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ABSTRACT

A method of obtaining numerical solutions of a general 
class of boundary-value problems governed by the two-dimen­
sional diffusion equation is investigated. The method em­
ploys a partial discretization of independent variables to 
reduce the problem of partial differential equations to a 
sequence of related boundary-value problems governed by a 
system of linear second-order ordinary differential equa­
tions. The generality of the method is demonstrated by ap­
plications to example problems involving both regular and 
Irregular boundaries with boundary conditions of a general 
type. Application of separation of variables techniques to 
obtain closed-form solutions of a certain class of problems 
is presented and the results are used to indicate the accu­
racy of the method. An investigation into the stability 
characteristics of the resulting system of ordinary differ­
ential equations is also presented. It is concluded that 
the method appears to show promise as an easily implemented 
numerical method but that the full potential of the approach 
will not be realized until significant advances have been 
made in both computing hardware and software.
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CHAPTER I
INTRODUCTION

The solution of boundary-value problems governed by 
partial differential equations is of unquestionable impor­
tance in the physical sciences. Analytic solutions are gen­
erally obtainable only for a limited number of simple prob­
lems. Consequently, the use of high-speed digital computers 
has Increased to the point where the computer can be consid­
ered a basic tool for obtaining numerical approximations to 
the solutions of the more complex problems which may be en­
countered in reality. An efficient and successful utiliza­
tion of the computer for the solution of a specific problem, 
however, may be difficult to realize unless the Investigator 
is well-versed in the application of the various numerical 
techniques which may be employed. For this reason, relative­
ly simple techniques which may easily be employed for a broad 
class of equations, boundary conditions, and domains of in­
terest are needed.

The most commonly used numerical technique for obtain­
ing approximate solutions of problems governed by partial dif­
ferential equations is the finite difference method involving 
the complete discretization of all independent and dependent 
variables appearing in the governing equation. A mesh or net­
work of grid lines for the independent variables is constructed 
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In some systematic manner over the domain of Interest for a 
specific problem and the approximate solution Is considered 
only at the nodes or Intersections of the grid lines over the 
domain. The partial differential equation is approximated 
over the domain by a large-scale system of difference equa­
tions at each of the nodes. These difference equations are 
obtained by replacing the partial derivatives with finite 
difference quotients, due consideration being given to the 
boundary conditions at nodes on or near the boundary of the 
domain for specific problems. All finite difference schemes 
employ this general approach and differ primarily only in 
the manner with which the approximations to the derivatives 
are made and in the technique used to solve the resulting 
set of difference equations.

Unfortunately, these finite difference schemes are not 
universally applicable to all problems which may be encoun­
tered and require considerable programming effort when ap­
plied to problems involving even slightly Irregular boun­
daries. In addition, certain limitations may be Imposed on 
the relative magnitudes of the grid spacings for the indepen­
dent variables due to considerations of consistency, conver­
gence, and stability. It is recognized that the indiscrimi­
nant use of a particular difference scheme without at least 
some attempt at a stability and consistency analysis for a 
specific application may lead to completely nonsensical
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results[1]. However, an accurate stability analysis is often 

difficult, if not impossible, to perform for other than the 
simplest problems.

Other techniques which may be employed for solving 
boundary-value problems of partial differential equations in­
volve a reduction or transformation of the original problem 
to a related system of simpler problems. Generally these 
transformation techniques can be applied only for regular 
boundaries and may require a considerable amount of prelimi­
nary mathematical manipulation before the numerical solution 
can be implemented. The reduction of a complex problem to a 
simple problem is desirable; however, the ease with which 
this reduction can be accomplished is of considerable impor­
tance when it comes to the application of the reduction pro­
cess to specific problems.

A promising reduction technique has recently been ap­
plied to several problems governed by partial differential 
equations in two independent variables. This technique, 
called the straight line method in Russian literature [2], 

employs a partial discretization of the independent vari­
ables to approximate the partial differential equation with 
a system of ordinary differential equations. The discreti­
zation process retains the continuous character of one of 
the Independent variables such that the conditions Imposed 
on the original problem lead either to an initial-value
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problem or to a boundary-value problem of ordinary differen­
tial equations. Solution of the resulting problem yields ap­
proximations to the desired solution along a discrete set of 
continuous lines over the domain of interest. Sarmin and 
Chudov [3] point out that the utilization of a numerical in­

tegration scheme to solve the resulting problem actually in­
troduces a discretization of the ”continuous” independent 
variable such that the equations are solved as difference 
equations rather than differential equations. Consequently, 
stability aspects may enter into the use of the method of 
lines in a manner similar to that of the pure finite differ­
ence schemes.

This paper is concerned with the extension of this lat­
ter method, the method of lines, to the solution of problems 
governed by partial differential equations in three indepen­
dent variables. Specifically, the linear parabolic equation 
of second order known as the two-dimensional diffusion or 
heat conduction equation

^6 $6 dt (l.D

is considered over a finite region in the xy-plane for time 
t>0. The boundary-value problem associated with (1.1) re­
quires specification of an initial condition in time through­
out the region as well as boundary conditions along the entire 
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boundary of the region for time t>0. The boundary condi­
tions considered are of Dirichlet type, with the solution G 
specified over the entire boundary, and of mixed type, with 
0 specified over a portion of the boundary and the normal 
derivative 0n specified over the remaining portion of the 

boundary. The regions considered consist of a rectangular 
region of the xy-plane having two adjacent sides coincident 
with the coordinate axes and the Irregular region formed by 
replacing one of the rectangular boundary lines with a line 
inclined to both coordinate axes.

The numerical approach taken in the solution of the re­
sulting boundary-value problem of ordinary differential 
equations is the method of particular solutions as described 
by Luckinbill [4] who applied the same approach, l.e., the 

method of lines coupled with the method of particular solu­
tions, to the one-dimensional diffusion equation, the Laplace 
equation, and the Poisson equation as concerns the nonlinear 
problem of identifying unknown parameters appearing in these 
equations. In the same paper, Luckinbill also illustrated 
the ease by which irregular boundaries can be handled with 
this approach. Boyd [5j used a slightly modified form of this 

approach to obtain approximate solutions of certain acoustic 
radiation problems governed by the scalar Helmholtz equation 
and was able to handle boundary conditions of mixed type hav­
ing a linear combination of the solution and its normal
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derivative specified. The text by Berezin and Zhidkov 
provides an extensive list of references to earlier Russian 
publications on the method of lines as well as presenting a 
comprehensive discussion on the method in general.



