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This dissertation consists of two essays on empirical asset pricing. The first essay 

examines if the idiosyncratic risk is priced. Theories such as Merton (1987) predict that 

idiosyncratic risk should be priced when investors do not diversify their portfolio. 

However, the previous literature has presented a mixed set of results of the pricing of 

idiosyncratic risk. We find strong evidence that idiosyncratic risk is priced differently 

across bull and bear markets. For the sample period from June 1946 to the end of 2010, a 

factor portfolio long on stocks with high idiosyncratic volatility and short on stocks with 

low idiosyncratic volatility yields an equal-weighted monthly return of 1.59% for bull 

markets but -1.29% for bear markets. These evidences support the hypothesis that 

investors are rewarded for betting on individual stocks during bull markets and holding 

more diversified portfolios during bear markets.  

 

The second essay examines the role of the limits to arbitrage in the negative effect of 

liquidity on subsequent stock returns. I hypothesize that if the negative effect persists 

because of the limits to arbitrage, the effect should be more pronounced when there are 

more severe limits to arbitrage. My empirical evidence supports the hypothesis. In 

addition, I find that the effect of the limits to arbitrage on the liquidity anomaly is not 

correlated to the liquidity risk.  
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Chapter 1  
 
 

The Pricing of Idiosyncratic Risk in Bull and Bear Markets 
 

 

 

1.1. Introduction 

 

In recent years, researchers have become more interested in the pricing of idiosyncratic 

volatilities. It appears that there are some exogenous reasons that investors hold 

undiversified portfolios (Goetzmann and Kumar (2007)). For example, Campbell, Lettau, 

Malkiel, and Xu (2001) find that firm-level volatility increased over the period 1962-

1997, while the stock market as a whole has not become more volatile. This divergence 

between idiosyncratic risk and systematic risk gives rise to a fast-growing literature on 

the pricing of idiosyncratic volatility of stock returns. 

 

Various theories predict that investors demand risk premium for bearing idiosyncratic 

risk. Levy (1978) shows that idiosyncratic risk affects equilibrium asset prices if 

investors do not hold many assets in their portfolios. Merton (1987) indicates that if 

investors cannot hold the market portfolio they will care about total risk (systematic risk 

and idiosyncratic risk). Therefore, firms with larger total variance bear larger 
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idiosyncratic risk and require higher returns to compensate for imperfect diversification. 

Some empirical literature confirms Merton’s prediction. Malkiel and Xu (2002) find a 

significantly positive relation between idiosyncratic risk and the cross section of expected 

returns at the firm level. Goyal and Santa-Clara (2003) find that the relationship between 

the value-weighted average return and the lagged equally weighted average volatility 

(mainly consists of idiosyncratic risk of individual stocks) is positive.  

 

More recently, researchers such as Ang, Hodrick, Xing, and Zhang (2006) find that 

monthly stock returns are negatively related to the idiosyncratic volatilities by using 

within-month daily data to calculate idiosyncratic volatility. This negative relationship 

poses a challenge to the notion that under-diversified investors demand a return 

compensation for bearing idiosyncratic risk. Guo and Savickas (2006) also report a 

negative relation between aggregate stock market idiosyncratic volatility and the future 

quarterly stock market return.  

 

Those negative relation findings attract much attention since they are contrary to theories 

and findings in the previous empirical literature. Bali and Cakici (2008) try to clarify the 

existence and significance of the relation. They find that many factors could change this 

negative relation, i.e., i) the data frequency used to calculate idiosyncratic risk, ii) the 

weighting scheme adopted for generating average portfolio returns, iii) the breakpoints 

utilized to sort stocks into quintile (or decile) portfolios, etc. They report no relation 

between equally-weighted portfolio returns and idiosyncratic risk. Fu (2009) indicates 

that the existing literature cannot identify a positive relation because the conditional 
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idiosyncratic volatility in earlier studies does not allow the time-varying property of 

volatility. Using monthly data, he provides estimates of the conditional idiosyncratic 

volatility of stock returns based on the EGARCH model and finds a significantly positive 

relation. Also using monthly data, Spiegel and Wang (2005) focus on the predictive 

power of idiosyncratic volatility and liquidity. Their finding is that expected stock returns 

are increasing with the level of idiosyncratic risk and decreasing in a stock's liquidity, and 

the impact of conditional idiosyncratic risk is much stronger. Han and Lesmond (2010) 

show that by controlling for the liquidity costs on the estimation of idiosyncratic 

volatility, the resulting idiosyncratic volatility estimate has little pricing ability to predict 

future returns. 

 

Huang, Liu, Rhee, and Zhang (2010) investigate the relation between idiosyncratic risk 

and expected returns with a particular interest in understanding the contrasting results 

between idiosyncratic risk estimated using daily data (Ang, Hodrick, Xing, and Zhang 

(2006), Bali and Cakici (2008), Han and Lesmond (2010)) and monthly data (Goyal and 

Santa-Clara (2003), Spiegel and Wang (2005), Bali and Cakici (2008), Fu (2009)). They 

show that although a negative relation exists when the estimate is based on daily returns, 

it disappears after return reversals are controlled for. Return reversals can explain both 

the negative relation between value-weighted portfolio returns and idiosyncratic volatility 

and the insignificant relation between equal-weighted portfolio returns and idiosyncratic 

volatility. In contrast, there is a significantly positive relation between the conditional 

idiosyncratic volatility estimated from monthly data and expected returns. This relation 

remains robust after controlling for return reversals.  
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Since the literature has presented a mixed set of results of the relationship between 

idiosyncratic risk and expected returns, it raises an important question: What is the true 

empirical relation between expected return and the idiosyncratic risk? We attempt to 

address this question in this paper. Motivated by Kim and Zumwalt (1979) who conclude 

that investors expect to receive a risk premium for downside variation of returns (bear 

market) and pay a premium for upside variation of returns (bull market), we suspect that 

investors behave differently over time, especially during good times and bad times in 

stock market. Gervais and Odean (2001) posit that during bull markets, individual 

investors will attribute too much of their success to their own abilities, which makes them 

overconfident. Their theory implies that individual investor behavior is endogenous to 

market conditions, and that investing behavior is different between bull and bear market 

conditions. Similarly, Kim and Nofsinger (2007) test whether individuals’ attitudes and 

preferences toward stock risk, book-to-market valuation and past returns are different 

between market conditions. They identify some striking differences in investing behavior 

between the bull and the bear market. 

 

Those papers finding different investor behaviors during different market conditions 

make us wonder if the relation between idiosyncratic risk and expected returns will be 

different between bull and bear market conditions. It is surprising that empirical research 

studying relation between idiosyncratic risk and expected returns in bull versus bear 

markets is scant. Two possible reasons for the lack of research on the link between risk-

return relation and market conditions may lie in not considering different investor 
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behaviors during different market conditions and primarily encompassing a single market 

condition period. For instance, Wei and Zhang (2005) extend an additional three years 

from January 2000 to December 2002 to Goyal and Santa-Clara’s (2003) sample period 

from August 1963 to December 1999 and find that the positive relationship between 

average returns and average volatilities found by Goyal and Santa-Clara (2003) does not 

show up in the extended sample period, nor in some sub-periods. The significant positive 

relationship found by Goyal and Santa-Clara (2003) is mainly driven by the data in the 

1990s. The stock market in the U.S. experienced a prolonged boom period in the 1990s. 

Wei and Zhang’s (2005) results make sense to us because the bull market of the 1990s 

was followed by a sharp decline in the next three years. Their findings motivate us to 

examine if the empirical relation between idiosyncratic risk and expected returns is 

different between good times and bad times in the U.S. stock market. 

 

Our examination includes stocks traded on the NYSE, AMEX, and Nasdaq during the 

post-war period of June 1946 to December 2010. Chauvet and Potter (2000) and others 

state that bull market and bear market are the best way to identify good times and bad 

times in the stock market. Pagan and Sossounov (2003) and Gonzalez, Powell, Shi, and 

Wilson (2005) provide some methods to classify bull and bear market cycles. We modify 

some methods used in the literature to identify bull and bear markets for our research. We 

also compare our bull and bear market cycles to those estimated by a markov regime 

switching model to make sure that our calculation is accurate. 
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In order to estimate the idiosyncratic volatility, we adopt two asymmetric volatility 

models to capture the time-varying character of idiosyncratic volatility.1

 

 We employ the 

EGARCH(1,1) (exponential generalized autoregressive conditional heteroskedasticity) 

model of Nelson (1991), since the EGARCH series are the most widely used models for 

the conditional volatility of returns. And we also employ the GJR-GARCH(1,1) model by 

Glosten, Jagannathan, and Runkle (1993) to estimate the idiosyncratic volatility. 

We find that the relation between idiosyncratic volatilities and the stock returns varies 

over time. Specifically, we find that there are positive relations during bull markets, while 

the relations are mostly negative during bear markets. The empirical evidence shows that 

the idiosyncratic risk is priced during good times in stock market but is not priced during 

bad times. More specifically, as an example, for the sample period from June 1946 to the 

end of 2010, a factor portfolio long on stocks with high idiosyncratic volatility and short 

on stocks with low idiosyncratic volatility yields an equal-weighted monthly return of 

1.04% when the idiosyncratic volatility is estimated with the GJR-GARCH model. For 

bull markets during the sample period the average return is 1.59% with a standard 

deviation of 0.21%. For bear markets the average return is -1.29% with a standard 

deviation of 0.52%. We get these numbers by calculating an Idiosyncratic Risk Factor. 

This Idiosyncratic Risk Factor may have important implications for equity investment 

strategies and portfolio management. 

 

                                                           
1 The results using symmetric volatility models, such as GARCH model, are not reported in this paper. They 
are very similar to the results using asymmetric volatility models. 
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In this paper, we contribute to the expanding idiosyncratic risk literature by conducting 

empirical tests to see whether or not the relations between idiosyncratic volatility and 

expected stock returns are related to market conditions. Our findings are important for the 

following reasons. First, to our knowledge, we provide the first study to view the relation 

between idiosyncratic risk and expected returns under different stock market conditions. 

We also demonstrate the importance of market condition in analyzing the true relation 

between idiosyncratic risk and expected stock returns. The previous literature may be 

neglecting the importance of the impact of market condition on the relation between 

idiosyncratic risk and expected returns. We show that market condition does matter in 

determining the risk-return relation. During bull markets, the results confirm Merton’s 

(1987) prediction of a positive relation between idiosyncratic risk and expected return. 

The finding that idiosyncratic volatility may be priced during bull markets is consistent 

with more risk-taking with undiversified portfolios during bull markets by Merton’s 

argument. But our results for bear markets imply that the idiosyncratic risk is not priced 

in bear markets. Seasholes and Wu (2007) find that investors tend to hold more 

diversified portfolios during bear market. So if investors hold less diversified portfolios 

during bull market but more diversified portfolios during bear market, then our findings 

would have a good explanation and are consistent with the previous theoretical literature.  

 

Second, we explain the mixed findings of the literature about the relation between 

idiosyncratic volatility and expected returns by showing that only one fifth of our sample 

period is bear market and four fifth is bull market. The shorter bear market period can 

explain why the literature doesn’t find our results. And considering that more than four 
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fifth of our sample period is bull market period which reports a positive relation between 

idiosyncratic volatility and expected stock returns, our findings are consistent with the 

literature that also uses monthly data and reports positive relationship (Malkiel and Xu 

(2002), Goyal and Santa-Clara (2003), Spiegel and Wang (2005), Fu (2009), Huang, Liu, 

Rhee, and Zhang (2010)). Our results can also explain Wei and Zhang’s (2005) finding 

that the positive relationship between average returns and average volatilities found by 

Goyal and Santa-Clara (2003) does not show up in the period January 2000 to December 

2002 or in some sub-periods which are bear market periods.   

 

Third, we find that the idiosyncratic risk factor supersedes the size factor. The 

phenomenon that the “size effect” no longer exists is interesting. After controlling for 

estimated idiosyncratic volatility, “size effect” is no longer significant. A similar but 

different finding is discovered in Fu (2009). Fu (2009) points out that his finding 

contrasts to the widely documented “size effect” that small firms have higher average 

returns than large firms, but supports one prediction of Merton’s (1987) model that, all 

else equal, larger firms have higher expected returns. Merton (1987) explicitly points out 

that the findings of the “size effect” are due to the omitted controls for other factors such 

as idiosyncratic risk and investor base. While the test results in Fu (2009) lend direct 

support to Merton’s prediction in this point, our evidence implies that after controlling for 

idiosyncratic risk there does no longer exist any size effect.  

 

This paper is organized as follows. In section 1.2, we calculate bull and bear market 

cycles and compare them to those estimated by a markov regime switching model. In 
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section 1.3, we estimate idiosyncratic volatility using both the EGARCH(1,1) and the 

GJR-GARCH(1,1) to model the relations between idiosyncratic volatilities and expected 

returns, and to construct an idiosyncratic risk factor. Section 1.4 describes the data used, 

provides all the empirical test results, and conducts related analyses. Section 1.5 contains 

the conclusions. 

 

 

 

1.2. Bull and bear market cycles 

 

1.2.1. Method of calculating bull and bear market periods 

 

Earlier literature gives several processes to determine stock market cycles. We use the 

turning point dating algorithm developed by Bry and Boschan (1971) to identify troughs 

and peaks in stock market indices and thus indicate the starting and ending points of the 

bull and bear markets. Following Pagan and Sossounov (2003), we use eight-month 

window as the appropriate length for calculation. The eight-month window works as 

follows: if the index level is the highest among any eight sequential levels including itself, 

then we mark it as a temporary peak; if the index level is the lowest among any eight 

sequential levels including itself, then we mark it as a temporary trough. If there exist 

multiple peaks (troughs), the highest (lowest) one will be selected.  
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However, using only temporary troughs and peaks is not the most effective way for 

identifying bull and bear market periods. We modify the above method to better identify 

bull and bear markets in this paper. We can easily find sometimes that although a peak is 

higher than others around it, it could be very close to them. So some restriction should be 

applied to make the method more effective. Following the earliest definition of bull and 

bear markets by Chauvet and Potter (2000), which is also very popular in the financial 

press, we require there must be an absolute cumulative capital return of 20% from a 

trough or -20% from a peak to be an acceptable phase, i.e., requiring a 20% or -20% 

cumulative return after selecting temporary troughs and peaks. 

 

After applying cumulative return requirement, we get new peaks and troughs for bull and 

bear market periods. We mark them as permanent peaks and troughs and use them to 

determine each phase and cycle. For calculating the phases of bull and bear markets, we 

use monthly level on the S&P Composite Index from June 1946 to December 2010. The 

data are obtained from the Center for Research in Security Prices (CRSP). 

 

1.2.2. Bull and bear market cycles 

 

We use the method mentioned above to determine bull and bear market cycles. There are 

eight cycles (sixteen phases) determined by our method, i.e. requiring 20% cumulative 

return after choosing temporary troughs and peaks. Since 20% cumulative return 

requirement is the most popular criteria to identify bull market and bear market in the 

literature, our method appears to be the most effective one for determining market cycles. 
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The explicit bull and bear market phases are shown in Table 1.1, and the distribution for 

those eight cycles (sixteen phases) is shown in Figure 1.1. Eight green (grey) phases of 

the curve stand for bull market periods, while eight red (dark) phases of the curve stand 

for bear market periods. The figure of bull and bear market distribution (Figure 1.1) 

clearly shows the up and down trends of the stock market. The trends during bull market 

periods are all going upwards, while the trends during bear market periods are going 

downwards. From the distribution figure, we believe that the phase distribution calculated 

by our method is good, presenting the good times and bad times in the stock market. We 

also count the total months in bear markets and in bull markets separately. Not 

surprisingly, there are 147 months in bear market periods and 628 months in bull market 

periods. The total number of bull market months is much larger than the total number of 

bear market months. It turns out that only less than one-fifth (147/775) of our entire 

sample period is in a bear market period, and more than four-fifths (628/775) is in a bull 

market period. Bull market periods dominate the whole sample period. 
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Table 1.1. Bull and bear market cycles. 
 
This table presents eight market cycles from June 1946 to December 2010. We use the turning point dating 
algorithm to select temporary peaks and troughs and then apply a 20% or -20% cumulative return 
requirement for each phase. The corresponding time series distribution is shown in Figure 1.1. 
 

Cycle Bear market Bull market 

1 194606-194906 194907-196112 

2 196201-196206 196207-196811 

3 196812-197006 197007-197212 

4 197301-197409 197410-198011 

5 198012-198207 198208-198708 

6 198709-198711 198712-200008 

7 200009-200209 200210-200710 

8 200711-200902 200903-201012 
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Figure 1.1. Bull and bear market distribution. 

This figure presents eight bull market phases (green/grey) and eight bear market phases (red/dark) 

calculated by the turning point dating algorithm. 
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1.2.3. Markov regime switching model 

 

The turning point dating algorithm we introduced above is an ex-post method. As an ex-

post method, it is always questioned when concerning real-time implications for equity 

investment strategies and portfolio management. There are also some other methods to 

distinguish between two different states in a time series. Some of them are ex-ante 

methods. Markov regime switching model is the most popular one among them. 2

Table 1.1

 

Therefore we would like to also identify the good times and bad times in the U.S. stock 

market by a two states regime switching model. We will compare the results estimated by 

the markov regime switching model to those calculated by the turning point dating 

algorithm (shown in  and Figure 1.1) as a robustness check. 

 

The two states regime switching model we use is as follows: 

𝐲𝐭 = 𝛍𝟏 + 𝛜𝐭   𝐟𝐨𝐫 𝐒𝐭𝐚𝐭𝐞 𝟏 

𝐲𝐭 = 𝛍𝟐 + 𝛜𝐭   𝐟𝐨𝐫 𝐒𝐭𝐚𝐭𝐞 𝟐,                                          (1.1) 

where 

ϵt~N(0,σ12)   for State 1 

 ϵt~N(0,σ22)   for State 2, 

with 

P = �
p1,1 p2,1
p1,2 p2,2

� 

                                                           
2 Technical details regarding markov regime switching models can be found in Hamilton (1994), Kim and 
Nelson (1999) and Wang (2003). 
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as the transition matrix, which controls the probability of a switch from state j (column j) 

to state i (row i). The sum of each column in P is equal to one, since they represent full 

probabilities of the process for each state. 

 

This model clearly implies two different processes for the dependent variable yt. When 

the state for time t is 1, the expectation of the dependent variable is µ1 and the volatility 

of the innovations is σ12. While when the state for time t is 2, the expectation of the 

dependent variable is µ2 and the volatility of the innovations is σ22. Here we will use 

monthly return on the S&P Composite Index from June 1946 to December 2010 as 

variable yt. The higher value µBull (µ1 or µ2) will be the expected return on a bull market 

state, which implies a positive trend for the U.S. stock market prices and consequently a 

positive return for yt. The lower value µBear (µ2 or µ1) measures the expected return for 

the bear market state, which then implies a negative trend in the U.S. stock market prices. 

We could expect that the bear market state is more volatile than the bull market, which 

means that we can expect σBear2  (σ22 or σ12) to be higher than σBull2  (σ12 or σ22).  

 

In this paper, we estimate the two states regime switching model above using maximum 

likelihood method. Considering f(yt|St = j,Θ)  as the likelihood function for state j 

conditional on a set of parameters Θ, then the full log likelihood function of the model is 

given by: 

𝐥𝐧𝐋 = ∑ 𝐥𝐧∑ �𝐟(𝐲𝐭|𝐒𝐭 = 𝐣,𝚯)𝐏𝐫(𝐒𝐭 = 𝐣)�𝟐
𝐣=𝟏

𝐓
𝐭=𝟏                         (1.2) 
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which is a weighted average of the likelihood function in each state, where the weights 

are given by the state’s probabilities. We use Hamilton’s filter to calculate the filtered 

probabilities of each state Pr(St = j) based on the arrival of new information. Then the 

estimation of the model is obtained by finding the set of parameters that maximize 

Equation (1.2). 

 

The estimated parameters and other outputs are shown in Table 1.2. µ1 = 0.0104 and 

µ2 = −0.0047 imply that state 1 represents a bull market state while state 2 represents a 

bear market state. The volatility σ22 = 0.0035 is larger than σ12 = 0.0011, which meets 

our expectation that the bear market state is more volatile than the bull market state. We 

also get the expected duration of the two regimes. State 1 is expected to last 26.29 time 

periods while state 2 lasts 9.41 time periods. This result is consistent with the finding 

before that bull market periods dominate the whole sample period. 

 

As a robustness check, the most important part is to compare the estimated states 

probabilities distribution to bull and bear market distribution (Table 1.1 and Figure 1.1). 

We show the comparison in Figure 1.2. There are two figures in Figure 1.2. Figure a 

shows the estimated smoothed states probabilities by the two states regime switching 

model. Figure b shows the S&P500 return series divided into sixteen bull and bear 

market phases calculated by the turning point dating algorithm. After comparing the two 

figures, we could see that the two distributions are very similar. The bull market periods 

(green/grey) in figure b have very high probabilities of state 1 (green/grey) in figure a, 
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while the bear market periods (red/dark) in figure b have very high probabilities of state 2 

(red/dark) in figure a. The comparison makes our previous method of calculating bull and 

bear market cycles seem to be quite accurate. So we will apply the results calculated in 

earlier subsection (Table 1.1) to all the following empirical tests in the entire paper. 

 

 

Table 1.2. Markov regime switching model estimation. 

 
This table reports the estimated switching parameters and other output by a two states regime switching 
model. Dependent variable yt is monthly return on S&P Composite Index from June 1946 to December 
2010. 
 

Final log Likelihood: 1383.7654 

Number of Observations: 775 

Type of Switching Model: Univariate 

Distribution Assumption: Normal 

 State 1 State 2 

Regressors 
Std Error (p. value) 

0.0104 
0.0017 (0.00) 

-0.0047 
0.0098 (0.63) 

Model’s Variance 
Std Error (p. value) 

0.001090 
0.0002 (0.00) 

0.003494 
0.0008 (0.00) 

Transition Probabilities Matrix 
 

0.96             0.11 
0.04             0.89 

Expected Duration of Regimes 26.29 time periods 9.41 time periods 
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a. Smoothed states probabilities 

 
b. S&P500 return series 

 

Figure 1.2. Comparison of the results by two different dating methods. 

Figure a shows the estimated smoothed states probabilities by a two states regime switching model. Figure 

b shows the S&P500 return series divided into sixteen bull and bear market cycles calculated by the turning 

point dating algorithm. 
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1.3. Empirical approach 

 

1.3.1. Estimation of idiosyncratic volatility 

 

Following Fu (2009), we use in-sample monthly data to calculate idiosyncratic volatility 

based on the three-factor Fama-French (1993) model. The explicit form is as follows.  

𝑹𝒊𝒕 − 𝒓𝒇𝒕 = 𝜶𝒊 + 𝜷𝒊�𝑹𝒎𝒕 − 𝒓𝒇𝒕� + 𝑺𝒊𝑺𝑴𝑩𝒕 + 𝒉𝒊𝑯𝑴𝑳𝒕 + 𝜺𝒊𝒕,  (1.3) 

𝜀𝑖𝑡~𝑁(0,𝜎𝑖𝑡2), 

where 𝑅𝑖𝑡  is the individual return. 𝑅𝑚𝑡 − 𝑟𝒇𝑡  is the excess return on a broad market 

portfolio. 𝑆𝑀𝐵𝑡  is the size factor – the difference of returns between a small stocks 

portfolio and a big stocks portfolio. 𝐻𝑀𝐿𝑡 is the value factor – the difference of returns 

between a high book-to-market stocks portfolio and a low book-to-market stocks 

portfolio. The residual 𝜀𝑖𝑡  is assumed to be normally distributed with mean zero and 

variance 𝜎𝑖𝑡2 . To get the idiosyncratic volatilities, our objective is to estimate 𝜎𝑖𝑡2 . We will 

use the asymmetric GARCH (generalized autoregressive conditional heteroskedasticity), 

since GARCH is the most widely used model for estimating the conditional volatility of 

returns. 3

 

 We will employ both the EGARCH(1,1) model and the GJR-GARCH(1,1) 

model by Glosten, Jagannathan, and Runkle (1993). 

The explicit form for the EGARCH(1,1) is as follows: 

                                                           
3 We also use the symmetric GARCH (GARCH(1,1)) to estimate the idiosyncratic volatilities. The final 
results are very similar to those using EGARCH(1,1) model. 
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𝒍𝒏𝝈𝒊𝒕𝟐 = 𝒂𝒊 + 𝒃𝒊𝒍𝒏𝝈𝒊,𝒕−𝟏𝟐 + 𝒄𝒊 �𝜽 �
𝜺𝒊,𝒕−𝟏
𝝈𝒊,𝒕−𝟏 

� + 𝜸 ��𝜺𝒊,𝒕−𝟏
𝝈𝒊,𝒕−𝟏

� − (𝟐 𝝅⁄ )𝟏/𝟐��,               (1.4) 

where εi,t−1 is the lagged residual and σi,t−12  is the lagged variance. 

 

In tandem with the EGARCH approach, we apply the GJR-GARCH (Glosten, 

Jagannathan, and Runkle (1993)) model to estimate idiosyncratic volatilities. The GJR-

GARCH model allows positive and negative innovations to returns to have different 

impacts on conditional variance. As Glosten, Jagannathan, and Runkle (1993) suggest, if 

most of the fluctuations in stock prices are caused by fluctuations in expected future cash 

flows and the riskiness of future cash flows does not change proportionally when 

investors revise their expectations, then unanticipated changes in stock prices and returns 

will be negatively related to unanticipated changes in future volatility. So the GJR-

GARCH is a good way to capture the different impacts that unanticipated returns from 

different directions have on conditional volatility. Following Glosten, Jagannathan, and 

Runkle (1993), we assume that the impact of 𝜀𝑖,𝑡−12  on conditional variance 𝜎𝑖𝑡2  is different 

when 𝜀𝑖,𝑡−1 is positive (i.e., when the indicator or dummy variable 𝐼𝑖,𝑡−1 is 1) from when 

𝜀𝑖,𝑡−1 is negative (i.e., when the indicator or dummy variable 𝐼𝑖,𝑡−1 is 0). So the explicit 

form for the GJR-GARCH(1,1) is as follows: 

𝝈𝒊𝒕𝟐 = 𝒂𝒊 + 𝒃𝒊𝝈𝒊,𝒕−𝟏𝟐 + 𝒄𝟏𝒊𝜺𝒊,𝒕−𝟏𝟐 + 𝒄𝟐𝒊𝜺𝒊,𝒕−𝟏𝟐 𝑰𝒊,𝒕−𝟏,                              (1.5) 

where 𝜀𝑖,𝑡−1 is the lagged residual, and 𝜎𝑖,𝑡−12  is the lagged variance. 𝐼𝑖,𝑡−1 = 0 if 𝜀𝑖,𝑡−1 ≥

0, and 𝐼𝑖,𝑡−1 = 1 if 𝜀𝑖,𝑡−1 < 0. 

 

 



21 
 

 

1.3.2. Modeling the relations between stock returns and idiosyncratic volatilities 

 

First, following Fu (2009), we regress monthly stock returns on idiosyncratic volatilities 

and several firm characteristics to check the relationship between these variables. For 

firm characteristics, we use four control variables in our regression. They are ME, 

BE/ME, RET2_7 and Turnover. ME is the market value of equity at the end of June of 

year t. BE/ME is the book-to-market equity according to Fama and French (1993) at the 

end of fiscal year ending in calendar year t−1 divided by the market value of equity at the 

end of December of year t−1. Ret2_7 is the compound gross return from month t-7 to t-2. 

Turnover is the average ratio of trading volume to the number of shares outstanding of 

the previous 36 months as a proxy for liquidity. The explicit form is as follows: 

𝐑𝐢𝐭 = 𝛄𝟎 + 𝛄𝟏𝐈𝐕𝐎𝐋𝐢𝐭 + 𝛄𝟐𝐌𝐄𝐢𝐭 + 𝛄𝟑𝐁𝐄/𝐌𝐄𝐢𝐭 + 𝛄𝟒𝐑𝐞𝐭𝟐_𝟕𝐢𝐭 + 𝛄𝟓𝐓𝐮𝐫𝐧𝐨𝐯𝐞𝐫𝐢𝐭 + 𝛆𝐢𝐭,        (1.6) 

where Rit is the realized individual return on stock i at time t. IVOLit is the idiosyncratic 

stock return volatility of stock i at time t based on the information at time t-1. How to 

estimate IVOLit  has been stated in last subsection. γn  is the coefficient of the 

corresponding variable, where n=0, 1, 2, 3, 4, 5. We will focus on the coefficient estimate 

γ1 of the cross-sectional regressions. If γ1 > 0, we will get a positive relation between 

stock returns and idiosyncratic volatilities, which means the idiosyncratic risk is priced; if 

γ1 ≤ 0, we will get a negative or an insignificant relation between those two variables, 

which means the idiosyncratic risk is not priced.  
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We run the above regression for two classifications. One is for eight bull and bear market 

cycles as calculated earlier in this paper. Within each market period, we run Equation 

(1.6) once. There are sixteen groups in total. The other is for forty-eight industries as 

stated in Fama and French (1997). Within each industry, we sum up all the bull market 

periods and all the bear market periods and run Equation (1.6) for bull and bear 

separately. There are ninety-six groups in total for this classification. 

 

Second, we regress monthly stock returns on idiosyncratic volatilities and several market 

factors to check the relationship between those variables. We use four market factors in 

our regression. Mkt-r is the excess return on a broad market portfolio. SMB is the size 

factor – the difference of returns between a small stocks portfolio and a big stocks 

portfolio. HML is the value factor – the difference of returns between a high book-to-

market stocks portfolio and a low book-to-market stocks portfolio. Mom is the 

momentum factor. The explicit form is as follows: 

𝐑𝐢𝐭 = 𝛄𝟎 + 𝛄𝟏𝐈𝐕𝐎𝐋𝐢𝐭 + 𝛄𝟐(𝐌𝐤𝐭 − 𝐫)𝐭 + 𝛄𝟑𝐒𝐌𝐁𝐭 + 𝛄𝟒𝐇𝐌𝐋𝐭 + 𝛄𝟓𝐌𝐨𝐦𝐭 + 𝛆𝐢𝐭,         (1.7) 

where Rit is the realized individual return on stock i at time t. IVOLit is the idiosyncratic 

stock return volatility of stock i at time t based on the information at time t-1. As what we 

did for Equation (1.6), we will also run Equation (1.7) for eight bull and bear market 

cycles (sixteen groups) and forty-eight industries (ninety-six groups), separately. 

