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ABSTRACT 

Obtaining hierarchical organizations of knowledge is important in many domains. To 

create such hierarchies, improved techniques for subdividing entities hierarchically ac-

cording to similarities and differences are needed. New techniques for organizing docu-

ments in hierarchies, for automatic document retrieval and for hierarchical query cluster-

ing are being made available at a fast pace. In this work, we investigate new methods to 

induce hierarchical models with the goal of obtaining better predictive models, to facili-

tate the creation of background knowledge with respect to an underlining class distribu-

tion, to obtain hierarchical groupings of a set of objects based on background knowledge 

they share, to detect sub-classes within existing class distribution, and to provide methods 

to evaluate hierarchical groupings.  The results of this effort has led to the development 

of (1) TPRTI, a new regression tree induction approach which uses turning points, candi-

dates split points computed before the recursive process takes place, to recursively split 

the node datasets; (2) PATHFINDER, a new classification tree induction capable of in-

ducing very short trees with high accuracies for the price of not classifying examples 

deemed difficult to classify; (3) AVALANCHE, a new hierarchical divisive clustering 

approach which takes as input a distance matrix and forms clusters maximizing inter-

cluster distances; (4) STAXAC, a new agglomerative clustering approach which creates 

supervised taxonomies that unlike traditional agglomerative clustering, which only uses 

proximity as the single criterion for merging, uses both proximity and class labels infor-

mation to obtain hierarchical groupings of a set of objects. We applied the techniques we 

developed, (1) to molecular phylogenetic-based taxonomy generation and found that this 

new approach and the obtained supervised taxonomies can help biologists better charac-
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terize organisms according to some characteristics of interest such as diseases, or growth 

rate; (2) to data editing; we were able to enhance the accuracy of the k-nearest neighbor 

classifier by removing minority class examples from clusters that were extracted from a 

supervised taxonomy; (3) to meta learning; we developed new algorithms that operate on 

supervised taxonomies and compute both the distribution of the classes within a dataset, 

and the difficulty of classifying examples belonging to a particular dataset. 
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Chapter 1 

Introduction 

The accessibility and increasing abundance of data today makes knowledge discovery in 

databases a matter of increasing necessity and considerable importance. Knowledge dis-

covery in databases is the process of discovering useful knowledge from large collections 

of data. A wide variety of methods has been proposed, and many more are being made 

available. Algorithms that organize datasets hierarchically and methods for analyzing, 

evaluating, and comparing the obtained hierarchies are becoming quite popular. This dis-

sertation is concerned with both problems: (1) given a collection of data objects, how to 

efficiently organize the objects in hierarchical sets with respect to some predefined objec-

tive function, and (2) given a hierarchical dataset, how to efficiently extract interesting 

knowledge from it. With respect to organizing the objects hierarchically, the grouping 

may be done in two ways: one may group the objects in relation to their relatedness to a 

given target class or one may use the objects pairwise relatedness as a criterion for group-

ing. For example, documents may be organized hierarchically based on their relatedness 

to a particular topic — target class — to facilitate their retrieval. The aim is to form hier-

archical groups based on the degree to which each document relates to the topic. In the 

second scenario, a target class is not given but instead a relationship among the objects is 

provided; for example similarity between the objects. In this case one must use that 

knowledge to organize the objects in hierarchical sets with the most closely related sets 

merged first, and the least related sets merged last. For example, a biologist may form 
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hierarchical groups of species based on pairwise similarities among them. More advanced 

rules can be used to generate hierarchical clusters such as a combination of proximity of 

the objects and their class labels. For example, we may form hierarchical groups based 

not only on proximity of gene sequences but also on the species phenotypes, or their par-

ticular properties, such as being radiation resistant, high temperature resistant, etc. The 

assumption in using an advanced criterion for grouping is that if the criterion is chosen 

carefully, some hard-to-reach background knowledge about the dataset can be revealed. 

To the best of our knowledge, approaches that use complex criteria to obtain hierarchical 

groupings have not yet been explored in the literature.  

 

The goal of this research is to investigate new methods to organize objects hierarchically 

with the aim of:  

1. Developing better predictive models capable of assigning a label to previously unseen 

examples (classification tree) or a real value to a target attribute (regression tree) with 

improved accuracy rate. 

2. Obtaining hierarchical groupings of a set of objects based on background knowledge 

they share.  

3. Facilitating the creation of background knowledge with respect to an underlining class 

distribution by detecting sub-classes within existing class distribution, by assessing the 

difficulty of classifying examples belonging to a particular dataset and by providing 

methods to evaluate hierarchical organizations. 

 

In particular, the specific contributions of this research include:  
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 1. The development of TPRTI [1], a new regression tree approach that relies on using 

turning points to split an input dataset. It uses sliding window technique to compute turn-

ing points (split-point candidates) before the recursive process takes place.  

2. The development of PATHFINDER [5], a new classification tree-induction approach 

that uses a grid-based clustering approach to first group the examples in high purity clus-

ters then defines a top down method to identify such clusters. Classification trees induced 

by this approach are capable of rejecting examples that are difficult to classify—these are 

examples that do not belong to any of the identified clusters.  

 3. The introduction of Supervised Taxonomy [4], a new approach for taxonomy genera-

tion that uses both proximity information and background information in the form of 

class labels to create a hierarchy for a given set of objects.  

4. The development of STAXAC [4], a supervised taxonomy generating algorithm that 

uses a bottom up approach to develop the hierarchical tree (maximizing purity at each 

step of the merging process). 

5. The development of HC-edit [3], a data-editing approach for the k-NN classifier which 

improves the accuracy of the k-NN classifier by first generating supervised taxonomies 

from the input dataset then uses information from the tree to edit the dataset. 

6. The development of AVALANCHE [2], a new divisive hierarchical clustering that uses 

a distance matrix dataset as its input. To the best of our knowledge, AVALANCHE is the 

first hierarchical divisive algorithm of this kind.  

 7. The development of EUREKA[4], a series of algorithms that  operate on supervised 

taxonomies and create background knowledge about a dataset, such as characterizing the 
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distribution of the classes within a dataset, addressing the question if particular classes in 

the dataset are  uni- or multi-modal, and  assessing the difficulty of classifying the exam-

ples belonging to a particular dataset.  

 

The dissertation is organized as follows. Chapter 2 discusses the TPRTI approach to Lin-

ear Regression Tree construction. Chapter 3 introduces the PATHFINDER approach to 

Classification Tree induction and chapter 4 discusses AVALANCHE, a new divisive ap-

proach to hierarchical clustering. Chapter 5 introduces Supervised Taxonomy, a new ap-

proach to taxonomy generation, its associated STAXAC algorithm, and methods for gen-

erating background knowledge from a dataset. Chapter 6 describes the HC-edit algorithm 

while chapter 7 provides summary of our work and proposes directions for future work.  
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Chapter 2 

TPRTI: Using Turning Point Detection to Obtain Better Re-

gression Trees
1
 

 

2.1. Introduction 

Regression trees are widely used machine learning techniques for numerical prediction. 

Among the regression trees, we may distinguish those that associate a constant to each 

leaf node, for instance CART [2], and those that fit a less-trivial model to each leaf node. 

Among the latter, we further distinguish a class of regression trees that fit a linear model 

to each leaf node, such as linear regression trees.  Linear regression tree induction has 

been intensely researched. One of the first approaches, M5[12], induces the tree using a 

CART-like splitting decision which is a binary split based on mean values and uses con-

stant-regression functions in the nodes; the attribute that best reduces the variance in the 

nodes is chosen for the split, and its mean value is selected as the split value. After the 

tree is fully developed M5 fits a linear model to each leaf-node during pruning phase. 

This splitting method is also used by many regression approaches which associate non-

constant models with the leaf-nodes. However, in conjunction with non-constant regres-

sion models, using mean values of attributes as split points and using variance reduction 

as an objective function does not necessarily obtain the best model [7]. 

 

                                                 
1Published in Proceeding of International Conference on Machine Learning and Data Mining (MLDM), New York 

City, New York, July 2013.  
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To address this issue, Karalic proposed RETIS [7] which fits a linear model in each node 

and uses minimization of the residual sum of squared errors (RSS) instead of the variance 

as splitting function. However, although the approach yields significantly better accuracy 

and smaller regression trees than M5 [12], it has been labeled “intractable” because to 

find the best pair {split attribute/split value} all potential split-values for each input at-

tribute need be evaluated, making this approach too expensive even for medium-sized 

datasets. Therefore, many more scalable algorithms for inducing linear regression trees 

have been proposed [1, 5, 6, 7, 11, 12, 15, 17] which rely on heuristics, sampling, approx-

imations, and different node evaluation functions to reduce the computational cost of the 

RETIS algorithm.  

 

Detecting turning points which indicate locations where the general trend changes direc-

tion can be useful in many applications. In this chapter, we propose a new approach for 

Linear Regression Tree construction called Turning Point Regression Tree Induction 

(TPRTI) that infuses turning points into a regression tree induction algorithm to achieve 

improved scalability while maintaining accuracy and low-model complexity. TPRTI in-

duces decision trees using the following procedure. First, a general trend is derived from 

the dataset by dividing the dataset into a sequence of subsets of equal size using a sliding 

window, and by associating a centroid with each subset. Second, using those centroids, a 

set of turning points is identified, indicating points in the input space in which the piece-

wise linear function associated with neighboring subsets changes direction. Finally, the 

identified turning points are used in two novel top-down linear regression tree induction 
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algorithms as potential split points. The two algorithms which are called TPRTI-A and 

TPRTI-B are discussed in section 2. 

 

Fig. 2.1 illustrates our proposed approach to detecting turning points. The input dataset is 

shown in panel (A). In panel (B), the dataset is sorted by the input attribute and divided 

into subsets of equal size using a sliding window approach. In panel (C), the general 

trend in the dataset is derived by connecting the centroids of neighboring subsets, obtain-

ing a piecewise linear function. Finally, in panel (D), points m1 and m3 are selected as 

turning points as they exhibit sharp turns in the piecewise linear function. The selected 

turning points are later fed to a linear regression tree algorithm as potential split points. 

Algorithm 1 gives the pseudo code of turning point detection algorithm.   

 
Fig. 2.1. Illustrating how the turning points are detected. Panel (A) represents hypothetical dataset 

in a plane (x,y). (B) The dataset is subdivided into overlapping subsets of equal size. (C) Cen-

troids are joined by straight lines to form a general trend in the dataset. In panel (D) m1 and m3 

are detected as turning points. 

 

 

Panel (A) represents hypothetical dataset in a plane (x,y). (B) The dataset is subdivided 

into overlapping subsets of equal size. (C) Centroids are joined by straight lines to form a 
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general trend in the dataset. In panel (D) m1 and m3 are detected as turning points. 

 

Algorithm 1: Determining turning points 

1 Inputs: 

2  plane (Xk,Y) where Xk’s  are input attributes (k=1,2,..p) 

3 Xk; real valued discrete or continuous variable 

4  Y: target variable  

5 Outputs: 

6  Turning points set 

7 

8 Project dataset onto each plane (Xk,Y) 

9  For each plane (Xk,Y) 

10       Sort the data per attribute Xk  

11       IF Xk discrete attribute THEN 

12               Compute centroids for each distinct value of Xk  

13  Label centroids as turning points   

14       ELSE 

15  Use a sliding window of fixed size subsets for the input attribute to split the data 

                          into neighboring subsets from small values of Xk
 
to the largest value of Xk  

16  Determine general trends by computing the centroids of each subset and connect 

                          them to obtain piecewise linear functions 

17  Identify turning points by analyzing the angle θ between neighboring subsets of  

                          the piecewise linear function 

18 Output the set of turning points 
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The main contributions of this research include: 

1. A novel approach for turning-point detection which relies on window sub-setting is 

introduced. 

2. Two novel linear regression tree induction algorithms called TPRTI-A and TPRTI-B 

which incorporate turning points into the node evaluation are introduced. 

3. State-of-the-art linear regression tree algorithms are compared with each other and 

with TPRTI-A and TPRTI-B for a challenging benchmark involving 12 datasets. 

4. The experimental results indicate that TPRTI is a scalable algorithm that is capable of 

obtaining a high-predictive accuracy using smaller decision trees than other ap-

proaches. 

 

The rest of the chapter is organized as follows.  Section 2 contains the description of our 

proposed methods for linear regression trees. In section 3, we show results of experi-

mental study and we conclude in Section 4. 

 

Table 2.1. Notations used in the remainder of the chapter 

K 
User defined overlapping parameter characterizing the number of examples pertaining 

to two consecutive subsets.  

S  Size of each subset 

θ Angle at a centroid  

β 
 User-defined threshold angle such that if cosθ  < cosβ then the centroid with angle θ is 

a turning point 

StpXY Set of turning points in the XY-plane  

Stp  Union of all StpXY (for all planes) 

Stp_left Turning Points set for left sub-node such that Stp=Stp_left  Stp_right 

Stp_right Turning Point set for right sub-node such that Stp=Stp_left  Stp_right 

RSS Residual Sum of Squared errors 
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2.2. Related Work 

Linear regression algorithms can be divided into three groups: The first group fits a con-

stant regression model to each intermediate node. M5 [12] is an example of this ap-

proach. The second group fits a more complex regression model to each node; usually at 

least a model is needed per input attribute. RETIS [7] is one such example since it fits 

multiple regression models per input attribute; one regression model for each distinct val-

ue of each input attribute. The third group uses linear regression models in the leaves, but 

at each node transforms the regression problem into a classification problem in order to 

use more efficient node evaluation function. SECRET [5], GUIDE [9], and SUPPORT 

[3], are examples of such approaches. Each group can be distinguished by how well it 

performs with respect to model accuracy, model complexity, and runtime complexity, 

which is how scalable the approach is when data sizes increase. To evaluate a node, the 

first group is computationally more efficient since the evaluation function in each node is 

the simplest; however it often yields complex models and low accuracy. The second 

group has a much better accuracy, and model complexity but it comes at the expense of a 

higher-cost node evaluation. Between both ends of the spectrum lies the third group. The 

major limitation of the first group of algorithms is illustrated next. 

 

2.2.1. Illustrating the Limitations of the Variance-Based Approaches 

Many widely used first-group algorithms use variance as node evaluation function and 

we will refer to them as “variance-based approaches”. M5 is one such an example. As 

pointed out in [7], variance based algorithms have a fundamental imperfection to induce 

linear regression trees that are optimal because the variance is not a good node-evaluation 
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criterion. To illustrate this point, let us consider a dataset called dataset#2 whose instanc-

es were generated with respect to the function defined below without using any noise, 

assuming a uniform distribution of input values x1 in [0,250]: x1 ∈ [0,250] and  x2=0, 

and y ∈  𝑅 

{
𝑦 = 𝑥1;                 𝑖𝑓 0 ≤ 𝑥1 < 50

𝑦 = 100 − 𝑥1;         𝑖𝑓 50 ≤ 𝑥1 < 250
 

 

It is clear that the best split value is located at x1=50. The variance based approaches, like 

M5, will split at x1=125 (the mean value of x1) leading to the necessity to introduce fur-

ther possible split to the data in the left node. RETIS however, which tests each distinct 

value of the input variable x1, selects the optimal split value 50. 

 

 
Fig. 2.2. Illustrating the imperfection of the M5 node-split method. M5 splits at x1=150 

which is not optimum. Optimum split point is x1=50. 
 

As pointed out earlier, many second-group approaches like RETIS yield more accurate, 

and shorter linear regression trees but do not scale well to large dataset.  Likewise, the 

third group of approaches resolves the scalability issue of RETIS but at a cost to accuracy 

and/or model complexity. 
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2.3. The TPRTI Approach 

In this chapter, we use the term “look-ahead RSS” to mean the following: First, the da-

taset associated with current node is split into two sub-sets; one pertaining to each sub-

node. Second, each sub-node is fitted with a linear regression model and the Residual 

Sum-of-Squared errors (RSS) are computed for both nodes. Next, a weighted sum of both 

RSS is computed. This is done for all potential split pairs {attribute variable, attribute 

value} available. One such split is retained and the rest discarded. Likewise, we use the 

term “split point” to designate the pair {split attribute, split-attribute value}. We also use 

it to refer to the actual point in the plane, or point in the input space. When used as a 

point in a plane, it refers to the pair (xq,y) where xq is one of the input variables, q ∈ 

{1,..p}. When used to mean a point in the input space, it refers to a tuple; (x,y) where x is 

an input vector (x1, ..xp) and y the associate response. Key notations used in the remain-

der of the chapter are provided in Table 2.1. Algorithm1 presents the turning-point-

detection approach. We provide next, in section 2.2 detailed description of how turning 

points are computed. 

 

2.3.1. Centroids and Turning Points Computation  

First, a general trend is derived from the dataset by sorting the examples based on the 

input attributes, by dividing the dataset into subsets of equal size using a sliding window, 

and by associating a centroid with each subset. Second, using those centroids, a set of 

turning points is identified, indicating points in the input space in which the piecewise 
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linear function, which was obtained by connecting centroids of neighboring subsets, sig-

nificantly changes direction. 

 

The input attributes to the algorithm are real-valued attributes that are either discrete or 

continuous. Lines 8, 9, and 10 in algorithm 1 project the dataset onto the p xky-planes 

(k=1,..,p). For the remaining of the lines, line 11 to 17, we consider one plane at a time. 

Line 10 ensures that the dataset associated with the plane is sorted with respect to the in-

put attribute. Lines 11, 12, and 13 treat the case of discrete attributes. First, the algorithm 

queries the distinct values of the discrete attribute. It then computes the centroids for each 

attribute. Next, each centroid is labeled turning point.  

Lines 14 to 17 treat the case where the input attribute is continuous. There are three user-

defined parameters K, S, β that need to be set. Let assume that a centroid has angle θ.  β 

is a user-defined angle such that if cos𝜃 < cos 𝛽 then the centroid is a turning point. K is 

the over-lapping parameter characterizing the number of examples pertaining to two con-

secutive subsets. S is the size of each subset. In line 15 subsets of equal size S are created 

using the sorted dataset as follows: S0 is composed of the first S examples. At any given 

step i, (i>0), the examples in subset Si are determined by dropping the first K examples in 

Si-1 and by adding the next K new examples. When K=S, the subsets are disjoint. When 

0<K< S the subsets overlap. In line 17 turning points are computed for each plane by ana-

lyzing the angle at each centroid.  
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2.3.2. Node Evaluation 

We introduce TPRTI-A, which is a mixture of the first group and second group approach 

in that its node evaluation avoids exhaustive search by evaluating only a supplied list of 

turning points. We also introduce TPRTI-B which is a mixture of all 3 groups in that it 

uses a two-step node evaluation. It avoids exhaustive search by evaluating only a sup-

plied set of turning points. It first fits a model to the current node, and uses a simple eval-

uation function which is the distance of each turning point to the fitted model. The turn-

ing-point with the largest distance is selected to split the node. TPRTI-A and TPRTI-B 

differ by their node evaluation function. They both use as input, a set of predetermined 

turning points. 

 

2.3.2.1 Node Evaluation for TPRTI-A 

The first approach, TPRTI-A, evaluates all turning points by a look-ahead strategy and 

selects the one that yields the minimum RSS.  

 
Algorithm 2: Node evaluation for TPRTI-A 

1. Inputs: StpXY: Set of all turning points in the XY-plane 

2.  Stp: Union of all StpXY (for all planes) 

3.  TPXY(x,y): Turning point in the XY-plane with coordinate (x,y) 

4. Outputs: Left_Stp, Right_Stp; left and right node datasets  

5. IF stopping criteria is reached THEN 

6.     RETURN 

7. FOR each StpXY in Stp  

8.    FOR each TPXY(x,y) in StpXY  

9.      Split data in SLeft and Sright   
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10.      Compute look-ahead weighted RSS 

11. Select the turning point (xα,yα) that minimizes weighted RSS for the split  

12. Split Stp into Left_Stp, and Right_Stp based on xα  

 

 

2.3.2.2. Node Evaluation for TPRTI-B  

The second approach, TPRTI-B, is a multi-step evaluation approach. With this approach, 

first the current node is fitted with a model and the distances of the turning points (actual 

tuples) to the fitted model are computed. The turning point for which the distance to the 

model is the largest is selected as split point. Next, each coordinate (value of input attrib-

utes) of the split point needs be evaluated by a look-ahead RSS minimization method to 

determine the best pair {split variable, split value}. That is, in contrast to TPRTI-A, only 

a single split value per input attribute and not a set of split values is considered; reducing 

runtime complexity. Fig. 2.3 illustrates the general idea. In Fig. 2.3, the dotted line repre-

sents a linear model F fitted to current node. In this hypothetical node, the turning point 

set has three turning points TP1, TP2, and TP3. We assume d1 < d2 and d3 < d2. Hence, 

TP2(x21,x22,y2) is chosen as split point. Its coordinates x1= x21, and x2= x22 need next, to 

be evaluated to select the pair {split variable, split value} that best minimizes RSS. Algo-

rithm 3 summarizes the concept. 
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Fig. 2.3. Illustrating the node-evaluation of TPRTI-B. We assume d1 < d2 and d3 < d2. 

Hence, TP2(x21,x22,y2) is chosen as split point because it is the turning point further away 

from the fitted model F 

 

In Fig. 2.3, the dotted line is a model fitted to current node. TP2 is selected as a split 

point because it is the turning point further away from the fitted-model F. 

 

Algorithm 3: Node evaluation for TPRTI-B 

1.  IF stopping criteria is reached then  

2.     RETURN 

3.  Fit current node with linear model F  

4.  FOR each turning point tp in Stp 

5.      Compute distance to F 

6.  Select tp_max the point with the largest distance to F 

7.  FOR each input coordinate of tp_max 

8.      Split data in SLeft and Sright 

9.      Compute look-ahead weighted RSS  

10.  Select the turning point that minimizes weighted RSS as split point 

11.  Split Stp into Left_Stp, and Right_Stp 
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In line 3, a model F is fitted to the node.  Lines 4, 5, and 6 select the point with the largest 

distance to F. Line 7 to 11 are similar to what was presented for TPRTI-A in 2.3.2.1 ex-

cept that here the points are represented in the actual space; not in a plane. Hence, the 

turning points set Stp, although computed as presented previously in algorithm 1, is 

formed of points with their coordinates in the data space. This is so because line 5 needs 

to compute the distance to F in the entire input space.  

 

2.3.3. Runtime Complexity 

We compute the runtime cost to evaluate a node. Let n be the total number of training 

examples in the node, m, the number of subsets, p the number of input attributes, and t 

total number of turning points. Assuming n>>p, evaluating each split candidate costs 

O(p
2
n); If TPRTI-A method is used, all the turning points are evaluated and the cost to 

evaluate a node is O(p
2
nt). If TPRTI-B is used, the distance of each turning point in the 

data space to the fitted curve cost O(p) which leads to O(pt) for the t turning points. 

