921 1.69 1029 1.81
2589 0.04 819 2.83
6894 0.89 1213 1.63
6915 0.27 6226 -0.11
8032 0.25 2331 3.89
1570 0.20 1812 2.11
2558 1.18 4944 -0.96
8401 3.80 5829 1.47
5033 -0.75 1089 -0.67
6339 0.72 2628 -1.21
1288 0.91 4684 -0.80
6301 1.54 2338 3.89
2007 0.00 817 3.77
2998 -0.73 2182 1.63
(8376, 8401) -3.56 (819, 817) -6.88
(6320, 6301) -2.37 (2331, 2338) -4.85
(6894, 6915) -2.08 (1210, 1213) -3.64
(6320, 6339) -1.74 (1032, 1029) -3.03
(1112, 5033) -2.19 (1213, 4944) 2.03
(1112, 2007) -1.64 (2143, 3856) -1.66
(2558, 8401) -1.68 (2331, 2182) -1.88
(1953, 6301) -1.82 (1213, 2182) -1.23
(8376, 4180) -1.12 (2143, 2338) -1.47
(1570, 2558) 1.66 (1029, 1812) -1.10
(4180, 2589) -1.24 (1213, 1812) -0.92
(921, 5033) -1.69 (1029, 2182) -1.11

(819, 1213) 1.49
(1029, 5829) -1.26
(1812, 2182) -0.86
(1213, 817) 0.95
(2807, 1032) -1.37

Table 10.20: Estimated Gibbs Models separately fitted to the datata sets ECR and
LCR
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Figure 10.27: Quality of fit of π−

The red line indicates the quantiles of the log likelihood on the true dataset.

is

g̊(xxx) =

{
+1, if (θθθ2 − θθθ1)∗UUU(xxx)− logZ1 + logZ2 > 0, (10.1)

−1, otherwise.

UUU(xxx) is a common factor of the two Gibbs models. In π+ and π−, UUU+(xxx) and UUU−(xxx)

correspond to different set of biomarkers. Therefore, as indicated in Section 6.3, we

generated the union UCL of the sets of cliques corresponding to all the biomarkers

selected for two Gibbs models and constructed a single vector valued function UUU(xxx)

of xxx, gathering the binary activities 1C(xxx) for all cliques C ∈ UCL. Two new Gibbs

models π̃+ and π̃− were then constructed, namely

π̃+(xxx) =
1

Z+
e−θ̃θθ

+∗
UUU(xxx), π̃−(xxx) =

1

Z−
e−θ̃θθ

−∗
UUU(xxx),

where the coordinates of θ̃θθ
+

associated to any cliques which are originally in π+ are
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still equivalent to the corresponding coordinates of θθθ+ and the other coordinates are

set to zero; θ̃θθ
−

is similarly constructed.

We then derived the optimal classifier g̊ based on the two new Gibbs models π̃+

and π̃−, by the formula (10.1) just recalled above.

To compute Z+ and Z−, since the size of the configuration space {0, 1}20 is only

1,048,576 we could use the explicit formulas

Z+ =
∑

xxx∈{0,1}20
e−θθθ

+∗UUU+(xxx), Z− =
∑

xxx∈{0,1}20
e−θθθ

−∗UUU−(xxx),

which gave us the values Z+ = 1.33 × 105 and Z− = 4.02 × 104. In the classifier g̊,

the constant term is then given by logZ+ − logZ− = 1.19.

We have computed the performance of the classifier g̊ and compared it to our

signature based classifiers. The sensitivity and specificity of g̊ which we obtained by

leave-two-out cross validation are 45% and 68%. This performance is clearly much

worse than the performance of our signature based classifier (sensitivity 95% and

specificity 81%). In addition, comparing Table 1 and Table 2, we find that the two

sets of biomarkers are very different since they only have 18 common biomarkers.

Of course this is not too surprising since the two target pools were not identical to

begin with. Therefore, the two signatures are not comparable.

Now we can answer the four questions we raised at the beginning of this section.

1. We have successfully fitted Gibbs models to the two groups ECR and LCR

of colorectal cancer mass spectra data, with good quality of fits. Previously, we had

fitted a Gibbs model to LCR based on another list of features. Therefore fitting
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Gibbs models by MPLE techniques to true cancer mass spectra datasets based on a

list of reasonable selected features is quite feasible, and MPLE yields Gibbs models

with good quality of fit.