CHAPTER II
FORMULATION OF THE GENERAL PROBLEM

As an illustrative example of the type of boundary­
value problem considered in general and the manner in which 
the method of lines is employed, consider the problem of de­
termining a time-varying scalar field 6 = G(x,y,t) over the 
rectangular region 0-x-a, O^y-b for time t>0. The field 
is governed by the partial differential equation

4. 
dx? O^ij^b, t>0 (2.1)

and is prescribed initially to be

8(x,i|,0) = Glx.if), (2.2)

and, for time t >0, the field is subject to a set of boundary 
conditions such as follows:

e(K,0,t) = f(<»t)4 O(x,b>-E)= O^oc^a (2.3a)

= p(<|,-t), 9(a.,j.t) = (2.3b)

where the subscript notation has been employed in (2.3b) to 
denote the partial derivative with respect to the Independent 
variable appearing as the subscript.

7
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The method, of lines is applied by considering only dis­
crete time stages t = t^, k = 0,1,2,..., and discrete lines 
y = y^, 1 = 0,1,...,N,N+1, where N denotes the number of 
lines to be considered in the Interval 0<y^b. The continu­
ous character of the independent variable x is retained. 
Adopting a subscript-superscript notation to identify quan­
tities along specific lines at specific time stages, respec­
tively, the approximate solution along the ith line at the 

K kth stage is denoted by <p.

cp- = <P/X) (2.4)

For a constant line spacing Ay,

= TiTT- (2-5)

the second-order central difference approximation to the 
spatial derivative

(2.6)

is used to replace this derivative in the partial differential 
equation (2.1) along all interior lines l^i —N at the kth 
time stage, k>0. Similarly, the time derivative is replaced 
by the first-order backward difference approximation

(2.7)



Utilizing the index notation of (2.4) for the prescribed 
initial condition (2.2) and boundary conditions (2.3) and 

9

the operational notation D = d/dx, the problem resulting 
from this application of the method of lines can be stated 
in the form of an infinite sequence of boundary-value prob­
lems of ordinary differential equations of the form

D2<pK + (2.8a)

D<pK(0)= , l^L^N (2.8b)

(2.8c)

for each time stage t^, k = 1,2,..., subject to a set of 
supplementary conditions

o = SjCx), O-x-d, M+l (2.9a)

K K K E
Cpo(x)= f(x), <PN+1(%) = ^(x)<0^x4a., K>0 (2.9b)

arising from the initial condition (2.2) and the boundary 
conditions (2.3a)*  respectively.

The fact that there are infinitely many of the bound­
ary-value problems (2.8) is of no consequence mathematical­
ly since the problems may be solved separately in succession 
for k = 1,2,3».». starting with the prescribed condition 
(2.9a) and using the results obtained for each stage k for the 
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Inhomogeneous term in Txp. for the next stage k + 1. From 
a numerical viewpoint, however, the boundary conditions at 
x s= a will never be met exactly due to the finite arithmetic 
employed by the computer and the truncation error associated 
with the numerical technique used to solve the boundary-value 
problem (2.8) at each stage. The inhomogeneous character of 
the governing equations, coupled with the approximate nature 
of the solution at the various stages, could conceivably re­
sult in a situation where the numerical solutions converge 
to erroneous results over an extended number of time stages 
if sufficient care is not taken in the computations. The 
method of particular solutions appears to be Ideally suited 
for this situation due to the iterative technique employed 
which contributes greatly to the control of round-off error 
in the necessary computations.

Briefly, the method of particular solutions may be de­
scribed as a variation of the classical approach to the so­
lution of linear multi-point boundary-value problems gov­
erned by an inhomogeneous system of first-order ordinary 
differential equations. The solution of the boundary-value 
problem is taken as a.linear combination of numerically in­
tegrated solutions of initial-value problems governed by the 
inhomogeneous system Instead of a linear combination of simi­
lar solutions of the corresponding homogeneous system aug­
mented by a single solution of the inhomogeneous system.
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Starting with an initial estimate of the unknown initial 
values, and forming a system of linearly independent initial 
values by perturbing the unknown initial values slightly, 
the resulting solutions of the initial value problems are of 
a more • comparable order of magnitude at points where bound­
ary conditions are prescribed than are the solutions using 
the usual approach. This in turn leads to more numerical 
significance in the determination of the unknown multipliers 
in the linear combination of solutions for the method of 
particular solutions. The method is applied in an iterative 
manner wherein the initial estimate of the unknown initial 
values are updated following each application until the so­
lution generated from this set of initial values meets the 
prescribed set of boundary conditions within a specified 
tolerance, effectively reducing the effect of round-off er­
ror. The method is easier to program than the usual method 
due to the fact that the same governing equation is applica­
ble to all solutions generated. A slight Increase in compu­
tations results from the fact that the order of the matrix 
to be inverted in the determination of the multipliers is 
increased by one due to the use of particular solutions 
rather than complementary solutions.

The numerical integration scheme employed in the inte­
gration of the Initial value problems is arbitrary although 
schemes of high-order accuracy are always desirable from the 



12
viewpoint of the computational time required for a specified 
accuracy. However, the dependence of the problem (2.8) on 
the solution at the previous time stage requires that the so­
lution at each stage be stored in an easily retrievable man­
ner for computation of the solution at the next stage. Pro­
gramming considerations dictate that step-by-step Integration 
schemes proceed with a constant step throughout the integra­
tion interval for all time stages. Finite computer high­
speed memory limits the information which can be stored con­
cerning the solution at the previous stage without sophisti­
cated programming and the use of external storage devices 
which can increase the running time considerably. The step- 
by-step integration scheme employed in this investigation 
was a Runge-Kutta scheme of fourth-order accuracy. The eval­
uation of the derivative at the mid-point of each integration 
step as required by the Runge-Kutta algorithm used was based 
on a linear interpolation of the previous solution to obtain 
the corresponding mid-point values. Although this interpola­
tion process undoubtedly introduces additional error into 
the Integration process, the error appears to be less than 
the truncation error associated with the Runge-Kutta scheme 
for sufficiently smooth solutions and sufficiently small 
step size.

