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ABSTRACT 
         

     The primary focus of this dissertation is to link the poroelastic model that couples 

rock’s elastic and hydraulic properties to seismic characterization of the 

heterogeneous reservoirs.  

        I have presented how to incorporate the dynamic poroelastic responses of 

microscopic and mesoscopic flow into the classical Biot theory. The resulting 

effective Biot media can capture the characteristics of velocity dispersion and wave 

attenuation in heterogeneous media. On the basis of this effective Biot media, I 

developed an approach to quantify the impact of both global flow and local flow 

simultaneously on the signatures of seismic reflectivity. The computed poroelastic 

reflections not only depend on the elastic properties contrast and incident angle, but 

also rely on the fluid mobility and observational frequency. For a typical shale-sand 

reflector, we find that the effect of local flow causes reflection amplitude variations in 

frequency to be as high as 40%, and a maximum phase shift as high as 12 degrees at 

the seismic exploration frequency band. However, the global flow effect on 

reflectivity is almost trivial (<1.5%) and occurs mainly at ultrasonic frequency band.   

     Poroelastic seismic analysis shows that ignoring the dispersion behavior of seismic 

reflection can lead to inaccurate seismic imaging and misleading interpretation of 

reservoir properties. I further demonstrate that the AVO response at the interface is 

strongly impacted by the reflection dispersion behavior: the bright spot (Class III 

AVO) gets brighter at lower frequency, the dim spot (Class I AVO) gets dimmer at 

lower frequency, and the Class II AVO reservoir exhibits significant phase distortion 
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in the frequency domain. It is found that, for certain permeability ranges (about 2 

orders of magnitude), seismic amplitude can exhibit an almost linear relationship with 

permeability variation. For Class III AVO reservoir scenario, high fluid mobility 

zones usually enhance the seismic amplitude; while for Class I AVO reservoir 

scenario, high fluid mobility zones weaken the seismic amplitude.       

     Finally, a field case study on the Offshore Brazil data set shows that poroelastic 

reflection from the interface of underlain carbonate with overburden marlstone 

exhibits considerably different frequency behavior at two nearby wells. Based on the 

poroelastic modeling, this discrepancy is likely to be caused by the fact that the fluid 

mobility in the underlain grainstone at well A is remarkably greater than that in the 

underlain packstone at well B. 
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Chapter 1 

Introduction 

                     

     The principal goal of geophysical measurements is to describe geology. 

Distinguishing reservoir rocks and fluids from the recorded wave-field and 

understanding the flow characteristics by their seismic signatures are typically the 

responsibility of exploration seismology. Consequently, it is essential to establish a 

relationship to link the physical properties of rocks and their interactions with fluids 

to seismic signatures. We call this “Seismic Rock Physics” (Han, 2002; Zimmerman, 

2011) because it is rock physics that determines how the seismic wiggles waggle.  It 

is also the key to optimizing the value of seismic data for reservoir evaluation, 

reservoir monitoring, and providing drilling solutions. Seismic Rock Physics will be 

the framework that guides the topics covered in this dissertation.  

 

1.1 Porous Media and Poroelasticity 

     The Earth’s subsurface rocks, by their very nature, are generally heterogeneous, 

porous, and saturated with fluids (oil, gas, or water) which are of great interest to us.  

The presence of the fluid modifies the mechanical response of the porous rock. Two 

basic physical phenomena that underlie the poroelastic behavior are:  

(i) The static effect, which has been quantified by Gassmann (1951), and is 

widely applied for fluid substitution. Generally, when a rock is loaded under 

an increment of compression, the induced pore-pressure change plays a role in 
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resisting being compressed and therefore stiffens the rock (Han and Batzle, 

2004; Mavko et al., 2009). Consequently, the bulk compressibility is reduced. 

Since pore fluid cannot contribute any additional shear stiffness to the rock, 

the shear modulus of the saturated rock is practically not affected. The 

Gassmann equation requires two essential assumptions (Yao, 2013): one 

assumption is that the pore pressure should be locally equilibrated, and the 

other assumption is that the fluids cannot escape and should be trapped in a 

closed porous system.  

(ii) The dynamic poroelasticity (known as Biot theory), which gives a complete 

and general description of the mechanical behaviour of a poroelastic medium, 

is attributed to a series of papers published by Biot (1956a, b; 1962). He 

theoretically formulated the propagation of stress waves in a porous elastic 

solid containing a compressible viscous fluid. Pore fluid is forced to 

participate in a solid’s oscillatory motion by viscous friction and inertial 

coupling, and consequently causes the energy dissipation. One of the key 

findings in Biot theory is the prediction of a slow P-wave in a porous saturated 

media. This second P-wave is thought to be diffusive in the low frequency 

range and has been experimentally observed in synthetic water-saturated 

sandstone by Plona (1980) and real sandstone by Kelder and Smeulders (1997). 

Another important contribution that comes from Biot theory is the 

establishment of the link between rock permeability and fluid viscosity with 

wave propagation characteristics. Note that the low-frequency limit of Biot 

theory is consistent with the predictions by Gassmann equation.  
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1.2 Heterogeneity and Scales 

     Sedimentary rocks are naturally produced with complicated but traceable 

geological processes (Han, 2002). They are often initially controlled by patterns of 

depositional textures, and then constantly undergo cementation and diagenesis which 

are strongly influenced by factors such as temperature, pressure, and atmospheric 

environment. The geological processes and the statistical fluctuation in geological 

history can cause sedimentary rocks to exhibit heterogeneities occurring at various 

extents and scales, ranging from micrometer grain and pore scale, to basin scale at 

tens to hundreds of kilometers (Figure 1.1). These heterogeneities contain variations 

in lithology, porosity, pore fluid properties, permeability, saturation, pore pressure, 

stress, and so on (Mukerji, 1995). Correspondingly, scales and frequencies of 

geophysical measurements also cover a wide frequency range, from ultrasonic 

measurements to low frequency surface seismic (Figure 1.2). Undoubtedly, the 

integration of the geophysical measurement at different scales aids in fully 

understanding the complexity and heterogeneity of the geological world.  

      In general, heterogeneity is a relative concept that depends on the scale to 

describe it. If the wavelength is substantially long, most of the geological feature is 

considered to be homogeneous, since the wave can only “see” the average behavior of 

geological feature within the wavelength. However, if the wavelength is shorter than 

the geological feature to be described, the wave can “see” the variations and 
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heterogeneities.  A schematic illustration of the concept of the scale-dependent 

heterogeneity and homogeneity is illustrated in Figure 1.3. 

 

Figure 1.1. A schematic illustration of the reservoir heterogeneity that occur to 

various extents and scales (Morad et al., 2010).  

1.3 Heterogeneity and Seismic Properties  

 Due to the variations in terms of geometry, elastic properties, and hydraulic 

properties, heterogeneity can significantly affect the signatures of elastic wave 

propagation. The effect mainly lies in two aspects. On the one hand, the elastic 

properties of porous medium can be influenced. For example, the presence of cracks 

can considerably reduce the elastic moduli of the porous rocks.  On the other hand, 
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heterogeneity often causes the fluid-pressure difference, and consequently the induced 

fluid flow will lead to the velocity dispersion and wave attenuation. Interestingly, the 

degree of heterogeneity is difficult to be estimated from the elastic properties but it 

potentially can be deciphered from the intrinsic dispersion and attenuation.  

 

 

Figure 1.2. Scales and frequencies for various geophysical measurement methods. 

Figure 1.3. A schematic illustration of the concept of the scale-dependent 

heterogeneity and homogeneity. 
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1.3.1 Effective Medium Approximations  

In porous media, since the wavelength of seismic wave is often much larger than 

the heterogeneity size, seismic waves cannot sense the physical behavior of individual 

heterogeneity but only an averaged or homogenized structure. Therefore, we often use 

the effective medium approximations or effective medium theory (sometimes 

abbreviated as EMA or EMT) to describes the macroscopic properties of composite 

materials in heterogeneous porous media. Conversely, the ray theory is always used to 

describe the physical behavior by short-wavelength. The transition from the domains 

of the ray to the effective medium theories is experimentally observed by Marion et al. 

(1994).  

     In this dissertation, effective elastic properties of complex porous media will be 

explored.  Under the assumption that elastic strain is infinitesimal, the local stress 

tensor ( )x  is linearly proportional to the strain tensor ( )x , as given by: 

( ) ( ) ( )x C x x  ,                                         (1.1) 

where ( )C x  is the fourth-rank elastic stiffness tensor at local position x. Note that 

( )C x  varies randomly with x in the composite, on a scale that is smaller compared 

with the wavelength scale of elastic wave. If we treat the heterogeneous materials as 

macroscopic homogeneous materials, the averaged stress tensor ( )x and strain 

tensor ( )x  can be related by: 

*( ) ( ) ( )x C x x  ,                                                           (1.2) 
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where the tensor 
*( )C x  is the effective elastic constants that reflect the elastic 

properties and the relative fractions of each component in the composite. Generally, if 

we consider a volume of heterogeneous porous materials, the angular brackets  in 

equation (1.2) denote the volume average (Jackbosen et al., 2003).  

 

Figure 1.4. Waves were propagated through periodic media created by stacking 

plastic and steel disks (Marion et al., 1994). 

       Indeed, the concept of effective properties in exploration seismology is very 

important. For example, we usually need averages to provide the in-situ estimate of 

reservoir properties.  However, the effective elastic properties offer less help in 

providing estimates of the heterogeneities in the complex porous media. This is 

because a heterogeneous composite consisting of extremely contrasting materials and 

a relatively homogeneous composite can exhibit quite similar elastic properties.   
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1.3.2 Wave-induced Fluid Flow and Intrinsic Attenuation 

     Seismic waves propagating in fluid-saturated porous media are subject to intrinsic 

dispersion and attenuation, where the mechanical energy is dissipated into heat (Aki 

and Richards, 1980). It is commonly accepted that the intrinsic dispersion and 

attenuation are caused by the mechanism broadly known as wave-induced fluid flow 

(WIFF).  

     Biot first studied the wave-induced fluid flow (WIFF) due to wavelength-scale 

pore-pressure equilibration and the resulting viscous-inertial attenuation (Biot, 1956a, 

1956b, 1962). WIFF associated with wavelength-scale pressure gradients is often 

called global or macroscopic flow. However, Biot’s theory has been limited by its 

explicit assumption that the porosity is homogeneous. When transient passage of a 

seismic wave through a porous system containing elastic heterogeneities, an internal 

equilibration takes place with fluid flowing from the more compliant high-pressure 

regions to the relatively stiffer low-pressure regions (Batzle et al., 2006). Based on 

the heterogeneities of various scale, such local fluid low can be categorized as “squirt 

flow” and “mesoscopic flow”. Squirt flow typically occurs at microscopic pore scale, 

while mesoscopic flow is created by the heterogeneities on a scale much larger than 

the typical pore size but smaller than the wavelength. Squirt flow is usually 

considered to be important at ultrasonic frequencies, while mesoscopic flow is 

increasingly considered as the dominant cause of fluid-related attenuation in the 

seismic-exploration band (Pride et al., 2004; Müller et al., 2010). The qualitative 
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description of wave-induced fluid flow when a seismic wave propagates through 

heterogeneous porous media is sketched in Figure 1.5.   

  

Figure 1.5. The scale of heterogeneity that is typically responsible for the corresponding 

wave-induced fluid flow ranging from microscopic grain sizes to mesoscale 

heterogeneities to seismic wavelengths that are tens of meters. 

        Figure 1.6 shows the frequency-dependent intrinsic attenuation of compressional 

waves determined from a series of experiments conducted at the Imperial college test site 

(Sams et al., 1997). These experimental results compare the P-wave attenuation estimated 

from ultrasonic core measurements (300-900 kHz), sonic logs (8-24 kHz), crosswell (0.2-

2.3 kHz), and VSP data (30-280 Hz), suggesting that there exists a significant amount of 

energy loss at a broad frequency range.  
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Figure 1.6. Intrinsic P-wave attenuation 1/Q plotted as a function of frequency on rocks at 

the Imperial College test site at various depths (Sams et al., 1997). Estimations regarding 

the VSP and sonic log measurements have been corrected for scattering attenuation (after 

Pride et al., 2006; Wenzlau, 2009).  

1.3.3 Effect of Scattering Attenuation 

     In contrast to the aforementioned intrinsic attenuation mechanisms, the scattering of 

seismic waves in an elastic medium is not based on absorption but on the redistribution of 

wave-field energy caused by irregularities in the heterogeneous media. The impact of 

scattering attenuation is dependent on the ratio of the seismic wavelength to the length of 

the scattering heterogeneity (Mavko et al., 2009). The relationship between wave velocity 

and scale dependence due to scattering attenuation in heterogeneous media is 

schematically illustrated in Figure 1.7. The elastic scattering of seismic energy attenuates 

most when the seismic wavelength approximately equals the characteristic size of the 
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scattering heterogeneity. The velocity is non-dispersive or weakly dispersive when the 

wavelength is much bigger or smaller than the heterogeneity size, which respectively 

corresponds to the domain of effectively medium theories and ray theory. The issue of 

scattering attenuation due to the presence of heterogeneities in porous medium will not be 

discussed in this thesis.  

 

Figure 1.7. A schematic illustration of wave velocity dispersion due to scattering effect in 

heterogeneous media (Mavko et al., 2009).   

 

1.4 Motivations 

     The heterogeneities and complexity of the subsurface rocks distort and attenuate 

propagating seismic waves, which makes image focusing and reservoir 

characterization challenging. Therefore, understanding how the presence of 
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heterogeneities affects the elastic properties and seismic signatures is one of the 

fundamental problems to be investigated in exploration seismology.  The present 

work constitutes a contribution to solving this problem. Three key questions to 

address are: 

1. What is the physical condition for an effective medium theory to satisfy the 

requirement of Biot-Gassmann consistency? This is an essential question 

concerning about the application of effective medium theories in porous media. 

We find that the key condition lies in whether elastic interactions between the 

inhomogeneity of porous media (such as pores and cracks) are characterized in a 

physically reasonable way.  Actually, studying the elastic interactions is 

physically meaningful, because they reflect how the pores and cracks are 

organized or spatially distributed due to the rock’s geological imprints. We 

demonstrate that the varying spatial distribution of pores and cracks can 

significantly affect a rock’s elastic response and the resulting seismic anisotropy, 

and this impact cannot be ignored when the inclusion concentration increases 

beyond the dilute limit. 

2. How does the wave-induced fluid flow affect the seismic reflections in 

heterogeneous poroelastic media? From a theoretical point of view, seismic 

reflection in elastic non-dissipative media (classical Zoeppritz equation) and 

porous homogeneous media (Dutta and Ode, 1983) are not applicable in the 

heterogeneous reservoir rocks. We propose and perform how to compute the 

poroelastic reflection from the boundary of heterogeneous porous media. The core 

of our methodology is to reduce the heterogeneous porous media into an effective 
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Biot media by incorporating the effect of local flow into the frequency-dependent 

poroelastic parameters such as drained bulk modulus. The reflectivity approach 

presented here places no restriction on the material-property contrast, the 

frequency, and the angle of incidence.  

3.    How does the dispersion behavior of poroelastic reflection facilitate our 

interpretation of seismic data in heterogeneous reservoir rocks?  The poroelastic 

seismic reflection signatures, which primarily represent contrast in the poroelastic 

response between the individual layers, contain information about fluid mobility 

and heterogeneity characteristics that cannot be gained from classical seismic 

interpretation based on elasticity. This is of prime importance for reservoir 

development and production, because fluid mobility and heterogeneity properties 

strongly influence reservoir performance by controlling fluid flow and recovery 

factors.      

 

1.5 Chapter Organization and Description 

  This dissertation consists of seven chapters, including this introduction. A 

schematic illustration of the workflow and framework that link the chapters in this 

dissertation is shown on Figure 1.8.  

Chapter 2 discusses the physical importance of considering and characterizing the 

elastic interactions in complex porous media. We use the Biot-Gassmann consistency 

as a constraint to select a physically sound effective medium theory to characterize 

the elastic interactions based on a critical review and comparison of the existing 
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inclusion and crack theories. We further illustrate that the T-matrix theory is 

consistent with the Biot-Gassmann theory, and can produce physically plausible 

results even at large concentrations of pores and cracks.  

  Chapter 3 introduces the fundamental physics concerning the wave-induced flow 

in heterogeneous porous rocks. The extended Biot theory with squirt flow and 

mesoscopic flow, which are distinguished depending on the scale of the pressure 

gradient, are separately explored in this chapter. A rock physics template taking into 

account the dispersion effect caused by squirt flow is developed to interpret the sonic 

data in a heterogeneous carbonate reservoir. The numerical results also show that 

double-porosity dual-permeability model taking into account the mesoscopic 

heterogeneity can be responsible for the considerable attenuation determined in 

seismic frequency band. 

 Chapter 4 presents the theoretical framework used to compute the seismic reflection 

from the boundary of heterogeneous poroelastic media. To simplify the mathematical 

derivations, we replace the heterogeneous porous medium with effectively homogeneous 

porous medium by reducing the internal local flow term into a set of poroelastic 

parameters in classical Biot theory. The computed poroelastic reflection not only depends 

on the elastic properties contrast and incident angle, but also relies on the observational 

frequency, fluid mobility, and heterogeneity features. Seismic reflections exhibit 

negligible dispersion due to Biot flow. However, the local flow can cause a significant 

amount of dispersion for seismic reflections in the exploration band. Such dispersion 

effects can’t be ignored, otherwise quantitative seismic interpretation of the reservoir 

properties will be biased. 
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Figure 1.8. A schematic illustration of the workflow and framework that is 

implemented in this thesis 

 

         Chapter 5 extends the classical seismic interpretation to a heterogeneous porous 

medium based on an analysis of frequency and angle-dependent poroelastic reflectivity. 

We use spectral intercept and spectral gradient to characterize the reflection dispersion 

signatures. To guide the interpretation of frequency-dependent seismic anomalies, we 

define three types of amplitude-versus-frequency features corresponding to different 

geological circumstances. We demonstrate that the poroelastic reflection can significantly 

affect the seismic response. It not only influences the RMS amplitude of seismic traces, 

but also yields a noticeable phase shift compared with purely elastic seismic response.  In 
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addition, we systematically investigate how the fluid mobility impacts the seismic 

signatures under different geological scenarios. 

        Chapter 6 presents a field case study regarding the seismic reflection dispersion due 

to wave-induced fluid flow in a heterogeneous carbonate reservoir, offshore Brazil. We 

have proposed and implemented a workflow to illuminate the poroelastic reflection 

characteristics from real seismic, by comparing the spectral signature of field seismic 

with the synthetic seismic that takes into account the attenuation and tuning effect. We 

explain that the discrepancy of poroelastic reflections from the interface of interest at two 

wells is likely to be caused by the fact that the fluid mobility in the underlain lithology is 

remarkably different. The case study here promises a solution to estimate hydraulic 

properties from field seismic, which is often considered to be extremely challenging.     
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Chapter 2 

      Characterizing the Effect of Elastic Interactions in 

Complex Porous Media 

 

2.1 Abstract:  

     The elastic interactions between the pores and cracks reflect how they are 

organized or spatially distributed due to rock’s geological imprints. The first goal of 

this paper is to discuss the physical importance of considering and characterizing the 

elastic interactions. We perform a finite element modeling to quantitatively study how 

the stress amplification and stress shielding affect the stress distribution and the 

resulting overall elasticity. Our second goal is to propose a guideline on how to select 

a physically sound effective medium theory to characterize the elastic response for 

porous, cracked rock, based on a critical review and comparison of the existing 

inclusion and crack theories. By revisiting the interaction energy approach to 

Eshelby’s dilute inclusion problems, we give the physical insights into why both the 

first-order Hudson’s theory and compliance-based non-interacting approximation 

(NIA) can’t produce physically plausible results at high crack density. Contrary to 

what has been assumed by NIA, two types of approaches to characterize the elastic 

interactions are explored, and we use Biot-Gassmann consistency (Thomsen, 1985) to 

test whether the elastic interactions are simulated with physical foundation. We find 

that the differentiate effective medium (DEM) and the self-consistent 

approximation(SCA) theories are not satisfied with the Biot-Gassmann consistency 

criteria, implying the elastic interactions mimicked by those two schemes lack 
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physical foundation. We further illustrate that the T-matrix theory is consistent with 

the Biot-Gassmann theory, suggesting that the pores and cracks interactions are 

characterized in a physically reasonable way. Numerical results also suggest that, 

when the concentrations of the cracks increase beyond the dilute limit, the single 

parameter crack density is not sufficient to characterize the contribution of the cracks 

to the effective elasticity. The spatial distribution of the pores and cracks can 

significantly affect the stress interaction, and thus influence the elastic response and 

seismic anisotropy. Additionally, such elastic interaction effects are also dependent 

on both the aspect ratio of the pores and the fluid infill.  

 
 

2.2 Introduction 
 

     Sedimentary rocks are generally porous, and often fractured or cracked to some 

extent. Understanding their elastic behavior is essential to interpret and predict sonic 

measurement and seismic response in terms of rock properties. Such understanding 

comes primarily from the effective medium theories that relate the microstructural 

parameters of rocks (mineral composition, porosity, microstructure, etc.) to the 

effective elastic response. Consequently, many theoretical models have emerged, 

seeking to predict the effective elastic properties in porous, cracked media. Most of 

them are on the basis of strong assumptions with idealizations and simplification of 

the complexity of real rocks.  
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     The most popular approaches are to use the non-interaction approximation (NIA) 

to predict the overall compressibility of rocks containing finite concentration of pores 

and cracks, owning to the difficulty of solving elastic interactions between pores and 

cracks. The pioneering work concerning about NIA is initiated by the paper of 

Eshelby (1957), in which he presented the solution to the strain field of an ellipsoidal 

inclusion in an infinite, homogeneous solid. Generally, there are two approaches to 

formulate the NIA theory. The first type of NIA approach directly estimates the 

effective stiffness as a function of porosity and crack density (Walsh, 1965; 

O’Connell and Budiansky, 1974; Kuster and Toksoz, 1974; Hudson, 1980, 1981, 

1994). Walsh (1965) predicted the compressibility of dry rocks with spherical pores 

and narrow cracks, and found that pore shapes and their volume concentration can be 

combined together to affect the overall elasticity. By applying a long-wavelength, 

first-order scattering theory, Kuster and Toksoz (1974) calculated the effective 

moduli for randomly oriented inclusions. Their results are considered to be valid only 

for a small volume fraction of inclusions, since the multiple scattering effects are 

ignored in their methods. Based on a scattering-theory analysis of the mean wave-

field in an elastic solid with thin, penny-shaped ellipsoidal cracks or inclusions, 

Hudson derived the first-order correction and second-order correction to compute the 

effective moduli for the cracked media (Hudson, 1980, 1981, 1994). The first-order 

Hudson’s model which ignores the crack interactions can only work at low crack 

density. The second-order expansion of Hudson’s model takes into account the pair-

wise interactions between cracks, but gives physically unreliable predictions at high 
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crack density. The dilute limit in Hudson’s theory for both the first- and second-order 

terms is less than 0.1.  

     The second type of NIA approach considers the effective compliance as a sum of 

the contributions from the matrix compliance and excess compliances from pores and 

cracks (Schoenberg, 1980, 1983; Kachanov, 1992; Kachanov et al., 1994; Sayers and 

Kachanov, 1995; Liu et al., 2000; Kachanov, 2003; Grechka and Kachanov, 2006; 

Vernik and Kachanov, 2010). Kachanov (1992, 2003) concluded that compliance-

based NIA remain sufficiently accurate at large crack density and strong interactions. 

He stated that the two competing interaction effects of stress shielding and stress 

amplification can counteract and cancel each other, so the pores and cracks 

interactions can be neglected. Another argument for the proponents of the 

compliance-based NIA is that this theory can yield reasonable estimate at high 

volume concentration of pores and cracks, while the stiffness-based NIA typically fail.  

Rather than assuming that fracture is a cluster of penny-shaped cracks, Schoenberg 

(1980, 1983) suggested to describe the fractures as planes of weakness with linear-

slip boundary conditions, and the relations between the geometry of penny-shaped 

cracks and the fracture compliance have been derived by Schoenberg and Douma 

(1988), Sayers and Kachanov (1995).   

     So far, we have to bear in mind that the above mentioned NIA inclusion and crack 

theories ignore the elastic interactions between pores and cracks. Hence, theoretically, 

they can work only for dilute concentrations.  However, these dilute limits (roughly, 

porosity less than 10 percent, crack density less than 0.1) make NIA theory not 

applicable for most sedimentary rocks. In reality, we usually deal with the rocks of 
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interest with porosity as high as 40 percent and/or crack density as high as 0.3 or 

more (Thomsen, 1985). As a result, it is of great interest to study how the pores and 

cracks interaction affect the elastic behavior of rocks. 

     To put it more specifically, the pore and cracks interactions reflect how the pores 

and cracks are organized or spatially distributed. As we know, the geometrical 

arrangement of the pores and cracks can have large variations due to their deposition 

and diagenesis history in geological time. Physically, such spatial distribution and 

correlation of pores and cracks can affect the local stress field and the resulting 

overall elastic properties. In order to study the effect of pores and cracks interactions, 

some rock physics schemes, such as self-consistent (SC) theory (Budiansky, 1965; 

Hill, 1965; Wu, 1966; Berryman, 1980, 1995; Hornby, 1994) and differential 

effective medium (DEM) theory (Norris, 1985; Zimmerman, 1991; Berryman, 1992; 

Nishizawa, 1982; Xu, 1998; Hornby, 1994), are proposed to handle large 

concentration of pores and cracks. These two rock physics schemes, simulating the 

pore and cracks interactions in a mathematical way, are relatively successful and 

certainly popular in the past decades. In contrast to DEM and SC that consider the 

elastic interactions implicitly, Jakobsen et al. (2003, 2004, 2009) formulates the 

effective stiffness using the T-matrix language to explicitly characterize the pore 

interactions. However, from the view of the practical application, it is hard to 

determine which is better. Because both can produce physically plausible results at 

large concentrations of inclusions. In this paper, we propose to use Biot-Gassmann 

consistency (Thomsen, 1985) to examine the physical foundation of elastic interaction 

accounted by DEM and SC, as well as T-matrix.  
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     This chapter is organized as follows: First, to understand the physical assumption 

of NIA theories, we revisit the interaction energy approach to Eshelby’s theory for 

calculating effective elastic constants under two boundary conditions. Then, we 

perform a finite element modeling to show how the stress amplification and stress 

shielding affect the stress distribution and the overall elasticity. Next, we discuss two 

rock physics schemes that characterize pores and cracks interactions: DEM and SC 

simulating the elastic interactions implicitly, and T-matrix theory taking into account 

the elastic interactions explicitly. Finally, we numerically compare the performance of 

different effective medium theories in modeling elastic response and the resulting 

anisotropy of the porous, cracked rock. We end up with the discussions and 

conclusions.  