O(p
2
n) is needed to evaluate each of the p input attribute, and O(p

2
n) is as well needed to 

fit a model to the current node; obtaining: O(pt+p
2
n+np

3
) =O(p

2
n(p+1)) . With M5, the 

split point is the mean point of each p variable. Hence, t=p obtaining O(p
3
n); In the worst 

case, RETIS will test each value of each variable leading to t=pn ; thus O(p
3
n

2
). TPRTI-A 

worse case happens when each centroid is a turning point; which leads to t=pm, hence, 

O(p
3
nm). Table 2.2 summarizes the runtime complexity of each approach. 

 

Table 2.2. Node runtime complexity of TPRTI in comparison to M5 and RETIS 

 RETIS TPRTI-A TPRTI-B M5 

Runtime complexity O(p
3
n

2
) O(p

3
nm) O(p

2
n(p+1))   O(p

3
n) 
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2.3.4. Stopping Criteria 

RETIS, M5 and TPRTI share the following stopping criteria: The algorithm stops if the 

number of examples in the node is less than a minimum number set by user. The algo-

rithm stops if the subsequent split sub-nodes do not improve the error function more than 

a minimum value set by user. However, TPRTI has an additional stopping condition: The 

algorithm may terminate if there is no more turning points in the node dataset to evaluate. 

 

2.4. Experimental Evaluation  

In this section, results of extensive experimental study of TPRTI-A and TPRTI-B are 

provided. We compare both algorithms with each other and against the well-known M5 

[12], SECRET [5], GUIDE [9], and RETIS [7] algorithms in term of accuracy, scalabil-

ity, and model complexity. The experimental result published in [5], for GUIDE and 

SECRET, two state-of-the-art scalable linear regression tree induction algorithms are 

used in this study for comparison. The GUIDE and SECRET algorithms were built to be 

both fast and accurate. Model complexity results for previously used datasets were not 

available for comparison. We performed all the experiments reported in this chapter on a 

64-bit PC i7-2630 CPU at 2 Ghz running Windows 7.  

 

2.4.1. Datasets 

Five artificial and 7 real-world datasets were used in the experiments; Table 2.3 and 2.4 

give a summary for the 12 datasets. The last column in both tables contains in parenthesis 

the number of attributes. 
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Table 2.3. Artificial datasets 

Dataset Description 

 

Number 

of exam-

ples 

dataset 

#1 

 

x1, x2 are the input variables and y the output variable; x1 ∈ R ,x2 ∈ R, 

y∈ R 

{
Y = − 2 ∗ x1           if  0 ≤ x1 < 100 and x2 = 0   

Y =  −700 + 5 ∗ x1 if  100 ≤ x1 < 200 and x2 = 0
Y = 300 − 3 ∗ x2     if  0 ≤ x2 < 100 and x1 = 200  

 

300 (3) 

 

dataset 

#2 
x1 ∈ [0,250] and  x2=0, and y ∈  𝑅 

{
𝑦 = 𝑥1;                 𝑖𝑓 0 ≤ 𝑥1 < 50

𝑦 = 100 − 𝑥1;         𝑖𝑓 50 ≤ 𝑥1 < 250
 

2500 (3) 

 

CART 

dataset 

This dataset was found in [2] with 10 predictor attributes:X1 ϵ {−1, 1} 

with equal probability that X1 =1 or X1 = -1; Xi ϵ {−1, 0, 1},  with i ϵ {2, 

. . ,10}  and the predicted attribute y determined by 

{
𝑌 =  3 +  3𝑋2 +  2𝑋3 +  𝑋4      𝑖𝑓 𝑥1 = 1
𝑌 =  −3 +  3𝑋5 +  2𝑋6 + 𝑋7    𝑖𝑓 𝑥 = −1

 

A random noise 𝜀  between [-2 and 2] was added to Y 

750 (11) 

 

3DSin 

dataset 

This dataset has two continuous predictor attributes x1, x2 uniformly 

distributed in interval [−3, 3] determined by Y = 3 sin(X1) sin(X2). 

500(3) 

 

Fried 

dataset 

 

This dataset has 10 continuous predictor attributes with independent val-

ues uniformly distributed in the interval [0, 1] Y = 10 sin(πX1X2) + 

20(X3−0.5)
2
 + 10X4+5X5;A random noise 𝜀 between [-1;1] was added 

700(11) 

 

 

Table 2.4. Real world datasets 

Dataset Description Number of exam-

ples(number of attrib-

utes) 

Abalone This dataset was obtained from UCI [16] machine learn-

ing repository. 

4177 (8) 

Auto-mpg This dataset obtained from UCI [16] repository. Tuples 

with missing data were removed. 

392 (8) 

Boston Hous-

ing 

This dataset obtained from UCI[16]  repository 506 (14) 

Kin8nm This dataset was obtained from the DELVE [4] reposi-

tory. 

8192 (9) 

Normalized 

Auto-mpg 

This is the auto-mpg dataset from UCI [16]  repository 

that has been normalized with z-score values 

392 (8) 

STOCK This dataset is from SatLib [14]  . The dataset contains 

950 examples. However, the first tuple was removed 

because it did not appear correctly formatted 

949 (10) 

Tecator  This dataset originated from the StatLib [14] repos-

itory. 

240 (11) 
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2.4.2. Experimental Methodology 

All the experiments were done with a 10-fold cross validation and repeated 10 times with 

different seeds for each run. The average values are reported in Table 2.7 along with cor-

responding standard deviation. Five artificial datasets were used three of which were pre-

viously used and results for GUIDE and SECRET are available in [5]. We also used 7 

real world datasets of which 6 were previously used and results for GUIDE and SECRET 

available in [5]. The datasets which have not been previously used are dataset#1, da-

taset#2, and the normalized auto mpg dataset. We implemented TPRTI making use of R 

software [13] libraries. We run M5 using Weka [18]. R and Weka are publicly available 

software. Our implementation of RETIS relies on running TPRTI-A with all input attrib-

utes set as discrete attributes. Input parameters and stopping rules used for the experi-

ments are in Table 2.5. 

 

Table 2.5. Input and stopping parameters for TPRTI 

 TPRTI-A TPRTI-B 

 Input parame-

ters 

*Stopping rules Input parame-

ters 

Stopping rules 

 Subset 

Size 

cos 

β 

Min. Node 

Size (in %) 

Min. RSS 

imp.(in%) 

Subset 

size 

cos 

β 

Min. Node 

Size (in %) 

Min. RSS 

imp. (in %) 

Dataset #1 3 0.8 10 10 3 0.8 10 10 

Dataset #2 9 0.8 10 10 9 0.8 10 10 

CART 5 0.8 10 10 5 0.8 10 10 

3DSin 4 0.8 10 10 5 0.8 10 10 

Fried 3 0.85 10 10 3 0.85 10 10 

Abalone 55 0.8 10 10 21 0.8 10 10 

Auto mpg 4 0.85 10 10 4 0.85 10 10 

Boston Hous-

ing 

14 0.8 12 12 14 85 12 12 

Normalized   

auto mpg (z-

score) 

4 0.85 10 10 4 0.85 10 10 

Stock Data 4 0.8 10 10 13 0.85 10 10 

Tecator 8 0.8 10 10 21 0.7 10 10 
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Kin8nm 250 0.95 3 1 250 0.95 3 1 

*Stopping rules: The stopping parameters set for TPRTI-A are same parameters used for RETIS.  

 

For each dataset, different input parameters and stopping rules were used for TPRTI-A 

and TPRTI-B. Table 2.5 summarizes the parameters used for each dataset where cosβ is 

the cosine threshold used to determine the turning points, “Min. Node Size” is the mini-

mum- required size of a node expressed as 100*(current node size)/(initial dataset), and 

“Min. RSS imp.” is the minimum-improvement of the sum of the weighted RSS of both 

sub-nodes required to split a node. It is expressed as 100*(Parent RSS - weighted sum of 

children nodes RSS)/Parent RSS. The input parameter “Subset Size” is used to subdivide 

the input data into subsets of equal size in order to compute the centroids.  RETIS was 

run without post pruning.  

 

2.4.3. Results 

Accuracy was measured by the MSE (Mean Squared Error). Model Complexity was 

measured by the number of leaf-nodes. However, a bad model may have small number of 

leaf-nodes. Thus complexity was slightly redefined as number of times an approach ob-

tained the combination (best accuracy, fewest leaf-nodes). Both the number of leaf-nodes 

and MSE are provided as μ ± c where μ is the average MSE (or number of leaf-node) and 

c the standard deviation over several runs. Let μ1 ± c1 and μ2 ± c2 be two results such that 

μ1 < μ2. We consider a tie between the two results if μ1 + c1 > μ2. Both accuracy and num-

ber of leaf-nodes are reported in Table 2.7 with the number of leaf-nodes in parenthesis. 

The main findings of our study are provided in 2.4.3.1, 2.4.3.2, and 2.4.3.3. 
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2.4.3.1. Model Accuracy  

 

Table 2.6. Comparison between TPRTI and state-of-the-art approaches with respect to accuracy 

 M5 TPRTI-A TPRTI-B RETIS GUIDE SECRET 

TPRTI-A (6/5/1) - (4/6/2) (4/6/0) (5/1/2) (4/2/2) 

TPRTI-B (4/6/2) (2/6/4) - (3/7/0) (5/1/2) (1/4/3) 

 

TPRTI-A, and TPRTI-B are compared with the approaches in the columns. The number 

in each cell denotes (number of wins/number of ties/number of losses). For example, 

(6/5/1) in the first column of the first row means that TPRTI-A is more accurate than M5 

on 6 datasets, ties M5 on 5 datasets and loses on 1 dataset. Overall, TPRTI yields compa-

rable result as or slightly better result than RETIS. It has better accuracy than GUIDE and 

SECRET. 

 

Table 2.7. Accuracy results 

 M5 RETIS GUIDE SECRET TPRTI-A TPRTI-B 

Dataset #1 446.899 

±36.45 

(11±0.00) 

0.000 ±0.0000 
(3±0.00) 

N.A N.A 0.089 ±0.0000 

(3±0.00) 

0.089 ±0.0000 

(3±0.00) 

Dataset #2 4.75 ±0.239 

(11±0.00) 
0.000 ±0.0000 

(2±0.00) 

N.A N.A 0.000 ±0.0000 

(2±0.00) 

0.000 ±0.0000 

(2±0.00) 

CART 0.0932 

±0.0009 

(2±0.00) 

0.085 ±0.0125 

(4.1±0.32) 

N.A N.A 0.07614 

±0.0100 

(4.1±0.32) 

0.098±0.33 

(6.1±0.32) 

3DSin 0.001 

±0.0002 

(20±0.00) 

0.01 ±0.0074 

(4±0.00) 

0.0448 

±0.0018 

0.0384 

±0.0026 

0.0074 ±0.01 

(4±0.00) 

0.0063 ±0.01 

(3±0.00) 

Fried 4.888 

±0.1536 

(3±0.00) 

4.773 ±0.3893 

(3±0.00) 

1.21 

±0.0000 

1.26 

±0.010 

3.1114 ±0.80 

(4±0.00) 

1.4968 ±0.60 

(6.7±0.48) 

Abalone 4.691 

±0.586 

(2±0.00) 

*N.A 4.63 

±0.04 

4.67 

±0.04 

4.3806 ±2.71 

(4±0.00) 
4.1527±2.59 
(5.1±0.45) 

Auto mpg 8.507 

±0.3105 

(5±0.00) 

8.8470 

±7.2183 

(3.1±0.32) 

34.92 

±21.92 

15.88 

±0.68 
7.6021 ±6.33 

(5±0.00) 

8.4493 ±6.39 

(4.6±0.52) 

Boston  28.839 24.569±20.090 40.63 24.01 16.0922±10.29 19.6237 ±9.24 
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Housing ±30.889 

(10±0.00) 
(4.2 ±0.92) ±6.63 ±0.69 (5.5±0.53) (4.8±0.92) 

Normalized 

Auto mpg  (z-

score) 

0.139 

±0.0051 

(5±0.00) 

0.1186±0.0895 

(4.0 ±0.00) 

N.A N.A 0.1169 ±0.07 

(3.8±0.63) 

0.1342 ±0.09 

(4.7±0.82) 

Stock Data 1.038 

±0.100 

(19±0.00) 

11.977±7.884 

(3.9 ±0.32) 

1.49 

±0.09 

1.35 

±0.05 
0.2067 ±0.10 

(3±0.47) 

4.8867 ±3.09 

(4.9±0.88) 

Tecator 9.451 

±2.9519 

(6±0.00) 

6.6310±6.3036 

(5.4 ±0.51) 

13.46 

±0.72 

12.08 

±0.53 
2.8315 ±1.412 

(3.1 ±0.31) 

7.1266 ±8.20 

(6.4±0.70) 

Kin8nm 0.030 

±0.0009 

(24±0.00) 

*N.A. 0.0235 

±0.0002 
0.0222 

±0.0002 

0.0303 ±0.001 

(5.33±0.57) 

0.0227±0.0020 

(25.5±0.17) 

*N.A is used to express the fact that the program runs more than 3 hours without outputting a 

result or runs out of memory whereas N.A is used to express the fact that the result is not availa-

ble. 

 

2.4.3.2. Model Complexity  

In this study, we consider a linear regression model to have a good model-complexity 

when it is both accurate and has a small number of leaf nodes. Table 2.8, which is com-

piled from Table 2.7, presents the number of cases where an approach obtained both best 

accuracy and fewest nodes at the same time. 

 

Table 2.8. Number of time an approach obtained the combination (best accuracy, fewest leaf 

nodes) for a dataset 

M5 TPRTI-A TPRTI-B RETIS GUIDE SECRET 

0 5 3 5 N.A N.A 

 

RETIS and TPRTI-A won the combination (best accuracy, fewest leaf nodes) five times 

while M5 never won, and TPRTI-B won 3 times. This suggests that TPRTI hold compa-

rable model complexity as RETIS.  
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2.4.3.3. Model Scalability  

We use a direct comparison of runtime in seconds for TPRTI-A, TPRTI-B, and RETIS 

because they were implemented and run in the same machine. We use an indirect com-

parison to compare the different approaches. The indirect comparison consists of setting a 

baseline dataset size, and measuring the percent increase in runtime in relation to percent 

increase in baseline-dataset size. Fig. 2.4 summarizes our findings. TPRTI-B outperforms 

M5 consistently on all dataset sizes and number of input attribute. This suggests that 

TPRTI-B is a more scalable approach than M5. This is because models generated by 

TPRTI tend to have fewer nodes. On small to medium size datasets, there are no signifi-

cant differences between TPRTI and SECRET. Overall SECRET outperforms TPRTI 

consistently on all dataset sizes. Fig. 2.5 summarizes our result for the direct comparison. 

In Fig. 2.5, Panel (A) shows that RETIS has the worst performance even on dataset with 

small number of input attribute. Panel (B) provides evidence that as the number of input 

attribute increases, performance decreases. Panel(C) and (D) demonstrate that TPRTI-B 

consistently outperform TPRTI-A. 

  
Fig. 2.4. Indirect runtime comparison: Percent increase in baseline dataset size and the 

resulting percent increase in runtime with baseline size set to 250 examples 
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Fig. 2.5. Direct runtime comparison among TPRTI-A, TPRTI-B and RETIS 

 

2.5. Conclusion 

This research proposes a new approach for Linear Regression Tree construction called 

Turning Point Regression Tree Induction (TPRTI) that infuses turning points into a re-

gression tree induction algorithm to achieve improved scalability while maintaining high 

accuracy and low model complexity. Two novel linear regression tree induction algo-

rithms called TPRTI-A and TPRTI-B which incorporate turning points into the node 

evaluation were introduced and experimental results indicate that TPRTI is a scalable 

algorithm that is capable of obtaining a high predictive accuracy using smaller decision 

trees than other approaches. 

 

 

 



26 

 

References 

1. W.P. Alexander and S.D. Grimshaw; “Treed regression”; Journal of Computational and 

Graphical Statistics, 5:156-175, 1996.  

 

2. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone; “Classification and Regres-

sion Trees”; Wadsworth, Belmont, 1984. 

 

3. P. Chaudhuri, M.-C. Huang, W.-Y. Loh, and R. Yao; “Piecewise-polynomial regression 

trees”;  Statistica Sinica, 4:143–167, 1994. 

 

4. DELVE repository of data http://www.cs.toronto.edu/~delve/ as of 12/04/2012. 

 

5. Alin Dobra, Johannes Gehrke; “SECRET:a scalable linear regression tree algorithm”; In 

Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining -2002. 

 

6. J. Friedman; “Multivariate adaptive regression splines (with discussion)”; Annals of Sta-

tistics, 19:1-142, 1991. 

 

7. A. Karalic;“Employing linear regression in regression tree leaves”; In European Confer-

ence on Artificial Intelligence, pages 440-441, 1992. 

 

8. Li, K.C., Lue, H.H., Chen, C.H.; “Interactive Tree-Structured Regression via Principal 

Hessian Directions”; Journal of the American Statistical Association, vol. 95, pp. 547-

560, 2000. 

 

9. W.-Y. Loh; “Regression trees with unbiased variable selection and interaction detec-

tion”; Statistica Sinica, 12:361-386, 2002. 

 

10. Loh, W.-Y., and Shih, Y.-S. (1997); “Split Selection Methods for Classification Trees”; 

Statistica Sinica, Vol.7, 1997, pp. 815-840. 

 

11. D. Malerba, F. Esposito, M. Ceci, and A. Appice; “Top-down induction of model trees 

with regression and splitting nodes”; IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 26(5):612-625, 2004. 

 

12. J. R. Quinlan; “Learning with Continuous Classes”; In 5th Australian Joint Conference 

on Artificial Intelligence, pages 343–348, 1992. 

 

13. http://www.r-project.org/ The R Project for Statistical Computing official website as of 

8/8/2012. 

 

14. StatLib repository (Dataset Archive) at http://lib.stat.cmu.edu/datasets/ as of 12/04/2013. 

 

15. L. Torgo; “Functional models for regression tree leaves”; In Proc. 14th International 

Conference on Machine Learning, pages 385–393. Morgan Kaufmann, 1997. 

16. UCI repository at http://archive.ics.uci.edu/ml/datasets.html as of 12/04/2012. 

 

http://archive.ics.uci.edu/ml/datasets.html%20as%20of%2012/04/2012


27 

 

17. David S. Vogel, Ognian Asparouhov, Tobias Scheffer; “Scalable Look-Ahead Linear Re-

gression Trees”; KDD International Conference on Knowledge Discovery and Data Min-

ing, August 12–15, 2007, San Jose, California, USA. 

 

18. http://www.cs.waikato.ac.nz/ml/weka/; Weka software official website as of 8/8/2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

Chapter 3 

PATHFINDER: A New Bivariate Decision Tree Induction 

Approach 

 

3.1. Introduction 

Decision trees are very important tools for many applications involving prediction such 

as weather, and financial forecasting. The earlier approaches use a top down hierarchical 

split strategies based on a single attribute tests [3, 8].  This strategy yields axis-parallel 

hyperplanes. These simple univariate tests are convenient because a domain expert can 

easily interpret the decision trees, but they may result in complex trees. Oblique decision 

trees, on the other hand, [13, 4, 5], use multivariate tests that are not necessarily parallel 

to the axes, and, in some cases yield much smaller and more accurate trees. However, 

oblique trees are not as popular as the axis-parallel trees because the tests are more diffi-

cult to interpret, and require greater computational resources than the axis-parallel algo-

rithms. At each node, oblique tree inducing approaches split the node dataset in two sub-

nodes by cutting through the entire input space with an oblique hyperplanes. Oblique 

methods, just like their axis-parallel counterparts, often generate small regions next to a 

larger region in a single node which may lead to sub-optimal accuracy.   

 

This research proposes PATHFINDER, a new decision tree induction approach that uses 

piecewise oblique linear segments (pieces of hyperplanes) to split the node dataset at-
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tempting to avoid splitting high density regions with respect to a single class.  By using 

pieces of oblique segments (rather than oblique lines) to locally construct decision 

boundaries separating neighboring regions dominated by different classes, the number of 

node splits can be reduced; which in turn can improve accuracy and reduce tree complex-

ity. When PATHFINDER is used, it first clusters the dataset into clusters of high purities, 

then using piecewise linear segments in planes formed by pairs of attributes, it locally 

splits “opposed clusters”, attempting to keep a maximum number of clusters un-split. 

Opposed clusters are neighboring clusters whose majority of examples pertains to differ-

ent classes.  To illustrate, let us consider the hypothetical 3-classes dataset in 2D (Fig. 

3.1) formed by three regions of high purities C1, C2, and C3 with three different dominant 

classes (c1, c2, and c3). It is further assumed that in Fig. 3.1 the sizes of the clusters are 

proportional to the number of examples in the regions. The original dataset is depicted by 

Fig. 3.1.a. The axis parallel method requires a lot of splits (Fig. 3.1.b). When oblique split 

strategy is used (Fig. 3.1.c) a reduced number of splits is obtained as most of the clusters 

are kept un-split. However, the oblique approach reduces the number of splits but does 

not necessarily yield the optimum number of split. As illustrated in Fig. 3.1.c, hyperplane 

(1) splits C1 into two nodes with one node dominated by examples of class c3 contami-

nated by few examples of class c1.  The advantage of the proposed piecewise oblique 

approach is illustrated in Fig. 3.1.d. where the clusters are isolated without splitting them 

by “making turns” within the input space (at points A, B, and C).  

 

By using pieces of line segments (instead of lines) to divide the input space, a maximum 

number of clusters can be preserved (un-split) which may improve accuracy rate.  The 



30 

 

main goal of PATHFINDER is to avoid as much as possible splitting of clusters during 

the tree induction recursive process. However, the proposed splitting often generates re-

gions in the input space that do not belong to any cluster. We term these regions reject 

regions, and the examples residing in those regions are referred to as reject examples. In 

Fig. 3.1.d the region delimited by triangle ABC is a reject region because an example 

residing in that region would not pertain to any cluster. We argue that in some applica-

tions where the cost of misclassification is high, such as medical diagnostic, having a 

high accuracy rate classifier at the expense of not classifying few examples can be bene-

ficial. 

 

 
Fig. 3.1. Illustrating axis parallel, oblique, and piecewise oblique decision trees 

 

To achieve its goal, PATHFINDER must find an efficient solution for the following 

problems: 

(1) How to compute the number of clusters in the dataset (if such clusters exist) 

(2) How to compute local boundaries separating opposed clusters 

(3) How to define test conditions in the node to split the dataset.  
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PATHFINDER uses traditional methods as well as new techniques to overcome the 

above challenges. With respect to problem (1), a grid based approach is used whereby 2D 

planes are formed using pairs of attributes. Then in each plane, pairs of classes are used 

to cluster one class against the other. That is, only examples whose class labels are one of 

the selected pair of classes are considered — the rest of the examples are ignored. With 

respect to issue (2), after the clusters are computed, a line tracing approach is used to de-

termine opposed clusters in 2D, and their mid-points are used as boundary points. Re-

garding issue (3) a set of candidate tuples (plane, class label, set of high purity clusters 

and their boundary points) — obtained from step (2) — are used in test conditions to 

split the node dataset.  The Gini index is computed for each tuple, and the tuple that has 

the highest Gini gain is selected to split the node.  