This justifies in particular the underlying assumption we have made throughout

this thesis that we could safely assume that after pre-processing and binary coding

of mass spectra, we could assume that the binary coded mass spectra in each group

had been generated by unknown Gibbs models. This was a crucial assumption since

it told us what was the family of classifiers we should be exploring.

2. The actual computation of the best Gibbs classifier g̊ associated to our two

estimated Gibbs models was not difficult except for the computation of the constant

term log(Z+)− log(Z−). Here we used an explicit full computation of the partition

functions because the size 220 of the configuration space was moderate. For larger

sizes one would have to use estimates of the partition function classically based on

generating random binary configurations where all coordinates are independent and

take the values 0 or 1 with probabilities 1/2 and 1/2.

3. We have seen that the performance of the Gibbs based classifier generated from

two estimated Gibbs models was much worse than for the signature based classifier

we obtained by our RLL algorithm. Obviously, the estimation of our two Gibbs

models from only 80 and 74 configuration data is extremely risky , since our Gibbs

models involved 32 and 37 coefficients respectively. As a rule of thumb for Gibbs

model estimation one would require at least 10 configuration data per unknown

coefficient, which would mean data sets of sizes larger than 320 and 370 respectively.

The fact that the models had a reasonable goodness of fit is only a natural but
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minimal requirement which of course does not guarantee the accuracy of parameter

estimation by MPLE.

4. We found hardly any common pattern between the classifier derived from the

two estimated Gibbs models and the signature based classifier we discovered by RLL

algorithm. This is to be expected since our estimated Gibbs models may be wildly

off the mark due to the very small size of the data sets.

Because of the really small size of our cancer mass spectra data sets and of the

large number of parameters estimated, the Gibbs model estimation is necessarily

quite imprecise and should be avoided unless we have much larger data sets of sizes

at least 400. Therefore, the construction of optimal classifier from estimated Gibbs

models is impractical for our colorectal cancer data sets. Our signature based discov-

ery algorithms and associated classifiers fortunately eliminate the need to estimate

Gibbs models, which is a much more efficient way to discover signatures and construct

highly discriminating classifiers.
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Chapter 11

Comparison with Machine

Learning Algorithms

The goal of proteomics profiling is to discriminate clinical groups by recognizing

proteomic data patterns. To handle the high dimensionality of mass spectrometry

data, and their inherent variability, ”machine learning” algorithms have been popular

approaches to facilitate automatic classification between mass spectra.

11.1 Machine Learning Algorithms

Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree (DT),

and Random Forest (RF) are four popular machine learning algorithms used for

mass spectrometry analysis. Comparison of the performance between our classifi-

cation method and these algorithms has an important meaning in evaluating the
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improvement made by our signature discovery algorithms.

11.1.1 Support Vector Machine (SVM)

SVM was first introduced by Vapnik [85], and has been extensively used as an effec-

tive classification method on large-scale datesets because of its good generalization

capacity. Given a set of observations ((xxx1, y1), (xxx2, y2), · · · , (xxxn, yn)) of random vari-

able (xxx, y), where xxx ∈ X , y ∈ {−1, 1} labels the class of xxx (class -1 or class 1), SVM

finds a hyperplane that can separate these data points into two classes. Consider a

linear function f(x) = www · xxx+ b, which gives a decision rule to estimate yi:

ŷi =

{
1, if www · xxxi + b ≥ 1,

−1, if www · xxxi + b ≤ −1.

The distance between the two hyperplanes f(x) = 1 and f(x) = −1 is 1/‖www‖, called

margin.

Hyperplane f(x) = 0 with a larger margin will generalize better on new data.

SVM looks for the best hyperplane with maximum margin for separable training

sets, which is equivalent to solving the following quadratic optimization problem

minimize 1
2
‖www‖2

Subject to yi(www · xxxi + b) ≥ 1,

i = 1, 2, · · · , n.

Using Lagrangian multipliers, which are written as ααα = (α1, · · · , αn) ≥ 0, the
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problem can be transformed into a dual problem

minimize
∑n

i=1 αi − 1
2
αiαjyiyj < xxxi,xxxj >

Subject to yi(www · xxxi + b) ≥ 1,

i = 1, 2, · · · , n,ααα ≥ 0.

For non-separable training set, the problem can be transformed into a Soft

Margin-Dual Lagrangian problem

minimize
∑n

i=1 αi − 1
2
αiαjyiyjxxxi · xxxj

Subject to
∑n

i=1 αiyi = 0,

i = 1, 2, · · · , n, 0 ≤ αi ≤ C.

