
THE DESIGN AND APPLICATION OF A

MICROPROCESSOR DEVELOPMENT SYSTEM

A Thesis

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Jerry Burns Pace

December 1978

11

ACKNOWLEDGEMENTS

I sincerely thank Dr. Olin G. Johnson, my thesis advisor,

for his help and encouragement. Thanks also to Dr. Willis

K. King and Dr. James D. Bargainer who served on my thesis

committee.

A special thanks to Holly Frost, who designed the cards

used in the system, for his aid in accquiring the parts for

the system. Thanks to Buddy Peiser, a good friend, for his

support and encouragement. And thanks to MOSTEK for

donating the Z80 cross assembler which was especially

appreciated.

Finally, I want to thank my wife, Jackie, who typed many

pages, my son, Jack, and my daughter, Elise, for continuing

support and patience through many years. They never doubted

I would make it.

iii

THE DESIGN AND APPLICATION OF A

MICROPROCESSOR DEVELOPMENT SYSTEM

An Abstract

of a Thesis

Presented To

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Jerry Burns Pace

December 1978

ABSTRACT

The material presented in this Thesis concerns two topics:

the first is the design of a Microprocessor Development

System and the second is the application of this system

for developing a rather extensive programming example.

The Microprocessor Development System was designed around

a Z-80 microprocessor. The system contains 8K of RAM,
12K of ROM, serial I/O ports and room for 3 additional

cards, A 2K monitor was implemented in ROM and a cross

assembler was set up on a large mainframe HOST system.
An I/O routine was written to allow the microprocessor

system to converse directly with the HOST system. Programs

could then be developed on the HOST system, assembled with

the cross assembler and loaded directly into the micro­

processor for debugging.

The programming example discussed is a program to emulate

a multi-terminal network processor, a device which is used

to multiplex several terminals on a timesharing system

via a single modem line. Excellent results were obtained
when using the HOST/Microprocessor combination for develop­

ing and testing programs for the microprocessor system.

V

TABLE OF CONTENTS

PART I MICROPROCESSOR DEVELOPMENT SYSTEM 2

ACKNOWLEDGMENTS ii

ABSTRACT iii

LIST OF ILLUSTRATIONS vii

INTRODUCTION 1

CONCLUSION

Chapter 1 HARDWARE
CPU Card
I/O Card
Power Supply

3

Chapter 2 MONITOR PROGRAM
General Functions
Z-80 to HOST I/O Program

8

Chapter 3

PART II

Z-S) CROSS ASSEMBLER

DEVELOPMENTAL EXAMPLE
RNP EMULATION PROGRAM

12

13

Chapter 4 RNP OVERVIEW
HOST/RNP LINK
XMIT BLOCK
Error Recovery

14

Chapter 5 RNP EMULATION PROGRAM
Additional Functions
Device I/O Buffers

19

Chapter 6 SUBROUTINE DESCRIPTIONS
Main Program
Command Processor
Device I/O Routines
HOST I/O Routines
HOST Buffer Conversion
Queue Handler

32

40

VI

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Bibliography

HARDWARE CIRCUIT DRAWINGS
CPU Card
I/O Card

ZAPPLE MONITOR COMMANDS

RMC MESSAGE FORMATS
XMIT BLOCK
Link Message
Logical Message
Z-8O to HOST I/O PROGRAM LISTINGS

RNP PROGRAM LISTING

Operating Instructions

Vll

LIST OF ILLUSTRATIONS

Figure

1A SYSTEM BLOCK DIAG. 3
IB CPU CARD BLOCK DIAG. 4

1C I/O CARD BLOCK DIAG. 5

ID POWER SUPPLY BLOCK DIAG. 7
2A Z-8O to HOST I/O PROGRAM 9

4A RNP LOGICAL CONFIGURATION 14

5A RNP BASIC FLOW DIAG. 20

5B MULTI-BLOCK BUFFER FORMAT
AND LINKAGE 22

5C HOST BUFFER FORMAT 24

5D DEVICE CONTROL BLOCK FORMAT 26

5E HOST CONTROL BLOCK FORMAT 28

5F DOB POINTER TABLE 29

5G QUEUE-BUFFER LINKAGE 30

1

INTRODUCTION

The recent availibility of low-cost microprocessors has

opened the door for many new and useful applications.

This thesis will discuss the design of one of these micro­

processor systems; specifically, a Z-80 microprocessor and

the application of this unit as a network processor.

The work reported here divides naturally into two partsi

Part I was the development of the hardware, This included

purchasing and assembling the microprocessor, modifying

the software monitor so that the microprocessor could
communicate with a large HOST computer (HIS 66/60) and

installing a cross assembler on the HOST to assemble

programs for the microprocessor.

Part II involved choosing a development example which

would illustrate the capabilities of the development

system. It was decided to write a program which would

use the development system to develop an emulator for a

Remote Network Processor (HONEYWELL RCP 70?)• The network

processor was chosen to demonstrate the ability of the

microprocessor to do complex jobs with relatively in­

expensive hardware.

2

PART I

MICROPROCESSOR DEVELOPMENT SYSTEM

3

Chapter 1

HARDWARE

The microprocessor development system hardware is composed

of two 7" by 9" printed circuit cards (the CPU card and

the I/O card), a printed circuit CPU BUS Mother Board with

provisions for 5 cards, and a multi-output power supply.

Detailed wiring diagrams of the CPU cards can be found in

Appendix A,

HOST
SYSTEM

I-- 1

Fig. 1A SYSTEM BLOCK DIAGRAM

The CPU card contains the Z-80 microprocessor, a 2 MHZ

crystal clock, 8K of dynamic RAM, and 4K of programmable

ROM, along with all the decoders, drivers, and receivers

necessary to handle the CPU bus.

Fig. CPU CARD BLOCK DIAG.

The CPU chosen for this project was a Z-80 microprocessor.

The reasons for choosing this particular unit were:
(1) It was one of the fastest and most powerful 8 bit

microprocessors available.
(2) It was very easy to design a system around,

(3) Parts for this system were readily available and
relatively inexpensive.

A crystal clock was ut^-.d, instead of another type, due to
its inherent stability and accuracy.

5

The 2708 programable ROMs used to store the programs,
both on the CPU card and the I/O card, combined a large

storage capacity in a relatively small space, and were

also very cost effective. The ^051 dynamic RAMs were

used because, at this time, ^-K dynamic RAMs were the least

expensive type; and since the Z-80 had a built-in refresh

counter, no extra hardware was required for refresh

circurity.

The I/O card holds all the I/O interfaces consisting of

M- programmable I/O controllers (3 asynchronous and

1 synchronous unit), a channel programmable real time

clock/timer unit, an 8 input interrupt request register,

and an additional 8K of programmable ROM.

I/O I/O

I/O I/O

Fig. 1C I/O CARD BLOCK DIAC.

6

The programmable I/O controllers used on the I/O card were

8251 USARTs (UNIVERSAL SYNCHRONOUS/ASYNCHRONOUS RECEIVER/

TRANSMITTER). These units were chosen for their ability

to be programmed by the CPU, to operate in virtually

any serial data transmission technique presently in use,

They will operate in full duplex asynchronous mode to

9600 baud, and in full duplex synchronous mode to 50K

baud. They also connect directly to the CPU bus and

require no special interface circuitry.

The programmable clock/timer used on the I/O board was

a Z8O-CTC. It contains independent programmable 8 bit

counter/16 bit timer channels. Each channel can be

programmed to operate either as a counter or a timer,

which can generate interrupts and automatic interrupt

vectoring with no external logic.

The 8259 interrupt controller is used here only as an

interrupt request holding register. The software

interrupt routine uses a polling technique to find the

correct device to service.

7

The CPU BUS Mother Board serves simply as a mounting

surface for five 100 pin card edge connectors which

interconnect the signals and supply power to the cards.

All CPU bus signals and all power lines are connected

through this bus card,

The power supply is a three output regulated supply which

produced 5 volts at 6 amps, +12 volts at 1,5 amps and

-12 volts at 1.5 amps, Since a -5 volt supply was also

required by the system, a -5 volt regulator driven by

the -12 volt supply was used to supply -5 volts at 1 amp.

The power supply delivers much more power than is required

by the present system, which allows for the addition of

other cards for future expansion of the basic system.

COMM -12V -5V +12V +5V

Fig. ID POWER SUPPLY BLOCK DIAG.

8

Chapter 2

MONITOR PROGRAM

A system monitor program (ZAPPLE MONITOR by TDL), located

on the CPU card in the upper 2K of ROM, provided all

necessary functions for loading, displaying, modifing,

and debugging assembly language programs. This monitor,

however, had no provisions for connecting a HOST processor

or for loading assembled code from a HOST processor,

Therefore, an I/O routine had to be written to connect the

Z-80 system to the HOST system (Appendix D),

The monitor contains, among others,routines for the follow­

ing functions:
(1) assign alternate peripherial devices for I/O or console,

(2) display and/or change any single location in memory
on the console,

(3) display blocks of memory on the console,

W fill blocks of memory with a single constant,
(5) display and/or change registers from the console, and

(6) set up one or two software break points.

Altogether, there are 23 separate functions in the standard

monitor and provisions for 3 user defined functions. In

addition, the monitor has many useful subroutines for
I/O and data conversion which can be called by other programs.

Appendix B gives a list of all the commands and a brief

explaination of their use.

9

Fig. 2A Z-80 to HOST I/O Program

10

To make the task of conversing with the HOST processor

as simple as possible, the Z-80 system was made to emulate

a terminal and connected to the standard time sharing

network (TSS) of the HOST processor, A special routine,

which could be entered from this program, was written

to load assembled code from the HOST processor to the

memory of the Z-80 system. This made it possible to use

the HOST system for writing, editing, assembling, and

storing programs for the Z-80, The assembled code from

these programs could then be down loaded to the Z-80

system for testing and debugging.

Figure 2A is a flow chart of the Z-80 to HOST 1/0 routine.

The main loop of the program continously teststhe status

of the console input and the modem input. When a character

is ready to be read, the status flag will be set and the

character will be read. If it is a console character,

it will be tested and if it is also one of the command

characters, a special routine will be entered to execute

the command; otherwise, the character will be sent directly

to the modem for transmission to the HOST. If, however,

the character comes from the modem, it will immediately

be printed on the console.