 

The contributions of this research are the following:  

1. We have developed a new split strategy for oblique decision tree that is capable of us-

ing pieces of segments as opposed to linear oblique lines to split the input space. By 

using piecewise oblique segments, high purity regions can be preserved which in turn 

may lead to improvement in accuracy. 

2. We introduce a new decision tree induction approach that employs clusters in a grid 

and their boundary points to recursively split the node dataset. 

3. We propose a novel node split test condition for binary tree induction capable of sepa-

rating instances of a class from instances of other classes in a single step. 
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4. The approach provides a reject option — examples that do not belong to any cluster 

will not be classified.   

 

The rest of the chapter is organized as follows. In section 2 we provide related work. Sec-

tion 3 details our approach. Section 4 contains results of extensive experiments and we 

conclude in section 5. 

 

3.2. Related Work  

Breiman et al. [3] were the first to suggest inducing decision trees with oblique hyper-

planes (a linear combination of the attributes) [13]. We assume examples have the form 

x=(a1,..,ar, ck) where ck is a class label, and the ai’s real-valued attributes; the test condi-

tion in the node is of the form 

∑ λixi
r
i=1  + λr +1 ≥ 0  (1) 

where the λi’s are real-valued coefficients and r the number of attributes. We note that 

when all the coefficients are equal to 0 except one, equation (1) corresponds to the axis-

parallel test condition. An optimal hyperplane is found when equation (1) separates the 

dataset into two sets such that some measure of impurity is minimal. With regards to the 

complexity of selecting an optimal hyperplane to split the dataset at a node, for n points 

in r dimensions there are r.n possible tests for the axis-parallel method; one attribute is 

tested at a time for all possible n split values. For an oblique tree a subset of attributes 

must be selected and all possible combination of attribute values from the n examples 

must be tested. There are 2
r
 possible choices for the attributes and (𝑛

𝑟
) possible ways to 
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select the attribute values. The task of selecting the optimal hyperplane has an upper 

bound runtime complexity of 2
r 
*(𝑛

𝑟
) . Therefore searching for the optimal oblique hyper-

plane is a very complex task. In fact it is NP-hard [13].   

 

Current oblique decision tree algorithms use a heuristic to find the values for the coeffi-

cients of equation (1). Breiman et al. [3] introduce an oblique decision tree induction al-

gorithm, CART-LC, which induces oblique decision tree as follows. At each node, 

CART-LC first computes the optimal axis-parallel hyperplane (all λi’s but one are 0s). It 

then iteratively computes local optimal values for each of the λi’s. The main idea is to 

perturb the hyperplane around the computed optimal axis-parallel hyperplane until the 

marginal benefits become smaller than some predefined constant value, ε (ε >0). In some 

cases, doing so fails to find the optimal split. For example, in Fig. 3.3, the optimum axis-

parallel split is assumed to be hyperplane (1).  Hyperplanes (2) and (3) are two perturba-

tions of (1) that results in no split improvement. Murthy et al. [13] introduced an im-

proved version of the CART-LC, called OC1, which uses randomization to break from 

the local optimal trap (when perturbation of the hyperplane at a given location yields no 

improvement).  

 

The overview of the OC1 algorithm is provided in Fig. 3.2. As in CART-LC, OC1 starts 

with the best axis-parallel hyperplane (Line 1) then perturbs the hyperplane by finding 

local optimal values, one coefficient at a time (Step 1) until no improvement is observed. 

Then unlike CART-LC, it breaks from the local optimal trap by randomly selecting a hy-

perplane at a different location in the dataset and re-starts the process. For that reason 



34 

 

OC1 may produce a different tree (for each run) for the same dataset. As illustrated in 

Fig. 3.3, OC1 is capable of finding the optimal hyperplane (hyperplane (4)). 

 

 
Fig.3.2. Overview of the OC1 algorithm for a single node of a decision tree [13] 

 

 
Fig. 3.3. Illustrating the difference between CART-LC and the OC1 algorithm 

 

Recently, a family of six boundaries computation methods for linear classifiers have been 

proposed by [1]. Evolutionary algorithms have been used as well to induce decision trees 

[11, 12]. A series of discriminant analysis based multivariate decision tree systems have 

also been developed by [7, 6]. Linear-programming based oblique tree algorithms have 

been proposed by [2]. The results of these studies show that oblique decision trees gener-
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ally have higher accuracies and a smaller tree sizes than univariate trees, but at the ex-

pense of longer computing times.  

 

An area closely related to our work is piecewise linear classifiers which uses combina-

tions of linear classifiers to separate clusters in the dataset [14, 15]. However, in [14] the 

authors use prototype-based clustering approach to cluster the input dataset and construct 

hyperplanes to separate the opposed clusters; which requires that a number of k opposed 

clusters be defined before training.  In [15] the authors first identify opposed examples 

(instead of clusters), and join them with line segments, also called links. Opposed exam-

ples are nearest neighbor examples with different class labels. In a second step, hyper-

planes are constructed such that a hyperplane cut as many links as possible.  This ap-

proach is too sensitive to outliers. Furthermore both approaches, [14] and [15], compute 

the hyperplanes in the input space which can be an expensive process (as previously dis-

cussed).  The general goal of our proposed approach is to partition the input space into 

high purities regions while avoiding the difficulties associated with finding optimal hy-

perplanes in the input space. Section 3 provides details of the PATHFINDER approach. 

 

3.3. The PATHFINDER Approach 

PATHFINDER is an oblique decision tree induction approach. However, it uses pieces of 

consecutive oblique line segments (pieces of hyperplanes) to split the input space. For 

that reason we prefer to refer to it as piecewise oblique decision tree induction approach. 

Fig. 3.4 illustrates the concept. Fig. 3.4.a represents a hypothetical dataset and Fig. 3.4.d 

its possible splitting result by PATHFINDER. It can be observed that high purity regions 
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have been obtained except region ABDC which has poor purity. Examples in region 

ABDC are reject examples because they do not belong to any cluster.  

 

 
Fig. 3.4. Illustrating the PATHFINDER boundary points computation 

 

The general approach to boundary points computation follows the below steps:  

1. Project the dataset onto 2D planes formed by pairs of input attributes.  

2. Use a grid-based approach to cluster the dataset into rectangular shape clusters (Fig. 

3.4.b). Adjacent clusters of same class are merged into a larger cluster. 

3. A line tracing approach is introduced to determine opposed clusters and boundary 

points are computed as midpoints separating opposed clusters (Fig. 3.4.c). 

 

In Fig. 3.4.c the “x” represent the midpoints between two opposed clusters in a row or 

column of the grid. We refer to those points as boundary points. The key idea is that a 

cluster is stored along with its boundary points. Fig. 3.4.d illustrates a possible decision 

boundary by joining the boundary points into segments. Actual decision boundaries are 
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created locally at runtime using a subset of the boundary points that were computed in 

step 3. At each node, using the boundary points and the clustering results PATHFINDER 

splits the node dataset in two sub-nodes. The recursive process continues until some 

stopping criteria are met. The PATHFINDER tree generation method is provided in algo-

rithm 1. 

 

Algorithm 1: PATHFINDER Tree Generation 

Begin 

1. Project the dataset onto 2D planes formed  by  pairs of input attributes  

2. For each plane 

3.      For every pair of classes  

4.         Generate clusters using agglomerative grid-based clustering approach  

5.         Compute opposed clusters and the boundary points that separate them 

6.         Tentatively split the node dataset using the computed boundary points and 

7.          Compute Gini gain   

8. Select the overall best boundary to split the entire node dataset 

9. Repeat step (1) through (8) for the newly generated nodes until some stopping criterion  is 

met 

End 

 

Any grid-based method can be used to generate the clusters (line 4). However in this im-

plementation we generate rectangular clusters. It is economical to store rectangular clus-

ters as one only needs to store the two coordinates of the corner points on one of the di-

agonals. (This technique consumes less memory space than other approaches that store a 
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cluster by storing information about every cell in the cluster). PATHFINDER is different 

from previous approaches in many folds: (1) It does not work in the original input space; 

it reduces the complex task of working in the high dimensional input space to a more 

manageable set of 2D input space tasks by projecting the dataset onto planes formed by 

pairs of attributes. (2) It does not split the node datasets with hyperplanes but instead with 

pieces of hyperplanes (hyperplane segments). (3) It clusters the examples in the node da-

taset considering examples of two classes at a time (ignoring examples from the other 

classes).  

 

The detail of the clustering computation (line 4) is provided in section 1. Section 2 de-

scribes how the opposed clusters and their boundary points are computed (line 5). Section 

3 details the node evaluation method (line 6).  

 

The notation used in the remainder of the chapter is summarized in Table 3.1. 

 

Table 3.1 Notations used in the remainder of the chapter 

O Dataset 

yp The p
th
 class label; Y ={y1,..,yq} 

q Number of classes in O 

r Number of attributes in O 

Π Set of all attribute pairs (also set of all planes) Π ={xi, xj}i,j=1,..,d 

Π i,j Plane formed by the i
th
 and j

th
 attributes 

Ci The i
th
 cluster 

Ci-j The j
th
 sub-cluster of Ci; Ci=⋃ (𝐶𝑖−𝑗 𝑗=1,..,𝑚 ) for some m>0 

θ Cluster purity threshold 

α Minimum row or column purity threshold 
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Ki,j(yp,yq) Clustering result for clustering examples of class yp, against yq in the plane Π i,j; 

Ki,j(yp) set of clusters of dominant class yp in plane Π i,j 

Ki,j Set of all clustering in the plane Π i,j 

K Set of all clustering for all planes.  K = ⋃ 𝐾𝑖,𝑗 i,j 

 

3.3.1. Clustering 

The input attributes are real-valued attributes. We let {ai }i=1,..,r be the set of all r input 

real-valued attributes, and Π ={ai, aj}i,j=1,..,r  be the set of all planes formed by two distinct 

input attributes (with i≠j). The target variable is categorical with q classes and takes val-

ues in Y ={y1,..,yq}. Let 𝜓={ (yi,yj)}i,j=1,..,q be the set of all pairs of class labels (with i≠j). 

The set of all clusters obtained from a given plane Πi,j is noted Ki,j and the set of all clus-

ters for all the planes is noted K = ⋃ 𝐾𝑖,𝑗 i,j (with i≠j).  The PATHFINDER clustering ap-

proach is provided in algorithm 2 and 2.1.  

 

Algorithm 2: PATHFINDER Clustering Method 

1. Inputs:  

2.    α; user-defined row/column minimum purity thresholds 

3.    θ; user-defined cluster minimum purity thresholds 

4.    O; dataset  

5. Outputs:  

6.    K; array storing the set of all clusterings  

7. BEGIN 

8. index 0 

9. FOR each plane Πi,j in Π       

10.      Project dataset onto Πi,j 

11.      Create grid of equal size cells    
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12.      FOR each pair of class (yp,yq) in 𝜓 

13.           K[index]  GenCluster(yp ,yq ,O,α,θ, Πi,j) 

14.           K[index+1]  GenCluster(yq , yp ,O,α,θ, Πi,j) 

15.           indexi+2 

16. Return K 

17. End 

 

Function GenCluster(.) generates rectangular clusters in a grid. GenCluster is called 

twice for each pair of classes (yp,yq); once to cluster the examples of class yp against the 

examples of class yq; then a second time to cluster the examples of class yq against the 

examples of class yp. Examples of other classes are ignored during that process. The out-

put K, contains all the generated clusters (for all the planes and all the classes).  

Each entry to K is a tuple (Πi,j, pivot_class, hlist) where  

Πi,j is a plane formed by the i
th

 and j
th

 attributes  

pivot_class is the dominant class label of the clusters in the clustering result 

hlist is the clustering result (a list of clusters Ci for the selected plane, and pivot_class) 

and their associated boundary points. 

 

 The detail of GenCluster(.) is provided by algorithm 2.1.  In algorithm 2.1 a “Pivot cell” 

is a cell from which the algorithm starts growing a cluster. “A pivot class” is the class 

whose examples are being clustered.  The first argument of GenCluster(.) is the “pivot 

class” label. The second argument, which is the class the pivot class is being clustered 

against, is referred to as the “non-pivot” class. The term “class purity”, or simply “purity” 
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represents the number of examples associated with the pivot class divided by total num-

ber of examples in a cell (or a cluster). The algorithm adds to the cluster being grown, 

adjacent blocks of contiguous cells in a row or in a column referred to as “row” or “col-

umn” (respectively). The number of cells in a row/column being added increases as the 

algorithm makes anticlockwise/clockwise trips around the pivot cell. The purity of a clus-

ter must be above a user-defined purity threshold θ. The purity of a pivot cell is greater 

than θ. The purity of a row/column must be above a user-defined purity threshold, α (with 

α < = θ). Doing so makes it possible to add some impurity to the clusters as long as over-

all purity (of the cluster) remains above θ.  

 

Algorithm 2.1 : Function GenCluster(y+ ,y- ,O,α,θ, Πp,q) 

1. Inputs:  

2.   y+ ,y- ; The two classes being clustered against each other 

3.   Πp,q ; xpxq-plane, O; dataset 

4.   θ; cluster purity threshold, α; row or column purity 

5. Outputs:  

6.   Kp,q ; clustering result 

7.  

8. Begin 

9.     Initialization(.); set up rectangular cells  

10.     DO UNTIL no pivot cell is available         

11.         Select a pivot cell 

12.         currentCluster  pivot cell  

13.         previousClusterSize 0   
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14.         WHILE (currentCluster.size ≠ previousClusterSize)    

15.             previousClusterSize  currentCluster.size      

16.             IF SuccessfullMoveRight(.)=true THEN 

17.                 IF purity(right_column) > α and ClusterPurity(.) > θ THEN 

18.                      currentCluster  currentCluster ∪ right_column 

19.             IF SuccessfulMoveUp(.)=true THEN 

20.                 IF purity(row_up) > α and ClusterPurity(.) > θ THEN                   

21.                      currentCluster  currentCluster ∪ row_up 

22.             IF SuccessfulMoveLeft(.) =true then 

23.                 IF purity(left_column) > α and ClusterPurity(.)>θ THEN 

24.                     currentCluster  currentCluster ∪ left_column 

25.             IF SuccessfulMoveDown(.) =true THEN 

26.                 IF purity(row_down) > α  and ClusterPurity(.)>θ THEN 

27.                      currentCluster  currentCluster ∪ row_down 

28.         Kp,q = Kp,q ∪ {currentCluster}  

29. Return Kp,q 

30. End 

 

The algorithm computes high purity clusters with dominant class label y+ (pivot class). 

Class label y- is a non-pivot class against which class y+ is being clustered. Procedure 

Initialization(.) (line 9) set up rectangular grid, projects the dataset onto the grid, and 

computes the purity of each cell with respect to the pivot class. The function ClusterPuri-

ty(.) re-computes the purity of the cluster before deciding if the row/column should be 

added or not. currentCluster.size returns the size of the cluster being grown. Its initial 
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value is the size of the pivot cell. The algorithm selects a pivot cell then grows a cluster 

around the pivot cell by adding rows or/and columns until no more row/column can be 

added (line 14-27). The cells thus clustered are marked so that there are not considered in 

subsequent clustering. The algorithm then selects another pivot cell (line 11) not yet part 

of a cluster, to grow a new cluster. It returns a set of high purity clusters (for the pair 

(plane Πp,q , pivot class)) . Procedure SuccessfulMoveRight(.) attempts to add cells from 

the right column to the cluster. If this is the last column on the grid (if it is the rightmost 

column), the attempt fails. Similarly SuccessfulMoveUp(.), SuccessfulMoveLeft(.), and 

SuccessfulMoveDown(.),  respectively tests if there is a row up, a columns to the left, or 

a row down to add to current cluster. If a row or column is available, it is added only if its 

purity > α. A new cluster purity is computed (tentatively) after the row/column has been 

added. If cluster’s purity is still greater than θ then it is accepted; otherwise the 

row/column is not added. The algorithm makes anti-clockwise (or clockwise) loops add-

ing blocks of cells in rows or/and columns. If after a round trip, no block of cells has been 

added, the loop condition in lines 14 ensures that the algorithm exits from the WHILE 

loop and add the new cluster to the cluster set. It then selects a new pivot cell (line 11) 

not yet part of a cluster to grow a new cluster. Line 10 ensures that when all potential 

pivot cells have been used, the algorithm returns the cluster set. Adjacent clusters of same 

dominant class label are merged into larger cluster (Ci=⋃ (𝐶𝑖−𝑗 𝑗=1,..,𝑚 )). When several 

adjacent clusters of same dominant class are merged we refer to their union as a merged 

cluster or simply a cluster. We refer to the individual component clusters (of a merged 

cluster) as sub-clusters Ci-j (with Ci being the cluster). 
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Pivot cells can randomly be selected or can be selected in some predefined order without 

significant impact on the final clustering result. Fig. 3.5 gives a detailed illustration of 

algorithm 2.1. 

 

 
Fig. 3.5. PATHFINDER clustering approach for a hypothetical pivot class (circle) and non-pivot 

class (hallow cross) 

 

 

In Fig. 3.5, the pivot class is the class which examples are represented by the circles. The 

cluster is being grown under the following condition: α = 70%; θ = 80%. The initially 

selected pivot cell is cell(6,3) with purity 100 %> 70% (Fig. 3.5.b) . From the selected 

pivot cell the algorithm attempts to grow the initial cluster by adding the one-cell column 

to the right of the pivot (cell(7,3)). Cell(7,3)’s purity equals 100*(3/4)%. Adding cell(7,3) 
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to cell(6,3) does not decrease the cluster purity below the threshold of 80%. Hence, the 

move is successful and the resulting new cluster is shown in Fig. 3.5.c. Next, a move up 

is contemplated. This time a two-cell block {cell(6,4), cell(7,4)} in row 4 is tentatively 

added. This attempt is successful because both conditions are met: the row purity α = 100 

%> 70% and overall cluster purity after the addition is θ = 100*(13/14)> 80% (Fig. 

3.5.d). A move to the left is successful because the column being added is the two-cells 

block {cell(5,3), cell(5,4)} which purity is 100*(4/5)  > 70% (Fig 5.e). Next, a move 

downward is attempted. At this point we must add a three-cell row block to the cluster. 

Since the purity of the row block {cell(5,2), cell(6,2),(7,2)} is 100*(2/5) < 70% this at-

tempt fails. The first anti-clockwise loop is thus completed. However, since during the 

round trip, at least one row or column block was added, a second round trip is necessary 

to break from the WHILE loop (line 14 of algorithm 2.1) and the process ends. The clus-

tering result is shown in Fig. 3.5.e. Fig. 3.5.f illustrates the clustering result for both clas-

ses with cluster C2 having two sub-clusters C2-1 and C2-2. 

 

3.3.2. Boundary Points Computation  

Two clusters are horizontally neighboring in a grid, if any part of their contours are fac-

ing each other in a row; this means if there is no other cluster between them in that row. 

Similarly two clusters are vertically neighboring if any part of their contour is facing each 

other in a column. Horizontal or vertical neighboring clusters are said to be direct neigh-

bors. When a cluster has no direct neighbor, an oblique neighbor is searched for. Central 

to the PATHFINDER approach is the fact that boundary points are assigned to the clus-

ters they separate.  
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The list of the boundary points for a cluster Ci ((Ci=⋃ (𝐶𝑖−𝑗  𝑗=1,..,𝑚 )) is noted Lpoint(Ci) 

and is the union of all the points of individual sub-clusters Ci-j (LPoint(Ci) = 

⋃ (𝐿𝑝𝑜𝑖𝑛𝑡(𝐶𝑖−𝑗 𝑗=1,..,𝑚 ) )).  A point separating two direct neighbors is assigned to both 

clusters. Points separating oblique clusters are assigned as follows. A point is assigned to 

its closest cluster, and points sitting midway between the two clusters are assigned to 

both. The following sections provide further detail on the boundary point computation 

and assignment method. 

 

Boundary Points Determination for Direct Neighbors 

Given two clusters Ci and Cj in a grid. A boundary point in row r, separating two horizon-

tal neighbors Ci and Cj is the midpoint between both clusters in row r. Likewise, a bound-

ary point in a column say, c, is the midpoint between both clusters in column c. 

 

Boundary Points Determination for Oblique Neighbors 

Let Cj be a cluster and Ci its oblique neighbor, say to the northwest. Let Ci and Cj be de-

noted by their respective coordinates (x1_i_low, x2_i_low), (x1_i_high, x2_i_high) and (x1_j_low, 

x2_j_low), (x1_j_high, x2_j_high), three oblique boundary points P1(b1x1,b1x2), P2(b2x1,b2x2), and 

P3(b3x1,b3x2) are used to separate the two clusters. They are computed as follows  

b1x1 = (x1_i_high + x1_j_low) /2; b1x2 = (x2_i_low + x2_j_high) /2 

b2x1 = x1_i_high; b2x2 = (x2_i_low + x2_j_high) /2 

b3x1 = (x1_j_low); b3x2 = (x2_i_high + x2_j_high) /2 
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The assignment of the boundary points to both clusters is done as follows. The middle 

point, P1 is shared by both clusters. P2 is a boundary point associated with Ci; P3 is asso-

ciated to Cj. (LPoint(Ci) LPoint(Ci) ∪ {P1, P2}; and LPoint(Cj) LPoint(Cj) ∪ {P1, 

P3}). 

 

To illustrate let us consider Fig. 3.6. The boundary points P11, P10 and P9 separate the 

oblique clusters C1 and C4. P11 is associated to C1, P9 is associated to C4 whereas P10 is 

shared by both clusters. 

 

 
Fig. 3.6. Illustrating the computation of boundary points 

 

In Fig. 3.6, cluster C2 and C3 are horizontally neighboring; C2 and C1 are vertically 

neighboring. The points P4, P5 and P6 are shared boundary points for both cluster C2 and 

C3. The points P1, P2 and P3 are shared boundary points for clusters C2 and C1.  The points 

P7, P8 and P12 are boundary points separating the oblique clusters C3 and C4 with P8 being 
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their shared point. Thus Lpoint(C2-2) = {P5, P6}, Lpoint(C2-1)={P1,P2,P3,P4}, Lpoint(C1) = 

{P1, P2, P11, P10}, Lpoint(C4) = {P9, P10, P7, P8} and Lpoint(C3) = {P4, P5, P6, P8 , P12}. 

 

3.3.3. Node Split Method  

The key idea to PATHFINDER node evaluation is to use the clustering result, K, ob-

tained from algorithm 2 to split the node dataset. Each entry K[i], of K, (i≥0) contains a 

tuple (plane, pivot_class, hlist) where hlist is an array containing the clustering result for 

the pair (plane, pivot_class). For each tuple in K, each example in the node dataset is 

tested against the clusters in hlist to determine if the example resides within the boundary 

of a cluster or not. The node dataset is thus tentatively split into two sub-nodes with one 

sub-node containing the examples that reside inside the boundary of a cluster and the oth-

er hosting the examples that do not pertain to any cluster in hlist (for the selected plane, 

pivot_class). Gini gain is computed to select the best split of all tuples in K. Given an 

example s, a clustering result in hlist, many strategies can be used to test if s lies within 

the boundary of a cluster in hlist. We propose a method, detailed in algorithm 3 that uses 

the two nearest neighbor boundary points of s, to compute a local boundary separating s 

and its closest cluster.  

