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ABSTRACT 

Most machine learning algorithms require an abundance of high-quality training data. 

Such a requirement creates a major obstacle when using machine learning in the medical 

image domain, as labeled data collection is difficult. We explore active learning solutions 

for cortical layer delineation and for training Convolutional Neural Networks with less 

amount of labeled data. For the former, we develop an objective and automated multiplex 

imaging-based method for delineation of cortical layers in the whole brain sections. This 

is an advance over current methods where layers are visually delineated by biologists. We 

further carryout comprehensive and quantitative profiling of the cell layers with respect to 

their composition (presence of neuronal and glial cell types and sub-types), cell-phenotypic 

status, and the spatial arrangement of cells. Our method is based on spatial cluster analysis 

of neuronal features using the Dirichlet Process Mixture Model and refined using active 

machine learning. It is versatile, modular, and readily amenable to visual inspection and 

proofreading. The accuracy of the computational cortical layer delineation was validated 

by comparing it to brain sections that were immunostained with layer-specific molecular 

markers (NECAB1, FOXP1) and by comparison against manual delineation by biologists. 

We implement our proposed method on healthy rat brains and rat brains with mild 

traumatic brain injury (mTBI). Our in-depth cellular profiling of the layers allows us to 

study the patterns of tissue perturbations in the cortex for mTBI brains. We propose whole 

cell morphological segmentation methods for five different types of cells which allow an 

in-depth analysis of the cell state activation and spatial distribution. These are also used in 

neuronal feature extraction for cortical layer delineation. For the second implementation of 

active learning, we formulate an active deep learning framework to train CNNs with less 
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amount of labeled data. We implement two parallel active learning criteria for the same. 

We provide extensive experimental results and in-depth analysis to demonstrate the 

effectiveness of our algorithm on a breast tumor classification problem. We offer active 

learning solutions for addressing two different problems encountered in whole brain 

analysis.  
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CHAPTER 1 INTRODUCTION 

1.1 Rat Brain Atlas  

  

  Figure 1-1. Location of Bregma and Lambda in dorsal (top) and lateral (bottom) views of rat skull. 
 

     Brain atlases are composed of serial sections of a brain with each section given a 

coordinate relative to the reference points on the skull (see Figure 1-1 as defined by Dr. 

George Paxinos [1]). In the rat, three most common reference points are bregma, lambda, 

and the interaural line. Bregma is the anatomical reference point on the skull at which 

the coronal suture is intersected perpendicularly by the sagittal suture (bregma=0 for this 

point). Lambda is the anatomical reference point on the skull where sagittal suture 
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intersects the interaural line. Interaural line is the straight line between the points of ear 

bars in the external auditory meatus of each ear.  

 

 

                 Figure 1-2. Brain atlas for rat coronal level sections from the Paxinos Atlas. 

 

 

                               Figure 1-3.Woxholm Space atlas of the Sprague Dawley rat brain.  
 

     Each atlas level delineates different brain structures within the section based on a 

corresponding histologically stained tissue section (see Figure 1-2, from [1]). Brain atlases 

can depict coronal, sagittal or transverse sections (see Figure 1-3, from [2]). Brain atlases 
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allow for the ability to identify where relevant structures are normally found in the brain 

with a high degree of accuracy, helpful in drug administering using stereotaxic surgery. 

 

              Figure 1-4. Allen Mouse Brain Atlas, 2004. Nissl stain on the left, atlas on the right.  
 

     Brain atlas is a guide to the spatial location and identity of brain structures (see Figure 

1-4, from [3]). Analogous to “Google Maps” for Neuroanatomy. It can be combined with 

multiplex imaging or functional imaging to view and analyze brains at the cellular, 

functional, and structural level. Brain atlas can help in studying anatomy and architecture 

of different neuronal groups in the rat brain. It provides a neuroanatomy-based 

interpretation to study structure and function in healthy and diseased brains. Brain atlas 

allows extraction, quantitative analysis, display, and modeling of neuroanatomical data. 
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Brain atlases can be used to compare distribution patterns of neuroanatomical data on the 

same set of templates and a collaborative platform for future brain studies. 

 

  Figure 1-5. Paxinos (top) and Swanson’s (bottom) atlases compared for bregma values 2.52mm ± 
0.12 mm. 

 

     The most popular publicly available brain atlases are Paxinos [1] atlas and Swanson’s 

[4] atlas (see Figure 1-5). The first edition of Paxinos atlas was published in the year 1982. 

The current 6th edition of the atlas consists of coronal, sagittal, transverse and horizontal 

sections. For this thesis, we will be working with two-dimensional whole rat brain slices 

and hence sticking on coronal sections. The Paxinos atlas consists brain mapping for 161 
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coronal sections each 0.12 mm apart. The Paxinos atlas does not delineate the cortex into 

cytoarchitectonic layers. Swanson’s atlas published in 1992, is an alternative to Paxinos 

atlas, with cortical layers delineated, and built on the same stereotaxic coordinates. It 

consists of 73 coronal sections, which are unequally placed, which makes it difficult to use 

it for a new rat brain (see Figure 1-6). Swanson’s atlas offers delineation of the cortical 

layers, which is an important attribute for this thesis.  

 

       Figure 1-6. The atlas levels in Swanson’s atlas. 
 

     There is lot of variability in animal brains within and between species, depending on 

the experiments, age, and other developmental factors. Therefore, atlases should not be 

used as static, authoritative representations of the brain, but as a rough starting point. 

Instead these should be used as starting points for a new brain. Both Paxinos’ and 

Swanson’s atlases are based on Nissl-stained sections, which stains the RNA and DNA of 

all neurons in the brain. Due to this, it does not provide any phenotypical marker for cell 

profiling.  Nissl doesn’t stain glial cells. Glio-vascular profiling for regions in atlas can 

help in studying drug treatments. 
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1.2 Cerebral Cortex  

 

            Figure 1-7. Sagittal Scheme of Rat Brain.  

 

 

                     Figure 1-8. Rat brain lobes (Sagittal View).  
 

     Cerebral cortex is the most developed part of the brain. The cerebral cortex (see Figure 

1-7 from [5]) is the folded or ridged outer layer of the cerebrum and is composed of mostly 

neuronal cell bodies. The cortex consists of four lobes (see Figure 1-8 from [6]) which 

control numerous functions. Frontal lobe is responsible for decision making, impulse 

control and judgement. Parietal lobe is responsible for sensory perception and movement. 

Temporal lobe is responsible for language, hearing, and memory. Occipital lobe is 

responsible for primary vision.  
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1.3 Experiment Preparation  

Dr. John Redell’s team at The University of Texas Health Science Center at Houston has 

cut healthy rat brains into slides of 10 µm-thick coronal cryo-sections (see Figure 1-9). 

Each section is incubated using a cocktail mixture of 10 non-cross reactive and spectrally 

compatible biomarkers [7]. To generate readouts of a rich panel of biomarkers, the sample 

slides are stained in precisely designed fluorescent protocol in Dr. Dragan Maric’s Lab at 

National Institute of Neurological Disorders and Stroke, National Institute of Health (see 

Figure 1-10). Then, the full sets of multiplex images of the rat brains are scanned by 

microscopies (see Figure 1-11).  

 

Figure 1-9. Healthy Rat Brain Sample in UT Health. 
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  Figure 1-10. Tissue Staining in the Wet Lab at NINDS, NIH.  
 

                                

            Figure 1-11. Microscopy Imaging in the Dry Lab at NINDS, NIH. 
 

1.4 Descriptions of the Dataset 

     We use three datasets for our study all obtained as per the protocol mentioned in the 

previous section. First consists of coronal brain section of a healthy 8-week old male Lewis 

LEW-Tg (CAG-EGFP) YsRrrc transgenic rats. This section is stained in 5 rounds of 11 

iterative multiplex IHC (immunohistochemistry) staining each [7] (see Figure 1-12 (A) and 

Figure 1-13). The second study consists of 12 coronal brain sections belonging to sham-
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operated and mTBI (mild traumatic brain injury) rats. We will be using this to denote a 

normal brain vs. injured vs. drug-treated brains, allowing investigators to analyze the 

effects of experimental manipulations in a sensitive manner with cell-layer specificity. This 

dataset has 2 rounds of 10 iterative multiplex IHC. The major channels are DAPI and 

Histone channels representing the nuclei, and main cell type channels for Neurons, 

Astrocytes, Oligodendrocytes, Endothelial Cells and Microglia (shown in Figure 1-12 (B)-

(F), respectively).  

 

                                      

      Figure 1-12. Whole Rat Brain Tissue from Multiplex Imaging. 
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       Figure 1-13. Close-up Images from Five 10-plex Imaging Rounds. 
 

     The library of molecular markers for the first two dataset is mentioned in Table 1-1. The 

third dataset for consists of coronal section stained with layer-specific molecular markers 

along with the molecular markers in Table 1-2 for an accurate quantitative performance 

analysis.  
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Table 1-1. Library of primary antibodies used for multiplex IHC staining of rat brain tissue sections. 
 

Channel ID Cell Classification Cell Function 

DAPI All Nucleated Cells Gene Expression, Cell Cycle, Death 

NeuN Neurons-Pan Specific Gene Expression 

RECA1 Endothelial Cells Cell Adhesion 

S100 Astrocytes-Pan Specific Cell Signaling-Calcium Mediated 

Olig2 Oligodendrocytes Gene Expression 

Iba1 Microglia Cell Signaling-Calcium Mediated 

GAD67 Neurons-GABAergic Neuronal Signaling-GABAergic 

Tyrosine 
Hydroxylase (TH) Neurons-Dopaminergic Dopaminergic Signaling 

Choline 
Acetyltransferase Neurons-Cholinergic Neuronal Signaling-Cholinergic 

Glutaminase Neurons-Glutamatergic Neuronal Signaling-Glutamatergic 

Cleaved Caspase-3 Apoptotic Cells Cell Death 

Tomato Lectin Endothelial Cells, Microglia Cell Adhesion 

PCNA All Actively Proliferating Cells Cell Cycle 

GFAP Astrocytes-Subset Cell Motility, Cell Morphology 

MAP2 Neurons-Dendritic Innervation Neuronal Signaling-Dendritic 
 

 Table 1-2. Library of antibodies for multiplex IHC staining of layer-specific rat brain tissue 
sections. 

 

Channel ID Cell Classification Cell Function 

DAPI All Nucleated Cells Gene Expression, Cell Cycle, Death 

NeuN Neurons-Pan Specific Gene Expression 

GAD67 Neurons-GABAergic Neuronal Signaling-GABAergic 

Parvalbumin Interneurons-Subset Neuronal Signaling-Inhibitory 

FoxP1 Neurons-subset Layer 6 neurons 

Necab1 Neurons-subset Layer 4 neurons 
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     Traditional nuclei images stained are performed only using DAPI, a DNA binding dye. 

However, uniquely to the rat brain, some cells' nuclei are barely visible in the DAPI 

channel. To overcome this problem, Dr. Dragan Maric added a complementary channel 

using Histone antibodies, enabling more reliable nuclei detection and segmentation results 

[7]. We will use DAPI and Histone channels for automatic nuclei segmentation by 

watershed; DAPI, Histone and five main biomarkers for expectation driven segmentation 

and phenotyping; the main biomarkers and the cell status/ cell subpopulation channels for 

neighborhood analysis; all 50-plex channels for image registration. 

     Below (see Table 1-3) are the cortical cell population distributions in the healthy 50-

plex datasets calculated using work done in Dr. Jahanipour’s thesis [8]. As seen, the cortex 

is high neuronal density region. 

 

                                        Table 1-3. Cell populations in 50-plex Rat Brain Cortex. 
 

Cell Type Cell Counts 

Neurons Glutamatergic 34,728 

GABAergic 1,808 

Vascular Cells 13,764 

Glial Cells Oligodendrocytes 7,891 

Astrocytes 8,874 

Microglia 4,269 
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     The largest part of the cortex (~ 90%), consists of a phylogenetically newer structure 

called neocortex, consisting of six layers of stacked nerve cell bodies. Layers are delineated 

into 1, 2+3, 4, 5, 6a and 6b (see Figure 1-14). The shapes and diameters of neuron somata 

vary as a function of cortical depth. Density of neurons changes depending on the cortical 

depth.  Each cortical layer is comprised of a different distribution of neuronal cell. 

The cytoarchitectonic subdivision of cortical layers can be used to describe the 

organization of the cortical circuitry, sensory-evoked signal flow, or cortical functions. 

Glio-vascular profiling of the cortical layers can help in quantifying drug discovery. The 

motivation is to use the above discussed structural differences to delineate cortical layers 

for a comprehensive whole tissue based phenotypical profiling and understanding the 

functionality of cortical regions.  
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           Figure 1-14. Cortical Layers delineated manually by biologists as expert delineation. 
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1.5 Objectives  

     The objective of this thesis is to develop a method to delineate the laminar boundaries 

in the cortex of the brain based on the characteristics of the neurons belonging to these 

cortical layers. Specifically, this thesis focuses on three goals.  The first goal is to develop 

an objective and automated multiplex imaging-based method for delineation of cortical 

layers in the whole brain sections even without the benefit of layer-specific molecular 

markers. This is an advance over labor-intensive current methods where layers are visually 

delineated by biologists. The second goal is to perform a comprehensive multiplex method 

for data-driven spatial statistical comparison of brain regions of healthy and injured brains 

advance over the current approach of visual qualitative inspection from Nissl stained 

images. The final goal is to conduct comprehensive glio-vascular and neuronal profiling of 

cytoarchitectonic layering of cortical neurons across multiple rat brains over the current 

methods that only profile the neurons. 

     We additionally develop active learning framework for implementing classification 

with Convolutional Neural Networks in the case where labels are difficult to obtain. 

This dissertation is formulated as follows:  

CHAPTER 2 discusses the challenges faced in cortical layer delineations and the 

motivation behind our algorithm. 

CHAPTER 3 proposes an objective and automated approach for cortical layer 

delineation and validation strategies. 