There are command characters input from the consolei

(1) An •ESC* character is used instead of the conventional
break key because the I/O channel cannot detect a
break. This input causes the program to go to the
BREAK routine, which sends a break to the HOST for
250 MS and then returns to the main loop.

(2) A ’CTL B’ (CONTROL B) is used to enter the HOST to
memory routine. This routine first asks for an
offset value, next asks for the HOST file name, and
then sends the command to the HOST to start input
to memory. The input to this program, which must
be a standard HEX FORMAT file — if not the programs
aborts and returns to the main loop —,is then loaded
and printed on the console at the same time. When
the file is completely loaded, the routine returns
to the main loop.

(3) A 'CTL C is normally used to cause an immediate
disconnect. However, this was considered an un­
desirable feature. Therefore, this character is
ignored and not sent to the HOST.

(4) A 'CTL N' is used to cause a direct return to the
monitor program.

Other than the above 4 characters, all keyboard

characters are treated the same as in any standard

TSS terminal and sent directly to the HOST,

12

Chapter 3

Z-80 CROSS ASSEMBLER

To allow Z-80 programs to be assembled on the HOST system,

a cross assembler was acquired (XF0R-80 by MOSTEK), This

cross assembler, although written in FORTRAN, was not written
specifically for the HONEYWELL 66/60. Therefore, some

slight modifications had to be made before it would work

on this system. Some of the special characters had to be

changed because they were not allowed on the TSS network

and some special file instructions had to be added to the

program.

The XF0R-80 is a 2 pass assembler which will assemble all

standard Z80 source statement and also MACROS. As implement­
ed on the HOST system (HIS 66/60), the input can be in the

form of a TSS file, created on line, or a deck of punched

cards or any other compatible file storage medium.

The output from the program is in the form of two separate

disk files. One file is the line printer listing containing

the assembled code along with the listing of the program

instructions. It can be displayed on the console of the
Z-80 system and/or printed on the line printer of the

HOST system. The other file is the assembled code in

standard HEX format which can be loaded into the Z-80

memory for execution or debugging,

13

PART II

DEVELOPMENTAL EXAMPLE

RNP EMULATION PROGRAM

CHAPTER 4

RNP OVERVIEW

The Remote Network Processor is a device used for combining
several terminals and/or several remote computers and/or

remote batch facilities, in such a way that they can

communicate with a host processor on a single high speed

modem line. There are basically two protocolsi one called

RMC (REMOTE MESSAGE CONCENTRATION) for remote terminals

and remote computers, and the other called RBS (REMOTE

BATCH SYSTEM) for remote batch stations. It was decided

to only implement the first, RMC, because it was simpler

and would still serve well as an example. The following

is a brief explanation of the RMC protocol. A more
detailed explanation is available in the HONEYWELL RNP/FNP

INTERFACE manual, number DB?2.

Fig. 4A RNP LOGICAL CONFIGURATION

15

A logical configuration of the RNP system is shown in

Fig, 4A, The connection between the HOST and the RNP is

called the link. This can be in the form of a modem or

a direct wired connection.

The HOST/RNP link must be in one of the three following

statesi
(1) Physically disconnected,

(2) Logically disconnected (physically connected but idle),

(3) Logically connected (physically connected and active).

Control of the link is carried on through the exchange of

Q-Frames during all periods in which the link is active

and there is no link or logical messages to exchange.

This exchange is always initiated by the HOST, therefore,

avoiding contention of the line.

All communication between the HOST and the RNP related
only to the HOST/RNP link is carried in the link message,

and communication between the HOST and each individual

terminal is carried in the logical message, These messages,

over the link, are carried in TRANSMISSION BLOCKS (XMIT

BLOCK), which consists of a link message, as the first, or

only message. They may also contain one or more logical

messages, each of which contains a unique address identify­

ing its destination. The entire block is terminated by

the 'EOT* character,

16

Each XMIT BLOCK must be acknowledged (ACK) in the next

received block or the same block is retransmitted (NAK).

No new XMIT BLOCK (one having a new sequence code and

different logical messages) may be sent until the previous

one is acknowledged (ACK). The sequence code and the

acknowledgement of the link message are used to insure

against lost or duplicate XMIT BLOCKS. In addition, if

no answer is received to a transmission within a specific

amount of time, the same XMIT BLOCK is retransmitted.

There are two types of XMIT BLOCKS: the Service Message

and the Data Message. The Service message differs from

the Data message by the presents of only the link message

and no logical messages in the XMIT BLOCK and the header of

the link message contains a 102g instead of a 110g in the FC.

The Service message is used to control the link and conveys

the following 4 messages:

(1) RFD - Tells the receiver that the sender is going to
disconnect the link, Must be acknowledged with
an RFD.

(2) DIS - Tells the receiver that the sender is disconnecting
the link. No reply is necessary and both processors
disconnect.

(3) A CALL - Sent by the HOST to tell the RNP to accept all
incoming calls.,

(4) N CALL - Sent by the HOST to tell RNP to accept no new
incoming calls.

17

The following table illustrates the error recovery rules,
In these rules, the sequence code (SC) in the link message

refers to the code in the header which alternates between

101g and 102g. A changed SC indicates a new XMIT BLOCK.

The ACK or NAK refers to whether or not a message is received

in error. All retransmissions repeat the full XMIT BLOCK.

ERROR RECOVERY RULES

RECEIVED BLOCK
Same New
SC SC ACK NAK ERR

X

X X

X X

X X

X X

Transmit link message
with NAK and same SC.

Process Logical messages.
Change SC and transmit
next XMIT BLOCK with ACK.

Process Logical messages.
Change SC and transmit
next XMIT BLOCK with ACK.

Disregard Logical messages.
Change SC and transmit
next XMIT BLOCK with ACK.

Disregard Logical messages.
Retransmit last XMIT BLOCK
with same SC and ACK,

18

The XMIT BLOCKS are made up of messages which are composed

of strings of characters. All characters used on the
HOST/RNP link must be ASCII 8 bit (7 data bits + parity)

characters. The bit notation is shown belowi

MSB LSB

P65^3210 ___ ________ I - I________ - I
DATA

A detailed description of the XMIT BLOCKS plus a descrip­

tion of the link and logical messages, along with a break

down of their respective headers, is given in Appendix C.

19

Chapter 5

RNP EMULATION PROGRAM

The RNP Emulation Program has been written to simulate the

actions of the HONEYWELL Remote Network Processor, con­

figured to handle only the RMC protocol. It is written

in modular form with individual subroutines for all major

functions. This makes the program easily adaptable to

many differing hardware configurations, without requiring

major programming changes. Also, some of the functions

are table driven to allow them to be changed or enlarged

more easily. The program is also written such that it

is 'ROMable* (i.e. written such that it can be stored in

ROM and executed), therefore, no program variables are

located within the program itself, but are all stored

in RAM outside the program.

In addition to the normal RNP functions (HOST to terminal

I/O), several additional functions were implemented. The

program also allows device to device transmissions, with­

out involving the HOST system; so this type of communication

can go on even when the HOST is off line. Each device on

the RNP has the ability to assign a destination device to

itself with a keyboard command, and it can connect to or

disconnect from the HOST with a similar command, This

capability eliminates the need for a control console.

20

I/O INTR

PJ ___ V
—(HOST rdy)

[Y-
v

SERVICE HOST
I/O REQUEST

—— N
(DEV RDY)----->

FIND DEVICE
DCB ADDR AND
SERVICE DEVICE
I/O REQUEST

V
RETI

Fig. 5A RNP Basic Flow Diag.

21

The RNP program (Fig. 5A) accepts character input from

terminals and/or remote computers (designated devices).

and puts them into input buffers. Each completed buffer

is then placed on a queue, to await output to the HOST or

to another device. When the queue is services, each buffer

is either output to another device or converted to a

logical message. This logical message is then sent to

the HOST in an XMIT BLOCK which normally contains logical

messages from other devices.

Input from the HOST, in the form of an XMIT BLOCK, is

converted from logical messages for several devices into

individual output buffers, which are then placed on a queue.

When this queue is services, the buffers are output to the
respective devices by the I/O subroutines.

Device I/O buffers are composed of 6M- byte buffer blocks.

All available blocks are kept on the AQUE. When a block

is needed by a process it is removed from the top of the

AQUE, and when it is no longer needed it is put back on

the bottom of the AQUE. The total number of blocks

available is limited only by the amount of RAM available

in the system.

22

All device I/O buffers are dynamic in size with a basic

block size of 6^ bytes, of which 58 are usable for

character storage, are used for the buffer header,

and 2 are used for the linkage pointer. The basic buffer

structure is shown in Figure 5B, along with the method

of block linkage. Buffer size can vary from 1 to a

maximum of 4- blocks for a total of 232 characters.

0

1

2

3

63

6h-

o

4

63

64

Fig. 5B MULTI-BLOCK BUFFER FORMAT AND LINKAGE

23

Blocks are linked up into a buffer by the use of a linkage

pointer in the last 2 bytes of the block. There is also a

bit in the status byte (link bit) which must be set to

indicate that one block is linked to another. If the link

bit is not set, it indicates this is the last block, or the

only block, in the buffer

The buffer header (Fig, 5B) is only present in the first block

of each buffer. It contains the buffer status byte as the

1st byte, the total byte count of the buffer (1 - count - 232)

as the 2nd byte, the source address code of the buffer as the

3rd byte, and the destination address code as the 4th byte.

The 5th through the 62nd byte is used for data storage and
the 63rd and 64th hold the linkage pointer if necessary.

The status bytes also carries other information in addition

to the link bit. The following is the bit arrangement of

the status byte and the meaning of each bit,

76543210

— — — LNK ETB PAR HOST *• — — — ■* *• — —

INK - The Link bit indicates this is not the last block in
the buffer and that a linkage address will be found
as the end of the block.

ETB - The Extended Buffer bit indicates this is not the
last buffer in this I/O operation (i.e. Input was
more than 232 bytes).

2^

PAR - The Parity bit indicates a character with bad parity
occured somewhere within this buffer.

HOST - The HOST bit indicates this buffer's destination is
the HOST system.