 

Algorithm 3: PATHFINDER Node Splitting Method 

1. Inputs:    O; node dataset 

2.                K; list of tuples (plane, pivot_class, hlist) 

3. Outputs: split node dataset O, into two sub-nodes 

4. Begin 

5.   FOR each tuple t in K 
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6.       FOR each s, in O 

7.              Compute the closest boundary point Pclosest to s  

8.              Retrieve the sub-cluster Cclosest associated with Pclosest              

9.              Compute Pclosest2, the second nearest neighbor of s in LPoint(Cclosest)            

10.              Compute the equation of boundary line (Pclosest, Pclosest2)  

11.              IF s and centroid(Cclosest ) lie on the same side of line (Pclosest, Pclosest2) THEN    

12.                 Assign s to left node 

13.              ELSE 

14.                 Assign s to right node  

15.        Compute Gini gain 

16.  Select the tuple (plane, pivot_class, hlist)best that maximizes Gini gain for the split  

17.  Split node in two nodes with all examples within a cluster in hlist in left node and the rest in 

right node  

18. End  

 

The algorithm first finds the closest boundary points to s, Pclosest (line 7), and its associat-

ed sub-cluster Cclosest (line 8). It then computes the second nearest neighbor of s in 

Lpoint(Cclosest) (line 9). Using line (Pclosest, Pclosest2) as a local boundary it determines if s 

and the sub-cluster’s centroid, reside on the side of the local boundary or not (line 11). If 

s and the cluster’s centroid reside on the same side of the boundary then s is assigned to 

the left node; otherwise it is assigned to the right node. The tuple (plane, piv-

ot_class_label, hlist) that maximizes Gini gain is selected to split the node dataset. The 

tuple is stored in the node.  
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To classify an unlabeled example s, PATHFINDER starts from the root node and tests s 

against each stored tuple to find out if s lies within a boundary of a cluster in hlist. If s 

lies within the boundary of a cluster in a leaf-node, then s is assigned the class label of 

the dominant class of the leaf-node cluster. 

 

Fig. 3.7 illustrates a node test for the dataset in Fig. 3.6. In Fig. 3.7 three examples s1, s2, 

and s3 are being evaluated by PATHFINDER. It is assumed that hlist contains {C2, C4} 

(C2 and C3 are assumed to be of the same dominant class label). The closest boundary 

point to s1 is P3. Hence, the selected cluster Cclosest=C2-1. The closest boundary point to P3 

in Lpoint(C2-1) is P4. Since s1 and cluster C2-1 reside on the same side of line (P3,P4), s1 is 

assigned to the left sub-node. In the same manner, s2 nearest neighbor is assumed be P8 

which belongs to C4. The second nearest neighbor of s2 in Lpoint(C4) is P7 and s2 is as-

signed to the right node because it lies on the opposite side of the boundary as the C4.  

 

 
Fig. 3.7. A merged cluster and its boundary points 
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PATHFINDER splitting method is not perfect. For example s3 closest boundary point is 

P5. P5 belongs to C2-2. The second closest point to s3, in Lpoint(C2-2) is P6. Thus s3 is as-

signed to left node though it is clearly outside cluster C2 local boundary. 

 

3.3.4. Runtime Complexity 

We let n be the node dataset size, q the number of classes in the dataset, r the number of 

input attributes. We have r(r-1)/2 planes. In each plane the clusters are formed two clas-

ses at a time leading to 2q(q-1)/2 steps. To compute the clusters the proportion of exam-

ples in each grid cell must be computed. Hence, each example must be visited at least 

once. It cost n[(r(r-1)/2]*[q(q-1))] to compute all the clusters for all the planes in a node. 

It cost O(1) to test if an example lies on same or opposite side of the boundary as a clus-

ter. To compute the nearest neighbor boundary point of an example, all the boundary 

points for all the clusters must be tested; which cost O(knr(r-1)q(q-1)/2) where k is the 

average number of boundary points per cluster (Finding the nearest neighbor of an exam-

ple is the largest cost during a node split operation). Thus the cost for a node split opera-

tion is O(knr
2
q

2
) where k, the average number of boundary points is dependent on the 

grid size. 

 

3.4. Experimental Evaluation 

In this section, an experimental evaluation of PATHFINDER is provided for 11 datasets. 

The result is compared against those found in [1] on 7 real world datasets. Performance is 

evaluated in terms of tree leaf-nodes and model accuracy. 
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3.4.1. Datasets 

Four artificial and 7 real-world datasets with 6 previously used as benchmarks were used 

in the experiments. Artificial datasets are generated by functions provided in Table 3.2. 

The datasets size, number of classes, and number of input attributes are provided in Table 

3.3. All datasets were normalized. 

 

Table 3.2. Artificial datasets 

2DSin x1 ϵ ]0,1[ ; x2  ϵ [-3,3]  where x1, x2 are randomly generated real numbers. 

d= x2 - sin(x1*2Π)  

if  d > 0.3 then  example s(x1,x2) is labeled “C+” 

if  d < - 0.3 then s(x1,x2) is labeled “C-“ 

4Patches x1 ϵ ]0,1[ ; x1,x2 ϵ R 

if(x1 > 0.1 and x2 > 0.1) then   “C-“ 

if (x1 < - 0.1 and x2 > 0.1) then  “C+” 

if (x1 < -0.1 and x2 < -0.1) then “C-“ 

if(x1 > 0.1 and x2 < -0.1) then “C+”                 

6Patches d = 0.1; x1 ϵ ]-3,3[  x1,x2 ϵ R 

  if (x2 > x1 + 0.2)  

        if ((x1 > d and x2 > d)) then  "C-"; 

        else if (x1 < -d and  x2 > d) then "C+"; 

        else if (x1 < -d and x2 < -d)   then "C-";       

   if (x2 < x1 - 0.2) 

          if (x1 > d and x2 > d ) then "C+"; 

          else if (x1 > d  and x2 < - d) then  "C-"; 

          else if (x1 < - d and x2 < - d)  then "C+";        

2DCircles x1,x2 ϵ ]-5,5[ ;d ϵ R 

 if ((x1
2
 + x2

2
 ) 

½ 
> 3.5) then “C+” 

 if ((x1
2
 + x2

2
 ) 

½
 < 3)  and (x1

2
 + x2

2
 ) 

½
 > 1.5)   then C- 

  if ((x1
2
 + x2

2
 ) 

½
 < 1.2)  then C+ 

 

Table 3.3. Real world datasets [10] 

 
Dataset code No. of classes # of records No. input of attributes 

Real  World Datasets 

Iris Irs 3 150 4 

Bupa Liver Disorder Bld 2 345 6 

Boston Housing Bos 3 506 12 

Wisconsin Breast Cancer Bcw 2 683 9 

PIMA Indian Diabetes Pid 2 532 7 

*Silhouette Veh 4 846 18 
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Image Segmentation Seg 7 2310 19 

Artificial Datasets 

4Patches 4ps 2 1082 2 

6Patches 6ps 2 1118 2 

2DSin 2ds 2 834 2 

2DCircles 2dc 2 1670 2 

 

All real world datasets were obtained from UCI repository [10]. In [1] the Silhouette da-

taset size was 3772 records whereas the UCI Silhouette dataset used in this experiment 

has 846 records. 

 

3.4.2. Experimental Setup and Methodology 

All the experiments were done with a 10-fold cross validation and repeated 10 times with 

different seeds for each run. Accuracy and reject result are reported in Table 3.6 and Ta-

ble 3.7 as μ ± c where μ is the mean value of the rate, and c the standard deviation. In this 

experiment, the input purity threshold parameters were set to α =100, and θ =100 for all 

datasets so as to maximize accuracy rate. The stopping parameters were set to minimum 

data size = 5% and minimum Gini Improvement =1% for all datasets. The grid size was 

adjusted for each dataset as shown in Table 3.4.    

 

Table 3.4. Grid sizes 

Datasets Number Of Cell Per Row /Column 

Iris (Irs) 16 

Bupa Liver Disorder (Bld) 28 

Boston Housing (Bos) 20 

Wisconsin Breast Cancer (Bcw) 10 

PIMA Indian Diabetes (Pid) 24 

Silhouette (Veh) 16 

Image Segmentation (Seg) 16 
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4Patches (4ps) 20 

6Patches (6ps) 20 

2DSin (2ds) 12 

2DCircles (2dc) 18 

 

Grid size selection 

To select an optimum grid size we use a semi-automatic method consisting of running the 

algorithm on training set for increasing values of grid size (starting from 2 with 1 incre-

ment). The grid size that yields minimum error rate is selected.  

 

For each of the six benchmark datasets, we compare the PATHFINDER accuracy rate 

against the best result of twenty two widely used approaches obtained from [1]. The 

twenty two approaches are listed in Table 3.5. 

Table 3.5. Twenty two approaches [1] 

 

 

3.4.3. Experimental Results 

Error rate and reject rate were computed as follows. If we let n be the test sample size 

Error rate= 100* number of misclassified examples/n 

Reject rate= 100* number of rejected examples/n 

Abbrev. Algorithm Abbrev. Algorithm

QU0 IC0

QU1 IC1

QL0 0CU

QL1 0CL

FTU 0CM

FTL ST0

C4T ST1

C4R IB

LMT LMDT (Brodley,Utgoff 1995) IBO

CAL CAL5 (Müller,Wysotzki 1997) IM

T1 T1 single split (Holte 1993) IM0

QUEST Versions (Loh,Shih 

1997)

FACT Versions 

(Loh,Vanichsetakul 1998)

C4.5 (Quinlan1993)

IND versions (Buntine 1992)

CART versions 

(Breiman,Friedman,Olsen,Stone 

OC1 versions (Murthy, 

Kassif,Salzberg 1994)

S-PLUS versions (Clark,Pregibon 

1993)
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Accuracy Rate=100 - error rate 

Reported error and reject rates were obtained using 10-fold-cross validation.  

We note that because our approach provides a reject option, it is not directly comparable 

to existing approaches.  However, to highlight the benefit of PATHFINDER we compare 

its result to those obtained with CART on artificial dataset and the best results obtain us-

ing twenty two other classifiers.  

 

The result shows that PATHFINDER yields consistently high accuracy rate on all da-

tasets. This result is to be expected since PATHFINDER does not classify examples that 

are difficult to classify. 

 

3.4.3.1. Results on Artificial Datasets 

The result is summarized in Table 3.6. We use the result of CART as a baseline compari-

son. Trees obtained by PATHFINDER are illustrated in Fig. 3.8. 

 

Table 3.6. Accuracy and complexity results on artificial datasets 

 

PATHFINDER SIMPLE CART 

 

Accuracy 

Rate% 

Reject 

Rate (%) Complexity 

Accuracy 

Rate Complexity 

4Ps 100 ±0.00 0.00 ±00 2.00±00 99.72 8 

6Ps 98.56 ± 1.14 2.32 ± 2.17 2.20 ±0.42 99.01 11 

2Ds 100.00 ± 0.00 0.00± 0.00 2.00 ±0.00 98.8 7 

2Dc 99.46 ± 0.66 6.14 ± 3.07 2.40 ± 0.70 98.56 15 
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On the selected artificial datasets PATHFINDER consistently yields high accuracy rate 

and low complexity result at the same time. On two datasets, it yields 100% accuracy rate 

with no reject. 

 

 
Fig. 3.8. Illustrating PATHFINDER ability to isolate high-purity clusters in a node in a single 

step while yielding high-accuracy rate 

 

3.4.3.2. Results on Real World Datasets  

Accuracy Results 

Table 3.7. Accuracy results 

 

PATHFINDER 

Twenty two 

Approaches SIMPLE CART 

 

Accuracy Rate% Reject Rate (%) Best Accuracy Rate Accuracy Rate 

Bld 81.63 ± 3.73 21.63 ± 24.68 72 64.05 

Bos 82.65 ± 3.63 27.96 ± 7.50 78 73.12 
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Bcw 96.12 ± 3.00 8.36 ± 4.78 97 94.87 

Pid 77.50 ± 4.32 21.45  ± 4.89 78 75 

Veh 82.32± 8.07 35.37  ± 14.82 85 69.03 

Seg 95.97  ± 3.29 14.76 ± 7.23 98 96 

Irs 100.00  ± 0.00 17.33± 6.44 N.A 95.33 

 

PATHFINDER yields higher accuracy rate than the best result obtained from the twenty 

two algorithms on two datasets (Bld and Bos), ties on two dataset (Bcw,Pid), and under- 

performs on 2 datasets (Veh, Seg). Depending on the dataset, a small increase in reject 

rate may yield a high improvement in accuracy rate. For example, on the Bld dataset we 

have 14% increase in accuracy rate for the price of 21.63% reject rate while on the Bos 

dataset we obtained 6% increase for the price of 28% reject rate.  

 

Reject rate is influenced by the grid size or purity threshold. In general when purity pa-

rameters are low, reject rate and accuracy rate decrease but not linearly. Therefore, for a 

given dataset, a user may adjust those parameters to find a trade- off that best suits his 

purposes. Another advantage of PATHFINDER is that by identifying the reject examples 

(examples difficult to classify) a domain expert may be prompted for further analysis (or 

lab tests). 

 

Complexity Results 

Model complexity was obtained with 10-fold cross validation and was measured by the 

number of leaf-nodes. Fig. 3.9 shows the tree complexity of PATHFINDER in compari-
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son with previously known best results obtained from [9]. The result shows that 

PATHFINDER consistently has low complexity. 

 

 
Fig. 3.9. Complexity results 

 

 

3.5. Conclusion 

PATHFINDER addresses several critical issues related to multivariate classification tree 

induction algorithms. First, a novel grid-based clustering algorithm is introduced which 

computes rectangular clusters, whereas past research relies on prototype-based clustering 

algorithms to identify opposed clusters. We claim that the grid-based approach has ad-

vantages over the prototype-based clustering approach, as the number of clusters does not 

need to be specified in advance and that our approach is not sensitive to outliers. Second, 

we introduce a new methodology to create piece-wise linear decision boundaries to sepa-

rate regions which are dominated by instances of different classes. In contrast to previous 

work, our approach stores a set of boundary points in a node, and not the boundaries 
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themselves, and uses a novel node evaluation technique which computes local boundaries 

at runtime by connecting pairs of the boundary points between opposed clusters. Moreo-

ver, computed decision boundaries might differ based on the location of the example to 

be classified which makes our approach a mixture between a nearest neighbor approach 

and a decision tree approach.   Third, it is capable of fitting several clusters into a single 

leaf-node and able to keep most clusters in the dataset un-split. Consequently, 

PATHFINDER induces very short trees compared to other widely known approaches. 

Fourth, it provides a reject option to identify examples that are difficult to classify and 

therefore induces trees with very high accuracy at a cost of some reject rate. We claim 

that such a classifier can be particularly useful in areas, such as computer-aided medical 

diagnostics where the cost of misclassification is often prohibitively high.  

 

References 

1. M. Fatih Amasyali and Okan Ersoy; “Cline: A New Decision-Tree Family”; IEEE Transac-

tion on Neural Networks, Vol. 19, No. 2, February 2008. 

 

2. K. Bennett; “Decision tree construction via linear programming” ; Proceeding of 4th Mid-

west Artificial Intelligence Cognitive Science Soc. Conf., Utica, IL, 1992, pp. 97–101. 

 

3.  L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone; “Classification and Regression 

Trees”; Belmont, CA: Wadsworth, 1984. 

 

4. B. A. Draper, C. E. Brodley, and P. E. Utgoff; “Goal-directed classification using linear ma-

chine decision trees”; IEEE Trans. Pattern Anal. Machine Intelli. vol. 16, pp. 888–893, Sept. 

1994. 

 

5.  H. Kim and W.-Y. Loh; “Classification trees with unbiased multiway splits”; J. Amer. Sta-

tistical Assoc., vol. 96, pp. 589–604, 2001. 

 

6. W.-Y. Loh and Y.-S. Shih; “Split selection methods for classification trees”; Statist. Sinica, 

vol. 7, pp. 815–840, 1997. 

 



60 

 

7. W.-Y. Loh and N. Vanichsetakul; “Tree-structured classification via generalized discrimi-

nant analysis”; J. Amer. Statist. Assoc., vol. 83, no. 403, pp. 715–728, 1988. 

 

8.  J.R. Quinlan; “Simplifying decision trees”; Int. J. Man-Mach. Stud., vol. 27, pp. 221–234, 

1987. 

 

9. Tjen-Sien Lim, Wei-Yin Loh; “A Comparison of Prediction Accuracy, Complexity, and 

Training Time of Thirty-three Old and New Classification Algorithms”; Machine Learning, 

40, 203-229, 2000 Kluwer Academic Publishers, Boston. 

 

10. UCI Repository of Machine Learning Databases; Department of Information and Computer 

Science, University of California, Irvine, CA. http://archive.ics.uci.edu/ml/  (2014). 

 

11.  Cantú-Paz, E. and Kamath C. (2000a); "Using Evolutionary Algorithms to Induce Oblique 

Decision Trees" ; Genetic and Evolutionary Computation Conf. (GECCO) 2000, Las Vegas, 

NV, July 8-12, 2000. 

 

12.  Cantú-Paz, E and Kamath, C. (2003); “Inducing oblique decision trees with evolutionary al-

gorithms”; IEEE Transactions on Evolutionary Computation. 7(1), 54-68. 

  

13.  Murthy, S. K., Kasif, S., & Salzberg, S. (1994); “A system for induction of oblique decision 

trees”; Journal of Artificial Intelligence Research, 2(1), 1-32.  

 

14. Jack Sklansky and Leo Michelotti; “Locally trained piecewise linear classifiers”; IEEE 

Trans. on Pattern Analysis and Machine Intelligence, PAMI-2(2):101--111, March 1980. 

 

15. Park Youngtae and Jack Sklansky; “Automated design of multiple-class piecewise linear 

classifiers”; Journal of Classification December 1989, Volume 6, Issue 1, pp 195-222. 

 

 

 

 

 

 

 

http://archive.ics.uci.edu/ml/


61 

 

Chapter 4 

AVALANCHE: A Hierarchical, Divisive Clustering 

Algorithm
2
 

 

4.1. Introduction 

This research proposes a divisive approach to hierarchical clustering for applications that 

use as input a dissimilarity matrix. To the best of our knowledge such a method has not 

yet been proposed in literature. Clustering is the unsupervised grouping of examples into 

clusters. The clustering problem has received a lot of attention by researchers in many 

disciplines. Hierarchical clustering algorithms aim at organizing datasets hierarchically as 

dendrograms based on the distances of examples and clusters. Hierarchical clustering 

approaches are either agglomerative or divisive. In the general case, agglomerative (bot-

tom-up) approaches start by merging the most similar examples/clusters and continue 

until the last two clusters have been merged. Divisive approaches — which are less popu-

lar —, on the other hand, start with a cluster containing all the examples of the dataset, 

and recursively split the dataset until a termination condition has been met. Both agglom-

erative and divisive clustering approaches are greedy algorithms, making decisions based 

on local patterns or based on global objective functions. The ability of the top-down ap-

proaches to use global information about the dataset to select splits is often viewed as a 

potential advantage [16].  On the other hand, the same publication claims that bottom-up 

approaches are perceived to produce better clustering result than the top-down methods 

                                                 
2 Published in Proceeding of International Conference on Machine Learning and Data Mining (MLDM), Hamburg, 

Germany July, 2015. 
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but usually run significantly slower. The ability of the top-down methods to stop growing 

the tree when a predefined termination condition is met has made them very popular in 

applications such as document searching/indexing, web query. However, thus far, most of 

the divisive approaches involve the computation of a centroid (K-mean like or Principal 

Direction Divisive Partitioning (PDDP) based approaches) which restricts their use to flat 

file datasets with numerical attributes. In applications that use dissimilarity matrices as 

inputs, centroids cannot be computed due to the lack of numerical attributes; consequent-

ly, novel divisive methods are needed for such datasets and introducing such methods is 

the main focus of this chapter.  

 

This research proposes AVALANCHE, a novel top-down hierarchical clustering algo-

rithm which uses as input a dissimilarity matrix.  The problem is to come up with a test 

that splits a set into two subsets, maximizing an underlying objective function.  During 

the top-down process a node is split into two sub-nodes such that the distance between 

the two sub-node clusters is maximized, and the sum of the “intra-cluster distances” of 

both clusters is minimized. To split a node, initially the example that is furthest away 

from the other examples — the anti-medoid — is assigned to the right sub-node and then 

— using the one Nearest Neighbor Chain approach (1-NNC) — additional examples are 

progressively assigned to this node which are nearest neighbors of the previously added 

example as long as the objective function improves. Given a set of objects, the medoid is 

the centermost object (the one with the shortest total distance to the other objects in the 

set); the anti-medoid on the other hand, is the outermost object (the object with the largest 

total distance to the other objects in the set).The heuristic used by AVALANCHE to find 
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a solution for the set split is a two-step method based on the One Nearest Neighbor Chain 

approach (1-NNC). First, it selects the anti-medoid to start the node split and assigns it to 

the right node. Next, it follows the 1-NN chain that originates from the anti-medoid to 

add further examples to the right node until doing so degrades the objective function.  

 

The general idea of the AVALANCHE algorithm is illustrated in Fig. 4.1. Fig. 4.1.a dis-

plays an initial dataset where s1 is the anti-medoid since s1 contribution to total intra-

cluster distance is 24 (largest value). Next, the nearest neighbor of s1, s2, is selected as 

candidate for assignment. The objective function which will be explained in detail in sec-

tion 3 is computed to determine if adding s2 to the right node improves the inter-cluster 

distance between the two sets. The answer is “yes” and s2 is added. At this point the right 

node dataset is {s1, s2} and the left node dataset is {s3, s4, s5}. Fig. 4.1.b shows the first 

node split. Since 1-NN(s2)=s3 the algorithm attempts to add s3 to the right node. Howev-

er, adding s3 to set {s1, s2} will decrease total inter-cluster distance and increase total 

intra-cluster distance. Therefore the node split stops and the obtained clusters for this step 

are: {s1, s2} and {s3, s4, s5}. The tree construction continues in Fig. 4.1.c where the sub-

node {s3, s4, s5} is further split. 
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Fig. 4.1. AVALANCHE splitting process starts from the outermost example toward the center of 

the cluster 

 

In Fig. 4.1.c s5 is the anti-medoid. 1-NN(s5)=s4 however, adding s4 to right node would 

increase total intra-cluster distance and decrease inter-cluster distance, which would de-

crease the objective function. Therefore the split stops and we obtain {s3, s4} and {s5}. 

Fig. 4.1.d and 4.1.c show that the two-object clusters are further split. The final tree is 

shown in Fig. 4.1.f. More details of this approach are provided in section 3.  

 

The main contributions of this chapter include: 

1. The introduction of a new unsupervised approach to divisive clustering which uses 

both global and local information in its splitting decision. Most divisive approaches 

make splitting decision based on global statistics information about the dataset (vari-
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ance, sum of square errors). Likewise, most agglomerative approaches make merging 

decision based on proximity of pair of examples which is perceived to be local infor-

mation. AVALANCHE splitting decision is based on both concepts since it computes 

the anti-medoid from the dataset (global) then uses 1-NNC approach to merge neigh-

boring examples in the proximity of the anti-medoid (local). 