CHAPTER 4 discusses cortical layer profiling approaches for the three datasets. 
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CHAPTER 5 proposes whole cell morphological segmentation methods for 

cytoarchitectonic layering. 

CHAPTER 6 processes the active learning approach for breast cancer classification 

using convolutional neural networks. 
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CHAPTER 2 CHALLENGES IN CORTICAL LAYER DELINEATION 

2.1 Data Heterogeneity Challenges 

     The brain cortex is heterogeneous at multiple levels making cortical layer 

delineation a very complex problem. As seen in Figure 2-1, the close-up of different 

cortical layers show that the distribution of major cell-types looks very similar in most 

layers. Layer 6b visually looks like layer 1 in terms of neuron size and density, while the 

other four layers look very similar to each other. Thus, cortical delineation using visual 

cellular distribution is a challenging problem to deal with. 

 

                                                            

        Figure 2-1. Sample close-up highlighting different cortical layers.                           
                                        

Secondly, for the multiplex imaging, the traditionally used molecular markers are not 

differently expressed in any cortical layer, or layer-specific markers (as seen in Figure 2-

2). Layer-specific markers are the molecular markers are expressed in specific cortical 

layer neurons.                                                                                                       
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      Figure 2-2. Major cell phenotype channels with cortical layer delineation. 
 

     Thirdly, there is high variability throughout the cortex, within and between different 

cortical regions. Visual analysis of two regions in primary somatosensory cortex barrel 

field (S1BF) in Figure 2-3, we see that layer thickness for layer 1 and layer 4. The cellular 

distribution for layers 4, 5, and 6A indicates high heterogeneity. The cell morphology in 

layer 6a asymmetric, the cells are pyramidal shaped in Figure 2-3 (B1) and rounded in 

Figure 2-3 (B2). 

                                                      

  Figure 2-3. (A) Two regions from cortical layer 6a of primary somatosensory cortex barrel field. 
(B1) Magnified region of layer 6 A from region 1. (B2) Magnified region of layer 6A 
from region 2. 
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          Fourthly, the thickness of layers varies throughout the cortex (see Figure 2-4). Each 

layer in the cortex delineated has thickness varying with the spatial location. The 

morphology and spatial distribution of the cells is inconsistent across different regions in 

the cortex (see Figure 2-5). High neuronal density regions in primary motor cortex at higher 

cortical depth compared for that in secondary somatosensory cortex, while no comparative 

density region is found in perihinial cortex. 

 

                                                              

  Figure 2-4. The thickness of layers varies throughout the cortex. Layer 4 highlighted from the 
Swanson’s Atlas. 
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 Figure 2-5. (A) The cellular distribution for different cortical regions, namely primary motor  
cortex (M1),  secondary somatosensory cortex (S2), perihinial cortex (PRh) in B1, B2 
and B3 respectively. High neuronal density regions illustrated by arrows. 

 

     Finally, since brain is a very complex organ, the relative location and composition of 

structures varies with age, gender, and other development factors. Hence for different 

animals the cortical structure will be unique to it. Our algorithm should be able to handle 

these challenges in order to ensure its success on multiple datasets. 

2.2 Literature Survey 

     Henver et al. [9] studied neonatal mouse brain during development by analyzing layer-

specific markers in the parietal cortex for neonatal, embryonic, and post-natal cortex. This 

work was later extended to studying malformations of cortical development in human 

neocortex [10]. Tosun et al. [11] used fuzzy segmentation based automatic reconstruction 

of inner, central and pial surface for human brain MRI images. Eickhoff et al. [12] 

developed a toolbox for probabilistic cytoarchitectonic brain mapping of the human brain 

into cortical areas using functional imaging and histological staining. Layer-specific 

molecular markers have been used to analyze interneurons and projection neurons in 

cortical layers of rat neocortex in Molyneaux et al. [13]. This work was later extended to 
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neonatal mouse to study the subpopulations of projection neurons for different cortical 

layers and areas [14]. Yu et al. [15] analyzed the barrel cortex layers to study mechanism 

of plasticity in a model of peripheral deprivation of sensory input from the whiskers in 4- 

to 6-week-old rats using manual delineation. Kurth et al. [16] performed delineation for 

cortical layers for human brain using co-registered histological and MRI imaging. 

Narayana et al. [17] used inhibitory and exhibitory neurons-based density profiles for 

manually delineating rat brain primary somatosensory cortex. Swanson et al. [4] delineated 

the cortical layers for 71 coronal sections using Nissl stains. Zilles and Palomero visually 

delineated cortical layers for multiple regions in the human brain using autoradiography 

images [18]. 

 

 Figure 2-6. (1) Manual delineation method using excitatory neuronal density profile [17]. (2) 
Laminar structure of cerebral cortex of rat shown by layer-specific markers [19]. 

 

     As discussed above, currently cortical layer delineation is mostly done by two methods 

(see Figure 2-6) mentioned below: 

1. Manual Delineation: Biologists visually analyze the morphological and spatial 

properties of cortical neurons and manually delineate the cortical layers. This is a very 
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labor-intensive approach and hence is generally performed for specific regions as per 

the need of the study. 

2. Layer-specific Markers: Markers expressed in neurons belonging to a specific cortical 

layer are used to delineate. Layer-specific sometimes bleed through into the other 

layers, making layer delineation difficult. Layer-specific molecular markers for rat 

brains is a fairly new subject. 

     Both of these methods do not provide any kind of validation or profiling for the layer 

delineation and are purely up to biologist’s discretion. 

2.3 Performance Evaluation Challenges 

     Most available atlases do not delineate cortical layers throughout the cortex. Atlas is 

unique to every brain; hence no objective ground truth is easily available for cortical layers.  

Our proposed algorithm works on large whole-brain multiplex images which are 16-

bit images of size 43054×29398 pixels, approximate size 2.5 gigabytes. The cortex consists 

of around 80,000 cells out of which around 40,000 are neurons. Evaluating the performance 

for the whole cortex will require a manual delineation for the whole dataset, which will be 

labor intensive.  

Lastly, in order to validate the accuracy of the cluster analysis delineation of the laminar 

structure of the cortex, two immunohistopathological cellular markers were chosen that 

have been found to be highly localized to different cortical layers. For layer 4, neuronal 

calcium-binding protein 1 (NECAB1) was selected because it is highly and uniformly 

expressed in layer 4 pyramidal neurons in the cerebral cortex [20, 21]. Forkhead box 
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protein PE (Foxp2) was selected for its high specificity to glutamatergic neurons with 

robust expression predominantly in layer 6 [22, 23]. 

FOXP-1 marks layer 6 neurons and NECAB-1 marks mainly layer 4 neurons along 

with layer 2 and 3 neurons. We will be hence proposing validation methods to successfully 

establish the superiority of our algorithm to the current state of the art. 
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CHAPTER 3 AUTOMATED CORTICAL LAYER DELINEATION 

3.1 Feature Engineering and Extraction 

Neuronal density, cortical depth, shape, and diameter of neuronal somata are the most 

common features which vary across different layers in the cortex. We use the NeuN 

channel after registration and image correction [7]. Neurons are detected using multiplex 

classification [7]. Given 𝑁𝑁 neurons in the whole brain cortex, we extract the features as 𝒙𝒙 

as 

                                                      𝑥𝑥 = {𝑥𝑥1, 𝑥𝑥2, . . 𝑥𝑥𝑁𝑁}                                                  (1) 

                                 where 𝑥𝑥𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡
𝑥𝑥𝑖𝑖1
𝑥𝑥𝑖𝑖2
𝑥𝑥𝑖𝑖3
𝑥𝑥𝑖𝑖4
𝑥𝑥𝑖𝑖5⎦
⎥
⎥
⎥
⎤
 for 𝑖𝑖 ∈ {1,2, … ,𝑁𝑁}.                                         (2) 

The features are described as below. 

𝑥𝑥𝑖𝑖1: Neuronal density for neuron 𝑖𝑖. 

𝑥𝑥𝑖𝑖2 : Cortical depth for neuron 𝑖𝑖. 

𝑥𝑥𝑖𝑖3: Orientation of neuron 𝑖𝑖 relative to the pial surface. 

𝑥𝑥𝑖𝑖4: Diameter of neuron 𝑖𝑖. 

𝑥𝑥𝑖𝑖5: Area of neuron 𝑖𝑖. 
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These features (see Figure 3-1) for the neuronal soma are extracted using 

morphological segmentation which will be discussed in chapter 5.  

 
  Figure 3-1. The neuronal feature extraction pipeline uses (A) NeuN channel after registration and 

image correction. (B1-B2) Neurons are detected using multiplex classification. (C1-
C2) Somata marked for these neurons using morphological masking.  

 

3.2 Neuronal Clustering 

Using the features discussed earlier, we perform soft assignment of neurons into 

clusters. We perform clustering only on the subset of neurons with high quality features 

and allocate clusters to the remaining neurons later. 

 Dirichlet Process Mixture Model (DPMM) based Clustering 

Dirichlet Process Mixture Model [24] is a non-parametric model for clustering, where 

the number of clusters is learned from the data. The parameters of each mixture component 

are generated by a Dirichlet Process (DP) parameterized by a base measure 𝐺𝐺𝑜𝑜  and 

concentration parameter 𝛼𝛼 as 

                                                        𝐺𝐺~𝐷𝐷𝐷𝐷(𝛼𝛼,𝐺𝐺𝑜𝑜).                                                           (3) 
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 The component with label 𝑧𝑧𝑖𝑖 from the Dirichlet process can be represented as 

                                                          𝜃𝜃𝑧𝑧𝑖𝑖~𝐺𝐺.                                                                         (4) 

Considering a data point 𝑥𝑥𝑖𝑖, drawn independently from component with label 𝑧𝑧𝑖𝑖 as      

                𝑥𝑥𝑖𝑖|𝜃𝜃𝑧𝑧𝑖𝑖~𝑝𝑝�𝑥𝑥𝑖𝑖�𝜃𝜃𝑧𝑧𝑖𝑖�.                                                      (5) 

And the DPMM can be represented as 

                    𝐺𝐺 = ∑ 𝜋𝜋𝑘𝑘𝛿𝛿𝜃𝜃𝑘𝑘 ,    ∞
𝑘𝑘=1                                                     (6) 

where 𝜃𝜃𝑘𝑘 are parameters of the 𝑘𝑘𝑡𝑡ℎ component, and 𝛿𝛿𝜃𝜃𝑘𝑘 is an indicator function centered 

at 𝜃𝜃𝑘𝑘. 𝜋𝜋𝑘𝑘𝜖𝜖[0,1] are the mixing proportions of the kth component, which are produced as   

           𝑣𝑣𝑘𝑘~𝐵𝐵(1,𝛼𝛼)                                                                 (7) 

and 

                                            𝜋𝜋𝑘𝑘 = 𝑣𝑣𝑘𝑘 ∏ (1 − 𝑣𝑣𝑙𝑙),𝑘𝑘 = 1, 2, …∞,𝑘𝑘−1
𝑙𝑙=1                                  (8) 

where 𝐵𝐵 is the Beta distribution. The component parameters are represented as 

                                                      𝜃𝜃𝑘𝑘 = {𝜇𝜇𝑘𝑘,𝑅𝑅𝑘𝑘},                                                               (9) 

where 𝜇𝜇𝑘𝑘 and 𝑅𝑅𝑘𝑘 are the mean vector and precision matrix for the 𝑘𝑘𝑡𝑡ℎ component. Using 

DPMM with Gaussian mixtures, the likelihood function for sample 𝑥𝑥 belonging to 

component k is evaluated as  

                                    𝑝𝑝(𝑥𝑥|𝜋𝜋𝑘𝑘, 𝜇𝜇𝑘𝑘,𝑅𝑅𝑘𝑘) = ∑ 𝜋𝜋𝑘𝑘∞
𝑘𝑘=1 𝑁𝑁(𝑥𝑥|𝜇𝜇𝑘𝑘,𝑅𝑅𝑘𝑘−1).                               (10) 

DPMM is a generative model that generates observations according to the following 

steps. 
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1. For k=1, 2, …, ꝏ 

a. Draw 𝑣𝑣𝑘𝑘~𝐵𝐵(1,𝛼𝛼). 

b. Compute 𝜋𝜋𝑘𝑘 = 𝑣𝑣𝑘𝑘 ∏ (1 − 𝑣𝑣𝑙𝑙)𝑘𝑘−1
𝑙𝑙=1 . 

2. For each component k=1, 2, …, ꝏ 

a. Draw precision 𝑅𝑅𝑘𝑘~𝑊𝑊(𝐵𝐵𝑜𝑜, 𝑣𝑣𝑜𝑜). 

b. Draw mean 𝜇𝜇𝑘𝑘~𝑁𝑁(𝜇𝜇𝑜𝑜, (𝑟𝑟𝑜𝑜,𝑅𝑅𝑘𝑘)−1). 

3. For each observation 𝑖𝑖 = 1, 2, … ,𝑁𝑁 

a. Draw component assignment 𝑧𝑧𝑖𝑖~𝐶𝐶𝐶𝐶𝐶𝐶(𝜋𝜋). 

b. Draw 𝑥𝑥𝑖𝑖~𝑁𝑁(𝜇𝜇𝑧𝑧𝑖𝑖 ,𝑅𝑅𝑧𝑧𝑖𝑖). 