The last 3 bits above only occur in the 1st status byte of

each buffer (the buffer header), however, the link bit is

in every status byte of every block in the buffer to indicate

the presents or absence of another block.

The HOST buffers are a fixed size with 1024 bytes being

allocated for each (Fig. 5C). There are two HOST buffers,

one buffer (XBUF) for transmitting messages to the HOST, and

one buffer (RBUF) for receiving HOST message transmissions.

The buffer header for the HOST buffers consists of bytes.

The 1st byte holds the status information, the 2nd and

3rd bytes hold the total byte count (6 count - 1020) and

the 4th is reserved for future designation.

Fig. 5C HOST BUFFER FORMAT

25

The status bytes for the HOST buffers are explained below:

765^3210
RBUF - ERR LOG SVM NSC ACK EMTY FULL BSY

XBUF - ERR — — — — — — — — EMTY FULL BSY

ERR - The Error bit indicates an error of some kind
has occured in the buffer.

LOG - The Logical message bit indicates there are logical
messages present in the RBUF for processing.

SVM - The Service Message bit indicates this RBUF is a
service message.

NSC - The New SC bit indicates this RBUF has a different
SC in the header than the last transmission.

ACK - The Acknowledge bit indicates the HOST has acknow­
ledged the reception of the last transmission.

EMTY - The Empty bit indicates there is no data in the
buffer.

FULL - The Full bit indicates no more data can be put into
the buffer.

BSY - The Busy bit indicates the buffer is now in the act
of being changed by some process and cannot be
accessed by another.

Each I/O device has associated with it a Device Control

Block (DCB) which contains all pertinent data for that

device, All permanent data such as bus channel address

and interrupt mask are stored here, and all temporary param­

eters such as byte count and buffer address used during I/O

operations are also stored here. Figure 5D shows the format
of the DCB used for device I/O.

26

0

1

2

3

h.

5

6

7
8

9

10

11

STATUS

INTR MASK

DEVICE BUS ADDR

AC (DEVICE LU#)

DST AC (READ)

BUF ADDR L

BUF ADDR H

REMAINING BYTES

BLOCK STATUS

TOTAL BYTES

DATA POINTER L

DATA POINTER H

Fig. 5D DEVICE CONTROL BLOCK FORMAT

The individual DCB bytes are as follows:

(1) The device status holds the status bits for this device,
(2) The interrupt mask is used for enabling/disabling the

interrupt register,

(3) The device bus address is the number of the I/O port,

(4) The address code is the logical unit number of the
device.

(5) The destination address code is the logical unit number
of the device.

(6) The present buffer address is the address of the buffer
assigned to this device during an I/O cycle.

(7) The remaining bytes are the bytes left to be input to or
output from this block.

27

(8) The present block status is a save area for the status
of the block in use.

(9) The total bytes is the total remaining bytes left to
be input to or output from the buffer.

(10) The buffer data pointer is the pointer to the next
byte of input or output.

The status byte of the DCB is explained below:

765^3210

DCB ERR IDM ETB ONLN ACK XBF RD BSY

ERR - The Error bit indicates that an error has occured on
an I/O transfer to this device.

IDM - The Identification Message bit indicates that an
ID header should be attached to the start of each
buffer sent by this device.

ETB - The Entended Buffer bit indicates that the present

buffer is not the end of the message.

ONLN - The On Line bit indicates that this device is ready
for I/O.

ACK - The Acknowledge bit indicates that the last trans­
mission from this device to the host has been received.

XBF - The Xmit message buffer bit indicates that there is
now a message waiting on the XQUE to be sent to the
HOST (only 1 message is allowed to be on the XQUE
from any single device at any particular time).

RD - The Read bit indicates that this is an input
operation.

BSY - The Busy bit indicates that this device is performing an
I/O operation and cannot start another until this
one is complete.

28

The HOST has associated with it a Host Control Block (HOB)

which contains all pertinent data for the HOST. Since the HOST

I/O driver routines are not shared by any other devices,

the HCB does not have to hold nearly as much information as

the DCB. Figure 5E shows the format of the HCB.

0 STATUS

1 REMAINING BYTES L

2 REMAINING BYTES H

3 DATA POINTER L

Lv DATA POINTER H

Fig. 5E HOST CONTROL BLOCK FORMAT

The individual bytes are as follows:

(1) The Device Status byte holds the HOST status.

(2) The Remaining Bytes indicates the total bytes left to
be received or transmitted in this buffer.

(3) The Data Pointer is the pointer to the next byte to
be received or transmitted.

The status byte for the HCB is explained below:

765^3210
HCB ERR SYNC ETB ONLN AC PT — RD BSY

ERR -The Error bit indicates that an error has occured on
an I/O transfer to the HOST.

SYNC-The Synchronized bit indicates that the HOST I/O unit
has received the correct sync characters.

29

ETB - The Extended Buffer bit indicates the present buffer
is not the end of the message.

ONLN - The On Line bit indicates the HOST is ready for I/O,

ACPT - The Accept all calls bit indicates the HOST will
accept all new devices which sign on.

RD - The Read bit indicates this is a HOST receive
operation.

BSY - The Busy bit indicates the HOST is performing I/O,

The DOB for any particular device is acquired through a

table (DCBTAB), The AC of the device is all that is needed

to calculate the offset for the table, which contains all

of the DCBs for every device in the system. Figure 5F is

an example of how this table is set up.

0
2

2n

DCBTAB

Fig. 5F DCB POINTER TABLE

30

All I/O within the program between two devices and between

devices and the HOST is carried on through the I/O buffer.

To prevent the possibility of interference between devices,

all buffers are handled through queues on a first .in first

out basis. If a buffer taken from the top of a queue is

destined for a device which is presently busy, it is put

back on the bottom of the same queue to wait until the device

is not busy. Figure 50 is a diagram of the queue buffer

relationship.

ROUE

Fig. 50 QUEUE - BUFFER LINKAGE

31

The I/O is structured such that when a read or a write is

started, for a particular device, the operation must run to

completion before another can be started. This means that

for a write operation, the complete buffer must be output,

and for a read, either a line delimiter (OR) must be found,

or the total length of input must exceed 232 characters.
In the latter case, the present I/O buffer is terminated

with an ’ETB' and put on a queue, and a new I/O buffer is

started to receive the rest of the input.

There are 5 queues used by the program:

(1) The Available blocks queue (AQUE) holds the addresses
of all blocks not presently in use.

(2) The Receive queue (RQUE) holds the address of all
output buffers ready for output to a device,

(3) The Transmit queue (XQUE) holds the address of all
output buffers ready for output to the HOST.

(^) The Write queue (WQUE) holds all overflow from the

XQUE and the RQUE, and buffers which need to wait for

output to a device or to the HOST.
(5) The Error queue (EQUE) holds both buffer addresses

and queue designators which are placed there when
an error occurs in any other queue

32

Chapter 6

SUBROUTINE DESCRIPTIONS

MAIN PROGRAM

The Main program loop (MAIN) is continously executed by

the system until an interrupt occurs from one of the

timers. If no device requires service at this time,

then control is returned to this routine, During its

execution the MAIN routine services each queue, if a

buffer is on the RQUE it takes the buffer off the queue

and starts output to the device indicated by the buffer,

if a buffer is on the WQUE it moves this-buffer to either

the XQUE or the RQUE, and if a buffer is on the EQUE it

moves the buffer to the required new queue,

MAIN also services the host receive buffer (RBUF) and

the host transmit buffer (XBUF) when necessary. When

the RBUF needs service, a flag causes the RBUF service

routine to be entered which takes RBUF and converts all

of its messages to output buffers and stores the addresses

on the RQUE. And when the XBUF needs service, a flag

causes the XBUF service routine to be entered, which

takes all buffers off the XQUE and converts them to

logical messages and puts them into the XBUF for trans­

mission to the host processor.

33

The Initalize routine (INIT) is the routine which initalizes

all necessary variables, initalizes all queues, sets up the
stack pointer, sets up the I/O controller, starts an input

cycle to all devices and enables the interrupts.

The Clock and I/O set up routine (CIO) is called by the

INIT routine to set up the clock and timer interrupts, to
set up the I/O device controllers, and to set up the priority

encoder for device service requests.

COMMAND PROCESSOR

The Command Processor routine (CMDPRC) executes all system

commands. It receives these commands from all devices in

the form of buffers. The buffers are analyzed by the

command processor and the appropriate action is taken.

All commands start with a 'CTL C followed by the command.

The commands are as follows:

ASSIGN - Consists of an * A*, followed by a one or two
digit number. This command assigns the device,
designated by the number, as the destination of
the device issuing the command. All further
inputs from the sorce device are routed to this
destination device.

ATTACH - Consists of 'CTL A*. This command does two things:
first it assigns the Host processor to the source
device and second, it sends a select message to
the Host to connect the source device to the Host.

DETACH - Consists of a 'D'. This command causes a detach
message to be sent to the Host, which disconnects
the source device from the Host, (Causes an
immediate ’CP DISCONNECT')

The Command Input routine (CMDIN) is entered from DEVRD
when a 'CTL C is detected. It sets up a buffer to receive
the command and pass it to the command processor routine,

DEVICE I/O ROUTINES

The Device Input routine (DEVIN) sets up the parameters in

the device DCB for input from the device. It first acquires

a block from the buffer pool and stores its address in the

DCB. It then sets up the source and destination in the

buffer header, initalizes the other parameters in the DCB

for input from the device, and clears the read mask bit
for this device in the I/O service mask.

The Device Output routine (DEVOUT) sets up the parameters

in the device DCB for output to the device, On entry the

buffer address is stored in the DCB. It then gets the

byte count from the buffer and stores it in the DCB,

initializes the other parameters in the DCB for output

to the device, and clears the write mask bit for this
device in the I/O service mask.

35

The Interrupt routine (INTR) is the device interrupt

handler. This routine is enteredmce every millisecond

from a timer interrupt. On entry it checks first for the

Host needing service and then for any device needing

service. If no service is needed, an exit is taken.

However, if the Host needs service, the Host service routine

is called. Additionally, if any device has a service request
bit set and the device is not masked, the routine finds the

correct DCB for that device, loads the registers with

parameters from it, and then calls the service routine

to service that device.