Another integration technique employed was a power se­
ries method of the form described by Doiron [6^. In this



13 
scheme, the solution at the previous stage can be stored in 
the form of coefficients of a power series expansion about 
one or more points in the integration Interval. The stored 
coefficients can then be used in determining the coefficients 
of similar power series expansions for arbitrary initial 
values on the solution at the stage in question. The accu­
racy obtainable with power series techniques is practically 
unlimited, except by machine limitations, within the radius 
of convergence of the expansions; however, for slowly con­
vergent expansions or for integration over intervals larger 
than the radius of convergence the necessity of using multi­
ple centers of expansion in order to hold a high accuracy 
presents a programming problem. For the problems considered, 
the integration was able to step directly to the point x = a 
with high accuracy.



CHAPTER III
MATHEMATICAL CONSIDERATIONS

Separation of variables provides a particularly con­
venient approach to the analytic solution of the exact 
boundary-value problem. (2.1)-(2.3) when the boundary condi­
tions (2.3) are prescribed to vanish identically and when 
the initial condition (2.2) is of a certain form. In this 
approach, the zero boundary conditions lead to the determi­
nation of a fundamental system of solutions in the form

= X(k) Y(ij) T(t) (3.1)

by means of which the solution of the given boundary-value 
problem can be established from consideration of the initial 
condition (2.2). In cases where the initial condition can 
be represented exactly by a finite combination of the solu­
tions (3«1) at t = 0, the resulting solution will be in 
closed form.

An analogous approach to the solution of the problem 
resulting from the method of lines reduction is presented in 
the following sections of this chapter. Under similar circum­
stances, this approach will also lead to closed-form solu­
tions which can be compared to the corresponding solutions of 
the exact problem to Indicate the convergence of the approxi­
mate solution.

1A
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Since the integration of the system of ordinary differ­

ential equations (2.8a) is to be performed numerically, the 
stability characteristics of (2.8) are of paramount impor­
tance. Consequently, the final sections of this chapter are 
used to show investigations into these stability character­
istics in order to predict the behavior of the numerical so­
lutions in terms of the general solution of the system.

Analytic solution of the approximating problem

Consider the exact problem governed by Equation (2.1) 
and subject to the boundary conditions

0(x,O>t) = = 6(0,cj,-L) = - 0 (3.2)

for time t>0, with the prescribed Initial condition

= sin sin (3,3)

The approximating problem governed by Equation (2.8a) is 
then subject to the boundary conditions

<PL(0) = cp(a) = 0, k>0 (3,4)

with the supplementary conditions

<p„(x) = <PN^(x) = 0, 04X^0., K>0 (3.5a)

<P.(x) “ sinsin , 04xia, (3.5b)i b Cl



16

The solution assumed to consist of a linear combina­
tion of solutions of the form

^(^,L,k) - -p(%) o<(i) j3(k) (3.6)

where

f(0) = f(OL) = 0
(3.7)

<x(0) - <x(M+l) = 0

such that the conditions (3.^) and (3.5a) are identically 
satisfied. The problem then reduces to the determination 
of allowable values of two unknown constant parameters Z, 

and such that the second-order equations

[d2- = 0

[ez -(24-^)e +1]<x(l)= 0

(3.8a)
(3.8b)

possess non-trivial solutions f(x) and «(i) satisfying the 

conditions (3.7). The notation E in Equation (3.8b) refers 
to the translational difference operator

= txCi+n), 71=1,23,.-. (3.9)



The solutions of the Sturm-Llouvilie systems (3.?) and (3»8) 
are found to be

I -L
a , x . m-nX v m itfm(x) = sm — , t;„= - , m.j.ZA—

(3.10)
«(l)= sin T/n = -2(1-cos-^),

For appropriate values of m and n, the first-order differ­
ence equation for

> - ih] = °’

where (3.11)

has the general solution

/3 (k) = ,, C”: XK (3.12)
I mh (1 + v)mn )

where Cmn Is an arbitrary constant and Is as defined In 

(3.10)-(3.11). The fundamental system of solutions thus 
consists of

/ x— k.
j , . . x - mirx < -mrir ( 4 , a 1
/ mn'> Cl o' '.

(3.13)



18
where

^nin ""
*2 *2  * e “f|TT \m -n 2(1- cos
Cl2" (3.14)

for m = 1,2,3,... and n = 1,2,...,N.
It is apparent that the solution of the boundary-value 

problem subject to the initial condition (3.5b) is given by 
the single term for m = n = 1, i.e..

(3.15)

for k = 0,1,2,... and l^=i^N. For comparison purposes, the 
closed-form solution of the exact problem along the ith line 
and at the kth time stage is given by

I \ * TFX ' TTMt b 'e(x.ij;i-EK) = Sin ~ Sin-^- e (3.16)

Defining the quantities

2(1- cos
(3.17)
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and. noting that

Lim 2(1- cos ) (3.18)

It can be concluded that approaches -)*  asymptotically 

as Ay decreases and is confined to the relatively small in­
terval

(3-19)

Consequently, for sufficiently small Lt, the binomial ex-
pansion

. x'K (l + Oat) 1 - Ka)a-E + 2i
(VAt) - ... (3.20)

is valid for all k = 1,2,3.... . Comparing the expansion
(3.20) with the expansion of the exponential term in (3.16), 

-K^At 
e 1 - 4- (Mf - ... (3.21)

the convergence of the approximate solution (3.15) to the 
exact solution (3.16) in the limit as A.t and ay both approach 
zero is evident.
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General solution of the approximating system

The fact that the analytical solution of the approximat­
ing problem converges to the exact solution may be of little 
or no consequence when the solution is attempted numerically 
due to the introduction of error in the computations. The 
successful application of the method of particular solutions 
requires that the boundary conditions at x = a be met within 
a small tolerance. In order that this tolerance can be held, 
the system of ordinary differential equations must be stable 
to the extent that any trend toward instability in the integra­
tion process can be controlled effectively by varying the 
Initial values at x = 0 on each of the N lines. In order to 
study the stability of the system, it is sufficient to study 
the general solution of the system.