     During inference given data 𝑋𝑋, the goal is to infer the latent variables 𝑍𝑍 = {𝑧𝑧1, 𝑧𝑧2, . . , 𝑧𝑧𝑁𝑁} 

and parameters 𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2, … } and 𝜃𝜃 = {𝜃𝜃1, 𝜃𝜃2, … }. Variational inference methods [25, 

26] are used inference by approximating the posterior 𝑝𝑝(𝑉𝑉, 𝜃𝜃,𝑍𝑍|𝑋𝑋)  by 𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍)  by 

minimizing the KL (Kullback-Leiber) divergence between them. The latent variables and 

parameters of the variational distribution are assumed to be mutually independent and the 

upper limit on number of components is set to 𝑇𝑇 as  

                                𝑞𝑞(𝑉𝑉, 𝜃𝜃,𝑍𝑍) = [∏ 𝑞𝑞(𝑣𝑣𝑡𝑡)𝑇𝑇
𝑡𝑡 ][∏ 𝑞𝑞(𝜃𝜃𝑘𝑘)𝑇𝑇

𝑘𝑘 ][∏ 𝑞𝑞(𝑧𝑧𝑖𝑖)𝑁𝑁
𝑖𝑖 ].                               (11) 

      The objective function is the KL divergence between posterior and variational 

distribution and is calculated as 

𝐷𝐷𝐾𝐾𝐾𝐾[𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍)||𝑝𝑝(𝑉𝑉, 𝜃𝜃,𝑍𝑍|𝑋𝑋)]

= ��𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍) log
𝑞𝑞(𝑉𝑉, 𝜃𝜃,𝑍𝑍)
𝑝𝑝(𝑉𝑉,𝜃𝜃,𝑍𝑍|𝑋𝑋)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

𝑧𝑧

                                 

= −��𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍) log
𝑝𝑝(𝑉𝑉, 𝜃𝜃,𝑍𝑍) 𝑝𝑝(𝑋𝑋)⁄

𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍)
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

𝑧𝑧
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                    = −∑ ∬𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍) log 𝑝𝑝(𝑉𝑉,𝜃𝜃,𝑍𝑍)
𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍)

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + log𝑝𝑝(𝑋𝑋)𝑧𝑧 = 𝐹𝐹 + log 𝑝𝑝(𝑋𝑋).       (12) 

To minimize the KL divergence, we need to minimize the free energy term, 𝐹𝐹 which can 

be simplified as 

𝐹𝐹 = −��𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍) log
𝑝𝑝(𝑉𝑉,𝜃𝜃,𝑍𝑍)
𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍)

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
𝑧𝑧

= 𝐸𝐸 �log
𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍)
𝑝𝑝(𝑉𝑉,𝜃𝜃,𝑍𝑍)�

𝑞𝑞(𝑉𝑉,𝜃𝜃,𝑍𝑍)
 

                   = ∑ 𝐸𝐸 �log 𝑞𝑞(𝜃𝜃𝑘𝑘)
𝑝𝑝(𝜃𝜃𝑘𝑘)

�
𝑞𝑞(𝜃𝜃𝑘𝑘)

𝑇𝑇
𝑘𝑘=1 + ∑ 𝐸𝐸 �log 𝑞𝑞(𝑣𝑣𝑘𝑘)

𝑝𝑝(𝑣𝑣𝑘𝑘)
�
𝑞𝑞(𝑣𝑣𝑘𝑘)

𝑇𝑇
𝑘𝑘=1 +

                                                        ∑ 𝐸𝐸 �log 𝑞𝑞(𝑧𝑧𝑖𝑖)
𝑝𝑝�𝑥𝑥𝑖𝑖�𝑧𝑧𝑖𝑖 ,𝜃𝜃�𝑝𝑝�𝑧𝑧𝑖𝑖�𝑉𝑉�

�
𝑞𝑞(𝑧𝑧𝑖𝑖,𝑉𝑉,𝜃𝜃)

.         𝑁𝑁
𝑖𝑖=1                       (13) 

 F can be minimized using coordinate ascent variational inference (CAVI) algorithm [20]. 

 Active Informed DPMM (AIDPMM) based Clustering  

     We propose an active learning-based clustering framework for cortical delineation 

problem since the cortex is very heterogeneous within and across different layers. The idea 

is to improve the clustering by integrating known spatial information from the cortex since 

the cortex is very heterogeneous within and across different layers. There has been work 

done using DPMM [27] to impose constraints on clustering if two data points in the cluster 

should belong to same or different clusters. AIDPMM similarly uses two types of grouping 

information, must-link, 𝑀𝑀𝑀𝑀 and cannot-link, 𝐶𝐶𝐶𝐶 for the neuronal data. The neurons with 

must-link should be belong to the same clusters, while neurons with cannot-link should 

belong to different clusters. 



29 
 

     Given, 𝐿𝐿 total number of groups as per the must-link, ML and cannot-link information, 

CL, 𝑋𝑋𝑙𝑙  are the neurons on which any linking is imposed, 𝑍𝑍𝑙𝑙   is the corresponding 

component assignment for the 𝑙𝑙𝑡𝑡ℎ linked group.  The modified variational distribution is as 

                     𝑞𝑞(𝑉𝑉, 𝜃𝜃,𝑍𝑍) = [∏ 𝑞𝑞(𝑣𝑣𝑡𝑡)𝑇𝑇
𝑡𝑡 ][∏ 𝑞𝑞(𝜃𝜃𝑘𝑘)𝑇𝑇

𝑘𝑘 ][∏ 𝑞𝑞(𝑍𝑍𝑙𝑙|𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶)𝐿𝐿
𝑙𝑙=1 ].                        (14) 

     The objective function for C-DPMM is 

𝐹𝐹 = ∑ 𝐸𝐸 �log 𝑞𝑞(𝜃𝜃𝑘𝑘)
𝑝𝑝(𝜃𝜃𝑘𝑘)

�
𝑞𝑞(𝜃𝜃𝑘𝑘)

𝑇𝑇
𝑘𝑘=1 + ∑ 𝐸𝐸 �log 𝑞𝑞(𝑣𝑣𝑘𝑘)

𝑝𝑝(𝑣𝑣𝑘𝑘)
�
𝑞𝑞(𝑣𝑣𝑘𝑘)

+𝑇𝑇
𝑘𝑘=1

                                       ∑ 𝐸𝐸 �log 𝑞𝑞(𝑍𝑍𝑙𝑙)
𝑝𝑝�𝑋𝑋𝑙𝑙�𝑍𝑍𝑙𝑙 ,𝜃𝜃�𝑝𝑝�𝑍𝑍𝑙𝑙�𝑉𝑉�

�
𝑞𝑞(𝑍𝑍𝑙𝑙,𝑉𝑉,𝜃𝜃)

.𝐿𝐿
𝑙𝑙=1                                            (15) 

This objective function can be simplified as  

𝐹𝐹 = ∑ 𝐸𝐸 �log 𝑞𝑞(𝜃𝜃𝑘𝑘)
𝑝𝑝(𝜃𝜃𝑘𝑘)

�
𝑞𝑞(𝜃𝜃𝑘𝑘)

𝑇𝑇
𝑘𝑘=1 + ∑ 𝐸𝐸 �log 𝑞𝑞(𝑣𝑣𝑘𝑘)

𝑝𝑝(𝑣𝑣𝑘𝑘)
�
𝑞𝑞(𝑣𝑣𝑘𝑘)

𝑇𝑇
𝑘𝑘=1 + ∑ log∑ exp�𝑆𝑆𝑙𝑙,𝑘𝑘� 𝑇𝑇

𝑘𝑘=1
𝐿𝐿
𝑙𝑙=1 (16) 

where     

                      𝑆𝑆𝑙𝑙,𝑘𝑘 = 𝐸𝐸[log 𝑝𝑝(𝑋𝑋𝑙𝑙|𝜃𝜃𝑘𝑘)]𝑞𝑞(𝜃𝜃𝑘𝑘) + 𝐸𝐸[log𝑝𝑝(𝑍𝑍𝑙𝑙 = 𝑘𝑘|𝑉𝑉)]𝑞𝑞(𝑉𝑉),                           (17) 

                                    𝑝𝑝(𝑋𝑋𝑙𝑙|𝜃𝜃𝑘𝑘) = ∏ 𝑝𝑝(𝑥𝑥𝑖𝑖|𝜇𝜇𝑘𝑘,𝑅𝑅𝑘𝑘)𝑁𝑁𝑙𝑙
𝑖𝑖=1 ,                                               (18) 

and  

                 𝑝𝑝(𝑍𝑍𝑙𝑙 = 𝑘𝑘|𝑉𝑉) = ∏ 𝑝𝑝(𝑧𝑧𝑖𝑖 = 𝑘𝑘|𝑉𝑉) = (𝑣𝑣𝑘𝑘 ∏ (1 − 𝑣𝑣𝑗𝑗))𝑁𝑁𝑙𝑙 .𝑘𝑘−1
𝑗𝑗=1

𝑁𝑁𝑙𝑙
𝑖𝑖=1                    (19) 

The free energy, F is minimized using the CAVI algorithm [28] until it converges. The 

final clustering label obtained for each neuron 𝑥𝑥𝑘𝑘 is given by 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑘𝑘(𝑞𝑞(𝑍𝑍 = 𝑘𝑘)). 

     AIDPMM clustering initially performs DPMM clustering in the absence of any 

grouping information. Based on the clusters determined initially (Figure 3-2), the user 

examines the obtained neuron clusters and decided action, namely “freeze”, “keep” or 
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“split” for each cluster. This allows us to organically capture intra-layer heterogeneity. 

Hence, there might be clusters that need to be split down to get meaningful “sublayers”. A 

sublayer being a cluster which consists of neurons belonging exclusively to one layer. 

Based on the action chosen for every cluster by the user, additional information is obtained 

from the user. The clusters allocated freeze are separated from the active clustering dataset 

for the following iterations so that the cluster labels stay the same. In the example shown 

in Figure 3-2, clusters B2 and B4 are sublayers for layer 6 and layer 2+3 respectively, hence 

these are kept. This means they are removed from the training neuron dataset. The clusters 

B1 and B3 are selected for splitting. We calculate uncertainty scores for neurons from these 

clusters similar to in [29] as 

                                       𝑈𝑈(𝑎𝑎) = 𝐻𝐻�𝑛𝑛𝑛𝑛(𝜇𝜇)� + 𝑣𝑣𝑣𝑣�𝑚𝑚𝑚𝑚(𝑎𝑎)�+𝑣𝑣𝑣𝑣�𝑐𝑐𝑐𝑐(𝑎𝑎)�
1+𝑚𝑚𝑚𝑚(𝑎𝑎)+𝑐𝑐𝑐𝑐(𝑎𝑎)

.                                      (20) 

where  𝐻𝐻(𝑛𝑛𝑛𝑛(𝜇𝜇)) is the entropy of cluster labels of 𝜇𝜇 neighboring neurons, 𝑚𝑚𝑚𝑚(𝑎𝑎) 

and 𝑐𝑐𝑐𝑐(𝑎𝑎) are the number of must-links and cannot-links associated with neuron 𝑎𝑎, 

𝑣𝑣𝑣𝑣(𝑚𝑚𝑚𝑚(𝑎𝑎)) and 𝑣𝑣𝑣𝑣(𝑐𝑐𝑐𝑐(𝑎𝑎)) are the violated must-links and cannot-links associated with 

neuron 𝑎𝑎. Uncertainty score is high if either must-link and cannot-link grouping 

information is violated, or neighboring neurons belong to different clusters. We select the 

𝑟𝑟 neurons with highest uncertainty scores from each cluster. We display the neurons with 

high uncertainty scores for cluster B1 in Figure 3-3. As we can see, most of the neurons 

on the boundaries of the cluster have high uncertainty, as the inner neurons in this cluster 

clearly belong to layer 5. 
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 Figure 3-2. (A) Initially found clusters using AIDPMM (B1-B4) Individual clusters depicted. 
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                 Figure 3-3. Neurons with high uncertainty scores from the cluster selected for splitting. 
 

     All the selected high uncertainty neurons from the clusters selected for splitting are 

divided into two sets, namely set 𝐴𝐴 and 𝐵𝐵. Set 𝐴𝐴 consists of neurons belonging to the same 

cluster, while set 𝐵𝐵 consists of neurons belonging to different clusters, as per the current 

clustering results. For a pair of neurons (𝑎𝑎, 𝑏𝑏) ∈ 𝐴𝐴 ∶ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑏𝑏), we want to 

select it if they are located far apart and have high uncertainty. For a pair of 

neurons (𝑎𝑎, 𝑏𝑏) ∈ 𝐵𝐵: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎) ≠ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑏𝑏), we want to select the pair if they have high 

uncertainty and they are close to each other. This is because most neurons close to each 

other belong to the same cortical layer. Hence, we define a label value term, 𝑤𝑤 for each 

pair (𝑎𝑎, 𝑏𝑏) belonging to set 𝐴𝐴 and 𝐵𝐵 as 

                           (𝑎𝑎, 𝑏𝑏) ∈ 𝐴𝐴: 𝑤𝑤(𝑎𝑎, 𝑏𝑏) = 𝑑𝑑𝑎𝑎𝑎𝑎�1+𝑈𝑈(𝑎𝑎)��1+𝑈𝑈(𝑏𝑏)�
�1+𝑚𝑚𝑚𝑚(𝑎𝑎)+𝑐𝑐𝑐𝑐(𝑎𝑎)��1+𝑚𝑚𝑚𝑚(𝑏𝑏)+𝑐𝑐𝑐𝑐(𝑏𝑏)�

                             (21) 

and 

                        (𝑎𝑎, 𝑏𝑏) ∈ 𝐵𝐵: 𝑤𝑤(𝑎𝑎, 𝑏𝑏) = 𝑑𝑑𝑎𝑎𝑎𝑎(1+𝑚𝑚𝑚𝑚(𝑎𝑎)+𝑐𝑐𝑐𝑐(𝑎𝑎))(1+𝑚𝑚𝑚𝑚(𝑏𝑏)+𝑐𝑐𝑐𝑐(𝑏𝑏))
(1+𝑈𝑈(𝑎𝑎))(1+𝑈𝑈(𝑏𝑏))

                           (22) 
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where 𝑑𝑑𝑎𝑎𝑎𝑎 is the Euclidean distance between neurons 𝑎𝑎and 𝑏𝑏, 𝑚𝑚𝑚𝑚(𝑎𝑎) and 𝑐𝑐𝑐𝑐(𝑎𝑎) are the 

number of must-links and cannot-links associated with neuron 𝑎𝑎, 𝑈𝑈(𝑎𝑎) is the uncertainty 

score for neuron 𝑎𝑎. 