The Device Read routine (DEVRD), which is called by INTR,

reads a character from the device designated by the

parameters in the registers. It then stores this character

in the designated buffer, updates the parameters, checks

for the end of line character, checks for the last character

in the present block or checks for a command character.

If the character read indicates the end of the line, then

the buffer is closed and the device placed in idle mode,

kf the character read is the 1st in the present block, then

the block is closed and a new one linked to the present one,

and if the character read is a command character ('CTL C*)

then the present buffer is aborted and a command buffer is

initiated by CMDIN.

36

The Device Write routine (DEVWR), which is called by INTR,

writes a character to the device designated by the parameters

in the registers. It then updates the parameters, checks

for the end of the buffer, checks for the end of the

present block, or checks for the extended buffer.

If this is the last character in the buffer, the routine

restores the block to the buffer pool and places the device

in the idle mode, if it is only the end of the present

block it restores this block to the buffer pool and gets

the address of the next block, and if it is an extended

buffer, it restores this block to the buffer pool and then

sets the device up to receive another output buffer.

HOST I/O

The Start Receive Buffer routine (STRBUF) is called by

RBFSRV or GENXBF to start the next RBUF input cycle. It

sets up the necessary parameters in the Host Control Block

and unmasks the interrupt for input from the HOST.

The Start Transmit Buffer routine (STRXBF) is called by

RBFSRV or GENXBF to start the next XBUF output cycle.

It sets up the necessary parameters in the HCB and un­

masks the interrupt for output to the HOST.

37

The Host Receive routine (HOSTR) is entered from an interrupt,

and if the Host I/O controller is in sync, a byte is read

from the Host and placed in the RBUF, If it is an end of

message character the full flag is set, the buffer is

closed, and the interrupt mask set.

The Host Transmit routine (HOSTX) is entered fron an interrupt,

and it transmits the next byte of XBUF to the Host, If it

is the end of the buffer, the empty flag is set and the

interrupt mask set.

HOST BUFFER CONVERSION

The Receive Buffer Service routine (RBFSRV) is called by

MAIN to service the RBUF. It first strips the link message

from the RBUF, analyzes the link message and uses it to set

the RBUF status flags. Next, depending on the flag setting,

this routine will retransmit the old XBUF, transmit a

service message, generate and transmit a new XBUF or

convert all logical messages in the RBUF to output buffers

and put them on the ROUE, The routine then starts reception

of the next RBUF.

The Strip Link routine (STRLNK) is called by RBFSRV to

strip the link message off the RBUF. Depending on the data

in the header, it will set or clear the flags in the RBUF

status byte.

38

The Service Message routine (SRVMSG) is called by RBFSRV

to analyze RBUF service messages and either send back the

correct acknowledge message or initiate the appropriate

action.

The Get Message routine (GETMSG) is called by RBFSRV to

get the next logical message off RBUF. It also calculates

the length of the message and stores the address in a save

area.

The Get Buffer routine (GETBUF) is called by RBFSRV to get

a buffer to store the logical message. It gets enough

blocks off the AGUE to hold the logical message and links

them together as one buffer.

The Convert Logical Messages routine (CONMSG) is called by

RBFSRV to convert the logical message to an output buffer

and store the data in the buffer. It also puts the necessary

header data into the buffer header.

The Generate XBUF routine (GENXBF) is called by RBFSRV

to generate the next XBUF for output to the Host, It

first generates a new link header for the XBUF using in­

formation from the present RBUF. It then gets buffers off

the XQUE, converts them to logical messages and puts them
into the XBUF, When the buffer is full or there are no

nlore buffers on the XQUE, it starts transmission of the

new XBUF.

39

The Generate Link routine (GENLNK) is called by GENXBF

to generate a link message for the new XBUF. It analyzes

the data in the present RBUF link header, generates the

new link header and puts it in XBUF.

The Convert To Logical Messages routine (CONLOG) is called

by GENXBF to convert input buffers to logical messages

and put them into XBUF. It first generates a logical

message header, puts it in the XBUF, and then moves the

data from the input buffer to XBUF.

QUEUE HANDLERS

The queues are set up as simple linear lists with pointers

to the top and bottom stored in the header. The header also

holds the status byte, and the top and bottom buffer pointers

The Put On Queue routine (PUT) is called by many routines

to put a value on a queue. It stores the two byte value,

in the HL register, at the location pointed to by the top

queue pointer. It then updates the pointer and,if the queue

is full, sets the flag.

The Get From Queue routine (GET) is called by many routines

to get a value from a queue. It gets the value pointed to

by the bottom queue pointer and places that value in the

HL register. It then updates the pointer and if the queue

is empty, sets the flag,

CONCLUSION

This project has clearly shown the ability to produce a

useful microprocessor development system with a bare

minimum of hardware. The total cost of all hardware
for this system came to less than $1,000. The FORTRAN

cross assembler.however, which normally sells for $250.00,

was donated by MOSTEK. And the cost of the console terminal

is not considered because it was already owned by the

university. But even including the prices of these items,

this system still compares favorably with stand alone
systems selling for up to $10,000,

This system would be perfect for an application such as

microprocessor training for a number of students. All

programs could be written and assembled on normal time­

share terminals and then loaded into the development

system for testing. The low price means several units

could be accquired for the same price as one expensive
stand alone system.

While the program discussed in the second part of the

thesis was written and tested on the microprocessor

development system, it was never completely tested with

the HOST system. This was due to the lack of availability

of an RNP line on the HOST system, And the effort necessary

41

to implement such a line on the HOST was too extensive

to be completed in the allotted time. However, the soft­

ware routines were all tested locally and worked well with

test programs.

Although the emulator program should be very useful as it

is, with a few changes to the harware and the software it

could be made much more versatile and efficient. For example,

the number of devices which it could service could be

increased considerably by adding a different interrupt
scheme and a DMA capability to the HOST I/O line, although

as it stands, it could probably handle up to 16 low speed

terminals (300 baud).

In addition, the emulator could be used with a different

HOST machine just by changing the routines which determine

the protocol. However, the basic framework of the emulator

and most of the subroutines would remain the same as they

are presently.

Al

APPENDIX A

HARDWARE DIAGRAMS

page

SYSTEM FRONT AND REAR VIEW A2

CPU CARD PHYSICAL LAYOUT A3

CPU CARD ELECTRICAL DIAGRAMS A^
I/O CARD PHYSICAL LAYOUT A?

I/O CARD ELECTRICAL DIAGRAMS A8

2

REAR VIEW

SYSTEM FRONT AND REAR VIEW

CLOCK

1Kx8
ROM
2708

1Kx8
ROM
2708

1Kx8
ROM
2708

1Kx8
ROM
2708

BUS DRIVERS AND RECEIVERS

CPU CARD PHYSICAL LAYOUT

^0 7

#A D <.
MD S'

)A D 4

*1 D 3

n D z.
M D I
M D <6

17
OC »$ l>4 VS pt. piP?

AlHU34

TT

2708
IK. X e
PHOM

* i

-£— ma
——mA
— A14
S__

— MA

-—fAA

A I ------- AA R 0<?
rAA 0B

—— mA n
®c
«ss
0*
03
01
Pl

R 00

CPU CARD (LOGIC CIRCUITS)
Sheet 1 of 3

CPU CARD
(BUS INTERFACE)

Sheet
2 of

3

CPU CARD
(RAM STORAGE)

Sheet
3 of

3

)AR 01 --------------------

>AA »Z. --------------------
za A * 5 --------------------
ZA A 04 --------------------

Al fl »5" --------------------

zaA gt --------------------
ZAA 07 --------------------
ziAA i> 8 --------------------
/v\xi --------------------
zAA I* ---------------------
mA II -------------------

mA 11 --------------------

-kb
tHrkHtM.

fl<z U34
A4S
A44
/ws

Ml’ 4051
A#7
AM
A#< R’'*A

Al*
AH
to

Qi w£

4
S

i
<1
u
II

»s
ft-

U37

403’1
4 t.

R AK

—

1
4
f

6

4
II

it

if
it

U38

4051
4 K.

RAW

—

3
4
5

R

IZ
tl
M
tr

U34

4051
4 K

RAai

—

4
5

8

n

><

if
u

I

4osi
4K.

RAW

—

3
4
S

4
It

IZ
13
14

Jf.
It
17
Z

U4I

4057
4K.
RAvi

—

3
4
S
6
4

13
.4

IS

Utz

AoSI
4K

Ram

5
a

4

n
t4

i?

U43

4o5l
4 K

Ra*i

1V I.1 -1? ►* JJ -jY fr'J iV J _2LfJ J 21^J

k___

MA 0 1 --------------------

/A A 65 Z- —-----------------
M A 0J --------------------
ZAA 0A -------------------
mA 05 --------------------
<0A 0U --------------------

aa/4 ---------------
Mfl 08 --------------------

mA 01 --------------------
MA 10 --------------------
zAA II --------------------
mA 11 --------------------

4 ‘ 4. J 11 k it___ J J
s___ ■’A *■« 4 ‘J

5
4
5

.8.

n

ti
H
ir

>t
n

G£ v»€
A»*
A»l

A41
Adf
Ads

T 4051
Adi
Ads 4 K
A<>q KAM

Al*
Ail
IO

_£
j.

9
1
)i
it

i4

if
)6
n

U17

4 051

4K.

RAAt

4
5
9
1
H

i<

If

410

4051

AK.
RAM

—

3
4
S

4
H

13
>4
is

u

n

X

uxe

4osi
A X.