 

At the same time, we will apply the standard Fama and MacBeth (1973) methodology to 

control the cross-correlation in residuals. We will give all the coefficients by calculating 
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the time series average of the monthly cross-sectional slope estimates and the t-statistic 

by calculating the average slope over Newey-West (1987) standard error.  

 

1.3.3. Calculating idiosyncratic risk factor 

 

To better see if idiosyncratic stock risk is priced, that is to say if stocks with high 

idiosyncratic risk have tended to do better than stocks with low idiosyncratic risk, we 

attempt to construct a factor to serve this purpose. The factor will be calculated with 

combinations of portfolios composed by ranked stocks. 

 

Following the same method as the Fama-French factors are constructed, we use six 

portfolios formed on size and idiosyncratic volatilities to construct an Idiosyncratic Risk 

Factor (IRF). The portfolios are formed monthly by both value-weighted scheme and 

equal-weighted scheme. First, we form two portfolios on size where the monthly size 

breakpoint is the median market equity (ME). Then, we form three portfolios on 

idiosyncratic volatility with the 30th and 70th percentiles as two monthly idiosyncratic 

volatility breakpoints.4

 

 The final six portfolios are the intersections of two portfolios on 

size and three portfolios on idiosyncratic volatility. The six portfolios are shown as 

follows: 

 

                                                           
4 We use the idiosyncratic volatility estimated by both EGARCH(1,1) model and GJR-GARCH(1,1) model. 
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 Median ME 

70th idiosyncratic volatility 
percentile 

Small High Big High 

Small Medium Big Medium 
30th idiosyncratic volatility 

percentile Small Low Big Low 

 

Next, we use four of these six portfolios to construct IRF. IRF is the average return on the 

two high idiosyncratic volatility portfolios minus the average return on the two low 

idiosyncratic volatility portfolios. Since this measure is introduced by Fama and French, 

we mark it as IRF(FF). 

𝑰𝑹𝑭(𝑭𝑭) = 𝟏/𝟐(𝑺𝒎𝒂𝒍𝒍 𝑯𝒊𝒈𝒉 + 𝑩𝒊𝒈 𝑯𝒊𝒈𝒉) − 𝟏/𝟐(𝑺𝒎𝒂𝒍𝒍 𝑳𝒐𝒘 + 𝑩𝒊𝒈 𝑳𝒐𝒘)   (1.8) 

 

In order to make sure that the Idiosyncratic Risk Factor (IRF) is not affected by the way 

how we form the portfolios, we revised the Fama-French factors constructing method 

into another two refined measures. In refined measure one (R1), we form nine portfolios 

which are the intersections of three portfolios on size, instead of two portfolios in FF 

measure, and three portfolios on idiosyncratic volatility. The nine portfolios are shown as 

follows: 

            30th ME percentile       70th ME percentile 

70th idiosyncratic 
volatility percentile 

Small High Medium High Big High 

Small Medium Medium Medium Big Medium 
30th idiosyncratic 

volatility percentile Small Low Medium Low Big Low 
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Then IRF is calculated by the average return on the three high idiosyncratic volatility 

portfolios minus the average return on the three low idiosyncratic volatility portfolios, as 

shown in Equation (1.9). We mark this measure as IRF(R1). 

𝑰𝑹𝑭(𝑹𝟏) =

𝟏/𝟑(𝑺𝒎𝒂𝒍𝒍 𝑯𝒊𝒈𝒉 + 𝑴𝒆𝒅𝒊𝒖𝒎 𝑯𝒊𝒈𝒉 + 𝑩𝒊𝒈 𝑯𝒊𝒈𝒉) − 𝟏/𝟑(𝑺𝒎𝒂𝒍𝒍 𝑳𝒐𝒘 + 𝑴𝒆𝒅𝒊𝒖𝒎 𝑳𝒐𝒘 + 𝑩𝒊𝒈 𝑳𝒐𝒘)    

(1.9) 

 

In another refined measure, refined measure two (R2), we form fifteen portfolios which 

are the intersections of five portfolios on size and three portfolios on idiosyncratic 

volatility. The fifteen portfolios are shown as follows: 

 20th ME          40th ME          60th ME          80th ME 

70th idiosyncratic 
volatility 
percentile 

Smallest 
High 

Smaller 
High 

Medium 
High 

Bigger 
High 

Biggest 
High 

Smallest 
Medium 

Smaller 
Medium 

Medium 
Medium 

Bigger 
Medium 

Biggest 
Medium 

30th idiosyncratic 
volatility 
percentile Smallest 

Low 
Smaller 

Low 
Medium 

Low 
Bigger  
Low 

Biggest 
Low 

 

Then IRF is calculated by the average return on the five high idiosyncratic volatility 

portfolios minus the average return on the five low idiosyncratic volatility portfolios, as 

shown in Equation (1.10). We mark the refined measure two as IRF(R2). 

𝑰𝑹𝑭(𝑹𝟐) =

𝟏/𝟓(𝑺𝒎𝒂𝒍𝒍𝒆𝒔𝒕 𝑯𝒊𝒈𝒉 + 𝑺𝒎𝒂𝒍𝒍𝒆𝒓 𝑯𝒊𝒈𝒉 + 𝑴𝒆𝒅𝒊𝒖𝒎 𝑯𝒊𝒈𝒉 + 𝑩𝒊𝒈𝒈𝒆𝒓 𝑯𝒊𝒈𝒉 + 𝑩𝒊𝒈𝒈𝒆𝒔𝒕 𝑯𝒊𝒈𝒉) −

𝟏/𝟓(𝑺𝒎𝒂𝒍𝒍𝒆𝒔𝒕 𝑳𝒐𝒘 + 𝑺𝒎𝒂𝒍𝒍𝒆𝒓 𝑳𝒐𝒘 + 𝑴𝒆𝒅𝒊𝒖𝒎 𝑳𝒐𝒘 + 𝑩𝒊𝒈𝒈𝒆𝒓 𝑳𝒐𝒘 + 𝑩𝒊𝒈𝒈𝒆𝒔𝒕 𝑳𝒐𝒘)     

(1.10) 
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The Idiosyncratic Risk Factor (IRF) will be calculated on a monthly basis. So we will get 

a number of IRF for each month. If the IRF is positive, then on average the idiosyncratic 

stock risk is priced in that month; if the IRF is negative or zero, then on average the 

idiosyncratic stock risk is not priced in that month. Besides the monthly IRF, we will 

calculate the cumulative IRF as well, to finally exam if the idiosyncratic risk is priced 

differently under different stock market conditions. 

 

 

 

1.4. Empirical analysis 

 

1.4.1. The data description 

 

For analyzing the relationship between idiosyncratic volatility and expected stock returns, 

we use monthly holding period stock return data. The data are obtained from the Center 

for Research in Security Prices (CRSP). We include stocks traded on the NYSE, AMEX, 

and NASDAQ during the post-war period of June 1946 to December 2010. There are a 

total of 775 months in our sample. The monthly Fama-French three-factor and 

momentum factor data are downloaded from Kenneth R. French’s Website. To avoid the 

inaccuracy of idiosyncratic volatility estimates caused by infrequent trading, we require a 

minimum of 30 trading months for each stock when CRSP reports a non-zero share 

volume. Table 1.3 presents the descriptive statistics summary of variables used in this 
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paper. R is the monthly raw return. R-r is the monthly excess return, where r stands for 

the one-month T-bill rate. IVOL (EGARCH) is the idiosyncratic volatility estimated by 

the EGARCH(1,1) model while IVOL (GJR-GARCH) is the idiosyncratic volatility 

estimated by the GJR-GARCH(1,1) model. Firm size is measured by ME, the market 

value of equity at the end of June of year t. BE/ME is the book-to-market equity 

according to Fama and French (1993) at the end of fiscal year ending in calendar year t−1 

divided by the market value of equity at the end of December of year t−1 , whose data is 

available from year 1950 to year 2010. In order to catch the momentum effects, Ret2_7 is 

the compound gross return from month t-7 to t-2. Turnover is the average ratio of trading 

volume to the number of shares outstanding of the previous 36 months as a proxy for 

liquidity. Mkt-r, SMB and HML are the Fama-French three factors while Mom is the 

momentum factor.  
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Table 1.3. Variable descriptive statistics summary. 
 
This table reports the descriptive statistics summary of variables used in this paper. The data are obtained 
from CRSP and Kenneth R. French’s Website. We include stocks traded on the NYSE, AMEX, and 
Nasdaq during the post-war period of June 1946 to December 2010. R is the monthly raw return. R-r is the 
monthly excess return, where r stands for the one-month T-bill rate. IVOL (EGARCH) is the idiosyncratic 
volatility estimated by the EGARCH(1,1) model. IVOL (GJR-GARCH) is the idiosyncratic volatility 
estimated by the GJR-GARCH(1,1) model. ME is the market value of equity. BE/ME is the Book-to-
market ratio. Ret2_7 is the compound gross return from month t-7 to t-2. Turnover is the average turnover 
rate. Mkt-r is the excess return on a broad market portfolio. SMB is the size factor – the difference of 
returns between a small stocks portfolio and a big stocks portfolio. HML is the value factor – the difference 
of returns between a high book-to-market stocks portfolio and a low book-to-market stocks portfolio. Mom 
is the momentum factor. S&P is the monthly return of S&P Composite Index. S&P Level is the monthly 
level on S&P Composite Index. 
 
Variables N Mean Median Std dev. Skewness 
R (%) 3,283,202 1.19 0.00 17.05 6.55 
R-r (%) 3,283,202 0.79 -0.28 17.05 6.55 
IVOL (EGARCH) 3,283,196 15.74 9.96 59.00 181.82 
IVOL (GJR-GARCH) 3,283,170 12.57 10.21 9.94 9.96 
ME (Billion) 2,929,707 1.05 0.08 7.52 26.98 
BE/ME 2,380,201 0.79 0.60 86.87 149.31 
Ret2_7 (%) 2,914,766 5.61 0.00 93.16 86.68 
Turnover 2,416,599 0.80 0.39 2.50 85.89 
Mkt-r (%) 775 0.62 1.03 4.40 -0.77 
SMB (%) 775 0.16 -0.04 3.17 0.71 
HML (%) 775 0.35 0.33 3.04 0.03 
Mom (%) 775 0.85 0.89 4.50 -1.32 
S&P (%) 775 0.62 0.87 4.20 -0.43 
S&P Level 775 355.39 106.29 441.90 1.34 
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1.4.2. Cross-sectional correlations 

 

We first check the simple correlations between stock returns and idiosyncratic volatilities. 

We check them in each bull and bear market period, which have been previously 

calculated and shown in Table 1.1, to see if there are any obvious differences in the 

correlation between stock returns and idiosyncratic volatilities under different market 

conditions. If there is a clear pattern in results, we will further proceed to investigate the 

true relationships by Fama-MacBeth regressions. 

 

The cross-sectional correlations are presented in Table 1.4. We employ both the 

EGARCH(1,1) model and the GJR-GARCH(1,1) model to estimate the idiosyncratic 

stock return volatility. So for each bull and bear market period, there are two correlations 

reported. One is the correlation between stock return and idiosyncratic volatility 

estimated by the EGARCH(1,1) model, while the other is the correlation between stock 

return and idiosyncratic volatility estimated by the GJR-GARCH(1,1) model. 

 

During bull market periods, almost all the correlations are positive. The correlations 

between stock returns and the idiosyncratic volatilities calculated by the EGARCH(1,1) 

model are all positive. The results for the GJR-GARCH(1,1) are similar but a little 

weaker. The correlations using the GJR-GARCH(1,1) are all positive except for the bull 

market period from July 1970 to December 1972. During bear market periods, almost all 

the correlations are negative. The correlations between stock returns and the idiosyncratic 
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volatilities calculated by the GJR-GARCH(1,1) are all negative, while the correlations 

using the EGARCH(1,1) model are mixed. Six out of eight bear market periods 

correlations are negative, but the remaining two are positive. 

 

Until now, it is obvious that the correlations in bull markets and bear markets follow 

different patterns. No matter which model we use to estimate idiosyncratic volatility, we 

find different pictures are drawn for the bull market and the bear market. 

 

Wei and Zhang (2005) report that the positive relationship between average returns and 

average volatilities found by Goyal and Santa-Clara (2003) does not show up in the 

extended sample period from January 2000 to December 2002. They also conclude that 

the significant positive relationship found by Goyal and Santa-Clara (2003) is mainly 

driven by the data in the 1990s. Our results show that, for the bear market period from 

September 2000 to September 2002, the correlation is 0.026 and -0.043, separately. 

Compared with the correlation in the previous bull market period from December 1987 to 

August 2000, which is 0.144 and 0.097, separately, the correlation in the period from 

September 2000 to September 2002 is much smaller. These results are consistent with 

and also can explain Wei and Zhang’s (2005) finding that the positive relationship 

between average returns and average volatilities found by Goyal and Santa-Clara (2003) 

does not show up in the period January 2000 to December 2002 or in some sub-periods 

that are bear market periods. Next, we will apply Fama-MacBeth methodology to further 

test the relations between stock returns and idiosyncratic volatilities to confirm our 
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finding that the relation between stock returns and idiosyncratic volatilities varies when 

the U.S. stock market condition changes. 

 

 

Table 1.4. Correlations between stock returns and idiosyncratic volatilities. 
 
This table presents the correlations between stock returns and idiosyncratic volatilities in each bull and bear 
market period. We use both the EGARCH(1,1) model and the GJR-GARCH(1,1) model to estimate the 
idiosyncratic stock return volatility.  
 

Bull market EGARCH 
(1,1) 

GJR- 
GARCH(1,1) Bear market EGARCH 

(1,1) 
GJR- 

GARCH(1,1) 

   194606-194906 -0.088 -0.146 

194907-196112 0.052 0.019 196201-196206 -0.337 -0.346 

196207-196811 0.208 0.121 196812-197006 -0.149 -0.148 

197007-197212 0.003 -0.021 197301-197409 -0.001 -0.039 

197410-198011 0.219 0.126 198012-198207 -0.060 -0.088 

198208-198708 0.118 0.046 198709-198711 -0.109 -0.169 

198712-200008 0.144 0.097 200009-200209 0.026 -0.043 

200210-200710 0.102 0.090 200711-200902 0.048 -0.045 

200903-201012 0.387 0.293    
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1.4.3. Relations between stock returns and idiosyncratic volatilities for eight stock 

market cycles 

 

Following Fama and MacBeth (1973), we use their regression methodology to control the 

cross-correlation in residuals. We first regress the stock returns on idiosyncratic 

volatilities and other firm characteristics for eight bull and bear market cycles. The model 

is a multivariate regression presented in Equation (1.6): Rit = γ0 + γ1IVOLit + γ2MEit +

γ3BE/MEit + γ4Ret2_7it + γ5Turnoverit + εit . The test results for eight cycles are 

presented in Table 1.5 and Table 1.6, where Table 1.5 shows the regression results when 

using the EGARCH(1,1) model to estimate idiosyncratic volatility, while Table 1.6 

shows the regression results when using the GJR-GARCH(1,1) model. Since BE/ME data 

is available only from year 1950, we exclude this variable from the regression for the 

bear market period from June 1946 to June 1949.  

 

We find that during bull market periods, except for only one period from July 1970 to 

December 1972, all the coefficient estimates of idiosyncratic volatility estimated by the 

EGARCH(1,1) are positive and most of them are significant at the 1% level. We also 

pool all the bull market periods together to get a total bull time period. The coefficient 

estimate of idiosyncratic volatility for the total bull period is 0.0450 with 1% significance 

for the EGARCH(1,1). These significant positive coefficient estimates imply that the 

idiosyncratic risk is priced during bull market periods. 
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During bear market periods, the signs of coefficients of idiosyncratic volatility estimated 

by the EGARCH(1,1) model change to negative except one which is insignificantly 

positive. Similarly as for bull markets, we pool all the bear market periods together to get 

a total bear time period. The coefficient estimate of idiosyncratic volatility for the total 

bear period is -0.0036 with 1% significance for the EGARCH(1,1). These significant 

negative coefficient estimates imply that the idiosyncratic risk is negatively priced during 

bear market periods. 

 

Moreover, we find that during bull market periods, except for two periods, all the 

coefficient estimates of idiosyncratic volatility estimated by the GJR-GARCH(1,1) are 

positive and all positive coefficients are significant at the 1% level. We also pool all the 

bull market periods together to get a total bull time period. The coefficient estimate of 

idiosyncratic volatility for the total bull period is 0.0908 for the GJR-GARCH(1,1) with 1% 

significance. During bear market periods, all the coefficients of idiosyncratic volatility 

estimated by the GJR-GARCH(1,1) model are significantly negative. And the coefficient 

estimate of idiosyncratic volatility for the total bear period is -0.0668 for the GJR-

GARCH(1,1) with 1% significance. These coefficient estimates of the GJR-GARCH(1,1) 

are consistent with those of the EGARCH(1,1) and confirm our finding that the 

idiosyncratic risk is priced during bull market periods but is negatively priced in bear 

market periods. 

 

There is another result that is interesting. The coefficients of ME become mostly 

insignificant after including IVOL in the regression. Controlling for estimated 
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idiosyncratic volatility, “size effect” is no longer significant. A similar but different 

finding is discovered in Fu (2009). Fu (2009) points out that his finding contrasts to the 

widely documented “size effect” that small firms have higher average returns than large 

firms, but supports one prediction of Merton’s (1987) model that, all else equal, larger 

firms have higher expected returns. Merton (1987) explicitly points out that the findings 

of the “size effect” are due to the omitted controls for other factors such as idiosyncratic 

risk and investor base. While the test results in Fu (2009) lend direct support to Merton’s 

prediction in this point, our evidence implies that after controlling for idiosyncratic risk 

there does no longer exist any size effect. 

 

Next, we regress the stock returns on idiosyncratic volatilities and market factors for 

eight bull and bear market cycles. The model is a multivariate regression presented in 

Equation (1.7): Rit = γ0 + γ1IVOLit + γ2(Mkt − r)t + γ3SMBt + γ4HMLt + γ5Momt +

εit. The test results for eight cycles are presented in Table 1.7 and Table 1.8, where Table 

1.7 shows the regression results when using the EGARCH(1,1) model to estimate 

idiosyncratic volatility, while Table 1.8 shows the regression results when using the GJR-

GARCH(1,1) model. Since the bear market period from September 1987 to November 

1987 contains only three months, less than the number of independent variables, we do a 

univariate regression for this bear market period.  

 

It turns out that during bull market periods, all the coefficient estimates of idiosyncratic 

volatility estimated by the EGARCH(1,1) are positive and most of them are significant at 
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the 1% level. The coefficient estimate of idiosyncratic volatility for the total bull period is 

0.0195 with 1% significance. These significant positive coefficient estimates again 

support that the idiosyncratic risk is priced during bull market periods. During bear 

market periods, the signs of coefficients of idiosyncratic volatility estimated by the 

EGARCH(1,1) model are mixed. Six out of eight coefficient estimates are negative, but 

the other two are positive. The coefficient estimate of idiosyncratic volatility for the total 

bear period is -3.96E-8, which is very close to zero. These mixed coefficient estimates 

support that the idiosyncratic risk is not priced during bear market periods. 

 

Additionally, we find that during bull market periods, except for only one period, all the 

coefficient estimates of idiosyncratic volatility estimated by the GJR-GARCH(1,1) are 

positive and all positive coefficients are significant at the 1% level. We also check the 

relation between stock return and idiosyncratic volatility for the total bull time period. 

The coefficient estimate of idiosyncratic volatility for the total bull period is 0.1039 with 

1% significance for the GJR-GARCH(1,1). During bear market periods, all the 

coefficients of idiosyncratic volatility estimated by the GJR-GARCH(1,1) model are 

significantly negative. Similarly, we check the relation between stock return and 

idiosyncratic volatility for total bear time period, too. The coefficient estimate of 

idiosyncratic volatility for the total bear period is -0.0202 with 1% significance for the 

GJR-GARCH(1,1). Although these coefficient estimates of the GJR-GARCH(1,1) are 

more negative than those of the EGARCH(1,1), both of them can support the finding that 

the idiosyncratic risk is priced during bull market periods but not in bear market periods. 
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To compare our regression results to other papers in the literature, we also conduct a 

univariate regression with only idiosyncratic volatility as an independent variable. Model 

3 in Fu (2009) is also a univariate regression of stock returns on his estimated 

idiosyncratic volatility, and his coefficient estimate is 0.11. His result for his whole 

sample from July 1963 to December 2006 is very similar to our univariate regression 

results for the total bull period, which are 0.1290 for the EGARCH(1,1) and 0.1139 for 

the GJR-GARCH(1,1), respectively. As suggested earlier, there is one possible reason 

that the previous literature doesn’t find our results that the relations are different under 

two different market conditions, because they primarily encompass a single market 

condition period. Based on very similar results to Fu’s (2009), perhaps his sample period 

primarily encompasses a single market condition period. To establish that this point is 

true, we bring the finding to mind that bull market periods dominate the whole sample 

period. The shorter bear market period can explain why the literature doesn’t reflect our 

results. And considering that more than four-fifths of our sample period is in a bull 

market period, which reports a positive relation between idiosyncratic volatility and 

expected stock returns, our findings are consistent with the literature that also uses 

monthly data and reports a positive relationship (Malkiel and Xu (2002), Goyal and 

Santa-Clara (2003), Spiegel and Wang (2005), Fu (2009), Huang, Liu, Rhee, and Zhang 

(2010)). Our findings are also consistent with Chua, Goh, and Zhang (2007) who use an 

AR(2) model, and Diavatopoulos, Doran, and Peterson(2007) who decompose implied 

volatility from option prices to estimate conditional idiosyncratic volatility. Both studies 

conclude the positive tradeoff between idiosyncratic risk and expected return. 
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Table 1.5. Regressions of stock returns on idiosyncratic volatilities and firm characteristics for eight bull and bear market cycles (EGARCH). 
 
This table reports the regression results for eight bull and bear market cycles when using the EGARCH(1,1) model to estimate idiosyncratic volatility. Rit = γ0 +
γ1IVOLit + γ2MEit + γ3BE/MEit + γ4Ret2_7it + γ5Turnoverit + εit. ME is the market value of equity. BE/ME is the Book-to-market equity. Ret2_7 is the 
compound gross return from month t-7 to t-2. Turnover is the average turnover rate. The numbers in parentheses are the standard errors. The coefficients 
followed by * are significant at 1% level, followed by ** are significant at 5% level and followed by *** are significant at 10% level. 
 

Bull Bear 

 IVOL ME BE/ME Ret2_7 Turnover  IVOL ME BE/ME Ret2_7 Turnover 

      194606-194906 
-0.2533* 
(0.0659) 

0.0009 
(0.0077) 

 

0.0962* 
(0.0109) 

-0.0717* 
(0.0117) 

194907-196112 
0.0024 
(0.0183) 

0.0002 
(0.0003) 

0.0001 
(0.0006) 

0.0294* 
(0.0016) 

-0.0009 
(0.0020) 196201-196206 

-0.1463*** 
(0.0798) 

-0.0004 
(0.0007) 

0.0060** 
(0.0028) 

0.0362* 
(0.0077) 

-0.0399* 
(0.0078) 

196207-196811 
0.3207* 
(0.0126) 

-0.0001 
(0.0002) 

-0.0004 
(0.0008) 

0.0104* 
(0.0014) 

0.0003 
(0.0013) 196812-197006 

-0.1002* 
(0.0217) 

0.0005 
(0.0004) 

-0.0167* 
(0.0017) 

0.0205* 
(0.0028) 

-0.0230* 
(0.0020) 

197007-197212 
-0.0607* 
(0.0125) 

0.0007** 
(0.0003) 

-0.0032* 
(0.0008) 

-0.0259* 
(0.0016) 

-0.0006 
(0.0009) 197301-197409 

-0.0607* 
(0.0131) 

0.0008** 
(0.0004) 

-0.0011*** 
(0.0006) 

-0.0033 
(0.0025) 

-0.0064* 
(0.0018) 

197410-198011 
0.0659* 
(0.0038) 

-0.0005** 
(0.0002) 

-0.0017* 
(0.0002) 

-0.0119* 
(0.0010) 

0.0106* 
(0.0015) 198012-198207 

-0.0070 
(0.0126) 

-0.0007** 
(0.0003) 

0.0039* 
(0.0007) 

-0.0100* 
(0.0019) 

-0.0148* 
(0.0020) 

198208-198708 
0.0687* 
(0.0026) 

0.0010* 
(0.0001) 

0.0035* 
(0.0003) 

0.0035* 
(0.0005) 

-0.0023* 
(0.0005) 198709-198711 

-0.0493** 
(0.0194) 

0.0008 
(0.0008) 

0.0027*** 
(0.0014) 

-0.0010 
(0.0016) 

-0.0075* 
(0.0018) 

198712-200008 
0.0804* 
(0.0012) 

0.0003* 
(0.0000) 

0.0003* 
(0.0000) 

-0.0012* 
(0.0002) 

0.0000 
(0.0002) 200009-200209 

-0.0079* 
(0.0021) 

-0.0001* 
(0.0000) 

0.0000 
(0.0001) 

0.0056* 
(0.0007) 

-0.0115* 
(0.0003) 

200210-200710 
0.0116* 
(0.0007) 

-0.0001* 
(0.0000) 

0.0000 
(0.0000) 

0.0001 
(0.0004) 

-0.0006* 
(0.0001) 200711-200902 

0.0000 
(0.0026) 

0.0001* 
(0.0000) 

0.0007* 
(0.0002) 

-0.0086* 
(0.0012) 

-0.0009** 
(0.0004) 

200903-201012 
0.5043* 
(0.0072) 

0.0001 
(0.0001) 

-0.0001 
(0.0002) 

-0.0134* 
(0.0007) 

0.0030* 
(0.0004)       

Total bull period 
0.0450* 
(0.0006) 

0.0001* 
(0.0000) 

0.0001* 
(0.0000) 

-0.0012* 
(0.0001) 

0.0013* 
(0.0001) Total bear period 

-0.0036* 
(0.0014) 

0.0000 
(0.0000) 

0.0001** 
(0.0001) 

0.0031* 
(0.0005) 

-0.0065* 
(0.0002) 
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Table 1.6. Regressions of stock returns on idiosyncratic volatilities and firm characteristics for eight bull and bear market cycles (GJR-GARCH). 
 
This table reports the regression results for eight bull and bear market cycles when using the GJR-GARCH(1,1) model to estimate idiosyncratic volatility. 
Rit = γ0 + γ1IVOLit + γ2MEit + γ3BE/MEit + γ4Ret2_7it + γ5Turnoverit + εit. ME is the market value of equity. BE/ME is the Book-to-market equity. Ret2_7 
is the compound gross return from month t-7 to t-2. Turnover is the average turnover rate. The numbers in parentheses are the standard errors. The coefficients 
followed by * are significant at 1% level, followed by ** are significant at 5% level and followed by *** are significant at 10% level. 
 

Bull Bear 

 IVOL ME BE/ME ret2_7 turnover  IVOL ME BE/ME ret2_7 turnover 

      194606-194906 
-0.1806* 
(0.0629) 

0.0029 
(0.0077) 

 

0.0980* 
(0.0109) 

-0.0736* 
(0.0116) 

194907-196112 
-0.0122 
(0.0177) 

0.0001 
(0.0003) 

0.0001 
(0.0006) 

0.0294* 
(0.0016) 

-0.0002 
(0.0020) 196201-196206 

-0.1413*** 
(0.0808) 

-0.0004 
(0.0007) 

0.0060** 
(0.0028) 

0.0363* 
(0.0077) 

-0.0402* 
(0.0079) 

196207-196811 
0.1996* 
(0.0102) 

-0.0003 
(0.0002) 

0.0000 
(0.0008) 

0.0131* 
(0.0014) 

0.0049* 
(0.0013) 196812-197006 

-0.0871* 
(0.0164) 

0.0005 
(0.0004) 

-0.0166* 
(0.0017) 

0.0203* 
(0.0028) 

-0.0233* 
(0.0019) 

197007-197212 
-0.0659* 
(0.0112) 

0.0006*** 
(0.0003) 

-0.0032* 
(0.0008) 

-0.0259* 
(0.0016) 

-0.0005 
(0.0009) 197301-197409 

-0.0968* 
(0.0134) 

0.0007*** 
(0.0004) 

-0.0009 
(0.0006) 

-0.0037 
(0.0025) 

-0.0054* 
(0.0018) 

197410-198011 
0.0734* 
(0.0056) 

-0.0004** 
(0.0002) 

-0.0017* 
(0.0002) 

-0.0119* 
(0.0010) 

0.0103* 
(0.0015) 198012-198207 

-0.0269** 
(0.0110) 

-0.0007* 
(0.0003) 

0.0039* 
(0.0007) 

-0.0099* 
(0.0019) 

-0.0139* 
(0.0020) 

198208-198708 
0.0087* 
(0.0034) 

0.0007* 
(0.0001) 

0.0033* 
(0.0003) 

0.0036* 
(0.0005) 

-0.0021* 
(0.0005) 198709-198711 

-0.1123* 
(0.0195) 

0.0003 
(0.0008) 

0.0027*** 
(0.0014) 

-0.0007 
(0.0016) 

-0.0075* 
(0.0018) 

198712-200008 
0.0905* 
(0.0020) 

0.0003* 
(0.0000) 

0.0003* 
(0.0000) 

-0.0013* 
(0.0002) 

-0.0001 
(0.0002) 200009-200209 

-0.0946* 
(0.0052) 

-0.0002* 
(0.0000) 

0.0001 
(0.0001) 

0.0051* 
(0.0007) 

-0.0099* 
(0.0004) 

200210-200710 
0.1223* 
(0.0032) 

0.0000 
(0.0000) 

0.0000*** 
(0.0000) 

-0.0009* 
(0.0004) 

-0.0014* 
(0.0001) 200711-200902 

-0.0544* 
(0.0077) 

0.0001** 
(0.0000) 

0.0006* 
(0.0002) 

-0.0090* 
(0.0012) 

-0.0005 
(0.0004) 

200903-201012 
0.3524* 
(0.0086) 

-0.0001 
(0.0001) 

-0.0002 
(0.0002) 

-0.0127* 
(0.0007) 

0.0029* 
(0.0004)       

Total bull period 
0.0908* 
(0.0014) 

0.0001* 
(0.0000) 

0.0002* 
(0.0000) 

-0.0015* 
(0.0001) 

0.0008* 
(0.0001) Total bear period 

-0.0668* 
(0.0035) 

-0.0000 
(0.0000) 

0.0001** 
(0.0001) 

0.0029* 
(0.0005) 

-0.0054* 
(0.0002) 
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Table 1.7. Regressions of stock returns on idiosyncratic volatilities and market factors for eight bull and bear market cycles (EGARCH). 
 