2. A new unsupervised approach to top-down hierarchical clustering which takes as input 

a dissimilarity matrix. Divisive algorithms that have been proposed in the literature so 

far cannot be applied to datasets where examples do not have any attributes.  

3. The introduction of a novel objective function which considers the inter-cluster dis-

tance in addition to the intra-cluster distance when evaluating different clustering solu-

tions. 

4. Incremental methods are proposed which save time in the objective functions computa-

tions.  

5. The algorithm runs faster than its main competitor while maintaining comparable or 

better clustering results! 

 

The rest of the chapter is organized as follows. In section 4.2 we present related work. 

Section 4.3 details the proposed algorithm. Finally, in section 4.4 we discuss results of 

experimental evaluation. 
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4.2. Related Work 

Hierarchical clustering approaches are either agglomerative or divisive. In order to decide 

which clusters should be combined/divided they require some evaluation measure. Divi-

sive approaches rely heavily on Ward’s minimum variance method [19] which states that 

the cluster with the largest Sum of Square Error should be chosen for the split. The ag-

glomerative approaches, on the other hand, rely on dissimilarity among the clus-

ters/examples to make their merging decision. An important choice required in agglomer-

ative hierarchical clustering is how to measure the distance between the clusters. Com-

monly used distances — often known as “linkages” — include complete link, single link, 

average link, centroid link [9, 8, 2, 17, 5]. Given two clusters Ci, and Cj, and xip, xjq ex-

amples in cluster Ci, and Cj respectively; the different distance measures are defined as 

follows: 

 Single link: d(Ci, Cj) = min{d(xip, xjq)} which is the smallest distance between an ele-

ment in one cluster and an element in the other 

 Complete link: d(Ci, Cj) = max{d(xip, xjq)} which is the largest distance between an 

element in one cluster and an element in another cluster 

 Average link: d(Ci, Cj) = avg{d(xip, xjq)} which is the average distance between ele-

ments in one cluster and  elements in the other 

 Centroids/medoids link: cen{d(xip, xjq)} or med{d(xip, xjq)} which is the distance be-

tween two centroids/medoids of the two clusters. A centroid is the central point of a 

cluster (mean point), while a medoid is an actual example which has the smallest larg-

est distance to any point in the cluster. 
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The most popular agglomerative approach is the average link approach also known as the 

Un-weighted Pairs Group Method with Arithmetic Mean (UPGMA) algorithm. It takes 

as input a distance matrix. When UPGMA is used the distance between two clusters C1, 

and C2 is defined as  

𝑑(𝐶1, 𝐶2) =
1

|𝐶1||𝐶2|
∑ ∑ 𝑑(𝑥, 𝑦)𝑦∈𝐶2𝑥∈𝐶1

  

 where |C1| and |C2| denote the number of examples in cluster C1, and C2 respectively. 

First, it locates the two closest examples/clusters in the matrix, and merges them into a 

cluster, say Ck; that is Ck=C1 ∪C2.  The rows and columns occupied by the exam-

ples/clusters thus merged are removed from the matrix and a new row and column for Ck 

are entered. For any cluster Ci the distance between Ci and Ck is computed as  

𝑑(𝐶𝑖, 𝐶𝑘) =
|𝐶1|

|𝐶1|+|𝐶2|
𝑑(𝐶1 , 𝐶𝑖) +

|𝐶2|

|𝐶1|+|𝐶2|
𝑑(𝐶2, 𝐶𝑖)  

Divisive hierarchical clustering is a top-down approach which starts with the root node 

having all the data associated with it, and the approach recursively splits it into two 

node/set pairs until sets containing one example are obtained or it terminates earlier if a 

predefined termination condition is met. The most popular approach is the “Bisecting K-

mean” approach [6, 7,10,11,14, 16]. To split a node, it first computes the centroid of the 

dataset. Next, it iteratively computes the centroids K1, and K2 of two regions of the da-

taset using K-mean (K=2). Then it bisects the data with a hyper-plane passing through the 

centroid and perpendicular to segment K1K2. The process continues until a termination 

condition is reached. Another divisive approach is the Principal Direction Divisive Parti-

tioning (PDDP) algorithm [3]. It computes the singular value decompositions (SVD) and 
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derives the principal direction then divides the dataset with a hyper-plane passing through 

the origin and perpendicular to the principal direction vector.  The principal direction of 

the data is its direction of maximum variance [15]. Recently a hybrid method has been 

proposed [12]. It uses both agglomerative and divisive hierarchical clustering algorithms 

to get the best of both approaches. In a first step, the algorithm uses the Bisect K-means 

approach to cluster the dataset in K’ clusters and then uses UPGMA on the centroids of 

the computed K’ clusters. If two centroids end up in same cluster then all of their exam-

ples are merged in one cluster. This approach is different from our proposed method in 

that it applies sequentially the top-down method then the bottom-up method, whereas our 

approach incorporates bottom-up merging criteria into its top-down splitting decision. 

One of the main drawbacks of both the Bisect K-mean and PDDP is that they are sensi-

tive to outliers. 

 

Divisive algorithms proposed thus far are unsuitable for clustering datasets where the 

only input is a distance matrix because they rely on centroids computation which is not 

possible with distance matrix. For those applications we propose AVALANCHE, a top-

down hierarchical algorithm that does not use centroid in its splitting method. The detail 

of the AVALANCHE algorithm is provided in section 3. 

 

4.3. The AVALANCHE Approach 

The general idea of the AVALANCHE approach is that at each intermediate node the 

algorithm tries to split the node into two child-nodes (binary split) such that the distance 

between the clusters associated with the child nodes is maximum and the sum of the 



69 

 

“within cluster” distances is minimum. Table 4.1 summarizes the notations that are used 

throughout this chapter.  

 

Table 4.1. Notations used in the remainder of the chapter 

Notation Description 

D Input matrix 

D(xi, xj) Distance between object xi, and xj 

Tp, TL, TR Respectively parent node and its associated left, and right nodes 

I(TL,TR) or I Total inter-cluster distance between node TL, and TR 

U(TP) 

U(TL),U(TR) 

Sum of all distances between objects within a given set; respectively in parent 

node TP, left node TL, and right node TR 

U(xi) or U(xi ,T) Sum of distances from object  xi to every object in a given set T. 

H(TL,TR) or H The objective function 

1-NN(xi), The nearest neighbor object to xi 

 

4.3.1. Problem Definition 

Let TP be a node, and TL, and TR its associated sub-nodes (to be computed). We let 

I(TL,TR) be the inter-cluster distance between the sub-nodes and U(TL) and U(TR) be re-

spectively the intra-cluster distance of node TL and TR. The problem is to split TP into TL, 

and TR in such a way that inter-cluster distance between TL and TR, I(TL,TR), is maxim-

ized and total intra-cluster distance, U(TL)+U(TR), is minimized. 

This splitting problem can formally be defined as follows:  

Given a set TP of objects {x1,...,xn} find two sub-sets TL and TR, with TP=TR ∪ TL and TR 

∩ TL= such that:   

 H(TL ,TR) = (1- α)  I(TL,TR) – α [  U(TR) +  U(TL)]  (1) 

is maximized. 

α is a parameter between 0 and 1 which balances the importance of each objective. 
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When α=1 one favors to minimize the intra-cluster distance over maximizing the inter-

cluster distance. Similarly when α=0 one favors to maximize the inter-cluster distance 

over the intra cluster distance.  We note that intra-cluster distance of the parent node is 

equal to the sum of intra-cluster distances of both sub-nodes plus inter-cluster distance 

between both sub-nodes.  

 U(TP)= I(TL,TR) + [U(TR) + U(TL)]  (2) 

We also remark that U(TP) is a constant value because assigning an example to left or 

right node, does not change total intra-cluster distance of the parent node. Substituting 

I(TL,TR)=U(TP) - [U(TR) + U(TL)] into equation (1) we obtain H(TL ,TR) = - [U(TR) + 

 U(TL)] + U(TP)(1- α). Since U(TP)(1- α) is a constant value, maximizing H is equivalent 

to  minimizing [U(TR) +  U(TL)]. Likewise replacing [U(TR) + U(TL)]= U(TP) - I(TL,TR) 

into equation (1) we obtain H(TL ,TR) = I(TL,TR) - α U(TP) . Since α U(TP) is a constant 

value, maximizing H is equivalent to maximizing I(TL,TR).Therefore the objective func-

tion expressed in equation (1) is equivalent to the objective function given by equation 

(3) or equivalently by equation (4). 

 Maximize H1(TL, TR) = I(TL,TR)  (3) 

 Minimize H2(TL,TR) = [U(TL)+U(TR)]     (4) 

We note that maximizing/minimizing the objective function is independent of α. The total 

inter-cluster distance, I(TL,TR),  is given by equation (5) and total intra-cluster distances 

for node TL is by given by equation (6). 

 I(TL,TR) =  ∑ 𝐷(𝑥 𝜖 𝑇𝐿
𝑦 𝜖 𝑇𝑅

x,y)  (5) 
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 U(TL) =  ∑ 𝐷𝑥,𝑦 𝜖 𝑇𝑙
𝑥≠𝑦

(x,y) (6) 

Finding the optimum solution for H1 or H2 is computationally complex. A somewhat sim-

ilar problem is the well-known “The balanced number partitioning problem” [20] which 

is known to be NP-hard. Computing the optimum solution for our objective function may 

require that all possible assignments to either set be tried out. AVALANCHE proposes a 

heuristics to split the dataset which is based on identifying first, the anti-medoid and then 

assigning it to a cluster (previously empty set). Next, neighboring examples to the anti-

medoid are added one at a time to grow the cluster so long as the objective function im-

proves. Therefore unlike traditional bottom up hierarchical approaches that consider only 

proximity of clusters as sole criterion for merging (local information), or top-down hier-

archical clustering which use variance reduction as splitting strategy (global information), 

the proposed algorithm uses both local as well as global information about the data to 

recursively split it with the aim of obtaining improved clustering result. Our approach 

incorporates global information about the dataset because it computes the anti-medoid of 

the dataset, and local information is considered by identifying examples in the neighbor-

hood of the anti-medoid. The detail of this method is provided in section 4.3.2. Since 

both equation (3) and (4) are equivalent, for the rest of the chapter we consider equation 

(3). AVALANCHE computes an approximate value for the objective function which we 

describe in section 4.3.2. 
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4.3.2. Node Evaluation 

An approximated solution to H1 is provided in this section. We use TL, TR, and TP to not 

only designate the parent node and both child-nodes but also to refer to the datasets in the 

respective nodes.  Given TP a parent node, the algorithm starts with one of the sub-node 

being an empty set, (say TR= Ø) and the other sub-node filled with all the data of the par-

ent node, (say TL =TP).  Next, it attempts to move examples from TL to TR one example at 

a time, maximizing H1. One important challenge is how to determine the examples that 

need be removed from TL to TR. A brute force approach would be to try all possible splits 

then select the one that maximizes the objective function. Such an approach would be 

impractical. We use the Nearest Neighbor Chain approach (1-NNC) for this purpose. 

Firstly, it is cost effective to compute 1-NNC from an input distance matrix. Secondly, by 

adding the examples one at a time incremental optimization of the objective function can 

be achieved. With this approach, first the anti-medoid is computed and assigned to TR. 

Then its nearest neighbor, Slast, is computed and tentatively assigned to TR. If H1 im-

proves when Slast is assigned to TR then the assignment holds and the nearest neighbor of 

Slast residing in TL is computed and tentatively assigned to TR; the chain of assignment 

continues until H1 does not improve. To compute the anti-medoid (the outermost object) 

AVALANCHE first computes the contribution of each example to total intra-cluster dis-

tance of TL then selects the object with the largest value. This process is detailed in algo-

rithm 1 which gives the pseudo code of the AVALANCHE algorithm. 
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Algorithm 1: Node Evaluation for the Top-Down Tree 

1. Input: TP ; Parent node 

2. Outputs: TL, TR ; Sub-nodes 

3. BEGIN 

4.   TLTP; TRØ 

5.   IF size of TL = 1 THEN  

6.      RETURN; 

7.  

8.   Slast  Anti-Medoid( TL) 

9.   current_H Compute H(TL,TR) 

10.   WHILE (TRUE)   

11.        previous_ H current_H     

12.        TR  TR ∪ {Slast} 

13.        TL TL - { Slast} 

14.        current_H Compute H(TL,TR) 

15.       IF ((current_H  - previous_H) > 0)  THEN  

16.           Slast  1-NN( Slast) 

17.       ELSE 

18.          EXIT 

19.   END WHILE 

20. END  
 

 

If TL has only one example, there is no need for a split (line 5-6); otherwise the anti-

medoid is computed. The algorithm then enters the loop and iteratively uses 1-NN ap-
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proach to move objects from TL to TR as long as H1 improves (line 10-18). In line 12 to 

14 both sets are updated (tentatively) and a new H1 computed. If there is no improvement 

in H1 the algorithm exits the loop (line 18); otherwise the assignment is confirmed and 

the algorithm fetches from TL the nearest object to the object last assigned to TR (1-

NN(Slast)), and assigns it to Slast (line 16).  

4.3.3. Implementation 

The anti-medoid (line 8) is computed using equation (7). Equation (7) computes each 

object xi’s (xi ϵ TL) contribution to total intra-cluster distance of TL.  

 U(xi,TL) =   ∑ 𝐷𝑁
k=1 (xi,xk)  (7) 

U(xi,TL) can be stored as a vector say, vU. Matrix D is augmented with a row represent-

ing vU (last row of D).When object xk located at row k of matrix D is moved to TR a new 

row is entered in matrix D as new_vU  old_vU – row(k,D) where row(k,D) means 

“row k of matrix D”. Doing so updates both the intra-cluster distances for TL and the in-

ter-cluster distances at the same time in vector vU. Thus to compute I(TL,TR) we only 

need to sum the values in the cells of vU corresponding to the objects already moved to 

TR; and to compute U(TL) we sum the values in the  cells corresponding to objects still 

remaining in TL. 

4.3.4. Runtime Complexity 

Given a node dataset of size t, it cost O(t
2
) to compute the anti-medoid (to construct vec-

tor vU and to select the largest value from it). It cost O(t) to compute H1 from vector vU; 
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therefore the cost to split a node is O(t
2
)=O(t

2
)+ m*O(t) where m (m<t) is the number of 

objects assigned to TR. When only one example is assigned per node split, H is computed 

only 1 time (per node split); therefore it  cost O(n
2
) for splitting the root node, then O((n-

1)
2
) to split the two nodes at depth 1, etc. and hence, O(n

2
+ (n-1)

2
+..

 
+ 2

1
) = O(n

3
) to 

build the tree. In case half of the examples are assigned per node split, it cost O(n
2
) 

=O(n
2
) + n/2*O(n) to split the root node,  O([(n/2)

2
+ (n/2)

2 
] =O(2*(n

 
/2)

2
) to split both 

nodes at depth 1, etc. Therefore the cost to build the tree in this scenario is   O(n
2
+ 

2
1
*(n/2

1
)
2
 + 2

2 
*

 
(n/2

2
)
2
 +..+ 2

p
*(n/2

p
)
2 
] where p=log(n). This value can further be simpli-

fied as O(n
2
(1+ (1/2

1
)
2
+..+ (1/2

p-1
)
2 

) =  O(n
2
 +n

2
 sn) with sn=(1/2

1
)
2
+..+ (1/2

p-1
)
2 

< 1. 

Therefore total cost is O(n
2
). That it cost O(n

2
) for the best case scenario and O(n

3
) for 

the worst case scenario to build the tree. 

4.3.5. Illustrating AVALANCHE Node Splitting Method 

Fig. 4.2 demonstrates one implementation of algorithm 1. Initially, we assume that TL 

TP and TR=Ø. The highlighted columns contain data moved to TR and the white col-

umns represent data still in TL. We use H1 as objective function for this illustration. Col-

umn H hosts the values of the objective function and the last row of the table contains the 

current vector vU.  

 

Fig. 4.2.a hosts the input matrix of dataset shown in Fig. 4.1, augmented with the initial 

vector vU in the last row. We note row(U0) to mean  “vector vU located in row U0 of the 

table ”. At this early stage no example has yet been assigned to TR. Next, the algorithm 
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computes Umax, the largest value in row(U0) and found that U(s1)=Umax=24. Hence, 

the anti-medoid is s1 and s1 is assigned it to TR.  

In Fig. 4.2.b row(s1) and column(s1) are highlighted  to signify that TL={s2,s3,s4,s5}, 

TR= {s1}. Next, a new vU is computed. To do so, a new row is entered at the bottom of 

the table and updated as row(U1) row(U0 ) – row(s1). This is so because after s1 has 

been assigned to TR, we must subtract its contribution to TL’s intra-cluster distances 

(U(TL) U(TL)- U(s1)) leading to U(s2)=16, U(s3)=8, U(s4)=8, and U(s5)=12. Hence, 

the new U(TL) = U(s2) + U(s3) + U(s4)+ U(s5) = 44. U(S1) contains the contribution of 

s1 to total inter-cluster distance. Since TR only contains s1, it comes that H= I(TR,TL) = 

I({s1}, {s2,s3,s4,s5})  = U(s1) =24.  

 

In Fig. 4.2.c the algorithm computes the nearest neighbor of s1; 1-NN(s1)=s2 (circled 

value); s2 is tentatively assigned to TR.’ This is shown in Fig. 4.2.d where column(s1) and 

column(s2) are highlighted. A new row is entered and its values updated as row(U2)  

row(U1) - row(s2). H= I({s1,s2},{s3,s4,s5}) =U(s1)+U(s2)=22+16=38. (We remark that 

the intra-cluster distance of TL is now U(TL) =U(s3) +U(s2) +U(5)= 4+3+5=12) . 

 

Next, in Fig. 4.2.e 1-NN(s2) = s3. A new row, (row(U3), is entered and updated in the 

same manner as previously done for row(U2) and  H=16+12+4= 32 < 38. Therefore s3 

candidacy is rejected and the node split stops. The result of the node split is shown in Fig. 

4.2.f. 
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Fig. 4.2. Illustrating AVALANCHE node-split method 

 

4.4. Experimental Evaluation 

We compare the results of our proposed method to those obtained with the widely used 

UPGMA algorithm. This is because a direct comparison to divisive approaches that have 

been proposed in the literature is not possible as our approach uses dissimilarity matrices 

whereas current divisive approaches use the pair (attribute/attribute values). The current 

approach was evaluated using two types of performance criteria: (1) runtime complexity, 

(2) intra-cluster distances of the generated clusters. One artificial dataset and five real 

world datasets were used to evaluate the algorithms. All experiments reported in this 

chapter were performed on a 64-bit PC i7-2630 CPU at 2 Ghz running Windows 7. With 
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respect to the runtime evaluation, we generated various size datasets (artificial dataset). 

We implemented AVALANCHE and UPGMA in the same machine. UPGMA was im-

plemented in its canonical form without optimization. We ran both algorithms and com-

pared the average speeds (section 4.4.2). We used total average intra-cluster distances to 

measure the quality of the clustering result (section 4.4.3). 

 

4.4.1. Datasets  

We used the datasets summarized in Table 4.2 throughout the experiments  

Table 4.2. Datasets 

Dataset 

Name 

Description Size Number of 

Class Labels 

E.coli Niche breadth 82 3 

AV Archaea growth rate in natural environment 70 4 

BE Bacteria ecosystem class: engineered environment 120 4 

BV Bacteria ecosystem class: environmental 311 4 

BH Bacteria ecosystem class: host-associated environment 571 3 

Art Randomly generated sequences *many sizes 3 

*We generated various sizes of this dataset 

 

 Real-world Datasets 

Distance measure used for distance matrices were the patristic distance for all real-world 

datasets. 

E. coli: This dataset was obtained by measuring the growth of 82 strains of Escherichia 

coli in 10 distinct environments. Strains were then classified as specialists (S), intermedi-

ate (I), or generalists (G) depending on arbitrary divisions of the standard deviation of 

their growth in the environments.  
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Ecosystem datasets: Datasets characterize principle ecosystem type of bacteria (engi-

neered environment, BE; environmental, BV; host-associate, BH). Ecosystem type and 

sequence information were downloaded from the Joint Genome Institute website [21].  

In addition, dataset for growth rate of various types of archaea in natural environment 

was used in this experiment (AV).  

 

  Artificial Datasets  

Art dataset: Artificial dataset was generated using a random sequence generator and have 

a sequence length of 200. The publicly available software MEG6 (Molecular Evolution-

ary Genetics Analysis version 6) [13] was used to compute the distance matrix using p-

value distance. 

 

4.4.2. Runtime 

We used the artificial dataset with various sizes to evaluate the runtime speed of the ap-

proaches. The trees were fully grown until each leaf-node contains one example. Fig. 4.3 

summarizes the obtained results. 
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Fig. 4.3. AVALANCHE runtime complexity 

 

As expected, the result in Fig. 4.3 confirms that AVALANCHE is a lot faster than the 

UPGMA algorithm (not optimized form of the UPMGA). 

 

4.4.3. Intra-Cluster Distance 

To measure the compactness of clusters created by both algorithms, we use the average 

intra-cluster distances criterion. The weighted average method is used to compute overall 

average “within cluster” distances 

Av_Intra(X)=  = ∑ (Ci ∈X   
|Ci|

N
∗ intraclusterDistance(Ci) ) 

where N is the sum of the cardinality of all clusters Ci. N=∑ (Ci ∈X |Ci|), X is the cluster-

ing result (set of clusters generated by the algorithm), |Ci| cardinality of cluster Ci. We 

made the assumption that the lower the average intra-cluster distance, the better the algo-

rithm with respect to generating compact clusters. Table 4.3 summarizes the obtained 

results. The result shows that AVALANCHE produces smaller size clusters on four da-

tasets, tie on three datasets with UPGMA and lost on one dataset (slightly under perform 
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on the E.coli dataset). The obtained result therefore supports the assumption made that 

incorporating local and global information into the splitting decision leads to improved 

clustering result. 