 

2.3 Biot-Gassmann Consistency  

        Biot-Gassmann theory (Gassmann, 1951; Biot, 1956) put a clear constraint 

between the elastic moduli of dry rock and saturated rock, without any restrictions on 

the specific pore geometry. To be specific, if the porosity is uniform and thus the pore 

pressure can be equilibrated, Biot-Gassmann theory can always work. Hence, when 

any effective medium theories meet such assumptions (no pore heterogeneities exist), 

theoretically, they should be a special case of Biot-Gassmann theory (Thomsen, 1985). 

Biot-Gassmann consistency should be naturally considered as a constraint to test the 

physical foundation of an effective medium theory. That is to say, if an effective 

medium theory is physically sound, it should predict the relationship between the 
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elastic response of dry rock and saturated rock as that predicted by Biot-Gassmann 

theory.   

The low-frequency Biot-Gassmann (Gassmann, 1951; Biot, 1956) theory predicts the 

relationship between the rock’s dry bulk modulus and the effective saturated bulk 

modulus using the following equation: 
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Where
dryK  is the effective bulk modulus of dry rock, satK  is the effective bulk 

modulus of the rock with pore fluid, 0K  is the bulk modulus of mineral material 

making up rock, 
fK  is the effective bulk modulus of pore fluid,   is the porosity, 

dry  is the effective shear modulus of dry rock, and sat  is the effective shear 

modulus of rock with pore fluid. 

     Biot-Gassmann equation can be extended into anisotropic media (Brown and 

Korringa, 1975; Mavko et. al, 2009), which is given below as: 

0 0

0

0

( )( )

( ) ( )

dry dry

ijaa ijaa bbkl bbklsat dry

ijkl ijkl dry

ccdd ccdd fl

s s s s
s s

s s   

 
 

                                        (2.3) 

where 
dry

ijkls   is the effective elastic compliance tensor element of dry rock,  
sat

ijkls  is the 

effective elastic compliance element of rock saturated with pore fluid,  
0

ijkls  is the 
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effective elastic compliance element of the solid mineral, fl is the fluid 

compressibility = 1/ flK , and 0  is the mineral compressibility. 

                     

2.4 Revist Interaction Energy Approach to Eshelby’s Theory 

     By assuming the ellipsoidal inclusion in an infinite, homogeneous solid, Eshelby 

(1957) proposed to use interaction energy approach to calculate the effective elastic 

constants of the composite permeated with dilute concentrations of inhomogeneity. 

He suggested to formulate the solution under two boundary conditions: the constant 

load and the constant displacement at infinity. The following two equations are 

corresponding to the above two boundary conditions (Eshelby, 1957; Nishizawa, 1982; 

Xu, 1998), respectively:  

               

0 0

0 intijkl ij klS E E   *1

2
,                                     (2.4) 

0 0

0 intijkl ij klC E E   *1

2
,                                     (2.5) 

where  *

ijklS  and *

ijklC  are the effective compliance and the effective stiffness of the 

medium including elastic inhomogeneity, respectively. 0

ij  and 0

ije  represent the stress 

and elastic strain of inhomogeneity-free medium, respectively; 0E is an initial elastic 

energy, which can be expressed with applied stress or elastic strain at infinity; intE  is 

an interaction energy between the inhomogeneity and the applied elastic field, which 

can be calculated by the introduced “stress-free strain” (Eshelby, 1957) or eigenstrain 

(Mura, 1987). Note that the equation 2.4 and 2.5 hold only in the case of dilute 
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concentration of inclusions, where the change of elastic field caused by the presence 

of one inclusion does not affect the elastic energy of other inclusions (Eshelby, 1957; 

Nishizawa, 1982). The effective compliance under the constant load condition and the 

effective stiffness under the constant displacement condition can be derived from 

equation 2.4 and 2.5 as (Nishizawa, 1982; Xu, 1998): 
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where 
0C  and 

0S is the fourth-rank stiffness and compliance tensor of the host rock, 

respectively; 
rv  is the volume fraction of the inclusions (r=1, 2, …..N);

rC  represents 

the stiffness tensor of the r th inclusion; rE  is the well-known Eshelby tensor (see 

Appendix A) of the r th inclusion, which relates the eigenstrain to the total strain 

(Mura, 1987). All those denotation will be also effective for the other equations in the 

later section.  

     The comparison of the effective stiffness C11, C33, C44, C66, and C13 as a 

function of crack density predicted by different NIA approaches are displayed in 

Figure 2.1. In our modeling, cracks are vertically aligned and parallel to each other in 

an isotropic host rock, the resultant cracked rock is transversely isotropic with a 

horizontal symmetry axis (HTI). The host matrix is assumed to be calcite 

( 76.8 , 32K GPa GPa  ), and the aspect ratio of the cracks is set as 0.01. There 

are five independent components in the effective elastic stiffness tensors, C11 and 



 

29 

 

C33 correspond to the P-wave propagating perpendicular and parallel to the crack 

plane, and C44 and C66 are related to the polarization of the S-wave parallel and 

perpendicular to the crack plane. The volume crack density ε (O’ Connell and 

Budiansky, 1974; Hudson, 1980) is determined by the crack aspect ratio and the 

crack-induced porosity. If no other specific instructions, all the numerical simulations 

in this paper will be based on this cracked model.   

     As we can see in Figure 2.1, the effective stiffness predicted by the first-order 

Hudson’s theory are functionally equivalent to Eshelby’s formulation under the 

constant displacement boundary condition (Equation 2.7). And the effective st iffness 

predicted by compliance-based NIA (or linear-slip theory) are functionally equivalent 

to the Eshelby’s formulation under the constant load boundary condition (Equation 

2.6). It is important to be aware that such equivalence can only be valid when the 

aspect ratio is very small. Because, in this way, the ellipsoidal inclusions can be 

considered as penny-shaped cracks, and hence satisfy the assumption for the geometry 

of fractures in Hudson’s theory and compliance-based NIA. Remember that the 

interaction energy approach under the constant load and constant displacement 

boundary condition to calculate the effective elastic constants can only work in dilute 

concentrations.  In other words, we can state that, the two most popular fracture 

models - the first-order Hudson’s theory and the compliance-based NIA - can only 

predict physically reasonable effective elastic response at dilute concentrations. This 

is consistent with our numerical observation that the stiffness-based NIA and 

compliance-based NIA are basically in agreement with each other at very small crack 

density.  However, they start to deviate from each other when the crack density 



 

30 

 

increases beyond around 0.03.  In addition, at high crack density, the stiffness-based 

NIA typically breaks down, while the compliance-based NIA seems to still produce 

reasonable estimates. In the later section, we will use a numerical example to 

demonstrate that this mathematically reasonable estimate by compliance NIA is 

misleading.  
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Figure 2.1. Comparison of (a) C11, (b) C33, (c) C44, (d) C66, and (e) C13 as a 

function of crack density predicted by different non-interacting effective medium 

theories. Blue line, red line, left triangle symbol, and diamonds symbol represents 

prediction based on Eshelby’s formulation under constant displacement boundary 

condition, Eshelby’s formulation under constant load boundary condition, first order 

Hudson theory, and compliance-based NIA, respectively.  

 

2.5 A Numerical Experiment on Stress Interaction 

     In this section, finite-element modeling (Software COMSOL) is employed to 

investigate the stress interactions between cracks. We simulate the remote stress 

boundary conditions by applying a constant load (70,000Pa) to a homogeneous 2D 

solid matrix (E=70 GPa, 0.33  ). The aspect ratio of the ellipsoidal inclusion is set 

as 0.1 to mimic the geometry of cracks. Figure 2.2 shows the first principal stress 

behavior by introducing different sets of cracks into the homogeneous solid matrix, 

and Table 1 shows the corresponding normalized volumetric strain. Figure 2.2(b) 



 

33 

 

shows the stress distribution when the two introduced cracks are far apart to each 

other, to mimic the non-interacting situation. For each crack, we observe that the 

stress concentration (stress magnitude is greater than the background) occurs at crack 

tips and stress dilution (stress magnitude is less than the background) takes places at 

crack faces. Stress field concentration and dilution for one crack is schematically 

illustrated using the iso-stress lines in Figure 2.3. To depict the stress field, the 

density of iso-stress lines at certain location indicates the intensity of stress 

magnitude. For example, the density of iso-stress line at crack tips are much higher 

than that at the crack face, which suggests that the stress magnitude is much more 

intense at the crack tips.  As shown in Table 1, the normalized volumetric strain 

consequently increases to 13.2 from 1 due to the extra strain of two non-interacting 

cracks.   Figure 2.2(c) shows the stress distribution when crack tips approach closely 

to each other. As expected, the local stress magnitude between the tips of the cracks 

increases dramatically. Note that the resulting volumetric strain increases to 17, which 

is higher than the non-interacting situation. This can be understood, because the stress 

amplification dominates the stress interaction and thus increases the overall strain. 

Similarly, the stress shielding dominates the stress interaction when the crack faces 

approach closely to each other as shown in Figure 2.2(d), and hence the volumetric 

strain decreases considerably compared with the non-interacting situation. As a result, 

the effective stiffness tends to be higher when stress shielding dominates the stress 

interactions, while the effective stiffness tends to be lower when stress amplification 

dominates the stress interactions. Those stress amplification and stress shielding 

phenomenon are schematically illustrated using iso-stress lines in Figure 2.4.  
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      Based on this numerical experiment, we can infer that, for the dilute concentration 

of pores and cracks, stress interactions can be reasonably ignored, since the pores and 

cracks have high chance to be far apart to each other in a representative volume. 

However, for large concentration of pores and cracks, both stress amplification and 

stress shielding are getting stronger as pores and cracks have high chance to approach 

to each other, and therefore the elastic interactions should be taken into account to 

calculate the elastic response. This also explains why NIA can work in dilute 

concentration of pores, while producing unreasonable prediction when the inclusion 

concentration increases beyond the dilute limit. Furthermore, as illustrated in the 

numerical experiment, whether the stress shielding or amplification dominates the 

overall effect on the final effective stiffness depends on the spatial arrangements of 

the pores and cracks. Therefore, it is necessary to find a way to characterize such 

spatial arrangement in order to properly model the elastic interactions.  
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Figure 2.2. Comparison of the first principal stress distribution by introducing 

different set of cracks into the homogeneous solid matrix: (a) No cracks, (b) Cracks 

are far apart from each other, (c) Coplanar cracks, and (d) Stacked cracks. The host 

solid matrix is set as 2D circle geometry. The color-bar indicate the magnitude of 

stress in the unit of Pa.     
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Figure 2.3. Schematic illustrations of stress concentration and dilution on one crack in 

the homogeneous solid matrix. Blue line indicates the iso-stress line. These lines are 

not physical lines that are actually present at certain locations, but are merely used to 

represent the stress field magnitude.  

  

Figure 2.4. Schematic illustrations of stress interaction between two cracks: (left) 

coplanar cracks, (right) stacked cracks. Blue line indicates the iso-stress line as 

displayed in Figure 2.3. 
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Table 2.1. Comparison of normalized volumetric strain that corresponds to different 

stress interaction situation in Figure 2.2. 

 

 

2.6 DEM AND SC: Modeling Elastic Interactions Implicitly 

     To overcome the dilute limit of NIA, two popular rock physics schemes, self-

consistent approximation (SCA) and differential effective medium (DEM) theories, 

are developed to indirectly include the pores and cracks interactions.  In SCA,   the 

contribution of excess strain due to deformation of the ellipsoidal inclusion is sti ll 

employed, but the elastic interactions of inclusions are approximated by replacing the 

background medium with the as-yet-unknown effective medium (Berryman, 1995). 

Through an iterative manner, SCA yields the effective estimate through mixing all 

phases, including minerals and pores, present in the rock.  The effective stiffness tensor 

in the SCA model can be expressed as (Hornby et al., 1994; Bandyopadhyay, 2009):  
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Here,  
SCAC   indicates the self-consistent effective elastic stiffness, G

r
 is a fourth-rank 

tensor given by the strain Green’s function integrated over characteristic inclusion 

shape (Mura, 1987): 
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and the non-zero components of   ikjlG  (see Appendix B) for a transversely isotropic 

system are given by Lin and Mura (1973). 

     However, in SCA, embedding a pore into an effective medium already containing 

the pore itself implies that the interactions of pores are taken into account twice. 

Bruner (1976) criticized that the self-consistent method might cause an overestimate 

of the elastic interactions between pores. To avoid the double-counting pore 

interactions in SCA, one can introduce the pores into the rock sequentially, with pore 

n + 1 considered to be added into a reference medium which has the effective elastic 

properties with n pores. In this way, pore n + 1 feels the elastic effect of n pores, but 

not vice versa (Jaeger et al., 2007).  In the DEM, a small amount of inclusions of one 

phase is incrementally added to a background host medium iteratively. The process is 

continued until the desired proportion of the constituents is reached. The change in 

effective elastic stiffness dC  due to an increase of the i th component dv is (Hornby, 

1994; Xu, 1998):  
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An important conceptual difference between the DEM and SCA schemes is that the 

DEM scheme treats each constituent asymmetrically with a preferred host matrix, 

whereas the SCA scheme does not identify any specific host material but treats the 

composite as an aggregate of all the constituents (Mavko et al., 2009).  
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2.6.1 DEM and SCA to Biot-Gassmann Consistency 

      As previously mentioned in the introduction, we now employ the Biot-Gassmann 

consistency to test whether DEM and SCA handle the elastic interactions in a 

physically sound way. We can observe from Figure 2.5 that the saturated stiffness 

C11 by DEM and SCA are not in agreement with those predicted by applying Brown-

Korringa’s relations to the dry C11 and C33 computed with DEM and SCA (Figure 

2.5(a) and (b)). This demonstrates that DEM and SCA are not consistent with Biot-

Gassmann theory, which also implies that the pores and cracks interactions simulated 

by DEM and SC lack of physical foundation.  

 

2.7 T-matrix to Characterize Elastic Interactions 

2.7.1 T-matrix Formulation 

     Estimating effective elastic constant of composites can be considered as a many-

body problem, and T-matrix approach of quantum scattering theory can be used to 

attack such a many-body problem. Based on multiple-point correlation functions, the 

T-matrix language explicitly takes into account the elastic interactions between 

inclusions to compute the effective elastic properties. The integral equation for 

effective elastic constants of macroscopically homogeneous materials with statistical 

fluctuation of properties at the microscopic level is very similar to the Lippmann-

Schwinger-Dyson equation of multiple scattering in quantum mechanics (Mavko et al., 

2009). The effective stiffness *

TC  of the cracked, porous medium using T-matrix 

approach is formulated by Jakobsen et al. (2003, 2004): 
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Here, X is the second-order correction for the effects of inclusion tensor.  
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where rs

dG
 
represents the two-point interaction between the r th set and s th set of 

inclusions. The fourth-rank tensor rs

dG can be obtained in the same way as G r
(see 

equation 2.9) except that the aspect ratio of the inclusion r  is set as the aspect ratio 

of spatial distribution d .  

     The definition of the aspect ratio of inclusion r  
and aspect ratio of spatial 

distribution d  
are schematically displayed in Figure 2.6. In fact, the concept of 

aspect ratio of spatial distribution represents the conditional probability of finding 

another inclusion given the position of an inclusion. Figure 2.7 is an example to show 

that the individual crack in the two rocks has the same aspect ratio, but organized in a 

different way. If  1d  , it indicates that the probability of an  inclusion showing up 
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in the X (vertical ) direction is higher than the probability of finding an inclusion in 

the Y direction.  Ponte-Castaneda and Willis (1995) pointed out that the maximum 

value for aspect ratio of spatial distribution d  should satisfy the relationship 

(max) /d r v  , where v  is the volume concentration of inclusion. 

     It is evident to see that the first-order T-matrix formulation is in agreement with 

the dilute estimate of Eshelby’s formulation under the constant displacement 

condition. In Figure 2.8, the dashed straight lines represent the stiffness-based NIA 

predictions, and the solid lines, exhibiting non-linear relationship with crack density, 

are for the high-order T-matrix predictions taking into account the elastic interactions. 

C11 and C33 predicted by stiffness-based NIA typically break down when crack 

density is over 0.15. However, the high order T-matrix can yield physically plausible 

estimates at high crack density. They overlap at crack density less than 0.02, but are 

markedly separated at high crack density. This also suggests that the stress 

interactions are strong and can’t be ignored at high crack density.      
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Figure 2.5. The effective elastic stiffness C11 as a function of crack density simulated 

by (a) SCA, (b) DEM.  Blue line represents elastic response of dry rock simulated by 

DEM/SCA. Red line and black line indicate elastic stiffness for saturated rock 

predicted by DEM/SCA and Brown-Korringa relations, respectively.  
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Figure 2.6. Schematic illustration of a 2D cross section through the 3D ellipsoidal 

crack distribution in the T-matrix model. The aspect ratio of the individual cracks is 

a1/ b1, and the aspect ratio of the crack distribution is a2/b2.   

 

Figure 2.7. An example to illustrate the concept of aspect ratio of spatial distribution 

as the conditional probability to find another inclusion given the position of an 

inclusion. Each individual crack has the same aspect ratio, but organized in a different 

way. (left) aspect ratio of spatial distribution is smaller than 1; (right) aspect ratio of 

spatial distribution is bigger than 1. 
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2.7.2 Effect of Spatial Distribution on Effective Stiffness  

     Figure 2.9 is used to illustrate the influence of the aspect ratio of the inclusion and 

aspect ratio of the spatial distribution on the stiffness of C11. Clearly, compared with 

aspect ratio of spatial distribution, the aspect ratio of inclusion still has the dominant 

impact on controlling the rock’s overall elastic behavior. It is also interesting to see 

that the elastic stiffness exhibit different sensitivity to the aspect ratio of spatial 

distribution when the aspect ratio of inclusion varies. Generally, the aspect ratio of 

spatial distribution has bigger impact on the effective elastic stiffness when the aspect 

ratio of inclusion is lower. This can be understood, because when the aspect ratio of 

the crack is smaller, local stress field can readily exhibit concentration and dilution, 

and the stress interactions consequently have bigger impact. We can also read that the 

computed elastic stiffness decrease with the increasing aspect ratio of spatial 

distribution. This can be explained by the variation of stress field due to the crack 

interactions. When the aspect ratio of the spatial distribution increases, the crack tips 

will approach closer and closer. As a result, the stress amplification will increase 

much stronger than the stress amplification, and the effective elastic stiffness will 

decrease accordingly. This is consistent with the numerical experiment about the 

stress interactions we present in the Figure 2.2, and demonstrates that the parameter 

“aspect ratio of spatial distribution” can successfully characterize the competing 

effects about stress shielding and amplification.  

     We also evaluate the interaction effects on both dry and brine-filled cracks and 

compare them in the Figure 2.9(a) and Figure 2.9(b). The results show that, for the 

brine-filled cracks, the elastic stiffness C11 has less sensitivity to the variation of 
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aspect ratio of spatial distribution. Physically, this makes sense because the brine 

often drastically stiffens the very compliant cracks (Schoenberg and Sayers, 1995). 

As a result, the stress interactions are getting weaker and have less impact on the 

effective elastic stiffness.  

 

Figure 2.8. Effective elastic properties of cracked carbonate as a function of crack 

density. C11, C33, C13, C44, and C66 represent five independent elastic stiffness 

constants in HTI medium. The aspect ratio of the crack is set as 0.05, and the aspect 

ratio of spatial distribution is set as 1.0. 

  

2.7.3 T-matrix to Biot-Gassmann Consistency 

     We test the Biot-Gassmann consistency on the T-matrix modeling results as shown 

in Figure 2.10. It turns out that the saturated stiffness C11 and C33 directly computed 

by T-matrix exactly matches those predicted by applying Brown-Korringa’s relations 

to the dry C11 and C33 computed with T-matrix. It is also easy to illustrate that the 
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C44 and C66 do not change with fluid saturation. This indicates that T-matrix is 

consistent with Biot-Gassmann theory, and verifies that T-matrix characterize the 

crack interactions with physical foundation.   

 

2.8 Comparison of Different Effective Medium Theories 

     The comparisons of T-matrix with Hudson’s crack theory, compliance-based NIA, 

SCA, and DEM model are displayed in Figure 2.11. As expected, the several 

predictions largely agree with each other when the crack density is low, but there are 

significant differences at high crack density. This illustrates the importance of 

including the effects of spatial distribution when coping with non-dilute concentration 

of pores and cracks. The compliance-based NIA gives the best match with the T-

matrix when the aspect ratio of spatial distribution is very small, which represents the 

crack interaction effect dominated by stress shielding. However, this should not be 

treated as physical equivalence. The compliance-based NIA does not take into 

consideration the crack interactions. Nonetheless, those pores and cracks interactions 

are explicitly characterized in the T-matrix formulation. Additional insight can be 

gained from this comparison is that the SCA and DEM prediction approach the T-

matrix prediction when the aspect ratio of the spatial distribution is 1. And this is in 

agreement with the assumption of SCA and DEM, in which the cracks are randomly 

distributed and interacted. 
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Figure 2.9. Computed elastic stiffness C11 as a function of aspect ratio of inclusion 

and aspect ratio of spatial distribution. Porosity is set as 0.01. Data are color-coded by 

the value of effective elastic stiffness. Cracks are assumed (a) dry, and (b) brine 

saturated.  
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Figure 2.10. The effective elastic stiffness C11 (a), and C33 (b) as a function of crack 

density. Blue line represents elastic response of dry rock simulated by T-matrix. The 

aspect ratio of the crack is set as 0.05, and the aspect ratio of spatial distribution is set 

as 1.0. 
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Figure 2.11. Comparison of C11 as a function of crack density predicted by different 

effective medium theories. The aspect ratio of the crack is set as 0.05. Blue line, 

purple line, red line and green line represents prediction by stiffness-based NIA, 

compliance-based NIA, DEM prediction and SC prediction, respectively. Black 

dashed lines indicate the T-matrix predicted with different aspect ratio of spatial 

distribution.  

 

     In Figure 2.12, we use a numerical example to demonstrate the effective elastic 

stiffness predicted by the compliance-based NIA, which appears mathematically 

reasonable, but is not physically reasonable.  We assume the aspect ratio of the 

inclusion is 1.0, suggesting no anisotropy occurs in this case. When the porosity is 

100%, theoretically, the effective bulk modulus of the rock should be zero as Kuster-



 

50 

 

Toksöz model and T-matrix predicted. However, the compliance-based NIA 

increasingly overestimate the moduli as the porosity increases, and this 

overestimation is evident from the fact that it predicts finite elastic moduli when the 

porosity reaches 100%. Such overestimate of effective elastic stiffness-based on NIA 

is also reported by Hu et al. (2009) and Jaeger et al. (2007). In addition, this 

demonstrates that it is lack of physical foundation to assume that the elastic 

interactions can be ignored at large concentrations of pores.  

As displayed in Figure 2.13, we also examine how the spatial distribution of cracks 

affects the seismic anisotropic parameters introduced for HTI media by Rüger (1997) 

and Tsvankin (1997). It is clear that the impacts of spatial distribution on the seismic 

anisotropy become increasingly important when the inclusion concentrations increase 

beyond the dilute limit. Generally, the seismic anisotropy will increase as the aspect 

ratio of spatial distribution increase. In other words, the stress amplification effect 

will enhance the amplitude of seismic anisotropy.   

Moreover, the gamma parameter, which is a measure of shear-wave splitting, has 

been pointed out in many papers (e.g. Bakulin et al., 2000), is approximate to crack 

density which indicate the degree of fracturing. Figure 2.13(b) makes clearly that this 

estimation is roughly reasonable when the crack density is lower than 0.1. 

Nevertheless, at high crack density, when stress shielding dominates the crack 

interactions (aspect ratio of the spatial distribution is small), the anisotropic parameter 

gamma gives a significantly higher estimate of crack density ( e  ). From Figure 

2.13, we also observe that the elliptical anisotropy = -   , which is an important 
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parameter for P-wave time processing in anisotropic media, approximated as zero 

based on the compliance-based NIA. However, T-matrix for large aspect ratio of 

spatial distribution can typically predict positive elliptical anisotropy. 

                           

Figure 2.12. Elastic modulus of rocks containing dry, randomly distributed spherical 

pores, according to various effective medium theories. Red line, black line, and blue 

line represents predicted bulk modulus by K-T model, T-matrix, and compliance-

based NIA, respectively. For T-matrix modeling, the aspect ratio of spatial 

distribution is set as 1.0. 
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Figure 2.13.  Comparisons of predictions of Thomsen’s anisotropic parameters as a 

function of crack density: (a) Epsilon, (b) Gamma, and (c) Delta. Blue line and purple 

line represent prediction by stiffness-based NIA and compliance-based NIA, 

respectively.  
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Figure 2.13 (continued).  Comparisons of predictions of Thomsen’s anisotropic 

parameters as a function of crack density: (a) Epsilon, (b) Gamma, and (c) Delta. Blue 

line and purple line represent prediction by stiffness-based NIA and compliance-

based NIA, respectively.  

          

 2.9 Discussion 

     For a long time, Hudson’s crack model and the compliance-based NIA (or the 

liner-slip theory) have been the two most popular rock physics schemes in modeling 

cracked rocks. We numerically demonstrate that the first-order Hudson’s theory are 

functionally equivalent to the Eshelby’s dilute estimate under the constant 

displacement boundary condition, and the compliance-based NIA are  functionally 

equivalent to the Eshelby’s dilute estimate under the constant load boundary 

condition.  This may provide insight into explaining the physical discrepancy between 

the stiffness-based NIA and compliance-based NIA, not merely the mathematical 
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difference by inverting the compliance tensor into stiffness tensor. This further 

explains why those two popular effective media schemes are incapable of producing 

physically plausible estimates at high crack density. 