This table reports the regression results for eight bull and bear market cycles when using the EGARCH(1,1) model to estimate idiosyncratic volatility. Rit = γ0 +
γ1IVOLit + γ2(Mkt − r)t + γ3SMBt + γ4HMLt + γ5Momt + εit. Mkt-r is the excess return on a broad market portfolio. SMB is the size factor – the difference of 
returns between a small stocks portfolio and a big stocks portfolio. HML is the value factor – the difference of returns between a high book-to-market stocks 
portfolio and a low book-to-market stocks portfolio. Mom is the momentum factor. The numbers in parentheses are the standard errors. The coefficients followed 
by * are significant at 1% level, followed by ** are significant at 5% level and followed by *** are significant at 10% level. 
 

Bull Bear 

 IVOL Mkt-r SMB HML Mom  IVOL Mkt-r SMB HML Mom 

      194606-194906 
-0.0621* 
(0.0140) 

1.0599* 
(0.0103) 

0.6459* 
(0.0328) 

0.1884* 
(0.0199) 

-0.0535* 
(0.0191) 

194907-196112 
0.0607* 
(0.0060) 

0.9872* 
(0.0054) 

0.6797* 
(0.0111) 

0.2616* 
(0.0079) 

-0.0549* 
(0.0077) 196201-196206 

-0.3295* 
(0.0334) 

0.9698* 
(0.0373) 

0.7153* 
(0.0714) 

0.2021* 
(0.0660) 

-0.1130* 
(0.0419) 

196207-196811 
0.2177* 
(0.0049) 

0.9073* 
(0.0089) 

0.9732* 
(0.0104) 

0.2532* 
(0.0143) 

-0.0632* 
(0.0096) 196812-197006 

-0.1030* 
(0.0108) 

0.9773* 
(0.0121) 

0.9989* 
(0.0183) 

0.1447* 
(0.0204) 

-0.1401* 
(0.0187) 

197007-197212 
0.0315* 
(0.0083) 

0.8835* 
(0.0139) 

1.0848* 
(0.0176) 

0.2920* 
(0.0199) 

-0.0277** 
(0.0132) 197301-197409 

-0.0016 
(0.0035) 

0.9461* 
(0.0132) 

0.9447* 
(0.0283) 

0.4538* 
(0.0248) 

-0.1353* 
(0.0228) 

197410-198011 
0.1165* 
(0.0034) 

1.0636* 
(0.0066) 

0.9681* 
(0.0109) 

0.4177* 
(0.0113) 

-0.1195* 
(0.0080) 198012-198207 

-0.0530* 
(0.0098) 

1.0341* 
(0.0208) 

0.7555* 
(0.0274) 

0.1844* 
(0.0268) 

-0.0850* 
(0.0128) 

198208-198708 
0.0224* 
(0.0009) 

1.0062* 
(0.0079) 

1.0488* 
(0.0148) 

0.1345* 
(0.0136) 

-0.0449* 
(0.0093) 198709-198711 

-0.0689* 
(0.0126) 

    

198712-200008 
2.40E-7 
(1.77E-6) 

0.9014* 
(0.0051) 

0.7675* 
(0.0054) 

0.2650* 
(0.0080) 

-0.2017* 
(0.0051) 200009-200209 

0.0229* 
(0.0016) 

0.7390* 
(0.0118) 

0.7031* 
(0.0139) 

0.0872* 
(0.0128) 

-0.3265* 
(0.0082) 

200210-200710 
0.0136* 
(0.0006) 

0.8941* 
(0.0094) 

0.7780* 
(0.0108) 

0.2407* 
(0.0116) 

-0.1418* 
(0.0061) 200711-200902 

0.0167* 
(0.0021) 

0.9852* 
(0.0112) 

0.4777* 
(0.0285) 

-0.2524* 
(0.0165) 

-0.1872* 
(0.0107) 

200903-201012 
0.0013* 
(0.0003) 

0.6974* 
(0.0373) 

0.5119* 
(0.0262) 

0.0084 
(0.0366) 

-0.2589* 
(0.0125)  

     

Total bull period 
0.0195* 
(0.0011) 

0.9227* 
(0.0048) 

0.7381* 
(0.0077) 

0.0821* 
(0.0061) 

-0.1954* 
(0.0041) Total bear period 

-3.96E-8  
(1.51E-6) 

0.9445* 
(0.0028) 

0.8017* 
(0.0033) 

0.2776* 
(0.0042) 

-0.1518* 
(0.0026) 
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Table 1.8. Regressions of stock returns on idiosyncratic volatilities and market factors for eight bull and bear market cycles (GJR-GARCH). 
 
This table reports the regression results for eight bull and bear market cycles when using the GJR-GARCH(1,1) model to estimate idiosyncratic volatility. 
Rit = γ0 + γ1IVOLit + γ2(Mkt − r)t + γ3SMBt + γ4HMLt + γ5Momt + εit. Mkt-r is the excess return on a broad market portfolio. SMB is the size factor – the 
difference of returns between a small stocks portfolio and a big stocks portfolio. HML is the value factor – the difference of returns between a high book-to-
market stocks portfolio and a low book-to-market stocks portfolio. Mom is the momentum factor. The numbers in parentheses are the standard errors. The 
coefficients followed by * are significant at 1% level, followed by ** are significant at 5% level and followed by *** are significant at 10% level. 
 

Bull Bear 

 IVOL Mkt-r SMB HML Mom  IVOL Mkt-r SMB HML Mom 

      194606-194906 
-0.1405* 
(0.0149) 

1.0603* 
(0.0103) 

0.6454* 
(0.0328) 

0.1893* 
(0.0199) 

-0.0553* 
(0.0191) 

194907-196112 
0.0286* 
(0.0064) 

0.9873* 
(0.0054) 

0.6804* 
(0.0111) 

0.2622* 
(0.0079) 

-0.0552* 
(0.0077) 196201-196206 

-0.3254* 
(0.0338) 

0.9699* 
(0.0373) 

0.7167* 
(0.0714) 

0.2014* 
(0.0660) 

-0.1142* 
(0.0419) 

196207-196811 
0.1293* 
(0.0046) 

0.9039* 
(0.0089) 

0.9815* 
(0.0104) 

0.2548* 
(0.0143) 

-0.0645* 
(0.0097) 196812-197006 

-0.1254* 
(0.0098) 

0.9772* 
(0.0121) 

0.9982* 
(0.0183) 

0.1446* 
(0.0203) 

-0.1405* 
(0.0187) 

197007-197212 
-0.0005 
(0.0080) 

0.8835* 
(0.0139) 

1.0857* 
(0.0176) 

0.2920* 
(0.0199) 

-0.0276** 
(0.0132) 197301-197409 

-0.0399* 
(0.0092) 

0.9453* 
(0.0132) 

0.9481* 
(0.0283) 

0.4536* 
(0.0248) 

-0.1335* 
(0.0228) 

197410-198011 
0.1295* 
(0.0046) 

1.0632* 
(0.0066) 

0.9684* 
(0.0109) 

0.4175* 
(0.0113) 

-0.1191* 
(0.0080) 198012-198207 

-0.0660* 
(0.0089) 

1.0339* 
(0.0208) 

0.7553* 
(0.0274) 

0.1840* 
(0.0268) 

-0.0852* 
(0.0128) 

198208-198708 
0.0476* 
(0.0026) 

1.0071* 
(0.0079) 

1.0501* 
(0.0148) 

0.1357* 
(0.0136) 

-0.0454* 
(0.0093) 198709-198711 

-0.1482* 
(0.0140) 

    

198712-200008 
0.1115* 
(0.0015) 

0.8995* 
(0.0051) 

0.7664* 
(0.0053) 

0.2679* 
(0.0080) 

-0.2021* 
(0.0051) 200009-200209 

-0.0182* 
(0.0042) 

0.7386* 
(0.0118) 

0.7046* 
(0.0139) 

0.0919* 
(0.0128) 

-0.3307* 
(0.0082) 

200210-200710 
0.1097* 
(0.0023) 

0.8987* 
(0.0093) 

0.7671* 
(0.0108) 

0.2409* 
(0.0116) 

-0.1358* 
(0.0061) 200711-200902 

-0.0160* 
(0.0050) 

0.9828* 
(0.0112) 

0.4847* 
(0.0285) 

-0.2601* 
(0.0166) 

-0.1896* 
(0.0107) 

200903-201012 
0.3120* 
(0.0066) 

0.6938* 
(0.0366) 

0.5170* 
(0.0258) 

0.0314 
(0.0360) 

-0.2382* 
(0.0123)  

     

Total bull period 
0.1039* 
(0.0010) 

0.9435* 
(0.0028) 

0.8051* 
(0.0033) 

0.2840* 
(0.0042) 

-0.1516* 
(0.0026) Total bear period 

-0.0202* 
(0.0024) 

0.9193* 
(0.0048) 

0.7482* 
(0.0078) 

0.0867* 
(0.0062) 

-0.1967* 
(0.0042) 
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1.4.4. Relations between stock returns and idiosyncratic volatilities for forty-eight 

industries 

 

For further examination and as a robustness check, we divide all the stocks into forty-

eight industries as stated in Fama and French (1997). We regress the stock returns on 

idiosyncratic volatilities and other firm characteristics for these forty-eight industries in 

total bull period and total bear period, separately. The model is a multivariate regression 

presented in Equation (1.6): Rit = γ0 + γ1IVOLit + γ2MEit + γ3BE/MEit + γ4Ret2_7it +

γ5Turnoverit + εit. To make the test results more intuitive, we put all the coefficient 

estimates of idiosyncratic volatility in two scatter charts. 5

Figure 1.3

 One scatter chart is for 

coefficients of idiosyncratic volatility estimated by the EGARCH(1,1) model, while the 

other is for coefficients of idiosyncratic volatility estimated by the GJR-GARCH(1,1) 

model. The two scatter charts are shown in  and Figure 1.4, respectively. 

Industries’ names are selectively shown due to limited space. 

 

In total bull period, all the forty-eight coefficient estimates of idiosyncratic volatility 

estimated by the EGARCH(1,1) model are positive and most of them are significant at 

the 1% level. These significant positive coefficient estimates support that the 

idiosyncratic risk is priced during bull market periods. In total bear period, the signs of 

coefficients of idiosyncratic volatility estimated by the EGARCH(1,1) model are mixed. 

                                                           
5 To save space, the tables containing the test results of Equation (1.6) for forty-eight industries are not 
provided in this paper. The tables will be available upon request. 
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About half of the coefficient estimates are positive and half of them are negative. These 

mixed coefficient estimates support that the idiosyncratic risk is not priced during bear 

market periods. 

 

Moreover, we find that during total bull period, except for four industries, all the other 

forty-four coefficient estimates of idiosyncratic volatility estimated by the GJR-

GARCH(1,1) are positive. During total bear period, the signs of coefficients of 

idiosyncratic volatility estimated by the GJR-GARCH(1,1) model are mixed. About one 

fourth of the coefficient estimates are positive and three fourths of them are negative. 

Although the distribution of the coefficient estimates of the GJR-GARCH(1,1) is a little 

different from the distribution of the coefficients of the EGARCH(1,1), they both confirm 

the finding that the idiosyncratic risk is priced during bull market periods but not during 

bear market periods. 

 

The phenomenon that the “size effect” no longer exists after controlling for idiosyncratic 

risk is still apparent. The coefficients of ME become mostly insignificant after including 

IVOL in the regression. Controlling for estimated idiosyncratic volatility, “size effect” is 

no longer there. The evidence is consistent in forty-eight industries and lends a support to 

Merton’s (1987) argument that the findings of the “size effect” are due to the omitted 

controls for other factors such as idiosyncratic risk.  

 

Next, we regress the stock returns on idiosyncratic volatilities and market factors for 

forty-eight industries in the total bull period and the total bear period, separately. The 
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model is a multivariate regression presented in Equation (1.7): Rit = γ0 + γ1IVOLit +

γ2(Mkt − r)t + γ3SMBt + γ4HMLt + γ5Momt + εit . To make the test results more 

intuitive, we also put all the coefficient estimates of idiosyncratic volatility in two scatter 

charts.6

Figure 

1.5

 One scatter chart is for coefficients of idiosyncratic volatility estimated by the 

EGARCH(1,1) model, while the other is for coefficients of idiosyncratic volatility 

estimated by the GJR-GARCH(1,1) model. The two scatter charts are shown in 

 and Figure 1.6, respectively. Again, industries’ names are selectively shown due to 

limited space. 

 

It turns out that in the total bull period, all the forty-eight coefficient estimates of 

idiosyncratic volatility estimated by the EGARCH(1,1) are positive and most of them are 

significant at the 1% level. These significant positive coefficient estimates prove one 

more time that the idiosyncratic risk is priced during bull market periods. In the total bear 

period, the signs of coefficients of idiosyncratic volatility estimated by the EGARCH(1,1) 

model are mixed. Around sixty percent of the coefficient estimates are positive, while 

forty percent are negative. These mixed coefficient estimates are weaker evidence, but 

could still support our finding that the idiosyncratic risk is not priced during bear market 

periods. 

 

Additionally, we also check the relation between stock return and idiosyncratic volatility 

estimated by the GJR-GARCH(1,1) model. We find that during total bull period, except 

                                                           
6 To save space, the tables containing the test results of Equation (1.7) for forty-eight industries are not 
provided in this paper. The tables will be available upon request. 
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for only two industries, all the coefficient estimates of idiosyncratic volatility estimated 

by the GJR-GARCH(1,1) are positive and all positive coefficients are significant at the 1% 

level. In total bear period, the signs of the coefficients of idiosyncratic volatility 

estimated by the GJR-GARCH(1,1) model are mixed. About half of the coefficient 

estimates are positive, while half of them are negative.  

 

To sum up, the test results for forty-eight industries are consistent with those for eight 

bull and bear market cycles. The results for bull market periods all confirm Merton’s 

(1987) prediction of a positive relation between idiosyncratic risk and expected return. 

However, the results for bear market periods do not. It appears that idiosyncratic risk is 

not priced during bear markets. According to Merton (1987) and Seasholes and Wu 

(2007), we provide a hypothesis to explain our findings. If investors hold less diversified 

portfolios during bull market, idiosyncratic risk should be priced in bull periods; if 

investors tend to hold more diversified portfolios during bear market, then idiosyncratic 

risk will not be priced in bear periods. Until now, our empirical evidences support this 

hypothesis. 

  



45 
 

 
 

 
Figure 1.3. Regressions of stock returns on idiosyncratic volatilities and firm characteristics for forty-eight industries (EGARCH). 

This figure reports the regression results when using idiosyncratic volatility estimated by the EGARCH(1,1) model. Rit = γ0 + γ1Et−1[IVOLit] + γ2MEit +

γ3BE/MEit + γ4Ret2_7it + γ5Turnoverit + εit. The scatter shows only the coefficients of idiosyncratic volatilities. Industries’ names are selectively shown due 

to limited space. 
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Figure 1.4. Regressions of stock returns on idiosyncratic volatilities and firm characteristics for forty-eight industries (GJR-GARCH). 

This figure reports the regression results when using idiosyncratic volatility estimated by the GJR-GARCH(1,1) model.  Rit = γ0 + γ1Et−1[IVOLit] + γ2MEit +

γ3BE/MEit + γ4Ret2_7it + γ5Turnoverit + εit. The scatter shows only the coefficients of idiosyncratic volatilities. Industries’ names are selectively shown due 

to limited space. 
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Figure 1.5. Regressions of stock returns on idiosyncratic volatilities and market factors for forty-eight industries (EGARCH). 

This figure reports the regression results when using idiosyncratic volatility estimated by the EGARCH(1,1) model. Rit = γ0 + γ1Et−1[IVOLit] + γ2(Mkt − r)t +

γ3SMBt + γ4HMLt + γ5Momt + εit. The scatter shows only the coefficients of idiosyncratic volatilities. Industries’ names are selectively shown due to limited 

space. 
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Figure 1.6. Regressions of stock returns on idiosyncratic volatilities and market factors for forty-eight industries (GJR-GARCH). 

This figure reports the regression results when using idiosyncratic volatility estimated by the GJR-GARCH(1,1) model. Rit = γ0 + γ1Et−1[IVOLit] +

γ2(Mkt − r)t + γ3SMBt + γ4HMLt + γ5Momt + εit. The scatter shows only the coefficients of idiosyncratic volatilities. Industries’ names are selectively shown 

due to limited space.  
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1.4.5. Portfolios analysis 

 

The evidences from the Fama-MacBeth cross-sectional regressions suggest a positive 

relation between idiosyncratic volatility and average stock returns in bull market periods 

but a negative one in bear market periods. Next we examine the returns of portfolios 

formed on the sorting of idiosyncratic volatility. If individual stocks with high 

idiosyncratic volatility have higher returns than stocks with low idiosyncratic volatility in 

bull market periods, a zero-investment portfolio that is long in high idiosyncratic 

volatility stocks and short in low idiosyncratic volatility stocks should earn a positive 

return in bull market periods. But the same zero-investment portfolio will even lose 

money in bear market periods, since individual stocks with high idiosyncratic volatility 

have lower returns than stocks with low idiosyncratic volatility in bear market periods. 

The procedure of the portfolio-based approach is as follows. In each month, we sort 

IVOL (EGARCH) to form ten portfolios with an equal number of stocks. Each portfolio 

contains ten percent of stocks. Table 1.9 presents the descriptive statistics for these ten 

portfolios. Panel A, B, and C presents, respectively, the summary statistics for bull 

market periods, bear market periods, and the entire sample period. The third and fourth 

row presents, respectively, the time-series means of the value-weighted and the equal-

weighted portfolio returns. The mean IVOL (EGARCH) increases from 3.64% for the 

first portfolio to 65.11% for the last portfolio. The idiosyncratic volatility estimated by 

the GJR-GARCH(1,1) model also increases monotonically across these ten portfolios.  
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In bull market periods, the portfolio consisting of stocks with high idiosyncratic volatility 

has higher returns than the portfolio consisting of low idiosyncratic volatility stocks. The 

value-weighted portfolio returns increase from 1.86% for the lowest idiosyncratic 

volatility portfolio to 12.14% for the highest idiosyncratic volatility portfolio. A hedging 

portfolio longing Portfolio 10 and shorting Portfolio 1 yields a statistically significant 

monthly return of 10.28%. The equal-weighted portfolio returns display a similar pattern, 

increasing from 0.39% for the lowest idiosyncratic volatility portfolio to 5.09% for the 

highest idiosyncratic volatility portfolio. This evidence confirms the positive relation 

between idiosyncratic volatility and individual stock returns in bull market periods, which 

means that the idiosyncratic risk is priced in bull markets. This result is consistent with 

the portfolio analysis findings of Fu (2009) and further confirms that firms with high 

idiosyncratic volatility have higher expected returns indicated by Merton (1987). 

 

In bear market periods, there is no obvious trend of portfolio returns when idiosyncratic 

volatility increases. The value-weighted portfolio returns go up and down frequently 

when idiosyncratic volatility portfolio changes. The equal-weighted portfolio returns 

decrease from -0.28% for the lowest idiosyncratic volatility portfolio to -3.75% for the 

second highest idiosyncratic volatility portfolio (portfolio 9), and then increase to -1.35% 

for the highest idiosyncratic volatility portfolio. This evidence confirms the negative or 

insignificant relation between idiosyncratic volatility and individual stock returns in bear 

market periods, which implies that the idiosyncratic risk is not priced in bear markets.  
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For the entire sample period, the trend of portfolio returns is more like the trend in bull 

market periods with some noticeable differences. The value-weighted portfolio returns 

decrease from 1.43% for the lowest idiosyncratic volatility portfolio to 1.26% for the 

second lowest idiosyncratic volatility portfolio (portfolio 2), and then increase 

monotonically to 10.38% for the highest idiosyncratic volatility portfolio from there. The 

equal-weighted portfolio returns tell a different story. They increase first and then 

decrease slowly, but finally increase dramatically for the highest idiosyncratic volatility 

portfolio. The phenomenon that the value-weighted portfolio returns follow the trend of 

bull market periods is due to the fact that bull market periods dominate the whole sample 

period. Our evidence for the entire sample period weakly confirms the positive relation 

between idiosyncratic volatility and individual stock returns found in the literature 

(Malkiel and Xu (2002), Goyal and Santa-Clara (2003), Spiegel and Wang (2005), Fu 

(2009), Huang, Liu, Rhee, and Zhang (2010)). However, this result contrasts sharply with 

the findings of AHXZ (2006) which are based on the lagged realized volatility and the 

findings of Guo and Savickas (2006) which are based on the future quarterly stock 

market returns. Recent studies by Huang, Liu, Rhee, and Zhang (2007) and Fu (2009) 

both suggest that the return reversal in monthly returns explains the negative results in 

AHXZ (2006) and Guo and Savickas (2008).  
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Table 1.9. Summary statistics for portfolios formed on idiosyncratic volatility.  
 
Each month ten portfolios are formed on IVOL (EGARCH). Each portfolio consists of 10% of stocks. 
IVOL (EGARCH) is estimated by the EGARCH(1,1) model. IVOL (GJR-GARCH) is estimated by the 
GJR-GARCH(1,1) model. The third and fourth row presents, respectively, the time-series means of the 
value-weighted and the equal-weighted portfolio returns. Other rows show the pooled means of variables 
within the particular portfolio. Panel A, B, and C presents, respectively, the summary statistics for bull 
market periods, bear market periods, and the entire sample period. 
 

Panel A: Bull market periods 

 
Low 2 3 4 5 6 7 8 9 High 

IVOL  
(EGARCH) 3.65 5.60 6.91 8.18 9.57 11.15 13.00 15.33 18.82 71.62 
IVOL  
(GJR-GARCH) 3.69 5.70 7.05 8.37 9.82 11.44 13.33 15.69 19.19 31.10 

VWRET 1.86 1.86 2.13 2.50 3.00 3.60 4.24 4.81 7.15 12.14 

EWRET 0.39 1.41 1.49 1.54 1.53 1.57 1.45 1.48 1.75 5.09 

ME (Billion) 1.01 2.29 1.95 1.34 0.85 0.57 0.38 0.25 0.17 0.10 

BE/ME 0.81 0.73 1.37 0.76 0.77 0.80 0.78 0.75 0.69 0.44 
Panel B: Bear market periods 

 
Low 2 3 4 5 6 7 8 9 High 

IVOL 
(EGARCH) 3.61 5.65 7.01 8.33 9.77 11.36 13.18 15.50 18.92 31.75 
IVOL 
(GJR-GARCH) 3.56 5.68 7.07 8.44 9.93 11.58 13.47 15.78 19.14 29.84 

VWRET -1.13 -0.94 -1.07 -1.40 -1.23 -1.01 -1.66 -2.08 -0.88 3.73 

EWRET -0.28 -1.06 -1.32 -1.72 -2.10 -2.50 -3.02 -3.55 -3.75 -1.35 

ME (Billion) 0.47 3.62 3.24 2.49 1.85 1.23 0.86 0.57 0.43 0.26 

BE/ME 0.88 0.74 0.73 0.76 0.76 1.05 0.84 0.85 0.81 0.76 
Panel C: Entire sample period 

 
Low 2 3 4 5 6 7 8 9 High 

IVOL 
(EGARCH) 3.64 5.61 6.92 8.21 9.60 11.18 13.03 15.35 18.84 65.11 
IVOL 
(GJR-GARCH) 3.67 5.70 7.05 8.38 9.83 11.46 13.36 15.70 19.18 30.90 

VWRET 1.43 1.26 1.42 1.58 1.90 2.44 2.80 3.18 5.18 10.38 

EWRET 0.25 1.01 1.03 1.01 0.94 0.90 0.72 0.66 0.86 4.04 

ME (Billion) 0.89 2.51 2.16 1.52 1.01 0.68 0.46 0.31 0.21 0.13 

BE/ME 0.83 0.73 1.26 0.76 0.77 0.84 0.79 0.76 0.71 0.49 
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1.4.6. Idiosyncratic Risk Factor 

 

From the portfolios analysis in the last subsection, we get an idea that a zero-investment 

portfolio that is long in high idiosyncratic volatility stocks and short in low idiosyncratic 

volatility stocks should earn a positive return in bull market periods, but will lose money 

in bear market periods. To better see if idiosyncratic risk is priced, that is to say if stocks 

with high idiosyncratic risk have tended to do better than stocks with low idiosyncratic 

risk, we attempt to construct a factor in the way Fama and French construct their factors. 

Our factor will be calculated with combinations of portfolios composed by ranked stocks. 

The specific measures are introduced in Subsection 1.3.3. 

 

We get a number of Idiosyncratic Risk Factor (IRF) for each month. We cumulate all IRF 

within each bull and bear market period and the total bull and bear period. We compare 

the IRF under different market conditions. We call the Cumulative Idiosyncratic Risk 

Factor CIRF. And we also calculate the average Monthly IRF by dividing CIRF by the 

number of months in that period to make it easier to interpret the numbers. According to 

different weighting schemes and different models to estimate idiosyncratic volatility, the 

IRF results are reported in four separate tables, from Table 1.10 to Table 1.13. 

 

Table 1.10 reports Cumulative IRF and Monthly IRF when using value-weighted 

portfolios with idiosyncratic volatility estimated by the EGARCH(1,1) model. Panel A 

shows IRF calculated by the Fama-French measure (FF), i.e. two size portfolios and three 
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idiosyncratic volatility portfolios. Panel B shows IRF calculated by refined measure one 

(R1), i.e. three size portfolios and three idiosyncratic volatility portfolios. Panel C shows 

IRF calculated by refined measure two (R2), i.e. five size portfolios and three 

idiosyncratic volatility portfolios. Whichever measure we use to form the portfolios, we 

see positive Cumulative IRF and Monthly IRF in all bull market periods, including the 

total bull period. Taking the total bull period in Panel A as an example, a factor portfolio 

long on stocks with high idiosyncratic volatility and short on stocks with low 

idiosyncratic volatility yields an average monthly return of 2.35% with a standard 

deviation of 0.22%. For bear market periods, most of Cumulative IRF and Monthly IRF 

is negative, including the total bear period. Only one bear period shows a positive 

Cumulative IRF and Monthly IRF but the number becomes smaller when we apply two 

refined measures to form the portfolios. However, these small positive numbers do not 

affect our conclusion that idiosyncratic risk is not priced in bear market periods. Taking 

the total bear period in Panel A for example, a factor portfolio long on stocks with high 

idiosyncratic volatility and short on stocks with low idiosyncratic volatility yields an 

average monthly return of -0.65% with a standard deviation of 0.51%. This means if we 

continue following the same strategy that earns us 2.35% per month previously 

mentioned, in a bear market period we will lose 0.65% per month. So, our findings along 

with IRF itself may have important implications for equity investment strategies and 

portfolio management. Although there are some minor differences among the IRF results 

by those three measures, they are still very similar in trends. We can see this same trend 

from Figure 1.8. The first figure (left top) in Figure 1.8 shows CIRF for the entire sample 

period in Panel A, Panel B, and Panel C of Table 1.10. We can see that the curves are 
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almost coincided with each other. These curves imply that when we use value-weighted 

portfolios with idiosyncratic volatility estimated by the EGARCH(1,1) model to calculate 

IRF, different portfolio constructing measures produce similar results. 

 

Table 1.11 reports Cumulative IRF and Monthly IRF when using equal-weighted 

portfolios with idiosyncratic volatility estimated by the EGARCH(1,1) model. Panel A 

shows IRF calculated by Fama-French measure (FF). Panel B shows IRF calculated by 

refined measure one (R1). Panel C shows IRF calculated by refined measure two (R2). 

The IRF results in Table 1.11 follow the same pattern of those in Table 1.10. We get 

positive Cumulative IRF and Monthly IRF in all bull market periods, including total bull 

period, but get negative Cumulative IRF and Monthly IRF in bear market periods, 

including the total bear period. However, the IRF numbers are smaller than those using 

value-weighted portfolios, which means that we will get lower portfolio return if we form 

an equal-weighted portfolio other than a value-weighted one. Let’s take the total bull 

period in Panel A as an example. An equal-weighted factor portfolio long on stocks with 

high idiosyncratic volatility and short on stocks with low idiosyncratic volatility yields an 

average monthly return of 1.96%, lower than 2.35% for a value-weighted portfolio. In 

total bear period, an equal-weighted factor portfolio yields an average monthly return of -

0.92%, lower than -0.65% for a value-weighted portfolio. The three curves are coincided 

in the first figure in Figure 1.8, but the curves in the second figure (right top) are not. The 

second figure in Figure 1.8 shows CIRF for the entire sample period in Panel A, Panel B, 

and Panel C of Table 1.11. There are some differences among the IRF results by those 

three measures. And we can see that the three curves are apart from each other. These 
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apart curves imply that when we use equal-weighted portfolios with idiosyncratic 

volatility estimated by the EGARCH(1,1) model to calculate IRF, the portfolio 

constructing measure matters a little bit. Refined measure two gives the highest factor 

portfolio return, while Fama-French measure provides the lowest factor portfolio return. 

 

Table 1.12 presents Cumulative IRF and Monthly IRF when using value-weighted 

portfolios with idiosyncratic volatility estimated by the GJR-GARCH(1,1) model. Panel 

A shows IRF calculated by the Fama-French measure (FF), and Panel B shows IRF 

calculated by the refined measure one (R1), while Panel C shows IRF calculated by the 

refined measure two (R2). The IRF results in Table 1.12 follow the same pattern of those 

in previous tables. We get positive Cumulative IRF and Monthly IRF in all bull market 

periods, including the total bull period, and get negative Cumulative IRF and Monthly 

IRF in all bear market periods, including the total bear period. The pattern in Table 1.12 

is more pronounced than that in Table 1.10 and Table 1.11. All the Cumulative IRF and 

Monthly IRF is negative, no exception for all three measures. In addition, the IRF 

numbers are smaller than those in Table 1.10 using value-weighted portfolios with 

idiosyncratic volatility estimated by the EGARCH(1,1) model. It means that we will get 

lower portfolio return if we form the same portfolio but use the GJR-GARCH 

idiosyncratic volatility. For instance, a value-weighted factor portfolio long on stocks 

with high idiosyncratic volatility estimated by the GJR-GARCH(1,1) model and short on 

stocks with low idiosyncratic volatility yields an average monthly return of 2.02% in 

Fama-French measure case, lower than 2.35% for a value-weighted portfolio with 

idiosyncratic volatility estimated by the EGARCH(1,1) model. This rule also applies 
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towards bear market periods, in which case a value-weighted factor portfolio yields an 

average monthly return of -0.85% for the GJR-GARCH idiosyncratic volatility, lower 

than -0.65% for the EGARCH idiosyncratic volatility. Although there are still some small 

differences among the IRF results by the three portfolio constructing measures, they are 

very similar to each other. We can see this same trend from the third figure in Figure 1.8. 