The system of Equation (2.8a) can be written using ma­
trix notation In the form

= kt F (3.22)

where = Is the state-variable vector having the 2N 
elements

V <' (3-23)
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and. where the 2N x 1 vector F=F(x) has the elements

i= (3.24)

The 2N x 2N matrix A can be written in partitioned form as

(3.25)

where 0 and I denote the N x N null and identity matrices, 
respectively, and S is the N x N tridiagonal matrix

s = (3.26)

-P
wlth the non-zero terms

The general solution of (3.22) can be written immedi­
ately in terms of complementary and particular solutions in 
the form

. Av -*■
?(x) = e C + P(x) (3.2?)

Axwhere C is a vector of 2N arbitrary constants, €? is the 
matrix exponential of A, and P(x) is an arbitrary particular
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solution of the inhomogeneous system. The general form of 
the matrix exponential is difficult to ascertain; however, 
certain conclusions concerning the complementary solution 
can be made based on the 2N eigenvalues of A.

The eigenvalues of A can be determined from the N 
eigenvalues of the symmetric matrix 8. Certain conclusions 
concerning the eigenvectors of A can also be reached from 
consideration of the eigenvectors of 8. To illustrate, let 
8 have the N real eigenvalues and the N associated line­
arly independent eigenvectors e, such that

Se. = M
L I *•

(3.28)

Retaining the partitioning of (3-25). the eigenvalue prob­
lem for A can be written as

(3.29)

where u. and u*  are N x 1 vectors forming an eigenvector w 
of A associated with the eigenvalue . Carrying out the 
indicated matrix multiplications, the “shifted eigenvalue 
problem” is obtained

TXr = Au.
(3.30)

Su. = Air
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from which it follows that

v — u. S u. - a u. •

Consequently it is seen that the eigenvalues and eigenvec­
tors of A are given by

> '1=1,2,...(3.32)

The eigenvalues 'A' of A will all be real since the eigen­

values of S are positive owing to the strict diagonal 
dominance of S

1=1,2)..,^s„ >it I (3.33)

Furthermore, the N eigenvalues of S can be determined in 
explicit form as

nr S
N+d. / . 1------ + —-2(1- cos i=l72,,..7N

I
(3.3^)

indicating that both S and A have distinct eigenvalues.
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Since the eigenvalues of A are distinct, the 2N eigenvec­
tors M will be linearly independent. Consequently, the 
general solution (3.27) can be written

M
- 2L{ "i+ + (3,35)

i=i

where the are arbitrary constants, and where the eigen­
values A;>0 are

Vz
, (3.36)4- , 2 ITT , 11

—i sin —■—7T + T f

Owing to the presence of the positive exponentials in 
the general solution, the system is seen to be unstable in 
the sense that all solutions of the homogeneous equation do 
not approach zero as x increases. However, solutions which 
are strictly stable are theoretically possible fsj. The 

numerical integration of the equations can be expected to 
present difficulties since the numerical solution will in 
general contain components of each of the exponential terms. 
This instability can be expected to Increase with a reduc­
tion in the time step &t or, to a certain extent, a reduc­
tion in the line spacing Ay. This presents somexjhat of a 
dilemma since the first-order approximation for the time 
derivative implies the necessity of a very small time step 
for acceptable accuracy. The integration interval may
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prohibit numerical solution for even large time steps. One 
conclusion is obvious, a high degree of accuracy is essential 
in the numerical integration.



CHAPTER IV
NUMERICAL EXAMPLES AND DISCUSSION OF RESULTS

The unstable character of the system of ordinary dif­
ferential equations (2.8a) arising from the method of lines 
does not necessarily invalidate the numerical solution of 
the related boundary-value problems. However, a certain 
amount of difficulty in obtaining usable solutions can be 
expected, especially if the time increment At is chosen 
small in an attempt to improve the accuracy of the approxi­
mation. The integration interval and the line spacing Ay 
can also be expected to influence the success or failure of 
the method for specific problems.

In order to subject the method to a numerical test 
three example problems were considered. A series of numer­
ical experiments was conducted using these examples in or­
der to obtain information relating to the effect of line 
spacing, time increment, integration scheme, and the length 
of the integration interval. Due to the critical nature of 
the solution at the first time stage, attention was directed 
primarily toward obtaining usable solutions at the first 
time stage. The example problems and the results of the 
numerical experimentation are presented in the following 
sections of this chapter. All computations, unless other­
wise specified, were performed in double precision floating­

26



point arithmetic using an IBM 360/4^ computer capable of 
carrying approximately sixteen significant figures.

27

A mixed problem in a rectangle

The first subject of the numerical experimentation was 
a problem over a rectangular region of the xy-plane in which 
the boundary conditions were imposed on both the solution 
and the normal derivative. Specifically, the exact prob­
lem which was considered is described by the governing par­
tial differential equation (2.1) and boundary conditions 
of the type indicated in (2.3) with

f(x,t) = ^(-x,t) = 0, t>0

= 0, t>0
(4.1)

The dimensions of the rectangle were taken as a = b = 1 and 
the initial condition (2.2) was prescribed by

Glx.tp = 51n TTlj ( 1 4- cos TTX ) (4.2)

The analytic solution of this problem by separation of vari­
ables yields the closed-form result

. ( -Vi -ZTT^t A
G(X;^-t) - sm HU e + e coe irx] (4.3) 



Application of the method, of lines reduction resulted in a 
sequence of related boundary-value problems governed by the 
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system of ordinary differential equations (2.8a). The solu­
tion of this system at successive time stages k = 1,2,3,... 
was subject to the boundary conditions

Dcp(O) - Dcp.(l) = 0, (ip.4)

The supplementary conditions (2.9) became

(p°(x) - sin ( 1 4' ^os "rrX)i 1- i- - M , 0^*1-  1
L (4.5)

<Po« = = °’ K>0’ 0 - x - 1

The separation of variables approach discussed in Chapter III 
led to the closed-form solution

r 
sin—'_________  + ---- ------------- (4.6)

W+1 [ (l+^oaAt)K J

where and are as defined by Equation (3.14) for appro­
priate values of m and n.