     It is also necessary to point out that the Biot-consistency can be applicable only 

when no porosity heterogeneity exists. Actually, we believe that no effective medium 

theory for rock elasticity can be Biot-consistent when pore heterogeneities are present 

in the rocks, because it can’t handle the pore pressure equilibration induced by the 

stress heterogeneity. Figure 2.14 illustrates the fluid saturation effect in the case 

where both stiff pores (aspect ratio is 0.5) and thin cracks (aspect ratio is 0.05) are 

present. The saturated stiffness simulated by T-matrix clearly deviates from the 

prediction by Brown-Korringa’s relations when cracks are present, which suggests 

that the T-matrix is not consistent with Biot-Gassmann theory if elastic 

heterogeneities exist. Since the cracks are much more compliant than the pores, fluid 

may flow from cracks to stiff pores, and this fluid pressure equalization is a time-

dependent process. The T-matrix prediction represents the status where the fluid starts 

to flow (high frequency limit), and the Brown-Korringa prediction represents the 

status where the fluid flow reaches the maximum quantity (low frequency limit). The 

difference between those two statuses is considered as the dispersion effect, and this 

dispersion effect, as expected, is getting stronger with increasing crack density. For 

detailed analysis on frequency-dependent elastic response due to the fluid flow 

between stiff matrix porosity and compliant fractures, see Thomsen (1995), Chapman 

et al. ( 2002), Gurevich (2003), and Jakobsen and Chapman (2009).  
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Figure 2.14. Variation of the elastic stiffness C11 with increasing crack density. The 

solid matrix is calcite and the matrix (stiff) porosity is 0.2.  The aspect ratio of the 

matrix porosity and cracks are set as 0.5 and 0.05, respectively.  The aspect ratio of 

spatial distribution is defined as 1.0 for T-matrix modeling. Blue line represents 

stiffness of dry rock, red line represents stiffness predicted by Brown-Korringa 

relations, and black line indicates the brine-saturated stiffness simulated by T-matrix. 

The shadow zone indicates the dispersion effects.  

 

       In this paper, we have proposed a clear guideline on how to select a convincing 

effective medium theory to characterize the elastic response for fractured, porous rock. 

The primary differences for the various inclusion and crack models presented here lie 

in their strategies for extrapolating the exact expression for deformation of a single 

ellipsoidal inclusion (Eshelby, 1957) to handling the elastic interactions between 

inclusions (Mavko, 2008).  Theoretically, a good effective medium theory should 
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satisfy two conditions. First of all, it should work beyond dilute limit; secondly, it 

should characterize the pores and cracks interactions with physical foundations (or 

consistent with Biot-Gassmann theory).  However, from the perspective of practical 

application, different effective medium theories can be selected according to the 

geological condition and pores or cracks distribution configuration. For example, 

DEM and SCA can work pretty well for randomly distributed pores and cracks. For 

not heavily cracked reservoir rocks, Hudson theory and compliance-based NIA can 

still be used to link crack density to the effective elastic properties with physical 

meaning.  

 

      The inclusion and crack model we present here is formulated on the basis of the 

assumption that the pore geometry is ellipsoidal. However, in real sedimentary rocks, 

geometry of pore and cracks are almost never ellipsoidal and often exhibit hopelessly 

complex and irregular microstructure. Some attempts have been made to model the 

effective elastic moduli when the pore shapes are not ellipsoidal (Mavko and Nur, 

1978; Schoenberg, 1980; Zimmerman, 1991; Hudson and Liu, 1999).  Indeed, it is 

impossible to create an exact physical model to mimic the elastic behavior of real 

porous, cracked rocks.  More importantly, capturing the detailed characteristic about 

pores and cracks might be beyond the capability of the long-wavelength seismic data 

with a realistic noise level. What we are concerned more are the statistical features of 

the cracks or pores in the rocks. Based on micromechanics analysis, Grechka and 

Kachanov (2006) also concluded that a number of geometric features of cracks, such 

as random irregularities of fracture shapes, are insignificant for estimating the 
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effective elastic properties. Therefore, the current approach to treat the pore geometry 

as ellipsoidal is primarily still feasible to model the effective elastic properties of real 

rocks. 

 

2.10 Conclusions  

    The spatial arrangements of pores and cracks, which are mainly controlled and 

organized by geological processes, can naturally cause the local elastic field variation 

and hence affect the effective elastic response.  We use finite element modeling 

method to illustrate that stress amplification due to coplanar cracks significantly 

increases the volumetric strain, and the stress shielding due to stacked cracks 

significantly decreases the volumetric strain. Rather than only using the volume 

concentration and geometric features of pores and cracks, we suggest the elastic 

interactions between the pores and cracks should be taken into account to compute the 

effective elastic properties.         

     DEM and SCA implicitly handle the elastic interactions between pores and cracks, 

but are illustrated not Biot-Gassmann consistent. This implies that the elastic 

interactions simulated by DEM and SCA lack of physical foundation. T-matrix 

approach which takes into account the ellipsoid distribution of pores or cracks,  can 

produce physically plausible result even at large concentration, and it is always 

consistent with Biot-Gassmann theory when no pore heterogeneity exists. This 

suggests that T-matrix explicitly characterizes the pores and crack interactions with 

physical foundation, and we recommend that T-matrix is a more physically reliable 

approach to model the effective elastic properties for the cracked, porous rock. 
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Numerical results further demonstrate that the varying spatial distribution of pores 

and cracks can significantly affect rock’s elastic response and the resulting seismic 

anisotropy, and this impact cannot be ignored when the inclusion concentrations 

increases beyond the dilute limit. However, the impact of such stress interaction can 

be mitigated for pores with large aspect ratio or filled with liquid. 
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2.12 Appendix A-- Evaluation of Eshelby Tensor 

     Eshelby tensor is generally given in terms of elliptic integrals of the first and 

second kinds (Eshelby, 1957; Mura, 1987). Assuming that the ellipsoid semi-axes 1a , 

2a , 3a  are ordered as 1 2 3a a a  , the components of the fourth-order Eshelby tensor 

ijklE  of the  r th inclusion are given by the following expressions: 
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where v  is the Possion ratio of the matrix, and 1I , 2I ,and 3I is given below as:  
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with 2 1/2 2 1/2 2 1/2

1 2 3( ) ( ) ( ) ( )s a s a s a s     . The reaming coefficients are found by 

simultaneous cyclic permutation of (1, 2, 3) and ( 1 2 3, , )a a a . 

     All other non-zero components are obtained by the cyclic permutation of (1, 2, 3), 

and should satisfy the relationship r r r

ijkl jikl ijlkE E E  . The components which cannot be 

obtained by the cyclic permutation are zero.  

     If the inclusion refers to spheres, to calculate the Eshelby tensor, one can use 

1 2 3a a a  . Also, if the inclusion refers to a typical penny-shaped cracks,

1 2 3a a a 
.
 

2.13 Appendix B-- Evaluation of Tensor ikjlG  

    The tensor ikjlG  used to calculate 
ikjl

rG  tensor for the transversely isotropic media in 

equation 2.9 are given by Lin and Mura (1973) and Nishizawa (1982). It has 12 non-

zero elements, and they are shown by the following integral form: 
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ijc are elastic tensor elements of the host rock in Voigt notation, and  is the inverse of 

aspect ratio 1/  . 
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Chapter 3 

Extended Biot Theory with Local Flow in Heterogeneous 

Porous Rocks 

                                                                      

3.1 Abstract 

     The elastic wave energy is mainly dissipated into heat by local viscous fluid flow. The 

theoretical treatment reported here is aimed to quantitatively evaluate the effect of local 

flow on the elastic wave propagation characteristics for a wide range of frequencies. The 

extended Biot theory with squirt flow and mesoscopic flow, which are distinguished 

depending on the scale of pressure gradient, are separately explored.  The dynamic 

poroelastic responses of heterogeneous porous media are mainly characterized by the 

magnitude of the dispersion and relaxation frequency. Normally, the magnitude of the 

dispersion is determined by the degree of heterogeneity and the elastic compressibility 

contrast. The characteristic frequency is dependent on the information of porous solid, 

fluid properties, and the mesoscopic geometry of heterogeneities. Most of those 

geological features are poorly determined from the available data, incurring uncertainty 

to understand the poroelastic behavior from geophysical measurements. I propose to use 

a rock physics diagnostic including the dispersion effect to interpret sonic log data. It is 

found that the presence of heterogeneities enhances the Vp/Vs ratio and slightly 

decreases the P-impedance. I recommend that a detailed interpretation of the sonic log 

data and seismic inversion results should account for the dispersion effect. 
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3.2 Introduction 

      The well-known Biot theory (Biot, 1956a, 1956b, 1962) describes the wave 

characteristic caused by the global flow of viscous fluids through permeable porous 

homogeneous medium. However, an essential feature of sedimentary rocks is the 

universal presence of heterogeneity occurring at various scales.  When excited by a 

passing elastic wave, the compliant portions of the rock tend to contract and expand 

much more easily than do stiff portions, consequently producing pore pressure 

gradients and fluid flow. The wave induced fluid flow can be categorized as “squirt 

flow”, “mesoscopic flow”, and “macroscopic flow”, which are defined based on the 

distance over which the fluid pressure attempts to equilibrate by diffusion processes 

(Pride et al., 2006; Muller et al., 2010). The “squirt” and “mesoscopic” flow are often 

termed as local flow, whereas the “macroscopic” flow occurring at wavelength scale 

is often called global flow or Biot flow. In each case, the viscous flow attenuates 

wave energy and results in velocity dispersion. The principle goal of this chapter is to 

quantitatively evaluate the effect of local flow on the elastic wave propagation 

characteristics for a wide range of frequencies.  

            The squirt flow typically emphasizes on the grain-scale heterogeneities, such 

as loose gain contact and micro-cracks frequently occurring in the reservoir rocks. In 

the past decades, many lab measurements suggested that significant dispersion and 

attenuation observed at ultrasonic frequency is mainly caused by this microscopic 

squirt flow (Winkler, 1983, 1985; Murphy et al., 1984, 1986; Han, 1986; Jones, 1986; 

Batzle et al., 2006; Yao, 2013). On the theoretical side, a number of model theories 
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(Mavko and Nur, 1975, 1979; O’Connell and Budiansky, 1974, 1977; Kuster and 

Toksoz, 1974; Jones, 1986; Hudson, 1990; Mavko and Jizba, 1991; Dvorkin et al., 

1995; Chapman et al., 2002; Jakobsen et al, 2004) have emerged, seeking to provide 

predictions on the velocity dispersion and attenuation resulting from the squirt flow.  

Although those poroelastic models can properly handle the effect of squirt flow, they 

generally do not take into account the effect of global flow.  Consequently, to 

preserve the theoretical generality and completeness, it was felt necessary to 

characterize the wave propagation characteristics including both the effect of squirt 

flow and global flow in porous medium with microscopic heterogeneity. This will be 

investigated in section 4, and my study draws heavily on the work by Tang (2011), 

Yao (2013), and Yao et al. (2013). 

         However, the effect of squirt flow on the wave characteristics is hard to be 

observed at seismic exploration band (Pride et al., 2006; Mavko et al., 2009; Muller et 

al., 2010).  It is increasingly believed that the mesoscopic flow mechanism is the 

dominant cause that can explain the level of loss determined from seismic wave field 

(Pride et al., 2004; Muller et al., 2010). Mesoscopic flow is created by the 

heterogeneities on a scale much larger than typical pore size but smaller than the 

wavelength (White, 1975; Dutta and Ode, 1979a, 1979b; Gelinsky and Shapiro, 1997; 

Gurevich et al., 1997; Shapiro and Muller, 1999; Muller and Gurevich,  2004; Pride et 

al., 2003a, 2003b; Carcione and Picotti, 2006; Muller et al., 2007). From the 

geological perspective, mesoscopic heterogeneities can be fractures and soft 

inclusions in porous matrix, patches of different immiscible fluids, and so on. A 

double-porosity dual-permeability model to characterize the poroelastic responses of 
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general porous heterogeneous composite is developed by Pride and Berryman (2003a, 

2003b). In section 5, the governing equation and theoretical modeling results of the 

double-porosity dual-permeability (DPDP) are presented. This will also lay the 

theoretical foundation for the work presented in Chapter 4, 5, and 6.  

       One of the challenges in exploration geophysics is to interpret seismic and 

ultrasonic data in heterogeneous reservoir rocks due to the significant intrinsic 

dispersion effect. The elastic responses of the heterogeneous rock can be influenced 

by the wave-induced fluid flow. As such, it is critical to develop a rock physics 

diagnostic that takes into account the dispersion effect. In this chapter, I attempt to 

construct a rock physics template including dispersion effect caused by squirt flow to 

quantitatively interpret sonic data in a heterogeneous carbonate reservoir.   Finally, in 

the section of discussion, some fundamental issues and potential application regarding 

the velocity dispersion and attenuation resulting from the wave-induced fluid flow 

will be discussed.   

 

3.3 Brief Review of Biot’s Theory 

     Wave propagation in porous saturated medium creates interactions between fluid and 

porous solid matrix.  Energy is dissipated into heat due to the relative motion of viscous 

pore fluid with respect to the porous matrix of solid. This physical process consequently 

gives rise to velocity dispersion and wave attenuation.  In this section, I briefly review 

Biot’s linear poroelastic constitutive stress-strain relations and wave propagation in 

homogeneous porous media. For a complete description about Biot’s theory, the reader is 
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referred to the original paper by Biot (1956a, 1956b, 1962), and the reformulation by 

Rice and Cleary (1976).  

     The porous solid matrix is characterized by mineral grain density s , porosity  , 

permeability  , solid grain bulk moduli sK , and drained porous rock frame bulk moduli 

dK . The pore fluid is characterized by bulk modlus fK , density
f , and viscosity  .  

3.3.1 Poroelastic Constitutive Relations 

     Poroelastic constitutive laws relate the total stress field ij   and the pore pressure fp  

to the deformation state of a porous medium. The stress-strain relations can be written as:  

2 ( )ij ij ij ce e M         ,                                                         (3.1) 

fp Me M    ,                                                                    (3.2) 

where  

1 d

s

K

K
   , which is also called the Biot’s coefficient;  

1

s fM K K

  
  ; 

2

c M    , 

where  and   are Lam´e parameters for the rock frame under drained condition. Here, 

two independent deformation fields are ije  and  ; ije  represents the strain tensor of the 
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solid frame; e refers to the bulk strain of porous solid frame; ( )W U u          

refers to the increment of fluid content, with u and U denoting the displacement vectors 

of the rock frame and pore fluid.  

 

3.3.2 Poroelastic Wave Propation 

     Biot‘s poroelastic wave equations for porous saturated medium are given by (Biot, 

1956b, 1962; Stern et al., 1985):  

2 2
2 2

2 2
( ) ( ) ( ) b fM M

t t
      

 
          

 

u W
u u W   ,                       (3.3) 

2 2

2 2
( ) ( )

m f

f

c F
M M

t t t

 
 

 

  
       

  

u W W
u W   ,                                     (3.4)           

where (1 )b s f       ; mc  is  the tortuosity parameter, which is a constant 

depending on the pore structure (Dutta and Ode, 1979a).  Here, F is the frequency-

dependent coefficients which characterize the drag force between the frame and the fluid 

(Stern et al., 1985). F is expressed as:

 

  

1 ( )
( ) ( )

4 1 2 ( ) /

T
F

iT

 


 



 ,                         (3.5)                                                                                                    

where ( )T   is the Kelvin function (Stern et al., 1985) 

 

( ) ( )
( )

( ) ( )

ber ibei
T

ber ibei

 


 

 



,              (3.6) 

and  
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2

1/ 2 1/ 2( / ) ( )
f

r

a 
  


  .                (3.7) 

Here a  is the pore-size factor;   is the angular frequency; ber  and bei  are functions of 

the Bessel function of the first kind. The derivatives of functions ber and bei are ber and 

bei , respectively.  Solving equation 3.3 and 3.4 will yield two dilatational waves and 

one rotational wave, which are all dispersive.  

 

3.4 Extended Biot Theory with Squirt Flow 

3.4.1 Theoretical Formulation 

To analyze the squirt flow between cracks and pores, a penny-shaped ellipsoidal 

inclusion and spherical cavity are used to simulate the pore-crack model as shown in 

Figure 3.1(Tang, 2011, 2012). In this model, the induced squirt flow causes the 

change of pore pressure and the variation depends on the amount of fluid flowing in 

and out of the pore space. Consequently, the squirt flow contribution to the saturated 

bulk modulus is expressed in a Gassmann-type equation (eqn. 15 & 16 of Tang (2011)) 

as: 

)](//)/[(2  SKKKK fsd  ,    (3.8) 

 
1 1

4(1 )8 (1 )
( ) ( ) ( ) 1 1 ( )

1 1 33

s fs d s

sp p s
d

Kq K K
S f f f

P V
K K

 
   

  

             
  

,  (3.9) 
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where  

)(

)(2
)(

0

1






J

J
f  ,       (3.10) 

 //3 fKi .     (3.11) 

Here, J1 and J0 are the order one and order zero first kind Bessel functions, and s  is 

the Possion ratio of the solid rock.  As illustrated in equation 3.9, the impact of squirt 

flow is mainly controlled by the two parameters crack density ε and crack aspect ratio 

γ. The intensity of cracks determines the magnitude of squirt flow, and the aspect 

ratio controls the relaxation time of squirt time (Tang, 2011). After substitution of 

equation 3.8 and 3.9 which quantify the effect of squirt flow on the effective bulk 

modulus into the equation 3.3 and 3.4, the unified poroelastic wave propagation in 

cracked porous medium can be obtained.  

       However, the velocity dispersion predicted by the aforementioned Tang’s model 

is below Gassmann’s low frequency limit. Obviously, this is against the fundamental 

physics concerning the velocity dispersion due to local flow (Batzle et al., 2006; 

Mavko et al., 2009). Based on Tang’s work, Yao (2013) proposed a frequency-

dependent reversed fluid flow term to accurately characterize the effect of local flow 

on the elastic properties. At any non-zero frequency, a reversed fluid flow is 

hypothetically transferred from the stiffer phase to the softer phase, with the amount 

of q’(f) : 
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))(()(' max fqqfq  ,    (3.12) 

where maxq  can be obtained by setting frequency f=0 Hz in equation 3.9. Furthermore, 

Yao et al. (2013) developed a frequency-dependent effective concept of “dynamic 

fluid modulus “ "fK , which is determined by an additional fluid flow term to the 

original fluid modulus as shown in equation 3.13, to characterize the poroelastic 

responses due to wave-induced fluid flow.  

p

p

ff dP

Vq

KK

/'1

"

1
 .     (3.13) 

Now, with the introduction of this dynamic fluid modulus, the application of 

Gassmann’s equation can be successfully extended from homogeneous to 

heterogeneous media at non-zero frequencies. 

"//)( 0

2

f

drysat
KK

KK





 .     (3.14) 

3.4.2 Shear-wave Dispersion  

     For the local flow mechanism, the dispersion of shear modulus can be roughly 

derived from the dispersion of the bulk modulus (Mavko and Jizba , 1991;  Dvokin et 

al, 1995). The relationship can be expressed as: 

                      
1 1 4 1 1

( )
( ) 15 ( )d dw K K w 

    ,                                            (3.15) 
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where d  is the effective shear modulus of dry rock and ( )K   is computed based on 

equation 3.8. This relationship is taken to compute the dispersion characteristics of 

shear-wave. Such handling about the shear modulus dispersion is not theoretically 

sound, but presents a practical way to physically relate the shear modulus dispersion 

based on the bulk modulus dispersion (Tang, 2011).  

 

 

Figure 3.1. Schematic of pore-crack model to describe the squirt flow mechanism. 

The pore pressure change p in the pore space is caused by an external stress    (taken 

from Tang et al., 2012).  

3.4.3 Numerical Results and Analysis  

            In this section, I quantify the effects of fluid viscosity, rock permeability, and 

aspect ratio on the poroelastic responses of the porous rock containing cracks using 
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the above described theory. Table 3.1 lists the fundamental parameters that will be 

used to calculate the characteristics of velocity dispersion and wave attenuation for 

the modeling examples presented in this section. The dry rock’s elastic moduli are 

computed using the self-consistent model (Berryman, 1995; Mavko et al., 2009). In 

the following examples, the pore space was assumed to consist of a combination of 

stiff matrix porosity and cracks with aspect ratio 0.4 and 0.01, respectively. Figures 

3.2 and 3.3 illustrate the effect of viscosity on the characteristics of the (a) dispersion 

and (b) attenuation for the fast and slow compressional waves. In Figure 3.2, 

considerable dispersion effect is observed for the fast compressional wave, and when 

the frequency goes to very low value, the velocity is in agreement with that predicted 

by Gassmann equation. Actually, both the squirt flow and Biot flow contribute to the 

velocity dispersion. Note that the dispersion effect caused by the squirt flow, which 

occurs at relatively lower frequency range, is much larger than that caused by Biot 

flow. In Figure 3.2 (b), the peak to the left for the each attenuation curve corresponds 

to energy loss caused by squirt flow, while the peak to the right corresponds to the 

Biot-loss maximum. Obviously, the magnitude of attenuation due to squirt flow is 

much higher than the Biot flow.  As expected, characteristic frequency of squirt flow 

shifts to the lower frequency domain as the viscosity increases. The physical 

explanation is that the high viscosity requires longer time for the pore pressure to 

equilibrate. In addition, be aware that such a dependency of the characteristic 

frequency for squirt flow is opposite to that of the Biot flow.   



 

78 

 

     In Figure 3.3, the slow P-wave exhibits fundamentally different physical behavior. 

For each curve, at lower frequency range, the velocity of slow P-wave is very low, 

approximating to zero. It then ramps up to about 800m/s at a higher frequency range. 

As we can see, the transitional frequency will shift to lower frequency range as fluid 

viscosity decreases. On the high frequency end, however, the slow P-wave becomes a 

truly propagating wave. The slow P-wave attenuation curves are shown in Figure 3.3 

(b). Attenuation of slow P-wave is very high at lower frequency, and then decreases 

significantly at higher frequency. At low frequency, the slow P-wave is essentially a 

diffusion wave which propagates for only a short distance before being fully 

dissipated.  

Table 3.1. Input parameters to calculate the characteristics of velocity dispersion and 

wave attenuation of squirt flow 

Parameter Figure 3.2 & 3.3       Figure 3.4         Figure 3.5          Figure 3.6 

  sK (GPa)    37.9                        37.9   37.9                       85 

  sG (GPa)    32.6                        32.6   32.6                       45 

  s ( g/cm
3)    2.65                        2.65   2.65                      2.87 

  
fK (GPa)    2.25                        2.25    2.25                      2.25 

 
f (kg/m

3
)    1.05                        1.05    1.05                      1.05 

           0.25                        0.25    0.25                       0.03 

    0 (md)    1000                      1000   1, 10,100,1000       100 

      (cP) 1,10
1
,10

2
, 10

3                    
1       1                           10 

          2.4                          2.4                    2.4                        2.4 
          0.5                          0.5                   0.5                        0.15 
         0.15              0, 0.05,0.10,0.15      0.15                0:0.001:0.25 
         0.001        10

-4
,5*10

-4
,10

-3
,10

-2
        0.001                    0.01 
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Figure 3.2. Illustration of effect of viscosity on (a) dispersion (b) attenuation of fast 

P-wave in a cracked porous rock. The calculated frequency range is from 10
-2

 to 10
8
 

Hz, plotted on logarithmic scale. The dashed line in (a) indicates the velocity 

predicted by Gassmann’s equation.  
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      The Figure 3.4 illustrates the effect of two important parameters characterizing 

the features of micro-cracks on the attenuation of fast P-wave. As dictated in the 

equation 3.8, the crack density determines the magnitude of dissipative energy loss, 

whereas the crack aspect ratio controls the shifting trend of characteristic frequency. 

When the crack density goes to zero, suggesting that no cracks are present in the 

porous medium, the dispersion and attenuation caused by the squirt flow consequently 

vanishes. As shown in Figure 3.4(a), the amount of attenuation increases with 

increasing crack density. Also, it is evident that the aspect ratio only affects the 

characteristic frequency of squirt flow, placing no impact on the Biot  flow. The 

relaxation frequency of squirt flow shifts to a lower frequency range as the aspect 

ratio becomes smaller. Here, the aspect ratio acts like characteristic length of 

microscopic heterogeneity. The small aspect ratio indicates that the geometry of the 

crack is narrow and long. Consequently, it takes longer time for the pore pressure to 

equilibrate. Figure 3.5 shows the effect of permeability on the attenuation of fast P-

wave. By contrast to the fact that the aspect ratio merely affects the central frequency 

of squirt flow and the permeability variation only determines the characteristic 

frequency of Biot flow. Clearly, we can observe that the higher permeability will 

make the characteristic frequency of Biot flow move to lower frequency domain, and 

hence there are more chances to affect the seismic and sonic measurements.  
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Figure 3.3. Illustration of the effect of viscosity on (a) dispersion (b) attenuation of 

slow P-wave in a cracked porous rock. The calculated frequency range is from 10
-2

 to 

10
8
 Hz, plotted on logarithmic scale. 
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Figure 3.4. Illustration of the effect of (a) crack density and (b) aspect ratio on 

attenuation of fast P-wave in a cracked porous rock. The calculated frequency range is 

from 10
-2

 to 10
8
 Hz, plotted on logarithmic scale. 
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Figure 3.5. Illustration of the effect of permeability on attenuation of fast P-wave in a 

cracked porous rock. The calculated frequency range is from 10
-2

 to 10
8
 Hz, plotted 

on logarithmic scale. 

3.4.4 Squirt Flow Effect on Interpretation of Well Log Data  

     Elastic attributes such as P-impedance and Vp/Vs ratio calculated from well log 

data are often used to calibrate seismic interpretation in terms of rock properties. 

However, in heterogeneous reservoirs, those elastic properties may exhibit 

considerable discrepancy between seismic and sonic log frequency domain due to the 

dispersion effect. The simulated elastic properties of the carbonate’s Vp/Vs ratio 

versus P-impedance at seismic and ultrasonic frequency band are displayed in Figure 

3.6. The black line representing 100% brine saturated at zero frequency indicates the 

relaxed elastic response when the pore pressure are equilibrated, and the red line 

representing 100% brine saturated at 10M Hz frequency indicates the un-relaxed 
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elastic responses.  The thin pink lines represent modeling results of different crack 

densities.  

     The rock physics modeling results explain the scattering point in terms of porosity 

heterogeneities and dispersion effect. The presence of strong heterogeneity in the 

carbonate reservoir rocks suggests that the dispersion effect caused by squirt flow 

should also be pronounced.  The modeling results show that the dispersion effect 

significantly increases the Vp/Vs ratio and slightly increases the P-impedance. The 

scatters of the well log points sit between the brine-saturated line at zero frequency 

and 10M Hz frequency. This makes sense because the typical frequency range of 

sonic log is around 10K Hz, ranging between the seismic and ultrasonic frequency 

band.  This also implies that not all the elastic attributes computed from sonic log data 

can be used to calibrate seismic interpretation, especially those approximate to red 

lines representing the un-relaxed elastic response. Also, this rock physics template 

will improve the accuracy of quantifying the effect of crack density on the elastic 

properties of heterogeneous carbonate.  

 

3.5 Extended Biot Theory with Mesoscopic Flow 

     WIFF can also occur from spatial variations in rock compliance on a scale greater than 

typical pore size but less than the wavelength. Such WIFF is often called mesoscopic 

flow (Muller et al., 2010).   In this section, we focus on Double-porosity Dual-

permeability (DPDP) model which represents a more general framework to explain the 

velocity dispersion and attenuation due to the mesoscopic fluid flow.  
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Figure 3.6. A rock physics template presented as cross-plots of Vp/Vs versus P-

impedance, which is used to illustrate the dispersion effect. The parameters used to 

model the rock physics template are listed in Table 3.1.All of the scattering data 

points are from the log data in a heterogeneous carbonate reservoir, offshore Brazil. 

