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• Cell volume showed significant differences between
most conditions, with a tendency towards higher
volume under infection.

• This is attributed to bacterial phagocytosis.

• Cell directedness 6] was calculated by the ratio of
the position of a cell to its original point over total
distance traveled.

• The results show lower directedness (more random
movement) in 3D than 2D.

• Studies using primary cells may provide results
more comparable to in vivo response.
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• Spatio-temporal dynamics are vital in
understanding the course of infection, particularly
for infections that lead to the formation of
granulomas such as Mycobacterium tuberculosis [1]
which significantly impact the course of infection.

• In in vitro studies, the observable data is gathered
at the global environment level (a single well), but
this lacks the correlation and relationship between
an individual cell, its local neighborhood and its
global environment .

• Traditional 2D models of infection allow for easily
replication and rapid sampling but, devoid of an
extracellular matrix (ECM) are unable to fully
replicate the spatial dynamics of an in vivo system.

• In vivo models, while providing multi-cellular
response and spatial dynamics do not allow the
freedom of sampling granted in vitro.

• We aim to develop corresponding in vitro and in
silico platforms to adequately capture and analyze
the multidimensional nature of immune response
to infection.

• By connecting the in vitro and in silico platforms
with confocal imaging, we are able to observe,
quantify, and correlate cellular behaviors on all
levels and determine the characterizes that lead to
different outcomes of infection.

ResultsMethods

In Vitro 
Model

•2D [4] and 3D [2] infection studies were preformed using GFP
tagged RAW 264.7 murine macrophages and mcherry tagged
M. smegmatis.

•Supernatant samples were collected every 24 hours and CFUs
enumerated for 72 hours.

Image 
Acquisition

• In parallel, we utilized confocal scanning laser microscopy
(Olympus/Fluoview) equipped with a stage-top incubator
(Tokai Hit) to conduct multi-area time-lapse imaging of
multiple experimental conditions.

Image 
Analysis

• Images were rendered and analyzed using Imaris 8.1.2
(Bitplane) with surface creation and tracking.

•The same image processing parameters were used for all
conditions.

DBSCAN 
Clustering

• In order to determine cluster formation analysis of each time
point was performed using DBSCAN algorithms [5].

• This allows us to determine when clusters form and what
conditions of the cells, the system, and the local
neighborhood lead to their formation.

Background 
Subtraction

•We established a time-based noise reduction algorithm to
calculate the average background noise for each time point to
remove noise from all objects based on their volume.

• This can then be used to correlate in vitro CFU analysis with in
silico fluorescent intensity.

Data 
Analysis

•Kruskal Wallis and rank-sum tests were run on all conditions
with non normally distributed data.

•Utilizing allfitdist [7] we are able to quantify probability
distribution functions for each given data-set to inform
predictive infection models

Machine 
Learning

•Preliminary unsupervised learning techniques have been used 
to segment the heterogeneous population of infected cells 
into those that contain bacteria (under infected condition, 
actively infected), and those that do not (under infection 
condition, not actively infected)
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• The platform is able to quantify and characterize
the dynamics of infection in 3D and correlate
spatial response to bacterial load.

• In vitro 3D host-pathogen studies can provide novel
insight regarding the role of the physiological
environment and cell mobilization on response.

• The in silico platform analysis allows for
implementation of further statistical analysis and
quantification including machine learning
applications that can inform predictive 3D models
of bacterial infection.
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