     Hence, for set 𝐴𝐴, we query the user for the neuron pairs with high label values and for 

set 𝐵𝐵, we query the user for neurons pairs with low label values. We use top 𝑄𝑄/2 highest 

label value pairs from 𝐴𝐴 and bottom 𝑄𝑄/2 lowest label value pairs from 𝐵𝐵. These pairs 

should be non-overlapping to get more information diversity. The pairs selected are 

shown to the user (Figure 3-4), who provide the linking type (1: for must link, 0: for 

cannot-link, -1: not sure) for that pair.  

   

  Figure 3-4. (A)Pair selected for query as per active learning, (B) Zoomed in version for neuron   
1, (C)   Zoomed in version for neuron 2. 

 

These query inputs (Figure 3-5) are used to update 𝑀𝑀𝑀𝑀 and 𝐶𝐶𝐶𝐶 every iteration for 

subsequent clustering. We perform clustering until we exhaust the information budget or 

there are no clusters to be split further. 

A 

C 

B 
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        Figure 3-5. Must-links neuronal pairs (green) and cannot-link neuronal pairs (red) marked. 
 

     Once we finish the clustering, we merge the clusters (Figure 3-6) into meaningful layers 

as per user’s supervision (Figure 3-7). The AIDPMM algorithm is summarized in 

(Algorithm 1). 
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                        Figure 3-6. Final clusters obtained through AIDPMM.  

   

 

Figure 3-7. (A) NeuN channel input used for feature extraction, (B) 16 clusters obtained from 
AIDPMM, (C) Cluster merging to layer result (Layer 2+3 in red, Layer 4 in green, 
Layer 5 in yellow, Layer 6 in blue). 
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Algorithm 1: Active Informed DPMM (AIDPMM) based Clustering 

Input: Neurons, (𝑐𝑐𝑖𝑖 , 𝑥𝑥𝑖𝑖) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, …𝑁𝑁  

Output: Variational distribution, 𝑞𝑞(𝑍𝑍)  

1. 𝑴𝑴𝑴𝑴 = ∅ , 𝑪𝑪𝑪𝑪 = ∅ 

2. 𝒒𝒒(𝒁𝒁) = 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝒙𝒙,𝑴𝑴𝑴𝑴,𝑪𝑪𝑪𝑪) 

3. Cluster label for 𝒙𝒙𝒊𝒊, 𝒍𝒍(𝒙𝒙𝒊𝒊) = 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒒𝒒(𝒁𝒁𝒊𝒊 = 𝒌𝒌|𝒙𝒙𝒊𝒊) 

4. Select clusters 𝑲𝑲 for freezing 

5. 𝒙𝒙𝒊𝒊 ← 𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋∀ 𝒍𝒍(𝒙𝒙𝒋𝒋) ∈ 𝑲𝑲 

6. Select clusters 𝑺𝑺 for splitting 

7. Evaluate 𝑼𝑼 for all the neurons from the clusters 𝑺𝑺 

8. Create all possible pairs (𝒂𝒂,𝒃𝒃) with top-𝛼𝛼 neurons from each split 

cluster and divide it into set 𝑨𝑨 and 𝑩𝑩  such that 

                                                      (𝒂𝒂,𝒃𝒃) ∈ 𝑨𝑨: 𝒍𝒍(𝒂𝒂) = 𝒍𝒍(𝒃𝒃)   

                                                      (𝒂𝒂,𝒃𝒃) ∈ 𝑩𝑩: 𝒍𝒍(𝒂𝒂) ≠ 𝒍𝒍(𝒃𝒃) 

9. Calculate label value, 𝒘𝒘 as 

∀(𝒂𝒂,𝒃𝒃) ∈ 𝑨𝑨: 𝒘𝒘(𝒂𝒂,𝒃𝒃) =
𝒅𝒅𝒂𝒂𝒂𝒂�𝟏𝟏 + 𝑼𝑼(𝒂𝒂)��𝟏𝟏 + 𝑼𝑼(𝒃𝒃)�

�𝟏𝟏 + 𝒎𝒎𝒎𝒎(𝒂𝒂) + 𝒄𝒄𝒄𝒄(𝒂𝒂)��𝟏𝟏 + 𝒎𝒎𝒎𝒎(𝒃𝒃) + 𝒄𝒄𝒄𝒄(𝒃𝒃)�
 

           ∀(𝒂𝒂,𝒃𝒃) ∈ 𝑩𝑩: 𝒘𝒘(𝒂𝒂,𝒃𝒃) =
𝒅𝒅𝒂𝒂𝒂𝒂(𝟏𝟏 + 𝒎𝒎𝒎𝒎(𝒂𝒂) + 𝒄𝒄𝒄𝒄(𝒂𝒂))(𝟏𝟏 + 𝒎𝒎𝒎𝒎(𝒃𝒃) + 𝒄𝒄𝒄𝒄(𝒃𝒃))

(𝟏𝟏 + 𝑼𝑼(𝒂𝒂))(𝟏𝟏 + 𝑼𝑼(𝒃𝒃))
 

10. Highest 𝑸𝑸/𝟐𝟐 label value pairs selected from A and lowest 𝑸𝑸/𝟐𝟐 label 

value pairs selected from 𝑩𝑩 for user annotation 

11. Update 𝑴𝑴𝑴𝑴,𝑪𝑪𝑪𝑪 as per 10 

12. Repeat 2 to 12 until performance convergence or {𝒙𝒙} = ∅ 
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     AIDPMM algorithm only analyzes the neurons with high quality features available in 

order to generate a reliable initial layer delineation. This creates the need to account for the 

remaining neurons. We additionally allocate layers to the remaining neurons by 

interpolation for visualization (Figure 3-8). The idea is to allocate same layers to neurons 

close to each other and at similar cortical depth. This is done by weighted voting of the 

training dataset layer labels, as mentioned in algorithm 1. 

 

Figure 3-8. (A) Cortical Layer Delineation on the training dataset, (B) Cortical Layer Delineation 
extended to all detected neurons through interpolation. 

 

     For each unlabeled neuron, find 𝑚𝑚 nearest neighboring neurons(𝑚𝑚 = 20) . The layer 

labels of these neurons are counted with weights inverse to the difference in the cortical 

depth from that of unlabeled neuron. This voting approach helps in the cases where 

neighboring neurons belong to different layers. The unlabeled neuron hence is allocated to 

the layer with maximum votes. 
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Algorithm 2: Layer Interpolation Algorithm 

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈: Labeled Neuron Set, 𝐀𝐀 = {𝒙𝒙𝒊𝒊}𝒊𝒊=𝟏𝟏𝑵𝑵 ;  

             Layer Labels, 𝑳𝑳𝑨𝑨 = {𝒍𝒍𝒙𝒙𝒊𝒊}𝒊𝒊=𝟏𝟏
𝑵𝑵  𝒍𝒍 ∈ {𝟎𝟎,𝟏𝟏,𝟐𝟐,𝟑𝟑} ;   

             Cortical depth, 𝑫𝑫 = {𝒅𝒅𝒊𝒊}𝒊𝒊=𝟏𝟏𝑴𝑴 ; Remaining Neuron Set ,  𝑩𝑩 = {𝒙𝒙𝒊𝒊}𝒊𝒊=𝑵𝑵+𝟏𝟏
𝑴𝑴  

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎: Layer Labels, 𝑳𝑳𝑩𝑩 = {𝒍𝒍𝒙𝒙𝒊𝒊}𝒊𝒊=𝑵𝑵+𝟏𝟏
𝑴𝑴  

1. For every neuron 𝐱𝐱𝐢𝐢 ∈ 𝐁𝐁, find 𝐤𝐤 nearest neighbors, 𝐧𝐧𝐧𝐧𝐤𝐤 from set 𝐀𝐀 

2. Layer labels of the neighbors: �𝒍𝒍𝒙𝒙𝒋𝒋�  ∀𝒋𝒋 ∈ 𝒏𝒏𝒏𝒏𝒌𝒌 

3. Votes for each neighbor:    𝒗𝒗𝒋𝒋 = 𝟏𝟏
�𝒅𝒅𝒊𝒊−𝒅𝒅𝒋𝒋�

 ∀ 𝒋𝒋 ∈ 𝒏𝒏𝒏𝒏𝒌𝒌 

4.  Votes for each layer, 𝒍𝒍: 

𝑽𝑽(𝒍𝒍) = � 𝒗𝒗𝒋𝒋𝑰𝑰(
𝒋𝒋∈𝒏𝒏𝒏𝒏𝒌𝒌

𝒍𝒍𝒙𝒙𝒋𝒋) ∀𝒍𝒍 ∈ {𝟎𝟎,𝟏𝟏,𝟐𝟐,𝟑𝟑} 

5. Label for neuron 𝒙𝒙𝒊𝒊, 𝒍𝒍(𝒙𝒙𝒊𝒊) = 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑽𝑽(𝒍𝒍)) 
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3.3 Results and Analysis 

     We implement the previously discussed AIDPMM algorithm on 15 brains. Below is 

layer delineation shown for 50-plex healthy serial section brains (Figure 3-9) and mTBI 

brains (Figure 3-10). 

     

Figure 3-9. Layers (2+3 in red, 4 in green, 5 in yellow, 6 in blue) delineated using AIDPMM for 
50-plex serial brain sections. 

 

 

Figure 3-10. Layers (2+3 in red, 4 in green, 5 in yellow, 6 in blue) delineated using AIDPMM for 
(A)   Healthy, (B) Injured and (C) Drug-treated brain sections. 

 

 Confidence Score Maps 

     We illustrate the confidence score maps for each of the layers. Layer confidence for a 

neuron belonging to a layer is calculated using the maximum likelihood of the clusters 

merged into that layer for that neuron. The layer confidence score for neuron 𝑥𝑥 belonging 

to layer 𝑙𝑙 can be evaluated as 

                                         𝐿𝐿𝐿𝐿(𝑥𝑥|𝑙𝑙) = max�𝑃𝑃(𝑥𝑥|𝑐𝑐𝑖𝑖)�{𝑐𝑐𝑖𝑖}∈𝑙𝑙
 ,                                          (23) 

     Bregma -2.52 mm                        Bregma -2.64 mm                        Bregma -2.76 mm 
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where {𝑐𝑐𝑖𝑖} are the clusters merged into layer 𝑙𝑙 and 𝑃𝑃(𝑥𝑥|𝑐𝑐𝑖𝑖) is the likelihood probability for 

neuronal data point 𝑥𝑥 belonging to 𝑐𝑐𝑖𝑖. Its values lies between 0 and 1. 

   

Figure 3-11. Layer Confidence Maps illustrated for (B) Layer 2+3 (C) Layer 4 (D) Layer 5 and (E) 
Layer 6. 

 

      As seen in Figure 3-11, our algorithm has high confidence scores for each of the layers. 

 Boundary Score Maps 

We illustrate boundary score maps i.e. probabilistic maps of the second highest likelihood 

for each neuron in the layer as shown in Figure 3-12. The boundary score for neuron 𝑥𝑥 

belonging to layer 𝑙𝑙 can be evaluated as 

                                    𝐵𝐵(𝑥𝑥|𝑙𝑙) = second highest �𝑃𝑃(𝑥𝑥|𝑐𝑐𝑖𝑖)�{𝑐𝑐𝑖𝑖}∈𝑙𝑙
,                                     (24) 
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where {𝑐𝑐𝑖𝑖} are the clusters merged into layer 𝑙𝑙 and 𝑃𝑃(𝑥𝑥|𝑐𝑐𝑖𝑖) is the likelihood probability for 

neuronal data point 𝑥𝑥 belonging to 𝑐𝑐𝑖𝑖. Its values lies between 0 and 0.5. 

 

Figure 3-12. Boundary Maps illustrated for (B) Layer 2+3 (C) Layer 4 (D) Layer 5 and (E) Layer 
6. 

 

     As seen in Figure 3-12, there is higher probability for the neurons at the boundary of 

two layers. This is normal since differentiating between neurons at boundary of two layers 

is a difficult task. For most of the neurons, the boundary map value stays small, indicating 

good clustering. 
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3.4 Performance Evaluation 

  

Figure 3-13. Manually delineated cortical layers (highlighted in white) in primary somatosensory 
barrel field for 50-plex healthy rat brain. 

 

     As discussed earlier the performance evaluation of layer delineation is challenging due 

to large image size and absence of an objective ground truth. We validate the cortical layer 

delineation in the primary somatosensory barrel field (S1BF) region (see Figure 3-13) 

manually delineated by Dr. Dragan Maric. This is not an objective ground truth, but it can 

be considered a guideline. Thickness of layers is not constant throughout the region as 

shown in expert delineation. The expert delineation resembles fitting lines to the region, 

instead of capturing the laminar flow of neurons. Hence, there are limitations to using it, 

but can be considered an alternative to ground truth. 
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     We offer two supervised methods to evaluate the performance of our delineated layers, 

namely Intersection over Union and R2-Midline distance which will be discussed later in 

this section. For easier analysis, we convert the point cloud of neurons belonging to each 

layer into corresponding binary masks (Figure 3-14) using concave hull [24]. 

     

    Figure 3-14. (A) Neuron point cloud for layer 6 (B) Mask created for layer 6 using concave hull. 
 

 Intersection over Union 

     Intersection over Union (IoU score) (Figure 3-15) for a segmentation problem is defined 

as  

                                               𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ ∩ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝c𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ ∪ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝c𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

.                                              (25) 

Generally, IoU>0.5 is considered a good prediction. 
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Figure 3-15. Ground truth (blue) and prediction (orange), (A) Intersection of masks (in green), (B) 
Union of masks (in green). 

 

     We measure the performance using IoU scores of ground truth masks (𝑀𝑀𝑔𝑔𝑔𝑔 ) and 

prediction masks (𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) for each layer. Below are IoU scores (Table 3-1) for the regions 

of interest. 

 

                        Table 3-1. Table of IoU scores of ground truth and detected layer masks. 
 

IoU Values Layer 2+3 Layer 4 Layer 5 Layer 6 

S1Bf Left 0.89 0.92 0.92 0.97 

S1Bf Right 0.89 0.88 0.87 0.94 

 

     We observe high IoU scores for all layers on either side of S1BF region indicating good 

overlap with the ground truth. 
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  Point to Layer Distance Matching 

 

Figure 3-16. Layers 2+3 (blue), 4 (cyan), 5 (red), 6 (green) shown for S1Bf left side in (A) ground-
truth masks and (B) prediction masks with mid-surface line illustrated for layer 4. 