The core photos in the right of figure indicate the heavily cracked carbonates at the 

corresponding depth.  

 

3.5.1 Double-porosity Dual-permeability Theory 

     Although various heterogeneities exist in the earth material, it is also clear that two 

types of heterogeneity are of particular interest to us: the heterogeneity of compressibility 

which accounts for the effective elastic response, and the heterogeneity of permeability 

which is responsible for the effective hydraulic properties. The double-porosity dual-
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permeability model is to tackle on the poroelastic behavior due to the coexistences of 

such two types of heterogeneities. As illustrated in Figure 3.7, the heterogeneous porous 

media is therefore described as a composite which consists of two distinct porous phase, 

exhibiting contrasting hydraulic and elastic properties but saturated by a single fluid 

phase. One typical example to elucidate the double-porosity model is a fractured 

reservoir (Figure 3.8). Fracture or crack porosity normally occupies small portions of the 

volume, but with higher compressibility and permeability than those of the host rock.  

      The concept of double porosity was initially developed to describe fluid flow in a 

porous medium by Barrenblatt et al. (1960) and later by Wilson and Aifantis (1982). 

Berryman and Wang (1995, 2000) made a rigorous extension of Biot theory to formulate 

the phenomenological equations for the poroelastic behavior of double-porosity medium 

at macroscopic scale. Subsequently, Pride and Berryman (2003a, b) introduced the 

internal mesoscopic flow, which is transferred between the two distinct porous phases 

corresponding to different fluid pressure, into the double-porosity model. This provides 

an important energy dissipation mechanism to explain the high attenuation at seismic 

frequency band. Double-porosity dual-permeability model also gives a theoretical and 

versatile framework to model acoustic wave propagation through heterogeneous porous 

structures, without placing any restrictions on the mesoscopic geometry of the 

heterogeneity (Pride et al., 2004).  
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Figure 3.7. A schematic illustration of double-porosity dual-permeability model (after 

Pride and Berryman, 2003a).  Phase 1 and Phase 2 are isotropic porous continua, and a is 

the characteristic length of mesoscopic scale heterogeneity.   

3.5.2 Governing Equation of DPDP 

      The governing equation for DPDP in frequency domain is given as (Pride and 

Berryman, 2003a, 2003b; Pride et al., 2004): 

1 2( )D

c f fP i v q q                                                              (3.16)       
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int 1 2( )( )f fi p p                                                                               (3.19) 
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Figure 3.8. Fractured reservoirs are typical example for elucidation of double-porosity 

dual-permeability model. The photo is the outcrop of Marcellus shale. Taken from 

http://www.earth.rochester.edu/ees201/Mohudtrip/dolge.html  

      The macroscopic fields are: v , the average particle velocity of the solid grains 

throughout an averaging volume of the composite; iq , the average Darcy flux across 

phase i ; cP , the average total pressure in the averaging volume; 
D , the average 

deviatoric stress tensor; 
fip , the average fluid pressure within phase i ; and inti , the 

average rate at which fluid volume is being transferred from phase 1 into phase 2 as 

normalized by the total volume of the averaging region; int  indicates the internal 

mesoscopic flow which means the increment in fluid content to internal pore pressure 

http://www.earth.rochester.edu/ees201/Mohudtrip/dolge.html
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equilibration process; ( )G   is the Hilbert transform of ( )g  with low frequency limit 

corresponding to the drained shear modulus of the composite (Liu, 2005) 

      Physically, each set of the governing equation has explicit physical significance. The 

equation 3.16 represents the conservation of the momentum equation.  Note that there are 

three types of fluid flow:  two types of external fluid flow and one type of internal fluid 

flow. Equation 3.17 indicates the generalized Darcy’s law corresponding to the external 

fluid flow at macroscopic scale. Equation 3.19 is the transport law for internal mesocopic 

flow, which results in the main viscous loss for the heterogeneous pororelastic system. 

Equation 3.18 and 3.20 is the generalized compressibility law. Further analysis of these 

equations suggests that there exist three compression waves and a single shear-wave. The 

first type of P-wave represents the conventional fast P-wave, and the other two slow P-

wave modes correspond to fluid pressure diffusion due to the external fluid flow.  

       The frequency-dependent relaxation coefficient ( )  , which essentially controls the 

mesoscopic flow characteristic, is defined as: 

( ) 1m

m

i


  


 
 ,                                                                  (3.21) 
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 Note that the parameters controlling the characteristic frequency are mainly dependent 

on the properties of phase 1 (matrix). In fact, phase 1 controls the timing of the diffusive 

penetration of the fluid pressure and therefore determines the dispersion effect and 

viscous loss. All the other coefficients in these equations, which depend on the 

information about porous solid, fluid properties, and the mesoscopic geometry of 

heterogeneities, have been discussed in detail by Pride and Berryman (2003a, 2003b）. 

The constants 
ija  are all real and correspond to the high-frequency response for which no 

internal fluid-pressure relaxation can take place (Pride and Berryman, 2003a).   

   

3.5.3 Reduction to Single-porosity Biot Theory 

     The numerical simulation about the aforementioned governing equation is obviously 

cumbersome, and hence the analytical expressions for the double-porosity model are 

derived by Pride and Berryman (2003a, 2003b) and Pride et al. (2004). Under the 

assumption that phase 2 is entirely embedded in phase 1, the double-porosity theory is 

reduced to the effective Biot theory in which the elastic moduli is defined to be 

frequency-dependent to incorporate the mesoscopic flow. The frequency-dependent 

poroelastic moduli are given as:  
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Here, *( )dK   is the effective drained bulk modulus of the double-porosity composite;

( )B   is the effective Skempton’s coefficient; 
*( )uK  is the effective undrained bulk 

modulus. Since the dry rock frame is independent on fluid pressure difference, the 

complex frequency-dependent drained modulus *( )dK 
 
seems to be against our 

physical intuition. However, 
*( )dK  actually represents the effective elastic modulus 

which takes into account the fluid-pressure equilibration between two distinct porous 

phases.  

 

3.5.4 Numerical Examples and Analysis 

     Figure 3.9 illustrates the effect of viscosity and heterogeneity size on attenuation of 

fast P-wave velocity in a double porosity composite. Matrix rock and fluid properties for 

the double-porosity composite are given in Table 3.2.  The remarkable peak-attenuation 

due to mesoscopic flow, which takes place at seismic frequency band, is several orders 

higher than the Biot-loss. It is easy to see that higher viscosity and larger heterogeneity 

size shift the peak mesoscopic attenuation to a lower frequency range. Physically, this 

can be understood, because both higher viscosity and larger heterogeneity size will make 

the pore pressure take longer time to equilibrate. All those observations are also 

consistent with the theoretical analysis in the equation 3.23.  
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Figure 3.9. Illustration of the effect of (a) viscosity and (b) heterogeneity size on 

attenuation of fast P-wave in a double porosity composite. The peak to the left for each 

curve corresponds to mesoscopic loss, while the peak to the right corresponds to the Biot-

loss. 
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      Figure 3.10 shows the variation of P-wave attenuation with permeability and 

frequency. It turns out that the fast P-wave attenuation is dominated by the contribution 

from mesoscopic loss, and the permeability significantly affects the amplitude and peak 

frequency of the attenuation. Figure 3.11 shows the relationship between permeability 

and P-wave attenuation in the seismic exploration band. The seismic energy loss is 

almost linearly proportional to the permeability variation. For the reservoirs rocks with 

low permeability, the low-frequency component of seismic wave attenuates more, while 

for high permeability reservoir rocks, the high-frequency component of seismic wave has 

high attenuation.  

Table 3.2. The related parameters for the double-porosity dual-permeability modeling 

in the section 3.5. 

 

Parameter 

Rock frame properties 

Figure 3.9(a)             Figure 3.9(b) 

 Phase 1 Phase 2 Phase 1 Phase 2 

    dK (GPa) 17.5 0.5 17.5 0.5 

    d (GPa)             15.8 0.4 15.8 0.4 

    V 0.963 0.037 0.963 0.037 

     0.10 0.30 0.10 0.30 

    (md) 100 1000 100 1000 

    (m)  0.01  0.08, 0,01,0.001 

      0.1  0.1 

     2.4 2 2.4 2 

 Pore fluid properties 

   
fK (GPa) 2.25 2.25 

  
f (kg/m3) 1.05 1.05 

     (cP) 1,10,100 5 
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Figure 3.10. The permeability and frequency dependence on the P-wave attenuation in a 

double porosity composite. The heterogeneity size is assumed 10cm in this case.  

 

Figure 3.11. The permeability dependence of the fast P-wave attenuation in seismic 

exploration band. The red line, black line, and blue line represent 10Hz, 40Hz, and 80Hz, 

respectively.  
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3.6. Discussion 

To essentially characterize velocity dispersion and wave attenuation, one at least needs 

to know two key features in the dynamic poroelastic system: the magnitude of dispersion 

and the characteristic frequency (Mavko et al., 2009; Yao, 2013). In this section, I will 

discuss the fundamental physical issues standing behind the magnitude of dispersion and 

characteristic frequency. Besides, the multi-scale heterogeneity and dispersion coverage 

will also be explored in this section.  

 

3.6.1 What Determines Magnitude of Dispersion   

     The magnitude of the dispersion represents the velocity difference at the low-

frequency limit and high-frequency limit. The low-frequency limit corresponds to the 

relaxed state where the pore pressure has sufficient time to equilibrate, the velocity is 

therefore consistent with Gassmann prediction. The high-frequency limit is referred as 

un-relaxed state where the pore pressure has no time to equilibrate, effectively making 

compliant pores isolated from the stiff pores and resulting in high elastic moduli 

predictions. Generally, the degree of dispersion is mainly dependent on the contrast 

between the heterogeneity phase and host phase in terms of elastic compressibility and 

volume fraction. Normally, the bigger contrast of elastic compressibility indicates bigger 

pore pressure gradients, and the volume fraction of heterogeneities directly suggests the 

amount of fluid flow.  

It is also important to point out that the rock’s overall elastic properties in drained 

condition  can significantly affect the quantity of velocity dispersion and attenuation.  
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The dispersion effect can be enhanced in the more compliant rock due to the creation of 

more fluid pressure difference. For example, as shown in Figure 3.12, H-S lower bound 

and Hill average generate much higher mesoscopic flow loss than does H-S upper bound. 

Interestingly, the characteristic frequency is also found to be shifted due to the change of 

rock’s overall elastic properties. This will bring uncertainty for the poroelastic modeling 

of WIFF, since using different effective medium theories to simulate the elastic response 

will yield quite different results. Strictly speaking, the dry rock’s elastic properties should 

be measured at lab with in-situ pressure and temperature conditions.  

 

Figure 3.12. Comparisons of the effect of modeling effective elastic properties on the 

attenuation of fast P-wave. 

      Additionally, the degree of heterogeneity variation might significantly affect the 

dispersion characteristics.  Based on some numerical investigations, Mason et al. (2007) 
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concluded that the heterogeneity distribution with the bigger standard deviation can result 

in stronger dispersion and attenuation. Meanwhile, he also pointed out that the smooth 

transition of local heterogeneity properties can pose weaker dispersion effect than the 

local heterogeneity properties with huge contrast.  

3.6.2 Characteristic Frequency and Diffusion Equation  

     Wave-induced fluid pressure gradients equilibration can be regarded as a pore 

pressure diffusion process. The pore pressure diffusion equation can be expressed using 

Fick’s law as:  

2p
D p

t


 


,                                   (3.27) 

where p is pore pressure, and D is the hydraulic diffusivity that can be given as (Wang, 

2000): 

fK
D M

 

  
   .                                      (3.28) 

When the fluid pressure has just enough time to diffuse across heterogeneous patches 

present in a wave period, the attenuation reaches maximum (Pride et al., 2004). As for 

any diffusion process, the time necessary for the fluid-pressure difference to equilibrate 

goes as:  

                                                    
2 /cf D  .                                        (3.29) 

For Biot flow, the wavelength can be written as / /H f  , so the relaxation 

frequency is to be derived as: 
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                                                  c

H
f

M




   .                                      (3.30) 

Since /H M can be approximated as 
m

f  
 for many reservoir rocks (Archie, 1942; 

Pride et al., 2006), equation (4.30) can be written as:  

                          c m

f

f


  
   .                                              (3.31)        

Normally, the characteristic frequency of Biot flow in typical sedimentary rocks is above 

100K Hz (Bourbié et al., 1987; Muller et al., 2010; Mavko et al., 2009). Consequently, 

concerning the global flow at seismic exploration band, pore pressure is always relaxed 

and Biot attenuation is negligible.                       

For the mesoscopic flow, fluid pressure equilibration occurs at the time 2 /L D , where L is 

characteristic spatial scale of the heterogeneity within an averaging volume.  

                                                  2

f

c

K
f

L



 


.                                      (3.32) 

Note that the dependence of characteristic frequency on the fluid mobility /  for the 

mesoscopic flow is opposite to that of Biot flow (equation 3.31). As shown in equation 

(3.32), the maximum mesoscopic loss can occur anywhere within the seismic exploration 

band, depending on the rock’s porosity and permeability, pore fluids’s viscosity and bulk 

modulus,  and characteristic length of the heterogeneity.  

     For the squirt flow, the pore pressure equilibration takes place at pore and grain scale. 

The fundamental physical standing behind is the Navier-Stokes equation and the equation 

of mass conservation in the fluid mechanics. As we can see in equation (3.10) and 
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equation (3.11), the characteristic frequency is a function of pore fluid’s viscosity and 

bulk modulus, and the aspect ratio of the cracks. Unlike mesoscopic flow, the 

characteristic frequency of squirt flow is not dependent on rock’s permeability.  This is 

because the length scale for the squirt flow to takes place does not exceed the grain size, 

and hence the pore pressure equilibration process is not affected by the permeability of 

the material (Wenzlau, 2009).  

       Except for those parameters listed in this section to determine the relaxation 

frequency, another very important geological feature, the spatial distribution of the pores 

and heterogeneities (as what we discuss in Chapter 2), possibly plays an important role in 

affecting the relaxation time for the pore pressure to be equilibrated.  

 

3.6.3 Multi-scale Heterogeneities and Dispersion Coverage 

     For the poroelastic model presented here, I restrict out attention on the mesocopic 

heterogeneity with a single dominant diffusion length, or the micro-cracks with a single 

aspect ratio. However, such idealization of the geometric properties of heterogeneities 

never satisfies the condition of real world. Multi-scale heterogeneities always coexist 

either in a discrete or continuous manner (O’Connell and Budiansky, 1977; Han, 2009; 

Yao, 2013), since randomness and statistical fluctuation are the most prominent features 

of subsurface rocks in nature. The velocity dispersion will consequently behave in a 

continuous manner, and many flow mechanisms can simultaneously take place over 

different frequency ranges depending on the scale and hydro-physical properties of the 

geological features. The possible relative positions of these different mechanisms and the 
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associated geological features are schematically illustrated in the Figure 3.13. Note that 

the velocity can be even lower than that of Gassmann prediction when there exists open 

boundary condition for the porous system. This might happen in subsurface. For example, 

seismic wave propagating in faulted zone or large patches can cause the fluid flow out of 

the boundary of a representative volume within seismic wavelength. However, for most 

of the geological conditions, the fluid cannot be escaped from the representative volume 

within the typical wavelength, but trapped and transferred from one part of the rock to 

another part. 

          An interesting issue is that the physical behavior of the flow mechanism is 

intimately related to the heterogeneity size and corresponding wavelength. For example, 

assuming the velocity of the rock is 3000m/s, if the heterogeneity size is 10 cm, this will 

be considered as mesoscopic heterogeneity when the frequency is below f <3×10
4
Hz. 

However, if the frequency exceeds this frequency range, e.g., f >10
5
Hz, the mesoscopic 

flow mechanism are invalid because the heterogeneity size is now bigger than the 

wavelength. Actually, the scale of the heterogeneity and the corresponding WIFF are 

physically meaningful only when the velocity of the rock and the observational frequency 

are given. 
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Figure 3.13. A schematic illustration of velocity dispersion associated with different 

mechanism. The potential geological features that cause the flow are also listed in the 

corresponding position.  

 

         Physically, the coexistence of mesoscopic flow, squirt flow, and global flow can 

cause interaction with each other, rather than acting in a linear superimposition manner as 

shown in Figure 3.13. In this chapter, the extended Biot theory including local flow 

completely ignores the coupling effect and interaction of different flow mechanism. 

Because of the overall complexity of interrelationship among all the physical properties 

affecting the fluid pressure equilibration processes and the interaction of the fluid flow at 

various scales, we are stiff far from fully understanding the dynamic poroelastic behavior 

of a heterogeneous porous system with multi-scale heterogeneity. 
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     With the improvement of seismic acquisition and processing technique, it becomes 

increasingly important to utilize the multi-scale wave-field data for the reservoir 

characterization, development, and monitoring. Typical geophysical measurements often 

includes the surface seismic data (10
1-2

Hz), VSP data (10
1-3

Hz), sonic logs (10
3-4

Hz), and 

lab measurements (10
1-6

Hz). The fully integration of geophysical measurement at various 

scales opens the possibility for us to understand the poroelastic behavior of complex 

heterogeneous reservoir rocks.   However, the main limitation still lies in how to remove 

other factors that also lead to the dispersion effect in the seismic data, such as apparent 

attenuation caused by interference and scattering effect. A number of studies have shown 

that it is difficult to discern the intrinsic attenuation from the apparent attenuation.  

 

3.7 Concluding Remarks 

     This study has presented how to incorporate the poroelastic characteristic of local 

fluid flow, resulting from the heterogeneous nature of the porous media, into the classical 

Biot theory. The parameter of crack density, indicating the degree of microscopic 

heterogeneity, controls the magnitudes of squirt flow dispersion. The characteristic 

frequency of squirt flow mechanism is mainly determined by the fluid viscosity and the 

aspect ratio of the cracks.  Numerical examples show that the impact of squirt flow can 

be prominent in seismic frequency band due to high viscosity and small aspect ratio of 

cracks. A rock physics template taking into account the dispersion effect caused by squirt 

flow is developed to interpret the sonic data in a heterogeneous carbonate reservoir, and 
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the result shows that the dispersion effect can considerably amplify the Vp/Vs ratio and 

slightly increase the P-impedance. The double-porosity dual-permeability model provides 

a theoretical framework to simulate the poroelastic response due to the presence of 

mesoscopic heterogeneity. The mesoscopic flow mechanism is considered to explain the 

significant energy loss observed in the seismic frequency band. Geometric features of 

heterogeneity and fluid mobility are found to significantly affect the magnitude of 

velocity dispersion and wave attenuation. This potentially provides a link between fluid 

transport properties and seismic wave signatures.       
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Chapter 4 

   Seismic Reflection Dispersion Due to Wave-induced 

Fluid Flow: A Theoretical Study 

 

 

4.1 Abstract 

 

     Wave-induced fluid flow changes the behavior of the reflection coefficients. In 

this chapter, I have proposed and performed how to compute the poroelastic reflection 

from the boundary of heterogeneous porous media. The reflectivity approach 

presented here places no restrictions on the material-property contrast, the frequency, 

and the angle of incidence. The resulting poroelastic reflection coefficients 

incorporate both the influence of Biot flow and mesoscopic fluid flow. For a typical 

shale-sand reflector, it is found that the effect of local flow causes a variation in the 

reflection amplitude as high as 40%, and a maximum phase shift as high as 12 

degrees at the seismic exploration frequency band. This can lead to misleading 

seismic imaging of the geological feature as well as quantitative interpretation of 

reservoir properties. However, the global flow-induced seismic dispersion 

characteristic, which occurs at a very high frequency range, is almost negligible.  

 

4.2 Introduction 

 

 

     Seismic waves propagating in heterogeneous porous media create fluid pressure 

gradients and consequently induce fluid flow. During the process of fluid flow, the 

viscous-inertial loss takes place and dissipates mechanical energy into heat, which is 
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responsible for the intrinsic attenuation of seismic waves (Aki and Richards, 1980; 

Muller et al., 2010). The wave-induced fluid flow typically affects wave propagation 

characteristics (Biot, 1956a, 1956b, 1962; Pride and Berryman, 2003a, 2003b), and 

hence affects the behavior of reflection coefficients. The most pronounced influence 

is that the reflection coefficient is frequency-dependent, known as “reflection 

dispersion” here. It is of considerable interest to understand the poroelastic reflection 

signatures, which are believed to have potential in revealing reservoir properties such 

as saturation content and flow characteristics. Furthermore, an extensive investigation 

on the poroelastic reflection at a wide frequency range is critical to help us realize the 

physical discrepancy standing behind the different geophysical measurements at 

various scales, which typically include the surface seismic data (10
0-2

Hz ), VSP data 

(10
2-3

Hz), sonic logs (10
3-4

Hz), and lab measurements (10
0-6

Hz). The present work 

contributes to quantifying the impact of wave-induced fluid flow on the reflection 

coefficients in heterogeneous reservoir rocks. 

       In the past decades, dissipation-related seismic attributes already have been 

employed to interpret seismic data as hydrocarbon indicators or to map reservoir 

properties (e.g., Taner et al., 1979; Klimentos, 1995; Dasgupta and Clark, 1998; 

Maultzsch et al., 2003; Castagna et al., 2003; Ebrom, 2004; Chapman et al., 2006; 

Hofmann, 2006).  Based on the analysis of the experimental and field seismic data, 

Korneev et al.(2004) and Goloshubin et al.(2001, 2006) reported that the seismic 

reflection from a fluid-saturated layer shows a clear frequency-dependent amplitude 

response, and they further demonstrated that the theoretical formulation with a 

diffusive term gives a reasonable match with the physical modeling data. Generally, 
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much of these progresses have been driven by the development of spectral 

decomposition methods (Chakraborty and Okaya, 1995; Partyka et al., 1999; Castagna 

et al., 2003), which break down the seismic reflection signal into its component 

frequencies. 

     From a theoretical point of view, many authors (Geertsma and Smit, 1961; Stoll, 

1977; White, 1977; Dutta and Ode, 1983; Bourbie et al., 1987; Gurevich & 

Schoenberg 1999; Gurevich et al. 2004) have studied the seismic reflection 

coefficients at an interface between two porous homogeneous media.  The slow P-

wave related to the fluid pressure diffusion is generated at the interface of poroelastic 

contact. Based on their calculations, the inelastic energy loss for reflection amplitudes 

is only significant at very high frequency. Physically, this is understandable, because 

the relative fluid flow with respect to the solid, namely global flow due to 

wavelength-scale pore-pressure equilibration, becomes negligible at low frequency. 

Meanwhile, the reflections at the interface between a liquid and a liquid-saturated 

porous solid also have been investigated extensively (Deresiewicz and Ric, 1960; de 

la Cruz et al. 1992; Santos et al. 1992; Denneman et al. 2002; Ciarletta and 

Sumbatyan 2003; Sharma 2004; Rubino et al. 2006; Dai and Kuang 2008). 

     However, in partially saturated rock or in fully saturated elastically heterogeneous 

rock, the effect of velocity dispersion and wave attenuation becomes more prominent. 

The viscous loss is mainly caused by an internal equilibration that takes places with 

fluid flowing from the more compliant high-pressure regions to the relatively stiffer 

low-pressure regions (Batzle et al., 2006). Based on the heterogeneities of various 

scale, such local low can be categorized as “squirt flow” and “mesoscopic flow”. 
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Squirt flow typically occurs at microscopic pore scale (Mavko and Nur, 1975; 

O’Connell and Budiansky, 1974; Dvorkin et al., 1995; Tang et al., 2011), while 

mesoscopic flow is created by the heterogeneities on a scale much larger than typical 

pore size but smaller than the wavelength (White, 1975; Dutta and Ode, 1979a, 1979b; 

Gelinsky and Shapiro, 1997; Gurevich et al., 1997; Shapiro and Muller, 1999; Pride et 

al., 2003a, b; Muller and Gurevich, 2004; Carcione and Picotti, 2006; Muller et al., 

2007). Squirt flow is usually considered to be important at ultrasonic frequencies , 

while mesoscopic flow is increasingly considered as the dominant cause of fluid-

related attenuation in the seismic exploration band (Pride et al., 2004; Müller et al., 

2010).  

      To study the intrinsic attenuation effect on the reflection coefficient in a thinly 

layered, partially saturated reservoir with a non-dispersive overburden, Quintal et al. 

(2009) and Ren et al. (2009) combined the analytical solution of 1D White’s model 

(White et al., 1975; Carcione and Picotti, 2006) and the analytical expression of 

reflection coefficient in visco-elastic media to obtain the reflection dispersion 

signatures. They further demonstrated that the analytical result is consistent with their 

numerical simulation result. On the other hand, rather than considering the poroelastic 

behavior due to the complex interaction between fluid and solid, many authors 

reported the impact of Q-contrast on the reflection amplitude and phase both 

theoretically (White, 1965; Bourbie, 1983a, 1983b; Lines et al., 2009; Morozov, 2011) 

and experimentally (Bourbie, 1984; Lines et al., 2012).   

      In general, the theoretical formulation for the reflection coefficients from the 

boundary of heterogeneous poroelastic media as a function of material properties, 
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incident angle, and frequency is very complicated.  In this chapter, we seek to present 

an effective procedure to calculate the poroelastic reflection coefficients at arbitrary 

angles. In addition, it is well know that the global flow and local flow always take 

place simultaneously. However, studying the reflection dispersion signature including 

both global flow and local flow simultaneously is sparsely documented. In this 

chapter, to preserve the theoretical generality, the computed poroelastic reflection will 

incorporate the effect of local flow as well as global flow as shown in Figure 4.1.  

 

Figure 4.1. A schematic illustration of the P-wave incident upon an interface between 

two fluid-saturated heterogeneous porous media.  

      

     To characterize the reflection dispersion signatures, the first essential question to 

be addressed is how to describe the heterogeneous porous media that waves propagate 

through. Many poroelastic models have been proposed to explain the velocity 

dispersion and wave attenuation characteristics due to the inertial fluid effect. In this 

chapter, emphasis will be placed on the double-porosity dual-permeability model 
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developed by Berryman and Wang (1995, 2000), Pride and Berryman (2003a, 2003b), 

and Pride et al. (2004). There are several reasons to choose the double-porosity model. 