KAn

—

3
4
5
0
9
H

It
13
14
>S
It
11
1

U3O

40S1

AV-
ILAm —

3
*
$
9
1
H
IZ
13
K

IS

Ik

U3I

4 011

410
ram

3
4
sr
i?
1
11
IZ
13
|4

if

Ik
n

U3Z

AoSl

AX-
RAM

—

U33

4oc 1

IK-
Il Am

/M p 0
ZA D I

D Z.
ZAO 1
ZAO 4
ZAO S
ZAO 4

DEVICE ADDR
A 10H
B 12H
C 14H
D 16H
E NOT

USED

SWITCH
POS BAUD
1 9600
2 ^-800
3 2400
4 1200
5 600
6 300
7 150
0

DEVICE D & E DEVICE B & C

8259
INTR REG E

NOT
D

8251

USED USART

A ----
8251

USART
CTC

C
8251

B
8251

USART USART

IKxS
ROM

IKxS
ROM

IKxS
ROM

IKxS
ROM

99QQQQ
1 1 1 1 1 1 666666
RES

IKxS
ROM

IKxS
ROM

IKxS
ROM

IKxS
ROM

C
O

ADDR SPEED
SELECTIONSELECTION

I/O CARD PHYSICAL LAYOUT

CONSOLE

D EQ O6 6 OOO
5 4 3 2 1

I/O CARD
(SERIAL PORTS)

G
LK

■)<- COhlNECTOR D

Bod s
6od t
bod a
Sop 3

BID <6
BID I
BIO 2
BID 3

BOO 4
BOO 5
Boo 6
BOp 7

BID 4
BIP 5
BID U
BID 7

C»**Z^ct,oaJ

OUT

poc

IMT

toRq
FA~1

NMt

I/O CARD (INTERRUPTS AND CLOCK)
Sheet 2 of 3

I/O CARD
(PROM STORAGE)

Sheet
3 of

3

5

Bl

APPENDIX B

ZAPPLE MONITOR COMMANDS

NOTE - The text in Appendix B was copied from the

- ZAPPLE MONITOR OPERATIONS MANUAL

by
Roger Amidon, Technical Design Labs

B2

APPENDIX B

COMMANDS

The following is a list of commands for the Zapple
Monitor, Precise definitions and usage notes are
covered in the next section,

A - ASSIGN reader, punch, console or list device options
from the console.

B - BYE (system shut down),
C - COMPARE the contents of memory with the reader input

and display any differences,
D - DISPLAY the contents of any defined memory area in Hex,
E - END OF FILE statement generator.
F - FILL any define area of memory with a constant,
G - GOTO an address and execute. With breakpointing.
H - HEX MATH. Gives the sum and difference of two Hex

numbers.
I - VERIFY ROM. Verifies contents of ROM against memory,
J - JUSTIFY MEMORY - a non-destructive test for hard memory

failures.
K - Jump to HOST I/O Routine.
L - LOAD a binary file.
M - MOVE a defined memory area to another starting address.
N - NULLS to the punch device.
O - PROGRAM ROM. Programs ROM from memory.
P - PUT ASCII characters into memory from the keyboard,
Q - QUERY I/O ports - may output or input any value to or

from any I/O port,
R - READ a Hex file. Performs checksum, relocating,

offsetting, etc.
S - SUBSTITUTE and/or examine any value at any address

(in hex).
T - TYPES the contents of a defined memory block in their

ASCII equivalent,
U - UNLOAD a binary tape to the punch device.
V - VERIFY the contents of a defined memory block agains

that of another block and display the differences.
W - WRITE a checksummed hex file to the punch device.
X - eXAMINE and/or modify any or all registers including

the special Z-80 registers.
Y - "Yis there". Search memory for defined byte strings

and display all addresses where they are found.
Z - "Z end". Locate and display the highest address in

memory.

B3

COMMAND SET USAGE

The following section lists the commands, and describes
their format and their use. It should be noted that the
Zapple Monitor recognizes both upper and lower case letters
for its commands, and that in general, a command which is
printing can be stopped with a CONTROL C, which is checked
during a carrage return - line feed sequence. The following
EXAMPLES show a comma (,) as a delimiter between parameters,
however a space may also be used. If an error is made while
inputting a command from the keyboard, it may be terminated
by a rubout and the command re-typed. An asterisk is dis­
played indicating an ABORT of some kind.

COMMAND DESCRIPTION

A ASSIGNMENT OF I/O DEVICEi The monitor system is
capable of supporting up to logical devices, these
beingi the CONSOLE, the READER, the PUNCH, and the
LIST DEVICE. To these may be connected U- different
actual I/O devices, for a total of 16 direct combina­
tions of I/O device and function. The specific
permutations aret

LOGICAL DEVICE ASSIGNED DEVICES
CONSOLE TTY

CRT
BATCH
USER (user defined)

READER TTY
CASSETTE
PAPER (HIGH SPEED READER

user written)
USER (user defined)

PUNCH TTY
CASSETTE
PAPER (HIGH SPEED PUNCH

user written)
USER (user defined)

LIST DEVICE TTY
CRT
LINE PRINTER (user written)
USER (user defined)

The default mode for each logical device is always
the teleprinter.

Assignments are made using the following formati

EXAMPLEi AC=C(cr)
assigns the console equal to the Crt (video terminal)
device, similarly:

EXAMPLE: AR=T(cr)

assigns the reader device to be the teleprinter.

While performing a command which requires a reader
input (C,L,R), if the assigned reader is the Tele­
printer, the software will look for a character from
the TTY input. If a character is not recieved within
a few seconds, it will ABORT, printing an asterisk (*)
and return to the command mode. Similarly, if the
assigned reader is the Cassette device, and you WISH
to abort for some reason, changing the position of any
of the SENSE switches will force an ABORT. On the
external reader routines, returning with the carry set
indicates an abort (or OUT OF DATA) conditinn.

When assigning a device, only the first letter initial
of its name is required.

The Monitor itself is set-up to support the TTY, CRT,
and Cassette routines. The other assignments require
the addition of user's Routines. These are addressed
via the commands, which vector to starting addresses.

EXAMPLE} AL=L(cr)

assigns the lid; device to be the line printer. It
vectors to (start address) +812H, or 12H above the
end of the monitor. That would be the address for
the line printer routine. For details of these
arrangements, see the Source Documentation.

Within the above, the assign console equals batch
"AC=B(cr)" deserves further mention. In BATCH mode,
the READER is made the Keyboard input, and the LIST
DEVICE is made the console output. This allows the
running of a job directly from the reader input, with
the result being output to the list device.

A typical use of this assignment would be the recon­
struction of a lengthy text editing job where the text
and your editing commands have all been saved on paper
tape. With the BATCH MODE, you may assign the reader
equals the TTY, the List device equals the TTY, and
Console equals BATCH, Running the tape through the
reader is the same as you redoing the entire text
editing by hand, and the output will go to the TTY
and be printed. On a very lengthy job, you could
even start the process, and go away until it's done.
Its usefullness is limited only by your imagination.

B5

B BYE. This command completely shuts down the system.
It is useful where children might have access to the
system, where a telephone communications link is
established under remote control, or anytime when the
operator wishes to make the system inaccessible to
unauthorized use.

EXAMPLE: B
completely kill the keyboard, Recovery from the
shut-down is accomplished simply by inputting a
CONTROL-SHIFT N from the keyboard. (ASCII equivalent
is a Record Separator - "RS"; HEX character is a 1EH.)
The monitor will sign on and print a greater-than sign
(>), however, the register storage area will not be
cleared.

C COMPARE the reader input with memory, This command
is useful for verifying correct loads, verifying
that a dumped tape matches with its source, etc.

EXAMPLE: C1000,2000(cr, start reader)
compares the memory block 1000H to 2000H with the
input from the reader device.

For those with automatic readers, the operation is
very simple. Assign the Reader equal to the device
you wish to enter the data against, type C (starting
address), (ending address)(cr), and the reader will
start. The first character read by the reader will be
the one matched with the starting address. If any
discrepencies are encountered, the reader will stop,
and the address (in hex) of the error will be printed
on the display. The reader will restart, and continue
in this fashion until the entire tape is compared.

If your reader cannot operate automatically, start
the reader manually. If an error is encountered,
however, while the incorrect address is being printed,
the reader will continue, and get "out of sync" with
the compare action. Therefore, it is necessary to
manually stop the reader if an error is encountered,
and manually reposition the tape to the byte following
the error. (An excellent article on how to convert
ASR33 type readers to automatic operation was recently
presented in INTERFACE magazine.)

D DISPLAY memory contents. This command displays the
contents of memory in Hex, Memory is displayed 16
bytes per line, with the starting address of the line
given as the first piece of data on the line.

B6

EXAMPLE! DIOO.IFF (cr)
will display in hex the values contained in the memory
block 100H to 1FFH,

E END OF FILE, This command generates the end of file
pattern for the checksum loader. It is used after
punching a block of memory to the punch device using
the "W" command. An address parameter for the end of
file may be given if so desired,

EXAMPLE: E(cr)
will generate an "end of file marker",
EXAMPLE: E100(cr)
generates the EOF marker with the address parameter
"100H". When loading such a file, upon completion,
the address contained in the End of File will be
placed in the "P" register. Execution of the program
may then be initiated by typing "G(cr)",

F FILL command, This command.fills a block of memory
with a specific value. It is quite handy for
initializing a block to a specific value (such as for
tests, zeroing memory when starting up, etc.) *NOTE:
Avoid doing this over the monitor's stack area. This
area may be determined as being between the value you
get when typing the Z command, and the value in the
S register upon sign-on. It is approximately 60H
bytes below the "Top of memory"(Z).

The format for the command is:

EXAMPLE: F1OO,1FF,FF
fills memory block 100H to 1FFH with the value FFH.

G GOTO command. This command allows the user to cause
the processor to GOTO an address and execute the
program from that address. In the actural performing
of the G command, a program, which has been placed in
the stack area during the sign-on of the monitor, is
executed. This program will first take all of the
values in the register storage area (displayed with
the X command), and stuff them in their correct reg­
isters in the CPU, and finally JMP to the program
address being requested by the operator. If this
short program up in the stack has been destroyed (as
a result of a"blow-up", or the F or M commands, etc.)
the monitor will not be able to GO anywhere, and a

B7

manual restart of the monitor will be required.
Whenever the monitor is restarted at the initial­
ization point (first address I.E. OFOOOH), the
contents of the registers are set to ZERO with the
exception of the S (stack), which contains a valid
stack address. This actual value depends on the amount
of memory in the system, etc. In its simplest form,
the letter "G" accompanied by a parameter causes the
processor to go to that address and start execution.

EXAMPLEi G1000
would cause the processor to goto address 1000(H)
and execute from that address.

Additionally, one or two breakpoints may be set.

EXAMPLEi 01000,1005,1010
would cause the program to start execution at address
1000H, and IN THE EVENT that the program gets to
address 1005, OR 1010, the program will stop execution
and return to the monitor, printing an "at" sign,
and the address of the breakpoint that was executed,
(ie. @1010). It then prints the ">"prompt, awaiting
further instructions. This action also cancels any
breakpoints previously set.