 

     We randomly choose N points in the primary somatosensory barrel field (S1Bf) region. 

Next, we calculate distance of these points from mid-surface lines of ground truth masks 

(𝑀𝑀𝑔𝑔𝑔𝑔) and prediction masks (𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) for each layer (see Figure 3-16). We evaluate the R-

squared values for the distances for each of the layers for N =1000 points and these are 

mentioned below (Table 3-2). 

 

                Table 3-2. Table of the R-squared values for the distances from each of the layers. 
 

Distance R-squared Layer 2+3 Layer 4 Layer 5 Layer 6 

S1Bf Left 0.983 0.988 0.964 0.988 

S1Bf Right 0.973 0.889 0.767 0.935 
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     High R-squared values for all layers indicate good concordance between the 

computational and human-delineated cortical layer midlines. 

3.5 Layer-Specific Dataset 

     We use layer specific molecular markers NECAB1 [21, 20] (mainly found in layer 

4 neurons, additionally found in layer 2+3) and FOXP1 [23, 22] (found in layer 6 neurons) 

for validation of our algorithm (Figure 3-17 and Figure 3-18). NECAB1 marks the neuronal 

membrane, while FOXP1 marks the neuronal somata. We use the whole brain pipeline to 

process the channels and extract the required neuronal features. The detection of NECAB1 

and FOXP1 positive neurons is performed by intensity-based thresholding using whole cell 

morphological masks, described in Chapter 5. We use the cortical layer delineation and 

count the percentages of positive NECAB1 and FOXP2 neurons found in the layers to 

evaluate the performance. 

   

 Figure 3-17. (A) The whole brain slice with NeuN, NECAB1 and FOXP2 channels. (B) Magnified 
version for the left side of the brain slice. (C) Magnified version for the right side of 
the brain slice. 
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        Figure 3-18. (A) NECAB1 marks the neuron membrane, (B) FOXP1 marks the somata. 
 

     The results of our cortical layer delineation are illustrated in Figure 3-19. The concave 

hulls extracted are used for validation. We calculate the percentage of positive NECAB1 

and FOXP1 neurons detected in layer masks respectively. 

 

Figure 3-19. (A) Cortical layers delineated shown on top on NeuN channel for layer-specific 
dataset. (B)-(E) depict layer masks for layers 2+3, 4, 5 and 6. 
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      The layer 4 and layer 6 masks generated from our proposed cortical layer delineation 

algorithm capture 83.9% and 99.1% of the respective layer-specific molecular markers. 

NECAB1 positive neurons are lower because NECAB1 also marks layer 2+3. This 

indicates that our algorithm is effective at cortical layer delineation.  
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CHAPTER 4 CORTICAL LAYER PROFILING  

     We perform comprehensive and quantitative profiling of the cortical layers with respect 

to their composition (presence of neuronal and glial cell types and sub-types), cell-

phenotypic status, and the spatial arrangement of cells. This data can be compared using 

both conventional and spatial statistical methods across layers within the same brain, or 

across different brains, for example, a normal brain vs. injured vs. drug-treated brain, 

allowing investigators to analyze the effects of experimental manipulations in a sensitive 

manner with cell-layer specificity.  

4.1 Spatial Statistical Profiling Methods 

      We use comprehensive statistical methods [30, 31] for analyzing spatial point patterns 

of neurons allocated into different layers as per our algorithm. These exploratory methods 

include Empty Space function, Nearest Neighbor Distance Distribution function, Van 

Lieshout-Baddeley function, Ripley’s function, and Pair Correlation Function. For our 

analysis we use pair correlation function alone, though we offer the implementation of all 

other exploratory methods. 

Pair correlation function, 𝑔𝑔(𝑟𝑟) is a second order analysis of spatial point process that 

estimates the likelihood of a neuron existing at a distance 𝑟𝑟 from a typical neuron in layer 

relative to that of a random arrangement of neurons. The pair correlation function of a 

stationary point process is calculated as 

                                                           𝑔𝑔(𝑟𝑟) = 𝐾𝐾′(𝑟𝑟)
2𝜋𝜋𝜋𝜋

                                                                (26) 

where 𝐾𝐾′(𝑟𝑟) is the derivative of Ripley’s 𝐾𝐾-function 𝐾𝐾(𝑟𝑟) of the point process.  
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      Ripley’s K-function 𝐾𝐾(𝑟𝑟)  of a stationary point process 𝑋𝑋  is defined so that 𝜆𝜆𝜆𝜆(𝑟𝑟) 

equals the expected number of additional random points within a distance 𝑟𝑟 of a typical 

random point of 𝑋𝑋. Here 𝜆𝜆 is the expected number of points of 𝑋𝑋 per unit area.  

     For a stationary Poisson process, the pair correlation function is identically equal to 1. 

Values 𝑔𝑔(𝑟𝑟)  <  1  suggest inhibition between points; values greater than 1 suggest 

clustering. Figure 4-1 shows plots of pair correlation function against theoretical value for 

a random point pattern. Below in Table 4-1 we compare Pair Correlation Function values 

for neurons in delineated layers at different distances from it. 

 

     

Figure 4-1. Pair Correlation Function (PCF) for neuronal point patterns in cortical layers against a 
theoretical random point pattern. 
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  Table 4-1. Pair Correlation Function for Neuronal Point Patterns in Cortical Layers at radii 
50 μm, 100 μm and 250 μm. 

 

 Layer 2+3 Layer 4 Layer 5 Layer 6 

Pair Correlation 

Function Value, 𝒈𝒈(𝒓𝒓) 

𝒓𝒓 = 𝟓𝟓𝟓𝟓 𝛍𝛍𝛍𝛍 1.9 1.9 1.8 1.2 

𝒓𝒓 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝛍𝛍𝛍𝛍 1.8 1.9 1.7 1.1 

𝒓𝒓 = 𝟐𝟐𝟐𝟐𝟐𝟐 𝛍𝛍𝛍𝛍 1.5 1.5 1.4 1.0 

 

      We observe that all the PCF values are greater than 1 indicating clustering. We analyze 

PCF values for radii under 250 μm, since thickness of a cortical layer is around 250 μm on 

an average. We observe that neurons in layer 6, seem less clustered compared to neurons 

in layers 2+3, 4 and 5. This might be possible because layer 6 consists of sublayers 6a and 

6b which differ in terms of the spatial arrangement of neurons.  

4.2 Cellular Profiling 

     Table 4-2 shows profiling of neurons (and subtypes), astrocytes, microglia, 

oligodendrocytes and endothelials for healthy 50-plex rat brain across cortical layers. We 

additionally quantify ratio of exhibitory and inhibitory neurons across the layers. 
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   Table 4-2. Cellular profiling for healthy 50-plex rat brain. All cellular densities are reported per 
mm2. 

 

 Layer 2+3 Layer 4 Layer 5 Layer 6 

 
 
Neuronal density 

All 985.7 1093.7 1080.1 1464.1 

Glutamergic 873.2 916.6 935.3 1255.4 

GABAergic 53.9 58.9 66.6 38.1 

Exh./Inh. Neuron Ratio 16.2 15.5 14.0 32.9 

Astrocyte density 190.8 192.6 207.4 257.8 

Microglia density 93.9 88.8 98.1 111.3 

Oligodendrocyte density 99.0 99.3 160.4 227.9 

Endothelial density 302.9 326.4 349.5 350.5 

 

     Cellular profiling can be used quantify and study drug treatment experiments specific 

to the cortical layers. We study the astrocyte and microglial response to mild traumatic 

brain injury (mTBI) for the cortical layers. 
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 Figure 4-2. Astrocyte response to mTBI across (A) healthy, (B) vehicle and (C) Li+VPA across 
cortical layers between (D) contralateral and (E) ipsilateral side. Magnified regions 
from layer 4 shown for A, B and C on bottom right of each brain. 

 

     There is significant recruitment of astrocytes and microglia at the injury site in the 

cortical layers 4 and 5 for the injured animal as expected for the injured site to enhance 

neuronal repair and regeneration. There is significant increase in the astrocytes (see Figure 

4-2) in layer 4, 5 and 6 in the injured (Vehicle) animal group. There is significant difference 

in the astrocyte density between injured and drug-treated (Li+VPA) animal group in layer 

4 and 5, indicating that there is less inflammation in these layers in comparison to injury 

and the drug is helping in the injury.  
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Figure 4-3. Microglial response to mTBI across (A) healthy, (B) vehicle and (C) Li+VPA across 
cortical layers between (D) contralateral and (E) ipsilateral side. Magnified regions 
from layer 4 shown for A, B and C on bottom right of each brain. 

 

     In the case of microglia (see Figure 4-3), there is significant increase in microglial 

density in layers 4, 5 and 6 in the injury (Vehicle) case. There is significant decrease in the 

microglial density in layer 4 for drug treatment animal group compared to injury group, 

indicating that the drug is helping in treating the injury. Also, in the vehicle brain, the 

microglia density is higher in deeper layers 4 and 5, compared to layer 2+3.   
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4.3 Morphological Profiling 

     Table 4-3 shows morphological profiling of neurons for healthy 50-plex rat brain across 

the delineated cortical layers. The orientation reported is with the pial surface. 

 

                   Table 4-3. Morphological profiling for healthy 50-plex rat brain. 
 

 Layer 2+3 Layer 4 Layer 5 Layer 6 

Average Neuron Diameter, µm 19.6 ± 0.1 20.2 ± 0.1 19.4 ± 0.09 18.3 ± 0.1 

Average Neuron Area, µm2 162.6 ± 3.1 176.2 ± 4.3 167.9 ± 3.4 148.7 ± 3.3 

Average Neuron orientation, ° 71.5 ± 0.3 69.9 ± 0.6 58.5 ± 0.4 37.8 ± 0.5 

 

Below in Figure 4-4, we show the morphological profiling for the primary 

somatosensory cortex barrel field. We analyze this region because it has been well studied 

in literature. Comparison of neurons across cortical layers reveals that neurons in layer 4 

are observed to be largest in size. Neurons in layer 6 are observed to be the smallest in size 

in terms of both area and diameter. Neurons in layer 6 are aligned along the pial surface. 

The relative density is lowest of layer 2+3 and highest for layer 6, followed by layer 4. 
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Figure 4-4. (A) Neurons from layers shown for S1BF region in a healthy rat brain. (B)The neurons 
compared against each other in terms of area, diameter, orientation, and relative 
density in a bar chart. 

 

We extend morphological profiling to the injured animal (in Figure 4-5). We can see 

that the size of neurons decreases in the case on the ipsilateral side. Also, there is a 

significant recruitment of CC3, the cell death marker on the ipsilateral side. 
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Figure 4-5. Comparing neurons from layer 6 in the injured brain across (A) contralateral side and 
(B) ipsilateral side. (A3) and (B3) compare soma area across both sides. 
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CHAPTER 5 MORPHOLOGICAL SEGMENTATION 

For an in-depth analysis of cell function and spatial distribution, it is important to 

characterize the morphologies of cells in the rat brain.  This would help in studying patterns 

of tissue perturbations and quantifying cellular heterogeneity. We develop robust 

algorithms to automate the segmentation and reconstruction of cells across the whole rat 

brain. Presence of proteins like Nestin, Vimentin, Myelin Basic Protein, Neurofilaments in 

the processes can provide information about cell motility, neuronal signaling. Similarly, 

existence of Cleaved Caspase-3 in the cytoplasm can confirm cell death.  In the case of 

neurons, GAD67, Choline Acetyltransferase, Glutaminase, Tyosine Hydroxylase (TH) 

biomarkers in the soma and processes can reveal neurotransmitters used for neuronal 

signaling. For quantifying the soma properties for cortical delineation, soma segmentation 

is important. Thus, it becomes necessary to morphologically mask the cytoarchitecture of 

cells.  

There has been work by Megjhani et al. [32] for microglial arbor segmentation of 

around 3,310 microglia using supervised approach. Astrocytes process detection using 

unsupervised tracing algorithm has been mentioned in [33] implemented on around 20,000 

astrocytes. Huang et al. [34] used weakly supervised learning of three-dimensional neural 

networks for neuron reconstruction. We propose robust unsupervised methods using 

unsupervised arbor seed point detection and reconstruction to segment molecular 

morphologies of around 200,000 cells of all major cell types including astrocytes, neurons, 

endothelial, microglia and oligodendrocytes. 
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The reconstruction is done for each cell in the order: Nucleus -> Soma -> Cytoplasm-

>Processes->Whole Cell. The molecular markers in Table 5-1 are being used for cell-type 

based morphological segmentation.  

 

  Table 5-1. Table of biomarkers used for morphological segmentation of different cell components 
for neurons, microglia, astrocytes, endothelial and oligodendrocytes. 

 

Cell Type Nucleus Soma  Processes  Cytoplasm  Membrane  

Neurons NeuN NeuN MAP2 N/A N/A 

Microglia N/A IBA1 IBA1 N/A N/A 

Astrocytes Sox2 S100 S100, 

GFAP 

N/A N/A 

Endothelials N/A N/A N/A GFP RECA1 

Oligodendrocytes Nucleus CNPase CNPase N/A N/A 
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5.1 Whole Cell Morphological Segmentation 

We propose an unsupervised arbor seed point detection and reconstruction using 

molecular markers to characterize whole cell morphologies.  

 

                            Figure 5-1. Basic pipeline for cell morphological segmentation. 
 