First of all, it represents a general framework to model wave propagation through 

heterogeneous porous structures, without placing any restriction on the mesoscopic 

geometry of the heterogeneity (Pride et al., 2004). Secondly, to highlight the effect of 

intrinsic loss and dispersion on reflection dispersion in the seismic frequency band, 

the geological heterogeneities here will be specified as mesoscopic scale. Moreover, 

Pride et al. (2004) showed that this theory can also be designed to simulate the 

dispersion effect associated with the patchy-saturation model and the squirt-flow 

model. 

       The content of this chapter is structured as follows. First, we will briefly review 

the wave dispersion and attenuation characteristics using double-porosity dual-

permeability model. Next, we present how to use an effective procedure to calculate 

the poroelastic reflection in heterogeneous porous media. Following this section, a 

numerical example will be presented to quantitatively analyze the seismic reflection 

characteristics in terms of magnitude and phase angle. The difference between the 

elastic and poroelastic reflection coefficients will be compared in the section. Finally, 

we will discuss the effect of reservoir properties on the reflection dispersion 

signatures and explore the implications for reservoir characterization.  
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4.3 Effective Biot Media 

 

 

     To illustrate the effects of the wave-induced flow on the reflection of seismic 

waves, we treat the simplified problem of reflection and transmission of a plane 

compressional seismic wave incident with an oblique angle at a plane interface 

between two heterogeneous porous medium in the upper and lower half-space. If 

double-porosity dual-permeability model is used to describe the wave characteristics 

in heterogeneous porous materials, as illustrated on Figure 4.2, the incident plane 

compressional wave will generate four reflected wave modes and four transmitted 

wave modes: fast compressional wave, converted shear-wave, first-kind slow 

compressional wave, and second-kind slow compressional wave (Berryman and Wang, 

1995, 2000; Pride et al., 2004; Dai et al., 2006). The fast compressional wave 

represents the conventional P-wave observed in the seismograms, and the other two 

slow P-wave modes are caused by the relative motion of the fluid with respect to the 

solid skeleton of heterogeneity phase and host phase, respectively.  Mathematically, 

solving such a problem of plane-wave reflection and transmission in double-porosity 

media becomes extremely tedious, because there is a requirement of eight boundary 

conditions to constrain the solutions of reflections and transmission coefficients. 

Consequently, it was felt necessary to describe the heterogeneous porous media in a 

simplified way.   
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Figure 4.2. A schematic illustration of the plane wave reflection and transmission at 

the interface of double-porosity dual-permeability media. 

 

     As illustrated in Figure 4.3, the approach adopted in this study is to replace the 

heterogeneous porous medium with effectively homogeneous porous medium by 

reducing the internal local flow term. As a consequence, the effect of local flow is 

taken into account by a set of poroelastic parameters in classical Biot theory. In other 

words, the resulting effectively homogeneous media is mathematically expressed in 

the form of classical Biot theory, but it physically incorporates the frequency-

dependent, wave-induced exchange of fluids between more compliant regions to 

relatively stiff regions. This effectively homogeneous porous media is termed as 

effective Biot media here. One typical example is the reduction of double-porosity 

theory to effective single-porosity Biot theory suggested by Pride et al (2004). With 

the assumption that the heterogeneity phase is totally embedded in the host phase, the 
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fluid motion relative to the solid skeleton of heterogeneity phase vanishes . The effect 

of internal flow is included in the effective drained bulk modulus, which can be 

derived from the original parameters of the double-porosity model.  Note that the 

slow P-wave, which is related to the external fluid pressure equilibration, is not the 

original wave mode any more. It already includes the effect of internal flow exchange 

between the phase 1 and phase 2. The resulting undrained bulk modulus can be given 

as: 

2( )
( ) ( )

( ( ) ) / /
sat dry

s f

K K
K K

 
 

   
 

 
 ,                                  (4.1) 

where the ( )dryK   and ( )   are the effective drained bulk modulus and Biot 

coefficient of the double-porosity composite, respectively. 

      It is necessary to point out that the workflow presented here is not limited to 

double-porosity model. It is applicable to any other poroelastic models which can 

generate the effective Biot media. The geological scenario can also be extended to 

patchy-saturation model, squirt flow model, etc. Indeed, many other poroelastic 

models (White, 1975; Dutta and Ode, 1979a, 1979b; Dvorkin et al., 1995; Gelinsky 

and Shapiro, 1997; Gurevich et al., 1997; Shapiro and Muller, 1999; Johnson, 2001; 

Chapman et al., 2002; Muller and Gurevich, 2004; Carcione and Picotti, 2006; Muller 

et al., 2007) can be considered to model the wave dispersion and attenuation 

characteristic in effective Biot media with different geological conditions.  For 

example, rather to use the effective drained bulk modulus, Yao (2013) proposed to 

use effective fluid modulus to account for the frequency-dependent internal flow 

effect, which can be expressed as: 
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2

( )
( ) / / ( )

sat dry

s f

K K
K K




   
 

 
.                                              (4.2) 

The importance of the concept of effective Biot media lies in that it allows for the 

local flow loss, but does not require analysis of a second slow-wave. This is critical to 

the later treatment in this chapter, since the problem of solving the reflection 

coefficients from the boundary of heterogeneous porous media can be transformed to 

the problem of solving the reflection coefficients from the boundary of effective Biot 

media. Consequently, the problem of wave propagation characteristic and plane wave 

boundary can be casted in the framework of classical Biot theory.   

 

Figure 4.3. Schematic of the concept of effective Biot media that is simplified from 

heterogeneous porous media. 

 

4.4 Reflection Coefficients from the Boundary of Effective Biot Media 

 

 

     Here, we use the aforementioned effective Biot theory reduced from the double-

porosity model to describe the heterogeneous porous materials. As previously 

described, it represents a general framework to simulate the poroelastic response due 

to mesoscopic flow, which is considered to explain the significant energy loss 



 

120 

 

observed in the seismic frequency band. Following the notation presented in the last 

chapter, the poroelastic wave equations in effective Biot media are given as: 

2
*

2 2
* * * * 2 * *

2 2
( ) ( ) ( ) b fM M

t t
      

 
          

 

u W
u u W ,            (4.3)                   

2 2
* * *

2 2 *
( ) ( )

m f

f

c F
M M

t t t

 
 

 

  
       

  

u W W
u W   .                            (4.4)          

Here, the frequency-dependent effective elastic parameters which incorporate the 

local flow effects are given as: 

 
* *

1 1 4 1 1
( )

15d d dK K 
                                               (4.5) 

* *1 /d sK K   ;                                                      (4.6) 

*

*

1

s fM K K

  
     ;                                                     (4.7) 

1 2

*

1 2

1  

  
 

,                                                           (4.8) 

where *

dK  is defined  in equation  3.24, which can be calculated from the parameters 

in the double-porosity model;  1  and 2  are the volume fraction of phase 1 and 

phase 2, respectively;  and 1 and  2  are the permeability of the phase 1 and phase 

2, respectively.  

      The geometry for the reflection from the boundary of effective Biot media is 

shown in Figure 4.4. The properties of the upper medium are indicated by the 

subscript 1, and those of the lower medium by the subscript 2. The incident wave is 
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taken to be a fast P-wave of angular frequency, with an incident angle   with respect 

to the normal to the boundary. At the interface, the incident wave is reflected into 

medium 1 and transmitted into medium 2, and in both media the fast P-wave, slow P-

wave and SV-wave are generated.  

      

Figure 4.4. Reflection and transmission of a compressional plane wave at an interface 

between two effective Biot medium. The effective single-porosity Biot medium is 

reduced from double-porosity medium. 

 

     In order to solve the seismic reflection and transmission at the interface of 

effective Biot medium, we have the boundary conditions as follows (Deresiewicz, 

1960; Dutta and Ode, 1983; Bourbie, 1987; Dai et al., 2006): 

1. Continuity of the horizontal solid matrix displacement : 1 2

x xu u ,   (4.9a)       

2. Continuity of the normal solid matrix displacement: 1 2

z zu u ,       (4.9b)          
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3. Continuity of the total normal stress: 1 2

zz zz  ,                              (4.9c)                                                   

4. Continuity of the total shear stress:  1 2

xz xz  ,                                (4.9d)                        

5. Continuity of the increments of fluid content: 1 2

z zW W ,              (4.9e)                                                                                       

6. Continuity of the fluid pressure: 
1 2

f fp p .                                       (4.9f)                       

The angle-incident seismic reflection coefficients can be calculated through solving 

the Zoeppritz-style equations: 

GR P ,                                                                                                 (4.10)  

where R is 6×1 vector of the unknown reflection and transmission coefficients and is 

given by: 

1 1
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1 1
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 
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 

  
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 

,                                                                                           (4.11) 

where 1 1P PR , 1 2P PR  and 1P SR  are the reflection coefficients of the fast P-, slow P- and 

S-waves, respectively; 1 1P PT , 1 2P PT , and 1P ST  are the transmission coefficients of the 

fast P-, slow P- and S-waves, respectively. G is a 6×6 matrix which characterizes the 

angle-dependent dynamic poroelastic responses in the upper and lower half space of 

the effective Biot media: 
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where 
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P is a 6×1 vector that represents the information of the incident P-wave in the upper 

medium, and is given by: 
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       The detailed derivations are carried out in Appendix A.  In the above equations, 

11Vp , 12Vp , 1Vs  and 21Vp , 22Vp , 2Vs  are the frequency-dependent fast P-wave velocity, 

slow P-wave velocity, and shear-wave velocity in the upper medium and low medium, 

respectively; *( 1,2)i i   and *( 1,2)i i  are the frequency-dependent Lame’s 

parameter of the effective Biot media under drained condition;  ( 1,2)i i   is the 

effective frequency-dependent Biot’s coefficient which can be computed from 

equation 4.7, and the frequency-dependent ( 1,2)iM i   is computed based on equation 

4.8; 
1, 2, ,( 1,2)pi pi si i    refer to the ratios of the potential for the relative fluid 

displacement to the rock frame displacement for the fast P-wave, slow P-wave, and 

shear-wave respectively;  1

r

p
 , 2

r

p
 ,

r

s
 refer to the reflected angles of fast P-wave, slow 

P-wave, and shear-wave respectively, and 1

t

p
 , 2

t

p
 ,

t

s
 refer to the transmitted angles 

of fast P-wave, slow P-wave, and shear-wave respectively.   

      Following Snell’s law in effective Biot media (equation A-12 in Appendix A) , 

they can be expressed as:  
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Note that the resulting reflection coefficients now become complex numbers due to 

the wave dispersion and attenuation in heterogeneous poroelastic media. Thus, we can 

define the reflection coefficients as: 

( ) ( ) exp( )R R i   ,                                              (4.14) 

where ( )R   indicates the magnitude, and   indicates the phase angle for the 

poroelastic reflection coefficients. In the following sections, we will use these two 

parameters to characterize the reflection dispersion signatures.  

 

     It is necessary to point out that all the frequency-dependent poroelastic parameters 

in equation 4.10 are computed based on the effective single porosity Biot model 

reduced from double-porosity model, which suggests that the effect of local flow is 

incorporated into the poroelastic wave propagation. Correspondingly, the resulting 

reflection coefficients will also contain the responses from both global flow and local 

flow. 

 

 

4.5 A Numerical Example 

 

     So far we have presented a theoretical formulation of the reflection and 

transmission of plane seismic waves at a boundary between two heterogeneous porous 



 

126 

 

rocks. In this section, we use a numerical example to quantitatively investigate the 

impact of wave-induced fluid flow on the seismic reflection coefficients at arbitrary 

angles and frequencies.  

 

4.5.1 Geological Model 

 

      We only consider an interface with two heterogeneous porous half-spaces above 

and below. To mimic the realistic reservoir situation, we assume that the geological 

model consists of an underlain sandstone reservoir with an overburden shale layer. 

Both the sandstone and shale have heterogeneous porous structures which can be 

characterized by the double-porosity model. To obtain their elastic properties, we start 

with a solid rock matrix, in which the minerals are mixed using a Reuss-Voigt-Hill 

average. The mineral presenting in the upper medium (shale) consists of 85% clay and 

15% feldspar. The mineral presenting in the lower medium (sandstone) consists of 95% 

quartz and 5% clay, implying that the sandstone is pretty clean. The heterogeneity 

phases in sandstone and shale are assumed to represent the compliant parts of the rock 

where the grains are unconsolidated, while the matrix phases are considered to be 

well consolidated. The dry rock moduli are in turn determined from the following 

effective medium formula (Walton, 1987; Pride et al., 2002; Pride and Berryman, 

2003a)  

                   (1 ) /(1 )i i s i iK K c    ,                     (4.15) 

                                (1 ) /(1 )i i s i iG G c    ,                          (4.16) 
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where we take 1c =5 and 4 for the well consolidated host phase, 2c =150 and 100 for 

the poorly consolidated heterogeneity phase, in sandstone and shale respectively.  

     Matrix rock and fluid properties for the overlying shale and underlying sandstone 

are given in Table 4.1 and Table 4.2, respectively. Phase 1 and phase 2 refer to the 

host phase and heterogeneity phase, respectively; sK  and s  are the bulk and shear 

moduli (in GPa) for the mineral matrix; dK  and d  are the bulk and shear moduli of 

the drained rock frame;  s  is the density of mineral matrix;   is the porosity;   is 

the tortuosity parameter;   is the permeability; and V indicates the volume fraction 

of the phase 1 or phase 2. For the sake of simplicity, the geometry of the 

heterogeneity phase is assumed as penny-shaped, and a  and   are used to represent 

the radius and aspect ratio of heterogeneity respectively. As for the fluid properties,

fK , 
f , and   are the bulk modulus, density, and viscosity of the pore fluid 

respectively.  
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Table 4.1. The related parameters for rock frame properties of upper medium and 

lower medium. 

 

Parameter 

Rock frame properties 

Upper (shale) Lower(sandstone) 

 Phase 1 Phase 2 Phase 1 Phase 2 

    dK (GPa) 22.0 4.2 11.9 0.6 

    d (GPa)             6.9 1.5 10.3 0.4 

    V 0.93 0.07 0.96 0.04 

     0.05 0.06 0.25 0.30 

    (md) 0.01 100 10 1000 

    (m)  0.05  0.08 

      0.1  0.1 

     2.4 2 2.4 2 

 

Table 4.2. The related parameters for the pore fluid properties of upper medium and 

lower medium. 

 

Parameter 

Pore fluid properties 

Upper (shale) Lower(sandstone) 

   
fK (GPa) 2.25 2.5 

  
f (kg/m

3
) 1.05 1.05 

     (cP) 1 5 

 

4.5.2 Velocity Dispersion and Attenuation Characteristics 

     The fast P-wave and the corresponding 1/Q for the upper and lower medium are 

plotted against frequency in Figure 4.5. We observe considerable velocity dispersion 

for the heterogeneous sandstone at a low frequency range of 10-100Hz. By contrast, 
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the overburden shale exhibits little dispersion effect, and the transitional frequency 

occurs at very low frequency (below 1 Hz). The mesoscopic flow is responsible for 

such dispersion effects. Moreover, there is a slight ramp-up in the fast P-wave for 

both the upper medium and lower medium centered at a much higher frequency, 

which is caused by the Biot flow. In Figure 4.5 (b), the peak to the left for each 

attenuation curve corresponds to the frequency when the mesoscopic heterogeneities 

structure just has time to equilibrate in one cycle, while the peak to the right 

corresponds to the Biot-loss maximum. Such a dependence of the characteristic 

frequency for mesoscopic fluid flow is opposite to that of the Biot flow. It is also easy 

to find that the local viscous flow contributes to most of the dissipative energy, 

whereas the global flow plays a dominant role in the energy dissipation for the high 

frequency domain.  

     The slow P-wave dispersion and attenuation (1/Q) as a function of frequency are 

displayed in Figure 4.6. The slow P-wave can influence fast P-wave reflection 

amplitudes, which carry information about the porous media away from the interface 

to distant receivers. The shear-wave dispersion and the corresponding 1/Q for the 

upper and lower medium are plotted against frequency in Figure 4.7, respectively. 

Compared with the fast P-wave dispersion and attenuation shown in Figure 4.5, the 

shear-wave dispersion effect due to mesoscopic flow is much smaller than that of fast 

P-wave. Nonetheless, it is interesting to note that the shear-wave dispersion and 

attenuation caused by Biot flow is larger than the corresponding fast P-wave 

dispersion. 
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Figure 4.5. (a) Phase velocity dispersion (b) Attenuation of the effective fast P-wave 

in the upper and lower double-porosity medium.  
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Figure 4.6. (a) Phase velocity dispersion (b) Attenuation of effective slow P-waves in 

the upper and lower double porosity medium. The elastic properties of the rock and 

the fluids are given in Table 4.1. 
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Figure 4.7. (a): Phase velocity dispersion (b): Attenuation of effective S-waves in the 

upper and lower double porosity medium. The elastic properties of the rock and the 

fluids are given in Table 4.1. 
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4.5.3 Reflection Dispersion Signatures  

     For the given set of parameters, Figure 4.8 shows the computed reflection 

amplitude and phase variation of fast PP-wave as a function of frequency and incident 

angle. In the amplitude versus incident-angle domain, Figure 4.8(a) shows that the 

reflection magnitude increases with an increase of incident angle, which agrees with 

traditional class III AVO response. In the amplitude versus frequency domain, the low 

frequency bright spot channel occurring at the seismic frequency band is intimately 

associated with the physical discrepancy between the characteristic frequency of the 

overburden shale and underlain reservoir sandstone. Generally, the amplitude versus 

incident-angle (AVA) relationship is mainly influenced by the contrast in elastic 

properties such as P-impedance and Vp/Vs ratio. However, the amplitude versus 

frequency (AVF) relationship contains the information about heterogeneities 

properties and fluid mobility. Figure 4.8(b) shows the phase shift of the poroelastic 

reflection compared with that of elastic reflection.  It is found that the phase variation 

is also dependent on the frequency, and a non-negligible phase shift which can be as 

high as 12 degrees occurs in the seismic exploration band. Nonetheless, the phase 

variation shows little sensitivity to the incident angle change. The combination of 

seismic reflection (both amplitude and phase angle) variation with incident angle and 

frequency as shown in Figure 4.8 has potential to reveal more reservoir properties.  
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Figure 4.8. (a) Reflection amplitude and (b) phase variation of fast PP as a function of 

frequency and incidence angle. Phase variation here indicates the deviation of the 

phase in the poroelastic reflection from the constant phase in the elastic reflection.  
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      Now, we are going to give a detailed analysis regarding the fast PP reflectivity 

dispersion characteristics (Figure 4.9) at normal incident angle. In Figure 4.9(a), the 

red line indicates the elastic reflection coefficient which is computed from the 

classical Zoeppritz equation. The saturated rock’s elastic response for elastic 

reflection is computed using Gassmann equation, which suggests that the elastic 

reflections coefficients do not include any intrinsic dispersion effects. As we can 

observe, the elastic reflection is consistent with the poroelastic reflection only at the 

frequency band as low as 10
-2 

Hz. Such consistency physically makes sense, because 

Biot flow becomes negligible at very low frequency, and local flow does not induce a 

dispersion effect at very low frequency. It can be concluded that the porous 

dissipative media acts as elastic media at very low frequency (<10
-2 

Hz).  The 

reflectivity dispersion occurring at roughly 0.01-100 Hz is believed to be caused by 

mesoscopic flow, and the maximum dispersion effect at the seismic frequency domain 

can reach as much as 40%. This huge dispersion effect should not be ignored when 

using seismic reflections for quantitative seismic interpretation. Moreover, the 

negligible reflectivity dispersion occurring at about 10
6  

Hz (ultrasonic lab frequency 

band) is believed to be associated with Biot flow.  

    Figure 4.9(b) plots the phase variation against the frequency at normal incident 

angle. The phase angle of the poroelastic reflection is consistent with that of elastic 

reflection at both the low frequency and high frequency limit. A phase advance occurs 

at 10
-3

 Hz to around 10
-1

 Hz, but then a noticeable phase delay takes place at a broad 

frequency range from 10
-1

 Hz to 10
5
 Hz. Both of these phase shifts are mainly caused 

by local flow. It is believed that the small phase advance occurring at ultrasonic 
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frequency band is closely related to the dispersion caused by Biot flow.  Note that the 

local flow can influence the phase angle to a considerable degree, and consequently 

affect the seismic waveform. This implies that phase shift can lead to uncertainty for 

seismically imaging the precise location of the geological feature of interest. In 

addition, the significant discrepancy of the seismic amplitude and phase variation 

between surface seismic band and sonic log band also suggests that we should be 

more cautious about seismic-to-synthetic well tie in heterogeneous reservoir rocks.  

     Figure 4.10 shows the AVO relationship with different frequencies in the seismic 

exploration band. For the purpose of reservoir evaluation, seismic reflection 

amplitude can be often interpreted to indicate porous volume or other reservoir 

properties. However, we demonstrate that the wave-induced fluid flow can strongly 

affect the seismic reflection amplitude. Be aware that the field reflection observations 

which are often centered around 40-60 Hz already represent the reflection dispersion 

effect. That is to say, in heterogeneous reservoir rocks, the classical seismic reflection 

interpretation based on Zoeppritz equation might be misleading. For example, for the 

given geological model, if we use the dispersive seismic reflection amplitude to 

estimate porosity, the result will be considerably underestimated. 
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 Figure 4.9. Reflection (a) amplitude and (b) phase of fast PP as a function of 

frequency at normal incidence angle. The red dashed line indicates (a) amplitude and 
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(b) phase computed for elastic reflection. The frequency bands for seismic, VSP, 

sonic log, and ultrasonic lab are highlighted in the plot.  

 

                  

 Figure 4.10. AVO relationship with different frequency in the seismic band. The 

central frequency band for the field observation is often centered at around 40-60 Hz. 

The black dash line indicates the reflection computed from Zoeppritz equation, which 

often represents the low frequency limit for the poroelastic reflection.  

 
     Figure 4.11 shows the converted PS reflection as a function of frequency. PS 

reflectivity is zero at normal incident angle, which is physically understandable 

because no PS conversion occurs at normal incident angle. At non-zero incident 

angle, we observe that the PS reflection presents similar dispersion trend as the fast 

PP reflectivity does. However, it should be noted that the relative dispersion effect for 
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PS reflection is bigger than that of fast PP reflection. In particular, the dispersion 

effect due to Biot flow is more evident. Additionally, we find that PS reflection has a 

larger dispersion effect for far offset than near offset for the given geological model.  

 

                         
Figure 4.11. Comparisons of PS reflectivity dispersion at incident angles of 0 degree, 

15 degrees, and 30 degrees. The dashed line indicates the PS reflection coefficients 

computed based on the Zoeppritz equation.  

 

4.6 Discussion 

 

     The double-porosity model we employed here is based on the idealization that the 

heterogeneous porous media can be meaningfully reduced to just two distinct porous 

phases with a single dominant diffusion length and contrasting properties. The 

idealization of the model may limit its application on some complex heterogeneous 
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reservoirs, which often involves mixing many porous phases and multi-scale 

heterogeneities in a random manner. Moreover, to generate the effective Biot media 

from the double-porosity model, the heterogeneity phase 2 is assumed entirely 

embedded in host phase 1. This implies that the volume fraction of phase 2 is much 

smaller compared with that of phase 1, which may not meet the conditions of real 

rocks in some geological scenarios. However, the real challenge concerning the 

practical implementation of this methodology is the difficulty in prescribing 

appropriate physical parameters, such as heterogeneity size, tortuosity, bulk modulus 

in the drained condition, etc. 

     Similar to any other sedimentary rocks, shale more or less contains heterogeneities 

to some extent. Such heterogeneities may come from the presence of micro-cracks or 

organic material related to hydrocarbon generation (Hornby et al., 1994; Vernik et al., 

1994; Jakobsen et al., 2003; Bandyopadhyay, 2009), compositional variation due to 

different depositional environments, and so forth. As a consequence, shales are 

naturally dispersive materials, even they might behave elastically in seismic 

exploration band due to their very low permeability characteristics (Batzle et al., 

2006).  To investigate the frequency-dependent reflection variations due to patchy-

saturated rocks, Ren et al. (2009a, 2009b) and Liu et al. (2011) assume that the 

overlying shale is non-dispersive. However, in this study, to preserve the generality of 

poroelastic reflection in heterogeneous poroelastic media, the overburden shale is 

considered as a dispersive medium including mesoscopic heterogeneity. Even the 

dispersion effect is not appreciable and occurs in very low frequency domain, as we 

can see in Figure 4.5.  The permeability of shale in our designed geological model is 
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given as 0.01md, but the permeability of shales can vary enormously, from nanodarcy 

range to microdarcy range. Figure 4.12 illustrates how the permeability of the 

overburden shale influences the reflection amplitude. It turns out that the reflection 

dispersion curve merely shows noticeable change at the low frequency domain (<10 

Hz, with seismic amplitude getting stronger as the permeability of the overburden 

shale decreases. In addition, it is worth noting that the velocity and flow characteristic 

in the shale also exhibit anisotropy. The dispersion and attenuation in the direction 

parallel to the layers are quite different from those perpendicular to the layers. 

However, in this study only the case of isotropy is discussed. The plane wave 

propagation going across the anisotropic poroelastic contact should be investigated in 

the future.   

     As we know, the reflection dispersion feature is intimately related to the contrast 

of attenuation across the interface. On the other hand, it is also essential to understand 

the material’s attenuation attributes from the poroelastic reflection signatures. Figure 

4.13 shows the comparison of reflection amplitude and phase with frequency-

dependent 1/Q (=1/Qlower-1/Qupper) contrast across the interface. It is interesting to see 

that attenuation contrast controls the reflection amplitude with frequency. If 1/Q<0, 

which suggests the attenuation in the upper medium is higher than that in the low 

medium, the amplitude increases with frequency. However, when the attenuation 

contrast changes from negative to positive, which occurs around 2 Hz, the 

corresponding reflection amplitude starts decreasing with frequency.  Meanwhile, the 

Biot flow exerts an opposite influence on the relationship of attenuation contrast with 
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reflection amplitude. At the frequency domain ranging from 10
6
-10

8 
Hz, the 

attenuation contrast is positive, but the reflection amplitude increases with frequency. 

 

                
 

Figure 4.12. The effect of permeability of overburden shale on PP reflection 

dispersion at normal incident angle.  

 

     Additionally, it is clear to see that the attenuation contrast peak corresponds to the 

frequency range where the reflection amplitude exhibits the most rapid change with 

frequency (the slope of the tangential line). Figure 4.13b illustrates that phase shift is 

closely related to attenuation contrast, especially when local flow controls the 

reflection dispersion effect. However, at the frequency range where the global flow 

dominates, the phase shift and attenuation contrast have an opposite trend with 

frequency.  
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Figure 4.13. Comparison of (a) reflection amplitude and (b) phase shift  with 

attenuation contrast as a function of frequency at normal incidence angle. The red 

dashed line indicates (a) amplitude and (b) phase computed for elastic reflection. 
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      One question might be raised is, after we obtain the frequency-dependent velocity, 

what if we calculate reflection coefficients based on the classical Zoeppritz equation 

for each single-frequency component? What is the difference for this result compared 

with the poroelastic reflection computed based on the methodology proposed here? 