Here, C is the trade-off parameter, which balances a large margin and a small error

penalty. Larger C adds more weights to the margin, therefore, alleviates the error

penalty.

After obtained ααα from above optimization, www is a linear combination of the data

vectors xxxi

www =
n∑
i=1

yiαixxxi,

and b can be computed from the Kuhn-Tucker Theorem condition

αi(yi(www · xxxi + b)− 1 + ξi) = 0

(C − αi)ξi = 0, i = 1, 2, · · ·n,

where ξi = 0 for separable training set.

To generalize this approach, we define the inner product xxx1 ·xxx2 by positive definite

kernels K(x1, x2), which enables non-linear classification by mapping inputs into
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high-dimensional feature spaces. The most commonly used kernel is the Gaussian

kernel

K(x1, x2) = e−‖x1−x2‖
2/2σ2

.

Therefore, there are two parameters C and σ in such an SVM algorithm.

11.1.2 K-Nearest Neighbors (KNN)

KNN [58] is a non-parametric lazy learning algorithm. On a binary labeled dataset

D = ((xxx1, y1), (xxx2, y2), · · · , (xxxn, yn)),xxx ∈ X , y ∈ {−1, 1}, it classifies a new point xxx

according to a majority vote of the k-nearest points in the training dataset. Namely,

KNN first define the distance d(xxxi,xxxj) of two points in a space, then the algorithm

chooses the label y of a new point xxx by the formula

y = arg max
y

P (y | xxx,D),

where P (y | xxx,D) = fraction of points xxxi in Nk(xxx) such that yi = y and Nk(xxx)

contains k nearest points of xxx.

The most commonly used distance is Euclidean distance. Rescaling the data

features is often needed before implementing KNN because we don’t want a single

feature to dominate the distance between data

11.1.3 Decision Tree (DT)

DT was first introduced by Breiman [18]. It is a supervised learning technique to gen-

erate classifiers and has shown good performance on problems where dimensionality
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is larger than the size of the training set size and/or a large majority of input variables

are irrelevant. Given a binary labeled datasetD = ((xxx1, y1), (xxx2, y2), · · · , (xxxn, yn)),xxxi ∈

X , yi ∈ {−1, 1}, the DT algorithm aims to generate a flow-chart like binary tree (such

as Figure 11.1) and to minimize the error in each leaf of the tree.

Figure 11.1: Flow-chart of a decision tree

Define the error function ER on a space R ⊆ X be the fraction of points xxxi ∈ R

misclassified by a majority vote in R ⊆ X . Define also two symbols

Rk+1(j, s) = {xxxi ∈ Rk : xij > s}, R′k+1(j, s) = {xi ∈ Rk : xij ≤ s},

where xij is the jth feature of xxxi.

DT algorithm works as follows:

1. At the root node of the tree which splits the whole space R1 = X , choose
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j = jn1 and s = s1 to minimize

ER2(j,s) + ER′2(j,s).

Two leaves of the tree are grown as in Figure 11.2.

R′
2(jn1, s1)R2(jn1, s1)

xijn1
> s1 xijn1

<= s1

R1

Figure 11.2: Two leaves on the root node

2. Let R2 = R2(jn1 , s1), choose j = jn2 and s2 to minimize

ER3(j,s) + ER′3(j,s).

This grows two leaves on the node as in Figure 11.3

3. Similarly, generate two branches to split the space R′2(jn2 , s2).

4. Repeat this process to grow leaves on each subsequent node until at some node,

the space contains points only of one class.
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R1

R′
2(jn1

, s1)R2(jn1
, s1)

R3(jn2, s2) R′
3(jn2, s2)

xijn1
> s1 xijn1

<= s1

xijn2
> s2 xijn2

<= s2

Figure 11.3: Two leaves on the second node

A decision tree provides a decision flow-chart. After a tree is grown, we can

follow the flow-chart to classify a new observation xxx. If, for example, we have grown

a decision tree as in Figure 11.4. The class of observations in the three end leaves are

+1, -1, and -1. A new observation xxx which has its jn1th feature larger than s1 and

its jn2th feature larger than s2 will be classified into class +1; xxx with jn1th feature

larger than s1 and jn2th feature smaller than s2 will be classified into class -1; xxx with

jn1th feature smaller than s1 will be classified into class -1 as well.