The basic pipeline for morphological cell segmentation (Figure 5-3) can be used in all 

the five common cell types after making small changes. For every cell type, the 

morphological reconstruction is handled separately, due to different biomarkers and their 

staining nature. Sox2, S100 and GFAP channels are used to reconstruct astrocytes. We use 

GFP and RECA1 for endothelial reconstruction. IBA1 channel is used to reconstruct 

microglia. MAP2 and NeuN channels are used for neuron reconstruction. Olig2 

and CNPase are used to reconstruct oligodendrocytes. We use nucleus segmentation from 

masked RCNN and cell phenotype from the Capsule Network [7]. 
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 Astrocyte Reconstruction  

Sox2, S100 and GFAP channels are used to reconstruct astrocytes. Sox2 are neural 

precursors for astrocytes and mark astrocyte nuclei. S100 are astrocyte-pan specific 

markers which mark soma and processes. GFAP marks processes for astrocytes subset.   

We use the nucleus segmentation from the masked RCNN and crop window of size 

100×100 around it in the S100 channel. S100 channel marks soma and processes.  

 

Figure 5-2. Area of rectangle centered at soma (left) remains constant for different orientations, 
while it varies highly in case of processes (right). 

 

We use directional ratios [35] to measure local isotropy and anisotropy at multi-levels 

to segregate soma and processes (see Figure 5-4). Given collections of multiscale 

orientable filters {𝜑𝜑𝑗𝑗,𝑙𝑙} where the indices 𝑗𝑗, 𝑙𝑙  is associated with a range of scales and 

orientations, respectively, the Directional Ratio (DR) of an image 𝑓𝑓 at the 𝑗𝑗𝑡𝑡ℎ scale and at 

point 𝑝𝑝 is the quantity is defined as 

                                              𝐷𝐷𝑅𝑅𝑗𝑗𝑓𝑓(𝑝𝑝) = �𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙��𝑓𝑓∗𝜑𝜑𝑗𝑗,𝑙𝑙(𝑝𝑝)���
�𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙��𝑓𝑓∗𝜑𝜑𝑗𝑗,𝑙𝑙(𝑝𝑝)���

.                                                   (27) 

We use filter 𝜑𝜑𝑗𝑗,𝑙𝑙(𝑥𝑥) = 𝑆𝑆𝑗𝑗,𝑙𝑙(𝑥𝑥), where the sets 𝑆𝑆𝑗𝑗,𝑙𝑙 are the scaled and rotated 

rectangles as 
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                                                      𝑆𝑆𝑗𝑗,𝑙𝑙 =  2𝑗𝑗𝑅𝑅𝜃𝜃𝑙𝑙𝑆𝑆,                                                                  (28) 

                                                   𝑅𝑅𝜃𝜃 = � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�,                                                     (29) 

and 𝑆𝑆 is a fixed rectangle of size 2×1 pixels. DR value ranges from 0 to 1 with low values 

around processes and high values around soma. The segregation procedure is as below: 

We use 𝑗𝑗 = 3 to 5 and 𝜃𝜃𝑙𝑙  = 0◦ to 180◦ at locations of skeletonized version of earlier 

detected soma, and threshold (DR values) to distinguish soma from processes. This is 

followed by smoothing the image to smoothen the edges of detected soma to remove 

existing small processes.    

In case of astrocyte, processes will be marked by S100 or GFAP depending on the cell 

activation state. We use a window size of 200×200 around the nucleus. To find which 

biomarker stains the processes, we use a disk of size 2 pixels around the soma. We calculate 

the sum of GFAP channel intensity and S100 channel intensity and consider the channel 

with higher intensity for processes reconstruction. We binarize the processes channel and 

perform skeletonization to get the processes structure. We get the endpoints of the arbor 

structures and remove endpoints which are part of the soma. We use get processes which 

contain the remaining endpoints.  

Cytoplasm is obtained by subtracting nucleus mask from the soma mask. We get 

membrane by a 1-pixel dilation of the combined mask of soma, nucleus, and processes. 

The whole cell is acquired by the combined mask of soma, membrane, nucleus, and 

processes.  
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 Endothelial Reconstruction 

We use GFP and RECA1 for endothelial reconstruction. GFP marks the cytoplasm and 

is brightest in the soma, RECA1 marks the plasma membrane. We use the nucleus 

segmentation from the masked RCNN and crop window of size 200×200 around the 

nucleus position for plasma membrane and cytoplasm masking. We get the plasma 

membrane using RECA1 biomarker. This is done by Otsu based thresholding, followed by 

getting the connected component in the image center and filling the holes using flood-fill 

algorithm. The cytoplasm is extracted by binarizing the GFP, removing the small noisy 

objects in the image with median blur. This is proceeded by picking the 

largest connected and filling any possible holes. The whole cell is acquired by combining 

nucleus, soma, membrane, and cytoplasm masks.  

 Microglia Reconstruction 

Microglia reconstruction is performed using IBA1 channel which marks the soma and 

processes of microglia. We use the nucleus segmentation from the masked RCNN and 

crop window of size 100×100 around it in IBA1 channel. Since IBA1 marks both soma 

and processes, we need to distinguish the potential processes from soma. This is done by 

blurring the image with Gaussian kernel of size 11×11 and binarizing to get soma 

mask.  To get the processes, a window of size 200×200 is cropped around nucleus center 

in the IBA1 molecular marker. Potential processes are masked using complement of 

combined soma masks. We extract the brighter processes using high threshold values. 

Skeletonization of extracted processes is used to capture the structure. The endpoints of 

this structure are extracted, and all the endpoints which lie outside the soma are kept. The 
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final endpoints are used to get the microglia processes. Cytoplasm is obtained by 

subtracting nucleus mask from the soma mask. We get membrane by a 1-pixel dilation of 

the combined mask of soma, nucleus, and processes. The whole cell is acquired by the 

combined mask of soma, membrane, nucleus, and processes.  

 Neuron Reconstruction 

We use NeuN and MAP2 channels to reconstruct neurons. NeuN marks soma and 

nucleus. MAP2 marks the dendrites of neurons.  We use the nucleus segmentation from 

the masked RCNN and crop window of size 100×100 around it in the NeuN channel. 

We binarize this image by Otsu’s thresholding and fill any holes. This provides soma mask 

for the neuron. MAP2 channel marks the dendrites. A window of size 200×200 is cropped 

nucleus center in this channel and masked with complement of soma mask. 

Then binarization using high threshold values is performed followed by skeletonization to 

get the internal structure of dendrites. The endpoints of this structure are extracted, and all 

the endpoints which lie outside the soma are kept. The final endpoints are used to get the 

dendrites. Cytoplasm is obtained by subtracting nucleus mask from the soma mask. We get 

membrane by a 1-pixel dilation of the combined mask of soma, nucleus and processes. The 

whole cell is acquired by the combined mask of soma, membrane, nucleus and processes. 

 Oligodendrocyte Reconstruction 

We use Olig2 and CNPase biomarkers to reconstruct oligodendrocytes and capture 

its cytoarchitecture. Olig2 marks the nucleus of oligodendrocytes, CNPase is 

oligodendrocyte-pan specific marker which marks the soma and processes. The nucleus 

detected from masked RCNN is used along with the Olig2 channel. In case Olig2 channel 
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is present, nucleus is updated as intersection of detected nucleus and binarized Olig2. 

Otherwise the nucleus mask is directly used. Since it’s difficult to separate soma and 

processes marked by CNPase channel, detected nucleus is dilated by 2-pixel to get the 

approximate soma. A window of size 200×200 is cropped around nucleus center 

in CNPase channel and it is binarized using high threshold value. Skeletonization is used 

to get the internal structure of processes. The endpoints of this structure are extracted, and 

all the endpoints which lie outside the soma are kept. The final endpoints are used to get 

the final processes. Cytoplasm is obtained by subtracting nucleus mask from the soma 

mask. We get membrane by a 1-pixel dilation of the combined mask of soma, nucleus, and 

processes. The whole cell is acquired by the combined mask of soma, membrane, nucleus, 

and processes.  
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5.2 Results 

 

             Figure 5-3. Large-scale morphological segmentation results for different cell types. 
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                Figure 5-4. Cell-level morphological segmentation results for different cell types. 

 

The morphological segmentation of oligodendrocytes, neurons, astrocytes, microglia 

and endothelials into neurons, cytoplasm, soma, processes, and whole cell (see Figure 5-5 

and Figure 5-6). Morphological masking can be used in studying in-depth patterns of tissue 

perturbations and quantifying cellular heterogeneity as opposed to analyzing the cell only 

as per nuclei and cell body. It can be used for proof-reading cell phenotyping and improving 

the cell state activation. 
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CHAPTER 6 LABEL EFFICIENT DEEP LEARNING FRAMEWORK 

Breast cancer is the most common cancer in women worldwide [36]. The most widely 

used diagnostic method for breast cancer is visual inspection of histopathological images. 

In order to increase the speed and precision of classifying breast cancer histopathological 

images into benign or malignant tumor, it is important to implement an automated method. 

In solving image classification problems with such high intra-class variability, 

Convolutional Neural Networks (CNN) have outperformed traditional machine learning 

approaches. However, they require more annotated data for training compared with 

conventional methods. Such a requirement creates a major obstacle when using CNNs in 

the medical image domain. This paper explores active learning methods to train high-

quality CNNs using fewer but more informative data samples. We investigate two active 

learning approaches, based on entropy and Bayesian criteria, to classify histopathological 

tumor images into benign and malignant. Our approach yields a competitive accuracy by 

using only half of the training data as opposed to random selection approach. This finding 

makes active learning an appealing framework for building deep networks for biomedical 

applications where labeled data is often scarce. 

6.1 Introduction 

As reported by the WHO [36], cancer is responsible for around 8.2 million deaths in 

2012 and is expected to cause 27 million deaths by the year 2030. Breast cancer is the most 

common cancer occurring in women worldwide, with one of the highest mortality rates. 

There has been a tremendous amount of ongoing research regarding breast cancer diagnosis 

and treatment. Routinely administered screening such as mammography can detect breast 

cancer much earlier, before the development of symptoms. Improved treatment methods, 
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along with the benefits of early screening has decreased the mortality rates due to breast 

cancer. Most of the breast cancer tumors detected are benign or not cancerous. These 

tumors do not grow uncontrollably or metastasize and are not life-threatening. These are 

unlikely to recur once removed. On the other hand, malignant tumors are cancerous. They 

can spread to other cells and can invade nearby tissues. The cells in a malignant tumor have 

abnormal chromosomes and DNA which may require aggressive treatment such as surgery, 

radiation, chemotherapy, or immunotherapy-based medications. It might recur after 

removal, sometimes in areas other than the original cancer site. 

When cancer is suspected in diagnostic tests or screening mammography, microscopic 

analysis of breast tissue is necessary for a definitive diagnosis, to determine the extent of 

spread, and characterize the type of the disease. When cancer is suspected in diagnostic 

tests or screening mammography, microscopic analysis of breast tissue is necessary for a 

definitive diagnosis, to determine the extent of spread, and characterize the type of the 

disease. The tissue for microscopic analysis is acquired via a biopsy, which consists of 

collecting samples of cells or tissue followed by staining and microscopic examination. 

Pathologists visually inspect stained breast biopsies to make the diagnosis by examining 

the textures, patterns, and morphology of these complex histopathological images (Figure 

6-1) to categorize the tissues into cancerous (malignant) or non-cancerous (benign) tumors. 

This is considered the gold standard for diagnosis of breast cancer. Histopathological image 

analysis is a time-consuming, specialized task and depends highly on the experience and 

working conditions of pathologists. There has been a constant need for computer-assisted 
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diagnosis (CAD) to relieve the workload on pathologists [37], while improving the 

reliability and consistency of detection. 

 

 Figure 6-1. BreaKHis database consists of malignant and benign breast tumor images, at different 
magnification factors (MF): 40×, 100×, 200× and 400×. These images (H & E 
staining) vary widely in terms of the textures, patterns, and morphology. 

 

The earliest published work on automatic imaging processing for cancer diagnosis 

dates back to more than forty years [38]. Amidst the extensive ongoing research in the 

field, due to the complexity of images needed for diagnostic analysis, the problem of 

classifying tumors remains challenging. Most of the earlier works used handcrafted 

features such as intensity information, textural patterns and object-level morphological 

information (size, shape, distribution of nuclei) individually or as a combination for 

classification of histopathology images of breast tissue. There was use of visual descriptor 

based handcrafted features such as Local Binary Pattern (LBP) [39], Completed LBP 

(CLBP) [40], Local Phase Quantization (LPQ) [41], Gray-Level Co-occurrence Matrix 
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(GLCM) [42], Threshold Adjacency Statistics (TAS), ORB and Scale-Invariant Feature 

Transform (SIFT), Histogram of Oriented Gaussians (HOG), color histogram for 

classification. Traditional machine learning classifiers such as Support Vector Machine 

(SVM), Random Forests, Naive Bayes, and K-Nearest Neighbors were commonly used 

with handcrafted features [43, 44, 45, 46]. Most of the breast cancer analysis was carried 

out on small, privately-owned datasets. In order to mitigate this gap, Spanhol [45] 

introduced the Breast Cancer Histopathological (BreaKHis) database, consisting of 7,909 

breast histopathological images acquired on 82 patients. The authors also evaluated 

classification performance on six different textural descriptors and different classifiers, 

with accuracy rates ranging from 80% to 85%, depending on the image magnification 

factor. Based on the results presented in [45] , it can be said that the texture descriptors can 

offer an accurate representation to train classifiers. 

The handcrafted features are based on the knowledge of an expert and are extracted 

using the information from the histopathological image. Representation learning [47] 

addresses this problem, by being able to extract and organize discriminative information 

from the data, without expert supervision. Breast cancer recognition based on Probabilistic 

Neural Networks and SVM was performed in [48].  Computer-assisted breast cancer 

classification system in [49] consisted of a cascade of SVM and Multi-Layer Perceptron 

(MLP) ensemble classifiers, with rejection option for difficult cases. With advancements 

in machine learning, computational power and an increase in data size and complexity, 

deep learning methods have shown significant improvements over state-of-the-art 

recognition and classification approaches. They are also actively used for histopathology 

image analysis [50, 51]. 
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Spanhol et al. [52] performed a patch-based classification using CNNs on the BreaKHis 

[45] dataset, which is the dataset of interest for our work and displayed an improvement of 

6% in terms of accuracy compared to the traditional approach. Bayramoglu et al. [53] 

proposed a CNN model that can learn and predict breast cancer regardless of the different 

magnifications of images in the dataset. Wei et al. proposed BiCNN model [54] based on 

the GoogLeNet [55] that outperformed other state of the art CNNs. [56] proposed a multi-

classification model to identify subordinate classes of breast cancer using deep learning. 