The result of comparison is shown in Figure 4.14. They still show certain differences 

at a wide frequency range. It turns out that the latter can capture the amplitude-versus-

frequency trend caused by local flow, but it is incapable of characterizing the 

reflection dispersion signatures caused by Biot flow. More importantly, the reflection 

calculated based on the classical Zoeppritz equation cannot give the phase variation 

with frequency, which is an inseparable part of the poroelastic reflection feature. 

However, the key point we want to emphasis here is that, from a theoretical point of 

view, the classical Zoeppritz equation is not applicable for calculating the reflection 

coefficients in the heterogeneous and dissipative media, because the well-known 

assumption for the Zoeppritz equation is that the medium is elastic and non-

dissipative (Aki and Richards, 1980). Before going into the further details, let us step 

back and see what is the physically distinctive difference between the classical 

Zoeppritz equation and equation 4.10 presented here. From a perspective of energy 

conservation, the classical Zoeppritz equation only takes into account the 

conservation of elastic energy. To be specific, the total energy of particle motion, 

including the volume of integral of kinetic energy and elastic strain energy throughout 

the elastic medium, has been hold constant (Aki and Richards, 1980).  However, the 

“poroelastic Zoeppritz equation” not only includes the elastic energy but also the 

dissipative energy, which comes from the pore pressure diffusion caused by both 
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global and local viscous flow. Here, we do not perform the analysis of energy 

conservation. Interested readers can refer Dutta and Ode (1983), in which they 

systematically study the energy conservation in the boundary of the fluid-saturated 

porous media.  

     Furthermore, the methodology to compute poroelastic reflection coefficient here is 

distinct from the derivation of reflection coefficients in the visco-elastic media 

(White, 1965; Bourbie, 1983a, 1983b; Riedel et al., 2003; Lines et al., 2009; Ren et 

al., 2009; Quintal et al., 2009; Liu et al., 2011; Morozov, 2011). Even though the 

velocity and attenuation input in their method is sometimes considered as frequency-

dependent, the dynamic interaction regarding the fluid flow between the upper and 

lower porous medium is ignored.  

      The seismic reflection dispersion characteristics include the responses of both 

mesoscopic flow and Biot flow. However, the possible interaction and coupling effect 

between mesoscopic flow and Biot flow are ignored. The seismic dispersion 

signatures discussed in the present study cover a wide range of frequency bands. 

Regarding its real field application, an integrated study of seismic, VSP, and sonic log 

at different scales is helpful to fully reveal the reservoir properties and heterogeneity 

information. Finally, it is necessary to point out that the present study focuses on the 

theoretical modeling. Lab measurements and field observations need to be 

investigated in the future to verify the theoretical work.  

 



 

146 

 

 

Figure 4.14. Comparison of poroelastic reflection (black line) and reflection 

calculated based on classical Zoeppritz equation for each-frequency component (blue 

dashed line) at normal incidence angle.  

 

4.7 Conclusions 

 

     In the present work, we have quantified the impact of wave-induced fluid flow on 

the reflection at the interface between two heterogeneous porous media. The 

poroelastic reflection not only depends on the elastic properties contrast and incident 

angle, but also relies on the information about observational frequency, fluid mobility, 

and heterogeneity features. It is found that the poroelastic reflection is identical to the 

elastic reflection only when frequency goes as low as 10
-2 

Hz, and they deviate 

significantly from each other at a wide frequency range. Seismic reflection exhibits 

negligible dispersion effect due to Biot flow. However, the local flow can cause 
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significant amounts of dispersion for seismic reflections in the exploration band. Such 

dispersion effects can’t be ignored, because the classical quantitative seismic 

interpretation might be misleading. For example, the weakening seismic reflection 

amplitude due to intrinsic dispersion and attenuation can yield an underestimate of the 

porosity in reservoir rocks. Also, the phase variation caused by local flow can bring 

uncertainty for seismically imaging the geological structure. Additionally, for a wide 

frequency range, the significant discrepancy of the seismic amplitude and phase 

variation at surface seismic, VSP, and sonic log frequency bands also suggests that 

the full integration of geophysical measurements at various scales in heterogeneous 

reservoir rocks should be more cautious. The implication for reservoir 

characterization is encouraging, which leaves open the possibility of using frequency-

dependent seismic attributes to indicate geological heterogeneity features and fluid 

mobility information. 
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 4.9 Appendix 

 

SEISMIC REFLECTION COEFFICIENTS FROM THE  

BOUNDARY OF EFFECTIVE BIOT MEDIA 

 

In order to facilitate computations, we consider Helmholtz  decomposition of the two 

displacement vectors u and W in the form: 
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W
,                                                                     (A-1)

                            

where s , s are the potential functions associated with the displacement vectors of 

rock frame, and 
f , 

f are the potential functions associated with the displacement 

vectors of fluid with respect to the solid frame.

 
As the geometry is illustrated in Figure 4.3, we consider the seismic reflections at the 

interface of two effective Biot media. For two-dimensional plane-wave propagation, 

the displacement potentials of the incident, reflected, and transmitted waves can be 

written in the form:  
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Reflected P wave:  
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Reflected SV wave: 
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Transmitted P wave: 
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Transmitted SV wave: 
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where the superscripts i , r , t  denote the incident, reflection and transmission waves 

respectively; 1

i

p
k  is the wave number of the incident fast compressional wave; 1

r

p
k , 

2

r

p
k , and  

r

s
k  are the wave numbers of two reflected compressional  and reflected 

shear-wave  in the effective Biot medium 1, respectively; 1

t

p
k , 2

t

p
k , and  

t

s
k  are the 

wave numbers of two transmitted compressional and transmitted shear-wave  in the 

effective Biot medium 2, respectively;  
1( , , )m

sA m i r t  and
1

m

fA  denote, respectively, the 

potential amplitude of fast compression wave associated with the displacement of 

rock frame and relative fluid flow; 
2( , , )m

sA m i r t  and
2

m

fA  denote, respectively, the 

potential amplitude of second compression wave associated with the displacement of 

rock frame and relative fluid flow; ( , )m

sB m r t  and m

fB  denote, respectively, the 

potential amplitude of shear-wave associated with the displacement of rock frame and 

relative fluid flow.  

     Following the earlier work by Deresiewicz (1960), Dutta and Ode (1979, 1983), 

and Dai et al. (2006), the potential of the rock frame displacement is related to that of 

the relative fluid flow displacement by a constant. Therefore, we have such 

relationship in medium 1,  
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And similarly, in medium 2, we have 
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where 
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Here, i=1 refers to the upper medium 1, and i=2 refers to the lower medium 2; j=1 

refers to the fast P-wave, and j=2 refers to the slow P-wave. Consequently, 11Vp , 12Vp , 

1Vs  and 21Vp , 22Vp , 2Vs  are the frequency-dependent fast P-wave velocity, slow P-

wave velocity, and shear-wave velocity in the upper medium and low medium, 

respectively. 

If we substitute (A-7) and (A-8) into (A-2), (A-3), (A-4), (A-5), and (A-6), we 

consequently have six unknown amplitudes of the displacement potentials
1

r

sA ,
2

r

sA , r

sB ,

1

t

sA , 
2

t

sA , and 
t

sB , which correspond to the potential amplitudes of reflected fast 

compressional wave, reflected slow compressional wave, reflected shear-wave, 

transmitted fast compressional wave, transmitted slow compressional wave, and 

transmitted shear-wave respectively. Also, they are related to the six boundary 

conditions listed in the equation 4.9.  

Consequently, from the equations in A1-A8, we can relate the potential function to 

the displacement in medium 1and medium 2.  

For medium 1, we have: 
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Similarly, for medium 2, we have: 
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Following the boundary conditions listed in the equation (4.9a)-(4.9f) and on the basis 

of the poroelastic stress-strain relationship, we have: 

1 2x xu u                                                                                                                    (A-11a) 

1 2z zu u                                                                                                                     (A-11b) 
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Note that the boundary conditions require that the phase factors must be equal at the 

z=0 for all x and t, and hence we have: 
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Equation A-12 is also the statement of Snell’s law for reflection and transmission in 

effective Biot media.  

Now, we substitute equation (A-2 to A-10) into the boundary condition (A-11a to A-

11f) and set z=0 (for all x and t). Then we can obtain the following equation: 
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and 1R , 2R , 3R , 4R , 5R , and 6R  represent the amplitude ratio for the potentials of 

reflected fast P-wave, reflected slow P-wave, reflected S-wave, transmitted fast P-

wave, transmitted slow P-wave, and transmitted S-wave, respectively. Here, we 

define the reflection coefficients and transmission coefficients as the amplitude ratios 

for the matrix displacement. Therefore, based on the equation A-1, we can convert the 

amplitude ratio for the potentials to the amplitude ratio for the displacement. The 

Zoeppritz-style reflection and transmission coefficients of elastic waves from the 

boundary of effective Biot media are given in equation 4.10.  
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Chapter 5      

Poroelastic Seismic Analysis and Its Implications for 

Reservoir Imaging and Characterization 

 
5.1 Abstract 

 

     The classical seismic interpretation linking signature of amplitude-versus-offset 

(AVO) to lithology and fluid prediction is based on the assumptions of elasticity. I 

extend this interpretation to heterogeneous porous media based on an analysis of 

frequency- and angle-dependent poroelastic reflectivity.  I further demonstrate that 

the AVO response at the interface is strongly impacted by the reflection dispersion 

behavior: the bright spot (Class III AVO) get brighter at lower frequency, the dim 

spot (Class I AVO) get dimmer at lower frequency, and the Class II AVO reservoir 

exhibit significant phase distortion in frequency domain. The seismic synthetics 

computed from poroelastic reflection suggest that wave-induced fluid flow distorts 

the energy and phase distribution of the reflected seismic wiggles, thereby bringing 

uncertainty to seismically imaging the geological structure and quantitative seismic 

interpretation for reservoir properties. In addition, the poroelastic seismic response 

yields the connections between seismic signatures and hydraulic properties. It is 

found that, for the permeability that ranges from 10
-3 

D to 10
-1 

D, the reflection 

amplitude almost linearly decreases with permeability. For Class III AVO reservoir 

environment, high fluid mobility zones usually enhance the seismic amplitude; while 
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for Class I AVO reservoir environment, high fluid mobility zones weakens the 

seismic amplitude. 

 

5.2 Introduction 

 

Amplitude variations with offset (AVO), which have been successfully used as 

direct hydrocarbon indicators and to provide estimates of elastic properties (e.g., 

Ostrander, 1984; Rutherford and Williams, 1989; Castagna and Backus, 1993), are 

developed under the assumption that the rocks are purely elastic. However, the Earth 

materials, especially the sedimentary rocks which are of interest to petroleum industry, 

by their very nature, always show viscoelastic behavior (O’Connell and Budiansky, 

1974; Aki and Richards, 1980; Batzle et al., 2006). In heterogeneous porous media, 

the wave-induced fluid flow causes velocity dispersion and attenuation (Müller et al., 

2010), and hence leads to frequency-dependent reflection coefficients (Dutta and Ode, 

1983; Bourbie et al., 1987; Gurevich et al. 2004; Korneev et al., 2004; Goloshubin et 

al., 2006; Ren et al., 2009). Neglecting the dispersion behavior of reflectivity will bias 

our understanding of reservoir properties. The principal goal of this chapter is to 

quantify the poroelastic impact on seismic analysis under different reservoir scenarios, 

thereby providing insights to improve reservoir imaging and characterization.  

           With the development of spectral decomposition technique (Chakraborty and 

Okaya, 1995; Partyka et al., 1999; Castagna et al., 2003), the frequency-dependent 

seismic attributes have been often utilized for recognition of hydrocarbon reservoirs. 

Nevertheless, it is not clear whether these observations are associated with the true 

poroelastic response or whether they just represent the processing artifacts (Ebrom 2004; 
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Chapman et al., 2006). Therefore, it is necessary to propose a practical recipe to guide 

the interpretation of frequency-dependent seismic signatures. In this chapter, we are 

going to propose three Amplitude-Versus-Frequency (AVF) anomalies corresponding to 

different reservoir environments. This part will be presented in the section 3 of this 

chapter. In addition, the poroelastic effect on the amplitude-versus-offset (AVO) and 

phase-versus-offset (PVO) will be presented in the section 4 of the chapter. 

      So far, we only focus on the reflectivity behavior across the porelastic contact. 

However, the true seismic response is a combination of source wavelet and interface 

reflectivity. The seismic synthetics computed from the poroelastic reflection and its 

associated characteristics, such as central frequency and RMS amplitude, will be 

explored in the section 5 of this chapter.  Moreover, permeability is a major control of 

fluid flow, and in turn significantly affects the frequency-dependent seismic signatures. 

In section 6, we will discuss the relationships between permeability and seismic attributes 

and the possibility of extracting permeability information from poroelastic seismic 

response. 

     To facilitate our analysis, we construct three geological scenarios which 

correspond to the three classical AVO anomalies defined by Rutherford and Williams 

(1989). Model 1 refers to large increase for the underlying lithology (sandstone) 

relative to overlying lithology (shale), which corresponds to the Class I AVO 

response; Model 2 refers to weak reflectivity at normal incidence, which corresponds 

to the Class II AVO response; Model 3 refers to larger decrease in the acoustic 

impedance for the underlying lithology compared with overlying lithology, which 
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corresponds to the Class III AVO response. For each geological scenario,  the 

parameters for the matrix properties are given in Table 5.1, and the fluid properties 

for the underlying sandstone and overlying shale are the same as that given in the 

Table 4.2. Based on the double-porosity dual-permeability model, the computed P-

impedance and Vp/Vs ratio versus frequency are displayed in Figures 5.1 and 5.2. It 

turns out that, concerning the P-impedance which controls AVO intercept, sandstone 

has bigger dispersion effect than the overburden shale. Additionally, among the three 

geological scenarios, the model 3 sandstone has the largest dispersion effect. This can 

be understood, because reservoir rock in model 3 which shows a Class III AVO 

anomaly, is much more compliant and therefore creates more fluid pressure change. 

Also, as displayed in Figure 5.2, the Vp/Vs ratio for the sandstone of model 3 exhibits 

a biggest variation with frequency, implying that AVO gradient for model 3 is more 

sensitive to frequency variation.  

5.3 Spectral Signatures of Poroelastic Reflectivity  

 

     In this section, we analyze the spectral signatures of the poroelastic reflection at 

normal incident angle under different reservoir circumstances. We follow the same 

procedure presented in Chapter 4 to compute the poroelastic reflection for the given 

geological scenario. The scatters for the real and imaginary part of the complex 

reflection coefficients are displayed in Figure 5.3. Correspondingly, based on 

equation 4.14, the magnitude and phase angle of the fast PP reflection coefficients at 

normal incident angle are calculated and plotted as a function of frequency in Figure 

5.4. As expected, the magnitude and phase variation with frequency caused by local 
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flow are significant, while the impact of global flow is almost negligible. Following 

the similar classification schemes for poroelastic reflection proposed by Ren et al. 

(2009), we can classify their spectral signatures based on their reflectivity dispersion 

behavior in the seismic exploration band.  

 

Table 5.1. The related parameters for rock frame properties of upper medium and 

lower medium corresponding to three types of AVO responses.  

 

Parameter 

Rock frame properties 

Upper (shale) Lower(sandstone) 

 Phase 1 Phase 2 Phase 1 Phase 2 

Type 1 (Class I AVO) 

    dK (GPa) 23.2 3.0 24.3 1.91 

    d (GPa)             8.8 1.1 25.6 2.1 

    V 0.97 0.03 0.96 0.04 

     0.05 0.08 0.12 0.15 

 Type 2 (Class II AVO) 

    dK (GPa) 20.4 3.0 15.5 1.1 

    d (GPa)             7.7 1.1 17.1 1.2 

    V 0.97 0.03 0.96 0.04 

     0.08 0.08 0.18 0.22 

Type 3 (Class III AVO) 

    dK (GPa) 17.4 3.0 11.9 0.6 

    d (GPa)             6.5 1.1 10.3 0.4 

    V 0.97 0.03 0.96 0.04 

     0.15 0.08 0.25 0.30 
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Figure 5.1. P-impedance versus frequency for the overburden shale (circle) and 

underlain sandstone (diamond) in Model 1 (red), Model 2 (black), and Model 3 

(green). 

 

Figure 5.2. Vp/Vs ratio versus frequency for Model 1 sand (square), Model 2 sand 

(diamond), and Model 3 sand (triangle). 
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Figure 5.3. Scatters for the real and imaginary part of the poroelastic reflection 

coefficients at normal incident angle. The data points are color coded by log of the 

frequency. 

 

5.3.1 Class I AVF--Low-frequency Dim-out 

     As we can see in Figure 5.4(a), for model 1 which represents the Class I AVO 

response, the peak amplitude of fast PP reflection decreases with frequency in the 

seismic exploration band.  This is termed as Class I AVF--low-frequency dim-out 

reservoir. The phase also presents a variation compared with the elastic reflection, 

and the maximum phase shift is around 8 degrees. The reservoir rocks for the low-

frequency dim-out reservoirs are often associated with consolidated rocks, exhibiting 

relatively low porosity. That is why we observe relatively small dispersion effect for 

the reflection magnitude and phase. However, for far-offset angle gather, when the 
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reflection coefficients turn into negative, the seismic amplitude decreases with 

frequency as shown on Figure 5.6(a). Consequently, the low-frequency dim-out 

reservoir will become low frequency bright spot.  

 

5.3.2 Class II AVF--Phase-reversal Reservoir 

     A phase-reversal reservoir corresponds to the classical class II AVO response, in 

which the acoustic impedance of the reservoir rocks is slightly lower than that of the 

overburden lithology at zero frequency (Gassmann limit). However, as the frequency 

increases, the impedance of the reservoir sand becomes larger than that of the 

overburden shale (Figure 5.1). This is because the dispersion effect of the reservoir 

rock is much stronger than that of the overburden shale. Consequently, the real part of 

the reflection coefficient jumps from negative to positive at about 60 Hz as shown in 

Figure 5.3, while the imaginary part keeps as negative. Correspondingly, an apparent 

phase shift takes place in the seismic exploration band as depicted in Figure 5.4(b). It 

is worth noting that a distinct phase shift does not necessarily indicate a complete 

phase reversal.  As illustrated in Figure 5.4(b), the 180 degree phase reversal takes 

place at about 10
5
 Hz. More importantly, the apparent phase shift in the seismic 

frequency band can significantly distort the seismic waveform. However, due to the 

very week seismic amplitude for class 2 AVO, the spectral signatures on seismic 

signal might be masked by the realistic noise level.  
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Figure 5.4. (a) Magnitude and (b) Phase angle of fast PP versus frequency for the 

geological scenario corresponding to Class 1 AVO (square), Class 2 AVO (diamond), 

and Class 3 AVO (triangle). 
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5.3.3 Class III AVF--Low-frequency Bright-spot  

      The low-frequency bright-spot corresponds to the spectral signatures of reservoir 

rocks having Class III AVO response.  As illustrated in the Figure 5.4 (a), the trough 

amplitude increases with frequency, and the seismic amplitude is enhanced in the low 

frequency domain due to the local flow effect. To a certain degree, this might explain 

the low-frequency seismic anomalies observed in shallow unconsolidated sandstone 

reservoir that are fully saturated or partially saturated (Goloshubin et al., 2001; 

Castagna et al., 2003; Korneev et al, 2004; Ren et al., 2009).  

      Low-frequency bright spot reservoir rocks are often unconsolidated, porous and 

permeable. Therefore, as depicted in Figure 5.4, its dispersion effect is relatively 

bigger than that of the low-frequency dim-out reservoirs. Additionally, the noticeable 

phase shift potentially influences the seismic waveform.  

 

5.4 Poroelastic Effect on Angle-dependent Reflectivity  

     Figures 5.5 and 5.6 show relationships of the amplitude versus incident angle 

(AVA) and phase versus incident angle (PVA) for specific frequencies in the seismic 

exploration band. The “Gasssmann” curve represents elastic reflection coefficient. We 

summarized the key messages for the poroelstic effect on angle-dependent reflectivity 

that corresponds to Class I, Class II, and Class III AVO response, respectively.  
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Class I AVO: 

     The seismic reflection magnitude increases with frequency when the incident 

angle is smaller than 25 degrees. However, it exhibits an opposite trend when the 

incident angle exceeds 25 degrees. Note that in Figure 5.5(a), the trough of the curve 

indicates the phase reversal phenomenon. For the elastic reflection, it is clear to see 

that the phase reversal occurs at 25 degrees as shown on Figure 5.5(a). However, for 

the poroelastic reflection, the phase reversal is found to show up at different incident 

angles. In general, the incident angle for phase reversal taking place increases with 

frequency. The phase angle for each frequency component keeps pretty constant when 

the incident angle is smaller than 20 degrees or bigger than 30 degrees. However, they 

exhibit a significant variation between 20 to 30 degrees. The elastic reflection directly 

shows a polarity reversal at 25 degrees, while the phase angle for the poroleastic 

reflection varies with frequency in a continuous manner.  

 

Class II AVO: 

     As we see in Figure 5.5(b), when the incident angle is smaller than 5 degrees, the 

elastic reflection shows weaker amplitude than that of the poroelastic reflection. 

However, when the incident angle goes beyond 30 degrees, the elastic reflection has 

stronger amplitude than that of poroelastic reflection. The phase angle variation with 

frequency is shown in Figure 5.6(b).  It turns out that the phase angle shows 

considerable variation for near and middle offset seismic reflection, but shows very 

small variation for the far offset seismic reflection. In the model 2, the high-frequency 

reflectivity shows bigger phase variation than low-frequency reflectivity. Moreover, 
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the phase for the high-frequency reflectivity varies more sharply with incident angle 

than that of low frequency reflectivity.   

 

Class III AVO: 

     The poroelastic effect does not change the curve shape of classical Class III AVO 

relationship, but make the poroelastic AVO response significantly deviate from the 

elastic AVO response. The seismic amplitude for the poroelastic reflection is weaker 

than that of elastic reflection. The phases angle with different frequency all show very 

small variation with incident angle . 

 

Frequency-dependent AVO Gradient 

     The AVO gradients for Class I AVO, Class II AVO, and Class III AVO all 

decrease with frequency. This is consistent with what we observe from the frequency-

dependent Vp/Vs ratio which controls the AVO gradient variation. As shown in 

Figure 5.2, the dispersion effect of Vp/Vs ratio for the underlying sandstone is 

stronger than that of overburden shale, and the Vp/Vs ratio contrast consequently 

decreases with frequency. As a result, AVO gradient decreases with frequency for 

these three classical AVO responses.  
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Figure 5.5. Magnitude of fast PP reflectivity versus incident angle with specific 

seismic frequency band for (a) Class I AVO model and (b) Class II AVO model.  
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Figure 5.5(continued). Magnitude of fast PP reflectivity versus incident angle with 

specific seismic frequency band for (c) Class III AVO model. 

 

Figure 5.6. Phase angle of fast PP reflectivity versus incident angle with specific 

seismic frequency band for (a) Class I AVO model. 
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Figure 5.6 (continued). Phase angle of fast PP reflectivity versus incident angle with 

specific seismic frequency band for (b) Class II AVO model and (c) Class III AVO 

model. 
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 5.5 Poroelastic Effect on Seismic Wavelet 

 

      In this section, we carry out the analysis of poroelastic effect on the synthetic 

seismic responses. As we know, convolution can be used to model the filtering of 

seismic energy by the various rock layers in the Earth, and it can be written in the 

frequency domain as:  

( ) ( ) ( )S f R f W f ,                                                     (5.1) 

 

where ( )W f  can be considered as the wavelet after Fourier transform; and ( )R f  is 

the frequency-dependent poroelastic reflection defined in equation 4.14. 

Correspondingly, the seismic trace in the time domain can be obtained after inverse 

Fourier transform of equation 5.1: 

2( ) ( ) ( ) i ftS t R f W f e df





   .                                           (5.2) 

Ricker wavelets with different central frequencies used to generated synthetic seismic 

trace are shown in Figure 5.7.  We compute the poroelastic impulse responses at 

normal and 30 degrees incident angle, which respectively represent the seismic 

responses at near offset and far offset. A series of impulse responses convolved from 

the Ricker wavelet with different central frequencies under different geological 

scenarios are presented in this section. We call the seismic response computed from 

the poroelastic reflection as “poroelastic seismic response”, and the seismic response 

computed from the elastic reflection is referred to “elastic seismic response”. It is 

found that the poroelastic effect affects the seismic impulse responses in terms of both 

seismic amplitude and phase angle. This finding is particularly interesting, because it 

demonstrates that the poroelastic reflection due to wave-induced fluid flow not only 
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affects the quantitative seismic interpretation, but also influences the accuracy of 

seismic imaging. Be aware that we are still concentrating on the interface effect, and 

the propagation effect due to the attenuation caused by wave-induced fluid flow is not 

discussed here. As we will show later in this section, under different reasonable 

geological circumstances, the poroelastic effect shows quite different impact on 

seismic responses.  

 

 

 
 

Figure 5.7. Ricker wavelets with different central frequencies used to simulate 

synthetic seismic trace.  

 

Model 1 

     For the geological scenario associated with Class I AVO response, the comparison 

of elastic seismic response and poroelastic seismic response at normal and 30 degrees 

incident angle are shown in Figures 5.8 and 5.9, respectively. At normal incident 

angle, there is a noticeable phase shift for all the four poroelastic seismic synthetics. 
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Concerning the seismic amplitude as shown in Figure 5.10, the RMS (root-mean-

square) amplitude for the poroelastic impulse responses is bigger than that of elastic 

impulse responses. Additionally, the amplitude differences increase with the central 

frequency of source wavelet.  This is mainly due to the low-frequency dim-spot for 

Class I AVF. However, as illustrated in Figure 5.8(b), the frequency content of the 

poroelastic seismic response shows no appreciable change. 