Breakpoints must be set at locations containing an
instruction byte. This is a SOFTWARE breakpoint
system, and requires either RAM at RST 7 (restart 7,
addr. OO38H), or if using ROM, a permanent JMP to
the monitor TRAP address (0F01EH) at OO38H. Remember,
this is a SOFTWARE breakpoint system, and the program
being debugged must be in non-protected Read/Write
memory.

EXAMPLEi *G2 JNZ 123^H
3^
12

*3E MVI A,OR
0D

*21 LX I H.1000H
00
10

*77 MOV M,A
*23 INX H
*CD CALL 5678H
78
56

The asterisks (*) mark the bytes that may be used
as breakpoints.

B8

H HEX MATH. This command allows the execution of
hexidecimal arithmetic directly from the console. It
will give the sum and difference of any two hex numbers
entered.

EXAMPLEt H1000,1010(cr)
2010 FFFO

2010H being the sum, and FFFO being the difference
of the two hex values.

J The J command is a non-destructive memory test. The
command reads any given byte, complements it, writes
into the location the complement, compares the complement
with the accumulator, and rewrites the original byte
into the location. The command is used with two para­
meters, delineating the block of memory to be checked,

EXAMPLEt J1000,lFFF
>

would perform the above test on the block 1000H to
1FFFH.

If errors are detected, the address at which the
error is found and the error are displayed on the
console before the test is continued,

EXAMPLEt J1000,lFFF(cr)
1F00 00001000

would indicate that the 4th bit (D3) at location
1F00H did not correctly complement itself.

This test is useful for the discovery of hard memory
failures, and also serves as a quick check for acci­
dentally protected memory. A fully protected memory
block would print out as entirely "Is". (11111111)

L LOAD BINARY FILE. This command loads a binary file
from either a cassette or paper tape.

EXAMPLE: LlOOO(cr)
would load the tape at address 1000H. This would
require that the program be an absolute program,
designed for address 1000H. The start-of-file mark
(automatically generated by the "U" command) is a
series of 8 OFFH's (rubouts). When this is detected
at the start of file, the bell will ring on the TTY
to indicate the start of the load process. When the
end-of-file is detected (again, a series of 8 rubouts)
the load is terminated, and the address of the NEXT

B9

location that would have been loaded is printed on
the console, There are two constraints on this
type of file system. The middle of the program can
not contain more than 6 OFFs (11111111) in a row
(an unusual occurence), and if OFFH is the LAST data
byte in the file, it will be ignored. This too is
unusual, and only a minor inconvienience.

Binary programs loaded at other than their design
address will not run. The "L" command does not
perform checksum functions, and cannot handle re­
locatable files. This is a pure and simple byte-for-
byte binary loader (see "U" command.)

M MOVE COMMAND. This command is used to move a block
of memory from one location to another. The original
block is NOT affected by the move, remaining intact
so long as the block moved into does not overlap with
the block currently occupied. This command, like
the "F" command should be used with some caution as
moving a block into an area occupied by the stack,
or the program or the monitor will cause unpredictable
results.

EXAMPLE: M1000,1FFF,2000(cr)

moves the contents of memory contained in the block
1000H to 1FFFH to a starting address of 2000H, The
new block has the limits 2000H to 2FFFH.

This command is very useful for working on programs
without destroying the original, verifying blocks of
memory loaded with existing memory, etc.

N NULL. This command punches nulls to the punch device.
72 nulls are punched whenever the command is used.
It may be used repetitively for any desired leader
length.

EXAMPLE: (N)
*Note: the "N" or "n" will NOT echo, so as
to not spoil the paper tape.

It will punch 72 nulls to the punch device.

P PUT ASCII characters into memory. This command allows
ASCII characters to be written directly into memory.
It is useful for placing labels in files, etc.
EXAMPLE: P1000(cr)
activates the command, and any further inputs via the
keyboard would be placed into memory in their ASCII
equivalent. The command is terminated by a CONTROL D
character, v, th the address of the location following

BIO

the last entry printed on the console (the Control-D
is NOT stored). Recovery of the input data is affected
by use of the "T" or "U" command.

Q QUERY INPUT/OUTPUT PORTS. This command allows any
value to be output to any I/O port, and allows the
value in binary on any I/O port to be read on the
console.

EXAMPLE: Q01,7(cr)
would output an ASCII "7" to I/O PORT 1. (ASCII
seven is a "bell" so on a TTY, the bell would ring.)

EXAMPLE: Qll(cr) 00001101
inputs the value at port 1, in the illustration above,
we see that bits 0,2 and 3 are high, the others low.
This is useful for observing the condition of status
bits and other diagnostic activities.

R READ A CHECKSUMMED HEX FILE. This command reads
checksummed hex files in the INTEL format, as well
as being capable of loading thd relocatable TDL files
at any selected address and bias offset. When reading
an ABSOLUTE file (INTEL format), there may be only a
BIAS added. These files cannot be relocated. The
format is: R(bias),(relocation)(cr).

If a checksum error or a failure to write the data to
memory occurs, the loading process is stopped, an
asterisk is printed (indicating some error condition),
and the address that was attempting to be written will
be displayed on the console device. This is to assist
in determining the failure.

EXAMPLE: R(cr, start reader)
will load a hex file at its absolute address.

EXAMPLE: R,1000(cr, start reader)

will load a TDL relocatable hex file at address 1000H
and modify the program to run at address 1000H.

EXAMPLE: R1000,100 (cr, start reader)

loads the file set up to run at 100H, but with a
positive BIAS of 1000H added to it. Thus, the file,
set up to run at 100H will be loaded at 1100H.

Bll

EXAMPLEi RlOOO(cr)
will load the file, set up to run at address 0000H,
at address 1000. In other words, using the TDL
relocating format, you may load any program, to
execute anywhere in memory, anywhere in memory.
(Think about it.....)

S SUBSTITUTE and examine. This command allows any
address in memory to be examined directly, and allows
substitution of one value for another at that address
if desired.
EXAMPLEt SF810(sp)OO-(sp)lA-(sp)Q3-(sp)(cr)

>
In this case the "S" command examines address F810H.
The hitting of the space bar (sp) displays the value
of that address. (assuming value OOH at that address.)
Hitting the space bar again displays the NEXT location
in memory (F811H), and so forth. Simply typing S(sp)
starts display from address 0000H. By repetitive
typing of (sp), all of memory could be displayed
one address at a time.
EXAMPLE! SF810(sp)00-(kb)FF(cr)
This command examines address F810H, showing the
value OOH at that address. Immediately typing in FFH
from the keyboard SUBSTITUTES FFH for OOH at that
address. Repeating the example above would show!
EXAMPLE! SF810(sp)FF-
When an address is being examined, the address being
examined may be moved BACKWORD by entering a backarrow
(ba) or SHIFT-0, or underline, depending on the ter­
minal used.
EXAMPLE! SF810(sp)00-(ba)AA-
shows that at address F80FH, the value AA exists.
Typing a space bar will examine F810H again.

T TYPE ASCII characters from memory. This command allows
the contents of memory to be displayed in their ASCII
■equivalents. All non-printing characters will be dis­
played as periods (.), It may be used to display the
results of the 'P* command which allows keyboard entry
of ASCII characters directly into memory. Also useful
for finding text strings and messages in:software. The
initial address if first displayed, then the first 64-
characters, the next address, etc. until the upper limit
has been reached.

B12

EXAMPLE: T1000,2000(cr)
displays the ASCII equivalents of memory locations
1000H to 2000H. If the *P' command had been used to
place a 'message* into memory somewhere in that
memory block, it would soon be apparent on the console
display.

U UNLOAD BINARY. This command simply dumps core to the
punch device. It may be used with a cassette system
as well, with no start-up problems. It does not
generate a checksum. The format which is generated
will be a leader, eight OFFHs, binary data, eight OFFHs,
and a trailer. The OFFHs are 'rubouts* and are called
files ques. These are detected and counted to deter­
mine the start and the end of files.

EXAMPLE: U00,FF (cr, start reader)
will generate a binary tape, formated as discribed
above, of the values contained in memory locations
OOH to FFH.

V VERIFY. This command allows the user to verify the
contents of one memory block agains the contents of
another memory block. This is very useful for
functions such as verifying that a file generated from
a program is a duplicate of the actual program, etc.

EXAMPLE: 71000,2000,3000
will compare the contents of the memory block 1000H
to 2000H against the contents of the memory block
commencing at 3000H and extending to b-OOOH. Any
differences will be displayed.

EXAMPLE: 71000,2000,3000
100F 00 FF

indicated that the contents of address 100FH is a 00
while that at 300FH is an FF.

W WRITE Hex file. This command dumps memory to the punch
device in the standard 'Intel-style* hex file format.
Both start and end of file parameters are required.
The proper 'end of file* (EOF) is generated by the
E command.
EXAMPLE: WOO,FF(cr,start punch)

(after punching)
E(cr)

B13

will generate a checksummed hex file of the values
in the memory block OOH to FFH. If the assigned
punch and console are the same, the program will
pause and wait for the operator to turn on the
punch (ASR33, etc.). Use of the ’N* command at
either the beginning and/or end of the file is
optional, but recommended.

eXAMINE REGISTERS. The "X" command allows the user
to examine and/or modify all of the Z80 registers.
A - Accumulator
B,C,D,E,H,L - CPU REGISTERS
M - Memory (pointed to by H & L)
P - Program Counter (PC)
S - Stack Pointer (SP)
I - Interrupt Register
X - Index (IX)
Y - Index (IY)
R - Refresh Register

EXAMPLEt X(cr)
displays the contents of MAIN registers A, B, C, D,
E, F, H, L, M, P, S and I, in hex.

EXAMPLE X’(cr)

displays the contents of PRIME registers A, B, C, D,
E, F, H, L, M, X, Y and R.
Typing the letter "X" (or X'), followed by a specific
register letter will display the contents of that
register. Entering a new value via the keyboard (kb)
will substitute the new value in the specific register.
Hitting the space bar will display the next register
in which you may then perform substitutions, etc.
In the unique case of the "M" register, you may modify
the 16 bit pointer (H&L) to that memory location.