[57, 56] proposed CNNs for breast cancer classification based on state of the art 

architectures in object recognition such as ResNet [58], RCNN [59], Inception-v4 [60], 

with fewer parameters to reduce the risk of model over-fitting. As discussed, deep learning 

methods have outperformed traditional machine learning approaches for classification in 

histopathology data, in general, but in turn, require large amounts of labeled training data. 

Labels are difficult to obtain in histopathological images, as image labeling requires 

significant clinical expertise. 

In the case of medical images [50], due to a limited amount of data available, transfer 

learning has proven to be a commonly adopted strategy. Transfer learning [61] involves 

using a pre-trained model, which is already learned in a specific domain, to another 

knowledge domain. In most cases, this pre-trained network is used either as a feature 

extractor or for initialization of CNNs followed by fine-tuning for handling smaller medical 

image dataset. [62] demonstrated that features extracted for the BreaKHis dataset from a 

pre-trained network achieved comparable recognition rates to trained CNN. In this paper, 

we address the problem of using small labeled data from the breast histopathology images 

to achieve performance as close as training CNN with the whole dataset. There is related 
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work done in semi-supervised learning where a small amount of labeled data and remaining 

unlabeled data are used to get a higher performance compared to using labeled data alone. 

Active learning is a special case of semi-supervised learning where provided a small 

amount of labeled data and remaining unlabeled data, the algorithm obtains labels for a 

small number of unlabeled data to improve the performance. There are several criteria like 

uncertainty sampling, entropy, margin sampling, expected reduction in error, which choose 

the desired data points. The hypothesis is that these selected data points when labeled and 

used for training perform as good as training with all data points. This allows the classifier 

to work with smaller data to select informative samples for object recognition and 

classification tasks. The use of active learning in deep learning is relatively limited. Wang 

et al. [63], first used active learning to aid image classification using stacked restricted 

Boltzmann machines and stacked autoencoders. There has been an implementation of 

similar ideas in the case of hyperspectral images [64], and colonoscopy frame images [65] 

in recent years. 

Most active learning methods discussed above are known to successfully learn and 

update classifiers when dealing with low-dimensional data. There has been the use of 

margin-based uncertainty for SVM classifier [66, 67]. Similarly, gaussian approaches with 

RBF kernels have been used to get model uncertainty [68, 69].  Entropy has outperformed 

several other active learning criteria [70]. The use of active learning for breast cancer 

classification [71, 72] using deep learning networks is fairly limited. We implement an 

entropy-based approach to measure the uncertainty of our CNN. 

CNNs deal with high dimensional data and the representation of model uncertainty 

becomes extremely challenging. Thus, we implement Bayesian approaches to deep 
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learning, in parallel, and capture model uncertainty [73, 74, 75]. This uncertainty is used 

to develop a similar active learning framework, as when using entropy alone, for the 

classification of histopathological images.  

Our work investigates several statistical criteria for performing active learning using 

deep networks. For example, one approach actively picks images with the highest entropy. 

High entropy indicates the images regarding which current classifier is most uncertain 

about. Entropy has outperformed several other traditional active learning criteria [70]. The 

classifier is retrained incrementally using this approach and there is a significant increase 

in classifier's performance with every retrain. We analyze the proposed active learning 

approaches on breast cancer classification and thoroughly compare against baseline 

methods. These can be used for actively training a deep neural network, in the absence of 

a large amount of labeled data, which is a prevalent challenge in biomedical domains. We 

also exhaustively analyze the behavior of active learning methods, which has not been done 

before to the best of our knowledge. Our paper will make the following contributions: 

1. We formulate an active deep learning framework to train CNNs with less 

amount of labeled data. We implement two parallel active learning criteria for 

the same. 

2. We provide extensive experimental results and in-depth analysis to demonstrate 

the effectiveness of our algorithm on the breast tumor classification problem.  
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6.2 Methods 

 Data Acquisition 

Breast Cancer Histopathological (BreaKHis) database [45] contains microscopic 

biopsy images of benign and malignant breast tumors. Malignant tumors are locally 

invasive. They can invade and destroy tissues around it and spread around. Benign tumors 

are non-cancerous and remain localized. Thin sections from the breast tissue biopsy 

(surgical open biopsy) are stained with hematoxylin and eosin (H&E). Hematoxylin stains 

the nuclei, whereas eosin stains protein structures in the cells. BreaKHis database consists 

of 5,429 malignant and 2,480 benign breast tumor images (Figure 6-1) collected from 82 

patients, at different magnification factors (Table 6-1) 40×, 100×, 200×, 400× zoomed-in 

area of interest selected by the pathologist. Benign tumors can be sub-categorized into 

Adenosis (A), Fibroadenoma (F), Phyllodes Tumor (PT) and Tubular Adenoma (TA). 

Malignant tumors can be sub-categorized into Carcinoma (C), Lobular Carcinoma (LC), 

Mucinous Carcinoma (MC) and Papillary Carcinoma (PC) (Table 6-2). These RGB images 

are of size 700×460 pixels each. We use these images without using their magnification 

factor information for classification into malignant and benign tumors. 

 Convolutional Neural Networks 

Convolutional Neural Network (CNN) is a class of deep neural networks [76]\ which 

is most commonly used for image classification and recognition. They learn multiple levels 

of image representation to model the complex relationship between image and class labels. 

They consist of convolutional layers, activation function, pooling layers, fully connected 

layers, and normalization layers. 
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              Table 6-1. BreaKHis Dataset in terms of tumor type and magnification factor. 
 

Magnification Factor Benign Malignant Total Number of 

Images 

40 × 652 1,370 1,995 

100 × 644 1,437 2,081 

200 × 623 1,390 2,013 

400 × 588 1,232 1,820 

Total Images 2,480 5,429 7,909 

 

             Table 6-2. BreaKHis Dataset in terms of tumor category and tumor sub-category. 
 

Tumor Category Tumor Sub-Category Number of Images Total Images 

 

 

Benign 

Adenosis 444  

2,480 Fibroadenoma 1,014 

Phyllodes Tumor 453 

Tubular Adenoma 569 

 

 

Malignant 

Carcinoma 3,451  

5,429 Lobular Carcinoma 626 

Mucinous Carcinoma 792 

Papillary Carcinoma 560 
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We will be using AlexNet [77] as the base Convolutional Neural Network for our 

experiments. It comprises of 5 convolutional layers followed by 3 fully connected layers, 

and pooling layers to capture non-linearity (Figure 6-2). It consists of 60 million 

parameters, which are learned during training. There are several other deep neural networks 

discussed earlier that outperform AlexNet for BreaKHis cancer classification. Due to 

AlexNet's simple architecture, it can be trained much faster compared to other CNNs, 

making it our obvious choice for iterative training approach. 

 

               

              Figure 6-2. Architecture of AlexNet used the base CNN for breast cancer classification. 

 

 Data Pre-processing 

The images from the BreaKHis dataset are downsized to 224×224 size, for faster 

training of the CNN. Before using images for training the CNN, they are standardized by 

subtracting the mean value and dividing by standard deviation value. This rescales all the 

images to a mean of 0 and unit variance, which helps in faster training of the CNN.  Image 

data augmentation methods like random flipping, rotation by random angle, random 

shifting, blurring to add random noise are used to artificially expand the dataset while 
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training the CNN, which boosts the performance and provides a good generalization to the 

trained model. 

 Baseline Experiments 

We use two experiments to define the baseline performance for the classification of 

breast tumor images. These will be used to quantitatively compare our proposed methods. 

In the first experiment, we use all the histopathological data to train an AlexNet from 

scratch. This will define the maximum performance for an ideal situation using all the 

training data. Comparing our active learning approach implemented on the same CNN with 

this experiment will show us how close and how fast we can reach the maximum attainable 

performance. 

The second experiment is iterative CNN training, which involves randomly selecting 

and adding images to training data. We start with a small number of labeled images, around 

100, to initially train the AlexNet. Out of the remaining unlabeled images, 50 images are 

randomly selected to be labeled at each iteration. The updated labeled images are used to 

retrain the AlexNet. This is continued until all the images are labeled. This experiment will 

serve as lower-bound for the comparison of the active learning method. Comparing the 

proposed method against the naive method of random selection for iterative CNN training 

will, in contrast, highlight how informative are the proposed selection criteria. These 

experiments can be used to provide an exhaustive comparison of the effectiveness of active 

learning strategies. 
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 Proposed Methods 

We aim to train CNNs for BreaKHis classification using less amount of labeled data. 

We implement this using entropy and Bayesian-based selection criteria. Algorithm 3 

describes our active learning framework. A small set of labeled images (around 100) is 

used to train the CNN initially. We compare two active learning-based selection 

approaches, to pick 50 most informative images to be annotated for training the CNN. 

Specifically, our paper investigates the two image selection strategies based on entropy and 

Bayesian criteria. We obtain labels for the selected subset and add it to the training dataset. 

The modified training dataset is used to retrain the CNN. For experimental purposes, this 

is repeated until the whole unlabeled images have been labeled and added to the training 

set. Note that in practice, we only need to annotate a fraction of the entire dataset to achieve 

good classification accuracies. We compare these active learning strategies to train the 

same CNN (AlexNet here) from scratch and using random selection as the active learning 

criterion in Algorithm 3.  
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Algorithm 3: Active Learning Framework 

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈: Unlabeled set of images 𝑈𝑈 = {𝑥𝑥𝑖𝑖}𝑖𝑖=1
𝑁𝑁 ,  Labeled set of images 𝐴𝐴, Active learning 

criterion 𝐺𝐺. 

Task:  Train classifier 𝑓𝑓 using active learning criterion 𝐺𝐺. 

Initialization:  Train classifier 𝑓𝑓  on dataset 𝐴𝐴. 

1. while U≠∅ do   

2. Compute active learning criterion value for unlabeled images {𝑮𝑮(𝒙𝒙𝒋𝒋}𝒋𝒋=𝟏𝟏𝑵𝑵 . 

3. Select subset of size 𝒌𝒌 from unlabeled images with highest criterion values. 

4. Obtain labels for the selected subset, 𝑨𝑨′. 

5.  Move selected subset from unlabeled image set to labeled image set: 

                                        𝑼𝑼 ← 𝑼𝑼− 𝑨𝑨′, 𝑨𝑨 ← 𝑨𝑨 + 𝑨𝑨′. 

6.   Retrain classifier 𝒇𝒇 with updated labeled image set with 𝑨𝑨. 

7. end while 

 

 

 

In our first method, the subset of images from the unlabeled set to retrain CNN is 

selected using Entropy. Entropy is one of the most popular methods used to measure 

uncertainty. It is defined for each data value as the negative logarithm of the probability 

mass function for that value as below 

                                                     𝐻𝐻 = −∑ 𝑃𝑃𝑖𝑖 log2 𝑃𝑃𝑖𝑖𝑖𝑖 .                                                   (30) 

Above is the entropy of a system consisting of 𝑖𝑖 data values, each occurring with a 

probability𝑃𝑃𝑖𝑖 . Its value lies between 0 and 1 with a higher value indicating more 
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uncertainty. While using entropy as the active learning criterion for measuring uncertainty 

in image classification, entropy is defined as 

                                   𝐻𝐻(𝑥𝑥,𝐴𝐴) = −∑ 𝑝𝑝(𝑐𝑐|𝑥𝑥,𝐴𝐴) log2 𝑝𝑝(𝑐𝑐|𝑥𝑥,𝐴𝐴)𝐶𝐶
𝑐𝑐=1                                     (31) 

where 𝑥𝑥 is an image from the unlabeled set of images, 𝑝𝑝(𝑐𝑐|𝑥𝑥,𝐴𝐴) is the probability that the 

image 𝑥𝑥 belongs to class 𝑐𝑐, calculated by the CNN trained on dataset 𝐴𝐴 and 𝐶𝐶 is the total 

number of classes. High entropy for an image indicates high uncertainty in its prediction 

using the CNN. Thus, this active learning criterion picks the examples from the unlabeled 

set of images with the highest predictive entropy for retraining purpose.  

The second method uses probabilistic version of CNN, called Bayesian Neural 

Network (BNN). These use a prior distribution 𝑤𝑤  over network parameters. A neural 

network with any depth and non-linearities, with dropout applied before every weight 

layer, is mathematically equivalent to an approximated Bayesian Neural Network [74]. 

Dropout can be used to approximate the posterior on the weights 𝑝𝑝(𝑤𝑤|𝐴𝐴) using Monte 

Carlo integration. This method has outperformed other approaches in capturing uncertainty 

in the case of deep learning models [75]. The predicted probability using a BNN, 𝑝𝑝(𝑐𝑐|𝑥𝑥,𝐴𝐴) 

is calculated as 

                                          𝑝𝑝(𝑐𝑐|𝑥𝑥,𝐴𝐴) = ∫𝑝𝑝(𝑐𝑐|𝑥𝑥,𝑤𝑤)𝑝𝑝(𝑤𝑤|𝐴𝐴)𝑑𝑑𝑑𝑑.                                         (32) 

In the Bayesian active learning approach, we use the same criteria of entropy, but 

replace deterministic CNN to an approximated Bayesian CNN implemented using Monte-

Carlo Dropout technique. We implement the above-discussed Entropy and Bayesian-based 

approach as active learning criteria, in parallel to perform classification of tumors into 

Malignant and Benign with less training data. 
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 Statistical Analysis  

Out of the collected dataset (7,909 images), 35% is used for validation (2,848 images), 

while rest is used for training (5,061 images). In the case of training with AlexNet from 

scratch, the entire training dataset of 5,061 images is used for the purpose. In the case of 

iterative selection approaches (entropy-based, Bayesian-based and random), 2% of the 

whole training set is used for initializing the CNN (100 images), and 98% is used for fine-

tuning (4,961 images) as per the selection criteria. We use the accuracy on the above 

mentioned fixed validation set as a performance indicator to compare different approaches. 