The third figure (left bottom) in Figure 1.8 shows CIRF for the entire sample period in 

Panel A, Panel B, and Panel C of Table 1.12. We can see that the curves are coincided 

with each other almost perfectly. These coincided curves imply that when we use value-

weighted portfolios with idiosyncratic volatility estimated by the GJR-GARCH(1,1) 

model to calculate IRF, the portfolio constructing measure does not matter that much. 

Together with the finding in Table 1.10 and the first figure in Figure 1.8, we can 

conclude that when we use value-weighted portfolios, no matter which model we choose 

to estimate idiosyncratic volatility, to calculate IRF, the three portfolio constructing 

measures do not differ so much. 

 

Table 1.13 presents Cumulative IRF and Monthly IRF when using equal-weighted 

portfolios with idiosyncratic volatility estimated by the GJR-GARCH(1,1) model. Panel 

A shows IRF calculated by the Fama-French measure (FF). Panel B shows IRF calculated 

by the refined measure one (R1), and Panel C shows IRF calculated by the refined 

measure two (R2). We see positive Cumulative IRF and Monthly IRF in all bull market 

periods, but see negative Cumulative IRF and Monthly IRF in all bear market periods. As 

that in Table 1.12, all the Cumulative IRF and Monthly IRF in Table 1.13 are negative. 

Additionally, the IRF numbers are smaller than those in Table 1.11 using equal-weighted 
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portfolios with idiosyncratic volatility estimated by the EGARCH(1,1) model, which 

means that we will get lower portfolio return if we form the same portfolio but using the 

GJR-GARCH idiosyncratic volatility. This finding is consistent with what we have 

already found for value-weighted portfolios. For instance, an equal-weighted factor 

portfolio long on stocks with high idiosyncratic volatility estimated by the GJR-

GARCH(1,1) model and short on stocks with low idiosyncratic volatility yields an 

average monthly return of 1.59%, lower than 1.96% for an equal-weighted portfolio with 

idiosyncratic volatility estimated by the EGARCH(1,1) model. This rule also applies to 

bear market periods. An equal-weighted factor portfolio yields an average monthly return 

of -1.29% for the GJR-GARCH idiosyncratic volatility, lower than -0.92% for the 

EGARCH idiosyncratic volatility. As before, the last figure (right bottom) in Figure 1.8 

shows CIRF for the entire sample period in Panel A, Panel B, and Panel C of Table 1.13. 

There are some differences among the IRF results by the three portfolio constructing 

measures. And we can see the differences in the figure that the three curves are apart 

from each other. These separate curves mean that when we use equal-weighted portfolios 

with idiosyncratic volatility estimated by the GJR-GARCH(1,1) model to calculate IRF, 

the portfolio constructing measure matters a little bit. Refined measure two gives the 

highest factor portfolio return, while Fama-French measure provides the lowest factor 

portfolio return. This finding is consistent with what we have already found for equal-

weighted portfolios with the EGARCH idiosyncratic volatility. Therefore, we conclude 

that when we use equal-weighted portfolios, no matter which model we choose to 

estimate idiosyncratic volatility, different choice of the portfolio constructing measures 
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will affect the value of IRF. And the more size portfolios we construct to calculate IRF, 

the higher factor portfolio return we will get. 

 

We put all twelve Cumulative Idiosyncratic Risk Factor (CIRF) for the entire sample 

period from June 1946 to December 2010 in one figure. We attempt to get a general idea 

that if the CIRF follows different trends when the market conditions are different. And 

we also try to get that if the CIRF differs from each other when we employ different 

techniques to calculate IRF. The whole view picture is shown in Figure 1.7. Each of the 

twelve curves is calculated based on one of the two models to estimate idiosyncratic 

volatility (the EGARCH model and the GJR-GARCH model), one of the two weighting 

schemes (value-weighted and equal-weighted), and one of the three portfolio constructing 

measures (Fama-French measure, Refined measure 1 and Refined measure 2). From 

Figure 1.7, we could easily see three things. First, bull market periods dominate the entire 

sample period. Bear market periods only account for less than twenty percent of the 

entire sample period. Second, the trends during bull market periods are all going upwards, 

while the trends during bear market periods are relatively flat or going downwards. These 

trends support the main finding of this paper that idiosyncratic risk is priced in bull 

market periods but not in bear market periods. Third, although the twelve curves have the 

same trend pattern, they have different values which imply different factor portfolio 

returns. The factor portfolios constructed using value-weighted weighting scheme with 

the EGARCH idiosyncratic volatility bring the highest returns, while the lowest returns 

are from the factor portfolios constructed using equal-weighted weighting scheme with 

the GJR-GARCH idiosyncratic volatility.  
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We have got a general idea from Figure 1.7 that the CIRF calculated by different 

techniques have different values. In order to dig out their variation rules, we must 

compare them side by side. Keeping the weighting schemes the same and the models for 

estimating idiosyncratic volatility the same, we could tell how the three portfolio 

constructing measures differ from each other. This analysis has already been done in 

previous paragraphs from the four figures in Figure 1.8, and we conclude that when we 

use value-weighted portfolios, no matter which model we choose to estimate 

idiosyncratic volatility, to calculate IRF, the three portfolio constructing measures do not 

differ so much. But when we use equal-weighted portfolios to calculate IRF, the three 

portfolio constructing measures do matter. And the more size portfolios we construct to 

calculate IRF, the higher factor portfolio return we will get. 

 

Furthermore, keeping portfolio constructing measure and model for estimating 

idiosyncratic volatility the same, we could tell how the two weighting schemes differ 

from each other. We will give the analysis from the six figures in Figure 1.9. In each 

figure, keeping other techniques the same, we compare if value-weighted portfolio and 

equal-weighted portfolio have the same CIRF. We could get three conclusions from these 

six figures. First, no matter which model we choose to estimate idiosyncratic volatility 

and which measure to construct the portfolio, the value-weighted portfolios always get 

higher returns than the equal-weighted portfolios do. Second, the portfolio constructing 

measure will affect the difference of returns between value-weighted portfolios and 

equal-weighted portfolios. And the more size portfolios we construct to calculate IRF, the 
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smaller the difference of factor portfolio returns will be. When refined measure two is 

applied, the return of value-weighted portfolio does not differ so much from the return of 

equal-weighted portfolio. Third, the models for estimating idiosyncratic volatility have 

nothing to do with the difference of returns between value-weighted portfolios and equal-

weighted portfolios. 

 

Last, keeping portfolio constructing measure and weighting scheme the same, we could 

tell how the two models for estimating idiosyncratic volatility differ from each other. We 

will give the analysis based on the six figures in Figure 1.10. In each figure, we compare 

if the EGARCH idiosyncratic volatility portfolio and the GJR-GARCH idiosyncratic 

volatility portfolio have the same CIRF when others are the same. And we could get two 

conclusions from these six figures. First, no matter which weighting scheme and which 

measure we apply to construct the portfolio, the EGARCH idiosyncratic volatility 

portfolios always get higher returns than the GJR-GARCH idiosyncratic volatility 

portfolios do. This finding is consistent with our previous finding from Fama-MacBeth 

regressions that the relation between stock returns and the GJR-GARCH idiosyncratic 

volatilities is more negative than the relation between stock returns and the EGARCH 

idiosyncratic volatilities. Second, both the weighting schemes and the portfolio 

constructing measures have nothing to do with the difference of returns between the 

EGARCH idiosyncratic volatility portfolios and the GJR-GARCH idiosyncratic volatility 

portfolios.  
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Table 1.10. Idiosyncratic Risk Factor calculated by value-weighted portfolios (EGARCH). 
 
This table reports Cumulative IRF and Monthly IRF when using value-weighted portfolios with 
idiosyncratic volatility estimated by the EGARCH(1,1) model. Panel A shows IRF calculated by Fama-
French measure (FF), i.e. two size portfolios and three idiosyncratic volatility portfolios. Panel B shows 
IRF calculated by refined measure one (R1), i.e. three size portfolios and three idiosyncratic volatility 
portfolios. Panel C shows IRF calculated by refined measure two (R2), i.e. five size portfolios and three 
idiosyncratic volatility portfolios. 
 

Panel A: Fama-French measure (2*3 portfolios) 

Bull market 
Cumulative 
IRF 

Monthly  
IRF Bear market 

Cumulative 
IRF 

Monthly  
IRF 

   194606-194906 -11.05 -0.30 

194907-196112 80.38 0.54 196201-196206 -13.30 -2.22 

196207-196811 178.79 2.32 196812-197006 -20.03 -1.05 

197007-197212 29.39 0.98 197301-197409 -2.07 -0.10 

197410-198011 246.52 3.33 198012-198207 -9.86 -0.49 

198208-198708 124.20 2.04 198709-198711 -6.67 -2.22 

198712-200008 510.28 3.34 200009-200209 -23.40 -0.94 

200210-200710 181.85 2.98 200711-200902 -9.19 -0.57 

200903-201012 123.75 5.63    

Total bull period 
1475.16 
(0.22) 2.35 Total bear period 

-95.57 
(0.51) -0.65 

Entire sample period 
1379.58 
(0.20) 1.78    

Panel B: Refined measure 1 (3*3 portfolios) 

Bull market 
Cumulative  
IRF 

Monthly  
IRF Bear market 

Cumulative 
IRF 

Monthly  
IRF 

   194606-194906 -5.72 -0.15 

194907-196112 76.72 0.51 196201-196206 -13.79 -2.30 

196207-196811 181.16 2.35 196812-197006 -16.53 -0.87 

197007-197212 35.00 1.17 197301-197409 2.08 0.10 

197410-198011 238.34 3.22 198012-198207 -13.09 -0.65 

198208-198708 134.75 2.21 198709-198711 -7.71 -2.57 

198712-200008 506.44 3.31 200009-200209 -22.55 -0.90 
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Table 1.10. Continued. 
 

Bull market 
Cumulative 
IRF 

Monthly 
IRF Bear market 

Cumulative 
IRF 

Monthly 
IRF 

200210-200710 173.47 2.84 200711-200902 -15.37 -0.96 

200903-201012 118.80 5.40    

Total bull period 
1464.68 
(0.21) 2.33 Total bear period 

-92.67 
(0.51) -0.63 

Entire sample period 
1372.01 
(0.20) 1.77    

Panel C: Refined measure 2 (5*3 portfolios) 

Bull market 
Cumulative  
IRF 

Monthly  
IRF Bear market 

Cumulative  
IRF 

Monthly  
IRF 

   194606-194906 -6.15 -0.17 

194907-196112 87.61 0.58 196201-196206 -13.12 -2.19 

196207-196811 178.59 2.32 196812-197006 -13.54 -0.71 

197007-197212 36.14 1.20 197301-197409 3.69 0.18 

197410-198011 235.07 3.18 198012-198207 -13.71 -0.69 

198208-198708 140.07 2.30 198709-198711 -9.19 -3.06 

198712-200008 503.85 3.29 200009-200209 -23.58 -0.94 

200210-200710 171.48 2.81 200711-200902 -16.77 -1.05 

200903-201012 119.87 5.45    

Total bull period 
1472.69 
(0.21) 2.35 Total bear period 

-92.36 
(0.50) -0.63 

Entire sample period 
1380.32 
(0.20) 1.78    
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Table 1.11. Idiosyncratic Risk factor calculated by equal-weighted portfolios (EGARCH). 
 
This table reports Cumulative IRF and Monthly IRF when using equal-weighted portfolios with 
idiosyncratic volatility estimated by the EGARCH(1,1) model. Panel A shows IRF calculated by Fama-
French measure (FF), i.e. two size portfolios and three idiosyncratic volatility portfolios. Panel B shows 
IRF calculated by refined measure one (R1), i.e. three size portfolios and three idiosyncratic volatility 
portfolios. Panel C shows IRF calculated by refined measure two (R2), i.e. five size portfolios and three 
idiosyncratic volatility portfolios. 
 

Panel A: Fama-French measure (2*3 portfolios) 

Bull market 
Cumulative 
IRF 

Monthly 
IRF Bear market 

Cumulative 
IRF 

Monthly 
IRF 

   194606-194906 -13.20 -0.36 

194907-196112 73.92 0.49 196201-196206 -12.91 -2.15 

196207-196811 158.01 2.05 196812-197006 -18.89 -0.99 

197007-197212 26.67 0.89 197301-197409 -3.32 -0.16 

197410-198011 199.07 2.69 198012-198207 -20.02 -1.00 

198208-198708 114.41 1.88 198709-198711 -12.25 -4.08 

198712-200008 402.22 2.63 200009-200209 -31.50 -1.26 

200210-200710 147.32 2.42 200711-200902 -23.84 -1.49 

200903-201012 110.53 5.02    

Total bull period 
1232.16 
(0.21) 1.96 Total bear period 

-135.94 
(0.52) -0.92 

Entire sample period 
1096.22 
(0.20) 1.41    

Panel B: Refined measure 1 (3*3 portfolios) 

Bull market 
Cumulative 
IRF 

Monthly 
IRF Bear market 

Cumulative 
IRF 

Monthly 
IRF 

   194606-194906 -8.26 -0.22 

194907-196112 79.91 0.53 196201-196206 -12.57 -2.09 

196207-196811 167.93 2.18 196812-197006 -15.71 -0.83 

197007-197212 33.54 1.12 197301-197409 0.28 0.01 

197410-198011 210.92 2.85 198012-198207 -18.69 -0.93 

198208-198708 127.74 2.09 198709-198711 -11.44 -3.81 

198712-200008 453.40 2.96 200009-200209 -31.86 -1.27 
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Table 1.11. Continued. 
 

Bull market 
Cumulative 
IRF Monthly IRF Bear market 

Cumulative 
IRF 

Monthly 
IRF 

200210-200710 150.65 2.47 200711-200902 -22.32 -1.40 

200903-201012 111.76 5.08    

Total bull period 
1335.84 
(0.21) 2.13 Total bear period 

-120.57 
(0.51) -0.82 

Entire sample period 
1215.27 
(0.20) 1.57    

Panel C: Refined measure 2 (5*3 portfolios) 

Bull market 
Cumulative 
IRF 

Monthly 
IRF Bear market 

Cumulative 
IRF 

Monthly 
IRF 

   194606-194906 -5.42 -0.15 

194907-196112 85.37 0.57 196201-196206 -13.72 -2.29 

196207-196811 172.33 2.24 196812-197006 -10.60 -0.56 

197007-197212 35.70 1.19 197301-197409 3.93 0.19 

197410-198011 227.05 3.07 198012-198207 -17.58 -0.88 

198208-198708 133.44 2.19 198709-198711 -10.19 -3.40 

198712-200008 476.98 3.12 200009-200209 -27.01 -1.08 

200210-200710 157.76 2.59 200711-200902 -18.77 -1.17 

200903-201012 114.58 5.21    

Total bull period 
1403.20 
(0.21) 2.23 Total bear period 

-99.35 
(0.51) -0.68 

Entire sample period 
1303.85 
(0.20) 
(0 20) 

1.68    
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Table 1.12. Idiosyncratic Risk factor calculated by value-weighted portfolios (GJR-GARCH). 
 
This table reports Cumulative IRF and Monthly IRF when using value-weighted portfolios with 
idiosyncratic volatility estimated by the GJR-GARCH(1,1) model. Panel A shows IRF calculated by Fama-
French measure (FF), i.e. two size portfolios and three idiosyncratic volatility portfolios. Panel B shows 
IRF calculated by refined measure one (R1), i.e. three size portfolios and three idiosyncratic volatility 
portfolios. Panel C shows IRF calculated by refined measure two (R2), i.e. five size portfolios and three 
idiosyncratic volatility portfolios. 
 

Panel A: Fama-French measure (2*3 portfolios) 

Bull market 
Cumulative 
IRF 

Monthly  
IRF Bear market 

Cumulative 
IRF 

Monthly  
IRF 

   194606-194906 -15.03 -0.41 

194907-196112 71.23 0.47 196201-196206 -13.2 -2.20 

196207-196811 156.86 2.04 196812-197006 -24.22 -1.27 

197007-197212 22.6 0.75 197301-197409 -2.87 -0.14 

197410-198011 215.52 2.91 198012-198207 -17.64 -0.88 

198208-198708 83.18 1.36 198709-198711 -10.1 -3.37 

198712-200008 425.19 2.78 200009-200209 -26.7 -1.07 

200210-200710 171.88 2.82 200711-200902 -15.81 -0.99 

200903-201012 121.45 5.52    

Total bull period 
1267.90 
(0.22) 2.02 Total bear period 

-125.58 
(0.52) -0.85 

Entire sample period 
1142.32 
(0.21) 1.47    

Panel B: Refined measure 1 (3*3 portfolios) 

Bull market 
Cumulative  
IRF 

Monthly  
IRF Bear market 

Cumulative 
IRF 

Monthly  
IRF 

   194606-194906 -10.15 -0.27 

194907-196112 71.1 0.47 196201-196206 -14.09 -2.35 

196207-196811 157.52 2.05 196812-197006 -22.09 -1.16 

197007-197212 26.47 0.88 197301-197409 -3.05 -0.15 

197410-198011 205.04 2.77 198012-198207 -18.68 -0.93 

198208-198708 87.1 1.43 198709-198711 -11.72 -3.91 

198712-200008 414.4 2.71 200009-200209 -28.43 -1.14 
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Table 1.12. Continued. 
 

Bull market 
Cumulative  
IRF 

Monthly  
IRF Bear market 

Cumulative 
IRF 

Monthly  
IRF 

200210-200710 162.92 2.67 200711-200902 -21.66 -1.35 

200903-201012 115.91 5.27    

Total bull period 
1240.46 
(0.21) 1.98 Total bear period 

-129.88 
(0.51) -0.88 

Entire sample period 
1110.59 
(0.20) 1.43    

Panel C: Refined measure 2 (5*3 portfolios) 

Bull market 
Cumulative  
IRF 

Monthly  
IRF Bear market 

Cumulative  
IRF 

Monthly  
IRF 

   194606-194906 -11.64 -0.31 

194907-196112 79.03 0.53 196201-196206 -13.14 -2.19 

196207-196811 151.95 1.97 196812-197006 -19.41 -1.02 

197007-197212 29.49 0.98 197301-197409 -3.74 -0.18 

197410-198011 198.89 2.69 198012-198207 -20.43 -1.02 

198208-198708 90.97 1.49 198709-198711 -13.23 -4.41 

198712-200008 408.96 2.67 200009-200209 -34.63 -1.39 

200210-200710 159.33 2.61 200711-200902 -23.28 -1.46 

200903-201012 116.47 5.29    

Total bull period 
1235.09 
(0.21) 1.97 Total bear period 

-139.49 
(0.51) -0.95 

Entire sample period 
1095.60 
(0.20) 1.41    
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Table 1.13. Idiosyncratic Risk factor calculated by equal-weighted portfolios (GJR-GARCH). 
 
This table reports Cumulative IRF and Monthly IRF when using equal-weighted portfolios with 
idiosyncratic volatility estimated by the GJR-GARCH(1,1) model. Panel A shows IRF calculated by Fama-
French measure (FF), i.e. two size portfolios and three idiosyncratic volatility portfolios. Panel B shows 
IRF calculated by refined measure one (R1), i.e. three size portfolios and three idiosyncratic volatility 
portfolios. Panel C shows IRF calculated by refined measure two (R2), i.e. five size portfolios and three 
idiosyncratic volatility portfolios. 
 

Panel A: Fama-French measure (2*3 portfolios) 

Bull market 
Cumulative 
IRF 

Monthly 
IRF Bear market 

Cumulative 
IRF 

Monthly 
IRF 

   194606-194906 -20.29 -0.55 

194907-196112 62.88 0.42 196201-196206 -13.68 -2.28 

196207-196811 133.85 1.74 196812-197006 -24.58 -1.29 

197007-197212 20.22 0.67 197301-197409 -10.17 -0.48 

197410-198011 181.65 2.45 198012-198207 -26.46 -1.32 

198208-198708 58.44 0.96 198709-198711 -16.00 -5.33 

198712-200008 302.66 1.98 200009-200209 -48.37 -1.93 

200210-200710 132.49 2.17 200711-200902 -30.70 -1.92 

200903-201012 105.21 4.78    

Total bull period 
997.41 
(0.21) 1.59 Total bear period 

-190.24 
(0.52) -1.29 

Entire sample period 
807.17 
(0.20) 1.04    

Panel B: Refined measure 1 (3*3 portfolios) 

Bull market 
Cumulative 
IRF 

Monthly 
IRF Bear market 

Cumulative 
IRF 

Monthly 
IRF 

   194606-194906 -13.11 -0.35 

194907-196112 72.58 0.48 196201-196206 -13.44 -2.24 

196207-196811 145.43 1.89 196812-197006 -20.32 -1.07 

197007-197212 26.78 0.89 197301-197409 -6.03 -0.29 

197410-198011 188.31 2.54 198012-198207 -25.35 -1.27 

198208-198708 68.98 1.13 198709-198711 -15.76 -5.25 

198712-200008 352.26 2.30 200009-200209 -47.49 -1.90 
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Table 1.13. Continued. 
 

Bull market 
Cumulative 
IRF 

Monthly 
IRF Bear market 

Cumulative 
IRF 

Monthly 
IRF 

200210-200710 136.24 2.23 200711-200902 -28.94 -1.81 

200903-201012 106.37 4.84    

Total bull period 
1096.95 
(0.21) 1.75 Total bear period 

-170.44 
(0.51) -1.16 

Entire sample period 
926.51 
(0.20) 1.20    

Panel C: Refined measure 2 (5*3 portfolios) 

Bull market 
Cumulative 
IRF 

Monthly 
IRF Bear market 

Cumulative 
IRF 

Monthly 
IRF 

   194606-194906 -10.37 -0.28 

194907-196112 79.54 0.53 196201-196206 -14.11 -2.35 

196207-196811 149.56 1.94 196812-197006 -18.19 -0.96 

197007-197212 30.83 1.03 197301-197409 -3.85 -0.18 

197410-198011 195.47 2.64 198012-198207 -25.02 -1.25 

198208-198708 77.87 1.28 198709-198711 -14.81 -4.94 

198712-200008 376.44 2.46 200009-200209 -43.51 -1.74 

200210-200710 143.75 2.36 200711-200902 -25.84 -1.62 

200903-201012 109.49 4.98    

Total bull period 
1162.95 
(0.21) 1.85 Total bear period 

-155.70 
(0.51) -1.06 

Entire sample period 
1007.25 
(0.20) 
(0 20) 

1.30    
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Figure 1.7. Cumulative Idiosyncratic Risk Factor. 

This figure shows Cumulative Idiosyncratic Risk Factor (CIRF) by all constructing measures (FF measure, 

R1 measure and R2 measure), weighting schemes (value-weighted and equal-weighted), and models of 

estimating idiosyncratic volatility (the EGARCH model and the GJR-GARCH model). Shaded areas stand 

for bear market periods. 
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Figure 1.8. Comparison of CIRF by different factor constructing measures. 

This figure compares how the three portfolio constructing measures differ when weighting scheme and 

model for estimating idiosyncratic volatility keeps the same. Shaded areas stand for bear market periods.  
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Figure 1.9. Comparison of CIRF by different weighting schemes. 

This figure compares how the two weighting schemes differ when portfolio constructing measure and 

model for estimating idiosyncratic volatility keeps the same. Shaded areas stand for bear market periods.  
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Figure 1.10. Comparison of CIRF by different models of estimating idiosyncratic volatility. 

This figure compares how the two models for estimating idiosyncratic volatility differ when portfolio 

constructing measure and weighting scheme keeps the same. Shaded areas stand for bear market periods. 
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1.5. Conclusions 

 

We examine the empirical relation between idiosyncratic volatility and expected stock 

returns. The literature such as Ang, Hodrick, Xing, and Zhang (2006) and others finds 

that monthly stock returns are negatively related to idiosyncratic volatilities; Fu (2009) 

and others find that the idiosyncratic volatilities are positively related to expected returns; 

Bali and Cakici (2008) and others report no relation between expected returns and 

idiosyncratic risk. We show that the relation between idiosyncratic volatilities and stock 

returns varies over time. Specifically, we find strong evidence that idiosyncratic risk is 

priced differently across bull and bear markets. We conclude that idiosyncratic risk is 

priced in bull markets but is not priced in bear markets. As an example, for bull markets 

during the sample period, a factor portfolio long on stocks with high idiosyncratic 

volatility and short on stocks with low idiosyncratic volatility yields an equal-weighted 

monthly return of 1.59% with a standard deviation of 0.21%. For bear markets the 

average monthly return is -1.29% with a standard deviation of 0.52%. These empirical 

evidences support the hypothesis that investors hold less diversified portfolios during bull 

market and tend to hold more diversified portfolios during bear market.  

 

The importance of our findings lies in viewing the relation between idiosyncratic risk and 

expected returns under different stock market conditions. The previous literature may be 

neglecting the importance of the impact of market conditions on the relation between 
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idiosyncratic risk and expected returns. Our analysis not only shows that market 

condition does matter in determining the risk-return relation, but also gives the direction 

of the relationship in bull and bear markets separately.  

 

We find that only less than one-fifth of our sample period is in a bear market period, and 

more than four-fifths is in a bull market period. The fact that bull market periods 

dominate the whole sample period can explain why the literature doesn’t find our results. 

Since our results for a bull market period report a positive relation between idiosyncratic 

volatility and expected stock returns, our findings are consistent with those literatures that 

also use monthly data and report a positive relationship. 

 

We also find that the idiosyncratic risk factor supersedes the size factor. After controlling 

for estimated idiosyncratic volatility, “size effect” is no longer significant. Merton (1987) 

explicitly points out that the findings of the “size effect” are due to the omitted controls 

for other factors such as idiosyncratic risk and investor base. Our test results lend direct 

support to Merton’s prediction in this point by showing that after controlling for 

idiosyncratic risk there does no longer exist any size effect. 

 

Finally, we construct an Idiosyncratic Risk Factor (IRF) to see if idiosyncratic risk is 

priced or not. We could definitely conclude that idiosyncratic risk is priced in bull market 

periods but not in bear market periods from the IRF distribution. We also find that the 

EGARCH idiosyncratic volatility portfolios always get higher returns than the GJR-

GARCH idiosyncratic volatility portfolios. The value-weighted portfolios always get 
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higher returns than the equal-weighted portfolios. And the more size portfolios we 

construct to calculate IRF, the higher factor portfolio return we will get. So in summary, 

the factor portfolios constructed using value-weighted weighting scheme with the 

EGARCH idiosyncratic volatility bring the highest returns, while the lowest returns are 

from the factor portfolios constructed using equal-weighted weighting scheme with the 

GJR-GARCH idiosyncratic volatility. 

 

To sum up again, all the IRF results, together with the Fama-MacBeth regression results, 

prove our finding that idiosyncratic risk is priced in bull market periods but is not priced 

in bear market periods. At the same time, they support our hypothesis that investors are 

rewarded for betting on individual stocks during bull markets and holding more 

diversified portfolios during bear markets, and confirm Merton’s (1987) prediction that 

idiosyncratic risk should be priced when investors do not diversify their portfolio. 
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Chapter 2  
 
 

The Role of Limits to Arbitrage in the Liquidity Anomaly 
 

 

 

2.1. Introduction 

 

Most of the studies that investigate liquidity and asset prices, often make the argument 

that stocks with low liquidity level, measured by bid-ask spreads, dollar volume, etc., 

earn higher expected returns. Amihud and Mendelson (1986) first found that low 

liquidity investments are expected to produce higher returns for their holders. Theoretical 

work by Merton (1987) indicates that liquidity should be priced by the market.7

                                                           
7 Merton’s (1987) paper does not directly derive any results pertaining to liquidity. However, by 
differentiating the stock price with respect to its supply, Spiegel and Wang (2007) generated such results 
and included the process in their paper. 

 After that, 

Amihud and Mendelson (1989), Brennan and Subrahmanyam (1996), Brennan, Chordia, 

and Subrahmanyam (1998), Chordia, Subrahmanyam, and Anshuman (2001), Amihud 

(2002), Easley, Hvidkjaer, and O’Hara (2002), Pastor and Stambaugh (2003), Acharya 

and Pedersen (2004), Baker and Stein (2004), and Hasbrouck (2005), among others, 

using different liquidity proxies, have all confirmed that stocks with low liquidity earn 
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higher subsequent risk-adjusted returns. This phenomenon is often referred to as the 

liquidity anomaly. 

 

However, there are few papers discussing the reason for why the liquidity anomaly is not 

arbitraged away. I argue that the reason is the limits to arbitrage. There is a growing 

literature that examines the impact of the limits to arbitrage (Shleifer and Vishny (1997)) 

for the cross-section of stock returns. Several studies have examined the limits to 

arbitrage argument in the case of individual anomaly (e.g., Ali, Hwang and Trombley 

(2003) for book-to-market effect, Mendehall (2004) for post-earnings-announcement drift, 

Zhang (2006) for momentum effect, and Wei and Zhang (2007) for value-to-price 

anomaly). In this paper, I am trying to examine if the limits to arbitrage argument can 

explain the liquidity anomaly documented by Amihud and Mendelson (1986).  

 

The literature on the limits to arbitrage initiated by Shleifer and Vishny (1997) argues 

that the arbitrage is risky and costly, and hence implementable arbitrage opportunities are 

limited. According to Lam and Wei (2011), since the difficulty to arbitrage varies across 

stocks, information should be more quickly included in the prices of stocks that are easier 

to arbitrage than in those that are not easy to arbitrage. Similarly, errors in stock prices 

due to biased expectations on future profitability should be corrected more quickly for 

stocks that are easy to arbitrage than for stocks that are difficult to arbitrage. Although 

arbitrageurs may trade against the mispricing, the correction of mispricing will take 

longer when the limits to arbitrage are more severe. In brief, the limits to arbitrage hinder 

relevant information from being included in stock prices and prevent incorrect 
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information from being removed from stock prices. On the other hand, “Liquidity in the 

stock market, for example, thrives on differences of opinion about the value of a firm; 

information fuels the debate.”8

 

 Therefore, in the sense that stocks with lower liquidity are 

harder to arbitrage, if liquidity is priced by the stock market, i.e. liquidity anomaly does 

exist, then the limits to arbitrage will conduce to the liquidity anomaly by means of 

information delay.  

My main hypothesis is that if the over-performance of the stocks of low liquidity is due to 

the limits to arbitrage, then the over-performance should be greater when the arbitrage is 

more difficult to implement. In other words, the liquidity anomaly should be more 

pronounced among stocks with more severity of the limits to arbitrage. Furthermore, 

when the arbitrage is considerably easy to implement, the liquidity anomaly should be 

substantially reduced or even disappeared.  