EXAMPLE} XA 00-(kb)FF(cr)
XA FF-(sp)00-(kb)FF(cr)
XA FF-(sp)FF-(cr)
>

first examines the contents of register "A" (OOH),
then substitutes an FF. In the next line, the FF is
displayed, a space character displays the next register
(again a OOH), and substitutes an FF for this value.
The last line displays both registers as containing
FFHs.

BU

Y SEARCH. This command allows unique byte strings,
from one up to 255 bytes to be searched for in
memory, and the addresses where they are found to be
displayed. It is advisable to search for unique
patterns rather than single bytes. The search
operation may be stopped with a control-C.

EXAMPLEt YC3,21,F3,01(cr)
0081
00B2
0F08
>

indicates that the byte string (in hex) C3» 21, F3»
01, is found in memory at locations 0081H, 00B2H and
0F08H. This routine will search all 65-K of memory
for a unique sequence of bytes in less that one
second,

Z Z TOP OF MEMORY. This command locates and gives the
highest address of available memory in your system.

EXAMPLE! Z
7FFF
>

indicates that the highest available memory is at
address ?FFFH. Note that NO carriage return is
required. Also, if only one IK board were in the
system, and it was addressed to have its top byte
at address 7FFFH, the Z command would so indicate
regardless of the absence of lower memory.

B15

Additional Functions

The following functions are not part of the original

Zapple Monitor, One of the functions,(K), cause a jump

to the HOST I/O routine. The other two, (I and 0), are

used to program and verify PROMS using an auxiliary PROM

programming card.

K - JUMP TO HOST I/O,
EXAMPLEi K
will go to the HOST I/O routine and start execution.

I - VERIFY ROM, This command will verify that a 1K block
of data has been correctly written into ROM by the
'O' function.
EXAMPLE: I1000
will compare the program in the ROM with the data in
the block from 1000H to 1400H. Any differences will
be displayed.
EXAMPLE: I1000

10F0 OOFF
indicates that the contents of location FOH in the ROM
is OOH, while that at 10F0H in memory is FFH.

0 - PROGRAM ROM. This command will write data into a
PROM from a IK block of memory.
EXAMPLE: 01000
writes the data from 1000H to 1400H into the PROM.

NOTE - The above "two commands (I and 0) require a special

card which contains a ROM programmer for IK by 8

programmable ROMs.

Cl

Appendix C

RMC MESSAGE FORMATS

XMIT BLOCK

Q-FRAMES

SERVICE MSG

DATA MSG

s
Y
N

S
Y
N

S
0
H

0
T

E
LINK 0
MSG T

(Implies NAK)

(Service Request in LINK MSG)

<—Total length - 1024 Char--->

LINK
MSG

LOGICAL
MSG //I

— — — - LOGICAL
MSG #n

E
0
T

kl-xi-# Devices)

LINK MSC
S S S S S S E B
Y Y Y Y 0 F S A 0 I T T C
N N N N H C C C C C X X C

Header —>

(BCC = Block)
(Check)
(Char)

LINK MSG INFORMATION

SYN - All XMIT BLOCKS must start with 2 or more SYN characters.
SYN characters may also appear anywhere within the XMIT
BLOCK but are disregarded.

SOH - Start Of Header character.
FC - Format Code 110g Transmission ACK/NAK.

102g Service message (RFD, DIS).

SC - Sequence Code 101o,102g Alternates on each new
XMIT BLOCK.

AC - Address Code 100g Alway this value in single
RNP networks

C2

OC - Operation Code Ixyg

IC - Identification Code
Ixxg

STX - Start Of Text character

ETX - End Of Text character

BCC - Block Check Character

x= 0 ACK
1 NAK

y= 0 No Instruction
3 A Call (accept all calls)
4 Ready for Disconnect

(RED)
5 N Call (accept no calls)
6 Disconnect (DIS)
7 Reserved

xx= # of messages in XMIT BLOCK,
xx- 63

Text may follow this character,
but not normally found in LINK.

Follows text, if present.

X-OR of all characters from
SOH to ETX not including SOH
or any SYN characters in msg.

LOGICAL MSG

LOGICAL MSG INFORMATION

SOH - Start of Header

FC - Format Code Bits 5-6=1 Bits 0-4 Indicate Mode

SC - Sequence Code 101g,102g Set but not checked.
AC - Address Code Ixxg xx= Destination

Device #

0C1 - Operation Code 1 101g Indicates 0C2 to be us

C3

0C2 - Operation Code 2 lxyg x= 0
1
2
7

ACK
Break ACK
DIS ACK
NULL

y= o
1
2
3
4
5

No Request
Break
DIS
SELECT (Connect Term)
Bad Parity
Logical DIS

IC - Identification Code
1018
1108
nig
1128
1308

Remote Computer
TTY 110 baud

150 baud
300 baud

VIP

STX - Start Of Text Text of logical message
follows.

TEXT- This area may contain 0-232 ASCII characters excluding
the following special characters:

(SOH, ETX, ETB, STX, ACK, NAK, ENQ, US, OLE, EOT)

ETX - End Of Text Follows text, can also be
ETB character for messages
which are longer than 232 char.

BCC - Block Check Character Same as for LINK MSG including
all text characters.

D 1

,*I/0 PROGRAM FOR MODEM TO Z80 SYSTEM

ZEE: EQU 1300H ,‘MAIN MONITOR PROGRAM
TRAP: E QU 3 81 E H ;T R A ° RETURN A D D R
L F A D R : EQU 3C 70H /"PRINT CRLF 8 HL
FXPR1 : EQU 3 D 3 3 H /’GETS 2 BYTE PARAMETER
I OSTS : FQU 1 0 1 B H ;I / 0 STATUS BYTE
LODD: E QU 3 A 28H /•TAPE READ ROUTINE
c o: E QU 3 C 7 8 H /"CONSOLE OUT ROUTINE
C I: EQU 3E1 3H /‘CONSOLE IN ROUTINE
F ILF: EQU 1 32OH /•FILE NAME BUFFER
T 0 M1 : EQU 3 C 4 0 H /•MESSAGE PRINT ROUTINE
C RLE: EQU 3DO4H ; C R 8 L F TO CONSOLE
f
ENTER : CALL I N I T ;R E S E T I/O

LD A,OOH ; CR
LD (FILF+3AH),A /•PUT AT END OF FILE B U F
CALL C RL F ;CR 8 LF
L D 9,OSH /‘CHAR COUNT
L D HL,MSGO /'PROGRAM NAME
CALL TOMI /‘PRINT IT

/
START : LD c, • + • /•PROMPT CHAR

CALL CO /"PRINT IT
I NCO: I N A, (1 H) /‘READ CONSOLE STATUS

AND 32 ;INPUT DATA
J R Z/INM-$; N 0 z CHECK MODEM
CALL C I ; Y E S Z READ CHAR

f
CP 1 9 H ; = esc
J R Z/CON9RK-$; Y E S z SEND BREAK
c p 02H ; = ’ C N T L - B '
J R Z/HOSTLD-$;yes, load from modem
CP 33H /• = • C N T L - C '
J R Z zINM-$ /"IGNORE IT...
C P OEH ; = • C N T L - N ’
RET Z /"GO TO MONITOR

e
OUTM; CALL 0 J T M 0 D /"OUTPUT TO MODEM
z
I nm : I N A,(15H) /’READ MODEM STATUS

AND 3? ;IN P U T DATA R D Y
J R Zz INCO-S /•NOz CHECK CONSOLE
C ALL I NMOD ; Y E S z READ CHAR
LD C z A z
CALL CO /•PRINT ON CONSOLE
J R INCO-S

•
INMOD: I N A,(15H) /‘READ MODEM STATUS

AND 3? /‘INPUT DATA R D Y
J R Zz INMOD-S ,*N0z WAIT
I N Az(14H) ; Y E S z READ CHAR
AND 7FH /’MASK PARITY
RET

D 2

OUT^OD: PUSH AF ; S A V E A
IN A, (15H)
AND 01
JR ZzOUT'1OD + 1-$
POP A F
OUT (1 AH),A
RET

,* R F A D MODEM STATUS
; X M I T R D Y
;N 0, WAIT
; Y E S, GET DATA
/"SEND DATA

e
C ONQR < : CALL 9REAK

JR START-5
/‘SEND BREAK TO MODEM

■
9 RFAK : L D A , 3 D H /‘LOAD BREAK CODE

OUT (<5H),A
LD A,200
CALL WAIT

/'OUTPUT TO MODEM U S AR T (52 5 1)
/‘WAIT COUNT (200 MS)
/‘WAIT...

LD A,35H
OUT (15H),A
L 0 C , ' < '
J P CO

/‘LOAD NORMAL OPERATION CODE
OUT PUT TO US ART

/‘PRINT < ON CONSOLE

/
WAIT: LD 9,090H

DJNZ WAIT+2-S
DECA
JR NZ,WAIT-$
RET

/•DELAY COUNT
; W A I T 1 MS
/‘DEC WAIT COUNT, = 0
,* N 0 , DELAY AGAIN
;yes, return

e
R DMOD : CALL INMOD

PUSH AF
PUSH 9 C
LD C,A
CALL CD
POP 9C
POP A F
OR A
R ET

/•READ CHAR
/'SAVE A F
/"SAVE BC

/‘PRINT ON CONSOLE
/"RESTORE B C
/•RESTORE A F
C L E A R CARRY

z
HOSTLD : L D C , ' > '

CALL CO
CALL EXPR1
LD A,B
SUB ODH
L D 9, A
LD C , A
POP DE

/•PROMPT CHAR
/•PRINT ON CONSOLE
/'GET BIAS, IF ANY
/‘LOOK AT DELIMITER
; I F = C R
/’RELOCATION = 0

; D E = B I A S
JR Z,RO-$
CALL EXPR1
POP 9C

,* C R ENTERED
/’GET RELOCATION
,-9C = REL0CATI0N

RO: EX DE,HL
EXX
CALL CRLF

;HL*=9 I AS, BC'=RELOCATION

z
LD 9,0AH
LD HL,MSG2

,* CHAR COUNT
; L 0 A D POINTER

D 3

CALL TOM1 ;PRINT M S G 2
;file name buffer;max lengthLD

L D
HL / F ILE
3,0AH

H 1 : CALL C I ;r e a D NAME
LD (HL) / A ;put in buf
C P ' ODH ;C a R R I a g E RET
J R Z,H2-$;Y E S, LAST CHAR
CP 1 BH ;= esc
J R Z , C0N9RK-$;yes, send break
INC HL ;inc pointer
D JNZ H 1 -$;C H E C K MAX L N G T H