     The poroelastic impact on the seismic responses becomes pronounced for the large 

incident angle. As shown on Figure 5.11, it turns out that the RMS amplitude 

discrepancy between the elastic impulse response and porelastic impulse response 

increases with frequency, and can reach as high as 65%.  More importantly, the 

significant phase shift will influence the accuracy of seismically imaging the 

geological structure. Additionally, reflection dispersion causes central frequency of 

the poroelastic impulse response shift to lower frequency domain with a remarkable 

degree, and consequently distorts the frequency content of the seismic data.  
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Figure 5.8. (a) Model 1 (Class I AVO) impulse responses convolved with 10-, 30-, 

50-, and 80-Hz Ricker wavelets; black lines indicate synthetic seismic computed from 

elastic reflections at normal incident angle; red lines indicate synthetic seismic 

computed from poroelastic reflections at normal incident angle.  (b) Normalized 

spectrum comparisons for impulse responses convolved with elastic reflection (black 

line) and poroelastic reflection (red line).  
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Figure 5.9. (a) Model 1 (Class I  AVO) impulse responses convolved with 10-, 30-, 

50-, and 80-Hz Ricker wavelets;  black lines indicate synthetic seismic computed 

from elastic reflection at 30 degrees incident angle; red lines indicate synthetic 

seismic computed from poroelastic reflections at 30 degrees incident angle. (b) 

Normalized spectrum comparisons for impulse responses convolved with elastic 

reflection (black line) and poroelastic reflection (red line).  
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Figure 5.10. RMS amplitude ratio of poroelastic impulse responses over elastic 

impulse responses at normal incident angle for Class I AVO geological scenario.  

 

 

Figure 5.11. RMS amplitude ratio of poroelastic impulse responses over elastic 

impulse responses at 30 degrees incident angle for Class I AVO geological scenario.  
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Model 2 

     For the geological scenario associated with Class II AVO response, the 

comparisons of elastic seismic responses and poroelastic seismic responses are shown 

in Figures 5.12 and 5.13. At normal incident angle, the poroelastic reflection 

considerably modifies the shape of the seismic wavelet. There exists a phase reversal 

trend when the central frequency of the source wavelet increases from 10Hz to 80 Hz. 

This is mainly caused by the phase reversal phenomenon associated with Class II 

AVF. Also, as illustrated in Figure 5.14, the RMS amplitude for the poroelastic 

impulse response is weakened at low frequency domain, but is enhanced at high 

frequency domain. Note that this result seems to contradict the reflectivity amplitude 

variation trend with frequency at normal incident angle. The possible explanation is 

that the significant phase variation changes the RMS amplitude of seismic trace. 

Additionally, as illustrated in Figure 5.13(b), the central frequency of the poroelastic 

seismic response shifts to lower frequency domain, except the source wavelet 

centered at 10Hz which is shifted to a slightly higher frequency domain.  At 30 

degrees incident angle, it is found that the elastic responses and poroelastic responses 

are pretty consistent with each other. Generally, the RMS amplitudes of the 

poroelastic responses are smaller than that of elastic impulse responses as shown on 

Figure 5.15. This is because, at this incident angle, reflection amplitude of high 

frequency component is smaller than that of low frequency component (Figure 5.6(b)). 

Moreover, as illustrated in Figure 5.15(b), the central frequency of poroelastic 

response slightly shifts to the lower frequency domain. 
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Figure 5.12. (a) Model 2 (Class II AVO response) impulse responses convolved with 

10-, 30-, 50-, and 80-Hz Ricker wavelets; black lines indicate synthetic seismic 

computed from elastic reflections at normal incident angle; red lines indicate 

synthetic seismic computed from poroelastic reflections at normal incident angle. (b) 

Normalized spectrum comparisons for impulse responses convolved with elastic 

reflection (black line) and poroelastic reflection (red line).  
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Figure 5.13. (a) Model 2 (Class II AVO response) impulse responses convolved with 

10-, 30-, 50-, and 80-Hz Ricker wavelets; black lines indicate synthetic seismic 

computed from elastic reflection at 30 degrees incident angle; red lines indicate 

synthetic seismic computed from poroelastic reflections at 30 degrees incident angle. 

(b) Normalized spectrum comparisons for impulse responses convolved with elastic 

reflection (black line) and poroelastic reflection (red line).  
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Figure 5.14. RMS amplitude ratios of poroelastic impulse responses over elastic 

impulse responses at normal incident angle for Class II AVO geological scenario.  

 

 

Figure 5.15. RMS amplitude ratios of poroelastic impulse responses over elastic 

impulse responses at 30 degrees incident angle for Class II AVO geological scenario.   
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Model 3 

The poroelastic responses for the geological scenario associated with Class III 

AVO at normal and 30 degree incident angle are shown in Figure 5.16 and 5.17, 

respectively. At both normal and 30 degrees incident angle, the waveforms of the 

poroelastic impulse response are quite consistent with those of the elastic impulse 

responses. However, as illustrated in the Figure 5.18 and Figure 5.19, there is a non-

negligible amplitude decay caused by the poroelastic effect, and this impact is more 

influential at normal incident angle.  This is intimately associated with the low-

frequency bright-spot which corresponds to Class III AVF. As a result, such a 

discrepancy will bring uncertainty for quantitative seismic amplitude interpretation in 

terms of porosity, water saturation, and so forth.   
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Figure 5.16. (a) Model 3 (Class III AVO response) impulse responses convolved with 

10-, 30-, 50-, and 80-Hz Ricker wavelets; black lines indicate synthetic seismic 

computed from elastic reflection at normal incident angle; red lines indicate synthetic 

seismic computed from poroelastic reflections at normal incident angle. (b) 

Normalized spectrum comparisons for impulse response convolved with elastic 

reflection (black line) and poroelastic reflection (red line).  
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Figure 5.17. (a) Model 3 (Class III AVO response) impulse responses convolved with 

10-, 30-, 50-, and 80-Hz Ricker wavelets; black lines indicate synthetic seismic 

computed from elastic reflection at 30 degrees incident angle; red lines indicate 

synthetic seismic computed from poroelastic reflections at normal incident angle. (b) 

Normalized spectrum comparisons for impulse responses convolved with elastic 

reflection (black line) and poroelastic reflection (red line).  



 

189 

 

 

 

Figure 5.18 RMS amplitude ratios of poroelastic impulse responses over elastic 

impulse responses at normal incident angle for Class III AVO geological scenario.  

 

 
 

Figure 5.19 RMS amplitude ratios of poroelastic impulse responses over elastic 

impulse responses at 30 degrees incident angle for Class III AVO geological scenario.  
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5.6 Permeability Impact on Seismic Properties  

 

     In this section, we investigate the effect of permeability on poroelastic seismic 

attributes for different reservoir scenarios.  

 

5.6.1 High Permeability Dim-spot Reservoir  

       Given the geological scenario of model 1, the magnitude and phase angle of fast 

PP reflectivity plotted as a function of frequency are shown in Figure 5.20. The lower 

permeability makes the minimum reflection amplitude and peak phase variation take 

place at lower frequency domain. Figure 5.21 illustrates the relationship of reflection 

amplitude and phase angle versus permeability. Clearly, high permeability weakens 

the seismic reflection amplitude and mitigates the phase variation in the seismic 

exploration band. The seismic responses are not sensitive to permeability variation at 

very low and high permeability ranges. In other words, the characteristic frequency of 

heterogeneous structure which corresponds to both very low and high permeability is 

beyond the seismic exploration band. However, for the permeability that ranges from 

10
-3 

D to 10
-1 

D, the reflection amplitude almost linearly decreases with permeability. 

In addition, the high-frequency component of reflection amplitude tends to be 

stronger. For example, when the permeability is 10
-2 

D, the high-frequency amplitude 

is 25% stronger than the low-frequency amplitude. Figure 5.22 illustrates the 

poroelastic seismic responses for reservoir rocks with different permeability. As 

expected, the seismic amplitude evidently decreases with an increase of permeability.  

Also, it is interesting to see that the amplitude of elastic response is stronger than that 
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of poroelastic seismic response with higher permeability, but it is weaker than that of 

poroelastic seismic response with lower permeability.  

 

 

Figure 5.20. (a) Magnitude and (b) phase angle of fast PP poroelastic reflection versus 

frequency at normal incident angle with different matrix permeability k1. The 
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geological scenario corresponds to Class I AVO response. The black dashed line 

indicates the amplitude and phase angle of elastic reflection.  
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Figure 5.21. (a) Magnitude and (b) phase angle of fast PP poroelastic reflection versus 

permeability at normal incident angle for specific frequencies. The geological 

scenario corresponds to Class I AVO response. The red dashed line indicates the 

amplitude and phase angle of elastic reflection.  

 

Figure 5.22. Poroelastic seismic synthetics (30-Hz Ricker wavelet) at normal incident 

angle for permeabilities (10
-3 

D, 10
-2 

D, 10
-1 

D, and 1 D). The left-most trace indicates 

the elastic seismic response. The geological scenario corresponds to Class I AVO 

response.  

 

5.6.2 Permeability-dependent Phase-reversal Reservoir  

        Figure 5.23 illustrates the effect of permeability on the reflection amplitude and 

phase angle for the geological circumstance corresponding to Class II AVO response. 

It turns out that the significant phase variation complicates the amplitude-versus-

frequency relationship. Figure 5.24 illustrates the relationship of both reflection 
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amplitude and phase angle with permeability variation. In general, the high 

permeability enhances the reflection amplitude. But for very low permeability range, 

say from 10
-4 

D to 10
-3 

D, the seismic amplitude slightly decreases with an increase of 

permeability. Additionally, be aware that the seismic amplitude for reservoir rocks 

with 1 D permeability is 2 times stronger than the reservoir rocks with 10
-3 

D. As 

illustrated in Figure 5.24(b), the most prominent feature for this geological scenario is 

that the phase angle exhibits a reversal trend when permeability varies in a wide range. 

In seismic exploration band, the poroelastic reflection have an almost zero phase 

angle for the low permeability rock, while the phase angle approaches to negative 180 

degrees when the permeability goes to 1 D.  The synthetic poroelastic seismic 

responses are displayed in Figure 5.25, the seismic trace exhibits a dramatic variation 

in terms of both amplitude and phase angle. The phase polarity for the poroelastic 

seismic synthetic goes from positive to negative when permeability changes from 10
-3 

D to 1 D. Also, the seismic energy of poroelastic reflection for high-permeability 

reservoir rocks is much higher than the case with low permeability rock.  
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Figure 5.23 (a) Magnitude and (b) phase angle of fast PP poroelastic reflection versus 

frequency at normal incident angle with different matrix permeability k1. The 

geological scenario corresponds to Class II AVO response. The black dashed line 

indicates the amplitude and phase angle of elastic reflection.  
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Figure 5.24 (a) Magnitude and (b) phase angle of fast PP poroelastic reflection versus 

permeability at normal incident angle for specific frequencies. The geological 

scenario corresponds to Class II AVO response. The red dashed line indicates the 

amplitude and phase angle of elastic reflection.  



 

197 

 

 

Figure 5.25 Poroelastic seismic synthetics (30-Hz Ricker wavelet) at normal incident 

angle for 4 permeabilities (10
-3 

D, 10
-2 

D, 10
-1 

D, and 1 D). The left-most trace 

indicates the elastic seismic response. The geological scenario corresponds to Class II 

AVO response.  

 

5.6.3 High Permeability Bright-spot Reservoir  

        Figures 5.26 and 5.27 illustrate the effect of permeability on the reflection 

amplitude and phase angle for the geological scenario corresponding to Class III 

AVO response. Similar to the poroelastic response for Class I AVO reservoir rocks, 

the reflection is not sensitive to permeability variation in the both very low and high 

permeability ranges. For permeability ranging from 10
-3 

D to 10
-1 

D, we find that the 

seismic amplitude increases with permeability in an almost linear manner. 

Consequently, seismic reflections present a bright spot for the reservoir rocks having 

high permeability. The poroelastic seismic synthetic as shown on Figure 5.28 clearly 

shows an amplitude increase trend with an increase of permeability.  
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Figure 5.26. (a) Magnitude and (b) phase angle of fast PP poroelastic reflection versus 

frequency at normal incident angle with different matrix permeability k1. The 

geological scenario corresponds to Class III AVO response. The black dashed line 

indicates the amplitude and phase angle of elastic reflection.  
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Figure 5.27. (a) Magnitude and (b) phase angle of fast PP poroelastic reflection versus 

permeability at normal incident angle for specific frequencies. The geological 

scenario corresponds to Class III AVO response. The red dashed line indicates the 

amplitude and phase angle of elastic reflection.  
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Figure 5.28. Poroelastic seismic synthetics (30-Hz Ricker wavelet) at normal incident 

angle for 4 permeabilities (10
-3 

D, 10
-2 

D, 10
-1 

D, and 1 D). The left-most trace 

indicates the elastic seismic response. The geological scenario corresponds to Class 

III AVO response.  

 

5.6.4 Seismic-sensitive Permeability Zone 

           In this section, we demonstrate that seismic reflection is a function of 

permeability for each frequency component. Interestingly, it is found that the curve 

shape of amplitude-permeability relationship is similar to that of velocity dispersion 

relationship. Correspondingly, the curve shape of phase-permeability relationship is 

similar to that of attenuation-frequency relationship. Permeability appears to behave 

in a similar way as frequency does. Indeed, it is believed that the varying permeability 

can be considered to mimic the frequency effect. In other words, to emulate 

dispersive effects, it is possible to merely change the permeability or fluid viscosity 
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rather than changing the observational frequency. From a phenomenological 

perspective, the high permeability corresponds to low frequency, where the pore 

pressure tends to be equilibrated; the low permeability corresponds to high frequency, 

where the pore pressure is difficult to be equilibrated. That is why the low-frequency 

bright-spot corresponds to high-permeability bright-spot for the Class III AVF 

reservoir environment, while the low-frequency dim-spot corresponds to high-

permeability dim-spot for Class I AVF reservoir environment.  

        Besides, the characteristic frequency of mesoscopic flow is given in equation 

4.32: 

                                                     2

f

c

K
f

L



 
  . 

Consequently, it is easy to define this seismic-sensitive permeability:  

                                    2

fs
s

Kf

L


 
 .                                      (5.3) 

It has a clear physical explanation: for a given frequency at seismic exploration band, 

the seismic-sensitive permeability corresponds to the mesoscopic heterogeneities 

structure, which just causes the pore pressure to equilibrate in one cycle given by 

seismic frequency band sf . If the reservoir permeability is not in the vicinity of 

seismic-sensitive permeability, the seismic attributes are not sensitive to the 

permeability variation. However, it is not easy to predict the seismic-sensitive 

permeability, since the average heterogeneity size is usually poorly determined.  
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5.7 Combined Effect of VTI Anisotropy and WIFF on Reflection Coefficients  

     One explicit assumption in our study is that we restrict our consideration to the 

case of isotropic medium. The presence of anisotropy will make the wave propagation 

characteristic in heterogeneous poroelastic medium more complicated.  Here, we give 

a simple analysis regarding the impact of the VTI anisotropy on the poroelastic 

reflection.   

     Ruger (1997) showed that a vertical transversely isotropic term could be added to 

the Aki-Richards’ equation using Thomsen’s weak anisotropic parameters   and  : 

  

2 2 2( ) ( ) sin sin tan ,
2 2

VTI isR R
 

    
 

            (5.4) 

where 2 1     , 2 1     ; ( )VTIR   is the anisotropic AVO response and ( )isR   

is the isotropic AVO response.  

      To facilitate the analysis, we can add a poroelastic term on the reflection 

coefficients as: 

                            2 2 2( , ) ( ) sin sin tan ( , ),
2 2

VTI is flowR f R R f
 

     
 

         (5.6) 

         Remember that the anisotropy in underlying sandstone is usually much weaker 

than the overburden shale. This is especially true if the overburden shale is organic 

rich (Vernik et al., 1994; Bandyopadhyay, 2009; Yan et al., 2011). That is to say, we 

have both 2 1 0       and 2 1 0      . Therefore, when the reflection 

coefficient is positive, the VTI anisotropy weakens the seismic amplitude; when the 

reflection coefficient is negative, it enhances the amplitude. However, the poroelastic 

effect will enhance the seismic amplitude when the reflection coefficient is positive, 
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but it weakens the seismic amplitude when the reflection coefficient is negative. 

Hence, as illustrated in Figure 5.29, it is interesting to see that the anisotropy and 

WIFF have an opposite effect on seismic amplitude for the given geological scenario 

discussed here. The combined effects depend on both the extent of anisotropy and 

heterogeneity of the reservoir rocks. The quantitative evaluation of combined effect 

will be investigated in the future study.  

 

Figure 5.29. A schematic illustration of the VTI Anisotropy and WIFF impact on the 

reflection coefficients.  

 

Nevertheless, several points should be discussed here: 

1) The anisotropic effect is negligible at near incident angle, but the WIFF effect 

might be nonnegligible. 

2) The anisotropic effect increases with an increase of incident angle, but the 

WIFF effect only increases slightly according to the previous analysis.  
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3) If the reservoir anisotropy is stronger than the overburden anisotropy, e.g. the 

unconventional organic-rich shale reservoirs, both the WIFF and anisotropy 

effect will influence the seismic amplitude in the same direction.  

 

5.8 Discussion 

     In Chapter 4, we demonstrate the extent of phase shift is intimately related to the 

amount of attenuation (1/Q) contrast across the poroelastic contact. Here, we will 

discuss what factors decide the polarity of the phase shift, namely, phase advance or 

phase delay. First of all, as illustrated in Figure 5.30, the phase shifts due to effect of 

local flow and global flow always have an opposite trend. For example, for Model 1, 

the local flow yields a phase delay in the seismic frequency domain, while the global 

flow clearly gives rise to a phase advance in the ultrasonic frequency domain. The 

similar phenomenon is observed for the dispersion behavior of Model 3. Secondly, it 

is evident to see that the phase shift for Model 1 and Model 3 have an opposite trend. 

The Biot flow-induced phase shift can be explained by the equation of poroelastic 

reflection coefficients in Biot media (Bourbie et al., 1987).  

1

0 0

1
(1 )exp( tan )

1

Z
R i

Z
 

 


,                                                       (5.6) 
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,                                                  (5.7) 

where R  indicates the reflection coefficients at normal incident angle in Biot media; 

1

c  and 
2

c  represent the characteristic frequency of the upper medium and lower 
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medium, respectively; and Z is the ratio of the acoustic impedance in the lower 

medium over that in the upper medium. Here, m  can be expressed as: 

( 1,2)
2

i i
i

i i

M
m i



 
 


,                               (5.8) 

where  and M are the coefficients of Biot theory (see Chapter 3). 

     It is clear that the phase angle is determined by 0 , in which the polarity is 

controlled by the impedance ratio as dictated in equation 5.8. In other words, the 

polarity of phase shift at normal incident angle is controlled by the polarity of elastic 

reflection coefficients. This explains why the phased shift caused by global flow 

shows an opposite trend for Model 1 and Model 3. It is believed that the phase shift 

generated by local flow is also controlled by impedance contrast across the interface. 

However, such a dependence on the impedance contrast for the phase shift caused by 

local flow is opposite to that caused by global flow. This also explains why we 

observe the phase-shift behavior of Class II AVO scenario is consistent with that of 

Class III AVO scenario in the frequency range when the sandstone impedance is 

smaller than the overburden shale impedance (Figure 5.4(b)). However, when the 

dispersion effect cause the impedance of sandstone exceeds the impedance of 

overburden shale, the phase-shift behavior of Class II AVO scenario is gradually in 

agreement with Class I AVO scenario (Figure 5.4(b)). 
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Figure 5.30. Phase-shift versus frequency for the geological scenario corresponding to 

Class 1 AVO (black square) and Class 3 AVO (green triangle). 

 

     It is well known that the AVO gradient information is strongly dependent on the 

Vp/Vs ratio. Therefore, the shear-wave dispersion characteristics play an important 

role in understanding the frequency-dependent AVO signatures. Shear-wave 

dispersion caused by global flow can be calculated on the basis of Biot’s poroelastic 

wave propagation (Biot 1956a, 1956b; 1962). Despite the fact that S-wave dispersion 

and attenuation due to local flow has been experimentally observed (Batzle et al., 

2006; Adam et al., 2006; Han and Yao, 2009) and numerical simulated (Masson and 

Pride, 2007; Rubino et al., 2009; Wenzlau et al., 2010; Quintal et al., 2012), physical 

mechanism standing behind it is not very clear yet. Many poroelastic models have 

been proposed to quantify P-wave attenuation in fully-saturated elastically 

heterogeneous media or partial-saturated media, however no analytical solution 
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concerning the S-wave attenuation is developed. In this study, to characterize the 

shear-wave dispersion caused by local flow, we use Mavko-Jizba relationship (Mavko 

and Jizba, 1991) to roughly estimate the shear modulus dispersion from the bulk 

modulus dispersion. The accurate description about the shear-wave dispersion in a 

heterogeneous porous composite should be investigated in the future. 

 

     The poroelastic seismic response is a combined product of source wavelet and 

poroelastic reflection. As we demonstrate in section 5, even sometimes the reflectivity 

show significant dispersion, the central frequency content is difficult to be shifted. 

Consequently, to facilitate the application of poroelastic reflection, it is better to look 

at the reflectivity spectrum rather than spectrum of seismic data. To achieve this goal, 

we can first de-convolve the seismic wavelet into the reflectivity series, and then 

perform spectral decomposition on those reflectivity series.  

 

5.9 Conclusions 

      In the present work, we have extended our analysis from the classical AVO study 

to frequency and angle-dependent poroelastic reflectivity, thereby providing new 

insights for reservoir imaging and characterization. Our conclusion can be 

summarized as follows: 

1) According to the spectral signatures of poroelastic reflection under different 

geological circumstances, we classify three types of amplitude-versus-

frequency features: Class I AVF refers to low-frequency dim-out reservoirs; 
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Class II AVF refers to phase-reversal reservoirs; and Class III AVF refers to 

low-frequency bright-spot reservoirs.  

2) . I further demonstrate that the AVO response at the interface is strongly 

impacted by the reflection dispersion behavior: the bright spot (Class III AVO) 

get brighter at lower frequency, the dim spot (Class I AVO) get dimmer at 

lower frequency, and the Class II AVO reservoir exhibit significant phase 

distortion in frequency domain. 

3) Poroelastic effect due to WIFF does not change the AVO trend, but slightly 

diminishes the AVO gradient. More importantly, it makes the phase angle of 

seismic reflectivity vary with offset, while phase angle is considered to be 

constant for elastic reflection. For Class I and Class III AVO, the phase 

variation is small and generally increases with incident angle. For Class II 

AVO, a dramatic phase variation takes place from near offset to far offset.  

4) We demonstrate that the poroelastic reflection can significantly affect the 

seismic responses. It not only influences the RMS amplitude of seismic 

wiggles, but also yields a noticeable phase shift compared with purely elastic 

seismic responses. This suggests an accurate seismic imaging and a 

quantitative seismic interpretation should be calibrated by the poroelastic 

effect. However, in most case, the central frequency of poroelastic seismic 

response is still controlled by source wavelet. 

5) It is found that, for certain permeability ranges (10
-3 

D to 10
-1 

D), seismic 

amplitude can exhibit an almost linear relationship with permeability variation. 

For Class III AVO reservoir environment, high fluid mobility zones usually 
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enhance the seismic amplitude; whereas for Class I AVO reservoir 

environment, high fluid mobility zones weakens the seismic amplitude.  

6) We suggest all detailed reservoir imaging and characterizations work, 

especially for highly heterogeneous or patchy-saturated reservoirs, should 

attempt to account for dispersion effect due to WIFF. Nevertheless, this is not 

an easy task in the real world because of the difficulty in prescribing 

appropriate physical parameters. 
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Chapter 6 

Poroelastic Seismic Interpretation:  A Real Case Study 

 

6.1 Abstract 

    In this chapter, we present a field case study regarding the seismic reflection dispersion 

due to wave-induced fluid flow in a heterogeneous carbonate reservoir, offshore Brazil. 

We propose and implement a workflow to illuminate the poroelastic reflection 

characteristics from real seismic, by removing the background frequency trend that is 

attributed to both propagation effect of attenuation and tuning effect. We found that the 

poroelastic reflection from the interface of interest at the location of well A and well B 

exhibits considerably different frequency behavior. We explain that such a discrepancy is 

likely to be caused by the fact that the fluid mobility in the underlain grainstone at well A 

is remarkably different from that in the underlain packstone  at well B. The case study 

here promises a solution to determine hydraulic properties from field seismic, which is 

often considered to be extremely challenging.  

6.2 Introduction 

     The poroelastic reflection, representing primarily contrast of the poroelastic responses 

between individual layers, contains information about the dispersive and attenuative 

characteristics of the heterogeneous rocks. It consequently alters the amplitude, phase as 

well as frequency content of seismic wiggles.  Understanding and interpreting poroelastic 

reflection signatures is of great interest, because they potentially convey the important 
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message about rock’s fluid mobility and heterogeneity features, which cannot be gained 

from classical seismic interpretation on the basis of the elasticity.  

     In the past decades, the poroelastic reflection signatures such as “low frequency 

anomaly” already have been employed to interpret field data by correlating spectral 

anomalies to the presence of hydrocarbon reservoirs (e.g., Taner et al., 1979; Klimentos, 

1995; Dasgupta and Clark, 1998; Maultzsch et al., 2003; Castagna et al., 2003; Ebrom, 

2004; Rapoport et al., 2004; Korneev et al., 2004, Goloshubin et al., 2006; Tai, 2009).  

However, most of them are qualitative and empirical. The aim of the work reported here 

is to quantitatively understand and analyze the seismic reflection dispersion due to the 

wave induced fluid flow through a case study in a heterogeneous carbonate reservoir, 

Campos Basin, Offshore Brazil.  

     Since the poroelastic reflection is a function of frequency, it naturally comes up with 

using spectral decomposition methods (Chakraborty and Okaya, 1995; Partyka et al., 

1999; Castagna et al., 2003), which break down the seismic signal into its component 

frequencies, to analyze the reflection dispersion signatures.  However, it is not an easy 

task, because many factors can contribute to the seismic spectral anomalies. Two most 

prominent contributions probably come from the propagation effect of attenuation and 

tuning effect.  In addition to influencing the seismic reflectivity at the poroelastic contact, 

attenuation can significantly affect the wave propagation by decaying the seismic 

amplitude and modifying the frequency and phase content of the propagating wavelet 

(Jones, 1986; Samec and Blangy, 1994).  Moreover, the seismic amplitude can exhibit 

considerable variation with frequency due to the tuning effect (Widess, 1973). Hence, to 
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study the reflection dispersion due to WIFF on the basis of seismic spectral signatures, it 

is important to separate the seismic spectral variation due to the tuning and attenuation 

effect. In this chapter, we use the non-stationary convolution model (Clark, 1968; 

Margrave, 1998) to take into account the propagation effect of attenuation and tuning 

effect on the 1D seismic trace. 

     The detailed procedures to associate the poroelastic reflection to the reservoir rock 

sand fluid properties are introduced in Chapter 4. However, when dealing with the real 

field data, the main difficulty lies in prescribing appropriate physical parameters, such as 

quantitative description of pore structure, heterogeneity features, fluid mobility 

information, and so on.   Theoretically, all those physical parameters should be calibrated 

by core information, lab measurement, or well log measurement. But in the real world, it 

is often unrealistic to accurately obtain all the necessary parameters for the modeling or 

inversion work.  In this study, we integrate surface seismic, well log data, core 

measurement, FMI imaging, petrophysical interpretation, and geological information to 

fully characterize the reservoir rock and fluid properties as much as possible.  