 

Table 4.3. Total number of clusters and average intra-cluster distance 

   

Average Intra 

Cluster Distances 

Average Inter 

Cluster Distances 

Dataset Size 
Total Number 

of Clusters 
UPGMA AVALANCHE UPGMA AVALANCHE 

E.coli 82 163 10.34 10.5 15.32 14 

AV 70 139 8.32 7.98 12.1 10.13 

BE 120 239 26.25 24.7 43.96 52.9 

BV 311 621 17.28 14.67 31.34 17.09 

BH 571 1141 29.05 24.31 49.1 29.47 

Art 20 20 39 0.6 0.59 0.61 0.6 

Art 50 50 99 0.62 0.62 0.63 0.63 

Art 100 100 199 0.63 0.63 0.64 0.64 

 

Dataset Art20, Art50, and Art100 are three different sizes of the Art dataset. Using the 

AV dataset, we illustrate in Fig. 4.4 the number of clusters generated by AVALANCHE, 

the clusters’ sizes, the inter cluster distance that was generated after the cluster was creat-

ed, and the resulting average intra-cluster distance. The table in Fig. 4.4.c contains in its 

first row sizes of clusters generated by AVALANCHE (on the AV dataset).  The second 

row contains the number of clusters per size. For example, there are 70 clusters of size 1 

(first column) and one cluster of size 70 (last column). It can be observed from Fig. 4.4 

that with the AV dataset, the small size clusters do not generate large inter-cluster dis-

tances (in general). However, cluster of size 8 and cluster of size 19 generated after split, 

a large inter cluster distance of 30 (Fig. 4.4.a). This indicates that the two clusters are 

well separated clusters. Likewise, cluster of size 27 and 43 generated another spike. The 
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actual clusters (size 8 and 19) and (size 43 and size 27) are shown in Fig. 4.4.b.   As 

shown in Fig. 4.4.b the first split generated clusters of size 27 and 43. Then the second 

split divided the cluster of size 27 into cluster of size 8 and cluster of size 19. By analyz-

ing the inter-cluster distances and the size of the generated clusters the structure in the 

dataset can be understood. 

 

 
Fig. 4.4. Illustrating AVALANCHE ability to generate clusters that are both compact and far 

apart 

 

4.5. Conclusion 

This research introduces a novel hierarchical clustering algorithm called AVALANCHE. 

AVALANCHE forms clusters by splitting node datasets using a nearest neighbor chain-

ing approach that originates from the anti-medoid of the dataset to be split and the chain-

ing approach is controlled by a novel objective function that can consider both intra-
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cluster and inter-cluster distances. An incremental method to save time in the objective 

functions computations is proposed. The approach takes as input a dissimilarity matrix 

and therefore can be a useful tool for applications where the dataset is formed by pairwise 

distances among the examples; taxonomy generation tools and molecular biology appli-

cation need such capabilities. Divisive clustering algorithms that have been proposed in 

the literature cannot be used for such datasets because they rely on centroid computation 

which is not feasible when the input is a distance matrix. Unlike other approaches, 

AVALANCHE incorporates in its splitting decision local as well as global information 

which provides the algorithm with the capability of generating better clustering results. 

Experimental evaluations confirm that the new approach generates comparable or better 

clustering results than the well-known UPGMA algorithm.  
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Chapter 5 

Supervised Taxonomies — Benefits, Algorithms and Applica-

tions 

 

5.1. Introduction 

The goal of taxonomies is to produce a formal system for naming and classifying species. 

Molecular taxonomists generate phylogenetic trees — computed based on gene sequenc-

es dissimilarities — revealing predicted evolutionary relationships of a group of organ-

isms. Such phylogenetic trees are not only useful tools to categorize species, but also rep-

resent powerful predictive tools that are often used to predict class membership with re-

spect to phenotypes.  

 

This work proposes a new type of taxonomy we term supervised taxonomy (ST). Super-

vised taxonomies are generated considering background information concerning class 

labels in addition to distance metrics, and are capable of capturing class-uniform regions 

in a dataset. More formally, supervised taxonomy generation deals with the following 

problem: given a set of organisms B={b1,b2,..,bn} with class labels drawn from a finite set 

of classes C={c1,c2,..,cm} one would like to construct hierarchical clusters, such that at 

each step class purity is maximized under the constraint that the merged clusters are 

neighboring.  
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The merit of supervised taxonomies is illustrated in Fig. 5.1 which depicts a dissimilarity 

matrix containing 11 Drosophila species randomly assigned to three hypothetical classes: 

{O,P,R}. The same dataset is processed with the well-known Neighbor Joining (NJ) algo-

rithm [21], a hierarchical agglomerative clustering approach that joins two examples into 

their possible common ancestor (Fig. 5.1.b), and using STAXAC (Fig. 5.1.c), a super-

vised taxonomy generation algorithm which will be introduced in section 5.3.  

 

 
Fig. 5.1. Traditional phylogenetic tree vs supervised taxonomy 

 

 

In Fig. 5.1.b the distance from the ancestor to an existing organism is annotated on the 

edges that connect them. In contrast, trees generated by supervised taxonomy generating 

algorithms, such as STAXAC, are built balancing both the phylogenetic proximity (dis-
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similarity) of the examples within the clusters and the cluster purity. There are several 

merits to the proposed approach: (1) it provides an alternative way to categorize species 

by analyzing the class proportion of each sub-tree. For example, in Fig. 5.1.c, the class 

proportions for node n19 are (0.8, 0.2, 0.0) with respect to the underlying class structure 

{O, R, P}, indicating that 80% of the examples in the sub-tree belong to class O and 20% 

belong to class R.  (2) Another advantage of supervised taxonomies is that they can be 

used as predictive tools. For example using Fig. 5.1.c, if an unlabeled species is found to 

pertain to sub-tree rooted at, say node 17, its chances of exhibiting class R or P can be 

estimated to be larger than that of exhibiting class O because it pertains to a sub-tree with 

associated class proportions (0, 0.75, 0.25). With the phylogenetic tree in Fig. 5.1.b, the 

class composition (of a sub-tree) is likely to be more diverse. Although the discussion 

presented above relates to organisms, ST can be generated from any dataset provided a 

dissimilarity matrix can be computed from the input dataset. 

 

Moreover, in this research we are interested in the question if the distribution of the clas-

ses in a dataset is random, unimodal or multi-modal, and algorithms that address this 

problem are introduced which operate on top of supervised taxonomies.  To obtain an 

answer to this question, EUREKA, a set of measures and algorithms that operate on top 

of supervised taxonomies is introduced later in this chapter. It first extracts from a given 

STs, sub-trees of high purity such that the union of all the examples in the sub-trees is 

equal to the original dataset. It then characterizes the class distribution by analyzing the 

composition of the obtained clusterings. Throughout this chapter, a high purity clus-

ter/region with respect to a single class is referred to as subclass. According to this defini-
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tion, a cluster is viewed to be a subclass if most of its instances belong to a single class; 

that is, if the cluster’s purity is high. 

 

A closely related problem is the problem of determining the number of natural clusters 

hidden in a dataset [17, 26, 22]. However, traditional clustering is about discovering high 

density regions with respect to proximity whereas the problem investigated in this work 

is about discovering class uniform regions in a dataset. Fig. 5.2 illustrates these differ-

ences. Fig. 5.2.a represents the original dataset for which subclasses need be uncovered.   

 

 
Fig. 5.2: Discovering subclasses for various purity thresholds 

 

A traditional clustering approach may not reveal any subclass as it does not consider class 

label information in its clustering process (Fig. 5.2.b). Another approach has been pro-

posed in literature [25] where the examples of a given class label are clustered one class 

at a time (ignoring examples of other classes); however, this approach does not adequate-
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ly reveal subclasses in the way we define them, since the examples from other classes are 

removed from the dataset before the clustering takes place (Fig. 5.2.c). On the other hand 

for a given taxonomy we are able to identify subclasses for various purity thresholds (Fig. 

5.2d and Fig 5.2.e). Fig. 5.2.d shows a hypothetical partitioning of the input dataset into 

four subclasses with each subclass allowing some degree of impurity whereas Fig 5.2.e 

shows a clustering of the same dataset where every cluster has 100-percent purity. 

 

Previous work dealing with discovering clusters of high purity in a dataset can be found 

in [11, 12, 4]. The authors termed their approach “supervised clustering” (SC). SC grows 

clusters around representative examples minimizing both clusters’ impurity and total 

number of clusters. However, SC differs from ST in that SC produces flat clusters and 

only a single clustering, and requires a user input parameter that determines the granulari-

ty of the obtained clustering, whereas ST are hierarchical clusters that represent a set of 

clusterings and do not  require a user-defined input parameter. By generating hierarchical 

clusters, STs provide the capability of creating background knowledge at different de-

grees of granularity.  

 

The remainder of this chapter introduces the following results: 

(1) Supervised taxonomies; a new form of taxonomy that incorporates both proximity 

among the examples and background information in the form of class labels.  

(2) STAXAC; a hierarchical, supervised clustering algorithm which generates STs with 

larger sub-trees of higher purities than traditional taxonomy algorithms. 
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(3) A methodology for comparing and evaluating taxonomies is proposed that uses and 

generalizes existing approaches and introduces a novel evaluation method which as-

sesses purity at different levels of depth for a given taxonomy. 

(4) A meta learning approach, EUREKA, that operates on top of ST and provides the 

following capabilities: 

a. It automatically identifies and quantitatively assesses the presence of subclasses in 

a dataset eliminating the need for visual inspection of the tree.  

b. It provides a measure of classification complexity of the dataset which assesses the 

difficulty of classifying the instances in the dataset at hand.  

 

The rest of this chapter is divided as follows. Section 5.2 provides related background 

discussion. Section 5.3 discusses supervised taxonomy. Section 5.4 introduces the 

EUREKA approach and experimental evaluation is presented in section 5.5.    

 

5.2. Related Work 

Traditional clustering methods do not use class label information when clustering data. 

Basu et al. [6] introduce Semi-Supervised Clustering: a clustering method that uses small 

amount of labeled data as seeds to guide the clustering process of unlabeled data. Cohn, 

et al. [8] propose a semi-supervised clustering approach that allows a user to iteratively 

provide feedback to a clustering algorithm. The feedback is incorporated in the form of 

constraints which guide the clustering algorithm towards a clustering result that the user 

finds more useful. Eick et al. [11, 12] introduce Supervised Clustering which assumes 

that all examples that are clustered carry class labels and the goal of supervised clustering 
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is to identify class-uniform clusters that have high probability densities with respect to a 

single class. Daume et al. [9] introduce a Bayesian approach for supervised clustering. 

Finley et al. [14] propose a SVM-based approach to supervised clustering. Bagherjeiran 

et al. [4] introduces supervised similarity assessment. The goal of supervised similarity 

assessment is to obtain a distance function that separates well cases belonging to different 

classes. Vilalta et al. [25] proposes a class decomposition method that identifies sub-

classes before a classifier is applied; however, in this approach subclasses are obtained by 

clustering the examples of each class separately and not jointly.  

   

5.3. STAXAC — An Algorithm that Creates Supervised Taxonomies 

In this section, a new hierarchical clustering algorithm, called STAXAC (Supervised 

TAXonomy Agglomerative Clustering), is introduced. It creates STs by merging neigh-

boring clusters maximizing purity. Traditional hierarchical agglomerative clustering re-

cursively merges the two closest clusters into a larger cluster until the last two clusters 

are merged. STAXAC, on the other hand, attempts to maximize purity (minimize impuri-

ty growth at each step of the recursive process) by merging clusters in which a majority 

of the examples has the same class label. It uses distance information as a constraint so 

that only neighboring clusters are merged. The pseudocode of STAXAC is described in 

Algorithm 1. 

 

Algorithm 1: STAXAC 

Input: examples with class labels and their distance matrix D.  

Output: Hierarchical clustering  
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1. Start with a clustering X of one-object clusters. 

2. C* ,C’X; merge-candidate(C*,C’)   (1-NN
X
(C*) = C’ or 1-NN

X
(C’ )=C* ) 

3. WHILE there are merge-candidates (C*, C’) left  

  BEGIN 

a. Merge the pair of merge-candidates (C*,C’) obtaining a  

new cluster C=C*C’ and a new clustering X’ for which Purity(X’) has the largest value 

b. Update merge-candidates: 

C’’ merge-candidate(C’’, C)  (merge-candidate(C’’,C*)  or merge-candidate(C’’,C’))  

c. Extend dendrogram by drawing edges from C’ and C* to C     

  END 

4. Return constructed dendrogram 

 

 

STAXAC identifies/updates merge candidates—clusters that potentially can be merged 

— and then creates a new cluster by choosing the merge candidate that maximizes the 

purity objective function. It continues this process until no more clusters can be merged.  

It starts off with single-object clusters (line 1) and pairs of objects that are 1-nearest-

neighbor of each other to form the initial set of merge candidates (line 2)
3
. Then 

STAXAC merges the best merge-candidate (C*, C’), creating a new cluster C=C*C’ 

and computes the merge-candidates of the newly created cluster C as the union of the 

merge candidates of clusters C* and C’ that were merged (lines 3a and 3b). In summary, 

STAXAC conducts a wider search than traditional agglomerative hierarchical clustering 

                                                 
3 It should be noted that the initial set of merge candidates is a subset of the actual merge candidates; in general, clus-

ters could be neighboring with more than 2 other clusters. However, determining all clusters which are neighboring 

is only feasible in 2D-space by computing the Voronoi tessellation for the points in the dataset; unfortunately, the 

Voronoi tessellation cannot be computed for higher dimensional spaces.  



93 

 

(HAC) algorithms, as it merges neighboring clusters, but it does not necessarily merge 

the pair of clusters that are closest to each other.  

 

Fig. 5.3 illustrates the effectiveness of STAXAC in finding sub-classes from a given da-

taset,  presenting a hypothetical two-class dataset comprising 3 species with a disease (the 

white disks) and 3 healthy species (dark disks). The arrows “” represent the 1-NN rela-

tionships among the examples.  

 

 
Fig. 5.3: Illustrating partitions obtained by STAXAC vs partitions obtained with traditional hier-

archical agglomerative clustering on a hypothetical dataset 

 

In Fig. 5.3, HAC-generated tree (Fig. 5.3.a) and STAXAC-generated tree (Fig. 5.3.b) 

were induced from same hypothetical two-class dataset. One can visually observe that the 

optimum division of the dataset into large and high purity partitions is the two sets of 

100-percent purities ({e2, e4, e6}, and {e5, e1, e3}).  The traditional hierarchical agglomer-

ative clustering approach is unable to discover the optimum partition since it merges the 

two closest clusters.  
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STAXAC exhibits some interesting properties:   

1. In contrast to other supervised clustering algorithms, STAXAC is a hierarchical clus-

tering that maximizes cluster purity.  

2. In contrast to other hierarchical clustering algorithms that merge the pair of closest 

clusters, STAXAC uses a 1-NN graph to determine which clusters are neighboring. 

Thus STAXAC conducts a wider search, merging clusters that are neighboring and 

not necessarily the closest two clusters. This ability allows STAXAC to generate 

larger size, high purity clusters than traditional hierarchical clustering methods. 

3. Proximity graphs need only be computed at the beginning of the run which saves 

time. 

4. STAXAC can be generalized by using more powerful proximity graphs, such as Ga-

briel Graphs, to conduct a wider search.   

The above properties can be useful in many areas, such as Bioinformatics, and Meta 

Learning.  For example, in Biology, the ability of STAXAC to generate larger high purity 

clusters than tradition hierarchical approaches (property 2) can be helpful to identify in-

teresting subclasses of known diseases.  In Meta-Learning, property 1 and 2 can be used 

to create useful background information from datasets by developing algorithms that op-

erate on supervised taxonomies, which will be the subject of the next section.  

 

5.4. Creating Background Knowledge with STs 

In this section, we introduce EUREKA, a set of measures and algorithms that operate on 

top of supervised taxonomies to create background knowledge of a dataset. EUREKA 

provides two groups of methods. The first group, we term, tree topology evaluation 
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methods, allows one to evaluate and to compare different taxonomies. The second group 

consists of computational methods that (1) extract subclasses from STs at various levels 

of granularity (2) compute the modalities of the classes in the dataset and (3) assess the 

difficulty of classifying the examples in the dataset. The notation used in the remainder of 

the chapter is summarized in Table 5.1. 

 

Table 5.1. Notations used in the remainder of the chapter 

O Input dataset 

n Number of examples in O 

c Number of class labels in O 

X A clustering result;|X|= number of clusters in X 

C A cluster; |C| =number of examples in C 

T A taxonomy tree generated from O  

Ti The ith sub-tree of  T 

𝜃 Purity threshold; 𝜃 ∈ (0,1] 

S𝜃 Set of purity thresholds; S𝜃={ 𝜃1,..,𝜃m} for some m>0 

X𝜃  A clustering result for purity threshold 𝜃 such that each cluster has purity above or equal to 𝜃 

Xall 
Set of all clusterings (for all purity thresholds); for example Xall = {X𝜃1,..,X𝜃k} for thresholds 

𝜃1,..,𝜃k 

 

5.4.1. Tree Topology Evaluation Methods 

 To evaluate and compare different taxonomies, adaptations of two previously proposed 

methods [10], (1) edited tree complexity, and (2) number of subfamily changes, as well 

as one new method, (3) depth average purity, are proposed.  

 

Edited Tree Complexity [10] 

When computing this measure, first the tree is fully developed then pure leaf-nodes of 

same class labels are merged. An edited tree complexity is then measured as the total 

number of nodes in the tree, indicating how compact the smallest possible pure clustering 
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is. In this research, we generalize this measure by allowing any merging of subtrees as 

long as the purity remains above a threshold 𝜃. Given two taxonomies the taxonomy with 

the smaller edited tree complexity is preferred.  

 

Number of Sub-family Changes [10] 

We associate to each node a sub-family, which is the class with the largest number of 

instances, with the root node representing the most frequent class in the dataset. A family 

change occurs when two nodes with different majority class labels are connected to a 

branch. The measure evaluates a taxonomy by counting the number of family changes, 

preferring trees with the fewest family changes. The number of sub-family changes 

measures the ability of taxonomy to cluster examples of same class label together. 

 

Average Purity Per Depth 

Average purity per depth is a measure of a tree’s performance in clustering examples be-

longing to different classes into separate clusters. Average purity per depth is calculated 

by averaging clusters’ purities at each depth of the taxonomy tree.  For example, if a 

depth d has only two nodes node1 and node2, and if node1 has purity p(node1)=p1 and 

node2 has purity p(node2)=p2, then purity of depth d is p(d)= (p1+p2)/2. 

 

5.4.2.  Extracting Subclasses from Dataset 

Modality measures the number of major peaks in a distribution. Detecting the modalities 

in a dataset is an important step to data analysis and provides valuable insights and bene-

fits. For example, in data reduction, a dataset may be reduced to a set of representative 
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examples which are the peaks of the distribution (central point of each subclass). Another 

motivating example can be found in modeling. For example, given a two-class dataset, if 

each class is unimodal, one may be prompted to design a binary classifier to classify the 

examples in the dataset. If on the other hand, the classes are multi-modal, one may resort 

to a more advanced classification strategy such as an ensemble of binary classifiers. In 

this section, we provide a method for a class modality assessment that — based on a do-

main expert’s notion of what constitutes a “noteworthy” subclass — determines if specif-

ic classes in the dataset are zero-modal, unimodal, or multi-modal.  

  

The problem under consideration consists of identifying in the dataset regions of high 

density with respect to a single class. To solve this problem we use the following three 

steps: 

Step 1: STAXAC is used to cluster the dataset since its clustering method favors the con-

struction of large sub-trees of high purity (section 5.3 (property 1 and 2)). 

Step 2: Extract from the tree generated by STAXAC a clustering X consisting of sub-

trees such that the sub-trees’ purities are above some minimum purity threshold 𝜃 (with 

𝜃∈ (0, 1]). 

Step 3: Delete from X clusters with sizes below a minimum threshold size  — obtaining 

a reduced set of clusters, X’. The surviving clusters in X’ are referred to as subclasses. 

The problem to be solved in step 2 can formally be described as follows.  

Given O a set of n labeled examples x1,..,xn, c the number of classes in O, and T its asso-

ciated taxonomy tree, the goal is to retrieve from T a clustering X, such that requirements 

(1) through (5) are met:  
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(1) X={C1,..,Ck} 

(2) ∀ Ci ∈ X , purity (Ci) ≥ 𝜃 

(3) |X|, the number of clusters k is minimal 

(4) O = ⋃ Ci  

(5) ∀ Ci ∈ X, ∀ Cj ∈ X, i ≠ j  Ci ∩ Cj= ∅ 

The cluster extraction procedure may return one of the below three clustering results 

(cases):  

a) |X|=c with 𝜃=1 (ideal case) 

b) |X|=n (worst case) 

c) |X|=k  (for some k>0 and k <n) 

Result (a) is considered the best case scenario where the number of clusters is equal to the 

number of classes and 𝜃=1; that is, all the examples of a given class reside in a single 

cluster. We refer to this case as the ideal clustering result named Xideal. Another particular 

result is the case where the clustering algorithm yields n one-example clusters which are 

trivially 100-percent pure (result (b)); we consider this solution as the worst case scenar-

io. The ideal case scenario will be used — in section 5.4.3 — to compute the classifica-

tion complexity of the dataset, a measure of the difficulty of classifying the instances in 

the dataset at hand.  

 

The remainder of this section is organized as follows. First, we propose an algorithm to 

solve the clustering extraction problem (step 2) that takes as input a purity threshold 𝜃 

and extracts a clustering from a taxonomy tree, T, such that requirements 1 through 5 are 

met. Then we discuss how to compute an efficient set of parameter 𝜃. Finally, we illus-
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trate our method with a clustering result obtained using the UCI Iris dataset as input, and 

we provide an algorithm for subclass extraction.  

 

Given a purity threshold 𝜃, and a taxonomy tree T, a clustering meeting requirement 1 

through 5, is extracted from T, by calling a function ExtractClustering, whose pseudo-

code is listed as algorithm 2. 

 

Algorithm 2: ExtractClustering (T, 𝜃) 

1. Inputs: taxonomy tree T;  user-defined purity threshold 𝜃 

2. Output: clustering X 

3.  

4. Function ExtractClustering (T, 𝜃) 

5. IF (T = NULL) 

6.      RETURN    

7. IF  T.purity ≥ 𝜃  

8.     RETURN T 

9. ELSE 

10.    RETURN  ExtractClustering(T.left, 𝜃)  ExtractClustring(T.right, 𝜃)    

11. End Function 

 

Function ExtractClustering recursively searches the tree from the root node toward the 

bottom, for nodes of sub-trees whose purity is above the purity threshold 𝜃 and returns 

the union of the found nodes as its result. The subtrees are not overlapping and a subtree 

is extracted once. Since the search starts from root node towards the bottom, the largest 
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possible sub-tree meeting the purity threshold will be returned.  Thus requirement 1 

through 5 are met and the clustering extraction problem is solved. However, when ex-

tracting subtrees from T, many parameter 𝜃s return identical clustering; identifying those 

values helps to avoid repetitious searches.  

 

How to select parameter 𝜃  

Suppose that the child-nodes of the root node, Tleft, and Tright have purity 𝜃left and 𝜃right 

such that 𝜃0 < 𝜃left < 𝜃right where 𝜃0 is the root node purity. Then any parameter 𝜃 ∈ (𝜃0, 

𝜃left] will return the same clustering result which is the clustering X formed by the sub-

trees Tleft, and Tright. This is due to condition (2) and (3) which require that the largest 

sub-trees of T with purity > 𝜃0 be chosen. The same analysis can be done replacing T 

with Tleft (or Tright) and leads to the fact that the relevant values to be considered for purity 

thresholds, are the nodes purities. This is important as it allows a user to better select the 

input parameter 𝜃. Secondly, knowing that the relevant purity thresholds are the node 

purities, one may pre-compute all the clusterings in advance — allowing the analysis of 

all the subclasses for all purity thresholds at once.  