11.1.4 Random Forest (RF)

RF [17] is a method that combines two powerful ideas in machine learning techniques:

bagging (bootstrap aggregating) and random feature selection. Given a dataset D,

145



jn1
th feature <= s1jn1th feature > s1

+1 −1

−1

jn2
th feature > s2 jn2

th feature <= s2

Figure 11.4: A complete decision tree

one constructs multiple trees. For each tree Ti(i = 1, 2, · · · b), one

1. Selects a bootstrap sample set Di from D;

2. Selects a random subset of features and restrict each sample in Di on these

features to construct a new sample set D′i;

3. Grows a tree Ti on D′i as in Section 11.1.3.

For a new observation xxx, every decision tree Ti gives a decision. One will take the

majority vote of the decisions across all Ti, i = 1, 2, · · · , b to make a final decision on

xxx.
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11.2 Performance Comparisons

Machine learning algorithms are always combined with feature selection techniques

to perform classification on mass spectrometry data. t-statistic is a commonly used

feature selection method as discussed in [12]. We use the t-statistic to rank all the

reference peak abscissas and to select a small subset of features with large t-statistic

values. The intensity information of each reference peak abscissa is required by the

t-statistic, so for each spectrum, we define the intensity of reference peak abscissa x

as the sum of the intensities of all the peaks that are within the error window of x.

We have computed the leave-two-out performance of the above machine learning

algorithms for the classification of our pre-processed MALDI spectra. Table 11.1

and 11.2 compare the performance of machine learning algorithms SVM, KNN, DT

and RF with our two signature discovery algorithms on the four tasks of MALDI

spectra. For each task, Table 11.1 and 11.2 list the sensitivity and specificity of every

algorithm. We used 20 reference peak abscissas as features for each machine learning

algorithm because after testing several number of features, we found that there was

no significant improvement in performance with larger or smaller numbers of features

for these algorithms in our cases (Table 11.3). For Gaussian kernel-based SVM, we

report the best results obtained by selecting the optimal trade-off parameter C and

kernel parameter σ through maximizing the discrimination power on all the samples.

Overall, none of the four machine learning algorithms has better performance

than our methods on the four tasks. Note also that the performance differences

between the four machine learning algorithms and our signature discovery algorithms
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Method ADE vs ECR ADE vs LCR ECR vs LCR CRC vs CTR
Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

RLL 93% 100% 96% 95% 95% 81% 100% 100%
SVM 0% 100% 0% 100% 4% 81% 99% 99%
KNN 54% 24% 0% 100% 30% 40% 99% 98%
DT 53% 34% 27% 73% 26% 61% 99% 86%
RF 34% 48% 5% 87% 3% 83% 99% 85%

Table 11.1: Comparison of leave-two-out performance of RLL signature discovery
with machine learning algorithms
20 reference peak abscissas were used as features for each machine learning algo-
rithm. For each of the discrimination task, this table compares the leave-two-out
performance of our RLL signature discovery reported in Table 10.19 with that of
machine learning algorithms. Overall, our algorithm performs better than all the
four machine learning algorithms on the four tasks.

Method ADE vs ECR ADE vs LCR ECR vs LCR CRC vs CTR
Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

MDP 88% 95% 89 % 99 % 85% 87 % 100% 100%
SVM 0% 100% 0% 100% 4% 81% 99% 99%
KNN 54% 24% 0% 100% 30 % 40% 99 % 98 %
DT 53% 34% 27% 73% 26 % 61% 99% 86%
RF 34% 48% 5 % 87% 3% 83% 99% 85%

Table 11.2: Comparison of leave-two-out performance of MDP signature discovery
with machine learning algorithms
20 reference peak abscissas were used as features for each machine learning algo-
rithm. For each of the discrimination task, this table compares the leave-two-out
performance of our signature discovery by MDP reported in Table 10.19 with that
of machine learning algorithms. Overall, our algorithm performs better than all the
four machine learning algorithms on the four tasks.
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are quite large for the three tasks ADE vs ECR, ADE vs LCR, and ECR vs LCR.

Namely, ADE, ECR, and LCR are not well separated by these four machine learning

algorithms, but can be highly differentiated by our signature-based classifiers.

To take account of the possibility that some of the machine learning algorithms

achieve better performance with different numbers of features, we have also computed

their leave-two-out performance on 6 distinct numbers of features (N = 15, 20, 25,

30, 35, 40). We found that there was no significant performance variations with this

range of values for the number of features. As a brief example, we only report their

performance on 15 and 40 features in Table 11.3.