 

In this paper, I measure the limits to arbitrage using idiosyncratic risk since the 

idiosyncratic risk deters arbitrage activity. Idiosyncratic risk is proposed as a limit to 

arbitrage in several papers. Shleifer and Vishny (1997) argue that idiosyncratic risk is a 

large cost for risk-averse arbitrageurs who cannot hedge the idiosyncratic risk of 

individual stocks. Barberis and Thaler (2003) survey the literature and identify three 

sources of arbitrage costs: idiosyncratic risk, noise trader momentum risk, and 

implementation costs. They also explain idiosyncratic risk as a deterrent to arbitrage. 

Pontiff (2006) argues that idiosyncratic risk is the single largest impediment to market 
                                                           
8 "Full disclosure; Economics focus." The Economist [US] 21 Feb. 2009: 75EU. 
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efficiency as it imposes a significant holding cost for arbitrageurs. He shows that 

idiosyncratic risk affects arbitrage activity even if arbitrageurs have access to a 

diversified portfolio and a large number of available arbitrage projects. He proves that 

risk-averse arbitrageurs will assign smaller portfolio weights to stocks with higher 

idiosyncratic risk. Cao and Han (2011) claim that trading and holding costs create the 

limits to arbitrage and idiosyncratic risk is the most common proxy for holding cost. 

Following Pontiff (1996), Wurgler and Zhuravskaya (2002), and Mashruwala, Rajgopal, 

and Shevlin (2006), I will use idiosyncratic stock return volatility (Ivol) to proxy for 

idiosyncratic risk. For robustness, I will also apply the number of institutional 

shareholders (Inst) as a measure of shareholder sophistication and the number of analysts 

following a stock (Analyst) as a measure of information uncertainty, since shareholder 

sophistication and information uncertainty may also influence the risk of arbitrage.  

 

A perfectly liquid market is one where any amount of a given security can be 

instantaneously converted to cash and back to securities at no cost. In a less than perfect 

world, a liquid market is one where the transaction costs associated with this conversion 

are minimised (Harris (1990)). While relatively easy to define, liquidity has proved to be 

difficult to measure. The previous literature offers a wide variety of measurement proxies 

for liquidity. Aitken and Winn (1997) report that there are some 68 extant measures used 

in the literature suggesting that there is little agreement on the best measure to use. In this 

paper, I will employ the most commonly used proxy for liquidity, the Amihud (2002) 

measure. 
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Amihud (2002) develops a price impact measure that captures the “daily price response 

associated with one dollar of trading volume.” The measure introduced by Amihud (2002) 

is defined as the monthly average of absolute value of return divided by dollar volume 

every day. Acharya and Pedersen (2004) employ the liquidity measure of Amihud (2002) 

to show that expected stock returns are a function of several terms: first, expected stock 

illiquidity and second, some covariances between stock return, stock illiquidity, market 

return, and market illiquidity. Sadka (2006) extends the literature on liquidity risk and 

argues that the measure of Amihud (2002) seems the most correlated with price impacts, 

among the alternative measures examined in his paper. Spiegel and Wang (2007) claim 

that when dollar volume is excluded from the analysis Amihud’s (2002) measure does 

provide out of sample explanatory power for cross sectional stock returns. Goyenko, 

Holden, and Trzcinka (2009) conclude that the widely used Amihud (2002) measure 

consistently wins a majority of the effective/realized spread horseraces and hence is 

clearly a good proxy for price impact. 

 

For robustness, another two measures of liquidity that will be used are turnover ratio and 

bid-ask spread. Turnover is the ratio of trading volume to the number of shares 

outstanding. By Amihud and Mendelson (1986), turnover is negatively related to 

illiquidity costs, and Atkins and Dyl (1997) found a strong positive relationship across 

stocks between the bid-ask spread and the reciprocal of the turnover ratio that measures 

holding period. A number of studies find that cross-sectionally, stock returns are 

decreasing in stock turnover, which is consistent with a negative relationship between 

liquidity and expected return (Haugen and Baker (1996), Datar et al. (1998), Hu (1997), 
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Rouwenhorst (1998), Chordia et al. (2001)). The turnover ratio is also the measure used 

by the International Federation of Stock Exchanges (FIBV) to compare liquidity across 

exchanges. 

 

The analysis of my data from 1968 to 2010 shows that the liquidity anomaly is stronger 

when there are more severe limits to arbitrage. In addition, the return spread between low 

and high liquidity stocks is mostly driven by the underperformance of high liquidity 

stocks. Moreover, the anomaly is very weak among stocks that have low arbitrage risk. 

The positive relation between the limits to arbitrage and the liquidity anomaly remains 

significant even after controlling for conventional factor risks or firm-characteristics 

exposures. I further exclude the possibilities that my results are driven by liquidity risk 

and conclude that the limits to arbitrage help explaining why the liquidity anomaly is not 

arbitraged away. 

 

In this paper, I contribute to the expanding liquidity literature by conducting empirical 

tests to see whether or not the relations between liquidity and stock returns are related to 

the limits to arbitrage. My findings are important for the following reasons. First, I 

provide evidence that supports the main hypothesis that the over-performance of low 

liquidity stocks is more profound when the limits to arbitrage are more severe. I also find 

that the ease of limits to arbitrage drives away the liquidity anomaly especially when I 

use turnover ratio and bid-ask spread as proxies for liquidity. My findings support the 

main hypothesis and establish the limits to arbitrage as an important reason that the 

liquidity anomaly persists. 



86 
 

 

 

Second, most measures of the limits to arbitrage in the existing literature are associated 

with risks, especially systematic liquidity risk. Therefore, any attempt to use the limits to 

arbitrage argument to explain asset pricing anomalies are suspected to suffer from the 

multiple joint hypothesis problems since the limits to arbitrage may also proxy for the 

exposure to liquidity risk. My results clear up this suspicion, at least, in the case of the 

liquidity anomaly. I find that the connection between the liquidity risk exposure of the 

liquidity anomaly and the severity of the limits to arbitrage is not obvious. These findings 

help to resolve the disagreement in interpreting the results in existing studies that also use 

the limits to arbitrage argument to explain asset pricing anomalies. 

 

Third, although literature claims that the impact of idiosyncratic risk can eliminate 

liquidity’s explanatory power in stock returns, I further suggest that the limits to arbitrage, 

other than idiosyncratic risk itself, are the reason why the liquidity anomaly is not 

arbitraged away. Liquidity and idiosyncratic risk are usually allowed to compete as 

explanatory factors in cross sectional returns. For example, Spiegel and Wang (2007) find 

that while both liquidity and idiosyncratic risk play a role in determining stock returns, 

the impact of idiosyncratic risk is much stronger and often eliminates liquidity’s 

explanatory power. However, my study addresses that it is not the idiosyncratic risk, but 

the limits to arbitrage, which fades the liquidity’s explanatory power of stock returns.  

 

The remainder of this paper proceeds as follows. The next section develops the 

hypotheses and describes the measures of variables and the data used. Section 2.3 
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investigates the role of the limits to arbitrage in the liquidity anomaly based on portfolio 

analysis. Section 2.4 examines the relationship between the limits to arbitrage and the 

liquidity anomaly using regression analysis to control for exposures to firm 

characteristics. Section 2.5 contains several robustness tests. Section 2.6 concludes the 

paper. 

 

 

 

2.2. Empirical approach 

 

2.2.1. Hypotheses 

 

In this paper, I attempt to dig out the reason for why the liquidity anomaly is not 

arbitraged away. I argue that the reason is the limits to arbitrage. As I discussed before, in 

the sense that stocks with lower liquidity are harder to arbitrage, if liquidity is priced by 

the stock market, i.e. liquidity anomaly does exist, then the limits to arbitrage will 

conduce to the liquidity anomaly by means of information delay. Therefore, my main 

hypothesis is that if the over-performance of the stocks of low liquidity is due to the 

limits to arbitrage, then the over-performance should be more pronounced when there are 

more severe limits to arbitrage. I further wonder that although the limits to arbitrage can 

help to explain why the liquidity anomaly is not arbitraged away, if the limits to arbitrage 

fully eliminate the existence of the liquidity anomaly. Therefore, I would like to know 
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when arbitrage is very easy to implement, if the over-performance of the stocks of low 

liquidity is reduced significantly or even disappeared. The above discussion leads to my 

first hypothesis. 

 

Hypothesis 1: The liquidity anomaly (i.e., negative relationship between liquidity and 

stock returns) should be more pronounced when there are more severe limits to arbitrage. 

The relationship between liquidity and subsequent stock returns should be insignificant 

when the limits to arbitrage are very low. 

 

As suggested, more severity of the limits to arbitrage is associated with lower liquidity, 

which means that stocks with more severe limits to arbitrage have higher exposure to 

liquidity risk. If my empirical test results support the Hypotheses 1, my next question is: 

is the positive relationship between the liquidity anomaly and the severity of the limits to 

arbitrage caused by the liquidity risk or by the liquidity per se.? This question will lead to 

my second hypothesis: 

 

Hypothesis 2: The positive relationship between the limits to arbitrage and the liquidity 

anomaly is not due to the liquidity risk. 

 

2.2.2. Measures of variables 

 

In this paper, I measure the limits to arbitrage using idiosyncratic risk since the 

idiosyncratic risk deters arbitrage activity. Idiosyncratic risk is proposed as a limit to 
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arbitrage in several papers as I introduced before. Following Pontiff (1996), Wurgler and 

Zhuravskaya (2002), and Mashruwala, Rajgopal, and Shevlin(2006), I will use 

idiosyncratic stock return volatility (Ivol) to proxy for idiosyncratic risk. 

 

Following Fu (2009), I use in-sample monthly data to calculate idiosyncratic volatility 

based on the three-factor Fama-French (1993) model. The explicit form is as follows.  

𝑹𝒊𝒕 − 𝒓𝒇𝒕 = 𝜶𝒊 + 𝜷𝒊�𝑹𝒎𝒕 − 𝒓𝒇𝒕� + 𝑺𝒊𝑺𝑴𝑩𝒕 + 𝒉𝒊𝑯𝑴𝑳𝒕 + 𝜺𝒊𝒕,  (2.1) 

𝜀𝑖𝑡~𝑁(0,𝜎𝑖𝑡2), 

where 𝑅𝑖𝑡  is the individual return. 𝑅𝑚𝑡 − 𝑟𝒇𝑡  is the excess return on a broad market 

portfolio. 𝑆𝑀𝐵𝑡  is the size factor – the difference of returns between a small stocks 

portfolio and a big stocks portfolio. 𝐻𝑀𝐿𝑡 is the value factor – the difference of returns 

between a high book-to-market stocks portfolio and a low book-to-market stocks 

portfolio. The residual 𝜀𝑖𝑡  is assumed to be normally distributed with mean zero and 

variance 𝜎𝑖𝑡2 . To get the idiosyncratic volatilities, my objective is to estimate 𝜎𝑖𝑡2 . I will 

employ an asymmetric GARCH (Generalized AutoRegressive Conditional 

Heteroskedasticity), the EGARCH(1,1) model, since EGARCH is the most widely used 

model for estimating the conditional volatility of returns. 9

𝒍𝒏𝝈𝒊𝒕𝟐 = 𝒂𝒊 + 𝒃𝒊𝒍𝒏𝝈𝒊,𝒕−𝟏𝟐 + 𝒄𝒊 �𝜽 �
𝜺𝒊,𝒕−𝟏
𝝈𝒊,𝒕−𝟏 

� + 𝜸 ��𝜺𝒊,𝒕−𝟏
𝝈𝒊,𝒕−𝟏

� − (𝟐 𝝅⁄ )𝟏/𝟐��,               (2.2) 

 The explicit form for the 

EGARCH(1,1) model is as follows: 

where εi,t−1 is the lagged residual and σi,t−12  is the lagged variance. 

                                                           
9 I also use the GJR-GARCH(1,1) model to estimate the idiosyncratic volatilities. The final results are very 
similar to those using EGARCH(1,1) model. 



90 
 

 

 

In the robustness section, I also apply two other proxies for the limits to arbitrage. 

Literature shows that shareholder sophistication and information uncertainty may also 

influence the risk of arbitrage. Following Chen et al. (2002), Ali et al. (2003), Bartov, 

Radhakrishnan, and Krinsky (2000), and Bhusan (1994), I use the number of institutional 

investors holding a firm’s shares (Inst) to proxy for shareholder sophistication. The other 

measure is analyst coverage (Analyst), defined as the number of analysts' estimates 

following a stock. Hong, Lim, and Stein (2000) show that more analyst coverage 

indicates lower information uncertainty. Therefore, I will use the number of analysts' 

estimates (Analyst) as a measure of information uncertainty. 

 

For the liquidity proxy, I will employ the most commonly used measure in the literature, 

the Amihud (2002) measure. Amihud (2002) develops a price impact measure that 

captures the “daily price response associated with one dollar of trading volume.” The 

measure introduced by Amihud (2002) is defined as the monthly average of absolute 

value of return divided by dollar volume every day and it proxies for illiquidity. 

Specifically, he uses the ratio:  

𝑨𝒎𝒊𝒉𝒖𝒅𝒊𝒎 = 𝟏
𝑫𝒊𝒎

∑ |𝑹𝒊𝒎𝒅|
𝑫𝒗𝒐𝒍𝒖𝒎𝒆𝒊𝒎𝒅

𝑫𝒊𝒎
𝒅=𝟏 ,                                       (2.3) 

where 𝑅𝑖𝑚𝑑  is the return of stock i on day d of month m. 𝐷𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑚𝑑  is the dollar 

volume of stock i on day d of month m. 𝐷𝑖𝑚 is the number of trading days of stock i in 

month m. The average is calculated over all positive volume days, since the ratio is 

undefined for zero volume days. 
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In the robustness section, another two measures of liquidity will be applied. Those are 

turnover ratio and bid-ask spread. Turnover is the ratio of trading volume to the number 

of shares outstanding. A number of studies find that cross-sectionally, stock returns are 

decreasing in stock turnover, which is consistent with a negative relationship between 

liquidity and expected return (Haugen and Baker (1996), Datar et al. (1998), Hu (1997), 

Rouwenhorst (1998), Chordia et al. (2001)). The turnover ratio is also the measure used 

by the International Federation of Stock Exchanges (FIBV) to compare liquidity across 

exchanges. Following Chordia, Subrahmanyam, and Anshuman (2001), in this paper, the 

turnover ratio is calculated by the average ratio of trading volume to the number of shares 

outstanding of the previous 36 months. 

𝑻𝒖𝒓𝒏𝒐𝒗𝒆𝒓𝒊𝒎 = 𝟏
𝟑𝟔
∑ 𝑽𝒐𝒍𝒖𝒎𝒆𝒊𝒕

𝑺𝒉𝒂𝒓𝒆𝒔𝒊𝒕
𝒎
𝒕=𝒎−𝟑𝟓 ,                                        (2.4) 

where 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑡 is the trading volume of stock i at time t and 𝑆ℎ𝑎𝑟𝑒𝑠𝑖𝑡 is the number of 

shares outstanding of stock i at time t.  

 

2.2.3. Data and variables 

 

For analyzing the relationship between the limits to arbitrage and the liquidity anomaly, I 

use monthly holding period stock data. For calculating the Amihud (2002) measure as a 

proxy of illiquidity, I use daily stock data. The data are obtained from the Center for 

Research in Security Prices (CRSP). I include stocks traded on the NYSE, AMEX, and 

NASDAQ during the period of January 1968 to December 2010. There are a total of 516 
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months in my sample. The monthly Fama-French three factors and momentum factor 

data are downloaded from Kenneth R. French’s Website. The value-weighted liquidity 

factor (LIQ) documented in Pastor and Stambaugh (2003) is downloaded from Wharton 

Research Data Services (WRDS). To avoid the inaccuracy of idiosyncratic volatility 

estimates caused by infrequent trading, I require a minimum of 30 trading months for 

each stock when CRSP reports a non-zero share volume. I also require a minimum of 15 

trading days in a month for calculating Amihud's illiquidity measure. 

 

In the robustness section, I use the number of institutional shareholders (Inst) as a 

measure of shareholder sophistication. The data are obtained from Thomson Reuters, 

with data availability beginning in March 1980. I also use the number of analysts' 

estimates following a stock (Analyst) as a measure of information uncertainty. The 

analyst coverage data are obtained from the I/B/E/S database, with data available 

beginning in January 1990. 

 

In this paper, I include several firm characteristic variables. R is the monthly raw return. 

R-r is the monthly excess return, where r stands for the one-month T-bill rate. Ivol is the 

idiosyncratic volatility estimated by the EGARCH(1,1) model. Firm size is measured by 

the market value of equity at the end of June of year t. BM is the book-to-market equity 

according to Fama and French (1993) at the end of fiscal year ending in calendar year t-1 

divided by the market value of equity at the end of December of year t-1. In order to 

catch the momentum effect, RET(-2,-7) is the compound gross return from month t-7 to 

month t-2. Amihud is the monthly average of absolute value of return divided by dollar 
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volume every day and it proxies for illiquidity. Turnover is the average ratio of trading 

volume to the number of shares outstanding of the previous 36 months as a proxy for 

liquidity. Mkt-r, SMB and HML are the Fama-French three factors while Mom and LIQ 

are the momentum factor and the liquidity factor, respectively.  

 

 

 

2.3. Portfolio analysis 

 

2.3.1. Summary statistics for portfolios formed on the Amihud measure  

 

In each month, I sort the liquidity proxies to form ten portfolios with an equal number of 

stocks. Each portfolio contains ten percent of stocks. Table 2.1 shows the summary 

statistics formed by Amihud (2002) measure. The second and the third row presents, 

respectively, the time-series means of the value-weighted and the equal-weighted 

portfolio returns. Other rows show the pooled means of variables within the particular 

portfolio.  

 

Low Amihud means high liquidity while high Amihud means low liquidity. It is clear 

that high liquidity stocks (Decile 1) have lower returns while low liquidity stocks (Decile 

10) have higher returns. The value-weighted portfolio returns increase from 1.18% for the 

highest liquidity portfolio to 2.09% for the lowest liquidity portfolio. A hedging portfolio 
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longing Portfolio 10 and shorting Portfolio 1 yields a statistically significant monthly 

return of 0.91%. The equal-weighted portfolio returns display a similar pattern, 

increasing from -0.24% for the highest liquidity portfolio to 1.79% for the lowest 

liquidity portfolio. This evidence confirms the negative relation between liquidity and 

individual stock returns, which means that the liquidity anomaly found by the literature 

does exist. High liquidity stocks also have larger market values of equity than do low 

liquidity stocks. This result is consistent with the portfolio analysis findings of Amihud 

(2002) and Spiegel and Wang (2007) that stocks with high liquidity level have larger 

capital sizes. Finally, compared to stocks of low liquidity, stocks of high liquidity have 

lower arbitrage risk, just as predicted by many theoretical models. This finding is also 

consistent with Spiegel and Wang (2007) who find that high idiosyncratic risk firms have 

low levels of liquidity.  

 

 

Table 2.1. Summary statistics for portfolios formed on liquidity.  

 
Each month ten portfolios are formed on liquidity. This table shows the summary statistics formed by 
Amihud (2002) measure. Each portfolio consists of 10% of stocks. The second and third row presents, 
respectively, the time-series means of the value-weighted and the equal-weighted portfolio returns. Other 
rows show the pooled means of variables within the particular portfolio.  
 

Portfolios formed on liquidity 

 
Low 2 3 4 5 6 7 8 9 High 

Amihud 0.00 0.01 0.03 0.06 0.12 0.23 0.46 1.00 2.65 31.45 
VWRET 1.18 1.57 1.79 1.90 1.90 2.02 2.12 2.13 2.02 2.09 
EWRET -0.24 0.44 0.82 1.01 1.11 1.36 1.52 1.65 1.64 1.79 
Ivol 9.83 10.59 11.05 11.63 12.38 13.11 14.08 15.56 19.31 29.84 
SIZE (Billion) 3.71 1.44 0.69 0.40 0.25 0.16 0.11 0.07 0.04 0.02 
BM 0.87 0.84 0.74 0.74 0.70 0.67 0.62 0.60 0.56 0.79 



95 
 

 
 

 

2.3.2. Calculating risk-adjusted portfolio returns 

 

To test the Hypothesis 1, i.e., the liquidity anomaly should be more pronounced when 

there are more severe limits to arbitrage, I sort stocks into liquidity quintiles and 

idiosyncratic stock return volatility (as a proxy for the limits to arbitrage) quintiles 

independently. I am interested in understanding how the return spreads between low-

liquidity and high-liquidity portfolios (Quintile 1 - Quintile 5) vary with the severity of 

the limits to arbitrage.  

 

To control for factor risks, I estimate the intercept (i.e., the risk-adjusted return) from the 

following four factor regression. The four factors will be the Fama and French (1993) 

three factors plus the Carhart (1997) momentum factor.  

𝐑𝐩 − 𝐫𝐟 = 𝛂𝐩 + 𝛃𝐩,𝐌𝐤𝐭𝐌𝐤𝐭+ 𝛃𝐩,𝐒𝐌𝐁𝐒𝐌𝐁 + 𝛃𝐩,𝐇𝐌𝐋𝐇𝐌𝐋 + 𝛃𝐩,𝐌𝐎𝐌𝐌𝐎𝐌+ 𝛆𝐩,         (2.5) 

where Rp is the raw return on portfolio p and rf is the risk-free rate. Mkt, SMB, HML, 

and MOM are returns on the market, size, book-to-market, and momentum factors, 

respectively.  

 

To test the Hypothesis 2, I reexamine the relationship between the severity of the limits to 

arbitrage and the return spreads between low-liquidity and high-liquidity portfolios 

controlling for the liquidity risk. To check whether the liquidity risk exposure drives my 

results, I still use the same portfolios formed by liquidity quintiles and the limits to 
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arbitrage quintiles and examine the liquidity-risk-adjusted returns of these portfolios. The 

liquidity-risk-adjusted returns are the estimates of the intercept from the following five 

factor regression: 

𝐑𝐩 − 𝐫𝐟 = 𝛂𝐩 + 𝛃𝐩,𝐌𝐤𝐭𝐌𝐤𝐭+ 𝛃𝐩,𝐒𝐌𝐁𝐒𝐌𝐁 + 𝛃𝐩,𝐇𝐌𝐋𝐇𝐌𝐋 + 𝛃𝐩,𝐌𝐎𝐌𝐌𝐎𝐌+ 𝛃𝐩,𝐋𝐈𝐐𝐋𝐈𝐐+ 𝛆𝐩,   

(2.6) 

where LIQ is the liquidity risk factor documented in Pastor and Stambaugh (2003). The 

value-weighted liquidity factor from January 1968 to December 2010 is downloaded 

from CRSP.  

 

2.3.3. Empirical results of Amihud as illiquidity measure and idiosyncratic risk as the 

limits to arbitrage measure 

 

First, to test the Hypothesis 1, i.e., the liquidity anomaly should be more pronounced 

when there are more severe limits to arbitrage, I sort stocks into Amihud (as a proxy for 

illiquidity) quintiles and idiosyncratic stock return volatility (as a proxy for the limits to 

arbitrage) quintiles independently, and calculate the equally-weighted and value-

weighted monthly raw stock returns for each portfolio. Amihud (2002) measure (Amihud) 

is the monthly average of absolute value of return divided by dollar volume every day 

and it proxies for illiquidity. Monthly idiosyncratic stock return volatility (Ivol) is 

estimated by Fama-French three-factor model and EGARCH(1,1) model and it proxies 

for arbitrage risk. The results are shown in Table 2.2 and the unit is percent. Panel A 
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shows the time series average of equally-weighted raw portfolio returns, while panel B 

shows the time series average of value-weighted raw portfolio returns. 

 

Table 2.2 shows some weak evidence that the average raw return spread between low-

liquidity and high-liquidity stocks increases with the limits to arbitrage. More specifically, 

in panel A, the stocks of low Amihud underperform and the underperformance is 

monotonically more pronounced when the arbitrage risk is higher, except for the stocks 

with the highest idiosyncratic risk. For example, the time-series equally-weighted raw 

return spread between high Amihud and low Amihud stocks increases from 1.0655% per 

month in the lowest arbitrage risk portfolio to 2.6475% in the highest arbitrage risk 

portfolio. Additionally, it seems that the arbitrage risk might be priced, since the stocks 

with high idiosyncratic risk have higher raw returns. This finding is consistent with 

Merton’s (1987) incomplete-information CAPM and the results documented by Carroll 

and Wei (1988), Spiegel and Wang (2005), and Fu (2009), but it is inconsistent with the 

findings of Ang, Hodrick, Xing, and Zhang (AHXZ thereafter) (2006, 2009) who find 

that stock returns are lower when idiosyncratic risk is higher.  

 

The results in panel B are similar. The stocks of low Amihud underperform and the 

underperformance is monotonically more pronounced when the arbitrage risk is higher, 

except for the stocks with the lowest idiosyncratic risk. For example, the time-series 

value-weighted raw return spread between high Amihud and low Amihud stocks 

increases from 1.1040% per month in the lowest arbitrage risk portfolio to 3.2301% in 

the highest arbitrage risk portfolio. However, I can hardly tell if the arbitrage risk is 
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priced or not from value-weighted raw portfolio returns, which is inconsistent with the 

prediction of the incomplete-information CAPM suggested by Merton (1987) and the 

results documented by Carroll and Wei (1988), Spiegel and Wang (2005) and Fu (2009), 

but it is weakly consistent with the empirical findings of AHXZ (2006, 2009). 

 

Table 2.3 reports monthly risk-adjusted portfolio returns sorted by Amihud (2002) 

measure as a proxy of illiquidity and idiosyncratic volatility as a proxy of the limits to 

arbitrage. Stocks are sorted into quintiles based on liquidity proxy and independently into 

quintiles by the limits to arbitrage proxy. The risk-adjusted portfolio return shown in the 

table is the estimated intercept αp from Equation (2.5). The results in Table 2.3 are very 

similar to those in Table 2.2. I observe that the liquidity anomaly is more profound as the 

arbitrage risk increases. For example, the risk-adjusted return spread between high 

Amihud and low Amihud portfolios increases from 1.2577% per month in the lowest 

arbitrage risk portfolio to 2.4904% in the highest arbitrage risk portfolio, which is a 

significant difference of 1.2327%. This evidence fully supports the Hypothesis 1. In 

addition, the return spread between low and high liquidity stocks is mostly driven by the 

underperformance of high liquidity stocks except for the highest arbitrage risk portfolio.  

 

Table 2.4 shows the liquidity-risk-adjusted stock returns of the same twenty-five 

portfolios. Panel A reports monthly liquidity-risk-adjusted portfolio returns and Panel B 

reports monthly portfolio liquidity-risk-factor loadings sorted by Amihud (2002) measure 

(Amihud) and the proxy of the limits to arbitrage (Ivol). The liquidity-risk-adjusted 
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portfolio return and the portfolio liquidity-risk-factor loading are the estimated intercept 

αp and the estimate of the slope coefficient βp,LIQ, respectively, from Equation (2.6). The 

results in Panel A are very similar to those in Table 2.3. I still observe that the liquidity 

anomaly is significantly more pronounced as the limits to arbitrage increase, even 

adjusted for the liquidity risk. For example, the liquidity-risk-adjusted return spread 

between low-liquidity and high-liquidity portfolios increases from 1.2461% per month in 

Ivol Quintile 1 to 2.5061% in Ivol Quintile 5, which is a significant difference of 1.26%. 

That is to say, the liquidity risk does not drive away the positive relationship between the 

limits to arbitrage and the liquidity anomaly. The evidence supports the Hypothesis 2. 
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Table 2.2. Raw Portfolio Returns by Amihud (2002) Measure and Idiosyncratic Volatility. 
 
This table reports the monthly raw portfolio returns sorted by Amihud (2002) measure as a proxy of 
liquidity and idiosyncratic volatility as a proxy of the limits to arbitrage. Stocks are sorted into quintiles 
based on liquidity proxy and independently into quintiles by the limits to arbitrage proxy. Amihud (2002) 
measure (Amihud) is the monthly average of absolute value of return divided by dollar volume every day 
and it proxies for illiquidity. Monthly idiosyncratic stock return volatility (Ivol) is estimated by the Fama-
French three-factor model and the EGARCH(1,1) model and it proxies for arbitrage risk. Panel A shows 
the time series average of equally-weighted raw portfolio returns, while panel B shows the time series 
average of value-weighted raw portfolio returns. The sample period is from January 1968 to December 
2010. 
 

Panel A: Equally-weighted raw portfolio returns 

            Amihud 
Ivol 

1(high Amihud / 
low liquidity) 2 3 4 5(low Amihud / 

high liquidity) 
Spread 
(1-5) 

1(low) 0.9345 0.7289 0.5099 0.3515 -0.1310 1.0655 

2  1.4330 1.3782 1.0095 0.6330 -0.4515 1.8845 

3 1.8417 1.6682 0.9794 0.4168 -0.9929 2.8346 

4 2.0746 1.9822 1.1239 0.2802 -1.3700 3.4446 

5(high)  4.0897 3.7921 3.2296 2.4923 1.4422 2.6475 

Panel B: Value-weighted raw portfolio returns 

            Amihud 
Ivol 

1(high Amihud / 
low liquidity) 2 3 4 5(low Amihud / 

high liquidity) 
Spread 
(1-5) 

1(low) 1.0004 0.8672 0.7003 0.4709 -0.1036 1.1040 

2  0.7498 1.1101 0.5630 0.4614 -0.1316 0.8814 

3 0.4248 0.9985 0.4684 0.0651 -0.8226 1.2474 

4 0.0575 0.3189 -0.2303 -0.8324 -2.1528 2.2103 

5(high)  1.2726 0.2450 -0.3069 -0.8959 -1.9575 3.2301 
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Table 2.3. Risk-adjusted Portfolio Returns by Amihud (2002) Measure and Idiosyncratic Volatility. 
 