 

Computing an efficient subset of parameter 𝜃 

Given a purity threshold 𝜃, algorithm 2 starts the search from the root node down to the 

leaf-nodes looking for a node purity greater or equal to 𝜃; once such a node is found the 

sub-tree is extracted. However, while it is generally true that node purities at the bottom 

of the tree are larger than nodes purities higher up the tree, this is not always the case. A 

node may have a purity value greater than some of its child-nodes’ node purities. When 
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this is the case, it is unnecessary to consider the child-node purity for sub-tree extraction. 

Therefore an appropriate set of purity thresholds, S𝜃, must be computed from the set of 

all node purities. 

 

We denote by Tk a sub-tree rooted at node k, |Tk| the size of Tk (number of examples in 

the leaf-nodes of Tk) and by purity(Tk) the purity of Tk.  

 

Definition 1: Given a tree T and two sub-trees Tp and Tc , Tc is a sub-tree of Tp, noted Tc 

⊂ Tp, if all nodes of Tc are also nodes of Tp. Formally, Tc ⊂ Tp  ⇔ (Tc ≠ Tp) AND (Tp  ∩ 

Tc )= Tc. 

 

Definition 2: Given a node Tc, if none of its parent node Tp’s has a purity greater than pu-

rity(Tc) then purity(Tc) is a purity threshold (purity(Tp) S𝜃).  

Consequently, if Tc ⊂ Tp and purity(Tp ) > purity(Tc ) then there is no need to extract Tc 

separately (because Tp which includes Tc has a higher purity). In such a condition, puri-

ty(Tc) is not a purity threshold.  

 

Purity threshold set, S𝜃, is computed using algorithm 3. 

 

Algorithm 3: Purity Thresholds Computation 

 

1. Input: Taxonomy tree T 

2. Output: S𝜃 set of purity thresholds 
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3. S
*

𝜃   ∅ 

4. # Step 1: Assign all node purities to S
*

𝜃 (including duplicated values) 

5. FOR each intermediate node p of T    

6.     S
*

𝜃
 
 purity(Tp)  

7.  

8. # Step2: Remove non purity thresholds  

9. FOR each intermediate node p of T    

10.      FOR each sub-tree Tc of Tp 

11.           IF (purity(Tp ) > purity(Tc ) ) THEN  

12.                S*
𝜃  S

*
𝜃 \ purity(Tc) 

13.  

14. #Step 3: Remove duplicated values 

15. S𝜃  {𝟏} # purity of leaf-node are always 1 and included 

16. FOR each 𝜃 in S
*

𝜃 

17.     IF 𝜃 ∉ S𝜃  THEN   

18.         S𝜃  S𝜃
 ∪ 

{ 𝜃} 

19.  

20. Output    S𝜃 

 

Algorithm 3 selects a subset of the node purities in the tree as follows: Initially S𝜃 is 

filled with all node purities (Step 1) (including duplicated values). In step 2, the algorithm 

visits each intermediate node (sub-tree Tp) and removes from S𝜃 the purity values that are 

not purity thresholds (line 8-12). Finally the duplicated values are removed from the list 

(line 14-18).  
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The methods we just introduced have been applied to the UCI Iris dataset, and some of 

the obtained results have been provided in Fig. 5.4. 

 

 
Fig. 5.4: Subclass-extraction result for the UCI Iris dataset 

 

In Fig. 5.4.a, algorithm 3 identifies 5 purity thresholds S𝜃 = {0.333, 0.50, 0.96, 0.979, 1} 

corresponding to 5 possible clusterings (Clustering 0, Clustering 1, Clustering 2 , Cluster-

ing 3, and Clustering 4). ExtractClustering returns the same clustering for purity thresh-

olds 𝜃 =0.979 and 𝜃 =1; thus clustering 3 and 4 are identical (Fig. 5.4.e). Each rectangle 

in the histograms is a cluster. The label of the dominant class of the cluster is provided on 

the horizontal axis. The light color on the rectangles represents the number of minority 

class examples in the clusters.  Clustering 3&4 comprises pure clusters (no contamina-

tion), whereas clustering 0 is highly contaminated. Clustering 3&4 with purity thresholds 
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𝜃 =1 &0.979, has 11 clusters whereas Clustering 0 with 𝜃 = 0.333 has only one cluster 

(any one of the classes A,S, or V could be made majority class since they are 50 exam-

ples in each class). The number of clusterings and the number of clusters for a clustering 

may be large. As purity increases, the number of clusters in a clustering increases as 

smaller size clusters are formed.  

 

Some evaluation measure may be needed to decide which clusters within the obtained 

clustering are newsworthy enough to be reported. We use two user-defined parameters 

𝜃min (minimum threshold purity value) and  (minimum number of examples in a cluster) 

to select the K best clusters. For example a user may find that clustering 2 (in Fig. 5.4.d) 

suits best his purpose because he may accept a few contamination in favor of improved 

cluster size; another user may want a clustering in which all clusters are 100-percent pure 

at a cost of smaller subclass sizes and may select cluster 3.  By using the above two sim-

ple parameters one can define a measure for the number of meaningful subclasses in the 

dataset. That is, if the top K clusters contain no clusters dominated by a given class, say 

A, then A is randomly distributed with no dense areas in the input space; if on the other 

hand, a number of clusters, say m, are found (for some 0<m ≤ K) then A has m sub-

classes. For example in Fig. 5.4, if 𝜃min =1 ( or 𝜃min ∈ (0.96,1])  and  =10, for clustering 

3 & 4,  the following 4 subclasses will be obtained (disqualifying the smaller clusters as 

subclasses): Cluster1= (majority class=S, 𝜃=1, size=50), Cluster2= (majority class=V, 

𝜃=1, size=44), and Cluster3= (majority class=A, 𝜃=1, size=37), and Cluster 4= (majority 

class=A, 𝜃=1, size=10), inferring that we have 2 unimodal class (S and V) and one bi-

model class (A) in the dataset.  



105 

 

 

The general approach to class modality discovery is provided in algorithm 4.  Before 

running the algorithm a domain expert has to decide how many instances a cluster needs 

to have to be newsworthy and how much contamination by other classes is acceptable.  

Next, clusters are extracted from the taxonomy that meet these characteristics (steps 1-5), 

and we count the occurrence of classes in the final display, inferring if they are 0-modal, 

1-modal, or r-modal.  

 

Algorithm 4: Class Modality Discovery 

Inputs:  

O; input dataset 

; a user-defined threshold concerning the minimum number of instances a cluster should have to 

be considered as newsworthy   

min; a user-defined purity threshold that specifies how much contamination of instances is tolera-

ble in a cluster 

1:  Create a ST T from O using STAXAC 

2:  Extract a clustering X from T by calling ExtractCluster(T, min) 

3:  Sort the clusters in X={C1,…,Ck} by their size obtaining a sequence S  

4:  Delete clusters from S whose number of instances is less than  

5:  Display the remaining clusters in S in a histogram where each bin displays the number of in-

stances in the respective cluster; label each bin with the name of the majority class of the respec-

tive cluster 

6:  Analyze the composition of the obtained histogram with respect to class labels to determine 

modalities of particular classes  
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5.4.3. Classification Complexity 

 Data complexity has been proposed in [19, 23, 27, 18]. However the proposed complexi-

ty measures are with respect to a given classifier (complexity of a classification problem), 

whereas the complexity proposed in this research are independent of using a particular 

classifier; it measures the proportion of large size and small size high purity clusters in a 

dataset.  

 

In the following, we introduce a measure to assess the difficulty of a classification prob-

lem. Given a dataset O, of size n with c classes, we denote by X100 the clustering of O that 

algorithm 3 generates using 𝜃=1. The classification complexity of O, called, CC(O), is 

measured by the dissimilarity between X100 and Xideal, which was introduced earlier. CC 

is computed as the average sum of penalties resulting from using more than c clusters to 

partition the dataset into clusters of 100% purity. The penalties are computed as the num-

ber of examples residing outside the first c largest cluster. How classification complexity 

is computed is provided as algorithm 5.  

  

Algorithm 5: Classification Complexity 

 

1. Inputs: X100 ; A clustering of O into 100% purity clusters 

2.             n; size of input dataset O  

3.             c; number of classes in O 

4. Output: CC; classification complexity of O 
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5. L (Sort the clusters in X100 from largest size to smallest size) 

6. penalty 0 ; k0; processed0; 

7. For (k = 1 to | X100|)      

8.        Cm  L[k] 

9.        L  L\ Cm  ;Remove Cm from L 

10.        processed   processed + | Cm | 

11.        IF ( k > =c) 

12.             penalty  penalty + (n - processed)          

13. CC  penalty /n*(| X100| - c+1) 

14. Output CC  

 

Algorithm 5 uses a list (L) to keep track of the clusters not yet processed. The number of 

examples that have been already processed are stored in variable “processed”. The first 

penalty is computed when k=c (line 11, and 12).  The process repeats until the last cluster 

has been visited. Complexity is computed by dividing the sum of penalties stored in vari-

able “penalty” by n*(|X100| - c +1) (Line 13).  

 

Fig. 5.5 illustrates algorithm 5 for three different X100 clusterings. The clustering in Fig. 

5.5.a is the best case scenario (X100=Xideal) and the clustering in Fig. 5.5.c is the worst 

case scenario. In Fig. 5.4.b, X100 is a partition which quality is between the best and the 

worst case scenarios.  
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Fig. 5.5: Illustrating classification-complexity computation 

 

Classification complexity is approximated by the area formed by the white cells divided 

by total area. In general when X100=Xideal, CC(O) =0; and when X100 is equal to worst 

case scenario: CC(O) = 
∑   𝑖𝑛−𝑐

𝑖=𝑐

𝑛(𝑛−𝑐+1)
  = 

(𝑛−𝑐)

2𝑛
 < 1/2. 

 

5.5. Experimental Evaluation  

We evaluate STAXAC against its direct competitor — the widely used taxonomy gener-

ating algorithm, Neighbor Joining algorithm (NJ) [21] (a hierarchical agglomerative clus-

tering) — on four biological datasets using the three tree topology evaluation measures 

we introduced in Section 5.4. The goal of this evaluation is to determine if ST generated 

trees have larger sub-tree purities than traditional hierarchical agglomerative approaches, 

such as NJ. In addition, we evaluate the presented subclass extraction methods on eight 

benchmark datasets to determine the modality of the classes in the datasets. Finally, we 

use the same benchmark datasets to evaluate the effectiveness of the proposed classifica-
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tion complexity measure by comparing classification complexity with accuracy rates of 

24 classifiers, obtained from [2].  

 

5.5.1. Supervised Taxonomy Tree Topology Evaluation 

Supervised taxonomy tree topology was evaluated using four biological datasets and two 

artificial datasets.  

 

5.5.1.1. Datasets  

We used the datasets summarized in Table 5.2 throughout this experiment.  

Table 5.2. Datasets 

Dataset 

Name 

Description Size Number of 

Class Labels 

E.coli Niche breadth 82 3 

BE Bacteria ecosystem class: engineered environment 120 4 

BV Bacteria ecosystem class: environmental 311 4 

BH Bacteria ecosystem class: host-associated environment 571 3 

Art #1 Artificial dataset #1 100 2 

Art #2 Artificial dataset #2 100 2 

 

Distance used for distance matrices was the p-distance for all datasets. P-distance is the 

proportion (p) of nucleotide sites at which two sequences being compared are different 

divided by the total number of nucleotides compared. 

 

Real-world datasets 

E. coli: This dataset was obtained by measuring the growth of 82 strains of Escherichia 

coli in 10 distinct environments. Strains were then characterized as specialists, intermedi-
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ate, or generalists depending on arbitrary divisions of the standard deviation of their 

growth in the environments.  

Ecosystem datasets: Datasets characterize principle ecosystem type of bacteria (engi-

neered environment, BE; environmental, BV; host-associate, BH). Ecosystem type and 

sequence information were downloaded from the Joint Genome Institute website [15].   

 

Artificial datasets  

The artificial datasets were generated using a random sequence generator and have a se-

quence length of 200. The publicly available software MEGA6 (Molecular Evolutionary 

Genetics Analysis version 6) [24] was used to compute the distance matrix. 

Artificial dataset Art#1: The sequences of this dataset were randomly generated. Two 

class labels were assigned to the sequences as follows: (1) the two most distant sequences 

where computed and each was assigned a different class label. (2) The remaining se-

quences were assigned the same class label as the closest distant sequence identified in 

(1). 

Artificial dataset Art#2: This dataset was generated in the same manner as dataset Art#1 

except that 10% of the class labels were randomly assigned. 

NJ trees are un-rooted trees. We defined roots of the NJ tree in the order the taxa (clus-

ters) are being joined into their common parent. When two taxa are joined into a common 

parent, the parent becomes the root node of all taxa associated with its two children (sub-

tree). The last ancestor found is thus the root of the tree. 
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5.5.1.2. Average Purity Per Depth 

Some depths have more clusters than others for different taxonomies; therefore, we report 

also the percent of nodes present in each depth (for depth d, a balanced binary tree has at 

most 2
d
 nodes which is used as a base for computing the percentages). The result is pro-

vided in Fig. 5.6 for two real world datasets. In Fig. 5.6 the 0 on the horizontal axis repre-

sents the root node (depth 0). On both datasets, the result shows that STAXAC reaches 

high cluster purity a lot faster than NJ. For example, on the E.Coli dataset at depth 9 the 

clusters in the node of the STAXAC-generated tree have 100% purity while average puri-

ty in the NJ-generated tree is around 90%. The NJ tree reaches average purity of 100% at 

depth 14. 

 

 
Fig. 5.6: Average purity per depth 
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5.5.1.3. Tree Complexity 

Tree complexity result is shown in Table 5.3 with three pruning purity thresholds 

(𝜃=100%, 95%, and 85 %).  

Table 5.3. Edited tree size (measured by number of nodes) 

Dataset STAXAC NJ 

𝜃 => 100% 95% 85% 100% 95% 85% 

E. coli 55 55 48 123 123 123 

BE 25 22 11 73 73 71 

BV 111 51 51 273 273 269 

BH 19 17 3 75 73 65 

Art#1 15 15 12 139 139 139 

Art#2 17 17 17 153 153 153 

 

The result shows that STAXAC has the best result — the fewest number of nodes — on 

all datasets for all three pruning thresholds (in bold).  

 

5.5.1.4. Number of Sub-Family Changes 

Table 5.4 shows the result of the number of sub-family changes for the datasets used.  

 

Table 5.4. Number of sub-family changes 

Data STAXAC NJ 

E. coli 18 35 

BE 7 21 

BV 26 56 

BH 4 8 

Art#1 4 49 

Art#2 6 61 

 

STAXAC has the best result on all datasets (in bold). This result is expected since the NJ 

tree induction approach does not consider class membership information when generating 

taxonomies. 
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5.5.2. Subclass Discovery and Classification Complexity 

5.5.2.1. Datasets  

The datasets used in this section were obtained from UCI [28] website (Table 5.5.). 

Table 5.5. Datasets  

  Dataset code No. of classes # of records No. input of attributes 

Iris  Irs 3 150 4 

Congress. Voting Vot 2 232 16 

Bupa Liver Disorder  Bld 2 345 6 

Heart Disease Hea 2 270 7 

Boston Housing  Bos 3 506 12 

Wisconsin Breast Cancer  Bcw 2 683 9 

PIMA Indian Diabetes  Pid 2 768 7 

*Silhouette  Veh 4 846 18 

Image Segmentation  Seg 7 2310 19 

*The Vot dataset original size was 435 examples. Rows with missing attribute values were delet-

ed; leading to 232 examples.  

 

5.5.2.2. Subclass Discovery Results 

To test the subclass modality discovery algorithm (Algorithm 4), we used two purities 

thresholds 𝜃=1, and 𝜃=0.90 and set the minimum number of examples in a cluster to 15. 

We report on the number of subclasses found, how many examples they contain, clusters’ 

purities and their majority class label — listed on the horizontal axis. The result is shown 

in Fig. 5.7. 
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Fig. 5.7: Subclass modality  

 

The result shows that in general when purity is high, a lot more subclasses are discov-

ered. For example, the Bcw dataset has only two uni-modal subclasses if the purity 

threshold 90% is used; however, when the purity threshold is increased to 100% the class 

M becomes 5-modal; it looks like the decision boundaries between the 5 subclasses are 

contaminated by a few examples of class B; consequently the subclasses are not merged 

when the purity threshold is 100%. It also can be observed that datasets Seg, Vot, and 

Bcw have larger size subclasses than the other datasets. For example when 𝜃=1, Vot da-

taset which has two attributes, fit 90% of its examples in the two subclasses while the Bld 

dataset with also 2 attributes was able to fit only 26.38% of its examples in 5 clusters.  It 

also can be seen that all clusters of the Pid dataset are dominated by class 0, and we can 

conclude from that, that the dataset does not contain any region dominated by the in-

stances of the other classes in the dataset.  
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5.5.2.3.Classification Complexity  

Classification complexity was computed for the 8 benchmark datasets (Table 5.6). We 

compared our CC results with the accuracy rate of 24 classifiers (Fig. 5.8) (obtained from 

[2]). The computed classification complexity values are shown encircled in Fig. 5.8 

where the y-axis is the average accuracy rate while the x-axis contains the dataset. It can 

be observed that datasets with low classification complexity have been classified with 

high accuracy rate by the majority of the classifiers. On the other hand, datasets with high 

classification complexity values have been classified with low accuracy rate. In addition, 

in Fig. 5.9.a we show that there is a strong negative correlation of -0.94 between the pro-

posed classification complexity and the average accuracy obtained on the datasets which 

suggests that our proposed classification complexity adequately provides a measure of 

the difficulty for learning from a given dataset.  

 

Table 5.6. Twenty four classification approaches [2] 

Abbrev. Algorithm Abbrev. Algorithm 

QU0 

QUEST Versions (Loh,Shih 

1997) 

IC0 CART versions 

(Breiman,Friedman,Olsen,Stone 1984) 
QU1 IC1 

QL0 0CU 

OC1 versions (Murthy, Kassif,Salzberg 1994) QL1 0CL 

FTU FACT Versions 

(Loh,Vanichsetakul 1998) 

0CM 

FTL ST0 

S-PLUS versions (Clark,Pregibon 1993) C4T 
C4.5 (Quinlan1993) 

ST1 

C4R IB 

IND versions (Buntine 1992) 
LMT LMDT (Brodley,Utgoff 1995) IBO 

CAL CAL5 (Müller,Wysotzki 1997) IM 

T1 T1 single split (Holte 1993) IM0 
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CLMIX 
CLINE ( Fatih,Okan 2008) 

  
CLLDA 

   

 
Fig. 5.8: Classification complexity and accuracy rate 

 

 

In Fig. 5.9.b we generated a clustering X using 𝜃=1 (X100). We computed the average 

cluster size for each dataset by dividing total number of examples in dataset by number of 

generated clusters (|X100|) and report on the relationship between the average cluster size 

in the dataset and classification complexity. In Fig. 5.9.b the values of CC have been 

multiplied by 100 (for better graphical display; clusters were extracted using 𝜃=1). It can 

be observed that Bcw and Vot datasets which have the lowest complexity values have 

large average size cluster (above 15 examples per cluster), Seg dataset (with average 

complexity value) has on average 10 examples per subclass while the remaining datasets 

with high complexity have below 5 examples per cluster. This suggests that when a da-

taset has large high purity clusters, its CC is low; meaning the dataset is easy to classify. 

We also computed the correlation between average cluster size and average accuracy 
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rate. The high correlation coefficient of -0.97 further confirms that datasets with large 

high purity clusters are easier to classify than datasets with small high purity clusters. 

 

 
Fig. 5.9: (a) CC and average accuracy rate; (b) Average size of subclasses and classification 

complexity  

 

Fig. 5.10 provides additional evidence that when the dataset contains a lot of small size 

clusters (or no subclass at all) complexity is high. In Fig. 5.10, the clusters are 100-

percent pure and sorted from largest size cluster to the smallest. The x-axis represents the 

clusters and their class labels. The left column of Fig. 5.10 shows the class distribution 

while the right column shows the complexity measures approximated by the white area of 

the rectangles. Given a dataset with c classes, the first (c-1) largest clusters are not repre-

sented in Fig. 5.10 since CC is computed using the c
th

 largest cluster and the remaining 

clusters of smaller sizes in the dataset (refer to section 5.4.3). The Bcw, Irs, and Vot da-

tasets that have small white areas in their rectangles (large size subclasses) have low clas-

sification complexity whereas the rest of the datasets with larger white areas have higher 

classification complexity. 
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Fig. 5.10. Class distribution and complexity results for 8 benchmark datasets and the Iris dataset 

 

Fig. 5.11 further illustrates our complexity measure with additional artificial datasets. The 

datasets used are two-class datasets with two attributes.  
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Fig. 5.11. Illustrating classification complexity for some artificial datasets 

 

In general when the majority of the examples are located in few large clusters of high 

purity, CC is low (Fig. 5.11.a, Fig. 5.11.d, Fig. 5.11.e and Fig. 5.11.f). In contrast, Fig. 

5.11.b, and Fig. 5.11.c where there is no large region dominated by a particular class CC 

is high.  

 

5.6. Conclusion 

This chapter introduced a new type of taxonomy called supervised taxonomy (ST). Su-

pervised taxonomies are generated considering background information in form of class 

labels in addition to distance metrics, and are capable of capturing class-uniform regions 

in a dataset. By analyzing the generated tree structure, a biologist can interpret the clus-

tering result and gain insights into how the biological groupings are related, taking more 
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a supervised point of view. We also introduced, STAXAC, a novel, supervised, hierar-

chical clustering algorithm to generate supervised taxonomies; it conducts a “wider” 

search for the best pair of clusters to merge while maximizing purity, enabling the algo-

rithm to obtain sub-trees of higher purities than traditional agglomerative methods.  

 

We also adapted existing and introduced novel meta-learning methods that operate on top 

of STs. Measures and algorithms that assess the edited tree complexity, subclass changes, 

average purities at different tree-depths, classification complexity, and modality of clas-

ses have been proposed in this research, demonstrating the merit of STs, particularly as 

an exploratory data analysis tool. We claim that the latter two contributions are not only 

novel but useful. We demonstrated in our experimental evaluation that assessing the clas-

sification complexity of a ST, provides a good estimate of the difficulty of the classifica-

tion problem at hand. Moreover, a class modality assessment tool has been provided that 

— based on a domain expert’s notion of what constitutes a “noteworthy”  subclass — 

determines if specific classes in the dataset are zero-modal, unimodal, and multi-modal; 

shedding light on presence of interesting subclasses in the dataset.   