The convergence of the approximate solution (4.6) to the 
exact solution (4.3) at the first time stage as the line spac­
ing and time increment approach zero is indicated for^the 
points x = 0, y = 0.5 and x = 1, y = 0.5 in Tables 4.1 and 
4.2, respectively. It can be seen that the approximate

K x 
Cp.(x)
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TABLE 4.1
CONVERGENCE OF THE APPROXIMATE SOLUTION 
TO THE EXACT SOLUTION AT x=0, y=0.5 

FOR THE MIXED PROBLEM

TIME
STEPA-t

APPROXIMATE SOLUTION
EXACT
SOLUTION

1/2
Line spacing Ay

1/161/4 1/8

1 .16411 .14581 .14159 .14056 .00005
1/2 .30066 .27001 .26284 .26108 .00724
1A .51624 .47122 .46045 .45778 .09200
1/8 .80924 .75416 .74059 .73721 .37602
1/16 1.13907 1.08460 1.07079 1.06733 .83085
1/32 1.4416? 1.39794 1.38659 1.38372 1.2?424
1/64 1.67062 1.64110 1.63331 1.63133 1.59169
1/128 1.8186? 1.80109 1.79640 1.79520 1.78288
1/256 1.90445 1.89477 1.89217 1.89151 1.8879?
1/512 1.95089 1.94580 1.94443 1.94408 1.94309
1/1024 1.97510 1.97249 1.97178 1.97160 1.97132
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TABLE 4.2

CONVERGENCE OF THE APPROXIMATE SOLUTION 
TO THE EXACT SOLUTION AT x=l, y = 0.5 

FOR THE.MIXED PROBLEM

TIME
STEP
At

APPROXIMATE SOLUTION
EXACT

SOLUTION
1/2

Line spacing Ay
1/161/4 1/8

1 .05812 .04701 .04457 .04398 .00005
1/2 .09934 .08171 .07777 .07681 .00714
1/4 .15043 .12702 .12165 .12034 .07761
1/8 .19076 .16683 .16115 .15975 .20641
1/16 .1942? .17660 .17224 .17116 .24843
1/32 .15833 .14897 .14659 . .14599 .19496
1/64 .10716 .10342 .10244 .10220 .12249
1/128 .06368 .06246 .06213 .06205 .06870
1/256 .03495 .03459 .03450 .03447 .03639
1/512 .01834 .01824 .01822 .01821 .01873
1/1024 .00940 .00937 .00937 .00937 .00950
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solution for each time increment appears to approach a limit­
ing value as the line spacing is successively halved, and that 
this limiting value approaches the exact solution as the time 
increment is successively halved.

The behavior of the approximate solution as shown in 
Tables 4.1 and 4.2 clearly indicates the necessity of a 
small time Increment for an accurate approximation. How­
ever, the analysis of Chapter III Indicated that the system 
of equations (2.8a) will become more and more unstable as 
the time increment is reduced whereas the effect caused by 
reducing the line spacing will not be as pronounced. Conse­
quently, the first numerical experiment was directed toward 
further investigation into the stability of the numerical 
integration of Equations (2.8a). The equations were inte­
grated numerically using a constant step fourth-order Bunge- 
Kutta scheme and a power series scheme over the interval 
0 x 1 from initial values obtained from the closed-form 
solution (4.6). Table 4.3 presents the results of this sta­
bility test for the case of a 9-line approximation (z>y = 0.1). 
The tabulated values are the resulting solution value at 
x = 1 for the central line y = 0.5. The analytic solutions 
at the same point are included for purposes of comparison. 
Buns for other line spacings showed similar results. For 
this series of stability tests, the forcing function arising 
from the initial condition (4.5a) was defined analytically



TABLE ^.3
RESULTS OF 9-LINE APPROXIMATION STABILITY TEST FOR THE MIXED PROBLEM

* Value agrees with value on the left through at least the fifth decimal place.

TIME INTEGRATION RESULTS AT x =1, y = o.5 ANALYTIC
STEP fourth-order RUNGE-KUTTA, step size h POWER SOLUTIONS -
At l.E-01 l.E-02 5.E-03 l.E-03 l.E-04 SERIES Approx. Exact

1 .0^31 ,0A28 —— — — .04428 .00005
1/2 .07738 .07731 —— —— ** .07731 .00714
1A .12123 .12102 .12102 .07761
1/8 .16132 .16048 ■I* ww .16048 .20641
1/16 .17669 .17172 ww .17172 .24843
1/32 .19368 .14631 .14630 —— — — ww .14630 .19496
1/6U- .9^822 .10245 .10233 .10232 — — ww .10232 .12249
1/128 4.E+01 .06865 .06251 .06210 ww .06209 .06870
1/256 5.E+O3 l.E 00 .12131 .03466 .03455 .03449 .03449 .03639
1/512 3.E+06 2.E+03 l.E+02 .22608 .02140 .01842 .01822 .01873
1/102^ 7.E+09 4.E+07 3.E+06 5.E+03 3.E 00 .34442 .00937 .00950

Vjl) 
n>
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to avoid, the Introduction of additional error through the 
interpolation process which otherwise would, have been re­
quired by the Runge-Kutta algorithm and to permit the power 
series scheme to utilize subsequent points of expansion in 
the integration interval as required. The results shown 
clearly Indicate the effect of the time increment on the 
stability of the Runge-Kutta integration and the increased 
accuracy obtainable by the power series scheme.

In general, the power series integration scheme was 
able to step directly to the point x = 1 using the single 
expansion about x = 0. This was not possible for the two 
smallest time steps considered; however, it was noticed 
that the end. results using these multiple expansions did 
not differ appreciably from the results using a single point 
of expansion. Consequently, it was decided to Incorporate 
a single-expansion power series scheme for subsequent runs. 
This not only simplified the programming of the power ser­
ies scheme for use in solving the boundary-value problems 
but also reduced the computational time and storage require­
ments considerably as well as leading to a more stable and 
accurate scheme. Explicit time comparisons are not avail­
able; however, the computational time required for the power 
series Integration using a maximum of fifty terms in the ex­
pansions was comparable to the time required for the Runge- 
Kutta scheme with step size h = 0.1 while yielding accuracy 
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comparable to the much slower Runge-Kutta scheme with inte­
gration step size h = 0.0001. Needless to say, this smaller 
Runge-Kutta integration step is not suited for numerical so­
lution of the boundary-value problems due to the amount of 
computer memory required.