This table reports the monthly risk-adjusted portfolio returns sorted by Amihud (2002) measure as a proxy 
of liquidity and idiosyncratic volatility as a proxy of the limits to arbitrage. Stocks are sorted into quintiles 
based on liquidity proxy and independently into quintiles by the limits to arbitrage proxy. Amihud (2002) 
measure (Amihud) is the monthly average of absolute value of return divided by dollar volume every day 
and it proxies for illiquidity. Monthly idiosyncratic stock return volatility (Ivol) is estimated by the Fama-
French three-factor model and the EGARCH(1,1) model and it proxies for arbitrage risk. The risk-adjusted 
portfolio return is the estimated intercept αp from the following regression: 

Rp − rf = αp + βp,MktMkt + βp,SMBSMB + βp,HMLHML + βp,MOMMOM + εp 
where Rp is the raw return on portfolio p and rf  is the risk-free rate. Mkt, SMB, HML, and MOM are 
returns on the market, size, book-to-market, and momentum factors, respectively. Factor returns and the 
risk-free rates are from Professor Kenneth French’s website. The numbers in parentheses are the t statistics. 
The sample period is from January 1968 to December 2010. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Risk-adjusted portfolio returns 

        Amihud 
Ivol 

1(high Amihud / 
low liquidity) 2 3 4 5(low Amihud / 

high liquidity) 
Spread 
(1-5) 

1(low) 0.1016* 
(7.24) 

0.0088 
(0.55) 

-0.1493* 
(-8.54) 

-0.2940* 
(-14.15) 

-1.1561* 
(-34.01) 

1.2577* 
(34.20) 

2 
 

0.3522* 
(16.71) 

0.1985* 
(8.16) 

-0.0870* 
(-3.21) 

-0.3876* 
(-13.45) 

-1.3372* 
(-35.49) 

1.6894* 
(39.14) 

3 0.7498* 
(21.26) 

0.4847* 
(14.39) 

-0.1489* 
(-4.27) 

-0.6449* 
(-17.84) 

-1.8582* 
(-45.44) 

2.6080* 
(48.30) 

4 1.0842* 
(18.17) 

0.8021* 
(16.11) 

0.0416 
(0.89) 

-0.7276* 
(-15.96) 

-2.3017* 
(-51.00) 

3.3859* 
(45.26) 

5(high) 3.1948* 
(30.87) 

2.7601* 
(21.69) 

2.4693* 
(28.44) 

1.7230* 
(20.78) 

0.7044* 
(9.33) 

2.4904* 
(19.44) 

5-1 
 

3.0932* 
(29.61) 

2.7513* 
(21.46) 

2.6186* 
(29.57) 

2.0170* 
(23.60) 

1.8605* 
(22.48) 

1.2327* 
(9.25) 
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Table 2.4. Liquidity-Risk-Adjusted Returns by Amihud (2002) Measure and Idiosyncratic Volatility. 
 
This table reports the monthly liquidity-risk-adjusted portfolio returns (Panel A) and the monthly portfolio 
liquidity-risk-factor loadings (Panel B) sorted by Amihud (2002) measure (Amihud) and the proxy of the 
limits to arbitrage (Ivol). Stocks are sorted into quintiles based on liquidity proxy and independently into 
quintiles by the limits to arbitrage proxy. Amihud (2002) measure (Amihud) is the monthly average of 
absolute value of return divided by dollar volume every day and it proxies for illiquidity. Monthly 
idiosyncratic stock return volatility (Ivol) is estimated by the Fama-French three-factor model and the 
EGARCH(1,1) model and it proxies for arbitrage risk. The liquidity-risk-adjusted portfolio return and the 
portfolio liquidity-risk-factor loading are the estimated intercept αp and the estimate of the slope coefficient 
βp,LIQ, respectively, from the following regression: 

Rp − rf = αp + βp,MktMkt + βp,SMBSMB + βp,HMLHML + βp,MOMMOM + βp,LIQLIQ + εp 
where Rp is the raw return on portfolio p and rf  is the risk-free rate. Mkt, SMB, HML, and MOM are 
returns on the market, size, book-to-market, and momentum factors, respectively, from Professor Kenneth 
French’s website. LIQ is the liquidity risk factor documented in Pastor and Stambaugh (2003). The value-
weighted liquidity risk factor is downloaded from CRSP. The numbers in parentheses are the t statistics. 
The sample period is from January 1968 to December 2010. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Panel A: Liquidity-risk-adjusted portfolio returns 
        Amihud 
Ivol 

1(high Amihud / 
low liquidity) 2 3 4 5(low Amihud / 

high liquidity) 
Spread 
(1-5) 

1(low) 0.0953* 
(6.74) 

0.0065 
(0.41) 

-0.1618* 
(-9.16) 

-0.3089* 
(-14.72) 

-1.1508* 
(-33.51) 

1.2461* 
(33.55) 

2 0.3573* 
(16.79) 

0.2059* 
(8.39) 

-0.0993* 
(-3.64) 

-0.3914* 
(-13.46) 

-1.3351* 
(-35.14) 

1.6924* 
(38.87) 

3 0.7533* 
(21.11) 

0.4860* 
(14.30) 

-0.1613* 
(-4.58) 

-0.6547* 
(-17.97) 

-1.8611* 
(-45.13) 

2.6144* 
(47.95) 

4 1.0753* 
(17.84) 

0.8152* 
(16.21) 

0.0233 
(0.50) 

-0.7388* 
(-16.08) 

-2.3277* 
(-51.15) 

3.4030* 
(45.06) 

5(high) 3.2042* 
(30.69) 

2.7211* 
(21.27) 

2.4621* 
(28.10) 

1.6814* 
(20.08) 

0.6981* 
(9.17) 

2.5061* 
(19.39) 

5-1 
 

3.1089* 
(29.51) 

2.7146* 
(21.05) 

2.6239* 
(29.35) 

1.9903* 
(23.06) 

1.8489* 
(22.13) 

1.2600* 
(9.37) 

Panel B: Portfolio liquidity-risk-factor loadings 

        Amihud 
Ivol 

1(high Amihud / 
low liquidity) 2 3 4 5(low Amihud / 

high liquidity) 
Spread 
(1-5) 

1(low) 1.3664* 
(3.51) 

0.6423 
(1.49) 

2.6539* 
(5.74) 

2.8982* 
(5.24) 

-0.9694 
(-1.05) 

2.3358** 
(2.34) 

2 -0.4302 
(-0.43) 

-1.3118** 
(-1.97) 

2.6340* 
(3.58) 

0.9495 
(1.22) 

-1.0414*** 
(-1.85) 

0.6112 
(0.53) 

3 0.7317 
(0.66) 

2.0413** 
(2.07) 

2.8772* 
(3.02) 

-0.4917 
(-0.54) 

-0.5820 
(-0.62) 

1.3137 
(0.91) 

4 5.2584* 
(4.34) 

2.1635*** 
(1.75) 

3.0768** 
(2.42) 

-2.7052** 
(-2.02) 

1.8970 
(1.20) 

3.3614*** 
(1.69) 

5(high) 8.6742* 
(2.59) 

6.9189* 
(3.08) 

0.9685 
(0.41) 

-1.9958 
(-0.72) 

0.8270 
(0.40) 

7.8472* 
(3.00) 

5-1 
 

7.3078** 
(2.16) 

6.2766* 
(2.74) 

-1.6854 
(-0.71) 

-4.8940*** 
(-1.74) 

1.7964 
(0.80) 

5.5114** 
(2.36) 
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2.4. Regression analysis 

 

2.4.1. The regression models 

 

In this section, I will test my hypotheses while controlling for several important firm 

characteristic exposures. My multivariate regression tests are based on the following 

Fama-Macbeth (1973) type regressions:  

𝐑𝐭 = 𝛃𝟎 + 𝛃𝟏𝐀𝐦𝐢𝐡𝐮𝐝𝐭−𝟏 + 𝛃𝟐𝐈𝐯𝐨𝐥𝐭 + 𝛃𝟑𝐀𝐦𝐢𝐡𝐮𝐝𝐭−𝟏 × 𝐈𝐯𝐨𝐥𝐭 + 𝛃𝐣𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐬 + 𝛆𝐭,      (2.7) 

where Rt is the monthly raw stock return. Amihudt−1 is the Amihud (2002) measure, the 

monthly average of absolute value of return divided by dollar volume every day, and it 

proxies for illiquidity. Ivolt is the monthly idiosyncratic stock return volatility estimated 

by Fama-French three-factor model and EGARCH(1,1) model and it proxies for arbitrage 

risk. Controls are SIZE, BM, and RET(-2,-7), which control for firm characteristics. SIZE 

is the market value of equity at the end of June of year t. Book-to-market equity (BM) is 

the book value of equity according to Fama and French (1993) at the end of fiscal year 

ending in calendar year t−1 divided by the market value of equity at the end of December 

of year t−1. RET( -2,-7) is the compound gross return from month t-7 to month t-2. I will 

give all the coefficients by calculating the time series average of the monthly cross-

sectional slope estimates and the t-statistic by calculating the average slope over Newey-

West (1987) standard error.  
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The coefficient of interest in this case is the coefficient on the interaction term β3. My 

hypothesis predicts that β3 is positive. In other words, I posit that the severity of the limits 

to arbitrage aggravates the negative effect of liquidity on future stock returns. If the 

Hypothesis 1 is true, I also expect that the slope β1 , i.e., the liquidity effect, to be 

insignificant after I include the interaction term in the regressions, which means that 

when Ivolt equals to zero (i.e., very easy to arbitrage), there is no liquidity anomaly any 

more. 

 

2.4.2. Fama-Macbeth regression results of Amihud as illiquidity measure and 

idiosyncratic risk as the limits to arbitrage measure 

 

First, I use Amihud (2002) measure as a proxy for illiquidity and run Equation (2.7). The 

regression test results are reported in Table 2.5. The regression is estimated cross-

sectionally every month between January 1968 and December 2010 (Panel A), between 

January 1968 and December 1989 (Panel B), and between January 1990 and December 

2010 (Panel C). In order to avoid the influence of some stocks with very high 

idiosyncratic volatility, I also report the Fama-MacBeth regression test results excluding 

the highest idiosyncratic volatility portfolios in Panel D. 10

                                                           
10 Fu (2009) argues that AHXZ’s (2006) negative results are mainly based on the portfolio of the highest 
idiosyncratic volatility that yields a negative abnormal return in the following month. 

 Model 1 is a univariate 

regression on Amihud measure. Model 2 controls for the arbitrage risk. Model 3 includes 

the interaction term that Amihud by idiosyncratic volatility. Comparing the results of 

Model 3 to those of Model 2 will provide a direct interpretation about if the severity of 
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the limits to arbitrage aggravates the negative effect of liquidity on future stock returns. 

Model 4 is a multivariate regression on Amihud measure controlling for three firm 

characteristics without the interaction term, while Model 5 is the same regression 

including the interaction term. Comparing the results of Model 5 to those of Model 4 will 

also tell if the severity of the limits to arbitrage aggravates the liquidity anomaly. 

 

Results in Table 2.5 show that my previous conclusions are robust. I find that the 

exposure to higher liquidity significantly predicts lower future stock returns. Moreover, 

after controlling for exposures to three firm characteristics (i.e., SIZE, BM, and RET(-2,-

7)), I still find that stock returns are negatively related to stock liquidity. Most 

importantly, the negative effect of liquidity on future stock returns is significantly 

stronger when the limits to arbitrage are higher as indicated by the significant coefficients 

on the interaction terms with an expected positive sign. This evidence is consistent with 

my previous conclusion from the portfolio analysis, and fully supports the first part of 

Hypothesis 1. However, although the coefficients of Amihud are much smaller after 

including the interaction term, the liquidity anomaly is still significant. This finding is 

also consistent with my previous conclusion from the portfolio analysis, but it cannot 

fully support the second part of Hypothesis 1 that the ease of arbitrage is able to totally 

drive away the liquidity anomaly. 

 

On the other hand, the exposure to higher idiosyncratic risk predicts higher stock returns. 

Moreover, after controlling for exposures to several firm characteristics, I still find that 

stock returns are positively related to idiosyncratic risk. This paper is consistent with the 
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literature that finds a positive relation between idiosyncratic risk and individual stock 

returns (Malkiel and Xu (2002), Goyal and Santa-Clara (2003), Spiegel and Wang (2005), 

Fu (2009), Huang, Liu, Rhee, and Zhang (2010)). However, this result contrasts sharply 

with the findings of AHXZ (2006) and Guo and Savickas (2006). Recent studies by 

Huang, Liu, Rhee, and Zhang (2007) and Fu (2009) both suggest that the return reversal 

in monthly returns explains the negative results in AHXZ (2006) and Guo and Savickas 

(2008). There is another finding that is worth pointing out. Spiegel and Wang (2007) find 

that while both liquidity and idiosyncratic risk play a role in determining stock returns, 

the impact of idiosyncratic risk is much stronger and often eliminates liquidity’s 

explanatory power. However, the results in Table 2.5 show that the coefficient of Amihud 

is still significant after controlling for idiosyncratic risk. Therefore, the impact of 

idiosyncratic risk, as a proxy for the limits to arbitrage, does fade the liquidity’s 

explanatory power of stock returns, but it cannot fully eliminate the explanatory power of 

liquidity according to my study.  

 

Additionally, there is another result that is interesting. The coefficients of SIZE are 

significantly positive after including Ivol in the regression. Controlling for estimated 

idiosyncratic volatility, the traditional “size effect” is reversed. A similar finding is 

discovered in Fu (2009). Fu (2009) points out that his finding contrasts to the widely 

documented “size effect” that small firms have higher average returns than large firms, 

but supports one prediction of Merton’s (1987) model that, all else equal, larger firms 

have higher expected returns. Merton (1987) explicitly points out that the findings of the 
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“size effect” are due to the omitted controls for other factors such as idiosyncratic risk 

and investor base. My evidence lends direct support to Merton’s prediction in this point.  

 

The rest of Table 2.5 reports the results for two subsample periods from 1968 to 1989 and 

from 1990 to 2010 in Panel B and Panel C, respectively. The effect of the limits to 

arbitrage (Ivol) seems to be weak in the earlier subsample period, but it becomes much 

stronger in the later subsample period. While some of the coefficient estimates are noisier 

in the earlier subsample period than are those in the whole sample period, all have the 

expected signs. Overall, the subsample results are consistent with our previous 

conclusions from the whole sample results. In order to avoid the influence of some stocks 

with very high idiosyncratic volatility, I also report the Fama-MacBeth regression test 

results excluding the highest idiosyncratic volatility portfolios in Panel D. The negative 

effect of liquidity on future stock returns is still significantly stronger when the limits to 

arbitrage are higher as indicated by the significant coefficients on the interaction terms 

with an expected positive sign. This evidence is consistent with my previous conclusion, 

and fully supports the Hypothesis 1. However, the coefficients of Ivol become 

insignificant after excluding the highest idiosyncratic volatility portfolios. This finding is, 

to some extent, consistent with the finding in Fu (2009) that AHXZ’s (2006) arguments 

are mainly based on the portfolio of the highest idiosyncratic volatility that yields a 

negative abnormal return in the following month. Also, the coefficients of SIZE become 

insignificant after excluding the highest idiosyncratic volatility portfolios. This evidence 

indirectly supports Merton’s (1987) argument that the findings of the “size effect” are 

due to the omitted controls for other factors such as idiosyncratic risk, and suggests that 



108 
 

 
 

the stocks with the highest idiosyncratic risk may be the reason for the existence of the 

“size effect”. 
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Table 2.5. Fama-MacBeth Regression Test Results for Amihud (2002) Measure and Idiosyncratic Volatility. 
 
This table reports the slopes of the Fama-MacBeth regression:  

Rt = β0 + β1Amihudt−1 + β2Ivolt + β3Amihudt−1 × Ivolt + βjControls + εt 
where 𝑅𝑡 is the monthly raw stock return. Amihud (2002) measure (Amihud) is the monthly average of 
absolute value of return divided by dollar volume every day and it proxies for illiquidity. Monthly 
idiosyncratic stock return volatility (Ivol) is estimated by the Fama-French three-factor model and the 
EGARCH(1,1) model and it proxies for arbitrage risk. Controls are SIZE, BM, and RET(-2,-7), which 
control for firm characteristics. SIZE is the market value of equity at the end of June of year t. Book-to-
market equity (BM) is the book value of equity according to Fama and French (1993) at the end of fiscal 
year ending in calendar year t−1 divided by the market value of equity at the end of December of year t−1. 
RET(-2,-7) is the compound gross return from month t-7 to t-2. The regression is estimated cross-
sectionally every month between January 1968 and December 2010 (Panel A), between January 1968 and 
December 1989 (Panel B), or between January 1990 and December 2010 (Panel C). In order to avoid the 
influence of some stocks with very high idiosyncratic volatility, I also report the Fama-MacBeth regression 
test results excluding the highest idiosyncratic volatility portfolios (Panel D). The estimates reported are the 
time series averages of the cross-sectional slope estimates; and t statistics based on the Newey-West (1987) 
standard errors are in parentheses. Statistical significance at the 1%, 5%, and 10% levels are represented by 
*, ** and ***, respectively. 
 

Panel A: The whole sample 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 
              

1.233* 
(4.03) 

-0.431** 
(-1.99) 

-0.298 
(-1.35) 

-0.715* 
(-3.19) 

-0.583** 
(-2.57) 

Amihud              0.035* 
(4.68) 

0.032* 
(4.03) 

0.021* 
(3.22) 

0.024* 
(3.63) 

0.015** 
(2.47) 

Ivol 
               

0.126* 
(7.22) 

0.116* 
(6.46) 

0.129* 
(7.80) 

0.119* 
(6.98) 

Amihud×Ivol 
                

0.003* 
(2.63)  

0.004* 
(3.05) 

SIZE 
                 

0.034* 
(3.37) 

0.028* 
(2.78) 

BM 
                 

0.290* 
(5.16) 

0.299* 
(5.33) 

RET(-2,-7) 
                 

0.320** 
(2.40) 

0.314** 
(2.38) 

Panel B: The period from January 1968 to December 1989 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 
              

1.218* 
(2.88) 

-0.011 
(-0.04) 

0.132 
(0.52) 

-0.370 
(-1.31) 

-0.229 
(-0.82) 

Amihud              0.045* 
(3.87) 

0.038* 
(3.19) 

0.031** 
(2.09) 

0.035** 
(2.51) 

0.022** 
(2.03) 

Ivol 
              

 
 

0.111* 
(4.07) 

0.099* 
(3.54) 

0.114* 
(4.50) 

0.101* 
(3.91) 

Amihud×Ivol 
              

 
 

 
 

0.003 
(1.57) 

 
 

0.004** 
(2.02) 
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Table 2.5. Continued. 
 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

SIZE 
              

 
 

 
 

 
 

0.036** 
(1.99) 

0.027 
(1.51) 

BM 
              

 
 

 
 

 
 

0.377* 
(4.06) 

0.389* 
(4.22) 

RET(-2,-7) 
              

 
 

 
 

 
 

0.572** 
(2.56) 

0.563** 
(2.55) 

Panel C: The period from January 1990 to December 2010 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 
              

1.248* 
(2.81) 

-0.892** 
(-2.58) 

-0.772** 
(-2.16) 

-1.094* 
(-3.14) 

-0.973* 
(-2.71) 

Amihud              0.024* 
(5.66) 

0.024* 
(5.71) 

0.010* 
(4.96) 

0.010* 
(5.32) 

0.006* 
(3.36) 

Ivol 
              

 
 

0.142* 
(6.82) 

0.134* 
(6.24) 

0.146* 
(7.06) 

0.138* 
(6.46) 

Amihud×Ivol 
              

 
 

 
 

0.003* 
(5.10) 

 
 

0.003* 
(5.09) 

SIZE 
              

 
 

 
 

 
 

0.033* 
(4.00) 

0.029* 
(3.51) 

BM 
              

 
 

 
 

 
 

0.195* 
(3.39) 

0.200* 
(3.44) 

RET(-2,-7) 
                 

0.042 
(0.34) 

0.041 
(0.33) 

Panel D: Excluding the highest Idiosyncratic volatility portfolios 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 
              

0.924* 
(3.47) 

0.895* 
(5.42) 

0.904* 
(5.41) 

0.649* 
(3.92) 

0.659* 
(3.95) 

Amihud              0.057* 
(6.26) 

0.045* 
(4.96) 

0.026* 
(2.90) 

0.029* 
(4.38) 

0.026** 
(2.26) 

Ivol 
              

 
 

0.005 
(0.19) 

0.005 
(0.19) 

0.007 
(0.25) 

0.006 
(0.23) 

Amihud×Ivol 
              

 
 

 
 

0.008* 
(3.52) 

 
 

0.010* 
(4.90) 

SIZE 
              

 
 

 
 

 
 

0.000 
(0.06) 

-0.000 
(-0.06) 

BM 
              

 
 

 
 

 
 

0.240* 
(4.02) 

0.248* 
(4.16) 

RET(-2,-7) 
                 

0.444* 
(3.28) 

0.441* 
(3.26) 
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2.5. Robustness check 

 

2.5.1. Empirical results of turnover ratio as the liquidity measure 

 

Selecting turnover ratio as another liquidity measure, I sort stocks into Turnover quintiles 

and idiosyncratic stock return volatility (as a proxy for the limits to arbitrage) quintiles, 

independently, and calculate the equally-weighted and value-weighted monthly raw stock 

returns for each portfolio. Turnover ratio (Turnover) is the average ratio of trading 

volume to the number of shares outstanding of the previous 36 months and it proxies for 

liquidity. The results are shown in Table 2.6 and the unit is percent. Panel A shows the 

time series average of equally-weighted raw portfolio returns, while panel B shows the 

time series average of value-weighted raw portfolio returns. 

 

Table 2.6 shows some strong evidence that the average raw return spread between low-

liquidity and high-liquidity stocks increases with the limits to arbitrage. More specifically, 

in panel A, the stocks of low Turnover overperform and the overperformance is more 

pronounced when the arbitrage risk is higher. For example, the time-series equally-

weighted raw return spread between low Turnover and high Turnover stocks increases 

from 0.064% per month in the lowest arbitrage risk portfolio to 2.231% in the highest 

arbitrage risk portfolio. Additionally, it seems that the arbitrage risk might be priced, 

since the stocks with the highest idiosyncratic risk have the highest raw returns. This 
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finding is consistent with Merton’s (1987) incomplete-information CAPM and the results 

documented by Carroll and Wei (1988), Spiegel and Wang (2005), and Fu (2009), but it 

is inconsistent with the findings of AHXZ (2006, 2009) who find that stock returns are 

lower when idiosyncratic risk is higher.  

 

The results in panel B are similar. The stocks of low Turnover overperform and the 

overperformance is more pronounced when the arbitrage risk is higher. For example, the 

time-series value-weighted raw return spread between low Turnover and high Turnover 

stocks increases from 0.1445% per month in the lowest arbitrage risk portfolio to 2.2125% 

in the highest arbitrage risk portfolio. However, I can hardly tell if the arbitrage risk is 

priced or not from value-weighted raw portfolio returns, which is inconsistent with the 

prediction of the incomplete-information CAPM suggested by Merton (1987) and the 

results documented by Carroll and Wei (1988), Spiegel and Wang (2005) and Fu (2009), 

and is also inconsistent with the negative findings of AHXZ (2006, 2009). 

 

Table 2.7 reports monthly risk-adjusted portfolio returns sorted by turnover ratio as a 

proxy of liquidity and idiosyncratic volatility as a proxy of the limits to arbitrage. Stocks 

are sorted into quintiles based on liquidity proxy and independently into quintiles by the 

limits to arbitrage proxy. The risk-adjusted portfolio return shown in the table is the 

estimated intercept αp from Equation (2.5). The results in Table 2.7 are very similar to 

those in Table 2.6. I observe that the liquidity anomaly is monotonically more profound 

as the arbitrage risk increases. For example, the risk-adjusted return spread between low 
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Turnover and high Turnover portfolios increases from 0.0711% per month in the lowest 

arbitrage risk portfolio to 1.0269% in the highest arbitrage risk portfolio, which is a 

significant difference of 0.9558%. This evidence fully supports the Hypothesis 1. In 

addition, the return spread between low and high liquidity stocks is mostly driven by the 

underperformance of high liquidity stocks except for the highest arbitrage risk portfolio. 

The results with Turnover sorting are very similar to those with Amihud sorting, but there 

is some minor difference. In Table 2.7, when the arbitrage risk is low, although the 

liquidity anomaly is still significant at 10% level, it is quite small and the t statistic is 

only 1.8. This finding cannot fully support the second part of Hypothesis 1, i.e., the 

relationship between liquidity and stock returns should be insignificant when the limits to 

arbitrage are low, either. But I can at least get that when the limits to arbitrage are low, 

the liquidity anomaly can be mostly arbitraged away. 

 

Table 2.8 shows the liquidity-risk-adjusted stock returns of the same twenty-five 

portfolios. Panel A reports monthly liquidity-risk-adjusted portfolio returns and Panel B 

reports monthly portfolio liquidity-risk-factor loadings sorted by the turnover ratio 

(Turnover) and the proxy of the limits to arbitrage (Ivol). The liquidity-risk-adjusted 

portfolio return and the portfolio liquidity-risk-factor loading are the estimated intercept 

αp and the estimate of the slope coefficient βp,LIQ, respectively, from Equation (2.6). The 

results in Panel A are very similar to those in Table 2.7. After the liquidity risk adjusted, I 

still observe that the liquidity anomaly is significantly more pronounced as the limits to 

arbitrage increase. For example, the liquidity-risk-adjusted return spread between low-
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liquidity and high-liquidity portfolios increases from 0.1147% per month in Ivol Quintile 

1 to 1.1463% in Ivol Quintile 5, which is a significant difference of 1.0316%. That is to 

say, the liquidity risk does not drive away the positive relationship between the limits to 

arbitrage and the liquidity anomaly. This evidence completely supports the Hypothesis 2. 

 

Next, I use turnover ratio as a proxy for liquidity and run the following equation to get 

the Fama-MacBeth regression results.  

𝐑𝐭 = 𝛃𝟎 + 𝛃𝟏𝐓𝐮𝐫𝐧𝐨𝐯𝐞𝐫𝐭−𝟏 + 𝛃𝟐𝐈𝐯𝐨𝐥𝐭 + 𝛃𝟑𝐓𝐮𝐫𝐧𝐨𝐯𝐞𝐫𝐭−𝟏 × 𝐈𝐯𝐨𝐥𝐭 + 𝛃𝐣𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐬+ 𝛆𝐭,  (2.8) 

where Turnovert−1  is the turnover ratio, the average ratio of trading volume to the 

number of shares outstanding of the previous 36 months. The regression test results are 

reported in Table 2.9. The regression is estimated cross-sectionally every month between 

January 1968 and December 2010 (Panel A), between January 1968 and December 1989 

(Panel B), and between January 1990 and December 2010 (Panel C). In order to avoid the 

influence of some stocks with very high idiosyncratic volatility, I also report the Fama-

MacBeth regression test results excluding the highest idiosyncratic volatility portfolios in 

Panel D. Model 1 is a univariate regression on Turnover ratio. Model 2 controls for the 

limits to arbitrage. Model 3 includes the interaction term that Turnover by idiosyncratic 

volatility. Comparing the results of Model 3 to those of Model 2 will provide a direct 

interpretation about if the severity of the limits to arbitrage aggravates the negative effect 

of liquidity on future stock returns. Model 4 is a multivariate regression on Turnover ratio 

controlling for three firm characteristics without the interaction term, while Model 5 is 

the same regression including the interaction term. Comparing the results of Model 5 to 
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those of Model 4 will also tell if the severity of the limits to arbitrage aggravates the 

liquidity anomaly. 

 

Results in Table 2.9 show that my previous conclusions are robust. I find that the 

exposure to higher liquidity significantly predicts lower future stock returns. Moreover, 

after controlling for exposures to three firm characteristics (i.e., SIZE, BM, and RET(-2,-

7)), I still find that stock returns are negatively related to liquidity. Most importantly, the 

negative effect of liquidity on future stock returns is significantly stronger when the 

limits to arbitrage are higher as indicated by the significant coefficients on the interaction 

terms with an expected negative sign. This evidence is consistent with my previous 

conclusion from the portfolio analysis and the Fama-MacBeth regression of Amihud. The 

test results in Table 2.9 also fully support my Hypothesis 1. Furthermore, the coefficients 

of Turnover change their signs and become insignificant after including the interaction 

term, which means that the liquidity anomaly no longer exists when it is very easy to 

arbitrage. This finding is different from my previous conclusion from the Fama-MacBeth 

regression of Amihud as illiquidity measure, but fully supports the Hypothesis 1 to be 

true. 

 

On the other hand, the exposure to higher idiosyncratic risk predicts higher stock returns. 

Moreover, after controlling for exposures to several firm characteristics, I still find that 

stock returns are positively related to idiosyncratic risk. This paper is consistent with the 

literature that finds a positive relation between idiosyncratic risk and individual stock 

returns (Malkiel and Xu (2002), Goyal and Santa-Clara (2003), Spiegel and Wang (2005), 
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Fu (2009), Huang, Liu, Rhee, and Zhang (2010)). However, this result contrasts sharply 

with the findings of AHXZ (2006) and Guo and Savickas (2006), even though AHXZ 

(2006) show that the significance in the relation between idiosyncratic volatility and 

value-weighted returns persists even after controlling for the bid-ask spread liquidity 

measure. Again, the results in Table 2.9 show that the coefficient of Turnover is still 

significant after controlling for idiosyncratic risk. Therefore, my study is inconsistent 

with Spiegel and Wang (2007) who find that the impact of idiosyncratic risk is much 

stronger and often eliminates liquidity’s explanatory power.  

 

Additionally, the phenomenon that the “size effect” no longer exists after controlling for 

idiosyncratic risk is still apparent. The coefficients of SIZE are significantly positive after 

including Ivol in the regression. Controlling for estimated idiosyncratic volatility, the 

traditional “size effect” is reversed. The evidence is consistent with the Fama-MacBeth 

regression of Amihud and lends a support to Merton’s (1987) argument that the findings 

of the “size effect” are due to the omitted controls for other factors such as idiosyncratic 

risk.  

 

The rest of Table 2.9 reports the results for two subsample periods from 1968 to 1989 and 

from 1990 to 2010 in Panel B and Panel C, respectively. The effect of the limits to 

arbitrage (Ivol) seems to be weak in the earlier subsample period, but it becomes much 

stronger in the later subsample period. While some of the coefficient estimates are noisier 

in the earlier subsample period than are those in the whole sample period, all have the 

expected signs. Overall, the subsample results are consistent with our previous 
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conclusions from the whole sample results. In order to avoid the influence of some stocks 

with very high idiosyncratic volatility, I also report the Fama-MacBeth regression test 

results excluding the highest idiosyncratic volatility portfolios in Panel D. The negative 

effect of liquidity on future stock returns is still significantly stronger when the limits to 

arbitrage are higher as indicated by the significant coefficients on the interaction terms 

with an expected negative sign. This evidence is consistent with my previous conclusion, 

and fully supports the Hypothesis 1. However, all the coefficients of Ivol become 

insignificant after excluding the highest idiosyncratic volatility portfolios. This finding is, 

to some extent, consistent with the finding in Fu (2009) claiming that AHXZ’s (2006) 

arguments are mainly based on the portfolio of the highest idiosyncratic volatility that 

yields a negative abnormal return in the following month. Also, the coefficients of SIZE 

also become insignificant after excluding the highest idiosyncratic volatility portfolios. 