 

As this research introduces ST for the first time, we believe there are many other useful 

things that can be developed on top of supervised taxonomies, which is the focus of our 

future work. Moreover, as taxonomies are very popular in bioinformatics, we plan to as-

sess the usefulness of STs for scientific discovery in bioinformatics in more depth. 
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Chapter 6 

HC-edit: A Hierarchical Clustering Approach To Data 

Editing
4
  

 

 

6.1. Introduction 

One of the most popular classification techniques is the k-nearest neighbor method (k-

NN) which assigns the majority class label in the k nearest neighbor set to a point that 

needs to be classified [1]. The basic k-NN has the advantage of being easy to implement 

but also requiring a large memory to store the model — which is the training set. Addi-

tionally, the classifier is sensitive to atypical examples whose presence in the training set 

may lead to poor accuracy and unnecessary storage of examples [7]. Consequently, most 

k-NN based approaches deal with these two issues using a technique known as “condens-

ing” and “editing” [2]. Condensing aims at reducing a classifier’s training time while 

achieving no degradation in classification accuracy. Editing, on the other hand, seeks to 

remove noisy examples from the original dataset with the goal of improving classification 

accuracy.  

 

This chapter focuses on a new editing method, called HC-edit which takes as input an 

agglomerative clustering —a tree of clusters— to “clean up” the training set. The tree 

stores in its nodes the purities of the node clusters. The tree can be generated by tradi-

tional agglomerative hierarchical clustering algorithm such as the popular UPGMA (Un-

                                                 
4 Published in Proceeding of International Symposium on Methodologies for Intelligent Systems (ISMIS); Lyon, 

France, October, 2015. 
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weighted Pair Group Method with Arithmetic Mean) which merges the closest pairs first, 

and the distant examples/clusters last or by a supervised taxonomy algorithm such as 

STAXAC (Supervised Taxonomy Agglomerative Clustering) which was discussed in 

chapter 5 (section 5.3). When traditional agglomerative method is used, purity infor-

mation for the node datasets must be computed and stored after the tree is built. To edit 

the training set, a minimum purity threshold β has to be selected; next, HC-edit retrieves 

the clusters whose purities are greater or equal to β such that the union of all the retrieved 

clusters equals the input dataset and each example appears only in one cluster. Then the 

minority class examples are removed from the clusters. Finally, the k-NN rule is used to 

classify unlabeled examples using the edited dataset. The advantage of using a hierar-

chical clustering is that hierarchical clustering computes all needed clusters in advance, 

whereas an ordinary clustering algorithm has to be rerun for different purity thresholds. 

Fig. 6.1 illustrates the steps of HC-edit editing process. Fig. 6.1.a-1 illustrates a hypothet-

ical dataset and selected clusters which purities are above a user-defined threshold β. Fig. 

6.1.a-2 shows the resulting clusters after the minority examples have been removed. Dif-

ferent purity thresholds yield different decision boundaries. Fig. 6.1.b-1 illustrates anoth-

er cluster selection for a different user-defined purity threshold from the same training set 

and Fig. 6.1.b-2 the corresponding result after editing.  
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Fig. 6.1. Different purity thresholds yields different decision boundaries 

 

 

The contributions of this research are the following: 

1. The data editing method of previous approaches visits each example and analyzes 

local information, namely the k-nearest neighbors of the example to decide if the ex-

ample should be removed or kept. HC-edit, on the other hand, is a more ‘regional’ 

approach in that it looks for regions of high purity in the dataset and removes the mi-

nority class examples from the regions.   

2. The proposed method has the capacity to remove fewer points than widely known 

editing approaches which can be beneficial to the classifier accuracy rate. Many edit-

ing approaches tend to smooth the boundaries between clusters even if the clusters do 

not overlap. Excessive examples removal, especially, in the boundary regions may 

lead to a decrease in classifier accuracy since the chances of misclassification in-

crease due to a widened gap between the clusters.   
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To illustrate the second claim, let us consider the dataset in Fig.6.1.a and Fig 6.1.b with 

border points s7, s8, s9, and s6 where s8 and s9 are nearest neighbor of each other. Fig. 

6.1.a-1 and Fig. 6.1.b-1 show non overlapping clusters obtained from HC-edit of same 

dataset. If k=1, current approaches will remove s8 and s9. On the other hand, HC-edit 

would discard either s9 or s8, or none but not both. In Fig. 6.1.a-2 s9 is removed but s8 is 

kept. In Fig. 6.1.b-2 s8 and s9 are kept in the edited dataset.  

6.2. Related Work 

The motivation for editing the training set resides in the fact that the k-NN classifier 

achieves higher accuracy when the training set is rid of atypical and mislabeled exam-

ples; examples belonging to minority class label in comparison to other examples in the 

local region [7]. Editing also gets rid of the overlapping region examples.  

 

Given an example x, a training dataset D, the k-neighborhood of x, noted Nk(x), consist-

ing of its k nearest neighbors can formally be defined as  

Nk(x) ⊆ D; | Nk(x) | = k (k>0) 

∀s ∈ Nk(x), q ∈ D\Nk(x)  d(s,x) ≤ d(q,x)   (q ∈ D ˄ q∉ Nk(x)) 

 

The k-NN rule 

Given Nk(x), the k-NN rule for x can be defined as follows: 

Assign to x the class label of the majority class label in Nk(x). 

This rule gives equal weight to each example’s vote. 
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The weighted k-NN rule 

Given Nk(x), we define a weighted k-NN rule as follows: 

Assign a weight to each nearest neighbor’s vote which is inversely proportional to its dis-

tance to x. Sum the vote by class label. The class label with the highest score is assigned 

to x. Each class score is computed as  

V(x, c) =   ∑   
p(xj,c)

(1+d(x,xj))

k
j=1      

where xj ∈ Nk(x) and p(xj, c) =1 if xj is labeled with c and P(xj, c) = 0 otherwise. 

Several editing approaches have been proposed; the most important ones are briefly dis-

cussed in the remainder of this section.  The pseudo code for each approach is provided 

in Fig. 6.2. 

 

Wilson Editing 

Wilson editing [8] relies on the idea that if an example is erroneously classified using the 

k-NN rule it has to be eliminated from the training set.  

 

Multi-Edit 

Devijver and Kittler [3] proposed the Multi-edit technique. The algorithm repeatedly ap-

plies Wilson editing to m random subsets of the original dataset until no more examples 

are removed. 
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Supervised Clustering Editing 

 

In supervised clustering editing [4], a supervised clustering algorithm is used to cluster a 

dataset D. Then D is replaced with a subset consisting of cluster representatives. Super-

vised clustering [5] deviates from traditional clustering in that it is applied on classified 

examples with the objective of identifying clusters with high probability density with re-

spect to a single class. However, it does not organize the clusters in hierarchical fashion 

as HC-edit; it output ordinary clusters maximizing a fitness function. When the parame-

ters to the fitness function change the clustering algorithm needs to regenerate the clus-

ters. With HC-edit, the tree generation is independent of the parameter β —which is only 

used to select the clusters.  

 

WilsonProb 

This method [9] edits the training set based on a probability of an example to belong to a 

certain class in its neighborhood. The estimated probability is the weighted k-NN rule. 

 

 
Fig. 6.2. Editing algorithms 
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After the preprocessing, a new example is classified using k-NN rule. 

6.3. The HC-edit Approach  

The proposed method uses STAXAC, a supervised taxonomy clustering algorithm which 

was introduced in chapter 5. A user-defined purity threshold β is then used to retrieve 

clusters which purities are above the threshold.  

The HC-edit pseudo code is as follows: 

 

Preprocessing: 

1. Inputs:  

2. T:  tree generated by hierarchical clustering algorithm such as STAXAC (with   

3. purity information in the node) for a dataset O 

4. β: cluster purity threshold 

5. Output: Oedited, a dataset that is a subset of the original dataset O (to be used by the kNN-

classifier)  

6. Function EDIT_TREE (T) 

7.    O
edited
 ; 

8.    EXTRACT_EXAMPLES(T); 

9.    RETURN O
edited

; 

10. END   

11. Function EXTRACT_EXAMPLES (T) 

12. BEGIN 

13.   IF T=NULL EXIT  
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14.   IF purity(T) >= β        

15.       Add majority examples of T to Oedited   

16.   ELSE 

17.      EXTRACT_EXAMPLES (T.right)    

18.      EXTRACT_EXAMPLES  (T.left)  

19. END 

 

Because the algorithm starts the search from the root, it returns the largest cluster with 

purity equal or greater than the threshold in the selected branch of the tree. It can be ob-

served that if Wilson editing is applied on the dataset presented in Fig. 6.3, x3 and x4 will 

be removed creating a wider gap between the clusters which may lead to potential mis-

classification. Secondly, although there are unlimited choices for β, most values return 

identical cluster sets. The set, β_set, composed of all the node purities, contains potential 

values for β.  Fig. 6.3 illustrates the trees obtained for the dataset depicted in Fig. 6.3 by 

both clustering approaches (β_set = {60,100} for STAXAC tree and β_set ={60, 66.67, 

50, 100} for hierarchical agglomerative clustering (HAC).  
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Fig. 6.3. Purity-parameter selection and its impact on the editing result 

 

 

If user queries the tree with 0< β<=60 both trees return the entire dataset (Fig. 6.3. a.1 

and Fig. 6.3.b.1); in that case minority examples x4 and x5 will be removed. On the hand, 

if β > 60, the tree generated by STAXAC returns two 100% purity clusters (Fig. 6.3.a.2). 

If 60<β<=66.67, the search in the traditional tree returns three clusters (Fig. 6.3.b.2); only 

x4 will be removed by editing. If β > 66.67 five singleton clusters are returned; in this 

case the edited dataset is identical to the original dataset (Fig. 6.3.b.3). Overall, the edit-

ing result is influenced by the choice of β. The value 100 is always element of β_set 

(leaf-nodes have 100% purities). When β=100 the edited dataset is identical to the origi-

nal dataset (no removal since all clusters are pure). As β decreases, more minority exam-

ples are removed.  
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How to select ? 

If  is set to 1, no editing occurs. As  decreases more objects will be removed in the ed-

iting process, and the obtained clusters contain less instances. We also observed that us-

ing very low values  leads to low accuracy, as clusters get too contaminated by exam-

ples belonging to other classes. Moreover, only a finite subset of  values needs to be 

considered: a subset of the node purities that occur in the supervised taxonomy. Basical-

ly, only a finite number of clusterings can be extracted from the supervised taxonomy and 

for many purity values the extracted supervised clusterings are the same. Therefore, we 

set a lower bound  for  (which we chose the root node purity) and we use n-fold cross-

validation for purities that occur in the tree in [,1), and choose the purity value that leads 

to the highest accuracy for the editing of the dataset for a given k value.   

 

6.4. Experimental Evaluation 

HC-edit by default uses as input, trees generated by STAXAC to edit the dataset. We im-

plemented a variant that uses tree generated by the widely used traditional agglomerative 

hierarchical method UPGMA. To distinguish both we denote them by HC-edit-STAXAC 

and HC-edit-UPGMA throughout the remaining of the chapter. Additionally, we imple-

mented the Wilson editing, and the WilsonProb algorithms. The performances of the al-

gorithms with respect to accuracy were evaluated on seven real world datasets.  
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6.4.1. Datasets  

We used the datasets summarized in Table 6.1 throughout the experiments.  

Table 6.1. Datasets 

Dataset 

Name 

Description Size Number of 

Class Labels 

E.coli Niche breadth 82 3 

BEE Bacteria ecosystem class: engineered environment 120 4 

BEV Bacteria ecosystem class: environmental 311 4 

AEV Archaea ecosystem type: environmental 571 3 

Bos Boston Housing 506 3 

Bld Bupa Liver Disease 345 2 

Vot Congress 232 2 

 

Joint Genome Institute Datasets:  

Distance used for distance matrices was the patristic distance. 

E. coli: This dataset was obtained by measuring the growth of 82 strains of E. coli in 10 

distinct environments. Strains were then characterized as specialists, intermediate, or 

generalists depending on arbitrary divisions of the standard deviation of their growth in 

the environments.  

Ecosystem datasets: Datasets characterize principle ecosystem type of bacteria (engi-

neered environment, BEE; environmental, BEV) and archaea (environmental, AEV).  

Ecosystem type and sequence information were downloaded from the Joint Genome In-

stitute website [10].  

UCI Datasets [6]: All datasets were preprocessed into dissimilarity matrices before the 

experiments. Dissimilarity matrices were generated using z-scores (except for the Vot 

dataset which has attributes with binary values). 
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6.4.2. Results 

The 10-fold cross-validation method (90% of the original instances have been used as the 

training set and 10% for test purposes) has been employed to estimate the overall classifi-

cation accuracy. Fig. 6.4 reports on the experimental results obtained by the different al-

gorithms over the 7 datasets. These results have been averaged over the ten partitions.   

Bold figures indicate the best method in terms of classification accuracy for each dataset. 

The largest compression values are in italic. All k values tried out during classification 

and training phase are reported (HC-edit uses k for classification only). The result are 

presented as “x (y)[z]” where x is the accuracy rate, y is the purity parameter β (for HC-

edit) and z the compression rate. For HC-edit multiple values of β were run for a given k 

and best results are reported. Whenever more than one (y)[z] are reported they are sepa-

rated by commas. With respect to accuracy rate, we observe that the plain k-NN approach 

has overall best performance on one dataset (Bos). Wilson has best performance on two 

datasets (BEV, and BEE). WilsonProb wins best performance on one dataset (BEV). HC-

edit-STAXAC wins 4 times (Ecoli, AEF,Vot and Bos) and HC-edit-UPGMA wins 2 

times (Bld, and Bos). 



138 

 

 
Fig. 6.4. Accuracy results 

 

Overall, the result suggests a superiority of HC-edit over the traditional k-NN, Wil-

sonProb and Wilson approaches. With respect to compression rate, as expected, HC-edit 

removes fewer examples than other methods.  

HC-edit-STAXAC HC-edit-UPGMA WilsonProb Wilson K-NN

K=1 56.1 (50) [43.20] 47.56 (100)[0.00],(90)[0.00] 57.32 [49.73] 57.32 [49.73] 51.22

K=3 56.10  (100)[0],(90)[1.06],(80)[8.13 ] 52.44 (100)[0.00],(90)[0.00] 57.32 [44.53] 57.32 [45.73] 56.10

K=5 58.54  (100)[0.00],(90)[10.67] 53.66 (100)[0.00],(90)[0.00] 51.22 [42.40] 51.22 [41.86] 54.88

K=7 63.41 (100)[0.00],(90)[10.67] 62.20 (80)[4.00] 52.44 [43.20] 54.88[46.80] 56.1

HC-edit-STAXAC HC-edit-UPGMA WilsonProb Wilson K-NN

K=1 81.35 (90)[6.00] 82.64 (80)[14.17] 83.6 [19.96] 83.6 [19.96] 79.1

K=3 81.03 (90)[6.00] 81.99 (80)[14.17] 82.64 [16.92] 81.79 [16.75] 81.67

K=5 81 (100)[0.00] 83.28 (80)[14.17] 81.67[16.50] 79.74 [18.60] 80.39

K=7 81.35 (90)[6.00] 83.28 (80)[14.17] 81.35[16.25] 80.06 [18.60] 80.39

HC-edit-STAXAC HC-edit-UPGMA WilsonProb Wilson K-NN

K=1 91.89 (100)[0.00] 90.09 (90)[5.80],(80)[10.9] 90.95 [9.00] 90.95 [9.00] 89.66

K=3 91.38 (100)[0.00] 91.38 (90)[5.80] 90.95 [8.00] 90.95 [8.00] 92.24

K=5 92.67 (100)[0.00],(90)[5.38] 92.24 (100)[0.00],(90)[5.80] 90.95 [8.00] 90.95 [8.00] 91.38

K=7 93.10 (100)[0.00] 92.67 (100)[0.00] 90.95 [8.00] 90.95 [8.00] 92.67

HC-edit-STAXAC HC-edit-UPGMA WilsonProb Wilson K-NN

K=1 61.11 (100)[0.00] 62.09 (80)[7.15] 61.44 [39.26] 61.44 [39.26] 60.13

K=3 59.80 (100)[0.00] 59.80 (90),(80)[7.15] 59.48 [35.64] 59.48 [35.60] 59.48

K=5 63.07 (90)[3.21] 62.75 (100)[0.00],(90)[0.6] 59.8 [32.00] 59.8 [31.73] 63.4

K=7 64.05 (90)[3.21] 64.38 (100)[0.00],(90)[0.6] 61.44 [29.48] 61.44 [29.37] 64.05

HC-edit-STAXAC HC-edit-UPGMA WilsonProb Wilson K-NN

K=1 80 (80)[10.50] 78.57 (80)[5.6] 77.14 [25.61 ] 77.14 [25.61] 77.14

K=3 78.57 (90)[2.50],(80)[10.50] 78.57 (100)[0.00],(90)[0.7],(80)[5.6] 72.86 [18.25] 74.29 [16.84] 78.57

K=5 80 (90)[2.5] 77.14 (100)[0.00],(90)[0.7],(80)[5.6] 72.86 [18.60] 71.43 [17.89] 78.57

K=7 78.57 (100)[0.00],(90)[2.5],(80)[10.5] 78.57 (100)[0.00],(90)[0.7],(80)[5.6] 71.43 [18.25] 70 [18.94] 74.29

HC-edit-STAXAC HC-edit-UPGMA WilsonProb Wilson K-NN

K=1 80.83 (90)[7.31] 84.17 (80)[15.83] 78.33 [17.68] 78.69 [17.68] 78.33

K=3 81.67 (90)[7.31] 84.17 (80)[15.83] 82.5 [19.07] 85 [20.09] 82.5

K=5 82.50 (100)[0.00],(90)[7.31] 84.17 (80)[15.83] 82.5 [17.96] 76.15 [17.96] 80.83

K=7 84.17 (90)[7.31] 84.17 (80)[15.83] 84.17 [16.67] 85.83 [16.57] 83.33

HC-edit-STAXAC HC-edit-UPGMA WilsonProb Wilson K-NN

K=1 69.57 (90)[37.28] 72.33 (80)[7.14] 67.00 [23.24] 65.5 [23.24] 67

K=3 70.55 (90)[37.28] 71.94 (80)[7.14] 70.36 [23.68] 70.55 [23.48] 67.39

K=5 70.75 (100)[0.00] 70.36 (90)[1.03] 67.46 [23.61] 66.4 [24.16] 70.55

K=7 73.12 (100)[0.00] 73.12 (100)[0.00] 69.37 [25.83] 69.57 [24.18] 73.12

BEE

Bos

E. Coli

BEV

Vot

Bld

AEV
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6.5. Conclusion 

Editing improves the accuracy of the k-NN classifier; however, current editing methods 

tend to remove too many examples from the training set which does not always lead to 

optimum accuracy rate. We proposed a new editing algorithm, called HC-edit that identi-

fies regions in the dataset of high purity and removes minority examples from the identi-

fied regions. HC-edit takes as input hierarchical clusters augmented with purity infor-

mation in the nodes; which facilitates clusters retrieval — based on user-defined purity 

values. Traditional k-nearest neighbor methods used the k parameter for both editing and 

classification. By allowing two parameters for modeling — purity for editing, and k for 

the classification —, HC-edit provides greater landscape for a model selection. Experi-

ments over seven datasets have been carried out in order to evaluate the performance of 

the new editing approach. HC-edit’s performance has been compared with that of other 

traditional techniques. The experiments reveal that the HC-edit has improved accuracy 

while removing less of examples.  
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Chapter 7 

Summary of the Results and Directions for Future Work 
 

 In this work, we investigated new methods to induce hierarchical models with the goal of 

obtaining better predictive models, to facilitate creating background knowledge with re-

spect to an underlining class distribution, to obtain hierarchical groupings of a set of ob-

jects based on background knowledge they share, to detect sub-classes within existing 

class distribution, and to provide methods to evaluate hierarchical groupings. In particu-

lar, we investigated recursive splitting methods and proposed two new decision tree ap-

proaches (TPRTI, PATHFINDER), and two new hierarchical clustering algorithms 

(STAXAC, AVALANCHE). AVALANCHE uses a new splitting method to recursively 

split the input space while STAXAC is the first hierarchical supervised clustering algo-

rithm to be proposed in the literature. The decision tree approaches we developed in this 

research, TPRTI, and PATHFINDER, decompose the complex task of finding split points 

(or decision boundaries) in high dimensionality, into a set of simpler tasks of finding split 

points in 2D. We showed through experiments that the proposed approaches provide im-

proved results, if compared with their immediate competitors. The clustering approaches 

we introduced are new approaches that open new research directions and answer practical 

needs. In the following paragraphs, we summarize our key contributions and outline di-

rections for future research.  
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In chapter 2, we presented TPRTI, a novel linear regression tree approach with a speed 

comparable to that of the fast but less accurate M5 algorithm and with accuracy compa-

rable to the very accurate, but slow RETIS algorithm. Since accuracy of the TPRTI ap-

proach is closely related to the computed turning points locations in the input space, 

methods that can detect optimum turning points are useful for regression tree induction, 

in general. 

 

In chapter 3, we presented PATHFINDER, an oblique tree induction approach that com-

putes its decision boundaries in successive 2D spaces instead of the input space. It yields 

high accuracy rate for the cost of not classifying few examples (reject examples). 

PATHFINDER reject rate and its accuracy rate can further be improved by investigating 

new node evaluation methods. Another potential area that may be considered for investi-

gation is to identify reject regions within a given dataset; which may help a domain ex-

pert to better understand the dataset at hand. 

 

In chapter 4 AVALANCHE, a new divisive hierarchical approach that uses dissimilarity 

matrix as its input was introduced. AVALANCHE incorporates in its splitting decision 

local as well as global information; which provides the algorithm with the capability of 

generating better clustering results. That capability has not yet been fully explored. 

 

Chapter 5 introduces a new type of taxonomy generating approach called supervised tax-

onomy (ST). Supervised taxonomies are generated considering background information 

in the form of class labels in addition to distance metrics, and are capable of capturing 
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class-uniform regions in a dataset. We introduced STAXAC, a novel supervised hierar-

chical clustering algorithm that generates supervised taxonomies. As this research intro-

duces ST for the first time, we believe that many more supervised taxonomy algorithms 

such as a top-down hierarchical algorithm that creates STs, can be explored. Measures 

and algorithms operating on STs that assess the edited tree complexity, subclass changes, 

average purities at different tree-depths, classification complexity, and modality of clas-

ses have been proposed in this research, demonstrating the merit of STs, particularly as 

an exploratory data analysis tool. We claim that the latter two contributions are not only 

novel but useful. We demonstrated in our experimental evaluation that assessing the clas-

sification complexity of a dataset (CC), provides us with a good estimate of the difficulty 

of the classification problem at hand. We also provided evidence of the capability of STs 

to assess the modality of particular classes of a dataset at different sets of granularity. 

 

Finally, there are many other useful things we can develop on top of supervised taxono-

mies, which is the focus of our future work.  One such possibility was explored in chapter 

6 were we introduced HC-edit, a new data editing method for the k-NNs classifier that 

uses as input a STAXAC-generated tree. HC-edit improves the accuracy rate of the k-NN 

classifier, by removing minority examples for clusters of a STs. Furthermore, as taxono-

mies are very popular in bioinformatics, we plan to assess the usefulness of STs for scien-

tific discovery in bioinformatics in more depth. As this research has shown that STs can 

help generate background information about a dataset, we plan to explore the additional 

potentials of STs for meta-learning as future work. 


