

3D Printed Soft Organic Electrochemical Transistors

Brianna C. Hunter¹, Sahil Sharma¹, Anish Thukral¹, Pinyi Yang¹, Faheem Ershad², and Cunjiang Yu^{1,2,3,*}

¹Department of Mechanical Engineering; ²Department of Biomedical Engineering; ³ Department of Electrical and Computer Engineering, Materials Science and Engineering Program and TcSUH, University of Houston; * correspondence: cyu15@uh.edu

Introduction and Motivation

- > Soft electronics provide an ideal platform for interfacing with the curvilinear and dynamic surfaces of the body
- Organic electrochemical transistors have high ionic sensitivity for capturing electrophysiological signals

Today's Challenges

- Conventional silicon based electronics are rigid and brittle
- Development of electronic materials with flexible and stretchable mechanical properties
- Scalable manufacturing of soft electronics

Proposed Solution

Utilize 3D printing, where every step in the fabrication process can be controlled, to develop organic electrochemical transistors (OECTs) for biomedical sensing and health diagnosis.

Current Technology: Transistors

- > Transistors are the building blocks for electronics
- > In particular, organic electrochemical transistors (OECT) are a unique transistor that can be employed to sense electrophysiological signals
- > The basic structure of an OECT consists of source (S) and drain (D) electrodes and gate electrode (G).
- > Transistor can be modeled using both an electronic and ionic circuit [1]

 V_G is the gate voltage, V_D is the drain voltage, I_D is the drain current, and d is the channel thickness.

Approach – 3D Printing

Custom made 3D printer setup with pneumatic extruder, control box, and power supply.

Semiconductor: P3HT [Poly(3-hexylthiophene-2,5-diyl)] An organic semiconducting polymer, used as the active layer for OECTs **Substrate: PDMS** [Poly(dimethylsiloxane)] A soft, stretchable silicon based organic polymer used as the substrate for OECTs **Conductor: PEDOT:PSS** [Poly(3,4-ethylenedioxythiophene)-

The thickness of PEDOT:PSS electrodes affects its mechanical properties.

Biomedical Applications

> Optical image of a fully 3D printed organic electrochemical transistor on a rat heart

> Fully 3D printed transistors can be used to monitor electrical signals from the heart for applications such as detecting and preventing heart arrhythmia.

3D Printed Soft Electronic Devices

A fully printed Soft Electronic Device

Thin PEDOT:PSS

Stretched

Cracks

poly(styrenesulfonate)]

A soft, stretchable polymer conductor,

used as source and drain electrodes

for OECTs

Mechanical Deformation of the Electrode

Schematic Exploded View of the Device

Device Characteristics

lon gel
P3HT NFs D 10-4-15 **(Yu**) **3** 10-5 10⁻⁶ **10**⁻⁷ $V_{gs}(V)$

The fully printed transistor shows high performance *p*-channel characteristics

Conclusions

- > The soft organic electrochemical transistor is successfully fabricated with a 3D printing process.
- Printed thin electrode (PEDOT:PSS) has no obvious cracks under mechanical strain.
- > The fabricated device shows high performance and typical p-channel transistor characteristics.
- > The demonstrated biomedical experiment proves the feasibility of our approach for biomedical applications of soft electronics.

Future work

- > Develop new printing process to print on ultra thin surfaces for improved conformability
- Develop high resolution heart sensors and brain sensors to mapping the cortex
- Develop and test new devices for sensing other parameters such as pressure and heat

Acknowledgement

Funding provided by NSF REU Site Award #1757949

Reference

[1] J. Rivnay, S. Inal, A. Salleo, R. M. Owens, M. Berggren, and G. G. Malliaras, "Organic electrochemical transistors," Nat. Rev. Mater., vol. 3, p. 17086, 2018.