This evidence again indirectly supports Merton’s (1987) argument that the findings of the 

“size effect” are due to the omitted controls for other factors such as idiosyncratic risk, 

and suggests that the stocks with the highest idiosyncratic risk may be the reason for the 

existence of the “size effect”. 

 

To sum up, the results using Turnover as the liquidity measure are consistent with those 

using Amihud measure, and they both support the Hypothesis 1. There is only one thing 

that is different. I find that the liquidity anomaly does not exist among stocks with very 

low limits to arbitrage when I employ Turnover as the liquidity proxy, but the liquidity 

anomaly still exists among stocks with very low limits to arbitrage when I employ 

Amihud as the illiquidity proxy.   
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Table 2.6. Raw Portfolio Returns by Turnover Ratio and Idiosyncratic Volatility. 
 
This table reports the monthly raw portfolio returns sorted by turnover ratio as a proxy of liquidity and 
idiosyncratic volatility as a proxy of the limits to arbitrage. Stocks are sorted into quintiles based on 
liquidity proxy and independently into quintiles by the limits to arbitrage proxy. Turnover ratio (Turnover) 
is the average ratio of trading volume to the number of shares outstanding of the previous 36 months and it 
proxies for liquidity. Monthly idiosyncratic stock return volatility (Ivol) is estimated by the Fama-French 
three-factor model and the EGARCH(1,1) model and it proxies for arbitrage risk. Panel A shows the time 
series average of equally-weighted raw portfolio returns, while panel B shows the time series average of 
value-weighted raw portfolio returns. The sample period is from January 1968 to December 2010. 
 

Panel A: Equally-weighted raw portfolio returns 
         Turnover 
Ivol 1(low) 2 3 4 5(high) Spread 

(1-5) 

1(low) 1.0647 0.8873 0.6976 1.0493 1.0007 0.0640 

2  1.0195 0.9295 1.0352 1.0637 0.9560 0.0635 

3 1.0004 0.7287 0.8279 0.8628 0.6805 0.3199 

4 1.0208 0.3662 0.4856 0.3233 0.2397 0.7811 

5(high) 3.9513 2.3433 2.0499 1.4972 1.7203 2.2310 

Panel B: Value-weighted raw portfolio returns 
         Turnover 
Ivol 1(low) 2 3 4 5(high) Spread 

(1-5) 

1(low) 1.0254 0.9122 1.0294 1.0029 0.8809 0.1445 

2  1.0300 0.6551 0.6897 0.6390 0.8939 0.1361 

3 0.7391 1.3377 0.6040 0.1289 0.4520 0.2871 

4 1.3054 -0.3758 0.4237 -0.7296 0.2762 1.0292 

5(high) 1.8063 1.3077 2.6385 0.4932 -0.4062 2.2125 
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Table 2.7. Risk-adjusted Portfolio Returns by Turnover Ratio and Idiosyncratic Volatility. 
 
This table reports the monthly risk-adjusted portfolio returns sorted by turnover ratio as a proxy of liquidity 
and idiosyncratic volatility as a proxy of the limits to arbitrage. Stocks are sorted into quintiles based on 
liquidity proxy and independently into quintiles by the limits to arbitrage proxy. Turnover ratio (Turnover) 
is the average ratio of trading volume to the number of shares outstanding of the previous 36 months and it 
proxies for liquidity. Monthly idiosyncratic stock return volatility (Ivol) is estimated by the Fama-French 
three-factor model and the EGARCH(1,1) model and it proxies for arbitrage risk. The risk-adjusted 
portfolio return is the estimated intercept αp from the following regression: 

Rp − rf = αp + βp,MktMkt + βp,SMBSMB + βp,HMLHML + βp,MOMMOM + εp 
where Rp is the raw return on portfolio p and rf  is the risk-free rate. Mkt, SMB, HML, and MOM are 
returns on the market, size, book-to-market, and momentum factors, respectively. Factor returns and the 
risk-free rates are from Professor Kenneth French’s website. The numbers in parentheses are the t statistics. 
The sample period is from January 1968 to December 2010. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Risk-adjusted portfolio returns 
       Turnover 
Ivol 1(low) 2 3 4 5(high) Spread 

(1-5) 

1(low) -0.1119* 
(-8.48) 

0.0267 
(0.84) 

0.0843* 
(2.74) 

-0.0889** 
(-2.51) 

-0.1830* 
(-4.27) 

0.0711*** 
(1.80) 

2 
 

0.0991 
(1.44) 

-0.0034 
(-0.05) 

0.0899 
(1.59) 

-0.0833 
(-1.47) 

-0.1607* 
(-9.65) 

0.2598* 
(5.68) 

3 -0.1942* 
(-8.56) 

-0.3329* 
(-3.55) 

-0.1438 
(-1.62) 

-0.3340* 
(-4.22) 

-0.4657* 
(-6.24) 

0.2715* 
(5.47) 

4 -0.2487* 
(-8.20) 

-0.5777* 
(-4.24) 

-0.8001* 
(-6.24) 

-0.4256* 
(-3.62) 

-0.5587* 
(-5.68) 

0.3100* 
(5.06) 

5(high) 3.0870* 
(38.84) 

3.1343* 
(29.51) 

2.6845* 
(19.59) 

2.3476* 
(18.60) 

2.0601* 
(18.81) 

1.0269* 
(8.95) 

5-1 3.1989* 
(44.51) 

3.1076* 
(24.55) 

2.6002* 
(22.64) 

2.4365* 
(21.58) 

2.2431* 
(22.70) 

0.9558* 
(7.82) 
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Table 2.8. Liquidity-Risk-Adjusted Portfolio Returns by Turnover Ratio and Idiosyncratic Volatility. 
 
This table reports the monthly liquidity-risk-adjusted portfolio returns (Panel A) and monthly portfolio 
liquidity-risk-factor loadings (Panel B) sorted by turnover ratio (Turnover) and the proxy of the limits to 
arbitrage (Ivol). Stocks are sorted into quintiles based on liquidity proxy and independently into quintiles 
by the limits to arbitrage proxy. Turnover ratio (Turnover) is the average ratio of trading volume to the 
number of shares outstanding of the previous 36 months and it proxies for liquidity. Monthly idiosyncratic 
stock return volatility (Ivol) is estimated by the Fama-French three-factor model and the EGARCH(1,1) 
model and it proxies for arbitrage risk. The liquidity-risk-adjusted portfolio return and the portfolio 
liquidity-risk-factor loading are the estimated intercept αp and the estimate of the slope coefficient βp,LIQ, 
respectively, from the following regression: 

Rp − rf = αp + βp,MktMkt + βp,SMBSMB + βp,HMLHML + βp,MOMMOM + βp,LIQLIQ + εp 
where Rp is the raw return on portfolio p and rf  is the risk-free rate. Mkt, SMB, HML, and MOM are 
returns on the market, size, book-to-market, and momentum factors, respectively, from Professor Kenneth 
French’s website. LIQ is the liquidity risk factor documented in Pastor and Stambaugh (2003). The value-
weighted liquidity factor is downloaded from CRSP. The numbers in parentheses are the t statistics. The 
sample period is from January 1968 to December 2010. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Panel A: Liquidity-risk-adjusted portfolio returns 
       Turnover 
Ivol 

1(low) 2 3 4 5(high) Spread 
(1-5) 

1(low) -0.1090* 
(-8.10) 

0.0223 
(0.69) 

0.0669** 
(2.13) 

-0.1238* 
(-3.43) 

-0.2237* 
(-5.13) 

0.1147* 
(2.70) 

2 0.0802 
(1.14) 

-0.0083 
(-0.13) 

0.0838 
(1.44) 

-0.0804 
(-1.39) 

-0.1677* 
(-9.88) 

0.2479* 
(5.37) 

3 -0.2134* 
(-9.20) 

-0.3561* 
(-3.74) 

-0.1879** 
(-2.07) 

-0.3310* 
(-4.10) 

-0.5232* 
(-6.85) 

0.3098* 
(6.18) 

4 -0.2779* 
(-8.94) 

-0.5870* 
(-4.26) 

-0.8321* 
(-6.39) 

-0.4723* 
(-3.94) 

-0.5907* 
(-5.90) 

0.3128* 
(5.05) 

5(high) 3.1675* 
(39.28) 

3.1685* 
(9.54) 

2.6512* 
(9.33) 

2.3210* 
(8.35) 

2.0212* 
(8.51) 

1.1463* 
(9.88) 

5-1 
 

3.2765* 
(45.15) 

3.1462* 
(24.61) 

2.5843* 
(22.22) 

2.4448* 
(17.15) 

2.2449* 
(22.45) 

1.0316* 
(8.35) 

Panel B: Portfolio liquidity-risk-factor loadings 
       Turnover 
Ivol 

1(low) 2 3 4 5(high) Spread 
(1-5) 

1(low) 2.3698* 
(7.35) 

0.5264 
(1.21) 

2.0514* 
(3.74) 

1.3993*** 
(1.86) 

0.3186 
(0.32) 

2.0512** 
(1.97) 

2 0.8705 
(1.52) 

1.5182** 
(2.13) 

0.1087 
(0.16) 

-0.6821 
(-0.90) 

-1.0531 
(-0.99) 

1.9236 
(1.59) 

3 2.2888* 
(2.80) 

4.4410* 
(3.98) 

0.0839 
(0.08) 

-1.4289 
(-1.49) 

0.8864 
(0.87) 

1.4024 
(1.07) 

4 2.8204** 
(2.58) 

9.5888* 
(6.01) 

0.6012 
(0.40) 

0.6297 
(0.46) 

-0.6340 
(-0.53) 

3.4544** 
(2.13) 

5(high) 10.5436* 
(5.59) 

1.7227 
(0.54) 

2.4628 
(0.84) 

-5.7960** 
(-2.02) 

-4.0478*** 
(-1.70) 

14.5914* 
(4.80) 

5-1 
 

8.1738* 
(4.27) 

1.1963 
(0.37) 

0.4114 
(0.14) 

-7.1953** 
(-2.42) 

-4.3664*** 
(-1.69) 

12.5402* 
(3.91) 
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Table 2.9. Fama-MacBeth Regression Test Results for Turnover Ratio and Idiosyncratic Volatility. 
 
This table reports the slopes of the Fama-MacBeth regression 

Rt = β0 + β1Turnovert−1 + β2Ivolt + β3Turnovert−1 × Ivolt + βjControls + εt 
where 𝑅𝑡 is the monthly raw stock return. Turnover ratio (Turnover) is the average ratio of trading volume 
to the number of shares outstanding of the previous 36 months and it proxies for liquidity. Monthly 
idiosyncratic stock return volatility (Ivol) is estimated by the Fama-French three-factor model and the 
EGARCH(1,1) model and it proxies for arbitrage risk. Controls are SIZE, BM, and RET(-2,-7), which 
control for firm characteristics. SIZE is the market value of equity at the end of June of year t. Book-to-
market equity (BM) is the book value of equity according to Fama and French (1993) at the end of fiscal 
year ending in calendar year t−1 divided by the market value of equity at the end of December of year t−1. 
RET(-2,-7) is the compound gross return from month t-7 to t-2. The regression is estimated cross-
sectionally every month between January 1968 and December 2010 (Panel A), between January 1968 and 
December 1989 (Panel B), or between January 1990 and December 2010 (Panel C). In order to avoid the 
influence of some stocks with very high idiosyncratic volatility, I also report the Fama-MacBeth regression 
test results excluding the highest idiosyncratic volatility portfolios (Panel D). The estimates reported are the 
time series averages of the cross-sectional slope estimates; and t statistics based on the Newey-West (1987) 
standard errors are in parentheses. Statistical significance at the 1%, 5%, and 10% levels are represented by 
*, ** and ***, respectively. 
 

Panel A: The whole sample 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 
              

1.334* 
(4.97) 

-0.201 
(-0.94) 

-0.321 
(-1.45) 

-0.411*** 
(-1.87) 

-0.518** 
(-2.29) 

Turnover              -0.391* 
(-3.46) 

-0.439* 
(-3.86) 

0.058 
(0.21) 

-0.400* 
(-3.81) 

0.048 
(0.18) 

Ivol 
              

 
 

0.128* 
(7.31) 

0.137* 
(6.53) 

0.129* 
(7.68) 

0.138* 
(6.80) 

Turnover×Ivol 
              

 
 

 
 

-0.041** 
(-1.99) 

 
 

-0.037*** 
(-1.85) 

SIZE 
              

 
 

 
 

 
 

0.026* 
(2.77) 

0.027* 
(2.94) 

BM 
              

 
 

 
 

 
 

0.186* 
(3.69) 

0.182* 
(3.61) 

RET(-2,-7) 
                 

0.280** 
(2.13) 

0.282** 
(2.18) 

Panel B: The period from January 1968 to December 1989 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 
              

1.311* 
(3.47) 

0.186 
(0.73) 

-0.014 
(-0.05) 

-0.075 
(-0.27) 

-0.246 
(-0.88) 

Turnover              -0.502* 
(-3.33) 

-0.602* 
(-3.08) 

0.207 
(0.40) 

-0.537* 
(-3.00) 

0.182 
(0.36) 

Ivol 
              

 
 

0.111* 
(4.06) 

0.126* 
(3.65) 

0.110* 
(4.30) 

0.124* 
(3.77) 

Turnover×Ivol 
              

 
 

 
 

-0.068*** 
(-1.78) 

 
 

-0.061 
(-1.63) 
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Table 2.9. Continued. 
 

               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

SIZE 
              

 
 

 
 

 
 

0.024 
(1.44) 

0.024 
(1.53) 

BM 
              

 
 

 
 

 
 

0.259* 
(3.00) 

0.251* 
(2.92) 

RET(-2,-7) 
                 

0.543** 
(2.42) 

0.540** 
(2.44) 

Panel C: The period from January 1990 to December 2010 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 
              

1.359* 
(3.56) 

-0.627*** 
(-1.82) 

-0.659*** 
(-1.81) 

-0.779** 
(-2.28) 

-0.817** 
(-2.28) 

Turnover              -0.270* 
(-2.61) 

-0.260* 
(-2.61) 

-0.106 
(-0.69) 

-0.250** 
(-2.58) 

-0.099 
(-0.66) 

Ivol 
              

 
 

0.147* 
(6.95) 

0.150* 
(6.66) 

0.150* 
(7.11) 

0.153* 
(6.85) 

Turnover×Ivol 
              

 
 

 
 

-0.061* 
(-3.24) 

 
 

-0.061* 
(-3.25) 

SIZE 
              

 
 

 
 

 
 

0.029* 
(3.72) 

0.029* 
(3.92) 

BM 
              

 
 

 
 

 
 

0.105** 
(2.33) 

0.106** 
(2.32) 

RET(-2,-7) 
                 

-0.010 
(-0.09) 

-0.003 
(-0.02) 

Panel D: Excluding the highest Idiosyncratic volatility portfolios 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 
              

0.986* 
(4.21) 

0.970* 
(5.72) 

0.901* 
(4.93) 

0.812* 
(4.66) 

0.770* 
(4.17) 

Turnover              -0.304* 
(-2.76) 

-0.197*** 
(-1.92) 

0.013 
(0.04) 

-0.161*** 
(-1.72) 

-0.069 
(-0.23) 

Ivol 
              

 
 

0.005 
(0.21) 

0.012 
(0.43) 

0.003 
(0.14) 

0.008 
(0.28) 

Turnover×Ivol 
              

 
 

 
 

-0.069* 
(-2.71) 

 
 

-0.058** 
(-2.29) 

SIZE 
              

 
 

 
 

 
 

-0.004 
(-0.53) 

-0.004 
(-0.57) 

BM 
              

 
 

 
 

 
 

0.147** 
(2.58) 

0.147** 
(2.57) 

RET(-2,-7) 
                 

0.423* 
(3.16) 

0.418* 
(3.14) 
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2.5.2. Empirical results of bid-ask spread as the liquidity measure  

 

In this subsection, I choose the bid-ask spread as an alternative measure for the liquidity. 

I sort stocks into the bid-ask spread (BidAsk) quintiles and the idiosyncratic volatility 

(Ivol) quintiles, independently, and calculate the equally-weighted and value-weighted 

monthly raw stock returns for each portfolio. The results are shown in Table 2.10 and the 

unit is percent. Panel A shows the time series average of equally-weighted raw portfolio 

returns, while panel B shows the time series average of value-weighted raw portfolio 

returns. 

 

Table 2.10 shows some strong evidence, especially in equally-weighted portfolios, that 

the average raw return spread between low-liquidity and high-liquidity stocks increases 

with the limits to arbitrage. For example, the time-series equally-weighted raw return 

spread between low liquidity and high liquidity stocks increases from 0.1039% per month 

in the lowest limits to arbitrage portfolio to 1.6204% in the highest limits to arbitrage 

portfolio.  

 

Table 2.11 reports monthly risk-adjusted portfolio returns sorted by the bid-ask spread as 

a proxy of liquidity and the idiosyncratic volatility as a proxy of the limits to arbitrage. 

Stocks are sorted into quintiles based on liquidity proxy and independently into quintiles 

by the limits to arbitrage proxy. The risk-adjusted portfolio return shown in the table is 

the estimated intercept αp from Equation (2.5). The results in Table 2.11 are very similar 
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to those in Table 2.10. I observe that the liquidity anomaly is monotonically more 

profound as the limits to arbitrage increases. For example, the risk-adjusted return spread 

between low liquidity and high liquidity portfolios increases from 0.3107% per month in 

the lowest limits to arbitrage portfolio to 1.1778% in the highest limits to arbitrage 

portfolio, which is a significant difference of 0.8671%. This evidence fully supports the 

Hypothesis 1 and shows that the previous results are robust even when I change the 

liquidity proxy.  

 

Table 2.12 shows the liquidity-risk-adjusted stock returns of the same twenty-five 

portfolios. The table reports monthly liquidity-risk-adjusted portfolio returns sorted by 

the bid-ask spread (BidAsk) and the proxy of the limits to arbitrage (Ivol). The liquidity-

risk-adjusted portfolio return is the estimated intercept αp  from Equation (2.6). The 

results are very similar to those in Table 2.11. After the liquidity risk adjusted, I still 

observe that the liquidity anomaly is significantly more pronounced as the limits to 

arbitrage increase. For example, the liquidity-risk-adjusted return spread between low-

liquidity and high-liquidity portfolios increases from 0.3371% per month in Ivol Quintile 

1 to 1.5924% in Ivol Quintile 5, which is a significant difference of 1.2553%. That is to 

say, the liquidity risk does not drive away the positive relationship between the limits to 

arbitrage and the liquidity anomaly. This evidence completely supports the Hypothesis 2 

and also shows that the previous results are robust. 
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Next, I use the bid-ask spread as a proxy for liquidity and run the following equation to 

get the Fama-MacBeth regression results.  

𝐑𝐭 = 𝛃𝟎 + 𝛃𝟏𝐁𝐢𝐝𝐀𝐬𝐤𝐭−𝟏 + 𝛃𝟐𝐈𝐯𝐨𝐥𝐭 + 𝛃𝟑𝐁𝐢𝐝𝐀𝐬𝐤𝐭−𝟏 × 𝐈𝐯𝐨𝐥𝐭 + 𝛃𝐣𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐬 + 𝛆𝐭,  (2.9) 

 

The regression test results are reported in Table 2.13. The regression is estimated cross-

sectionally every month between January 1968 and December 2010. As the same as 

before, Model 1 is a univariate regression on the bid-ask spread. Model 2 controls for the 

limits to arbitrage. Model 3 includes the interaction term that bid-ask spread by the 

idiosyncratic volatility. Comparing the results of Model 3 to those of Model 2 will 

provide a direct interpretation about if the severity of the limits to arbitrage aggravates 

the negative effect of liquidity on future stock returns. Model 4 is a multivariate 

regression on the bid-ask spread controlling for three firm characteristics without the 

interaction term, while Model 5 is the same regression including the interaction term. 

Comparing the results of Model 5 to those of Model 4 will also tell if the severity of the 

limits to arbitrage aggravates the liquidity anomaly. 

 

Results in Table 2.13 show that my previous conclusions are robust. I find that the 

exposure to higher liquidity significantly predicts lower future stock returns. Moreover, 

after controlling for exposures to three firm characteristics (i.e., SIZE, BM, and RET(-2,-

7)), I still find that stock returns are negatively related to liquidity. Most importantly, the 

negative effect of liquidity on future stock returns is significantly stronger when the 

limits to arbitrage are higher as indicated by the significant coefficients on the interaction 
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terms with an expected positive sign. This evidence is consistent with my previous 

conclusion from the portfolio analysis and the Fama-MacBeth regression of Amihud and 

Ivol. Furthermore, the coefficients of BidAsk become insignificant and even change signs 

after including the interaction term, which means that the liquidity anomaly is totally 

arbitraged away by the limits to arbitrage.  

 

To sum up, the results using the bid-ask spread (BidAsk) as the liquidity measure are 

consistent with those using Amihud measure, and they both support the Hypothesis 1 and 

2.  
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Table 2.10. Raw Portfolio Returns by Bid-Ask Spread and Idiosyncratic Volatility. 
 
This table reports the monthly raw portfolio returns sorted by the bid-ask spread as a proxy of liquidity and 
the idiosyncratic volatility as a proxy of the limits to arbitrage. Stocks are sorted into quintiles based on 
liquidity proxy and independently into quintiles by the limits to arbitrage proxy. Panel A shows the time 
series average of equally-weighted raw portfolio returns, while panel B shows the time series average of 
value-weighted raw portfolio returns. The sample period is from January 1968 to December 2010. 
 

Panel A: Equally-weighted raw portfolio returns 

            BidAsk 
Ivol 

1(high BidAsk / 
low liquidity) 

2 3 4 5(low BidAsk / 
high liquidity) 

Spread 
(1-5) 

1(low) 0.3892 0.0966 0.0345 0.0016 0.2853 0.1039 

2  1.2537 0.6653 0.0943 0.1183 0.9260 0.3277 

3 1.3229 0.2928 -0.1071 -0.4291 0.8435 0.4794 

4 1.8321 0.5643 -0.2930 -0.3517 0.6366 1.1955 

5(high)  4.2072 2.9641 3.1444 3.0152 2.5868 1.6204 

Panel B: Value-weighted raw portfolio returns 

            BidAsk 
Ivol 

1(high BidAsk / 
low liquidity) 

2 3 4 5(low BidAsk / 
high liquidity) 

Spread 
(1-5) 

1(low) 1.4726 1.4745 1.3233 0.9869 1.2218 0.2508 

2  -0.7784 1.5466 1.2296 1.8911 1.3959 -2.1743 

3 2.3506 1.3299 1.7391 2.4051 2.0416 0.3090 

4 3.7283 1.9733 1.1632 2.0542 2.7729 0.9554 

5(high)  6.7238 4.6062 5.0022 5.3666 4.7120 2.0118 
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Table 2.11. Risk-adjusted Portfolio Returns by Bid-Ask Spread and Idiosyncratic Volatility. 
 
This table reports the monthly risk-adjusted portfolio returns sorted by the bid-ask spread as a proxy of 
liquidity and the idiosyncratic volatility as a proxy of the limits to arbitrage. Stocks are sorted into quintiles 
based on liquidity proxy and independently into quintiles by the limits to arbitrage proxy. The risk-adjusted 
portfolio return is the estimated intercept αp from the following regression: 

Rp − rf = αp + βp,MktMkt + βp,SMBSMB + βp,HMLHML + βp,MOMMOM + εp 
where Rp is the raw return on portfolio p and rf  is the risk-free rate. Mkt, SMB, HML, and MOM are 
returns on the market, size, book-to-market, and momentum factors, respectively. Factor returns and the 
risk-free rates are from Professor Kenneth French’s website. The numbers in parentheses are the t statistics. 
The sample period is from January 1968 to December 2010. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Risk-adjusted portfolio returns 
          BidAsk 
Ivol 

1(high BidAsk / 
low liquidity) 2 3 4 5(low BidAsk/ 

high liquidity) 
Spread 
(1-5) 

1(low) 0.2123* -0.2217* -0.5655* -0.7895* -0.0984* 0.3107* 
(4.89) (-4.07) (-7.93) (-9.25) (-10.00) (6.98) 

2 0.3729* -0.2549* -0.8188* -0.8303* -0.0495* 0.4224* 
 (5.24) (-3.46) (-9.81) (-8.39) (-3.87) (5.85) 
3 0.3625* -0.6708* -0.8770* -1.3530* -0.1240* 0.4865* 
 (3.18) (-6.64) (-8.15) (-12.66) (-7.38) (4.22) 
4 0.6774* -0.4390* -1.2818* -1.3266* -0.2659* 0.9433* 
 (3.54) (-3.25) (-10.00) (-10.89) (-11.76) (4.89) 
5(high) 2.9062* 1.6966* 1.9631* 1.6628* 1.7284* 1.1778* 
 (7.03) (6.60) (8.27) (8.21) (37.73) (2.83) 
5-1 2.6939* 1.9183* 2.5286* 2.4523* 1.8268* 0.8671** 
 (6.48) (7.30) (10.21) (11.16) (39.00) (2.07) 
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Table 2.12. Liquidity-Risk-Adjusted Returns by Bid-Ask Spread and Idiosyncratic Volatility. 
 
This table reports the monthly liquidity-risk-adjusted portfolio returns sorted by the bid-ask spread (BidAsk) 
and the proxy of the limits to arbitrage (Ivol). Stocks are sorted into quintiles based on liquidity proxy and 
independently into quintiles by the limits to arbitrage proxy. The liquidity-risk-adjusted portfolio return and 
the portfolio liquidity-risk-factor loading are the estimated intercept αp  and the estimate of the slope 
coefficient βp,LIQ, respectively, from the following regression: 

Rp − rf = αp + βp,MktMkt + βp,SMBSMB + βp,HMLHML + βp,MOMMOM + βp,LIQLIQ + εp 
where Rp is the raw return on portfolio p and rf  is the risk-free rate. Mkt, SMB, HML, and MOM are 
returns on the market, size, book-to-market, and momentum factors, respectively, from Professor Kenneth 
French’s website. LIQ is the liquidity risk factor documented in Pastor and Stambaugh (2003). The value-
weighted liquidity risk factor is downloaded from CRSP. The numbers in parentheses are the t statistics. 
The sample period is from January 1968 to December 2010. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Liquidity-risk-adjusted portfolio returns 
          BidAsk 
Ivol 

1(high BidAsk / 
low liquidity) 

2 3 4 5(low BidAsk / 
high liquidity) 

Spread 
(1-5) 

1(low) 0.2284* -0.2585* -0.6186* -0.9600* -0.1087* 0.3371* 
  (5.06) (-4.38) (-7.94) (-9.72) (-10.23) (7.28) 

2 0.3862* -0.2673* -0.8829* -0.9455* -0.0690* 0.4552* 
 (5.16) (-3.35) (-9.85) (-8.39) (-4.96) (5.98) 
3 0.4084* -0.7000* -0.9620* -1.4739* -0.1581* 0.5665* 
 (3.33) (-6.39) (-8.35) (-12.47) (-8.59) (4.56) 
4 0.8056* -0.4403* -1.3646* -1.3754* -0.3207* 1.1263* 
 (3.77) (-3.03) (-10.04) (-10.41) (-12.92) (5.24) 
5(high) 3.4583* 1.8810* 2.1050* 1.8418* 1.8659* 1.5924* 
 (7.24) (6.90) (8.49) (8.61) (37.01) (3.32) 
5-1 
 

3.2299* 
(6.73) 

2.1395* 
(7.67) 

2.7236* 
(10.48) 

2.8018* 
(11.89) 

1.9746* 
(38.34) 

1.2553* 
(2.61) 
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Table 2.13. Fama-MacBeth Regression Test Results for Bid-Ask Spread and Idiosyncratic Volatility. 
 
This table reports the slopes of the Fama-MacBeth regression:  

Rt = β0 + β1BidAskt−1 + β2Ivolt + β3BidAskt−1 × Ivolt + βjControls + εt 
where 𝑅𝑡 is the monthly raw stock return. Controls are SIZE, BM, and RET(-2,-7), which control for firm 
characteristics. SIZE is the market value of equity at the end of June of year t. Book-to-market equity (BM) 
is the book value of equity according to Fama and French (1993) at the end of fiscal year ending in 
calendar year t−1 divided by the market value of equity at the end of December of year t−1. RET(-2,-7) is 
the compound gross return from month t-7 to t-2. The regression is estimated cross-sectionally every month 
between January 1968 and December 2010. The estimates reported are the time series averages of the 
cross-sectional slope estimates; and t statistics based on the Newey-West (1987) standard errors are in 
parentheses. Statistical significance at the 1%, 5%, and 10% levels are represented by *, ** and ***, 
respectively. 
 

Fama-MacBeth Regression Test Results for BidAsk and Ivol 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 0.125 -1.550* -0.992** -2.021* -1.763* 

 (0.44) (-5.65) (-2.03) (-6.01) (-3.88) 
BidAsk              0.734* 1.018* -0.951 1.267* -0.623 

 (3.62) (5.63) (-0.72) (6.45) (-0.41) 
Ivol  0.084* 0.064* 0.071* 0.062* 

  (4.77) (4.07) (4.44) (3.21) 
BidAsk×Ivol   0.279*  0.275* 

   (3.52)  (3.21) 
SIZE    0.158 1.664** 

    (0.13) (2.46) 
BM    0.439* 0.488* 

    (5.18) (5.66) 
RET(-2,-7)    -1.520* -1.369* 

    (-5.36) (-5.64) 
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2.5.3. Empirical results of the number of institutional shareholders as the limits to 

arbitrage measure  

 

In this subsection, I choose the number of institutional shareholders as an alternative 

measure for the limits to arbitrage. I sort stocks into Amihud quintiles and the number of 

institutional shareholders (Inst) quintiles, independently, and calculate the equally-

weighted and value-weighted monthly raw stock returns for each portfolio. The results 

are shown in Table 2.14 and the unit is percent. Panel A shows the time series average of 

equally-weighted raw portfolio returns, while panel B shows the time series average of 

value-weighted raw portfolio returns. 

 

Table 2.14 shows some strong evidence, especially in equally-weighted portfolios, that 

the average raw return spread between low-liquidity and high-liquidity stocks increases 

with the limits to arbitrage. For example, the time-series equally-weighted raw return 

spread between low liquidity and high liquidity stocks increases from 0.0357% per month 

in the lowest limits to arbitrage portfolio to 9.1062% in the highest limits to arbitrage 

portfolio.  