Note that the validation set is constant for all training approaches, and it has no overlapping 

images with the training dataset. The validation accuracy is calculated after retraining the 

CNN each time with images picked using selection criteria in case of iterative selection 

approaches. 

Accuracy can be a slightly misleading metric in case of an imbalanced dataset. Thus, 

we also compare the Area under Receiver Operating Characteristics (ROC) curve when the 

validation accuracy converges for each of the approaches. Area under curve (AUC) 

determines how well the model can distinguish between classes. The AUC ranges between 

0 and 1, closer to 1 indicates good separability of the classifier.  
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6.3 Results 

 Accuracy based analysis 

We first compare the performance of active learning methods and above-discussed 

baseline approaches using accuracy on the validation set (Figure 6-3). Training an AlexNet 

with all 5,061 training samples give 91.19% accuracy on the validation set. This is the 

maximum attainable accuracy with given training samples. Random selection converges to 

a similar accuracy using around 4,000 training samples. This means if we iteratively train 

CNN, selecting and adding training samples randomly, then with almost 4,000 training 

samples, we can achieve the maximum accuracy of 91.19%. Entropy and Bayesian-based 

active learning provide the same maximum accuracy (of 91.19%) using around 2,500 

training samples. This implies that using these criteria for image selection, CNN can 

achieve the maximum accuracy much earlier. Analyzing the validation accuracy indicates 

that proposed active learning criteria use only 50% of the training dataset, to provide 

maximum performance in terms of accuracy.  

We approximate the accuracy plots using least-square fitting as demonstrated in Figure 

6-4 random selection accuracy is linear in nature, whereas entropy and Bayesian-based 

active learning accuracy curves are negatively exponential in nature. We further analyze 

the slopes of accuracy plots for different selection criteria. Slope here is the ratio between 

the increase in accuracy and an increase in the number of training samples. The slope of 

random selection (Figure 6-4) is almost constant throughout. This means if we randomly 

select training samples for fine-tuning, the accuracy will increase at a linear rate with the 

number of training samples. Active learning-based selection (both Entropy and Bayesian) 
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starts with a high slope, in the beginning, almost 10 times that in random selection. It 

decreases quickly at first and slowly later, saturating around 4,000 training samples. This 

indicates that for active learning selection criteria, accuracy quickly increases with an 

increasing number of training samples in the starting, implying they are highly effective 

with even a small amount of training data. Thus, we can conclude that in cases with a very 

large number of training samples, entropy and Bayesian active learning will outperform 

the random selection strategy much earlier. 

 

Figure 6-3. Comparing validation accuracy for comparative active learning approaches and 
baseline. The shaded area around each curve shows one standard deviation around the 
mean accuracy curve obtained through multiple repetitions. 
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 Figure 6-4. Curve fitting to validation accuracy plots of comparative active learning approaches, 
with slope values for A, B, C, D, E, F which correspond to selecting 100, 1000, 2000, 
3000, 4000 and 5000 samples for training respectively. 

 

 

                            Table 6-3. Comparison of breast cancer classification methods. 
 

Method Classification 

Accuracy 

Training Dataset 

Size 

Handcrafted features [45] 83.32 5,535 

Deep features [62] 83.80 5,535 

AlexNet 91.19 5,061 

Random Selection 91.20 4,000 

CSDCNN [56] 93.32 5,880 

IRRCNN [57] 97.29 5,535 

Bayesian Active Learning Selection 90.91 2,000 

Entropy Active Learning Selection 91.20 2,400 
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Table 6-3 presents the classification accuracy and training dataset size of the state-of-

the-art models proposed in other studies. This shows that our proposed active learning 

methods deliver comparable performance using minimal amount of training data.  

 Area under ROC curve analysis 

Here (Figure 6-5) are the Receiver Operating Characteristics curves for training with 

all data, random selection, entropy-based active learning and Bayesian-based active 

learning with 2,500 training samples. We can observe that the entropy-based approach 

using 2,500 samples performs as good as training with all data, in terms of class 

separability. The Bayesian-based approach using 2,500 samples provides good class 

separability, but not as good as other methods. This can be due to its noisy nature compared 

to other approaches. We observe that using the proposed active learning approach, with 

2,500 samples yields performance as good as training with all samples, in terms of both 

accuracy and class separability. Comparison with random selection provides us stronger 

evidence of the active learning selection criteria being superior. Thus, we can conclude that 

entropy and Bayesian-based active learning offers an advantage in training CNN with less 

training data.  
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  Figure 6-5. ROC curves for comparative active learning approaches. The shaded area around each 
curve shows one standard deviation around the mean ROC curve through multiple 
repetitions of each experiment. 

 

6.4 Discussion 

The above performance analysis indicates the superiority of proposed active learning 

selection over the random selection and conventional training, in delivering better 

performance using a minimal amount of training data. An important point to note here is 

that the actual sample size selected every iteration as per algorithm 3 is small (50 images) 

compared to the dataset size. Thus, there might be a high possibility of an intra-sample 
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correlation between the images selected. Due to the high dimensionality of training data 

involved, high entropy images don't certainly imply them being similar to each other. 

 

  Figure 6-6. Comparing images sampled using active learning criteria during 1st, 25th, 50th , 75th 
and 98th iterations (out of total 100 iterations), in terms of appearance, magnification 
factor (MF) and subclass.  

 
 

 Also, as seen in Figure 6-6 (class names B: Benign, M: Malignant, and subclass names 

A: Adenosis, F: Fibroadenoma, PT: Phyllodes Tumor, TA: Tubular Adenoma, C: 

Carcinoma, LC: Lobular Carcinoma, MC: Mucinous Carcinoma, PC: Papillary Carcinoma) 

, images sampled at a particular iteration don't necessarily belong to a particular tumor 

type, sub-tumor type or magnification factor. Thus, there is no correlation between images 

selected in a particular sample in terms of tumor-type, sub-tumor type and magnification 

factor. This eliminates the possibility of overfitting problems due to correlated images 

sampled. So, we can establish that our method selects a diverse set of images with different 

magnification factors and disease classes. 
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Active learning and random selection approaches perform as good as training with all 

data, using around 2,500 and 4,000 training samples respectively. To understand what 

causes the difference in the performances of random and active learning-based selection, 

we perform an in-depth analysis of selected images during one experiment using each 

approach for training. We examine the image selection process using random and active 

learning approach in terms of tumor type, magnification level and tumor subcategory of 

the image selected. This will help in determining which images when selected improve the 

classifier’s performance the most. Table 6-1 and Table 6-2 display the population 

distribution of histhopathological images from BreaKHis dataset in terms of tumor 

category, tumor sub-category and magnification values. 

 

Figure 6-7. Comparing tumor type selection across training using Active learning(left) and 
Random(right) selection approaches, with slope values for points A(A'), B(B'), C(C') 
which correspond to selecting 500, 2,500 and 4,500 samples for training respectively. 

 

Figure 6-7 compares tumor type histograms (Malignant or Benign) of the images 

selected by active learning strategy and random selection during training. There is a total 
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of 2,480 benign tumor images and 5,249 malignant tumor images (Table 6-1) in the dataset. 

The slope here is defined as the ratio between an increase in the number of selected images 

belonging to a particular tumor type category and an increase in the number of training 

samples. 

We observe that using the active learning approach, the slope is almost equal for both 

tumor types, in the beginning, 0.4836 for Malignant and 0.5177 for Benign. It increases for 

Malignant tumor images (0.6742 with 2,500 training samples) and decreases for Benign 

tumor images (0.3253 with 2,500 training samples) with an increasing number of training 

samples, indicating that the algorithm prefers selecting most Benign tumor images 

(minority class) in the early training iterations. On the contrary, using a random selection 

approach, the slope remains constant for both tumor types, throughout the training process 

(~0.68 for malignant tumor images, ~0.31 for benign tumor images). This means the 

random selection approach doesn't have a particular preference in terms of tumor type 

while picking images. Another thing to note here is that at their performance convergence 

(for random selection: ~4,000 training samples, for active learning selection: ~2,500 

training samples), both the approaches consist of around 1,000 Benign tumor images in 

their training data.  

Thus, we can conclude that the selection of a sufficient number of training samples 

belonging to the minority class (Benign) is important for the classifier to reach maximum 

performance, and the active learning approach achieves that goal earlier than random 

selection by prioritizing picking benign tumor images first. 

We secondly study the image selection based on tumor subcategory while training. 

Malignant tumors can be further classified as Carcinoma, Lobular Carcinoma, Mucinous 
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Carcinoma, and Papillary Carcinoma. Benign tumors can belong to the following 

subcategories: Adenosis, Fibroadenoma, Phyllodes Tumor, and Tubular Adenoma. The 

tumor sub-category population distribution can be found in Table 6-2. Amongst the Benign 

tumor sub-categories, Fibroadenoma exists almost twice as much as Adenosis, Phyllodes 

Tumor, and Tubular Adenoma sub-categories. Carcinoma tumor images are five times as 

compared to Lobular Carcinoma, Mucinous Carcinoma, and Papillary Carcinoma.  

 Figure 6-8 compares the selection histogram for the sub-categories in the case of an 

active learning algorithm. Specifically, the selection rate (slope) increases for Carcinoma, 

decreases for Adenosis, Fibroadenoma, Tubular Adenoma, Mucinous Carcinoma, and 

remains almost constant for Phyllodes Tumor, Lobular, and Papillary Carcinoma during 

the training course. This indicates the active learning approach prefers adding samples with 

Adenosis, Fibroadenoma, Tubular Adenoma, and Mucinous Carcinoma earlier compared 

to in random selection. For random selection, as shown in Figure 6-9, the selection rate 

remains almost constant for each subcategory type. This indicates random selection doesn't 

have any specific preferences based on tumor sub-category for selection. 
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  Figure 6-8. Comparing sub-category histogram of images selected using active learning approach 

with slope values for points A, B, C which correspond to selecting 500, 2,500 and 
4,500 samples for training respectively. Benign in red, malignant in blue. 

 

     

 Figure 6-9. Comparing sub-category histogram of images selected using random selection 
approach with slope values for points A, B, C which correspond to selecting 500, 
2,500 and 4,500 samples for training respectively. Benign in red, malignant in blue. 
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We lastly study the magnification factors of selected images across training using both 

selection approaches. A higher magnification factor image will include more tissue-

specific information, while a lower magnification factor image will provide more 

information on neighboring tissues with respect to the target tissue. The BreaKHis dataset 

is well balanced with respect to different magnification levels (Table 6-2).  

 

 

Figure 6-10. Comparing magnification factor (MF) histogram of images selected using Active 
learning selection approach with slope values for points A, B, C which correspond to 
selecting 500, 2,500 and 4,500 samples for training respectively. 

 

Observing the active learning-based selection (Figure 6-10) for magnification factors 

40×, the slope is high in the beginning and later decreases (0.3206 using 500 training 

samples, 0.2631 using 2,500 training samples, 0.2057 using 4,500 training samples), while 

for magnification factors $200\times$, the slope is low in the beginning and rises up with 

training (0.1846 using 500 training samples, 0.2524 using 2,500 training samples, 0.3201 

using 4,500 training samples). 
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 Comparing the slope values for all magnification factors, in the initial training 

iterations, it is inversely proportional to the magnification factor. Thus, we can say that for 

active learning selection the slope values are high for lower magnification factor images 

and low for higher magnification factor images in the beginning. This shows the active 

learning algorithm prefers selecting low magnification images earlier as compared to high 

magnification images. At the performance convergence (with ~2,500 images), the slope 

values and number of training images selected for all magnification factors are almost the 

same, indicating the same preference of selection to images belonging to any magnification 

factor, at this stage.  

Using random selection, there is no particular preference while picking images in terms 

of the magnification factor. This can be observed from Figure 6-11 where the slope for 

different magnification factor images remains constant during the training. Thus, the active 

learning method selects low magnification images first compared to its random 

counterpart. This is possible because learning on low-magnification images is more 

challenging, as they contain high information about the tissue as well as its neighborhood. 

Thus, the algorithm recognizes them as highly informative and selects them earlier in the 

training. 
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Figure 6-11. Comparing magnification factor (MF) histogram of images selected using random 
selection approach with slope values for points A, B, C which correspond to selecting 
500, 2,500 and 4,500 samples for training respectively. 

 

We also observe that both algorithms at their performance convergence use a training 

dataset balanced in terms of the magnification factor of selected images. The BreaKHis 

dataset is balanced in terms of magnification factors (Table 6-2) and the training set at their 

convergence is a good representation of the actual dataset with respect to the distribution 

of magnification factors.  

Analyzing the statistics of images selected, we can conclude that active learning 

criterion selects enough samples from the minority classes, subclasses and magnification 

levels to make the training set a good representative of a highly variant dataset. Active 

learning achieves a diverse and informative training set earlier than its random selection 

counterpart, and hence provides the baseline performance earlier, using only half of the 

dataset. 
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6.5  Conclusions 

In this chapter, we propose active learning frameworks to classify breast 

histopathological images from the BreaKHis dataset into benign and malignant with fewer 

training samples. The proposed methods are compared against training with all data and 

iterative random selection. The performance is measured in terms of accuracy and area 

under the ROC curves. Our approach uses less than half of the entire training dataset and 

delivers performance comparable to our baseline methods. We exhaustively analyze the 

behavior of selection strategies based on random and active learning-based selection. We 

observe that the proposed active learning method selects a highly variant and informative 

dataset, in terms of class type, subclass type, and magnification factor. This emphasizes the 

need for a representative training dataset to attain good performance.  

Although this study focuses on a specific breast cancer dataset using a particular CNN, 

we believe that the key findings related to using active learning will hold for other 

biomedical datasets to train any deep neural network with scarce amounts of labeled data, 

in cases where the annotation is expensive and requires domain knowledge. Combining 

active learning with more sophisticated deep neural networks will tremendously cut down 

the high costs and effort involved in acquiring annotations for medical images, which 

generally make deep learning an unviable solution for medical images
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