ADE vs ECR ADE vs LCR ECR vs LCR CRC vs CTR
15 features Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

SVM 0% 100% 0% 100% 0% 86 % 99% 100%
KNN 33% 36% 16% 83% 23% 58% 99% 80 %
DT 39% 42% 22 % 72% 30 % 46% 100% 21%
RF 16% 59% 13 % 84% 5 % 67% 99 % 57%

40 features Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.
SVM 0% 100% 0% 93% 0% 100 % 99% 7%
KNN 47% 26% 0 % 93 % 11% 67 % 99% 90%
DT 57% 29% 28% 65% 37% 44% 99% 8%
RF 33% 49% 5 % 91% 3 % 86% 99 % 63%

Table 11.3: Leave-two-out performance of machine learning algorithms with different
numbers of features
The leave-two-out performance of the four machine learning algorithms are computed
with 6 distinct numbers of features (N = 15, 20, 25, 30, 35, 40). Since there was
no significant performance variations with this range of values for the number of
features, this table only reports their performance on 15 and 40 features.

The two SELDI datasets have been discussed in a number of previous publications

using multiple machine learning algorithms, among which, KNN, SVM, DT, and
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RF combined with t-test feature selection are popular. We summarize the results

reported by these publications.

For OVC04 vs CTR04, the authors of [5] selected 20 features by t-test and re-

ported sensitivity/specificity as 83.3%/55.6% for the KNN classifier. Using the top

15 features selected by t-statistic, the classification of [26] reported an average of

97.3% and 96.6% discrimination power on two groups by RF and SVM. [38] selected

10 features by SVM and achieved a sensitivity/specificity of 92.8%/95%.

For OVC08 vs CTR08, publication [5] and [38] used respectively 20 and 10 peaks

selected by t-test and achieved respectively 98.4%/100% and 100%/99.6% sensitiv-

ity/specificity.

Our signature discovery by RLL and MDP have shown respectively 94%/92%

and 97%/92% sensitivity/specificity on OVC04 vs CTR04 with confidence intervals

88-100% /88-96% and 94-100%/ 87-97%. These results are equivalent or better than

those in previous publications. Besides, our signature-based classifiers have also

perfectly separated OVC08 from CTR08 as was achieved by previous authors using

classical machine learning algorithms.
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Chapter 12

Conclusion and Future Research

Mass spectrometry is a very promising approach for biomarker-based early cancer

detection. A natural goal of mass spectrometry analysis is to isolate biologically

relevant biomarkers to construct classifiers for early clinical diagnosis, to monitor

disease progression or to evaluate response to treatment, in order to improve the

design of therapeutic strategies. To further help incorporating these biomarkers

into clinical protocols, a key step is to discover robust and interpretable ”biomarkers

signature profiles” for each cancer stage. Although machine learning algorithms, such

as decision trees, support vector machines, artificial neural networks and ect., have

been generally accepted as very efficient methods to discriminate between groups of

mass spectra, their ”black-box” results often lack interpretability. Our main focus

was to investigate the underlying patterns in mass spectrometry datasets and to

design more efficient and interpretable signature discovery algorithms.

Based on any list of reference peak abscissas, we can code each mass spectrum
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by a binary vector according to the binary status (activated / not activated) of each

reference peak abscissa. A reference peak abscissa Ab is said to be ”activated” by a

mass spectrum M if there exists a strong peak in M that is within an error window of

Ab. Gibbs distributions, as used in our work, are efficient stochastic models to study

the spatial dependency of coordinates for high dimensional binary vectors viewed as

realizations of random Markov random fields. We focus our study on Gibbs models

which involve only ”cliques” of size 1 and 2. We study three methods, maximum

likelihood estimation, maximum pseudolikelihood estimation and marginal fitting

estimation, to estimate the parameters of a Gibbs model. We have tested these three

methods on typical mass spectrometry datasets obtained by MALDI-TOF techniques

from plasma samples of late stage colorectal cancer patients, and compared the

quality of fit of the estimated Gibbs models. In our case studies, the parameters

estimated from the three methods are comparable, and we numerically proved that

the underlying distributions of typical homogeneous groups of mass spectra (coded

by a short list of reference peak abscissas) can be approximated by Gibbs models.

Neyman-Pearson test of hypothesis based on log-likelihood are known to be opti-

mal. To discriminate between two Gibbs distributions, we have derived these optimal

classifiers, which can be expressed as linear separators on an extended space.