The next numerical experiment was designed to test the 
ability of the method of particular solutions to correctly 
determine the solution values at x = 0 such that the zero 
boundary conditions on the derivative at x = 1 were satis­
fied within a reasonable tolerance. The results of this 
experiment, again for the 9-line approximation, are given 
in Table 4.4. The tabulated values include the final solu­
tion values along the center line y = 0.5 at the ends of 
the integration interval and the average order of magnitude 
of the derivatives at x = 1. The values of the closed-form 
solution at x = 0 and x = 1 are also given for comparison. 
The computed values at x = 0 are shown only to five decimal 
places; however, the agreement with the analytic solution 
was almost exact in all cases, differing only in the fif­
teenth or sixteenth significant figures.

In order to determine whether or not the fact that the 
solution at x = 1 approached zero as the time increment ap­
proached zero had any bearing on the loss of accuracy for 
the smaller time steps, the Integration was performed in the 
reverse direction. The results of this run for the 9-line
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TABLE 4.14'

MIXED BOUNDARY-VALUE PROBLEM RESULTS 
FOR A 9-LINE APPROXIMATION

magnitude of computed derivative

TIME
STEP

At

SOLUTION VALUES FOR y=0.5 AVERAGE
ERROR

AT x=1 *
COMPUTED ANALYTIC

x = 0 x = 1 x - 0 x = 1
1 .14110 .04428 .14110 .04428 l.E-08
1/4 .45917 .12102 .45917 .12102 l.E-08
1/16 1.06913 .17172 I.O6913 .17172 l.E-08
1/64 1.63236 .10232 I.63236 .10232 l.E-06
1/256 1.89186 .03449 1.89186 .03449 l.E-05
1/1024 1.97170 -.44875 1.97170 .00937 l.E+01

* Average order of magnitude of computed derivative

* Average order of 
over all lines.

TABLE 11.5
MIXED BOUNDARY-VALUE PROBLEM RESULTS

FOR A 9-LINE APPROXIMATION WITH REVERSE INTEGRATION

TIME COMPUTED SOLUTION AVERAGE
STEP FOR y = 0.5 ERROR
At x = 0 x = 1 AT x = 0*

1 .14110 .04428 l.E-10
1/4 .45917 .12102 l.E-09
1/16 1.06913 .17172 l.E-08
1/64 • 1.63236 .10232 l.E-08
1/256 1.89186 .03449 l.E-07
1/1024 1.96937 .00937 l.E-02

over all lines.
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approximation are presented in Table ^-.5. The results do show 
a higher accuracy although five decimal accuracy still could 
not be obtained for the smallest time step.

A Dirichlet problem in a rectangle

The next subject of the numerical experimentation was a 
problem over a rectangular region of the xy-plane for which 
boundary conditions were Imposed only on the solution. Spe­
cifically, the problem considered was the example for which 
closed-form solutions were obtained in Chapter III. The 
problem was described by Equations (2.1), (3*2),  and (3.3) 
and had the approximate and exact closed-form solutions 
(3*15)  and (3.16), respectively. Verification of the remarks 
made concerning the convergence of the approximate solution 
(3.15) to the exact solution (3.16) as the time increment 
and line spacing approach zero is given by Table 4.6. The 
values given are for the solution at the midpoint of the 
unit square, a = b = 1.

The first numerical experiment conducted on this prob­
lem was designed to investigate the ability of the method 
of particular solutions to produce meaningful solutions of 
the resulting boundary value problems over the unit square 
a = b = 1 as the line spacing and time increment were varied. 
Items of Interest in this investigation Included the resulting 
solution values at x = 1 for comparison with the zero
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TABLE 4.6
CONVERGENCE OF THE APPROXIMATE SOLUTION 
TO THE EXACT SOLUTION AT THE MIDPOINT 

OF A UNIT SQUARE FOR THE DIRICHLET PROBLEM

TIME
STEP
At

APPROXIMATE SOLUTION
EXACT
SOLUTION1/2

Line spacing Ay
1/161/4 1/8

1/2 .10066 .09415 .09254 .09213 .00005
1A .18290 .17210 .16940 .16872 .00719
1/8 .30924 .29366 .28972 .28873 .08481
1/16 .47240 .45400 .44927 .44809 .29121
1/32 .6416? .62449 .62000 .61887 .53964
1/64 .78173 .76884. .76543 .76457 .73460
1/128 .87750 .86932 .86713 .86658 .85709
1/256 .93^75 .93009 .92884 .92852 .92579
1/512 .96628 .96378 .96311 .96294 .96218
1/1024 .98285 .98156 .98121 .98112 .98091
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boundary conditions imposed, the resulting solution at the 
midpoint of the integration .interval, and the derivative 
along the lines at the midpoint of the integration interval. 
These quantities are given in Table 4.7 for the case of a 
9-line approximation. The symmetry of this problem was in­
corporated for an alternate approach to the solution by con­
sidering only half of the unit square with zero boundary 
conditions imposed on the derivative at x = 0.5. The results 
for this approach did' not differ from those of the original 
formulation; however, the Imposed boundary conditions on 
the derivative were satisfactorily met using this approach. 
The results of this last test indicated that the integration 
interval can contribute considerably to the stability of the 
numerical solution.

To obtain additional indication of the effect produced 
by changes in the integration interval, the value of the end 
point x = a was varied over the range 0.6 -a 1.5 for 
various time steps. The results presented in Table 4.8 for 
this test Indicate the dependency of the stability of the 
numerical integration on the integration interval for a time 
increment of 0.001 with the dimension ”b” held constant at 
unity for a 9-line approximation. Only the average orders 
of magnitude of the final result at x = a are included to 
show the degree to which the Imposed boundary conditions were 
satisfied.
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TABLE lV.7
DIRICHLET BOUNDARY-VALUE PROBLEM RESULTS 

FOR A 9-LINE APPROXIMATION OVER A UNIT SQUARE

TIME
STEP
At

MIDPOINT SOLUTION AVERAGE
ERROR

AT x= 1*

AVERAGE
ERROR

AT x = 0.5"
Computed Analytic

1 .04841 .04841 l.E-12 l.E-14
1/4 .16907 .16907 l.E-11 l.E-14
1/16 .44870 .44870 l.E-10 l.E-13
1/64 .76502 .76502 l.E-10 l.E-13
1/256 .92869 .92869 l.E-08 l.E-13
1/1024 .98116 .98116 l.E-03 l.E-09
1/4096 .99520 .99522 l.E+08 l.E-03