      The primary goal of this study is to demonstrate the methodology defined in Chapter 

4 on a real case study. This chapter is organized as follows: First, we provide a 

descriptive overview of the geologic background and data sets. The reflection from the 

interface between the contrasting heterogeneous lithofacies will be also investigated; 

Then, to highlight the spectral anomaly in seismic data due to the  poroelastic 

reflection, we perform the non-stationary convolution model to isolate the seismic 

dispersion signature that is caused by propagation effect of attenuation and tuning 
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effect; Finally, we theoretically simulate the poroelastic reflection coefficient to 

understand the seismic spectral signatures that are observed from the real seismic data.  

6.3 Background and Reservoir Properties Description 

6.3.1 Geological Background 

     The studied field is a Cretaceous carbonate reservoir located at the Campos Basin, 

which was formed during the breakup of Gowana when Africa was separated from South 

America about 120 to 130 Ma (Mohriak and Dewey, 1987; Mohriak et al., 1987; 

Ogiesoba et al., 2011). The acknowledged depositional environments pertaining to the 

Cretaceous strata in the campos Basin is a series of epi-continental rift lake basins during 

Barremian-Aptain time, with or without occasional marine incursions dependent on 

location. These incursions become important during a period of transition between rifting 

and drifting and a thick evaporitic unit was deposited in upper Aptain (115 Ma). As 

marine conditions became established in the Albian, deposition occurred mainly within a 

large carbonate platform/shelf comprising a number of sub-environments. Proximally, 

Albian carbonates are deposited from higher energy shallower-water conditions in the 

early Albian (112–108 Ma), to lower energy lagoonal or central platform settings by late 

Albian times (102–100 Ma) (Ogiesoba et al., 2011; Zhao et al., 2013). During the 

Cenomanian/Turonian (100–90 Ma), this platform was gradually drowned and marl and 

shale sediments took over in an outer-neritic environment. During the late Cretaceous, the 

deeper marine conditions became established, with the deposition of fine-grained clastics 

and turbidites in bathyal to abyssal environments.  
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     In this study, emphasis will be placed on the seismic reflection between the Albian 

carbonate and the overburden marlstone. The near-angle stacked seismic data in the 

target zone is shown in Figure 6.1, and the observations from well A and B are displayed 

as a function of depth in the Figures 6.2 and 6.3, respectively. The oil accumulations are 

mainly trapped in the Albian carbonates formation, and underlies the marlstone formation. 

The interpreted horizons are highlighted on the seismic section as shown on Figure 6.1, in 

which the purple line indicates the reflection (peak amplitude) from the boundary 

between the overlying marlstone and underlying Albian carbonate. Our attention will be 

concentrated on the characteristic of this reflection at the location of well A as well as 

well B. As marked on the stacked seismic image, well A is located at the position of CDP 

367, and well B is located at the position of CDP 211. The blue line refers the reflection 

(peak amplitude) at the interface between the porous upper limestone unit and the tight 

lower dolostone unit within the Albian carbonate formation.  

6.3.2 Lithofacies and Heterogeneity Description 

     As displayed in Figure 6.2, the marlstone is found between the depths of 2611m to 

2721m in the well A and 2350m to 2396m in the Well B. Marlstone represents lime-rich 

mud or muddy limestone which contains variable amounts of clays and silt. It is often 

related to the lacustrine/rift lake environments, which represent low energy, basinal 

setting with frequent occurences of water fills.  
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Figure 6.1. Section of the near-angle stacked seismic data. Well A is located at the 

position of CDP 367, and well B is located at the position of CDP 211.  

     The lithofacies delineation is based on the analysis of well log, interpretation of FMI 

imaging log, and core description. It is found that the limestone occurring in the Albian 

carbonate formation in well A (2721m-2883m) is quite different from that in well B 

(2396m-2547m), and this is mainly caused by the different depositional environment. 

The Albian limestone formation in the well A is more related to the higher energy setting, 

possibly at platform margins or highs where shoaling and spillover generated ooid and 

sketetal grainstone due to dominant influence of wave and/or current activity. By contrast, 

the depositional setting of limestone formation in the well B is more associated with the 

low energy environment, possibly in a lagoonal or central platform setting dominated by 

bedded to laminated sediments such as peloidal-bioclastic packstone. The core and 
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cuttings description also show that the pore fabric of Albian limestone unit of well A is 

grain-supported and lacks mud, while the grain size in Albian limestone unit of well B is 

much smaller and part of the intergrain spaces is filled with mud. 

 

Figure 6.2. Log data from well A in the carbonate reservoir offshore Brazil provide by 

Maersk Oil. The lithology content, P-wave velocity, S-wave velocity, density, bulk 

porosity, and water saturation are displayed as a function of time converted from depth.  

      Additionally, based on the petrophysical interpretation of lithology content (most left 

column in the Figure 6.2 and 6.3), more shale content is found in the Albian limestone 

unit of well B. Instead, the Albian limestone unit in well A is much cleaner with less 

shale content. In order to facilitate the further analysis, according to the Dunham 

classification system for carbonate sedimentary rocks (Dunham, 1962), we define the 
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Albian limestone unit in well A as grainstone, and the Albian limestone unit in well B as 

packstone. The lithofacies correlation of  well A and well B is displayed in Figure 6.4.  

 

Figure 6.3. Log data from well B in the carbonate reservoir offshore Brazil provided by 

Maersk Oil. The lithology content, P-wave velocity, S-wave velocity, density, bulk 

porosity, and water saturation are displayed as a function of time converted from depth. 

     Geological observations from the FMI imaging log and core description suggest 

that the overburden marlstone and Albian carboante reservoir are both highly 

heterogeneous, which are likely due to the extensive diagenesis after deposition, such as 

dissolution, compaction, dolomization, and fracturing. The strong heterogeneities can 

be illustrated by the OMRI-CAST imaging log in Figure 6.5.  Figure 6.5(a), (b), and 

(c) indicate that vuggy porosity and potentially open fractures frequently occur in the 
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marlstone formation. Another pronounced feature in the marlstone formation is that 

the carbonate mud is often mixed with siliciclastic, exhibiting extreme variation in 

terms of grain size and sediment origin. Figure 6.5(d), (e), and (f) correspond to the 

Albian limestone formation, in which we can observe complex fracture network and 

variable degrees of vuggy/moldic porosity. In general, for the heterogeneous porosity in 

carbonates, vugs or moldic porosities are often formed from dissolution processes by 

selectively dissolving grains composed of unstable minerals (Lucia, 1999; Zhao et al., 

2013), and the fracturing is closely related to overburden and differential compaction, 

massive dissolution and collapse. 

 

Figure 6.4. Lithofacies correlation between the well A and well B. 
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6.3.3 Fluid Mobility Characteristics 

     In a fully saturated rock, fluid mobility, which characterizes fluid’s ability to move 

with the rock, is defined as (Bourbie et al., 1987; Batzle et al., 2006):  

                                                             
k

M


 ,                                                    (6.1) 

where k is permeability and   is viscosity.  For heterogeneous porous rocks, the fluid 

mobility often determines where the characteristic frequency to take place. For example, 

if fluid mobility is low, pore pressure takes a longer time to be equilibrated, and the 

characteristic frequency consequently shifts to lower frequency domain.  The properties 

of fluids in reservoir rocks are listed in Table 6.1, where the viscosity is estimated based 

on the equations in Standing (1962) and McCain (1990). 

       Figure 6.6 illustrates a cross plot between permeability and total porosity for the 

Albian carbonate based on the core analysis. The ooid grainstone presents higher 

permeability (several hundreds md) for the given porosity, which is mainly due to the 

bigger grain size of the grain-dominated fabric. Instead, the muddy limestone has very 

lower permeability (most below 1md). This can be understood, because most of the 

porosities in the muddy limestone are micro-porosity and act as a kind of separate vugs 

(Lucia, 1999; Han, 2004), which contribute little to the effective permeability. The 

permeability-porosity cross-plot of packstone is sitting between the grainstone and 

muddy limestone and exhibit considerably scattering relationship, which is likely to be 

caused by the variable size and mud content in the packstone.  
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Figure 6.5. OMRI-CAST borehole images in well A and well B used to illustrate the 

strong heterogeneities in the overburden marlstone and underlain limestone. Here, (a), (b), 

and (c) correspond to the marlstone formation, and (c), (d), and (e) correspond to the 

limestone formation. The data and interpretation are provided by Maersk Oil.  
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Table 6.1. Properties of fluids in reservoir rock from lab measurements. 

 

 

Figure 6.6. Permeability-porosity are cross-plotted for the Albian carbonate reservoir 

rocks. The permeability and porosity measurements are based on the core analysis.  

 

6.4 Illuminating the Poroelastic Reflections from Real Seismic 

     In order to illuminate the poroelastic reflection from real seismic data, it is critical to 

separate the other factors that might affect the frequency behavior of the propagating 



 

225 

 

wavelet. Here, we assume that seismic frequency content is mainly influenced by the 

propagation effect of attenuation, tuning effect, and poroelastic reflection effect. 

Therefore, to bring out the poroelastic reflection effect from real seismic data, it is 

necessary to remove the background spectral contents that come from the propagation 

effect of attenuation and tuning effect.  In this study, we use the non-stationary 

convolution model, which takes into account the propagation effect of attenuation and 

tuning effect, to compute the synthetic attenuated seismic trace. Then we compare the 

spectral of synthetic seismic with real seismic at interface of interest (the reflection at the 

interface between the overburden marlstone and Albian limestone).  The workflow we 

propose to illuminate the seismic frequency characteristic caused by poroelastic reflection 

is summarized in Figure 6.7. 

6.4.1 Non-stationary Convolution Model for Attenuated Seismic Trace 

     To compute the synthetic seismic from the velocity and density log, we use a 

convolution model that includes the source signature and the non-stationary effects of 

dissipation as predicted by the constant-Q model (Futterman, 1962; Kjartasson, 1979). Be 

aware that it does not explicitly accounts for multiples or stratigraphic filtering (. The 

non-stationary convolution model in the frequency domain (Margarve, 1998; Margrave 

and Lamourex, 2002) can be expressed as: 

             [ ]( ) ( ) ( , ) ( ) i t

QS W r e d       






   ,               (6.2)          
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where ( )W  is the fourier transform of wavelet; ( )r  is the reflectivity sequence and the 

constant-Q transfer function is: 

                                    

/2 ( /2 )( , ) Q iH Q

Q e       ,                                           (6.3)
 

where the real and imaginary components in the exponential part are connected through 

the Hilbert transform H . As a consequence, the attenuated 1D seismic trace in time 

domain can be obtained after inverse Fourier transformation on equation 6.2.  

 

 

Figure 6.7. Schematic illustration of a workflow used to illuminate the poroelastic 

reflection from real seismic data.   

 



 

227 

 

6.4.2 Comparison of Spectral Signatures  

     A comparison of field near-angle stacked seismic at the location of well A, with 

synthetic seismic trace computed from log data, is illustrated in Figure 6.8. The synthetic 

seismic trace is created from a zero phase Ricker wavelet with central frequency 25 Hz. 

As expected, the real seismic data have a pretty good match with the synthetic 

seismograms; the strong reflections are especially well correlated.  The elastic modeling 

result are in agreement with the visco-elastic modeling result when Q is 2000. However, 

small Q can cause a significant energy loss for seismic trace, especially when Q is 30 and 

10. Figure 6.9 shows the spectral decomposition results for the field seismic data as well 

as the attenuated seismic trace. It turns out that the propagation effect of attenuation 

gradually shifts the overall trend of peak frequency to lower frequency domain with an 

increase of depth. We also notice that the shifting trend of peak frequency (highlighted in 

Figure 6.9 (a)) of real seismic matches best with the that of synthetic attenuated seismic 

trace (highlighted in Figure 6.9 (c)) with Q=100. It should be noted that the Q value 

employed here is considered to roughly represent the attenuation effect during wave 

propagation. As we can see, if Q is too high (e.g. =2000), there still exists considerable 

high frequency component in the deeper depth; if Q is too small (e.g. =30), the high 

frequency component decreases so sharply that the central frequency shifts to very low 

frequency domain in the deeper depth. Both of these are not consistent with what we 

observe in the field seismic. That is why we take Q=100 to roughly represent the 

attenuation effect during wave propagation. Accordingly, we compare the spectrum of 

real seismic data with the synthetic seismograms for the reflection event at the interface 
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of overburden marlstone with underlain Albian limestone, which ranges from 2.1-2.15s in 

the seismic trace.  The difference of corresponding seismic spectral signatures between 

the field seismic trace and synthetic attenuated seismic trace is shown on Figure 6.10. 

Clearly, the attenuated seismic trace presents a peak frequency at 30Hz, while the peak 

frequency of field seismic takes place at around 20 Hz. We will demonstrate such salient 

discrepancy is likely to be caused by the reflection dispersion due to the wave-induced 

fluid flow.  

 

Figure 6.8. Comparisons of field seismic data at location of well A (CDP 366) with 

synthetic seismic trace at normal incident angle.  (a) Field near-angle stacked seismic, (b) 

elastic, (c) Q=2000, (d) Q=100, (e) Q=30, and (f) Q=10.  
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Figure 6.9. Spectral decomposition results of field seismic data at location of well A and 

attenuated seismic trace with different Q. 

 

Figure 6.10. Comparison of normalized seismic spectral signatures at the interface of 

interest for: (a) real seismic at the location of well A , and (b) the attenuated seismic trace 

(Q=100).  



 

230 

 

Similarly, a comparison of the field seismic trace at well location B with synthetic 

seismic trace computed from well log B is illustrated in Figure 6.11. The corresponding 

seismic spectral signature is displayed in Figure 6.12. We can observe that the seismic 

energy is lost during the wave propagation, but the peak frequency does not exhibit an 

obvious shift. It is also can be noticed that the spectral signatures of field seismic match 

best with the attenuated seismic trace when the Q is 100. Nonetheless, as shown in Figure 

6.13, we do not observe the evident seismic spectral anomaly at the depth around 1.95-

2.0 s, which corresponds to the reflection at the interface between the overburden 

marlstone with the underlain packstone.  

 

Figure 6.11. Comparisons of field seismic data at location of well B (CDP 211) with 

synthetic seismic trace at normal incident angle.  (a) Field near-angle stacked seismic, (b) 

elastic, (c) Q=2000, (d) Q=100, (e) Q=30, and (f) Q=10.  
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Figure 6.12. Spectral decomposition results of field seismic data at location of well B and 

attenuated seismic trace with different Q. 

 

Figure 6.13. Comparison of seismic spectral signatures at the interface of interest for: (a) 

real seismic at the location of well B, and (b) the attenuated seismic trace (Q=100). 
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6.5 Poroelastic Seismic Reflection Analysis Based on Theoretical Modeling  

     In the last section, by comparing the spectral signature of field seismic data with the 

synthetic attenuated seismograms, we observe a significant low frequency shifting for the 

reflection of interest at the location of well A. However, no noticeable phase shift is 

observed for the case at the location of well B. The purpose of this section is to use 

poroelastic reflection to interpret and analyze this observation. 

6.5.1 Velocity Dispersion and Attenuation Characteristics 

     In this section, we use double-porosity dual-permeability theory to model the velocity 

dispersion and attenuation characteristics for the overburden marlstone and underlain 

Albian carbonate. The minerals presenting in the rock are mixed using a Reuss-Voigt-

Hill average. We begin with a solid rock matrix having the properties of this mixture, 

which can be referenced to the lithology interpretation of well log data. The mineral 

matrix in the upper medium (marlstone) consists of 60% calcite, 25% quartz, and 15% 

clay, and the mineral matrix in the lower medium (limestone) consists of 95% calcite and 

5% clay. The values of the mineral bulk modulus sK , shear modulus s , and density s  

used in the computations  are listed in Table 6.2. 

     The dry-rock elastic moduli are computed using the differentiated effective 

medium theory in carbonate rocks (Xu and Payne, 2009; Mavko et al., 2009; Zhao et 

al., 2013). In this case, the pore space is assumed to consist of a combination of stiff 

pores (matrix porosity) and soft pores (micro-fractures) with aspect ratio 0.15 and 

0.005, respectively. Therefore, in the double-porosity dual-permeability system, the 
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host phase mainly consists of matrix porosity with lower permeability, while the 

heterogeneity phase includes the compliant micro-fractures and has higher 

permeability. The properties of the host phase (phase 1) and the heterogeneity phase 

(phase 2) for the marlstone and limestone are given in Table 6.3. Note that the only 

difference for the Albian limestone at well A and well B is the matrix permeability of 

the host phase. As previously illustrated in Figure 6.6, the Albian limestone unit in 

the well A is more accurately described as grainstone, and the permeability is 

consequently set as 200 md. By contrast, the Albian limestone unit in the well B is 

more associated with packstone, and the permeability is consequently set as 40 md. In 

addition, dK  and d  are the bulk and shear moduli of the drained rock frame;  s  is 

the density of mineral matrix;   is the porosity;   is the tortuosity parameter;   is 

the permeability; V indicates the volume fraction of the heterogeneities. For the sake 

of simplicity, the geometry of the heterogeneity phase is assumed as penny-shaped, 

with a  and   representing the size and aspect ratio of heterogeneities, respectively. 

For the fluid properties (Table 6.4),
fK ,

f , and   are the bulk modulus, density, and 

viscosity of the pore fluid respectively. 

Table 6.2. Mineral bulk modulus sK , shear modulus s , and density s  used in the 

calculations (references in Mavko et al., 2009). 

 Mineral  sK (GPa) s (GPa) s (g/cm
3
) 

   Calcite 76.8 32.0 271 

   Quartz 39 44 2.65 

    Clay 25 9 2.55 
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Table 6.3. The related parameters for rock frame properties of upper medium 

(marlstone) and lower medium (limestone). 

 

Parameter 

Rock frame properties 

Upper (marlstone) Lower (limestone) 

Phase 1 Phase 2 Phase 1 Phase 2 

    dK (GPa) 17.8 8.0 31.7 5.1 

    d (GPa) 14.6 7.0 19.1 4.4 

    V 0.92 0.08 0.80 0.20 

     0.04 0.05 0.12 0.15 

    (md) 0.1 100 200(A)/40(B) 1000 

    (m) 0.05 0.05 0.05 0.05 
     0.1 0.1 0.1 0.1 

     2.4 2 2.4 2 

 

Table 6.4. The related parameters for the pore fluid properties of upper medium 

(marlstone) and lower medium (limestone). 

 

Parameter 

Pore fluid properties 

Upper (marlstone) Lower (limestone) 

   
fK (GPa) 3.0 2.5 

  
f (kg/m

3
) 1.05 1.0 

     (cP) 5 10 

 

     The calculated frequency-dependent fast P-, slow P-, and shear-wave velocity and 

attenuation for the lithology to be investigated are shown in Figures 6.14, 6.15, and 

6.16, respectively. We observe that the three lithofacies to be investigated all show 

significant dispersion and attenuation. The considerable velocity increase found at the 
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lower frequency range corresponds to the dispersion effect due to the mesoscopic 

flow, while the slight ramp at the ultrasonic frequency corresponds to the Biot flow-

induced dispersion effect. The transitional frequency of the overburden marlstone, 

underlain grainstone at well A, and underlain packstone at well B differs from each 

other. This is mainly caused by the distinct differences of fluid viscosity and 

permeability among the three lithofacies. As expected, the velocity dispersion effect 

and wave attenuation due to mesoscopic flow are much higher than that induced by 

Biot flow. Moreover, the modeling velocity at high frequency is generally in 

agreement with the observed well logging data, suggesting that the modeling study 

reflects the realistic elastic properties of the reservoir rocks to a certain degree.  

6.5.2 Seismic Reflection Dispersion Analysis 

     Fast PP normal reflection coefficient for the interface of interest at the location of 

well A and well B is plotted against frequency as shown in Figure 6.17. The seismic 

reflectivity dispersion occurring at lower frequency corresponds to the mesoscopic 

flow, while the reflection dispersion taking place at higher frequency is caused by the 

Biot flow. It is found that the seismic reflection exhibits a significant dispersion effect 

at the interface of overburden marlstone and underlain grainstone at the position of 

well A. However, the seismic reflection dispersion effect is mitigated for the interface 

of overburden muddy limestone and underlain packstone at the position of well B. 

Such a discrepancy is mainly attributed to the difference of characteristic frequency 

between the grainstone and packstone. 
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Figure 6.14. (a) Phase velocity dispersion (b) Attenuation of the effective fast P-wave 

for the overburden muddy limestone, the underlain grainstone at well A, and the 

underlain packstone at well B.  
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Figure 6.15. (a) Phase velocity dispersion (b) Attenuation of the effective slow P-

wave for the overburden muddy limestone, the underlain grainstone at well A, and the 

underlain packstone at well B.  
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Figure 6.16. (a) Phase velocity dispersion (b) Attenuation of the effective shear-wave 

for the overburden muddy limestone, the underlain grainstone at well A, and the 

underlain packstone at well B.  
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     The amplitude-versus-angle relationship at the seismic exploration band is 

illustrated in Figures 6.18 and 6.19, respectively. Clearly, from 10 Hz to 50 Hz, 

seismic reflection at the interface of marlstone and grainstone (at well A) presents an 

evident decrease due to the wave-induced fluid flow. However, negligible dispersion 

effect can be observed at the interface of marlstone and packstone (at well B). 

Consequently, based on the spectrum of the seismic data before the interface of 

interest (time window is around 60ms) and the modeling poroelastic reflection, we 

can compute the spectrum signature of the interface of interest. The results are 

displayed on Figures 6.20 and 6.21, respectively. It turns out that the spectrum of 

poroelastic modeling is roughly in agreement with that of real seismic at both well A 

and well B. Although the curve shape of the poroelastic reflection spectrum is still 

different from that observed from the field seismic, the central frequency shifting 

trend shows considerable consistence. We believe that this likely explains the seismic 

spectral signature differences observed from the interface of interest at well A and 

well B.  
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Figure 6.17. Fast PP reflectivity for the interface of interest at the position of well A 

and well B as a function of frequency at normal incidence angle. The dashed line 

indicates PP reflection coefficients computed based on Zoeppritz equation.  

 

Figure 6.18. Fast PP reflectivity for the interface of interest at well A as a function of 

incident angle with different frequency in the seismic exploration band.  
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Figure 6.19. Fast PP reflectivity for the interface of interest at well B as a function of 

incident angle with different frequency in the seismic exploration band.  

 

Figure 6.20. A comparison of normalized seismic spectral signatures at the interface 

of interest between real poroelastic modeling seismic at the location of well A.  
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Figure 6.21. A comparison of normalized seismic spectral signatures at the interface 

of interest between real poroelastic modeling seismic at the location of well B.  

 

6.6 Discussion 

The seismic reflection at the interface of overburden limestone with underlain Albian 

limestone presents low-frequency bright spot at well A, but not exhibit frequency 

anomaly at well B.  Based on our analysis, such a discrepancy is mainly caused by the 

different characteristic frequency range between the overburden and underlain lithology. 

As we know, the characteristic frequency, where the maximum loss due to mesoscopic 

flow occurs, can be expressed as: 

2

f

c

Kk
f

L 
 .                           (6.4) 
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Here, L indicates the characteristic length of heterogeneity and is a function of   . In 

general, the porosity, fluid bulk modulus, and fluid mobility ( /k  ) can be quantified or 

roughly estimated from well log or lab measurement based on the geological 

understanding of the reservoir properties. However, the heterogeneity size which is often 

poorly determined from the geological observation can significantly influence the 

characteristic frequency range and consequently affect the seismic reflection dispersion 

signatures. Be aware that the theoretical modeling we preform here is not to exactly 

match the spectral signature of real field seismic with modeling poroelastic reflection, but 

to give insights on how the reservoir properties like fluid mobility alter the frequency 

contents of seismic reflection. 

As we demonstrated in the section 3, understanding and interpretation of seismic 

reflection dispersion due to wave induced fluid flow is strongly dependent on how to 

bring out the poroelastic reflection from field seismic. Nonetheless, in addition to the 

attenuation, tuning effect, and poroelastic reflection that typically cause the variation of 

frequency behavior in seismic data, many other factors can also affect the seismic 

frequency contents, such as geological structure, multiples, converted waves, and 

improper stacking. In this study, we assume all those other factors do not play an 

important role in influencing the seismic spectral signatures. Besides, here I am only 

concerned with the effect of intrinsic attenuation on reflection dispersion signatures. 

However, the observed field seismic reflections may include both the contribution of 

intrinsic attenuation and scattering attenuation due to the presence of extensive 

heterogeneities. At the present time, the techniques that can reliably separate the total 
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inferred loss into scattering and intrinsic portions are generally not available (Pride et al., 

2004). 

  Note that the seismic data we use is near-angle stacked gather. This is because we 

want to minimize the propagation effect due to attenuation. In general, far offset suggests 

more seismic amplitude decaying and more distortions for the seismic wavelet. The 

problem will therefore get more complicated. Additionally, the constant-Q model we 

employ to account for the effect of attenuation during wave propagation is independent of 

frequency, while this is in conflict with the frequency-dependent Q when we calculate the 

poroelastc reflection. The former plays an important role during wave propagation while 

the latter takes effect on the poroelastic interface. Theoretically, they should be consistent 

with each other. Nonetheless, for the sake of simplicity, we use the constant-Q model to 

account for the propagation effects of attenuation.  

 All those factors may potentially bring additional ambiguities for the poroelastic 

reflection interpretation.  For potential future applications, some specific processing 

technologies to preserve the frequency contents of seismic data and illuminate the 

poroelastic reflection need to be developed. 

 

6.7 Conclusions 

     To illuminate the poroelastic reflection characteristics from real seismic, we have 

compared the spectral signature of field seismic with the synthetic seismic that takes into 

account the propagation effect of attenuation and tuning effect. It is found that the central 
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frequency of seismic reflection from the boundary of overburden marlstone and underlain 

limestone shifts to the lower frequency domain at the location of well A, while the case at 

the location of well B does not exhibit noticeable departure. We attribute such 

discrepancy to the distinct difference of fluid mobility between grainstone at well A and 

packstone at well B. We demonstrate that fluid mobility can significantly affect the 

poroelastic reflection signatures. In this case, the high fluid mobility in the reservoir 

rocks can enhance the seismic amplitude in the low frequency domain, while for the low 

fluid mobility reservoir rocks, we do not observe appreciable change of seismic 

amplitude in the exploration band.  The work reported here leaves open the possibility of 

indicating reservoir quality from dissipation-related seismic attributes.  
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