A signature is here a list of highly discriminating biomarkers which have strong

discriminating power when combined. A biomarker, in this context, is a strong

peak determined by a mass to charge ratio m/z. In our study, we first condense all

m/z ratios of strong peaks into a list of reference peak abscissas. We then extract a

biomarker target pool from the list of reference peak abscissas according to a ranking
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based on activation frequencies ratios. We also consider biomarkers defined as pairs

of reference peak abscissas and select a list of such double-peak biomarkers again by

ranking their activation frequency ratios. The activation frequency ratio is indeed, in

this context, a nearly optimal biomarker selection criterion. To discriminate between

two distinct homogeneous groups of mass spectra G+ and G−, these biomarkers are

then divided into two sets: G+ biomarkers and G− biomarkers.

We have designed a signature discovery algorithm by robust log likelihood anal-

ysis, called here RLL signature discovery for short, in order to search for an optimal

classifier without constructing underlying Gibbs distributions. The biomarkers in-

volved in this classifier constitute an optimal signature.

Our second signature discovery algorithm, called MDP signature discovery, is

driven by a powerful stochastic optimization tool, simulated annealing. In this algo-

rithm, we search for two lists of biomarkers which maximize the G+ detecting power

and G− detecting power respectively and construct a specific classifier on the coded

spectrometry space.

We have tested the efficiency of our two signature discovery algorithms by inten-

sive simulations. Both of them have reached performance results very close to the

optimal discrimination power provided the size of the training set is large enough.

The signatures and signature-based classifiers generated by both algorithms converge

to the true signature and the optimal classifier when the size of the training set be-

comes large enough. RLL signature discovery has shown clearly faster convergence

speed than MDP signature discovery.
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There are two most commonly used mass spectra acquisition technologies, MALDI-

TOF and SELDI-TOF. We have studied both types of datasets.

To lower data dimensionality and reduce data acquisition ”noise”, our study starts

by mass spectra pre-processing, which is a standard first step, often implemented

via commercial interactive software. Pre-processing principles are well known, but

implementation details vary considerably, and are often not accessible in commercial

software. For better context control, we have developed our own sequence of pipelined

pre-processing steps for each raw mass spectrum, implementing peak normalization,

peak denoising, baseline removal and peak detection.

After our pre-processing procedure, we compute for each of the peaks a ”reliability

score”, implemented by intensive Monte-Carlo simulations to emulate the underlying

biomarkers variability. This provides a tool to compare the reliability of discovered

signatures. To take account of peak error window and make mass spectra comparable,

we construct a list of ”consensus” reference peak abscissas, each of which represents

a cluster of peak positions within a horizontal error window. This ”condensation”

leads us focus on the ”activation frequencies” of the reference peak abscissas.

We have successfully tested our two signature discovery algorithms on a new ex-

perimental set of 238 MALDI-TOF mass spectra acquired from patients at various

stages of colorectal cancer and two previously published data sets of SELDI-TOF

mass spectra acquired from ovarian cancer patients. The performance levels are

computed by leave-two-out cross validation technique. The performances of our new

signature discovery algorithms were good in all these concrete cases and compared
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quite favorably with the performance levels achieved by other machine learning al-

gorithms as well as with published results for the same ovarian cancer dataset. The

comparison further shows that our signature discovery approach handles easy dis-

crimination tasks (colorectal cancer versus control) certainly as well as all existing

data analysis techniques, but also exhibits clearly better performances for the more

delicate discrimination between successive colorectal cancer stages.

A natural major long term goal is to transform our signature discovery algorithms

into clinically viable techniques. To get to that stage, both algorithms should be

validated on a large number of real datasets. In the future, we intend to calibrate

and test our signature discovery techniques on more mass spectrometry datasets

acquired from various cancerous patient groups.

Gibbs modeling provides a way to estimate the underlying distribution of mass

spectrometry samples and therefore, can be used to simulate virtual mass spectra.

In our study, although we have simulated virtual samples for the purpose of studying

machine learning performance, we have not attempted to simulate the random noise

affecting abscissas and ordinates on mass spectra. Thus, in the process of testing our

signature discovery algorithms on these virtual datasets, we have not needed to im-

plement the pre-processing step. However, due to the lack of publicly available large

bases of real mass spectrometry datasets, simulating virtual mass spectra datasets

is a practical solution for validating mass spectrometry data mining algorithms. In

future, we intend to analyze and model the background noise in typical mass spectra

in order to simulate more accurate virtual mass spectrometry samples. This will

provide a better context to intensively test signature discovery algorithms.
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