** Average order of magnitude of derivative over 
all lines.

* Average order of magnitude of solution over all 
lines. **
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TABLE 4.8

DIRICHLET BOUNDARY-VALUE PROBLEM RESULTS 
FOR A 9-LINE APPROXIMATION AND 0.001 TIME STEP

INTEGRATION 
INTERVAL 

a
AVERAGE
ERROR

AT x = a*

0.6 l.E-09
0.7 1.E-0?

co o l.E-06

0.9 l.E-03
1.0 l.E-02
1.1 l.E-01
1.2 l.E+01

1.3 l.E+02
1.4 l.E+04
1.5 l.E+05

* Average order of magnitude of solution 
over all lines.
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Application to an irregular boundary

To demonstrate the application of the method presented 
to a problem Involving an Irregular boundary and to deter­
mine whether the Irregular boundary would adversely influ­
ence the stability of the numerical solution, the follow­
ing problem was considered. The rectangular domain of the 
preceding Dirichlet problem was distorted into an Irregular 
shape by reducing the length of the boundary line y = 0 by 
0.5 units from the length of the boundary line y = b = 1 
as shown in Figure 4.1.

Figure 4.1 Irregular region in the xy-plane

The Dirichlet boundary conditions that the solution 
vanish over the entire boundary of the Irregular region were 
retained from the preceding example and the Initial distribu­
tion (3.3) was revised accordingly to

GCa.ipO) - sin sin irti (4.7)
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over the Irregular region where

OC*  = K*Up  = Q-" T + 2 (^e8)

is the equation of the skew boundary resulting from the 
distortion. The method of lines formulation of the prob­
lem resulted in the multi-point boundary-value problem

D2cptk(x) + e2cpjx) =

K (p.(0) = 0

K 4# 
<p;(O= o

(4.9)

where the denote points at which the N interior lines 
y = y^ intersect the skew boundary. Table 4.9 indicates 
the results obtained for a 9-line approximation and various 
time .increments for the case a = 1 using the fourth-order 
Runge-Kutta integration scheme with linear interpolation 
employed for defining the forcing term in the governing equa­
tions.' The tabulated values are the final solution along 
the skew boundary and are presented to reflect the degree 
to which the zero boundary conditions were satisfied along 
the skew boundary at each of the nine lines. Table 4.10 
presents similar results for the specific time increment 
0.0001 for an experiment in which the parameter "a" was 
varied over the range 0.6-a-1.5. The integration step



TABLE ip.9
IRREGULAR REGION BOUNDARY-VALUE PROBLEM RESULTS 

FOR A 9-LINE APPROXIMATION WITH a =1

TIME
STEP
At

COMPUTED SOLUTION AT SKEW BOUNDARY

1 2 3
Line number

7 8 94 5 6

.0^ -l.E-14 5.E-14 -8.E-15 -5.E-13 2.E-12 -2.E-12 -5.E-12 2.E-11 -4.E-11

.03 4.E-14 -2.E-13 5.E-13 -5.E-13 -2.E-12 8.E-12 -2.E-11 2.E-11 -7.E-12

.02 -2.E-14 7.E-14 -4.E-13 2.E-12 -6.E-12 l.E-11 -2.E-11 5.E-12 2.E-11

.01 2.E-13 -l.E-12 5.E-12 -2.E-11 3.E-11 -4.E-11 3.E-11 l.E-11 -7.E-11

.008 4.E-14 -5.E-13 3.E-12 -l.E-11 5.E-11 -2.E-10 5.E-10 -l.E-09 2.E-09

.006 -6.E-13 3.E-12 -6.E-12 -3.E-12 8.E-11 -4.E-10 l.E-09 -3.E-09 4.E-09

.004 l.E-12 -7.E-12 3.E-11 -9.E-11 2.E-10 -4.E-10 l.E-09 -4.E-09 9.E-09

.002 7.E-12 -7.E-11 3.E-10 -2.E-09 9.E-09 -4.E-08 l.E-07 -4.E-07 9.E-07

.001 5.E-H -3.E-09 l.E-08 9.E-08 -l.E-06 -7.E-07 2.E-05 -2.E-04 5.E-04



TABLE 4.10
IRREGULAR REGION BOUNDARY-VALUE PROBLEM RESULTS 

FOR A 9-LINE APPROXIMATION WITH At =0.001

INTERVAL 
LENGTH 

a

COMPUTED SOLUTION AT SKEW BOUNDARY

1 2 3
Line number

7 8 94 5 6

0.6 -l.E-1? -2.E-14 -5.E-14 -6.E-13 8.E-13 2.E-12 -2.E-11 l.E-11 -9.E-11

0.7 -8.E-16 -2.E-14 2.E-14 -3.E-12 2.E-11 -6.E-11 -2.E-10 -2.E-09 3.E-10
0.8 2.E-13 -2.E-12 5.E-12 -8.E-11 -9.E-11 2.E-09 -3.E-08 l.E-08 l.E-07
0.9 4.E-12 -5.E-11 7.E-10 -l.E-08, 5.E-08 -l.E-07 3.E-08 6.E-07 -4.E-06
1.0 -4.E-10 3.E-09 -3.E-08 l.E-07 -4.E-07 -l.E-06 4.E-06 1.E-05 -l.E-04
1.1 -2.E-08 l.E-07 -7.E-07 4.E-06 -2.E-05 2.E-04 -l.E-03 5.E-03 -l.E-02
1.2 7.E-0? -7.E-06 4.E-05 -2.E-04 9.E-04 -6.E-05 -3.E-02 2.E-01 -6.E-01
1.3 9.E-06 -l.E-04 7.E-04 -3.E-O3 2.E-02 -l.E-01 9.E-01 -5.E 00 2.E+01
1.4 2.E-04 -l.E-03 7.E-03 -3.E-02 -2.E-01 4.E 00 -3.E+01 l.E+02 -2.E+02
1.5 8.E-03 -9.E-02 8.E-01 -6.E 00 2.E+01 -3.E 00 -7.E+02 5.E+O3 -2.E+04
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In both cases was chosen as 0.05» a convenient value which 
allowed the Integration to step directly to each of the 
points at which the boundary conditions were imposed. 
As can be seen from the results presented in Tables 4.9 and 
4.10, the irregular boundary did not produce any apparent ad­
verse effect on the stability of the numerical solution.