 

Table 2.15 reports monthly risk-adjusted portfolio returns sorted by Amihud measure as a 

proxy of illiquidity and the number of institutional shareholders as a proxy of the limits to 

arbitrage. Stocks are sorted into quintiles based on liquidity proxy and independently into 

quintiles by the limits to arbitrage proxy. The risk-adjusted portfolio return shown in the 
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table is the estimated intercept αp from Equation (2.5). The results in Table 2.15 are very 

similar to those in Table 2.14. I observe that the liquidity anomaly is monotonically more 

profound as the limits to arbitrage increases. For example, the risk-adjusted return spread 

between low liquidity and high liquidity portfolios increases from -0.3881% per month in 

the lowest limits to arbitrage portfolio to 3.5803% in the highest limits to arbitrage 

portfolio, which is a significant difference of 3.9684%. This evidence fully supports the 

Hypothesis 1 and shows that the previous results are robust even when I change the limits 

to arbitrage proxy.  

 

Table 2.16 shows the liquidity-risk-adjusted stock returns of the same twenty-five 

portfolios. The table reports monthly liquidity-risk-adjusted portfolio returns sorted by 

the Amihud measure (Amihud) and the proxy of the limits to arbitrage (Inst). The 

liquidity-risk-adjusted portfolio return is the estimated intercept αp from Equation (2.6). 

The results are very similar to those in Table 2.15. After the liquidity risk adjusted, I still 

observe that the liquidity anomaly is significantly more pronounced as the limits to 

arbitrage increase. For example, the liquidity-risk-adjusted return spread between low-

liquidity and high-liquidity portfolios increases from -0.4255% per month in Inst Quintile 

1 to 5.5177% in Inst Quintile 5, which is a significant difference of 5.9432%. That is to 

say, the liquidity risk does not drive away the positive relationship between the limits to 

arbitrage and the liquidity anomaly. This evidence completely supports the Hypothesis 2 

and also shows that the previous results are robust. 
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Next, I use the number of institutional shareholders as a proxy for the limits to arbitrage 

and run the following equation to get the Fama-MacBeth regression results.  

𝐑𝐭 = 𝛃𝟎 + 𝛃𝟏𝐀𝐦𝐢𝐡𝐮𝐝𝐭−𝟏 + 𝛃𝟐𝐈𝐧𝐬𝐭𝐭 + 𝛃𝟑𝐀𝐦𝐢𝐡𝐮𝐝𝐭−𝟏 × 𝐈𝐧𝐬𝐭𝐭 + 𝛃𝐣𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐬 + 𝛆𝐭,  (2.10) 

 

The regression test results are reported in Table 2.17. The regression is estimated cross-

sectionally every month between March 1980 and December 2010. As the same as before, 

Model 1 is a univariate regression on Amihud measure. Model 2 controls for the limits to 

arbitrage. Model 3 includes the interaction term that Amihud measure by the number of 

institutional shareholders. Comparing the results of Model 3 to those of Model 2 will 

provide a direct interpretation about if the severity of the limits to arbitrage aggravates 

the negative effect of liquidity on future stock returns. Model 4 is a multivariate 

regression on Amihud measure controlling for three firm characteristics without the 

interaction term, while Model 5 is the same regression including the interaction term. 

Comparing the results of Model 5 to those of Model 4 will also tell if the severity of the 

limits to arbitrage aggravates the liquidity anomaly. 

 

Results in Table 2.17 show that my previous conclusions are robust. I find that the 

exposure to higher liquidity significantly predicts lower future stock returns. Moreover, 

after controlling for exposures to three firm characteristics (i.e., SIZE, BM, and RET(-2,-

7)), I still find that stock returns are negatively related to liquidity. Most importantly, the 

negative effect of liquidity on future stock returns is significantly stronger when the 

limits to arbitrage are higher as indicated by the significant coefficients on the interaction 
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terms with an expected positive sign. This evidence is consistent with my previous 

conclusion from the portfolio analysis and the Fama-MacBeth regression of Amihud and 

Ivol. Furthermore, the coefficients of Amihud become less significant after including the 

interaction term, which means that the liquidity anomaly is partially arbitraged away by 

the limits to arbitrage. This finding is also consistent with my previous conclusion from 

the Fama-MacBeth regression of Amihud and Ivol. 

 

To sum up, the results using the number of institutional shareholders (Inst) as the limits to 

arbitrage measure are consistent with those using idiosyncratic volatility (Ivol), and they 

both support the Hypothesis 1 and 2.  
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Table 2.14. Raw Portfolio Returns by Amihud (2002) Measure and Investor Sophistication. 
 
This table reports the monthly raw portfolio returns sorted by Amihud (2002) measure as a proxy of 
liquidity and the number of institutional shareholders as a proxy of the limits to arbitrage. Stocks are sorted 
into quintiles based on liquidity proxy and independently into quintiles by the limits to arbitrage proxy. 
Amihud (2002) measure (Amihud) is the monthly average of absolute value of return divided by dollar 
volume every day and it proxies for illiquidity. Inst is the number of institutional shareholders and it 
proxies for investor sophistication. Panel A shows the time series average of equally-weighted raw 
portfolio returns, while panel B shows the time series average of value-weighted raw portfolio returns. The 
sample period is from March 1980 to December 2010. 
 

Panel A: Equally-weighted raw portfolio returns 

            Amihud 
Inst 

1(high Amihud / 
low liquidity) 

2 3 4 5(low Amihud / 
high liquidity) 

Spread 
(1-5) 

1(more) 0.6456 1.5369  1.2836 1.0825 0.6099 0.0357 

2  -0.1122 1.3535 1.7022 1.1343 -0.6635 0.5513 

3 -0.0919 2.0848  1.5746 0.7654 -1.0050 0.9131 

4 0.3785 2.1522  1.1618 0.0470 -2.2115 2.5900 

5(less)  1.0053 1.3827 0.0801 -0.4517 -8.1009 9.1062 

Panel B: Value-weighted raw portfolio returns 

            Amihud 
Inst 

1(high Amihud / 
low liquidity) 

2 3 4 5(low Amihud / 
high liquidity) 

Spread 
(1-5) 

1(more) 1.8369 2.0698  1.9443 1.8518 1.6622 0.1747 

2  1.5971 2.5151 2.1702 0.6636 1.0718 0.5253 

3 1.1470  2.1380 2.0601 1.6034 1.1072 0.0398 

4 2.7111 
 

2.8527  2.3544 1.6191 0.3526 2.3585 

5(less)  1.5556 1.9808  1.3027 1.2709 -4.7708 6.3264 
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Table 2.15. Risk-adjusted Portfolio Returns by Amihud (2002) Measure and Investor Sophistication. 
 
This table reports the monthly risk-adjusted portfolio returns sorted by Amihud (2002) measure as a proxy 
of liquidity and the number of institutional shareholders as a proxy of the limits to arbitrage. Stocks are 
sorted into quintiles based on liquidity proxy and independently into quintiles by the limits to arbitrage 
proxy. Amihud (2002) measure (Amihud) is the monthly average of absolute value of return divided by 
dollar volume every day and it proxies for illiquidity. Inst is the number of institutional shareholders and it 
proxies for investor sophistication. The risk-adjusted portfolio return is the estimated intercept αp from the 
following regression: 

Rp − rf = αp + βp,MktMkt + βp,SMBSMB + βp,HMLHML + βp,MOMMOM + εp 
where Rp is the raw return on portfolio p and rf  is the risk-free rate. Mkt, SMB, HML, and MOM are 
returns on the market, size, book-to-market, and momentum factors, respectively. Factor returns and the 
risk-free rates are from Professor Kenneth French’s website. The numbers in parentheses are the t statistics. 
The sample period is from March 1980 to December 2010. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Risk-adjusted portfolio returns 
       Amihud 
Inst 

1(high Amihud / 
low liquidity) 

2 3 4 5(low Amihud / 
high liquidity) 

Spread 
(1-5) 

1(more) -0.1579* 
(-4.15)  

0.6402* 
(28.94) 

0.4155* 
(16.27) 

0.2302* 
(8.03) 

0.2302* 
(12.44) 

-0.3881* 
(-9.18) 

2 -1.1210* 
(-9.13) 

0.1919 
(1.31) 

0.2877 
(1.23) 

-0.1780 
(-0.57) 

-1.1735* 
(-7.67) 

0.0525 
(0.27) 

3 -0.7598* 
(-6.28) 

0.8422* 
(4.36) 

0.4098* 
(3.61) 

0.0061 
(0.06) 

-1.4500* 
(-10.82) 

0.6902* 
(3.82) 

4 1.0041* 
(5.37) 

0.7249* 
(7.98) 

0.4154* 
(5.59) 

-0.0353 
(-0.30) 

-1.8677* 
(-5.59) 

2.8718* 
(7.51) 

5(less) 4.0453* 
(10.82) 

0.8640 
(0.53) 

-0.0880 
(-0.48) 

0.6718* 
(9.84) 

0.4650* 
(10.23) 

3.5803* 
(9.51) 

5-1 
 

4.2032* 
(11.18) 

0.2238 
(0.14) 

-0.5035* 
(-2.69) 

0.4416* 
(5.96) 

0.2348* 
(4.79) 

3.9684* 
(10.47) 
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Table 2.16. Liquidity-Risk-Adjusted Returns by Amihud (2002) Measure and Investor Sophistication. 
 
This table reports the monthly liquidity-risk-adjusted portfolio returns sorted by Amihud (2002) measure 
(Amihud) and the proxy of the limits to arbitrage (Inst). Stocks are sorted into quintiles based on liquidity 
proxy and independently into quintiles by the limits to arbitrage proxy. Amihud (2002) measure (Amihud) 
is the monthly average of absolute value of return divided by dollar volume every day and it proxies for 
illiquidity. Inst is the number of institutional shareholders and it proxies for investor sophistication. The 
liquidity-risk-adjusted portfolio return and the portfolio liquidity-risk-factor loading are the estimated 
intercept αp and the estimate of the slope coefficient βp,LIQ, respectively, from the following regression: 

Rp − rf = αp + βp,MktMkt + βp,SMBSMB + βp,HMLHML + βp,MOMMOM + βp,LIQLIQ + εp 
where Rp is the raw return on portfolio p and rf  is the risk-free rate. Mkt, SMB, HML, and MOM are 
returns on the market, size, book-to-market, and momentum factors, respectively, from Professor Kenneth 
French’s website. LIQ is the liquidity risk factor documented in Pastor and Stambaugh (2003). The value-
weighted liquidity risk factor is downloaded from CRSP. The numbers in parentheses are the t statistics. 
The sample period is from March 1980 to December 2010. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Liquidity-risk-adjusted portfolio returns 
        Amihud 
Inst 

1(high Amihud / 
low liquidity) 

2 3 4 5(low Amihud / 
high liquidity) 

Spread 
(1-5) 

1(more) -0.1737* 
(-4.09) 

0.6692* 
(26.65) 

0.4326* 
(15.04) 

0.2403* 
(7.48) 

0.2518* 
(12.21) 

-0.4255* 
(-9.01) 

2 -1.0996* 0.1978 0.3076 -0.1674 -1.1491* 0.0495 
 (-8.91) (1.34) (1.31) (-0.53) (-7.50)  (0.25) 
3 -0.7491* 0.8404* 0.4115* 0.0060 -1.4509* 0.7018* 
 (-6.14) (4.35)  (3.62) (0.06) (-10.88) (3.88) 
4 1.0021* 0.7284* 0.4198* -0.0349 -1.8814* 2.8835* 
 (5.35)  (8.01) (5.63) (-0.30) (-5.74) (7.64) 
5(less) 5.9814* 0.8812 -0.0959 0.6728* 0.4637* 5.5177* 
 (10.95) (0.54) (-0.51) (9.82) (10.20) (10.07) 
5-1 
 

6.1551* 
(11.23) 

0.2120 
(0.13) 

-0.5285* 
(-2.78) 

0.4325* 
(5.72) 

0.2119* 
(4.24) 

5.9432* 
(10.80) 
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Table 2.17. Fama-MacBeth Regression Test Results for Amihud (2002) Measure and Investor Sophistication. 
 
This table reports the slopes of the Fama-MacBeth regression:  

Rt = β0 + β1Amihudt−1 + β2Instt + β3Amihudt−1 × Instt + βjControls + εt 
where 𝑅𝑡 is the monthly raw stock return. Amihud (2002) measure (Amihud) is the monthly average of 
absolute value of return divided by dollar volume every day and it proxies for illiquidity. Inst is the number 
of institutional shareholders and it proxies for investor sophistication. Controls are SIZE, BM, and RET(-2,-
7), which control for firm characteristics. SIZE is the market value of equity at the end of June of year t. 
Book-to-market equity (BM) is the book value of equity according to Fama and French (1993) at the end of 
fiscal year ending in calendar year t−1 divided by the market value of equity at the end of December of 
year t−1. RET(-2,-7) is the compound gross return from month t-7 to t-2. The regression is estimated cross-
sectionally every month between March 1980 and December 2010. The estimates reported are the time 
series averages of the cross-sectional slope estimates; and t statistics based on the Newey-West (1987) 
standard errors are in parentheses. Statistical significance at the 1%, 5%, and 10% levels are represented by 
*, ** and ***, respectively. 
 

Fama-MacBeth Regression Test Results for Amihud and Inst 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 0.955** 0.919** 1.042** 0.644 0.762 

 (2.30) (2.07) (2.33) (1.38) (1.63) 
Amihud              0.045* 0.044* 0.035** 0.044* 0.033** 

 (4.60) (4.57) (2.09) (4.53) (2.09) 
Inst  -0.001 -0.001 -0.004** -0.003** 

  (-1.30) (-0.89) (-2.60) (-2.26) 
Amihud×Inst   0.034*  0.034* 

   (3.26)  (3.33) 
SIZE    -0.074* -0.071* 

    (-3.62) (-3.47) 
BM    0.298* 0.307* 

    (2.75) (2.90) 
RET(-2,-7)    1.076* 1.015* 

    (3.40) (3.27) 
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2.5.4. Empirical results of the number of analysts' estimates as the limits to arbitrage 

measure  

 

In this subsection, I use analyst coverage as another measure for the limits to arbitrage. I 

sort stocks into Amihud quintiles and the number of analysts' estimates (as a proxy for 

information uncertainty) quartiles, independently, and calculate the equally-weighted and 

value-weighted monthly raw stock returns for each portfolio. The results are shown in 

Table 2.18 and the unit is percent. Panel A shows the time series average of equally-

weighted raw portfolio returns, while panel B shows the time series average of value-

weighted raw portfolio returns. 

 

Table 2.18 shows that the average raw return spread between low-liquidity and high-

liquidity stocks increases with the limits to arbitrage. More specifically, in panel A, the 

stocks of low liquidity overperform and the overperformance is more pronounced when 

the limits to arbitrage is higher. For example, the time-series equally-weighted raw return 

spread between low liquidity and high liquidity stocks increases from -0.1515% per 

month in the lowest limits to arbitrage portfolio to 1.9701% in the highest limits to 

arbitrage portfolio. The results in panel B are similar. The stocks of low liquidity 

overperform and the overperformance is more pronounced when the limits to arbitrage is 

higher.  

 



140 
 

 
 

Table 2.19 reports monthly risk-adjusted portfolio returns sorted by Amihud measure as a 

proxy of illiquidity and analyst coverage as a proxy of the limits to arbitrage. Stocks are 

sorted into quintiles based on liquidity proxy and independently into quartiles by the 

limits to arbitrage proxy. The risk-adjusted portfolio return shown in the table is the 

estimated intercept αp  from Equation (2.5). I observe that the liquidity anomaly is 

monotonically more profound as the limits to arbitrage increases. For example, the risk-

adjusted return spread between low liquidity and high liquidity portfolios increases from 

0.5188% per month in the lowest limits to arbitrage portfolio to 2.9489% in the highest 

limits to arbitrage portfolio, which is a significant difference of 2.4301%. This evidence 

fully supports the Hypothesis 1. In addition, the return spread between low and high 

liquidity stocks is mostly driven by the underperformance of high liquidity stocks. All the 

evidence shows that the previous results are robust. 

 

Table 2.20 shows the liquidity-risk-adjusted stock returns of the same twenty portfolios. 

The liquidity-risk-adjusted portfolio return is the estimated intercept αp from Equation 

(2.6). The results are very similar to those in Table 2.19. After the liquidity risk adjusted, 

I still observe that the liquidity anomaly is significantly more pronounced as the limits to 

arbitrage increase. For example, the liquidity-risk-adjusted return spread between low-

liquidity and high-liquidity portfolios increases from 0.5730% per month in Analyst 

Quartile 1 to 3.4023% in Analyst Quartile 4, which is a significant difference of 2.8293%. 

That is to say, the liquidity risk does not drive away the positive relationship between the 
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limits to arbitrage and the liquidity anomaly. This evidence completely supports the 

Hypothesis 2. 

 

Next, I use the number of analysts' estimates as a proxy for limits to arbitrage and run the 

following equation to get the Fama-MacBeth regression results.  

𝐑𝐭 = 𝛃𝟎 + 𝛃𝟏𝐀𝐦𝐢𝐡𝐮𝐝𝐭−𝟏 + 𝛃𝟐𝐀𝐧𝐚𝐥𝐲𝐬𝐭𝐭 + 𝛃𝟑𝐀𝐦𝐢𝐡𝐮𝐝𝐭−𝟏 × 𝐀𝐧𝐚𝐥𝐲𝐬𝐭𝐭 + 𝛃𝐣𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐬+ 𝛆𝐭, 

(2.11) 

 

The regression test results are reported in Table 2.21. The regression is estimated cross-

sectionally every month between January 1990 and December 2010. Model 1 is a 

univariate regression on Amihud measure. Model 2 controls for analyst coverage. Model 

3 includes the interaction term that Amihud by Analyst. Comparing the results of Model 

3 to those of Model 2 will provide a direct interpretation about if the severity of the limits 

to arbitrage aggravates the negative effect of liquidity on future stock returns. Model 4 is 

a multivariate regression on Amihud measure controlling for three firm characteristics 

without the interaction term, while Model 5 is the same regression including the 

interaction term. Comparing the results of Model 5 to those of Model 4 will also tell if the 

severity of the limits to arbitrage aggravates the liquidity anomaly. 

 

Results in Table 2.21 show that my previous conclusions are robust. I find that the 

exposure to higher liquidity significantly predicts lower future stock returns. Moreover, 

after controlling for exposures to three firm characteristics (i.e., SIZE, BM, and RET(-2,-
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7)), I still find that stock returns are negatively related to liquidity. Most importantly, the 

negative effect of liquidity on future stock returns is significantly stronger when the 

limits to arbitrage are higher as indicated by the significant coefficients on the interaction 

terms with an expected positive sign. This evidence is consistent with my previous 

conclusion from the portfolio analysis and the Fama-MacBeth regression of Amihud and 

Ivol. Furthermore, the coefficients of Amihud become insignificant after including the 

interaction term, which means that the liquidity anomaly no longer exists when it is very 

easy to arbitrage.  

 

To sum up, the results using Analyst as the limits to arbitrage measure are consistent with 

those using idiosyncratic volatility, and they both support the Hypothesis 1 and 2. There 

is only one thing that is different. I find that the liquidity anomaly does not exist among 

stocks with very low limits to arbitrage when I employ Analyst as the limits to arbitrage 

proxy, but the liquidity anomaly still exists among stocks with very low limits to 

arbitrage when I employ Ivol as the limits to arbitrage proxy.  
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Table 2.18. Raw Portfolio Returns by Amihud (2002) Measure and Analyst Coverage. 
 
This table reports the monthly raw portfolio returns sorted by Amihud (2002) measure as a proxy of 
liquidity and analyst coverage as a proxy of the limits to arbitrage. Stocks are sorted into quintiles based on 
liquidity proxy and independently into quartiles by the limits to arbitrage proxy. Amihud (2002) measure 
(Amihud) is the monthly average of absolute value of return divided by dollar volume every day and it 
proxies for illiquidity. Analyst coverage (Analyst) is the number of analysts' estimates following a stock 
and it proxies for information uncertainty. Panel A shows the time series average of equally-weighted raw 
portfolio returns, while panel B shows the time series average of value-weighted raw portfolio returns. The 
sample period is from January 1990 to December 2010. 
 

Panel A: Equally-weighted raw portfolio returns 

            Amihud 
Analyst 

1(high Amihud / 
low liquidity) 2 3 4 5(low Amihud / 

high liquidity) 
Spread 
(1-5) 

1(more) 0.3802 1.6418 1.2988 1.0112 0.5317 -0.1515 

2  3.2105 5.0635 4.9170 4.2030 1.3993 1.8112 

3 0.8276 1.2121 0.9403 0.0427 -1.6050 2.4326 

4(less) 0.8942 0.7925 0.1721 -0.4728 -1.0759 1.9701 

Panel B: Value-weighted raw portfolio returns 
            Amihud 
Analyst 

1(high Amihud / 
low liquidity) 2 3 4 5(low Amihud / 

high liquidity) 
Spread 
(1-5) 

1(more) 1.6708 2.1085 1.9968 1.8561 1.6473 0.0235 

2  4.1303 6.6332 5.8374 4.8362 2.6917 1.4386 

3 1.4739 2.2291 2.2169 1.7393 -0.9156 2.3895 

4(less) 3.8939 1.8254 1.4761 1.6126 1.6921 2.2018 
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Table 2.19. Risk-adjusted Portfolio Returns by Amihud (2002) Measure and Analyst Coverage. 
 
This table reports the monthly risk-adjusted portfolio returns sorted by Amihud (2002) measure as a proxy 
of liquidity and analyst coverage as a proxy of the limits to arbitrage. Stocks are sorted into quintiles based 
on liquidity proxy and independently into quartiles by the limits to arbitrage proxy. Amihud (2002) 
measure (Amihud) is the monthly average of absolute value of return divided by dollar volume every day 
and it proxies for illiquidity. Analyst coverage (Analyst) is the number of analysts' estimates following a 
stock and it proxies for information uncertainty. The risk-adjusted portfolio return is the estimated intercept 
αp from the following regression: 

Rp − rf = αp + βp,MktMkt + βp,SMBSMB + βp,HMLHML + βp,MOMMOM + εp 
where Rp is the raw return on portfolio p and rf  is the risk-free rate. Mkt, SMB, HML, and MOM are 
returns on the market, size, book-to-market, and momentum factors, respectively. Factor returns and the 
risk-free rates are from Professor Kenneth French’s website. The numbers in parentheses are the t statistics. 
The sample period is from January 1990 to December 2010. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Risk-adjusted portfolio returns 
         Amihud 
Analyst 

1(high Amihud / 
low liquidity) 2 3 4 5(low Amihud / 

high liquidity) 
Spread 
(1-5) 

1(more) 0.1583* 0.6607* 0.4069* 0.1779* -0.3605* 0.5188* 

 (8.92)  (32.05)  (17.21) (6.69) (-10.07) (12.98) 

2 1.2887* 6.6214* 0.0154 0.3469 -0.9184 2.2071* 

 (2.61) (2.62) (0.02) (0.45) (-1.57) (2.88) 

3 0.6694* 0.6445* 0.2288 -0.5579** -2.2267* 2.8961* 

 (9.34)  (6.27) (1.49)  (-2.40) (-5.40) (6.92) 

4(less) 0.3261** 0.1875 -0.4796** -1.0434* -2.6228* 2.9489* 

 (2.24) (1.61)  (-2.28) (-2.72) (9.31) (9.30) 

4-1 
 

0.1678 
(1.14) 

-0.4732* 
(-4.00) 

-0.8865* 
(-4.19) 

-1.2213* 
(-3.18) 

-2.2623* 
(-7.97) 

2.4301* 
(7.60) 
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Table 2.20. Liquidity-Risk-Adjusted Returns by Amihud (2002) Measure and Analyst Coverage. 
 
This table reports the monthly liquidity-risk-adjusted portfolio returns sorted by Amihud (2002) measure 
(Amihud) and the proxy of the limits to arbitrage (Analyst). Stocks are sorted into quintiles based on 
liquidity proxy and independently into quartiles by the limits to arbitrage proxy. Amihud (2002) measure 
(Amihud) is the monthly average of absolute value of return divided by dollar volume every day and it 
proxies for illiquidity. Analyst coverage (Analyst) is the number of analysts' estimates following a stock 
and it proxies for information uncertainty. The liquidity-risk-adjusted portfolio return and the portfolio 
liquidity-risk-factor loading are the estimated intercept αp and the estimate of the slope coefficient βp,LIQ, 
respectively, from the following regression: 

Rp − rf = αp + βp,MktMkt + βp,SMBSMB + βp,HMLHML + βp,MOMMOM + βp,LIQLIQ + εp 
where Rp is the raw return on portfolio p and rf  is the risk-free rate. Mkt, SMB, HML, and MOM are 
returns on the market, size, book-to-market, and momentum factors, respectively, from Professor Kenneth 
French’s website. LIQ is the liquidity risk factor documented in Pastor and Stambaugh (2003). The value-
weighted liquidity risk factor is downloaded from CRSP. The numbers in parentheses are the t statistics. 
The sample period is from January 1990 to December 2010. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Liquidity-risk-adjusted portfolio returns 
         Amihud 
Analyst 

1(high Amihud / 
low liquidity) 

2 3 4 5(low Amihud / 
high liquidity) 

Spread 
(1-5) 

1(more) 0.1711* 0.6928* 0.4225* 0.1801* -0.4019* 0.5730* 
 (8.74) (30.19)  (16.18) (6.15) (-10.22)  (13.04) 
2 1.1148** 6.3527** 0.0141 0.2475 -0.9564 2.0712* 
 (2.56) (2.56) (0.02) (0.32) (-1.63) (2.83) 
3 0.6181* 0.6529* 0.2293 -0.6585* -2.4094* 3.0275* 
 (8.30)  (6.09)  (1.45) (-2.78) (-5.81) (7.19) 
4(less) 0.7524** 0.2292*** -0.6067* -1.3099* -2.6499* 3.4023* 
 (2.51) (1.91)  (-2.84) (-3.43) (9.28) (8.22) 
4-1 
 

0.5813*** 
(1.94) 

-0.4636* 
(-3.79) 

-1.0292* 
(-4.78) 

-1.4900* 
(-3.89) 

-2.2480* 
(7.80) 

2.8293* 
(6.80) 
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Table 2.21. Fama-MacBeth Regression Test Results for Amihud (2002) Measure and Analyst Coverage. 
 
This table reports the slopes of the Fama-MacBeth regression:  

Rt = β0 + β1Amihudt−1 + β2Analystt + β3Amihudt−1 × Analystt + βjControls + εt 
where 𝑅𝑡 is the monthly raw stock return. Amihud (2002) measure (Amihud) is the monthly average of 
absolute value of return divided by dollar volume every day and it proxies for illiquidity. Analyst coverage 
(Analyst) is the number of analysts' estimates following a stock and it proxies for information uncertainty. 
Controls are SIZE, BM, and RET(-2,-7), which control for firm characteristics. SIZE is the market value of 
equity at the end of June of year t. Book-to-market equity (BM) is the book value of equity according to 
Fama and French (1993) at the end of fiscal year ending in calendar year t−1 divided by the market value of 
equity at the end of December of year t−1. RET(-2,-7) is the compound gross return from month t-7 to t-2. 
The regression is estimated cross-sectionally every month between January 1990 and December 2010. The 
estimates reported are the time series averages of the cross-sectional slope estimates; and t statistics based 
on the Newey-West (1987) standard errors are in parentheses. Statistical significance at the 1%, 5%, and 10% 
levels are represented by *, ** and ***, respectively. 
 

Fama-MacBeth Regression Test Results for Amihud and Analyst 
               Model 
Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 

Intercept 1.181* 1.272* 1.247* 1.102** 1.085** 

 (2.86) (2.83) (2.78) (2.32) (2.31) 
Amihud              0.205* 0.205* 0.067 0.302* 0.086 

 (2.94) (3.00) (1.12) (3.97) (0.37) 
Analyst              -0.060 -0.039 -0.035 0.016 

  (-1.01) (-0.59) (-0.66) (0.25) 
Amihud×Analyst   0.569*  0.511* 

   (3.83)  (3.01) 
SIZE    -0.498 -0.542 

    (-1.65) (-1.65) 
BM    0.356*** 0.318 

    (1.67) (1.47) 
RET(-2,-7)    0.073 -0.007 

    (0.13) (-0.01) 
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2.6. Conclusions 

 

Recent literature finds that there is a negative effect of stock liquidity on future abnormal 

stock returns, which is often referred to as the “liquidity anomaly”. It is always 

interesting to examine what causes a return anomaly and why the anomaly is not 

arbitraged away. In this paper, I do document the reason for why the liquidity anomaly is 

not arbitraged away. It is the limits to arbitrage. I consider idiosyncratic volatility as a 

proxy of arbitrage risk, which is the most important part of the limits to arbitrage, and 

also consider investor sophistication and information uncertainty as two alternative 

proxies since they both influence the limits to arbitrage. 

 

I find that the liquidity anomaly is stronger when the limits to arbitrage are more severe. 

The profitability of a strategy that utilizes the liquidity anomaly is mostly driven by the 

underperformance of the stocks of high liquidity stocks. Moreover, the anomaly is very 

weak among stocks that have low arbitrage risk, and the ease of limits to arbitrage even 

drives away the liquidity anomaly especially when I use turnover ratio as a proxy for 

liquidity or analyst coverage as a proxy for the limits to arbitrage. I further show that my 

results are not driven by liquidity risk. The findings are consistent with the mispricing 

explanation. 
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I also show that although the idiosyncratic risk can help to explain why the liquidity 

anomaly is not arbitraged away, but the real reason is the impact of the limits to arbitrage. 

Several robustness tests support my argument. This paper is also consistent with the 

literature that finds a positive relation between idiosyncratic risk and individual stock 

returns. In addition, I find that after controlling for idiosyncratic risk, “size effect” no 

longer exists. Merton (1987) explicitly points out that the findings of the “size effect” are 

due to the omitted controls for other factors such as idiosyncratic risk. The test results in 

this paper lend direct support to Merton’s prediction in this point. 

 

In summary, all the portfolio analysis results, together with the Fama-MacBeth regression 

results, prove my hypothesis that the liquidity anomaly should be more pronounced when 

there are more severe limits to arbitrage. At the same time, they support my argument 

that the limits to arbitrage are an important reason that the liquidity anomaly persists, and 

confirm the argument by Shleifer and Vishny (1997) that when arbitrage is risky and 

costly, arbitrageurs stay away from engaging in arbitrage activities. 
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