Discussion

The example problems presented in the preceding sections 
of this chapter Illustrate the generality of the approach 
presented in this paper. A single general purpose computer 
program for the solution of linear multi-point boundary­
value problems governed by systems of first-order ordinary 
differential equations was used in the solution of all bound­
ary-value problems associated with these examples. The only 
modifications which were necessary Involved the addition of 
a capability for repetitive solution of the resulting se­
quence of boundary-value problems at successive stages in 
time. Various boundary conditions along the regular regions 
were handled routinely with this approach and the irregular 
region of the last example presented no additional program­
ming difficulty.

Attention was focused primarily on determining the abili­
ty of the method of particular solutions to obtain meaningful 
solutions at the first time stage rather than obtaining
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solutions over extended, time stages. The closed-form solu­
tions obtained for the example problems over the rectangular 
regions indicate the behavior of the numerical solution over 
extended time stages provided that a meaningful solution can 
be obtained for the first time stage. The time history of 
the numerical solution at four points corresponding to the 
midpoints of the even-numbered lines of a 9-line approxima­
tion over the Irregular region is shown in Figure 4.2 for 
the case a = 1 and At = 0.05. The results were obtained 
using Runge-Kutta integration with step size h = 0.05. The 
analytic solution is not known; however, the results appear 
reasonable.

The unstable character of the system of ordinary dif­
ferential equations arising from the method of lines reduc­
tion presented difficulties as expected in obtaining numer­
ical solutions for small time increments. However, the un­
known initial values of the desired solution were identified 
to high accuracy even in cases where the final result showed 
definite numerical instability. Imposing stricter convergence 
criteria did not alter the Instability nor affect these ini­
tial values. Consequently, it was concluded" that the IBM 
360/44 word length was not of sufficient size to permit mean­
ingful solutions for the smaller time Increments. "A compari­
son run was made on a CDC 6600 computer capable of carrying 
approximately twenty-nine significant figures in double
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selected points in the interior of the ir­
regular region
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TABLE 4.11

CDC 6600 COMPARISON RUN 
MIXED BOUNDARY-VALUE PROBLEM RESULTS

FOR A 9-LINE APPROXIMATION WITH REVERSE INTEGRATION

TIME COMPUTED SOLUTION AVERAGE
STEP FOR y = 0.5 ERROR
At x= 0 x = 1 AT x= 0*

1 .14110 .04428 l.E-21
1/4 .45917 .12102 l.E-21
1/16 1.06913 .17172 l.E-21
1/64 I.63236 .10232 l.E-20
1/256 1.89186 .03449 l.E-19
1/1024 1.97170 .00937 l.E-14

* Average order of magnitude of derivative over all 
lines.
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precision arithmetic. The problem chosen for this test run 
was the mixed problem with the integration performed in the 
reverse direction, l.e., from x = 1 to x = 0. The results 
of this run are shown in Table 4.11 and may be compared with 
the results shown in Table 4.5. The significant increases in 
accuracy and stability emphasize the necessity of retaining 
as much precision as possible in the calculations.

The approach taken in this presentation in an attempt to 
control the instability of the system of equations resulting 
from the method of lines reduction was to combine the method 
of particular solutions with a power series integration 
scheme capable of high accuracy. This technique proved ef­
fective but showed a tendency to yield inaccurate results 
for very small time steps. Conte ^91 has applied an ortho­

normalization scheme coupled with standard superposition 
techniques employing a constant step Runge-Kutta method to 
obtain impressive results for equations with large eigen­
values using single precision arithmetic on an IBM 7094. 
However, it is not clear to the author whether or not the 
technique can be applied to the equations of this particular 
problem with the same reported success.



CHAPTER V
SUI4MARY AND CONCLUSIONS

The method of lines has been employed to reduce the 
general boundary-value problem governed by the two-dimen­
sional diffusion equation to a sequence of related bound­
ary-value problems which are governed by an inhomogeneous 
system of ordinary differential equations at selected stages 
in time. The dependence of the inhomogeneous terms only on 
the solution of the boundary-value problem at the preceding 
time stage permitted the numerical solution of the boundary­
value problems by .the method of particular solutions at suc­
cessive time stages. Numerical examples Included a problem 
of Dirichlet type and a problem of mixed type over a rec­
tangular region, indicating the generality of boundary con­
ditions which can be handled with this approach. A third 
numerical example demonstrated the ease with which Irregular 
boundaries can be handled.

The stability of the numerical solutions indicated a 
high degree of dependence on the separation of the time 
stages, the numerical integration scheme used, and the 
length of the integration interval. This behavior was shown 
to arise from the unstable nature of the equations being in­
tegrated by determining the character of the general solu­
tion of the system at each time stage. The eigenvalues of 
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the system were shown to Increase rapidly with decreasing 
time step, resulting in sufficient amplification of small 
errors in the computations to obliterate completely the de­
sired solution for sufficiently small time steps or for suf­
ficiently long integration intervals.

Closed form solutions were obtained for specific prob­
lems by means of a separation of variables technique. The 
solutions so obtained were used to demonstrate the theoreti­
cal convergence of the solution to that of the original prob­
lem and to serve as a standard for evaluating the accuracy of 
the numerical solutions. It was concluded that reasonable 
accuracy could not be expected without a small time step 
whereas the effect of the line spacing was not so pronounced. 
This, coupled with the stability problems, necessitated a 
highly accurate numerical integration scheme.

Of the integration schemes considered, the power series 
technique proved most effective. In addition to obtaining 
more reliable results than the constant step fourth-order 
Runge-Kutta scheme, the computational time and storage require­
ments were significantly reduced with the power series tech­
nique using only one point of expansion. Test runs showed 
that the instability associated with the power series tech­
nique could be traced directly to computer limitations in 
word length rather than exceeding the radius of convergence of 
the power series expansion about the start of the Interval.
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In conclusion, the apparent advantages of the method 

presented appear to lie in its ease of application to a 
broad class of problems of the type presented. The question 
of nonlinear forms of the diffusion-type equation has not 
been considered. The feasibility of using this approach, 
coupled with the technique of quasilinearization, on nonlin­
ear problems would appear to be the logical choice as the 
subject of future research. The full potential of the meth­
od, however, will probably not be realized until significant 
advances have been achieved in the development of Improved 
computing hardware and software.
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