H2: CALL CRLF ,*CRLF TO CONSOLE
LD 3,5 ;CHAR COUNT
LD HL,MSG1 ;LOAD POINTER
CALL MOUT '•OUTPUT MESSAGE TO MODEM
L D 3,0RH ; MA X FILE LENGTH
LD HL,F ILE /•FILE NAME POINTER

/
CALL MOUT /'OUTPUT TO MODEM

LD A,(IOSTS) /•GET I/O STATUS
PUSH A F /SAVE OLD STATUS
AND OF 3H /"CLEAR READER STATUS
0 R 04 H /‘SET NEW STATUS
L D (IOSTS),A /’PUT IN I 0 B Y T
L D A,0C 3H /‘JUMP CODE
LD (1006H),A /•PLACE IN USER ROUTINE AREA
LD HL,R DMOD /‘MODEM I/O DRIVER
LD (1OO7H),HL /•PLACE TN USER ROUTINE AREA
C ALL' L 0 DO ,* G 0 READ TAPE
PO° A F /‘RECALL I/O STATUS

•
LD
J P

(I 0 S T S) , A
START

/"RESTORE OLD STATUS

MOOT: LD A,(HL) /’GET CHAR FROM BUFFER
C ALL 0 U T M 0 D /"OUTPUT TO MODEM
LD C , A t
CALL CO /•PRINT IT
INC HL ,’INC POINTER
C° ODH ,* = CARRIAGE RET
J R Z,M01-$;no, check count

MOI :
D JNZ
RFT

MOUT-S ; = max count

MSGO: DEFM ' Z IO '
DEF'J OAODH ;cr & LF

MSG1 : DEF'*’ 'LIST ' /‘MESSAGE TO HIS
MSG?: DEFM

DEFM
DEFM

'FILE'
* NAM *
'E-*

f
9

SET JP I/O CHANNELS

I NIT; XOR A /"CLEAR ACC
L D BC,4011H /RESET USART, I/O CHAN<13,1

D 4

LD DE,OFA35H JSET iviODE & FUNCTIONS
CALL USET ; OUTPUT COMMANDS
LD C , 1 5H ; I / 0 C H A N (1 4 / 1 5)
CALL USET /"OUTPUT COMMANDS
LD C/1 7H ; I / 0 C H A N (1 6 / 1 7)
CALL USET /‘OUTPUT COMMANDS
RET /

•
USET: OUT (C) /A /’CLEAR COMMAND REG

OUT (0/8 ,’RESET U S A R T
OUT (C) / D /'SEND MODE COMMAND
OUT (C) /E ; S F N D FUNCTION COMMAND
RET /

/
END 0300H

E 1

APPENDIX E
RNP PROGRAM LISTINGS

PROGRAM FUNCTION PAGE

001 CIO CLOCK & I/O INIT E29
002 CMDlN COMMAND INPUT E25
003 CMDPRC COMMAND PROCESSOR E25
004 CONLOG CONVERT BUFS TO LOG MSG El 2
005 CONMSG CONVERT LOG MSGS TO BUFS. E 8
006 DEVIN DEVICE INPUT SET UP El 6
007 DEVOUT DEVICE OUTPUT SET UP El 4
008 DEVRD DEVICE READ ROUTINE E21
009 DEVWR DEVICE WRITE ROUTINE E19
010 ERROUT ERROR PRINT OUT E27
01 1 GENLNK GENERATE LINK MSG El 1
01 2 GENXB F GENERATE NEW XBUF Ell
013 GET GET VALUE OFF QUEUE E33
014 GETBU F GET BUFS FOR LOG MSG STORAGE E 7
015 GETMSG GET NEXT MSG FROM RBUF E 7
01 6 HBUFS HOST BUFFER STORAGE E34
01 7 HOSTR HOST READ ROUTINE E23
018 HOSTW HOST WRITE ROUTINE E24
019 I N I T INITALIZE ROUTINE E29
020 INTR DEVICE INTERRUPT SERVICE El 7
021 MAIN MAIN PROGRAM LOOP E 2
022 PUT PUT A VALUE ON A QUEUE E32
023 RBFSRV SERVICE RBUF E 2
024 S R V M S G ANALYZE SERVICE MSG E 6
025 STRBU F START INPUT TO RBUF E23
026 STRG PROGRAM VARIABLES STORAGE E35
027 STRLNK STRIP OFF RBUF LINK MSG E 4
028 SUBS GENERAL USE SUBROUTINES E31
029 QUES QUEUE STORAGE AREA E35

E 2

; FILE MAIN

; MAIN RNP SERVICE ROUTINE
J**

START; CALL INIT ; I N I T A LIZ E SYSTEM
/
MAIN: LD A,(HCB) /GET RNP STATUS

BIT ONLN, A /RNP ON LINE
JR Z,CHKRQ-S /NO, CHECK RQ FOR OUTPUT

t
CALL RBFSRV /YES, SERVICE RBUF

e
CHKRQ: LD IX,ROUE / I X = R Q U E

CALL GET /GET A D D R OFF R Q
JR C, CHK EQ-$ /IF EMT Y, CHECK EQ
CALL DSTDCB /HL=DST DCB, IY=BUF ADDR
CALL DEVOUT /START BUF OUTPUT
J R NC,CHKEQ-$ / D C B(BS Y)=1 NO, CHECK EQ

•
PUSH I Y /YES, MOVE BUF ADDR
POP HL /TO HL
CALL PUT /PUT ON RQ

f
CHKEQ: LD IX,EQUE / I X = E Q U E

CALL GET /GET ADDR OFF EQ
J R C,CHKWQ-$ /IF E M T Y, CHECK WQ
POP IX /IX=QUEUE ADDR, HL=BUF ADDR
CALL PUT /PUT BUF ON Q
J R NC,CHKWQ-S /IF OK, CHECK WQ
CALL FULERR /ELSE PUT BACK ON EQ

f
CHKWQ: LD IX,WQUE / I X = WQUE

CALL GET /GET ADDR OFF WQ
J R C,MA IN-S /IF WQ EMTY, GO TO MAIN
CALL DSTDCB / H L = D S T DCB, I Y = B U F ADDR
BIT ACK,(HL) / D E V (A C K) = 1
PUSH I Y /MOVE BUF ADDR
POP HL /TO HL
JR Z,RSWQ-$ /NO, PUTBACK ON WQ
LD IX,RQUE /YES, PUT ON RQ

RSWQ: CALL PUT /PUT ON Q
JR NC,MAIN-5 /NOT FULL, BACK TO MAIN
LD IX , W Q U E /FULL, PUT BACK ON WQ
JR RSRQ-$ »

; FILE RBFSRV
; HOST RECEIVE BUFFER SERVICE ROUTINE
;**
/
; ENTER-
/• EXIT- RBUF SERVICED, IF ERROR-CARRY SET

RBFSRV: LD HL,RBUF /CHECK NEXT RBUF

E 3

BIT
RET
BIT
J R

BSY,(HL)
NZ
FULL,(HL)
Z,RBMT-$

;rbuf(bsy)=i
;Y E S, RETURN
;N 0, RBUF(FULL)=1
;N0, CHECK RBUF(EMTY)

f
CALL STRLNK Y E S , STRIP OFF LINK MSG
BIT ER R,(HL) ;rbuf(err)=i

f
J R ZzCKSV-$;no, check serv msg

RERR : LD IX,XBUF ; IX = XBUF
BIT ACTV,(IX+0) ;XBUF(ACTV)=1
J R NZ,CKNAK-$;yes, go check nak
LD IX/SBUF ; N 0 , I X = S B U F
BIT ACTV,(IX+O) ;sbuf(actv)=i

•
J R Z,NKMG-$;no, send nak msg

CKNAK: BIT 3,(IX+OC H) ; 0 C (N A K) = 1
J R NZ,STRBF-$;YES, GO START 8UF
SET 3,(IX+OCH) ;N 0, SET 0 C(N A K)=1
LD A,OSH ; RE CALC BCC

f
XOR (IX+1OH) •

STRBF: PUSH HL ;SAVE RBUF A DDR
PUSH IX /•MOVE BUF ADDR TO HL
POP HL t
CALL STRXBF /'REXMIT OLD XBUF
POP HL /•RESTORE RBUF ADDR
J R SRBF-I /‘START NEXT RBUF

NKMG: CALL NAKMSG /‘SEND NAK MSG

/
J R SRBF-S /'START NEXT RBUF

CKSV: BIT SVM,(HL) /•RBUF(SVM)=1
J R NZ,S RMG-$;Y ES , SEND SERVICE MSG
BIT LOG, (HL) ;rbuf(log)=i
J R NZ,CKSC-$;Y E S, CHECK SC
BIT ACK,(HL) ;N 0, RBUF(ACK)=1
J R Z,RXMT-$ /•NO, REXMIT OLD XBUF
PUSH HL /"SAVE HL
CALL GENX8 F /‘YES, START NEW XBUF
POP HL /'RESTORE HL

•
J R SRB F-$ /‘START NEXT RBUF

RBMT : BIT EMTY,(HL) ;rbuf(emty)=i
J R NZ,SRBF-$;yes, start next rbuf

/
J R NXPSG-$ /•NO, CONTINUE PROCESSING RBUF

SRMG: CALL SRVMSG /•XMIT SERVICE MSG
JR C,RER R-$ /•IF CARRY, ERROR
JR SRBF-$;go start next rbuf

CKSC : BIT NSC,(HL) ;rbuf(nso = i
J R NZ,NXMSG-$; Y E S, PROCESS RBUF
B I T ACK,(HL) ;rbuf(ack)=i

E 4

RXMT :

e
NXMSG:
NXM :

PTRQ;

AKMG :
r

f
SRBF :

SVMG :

STRLNK :

J R NZzAKMG-S ;YESz SEND ACK MSG
CALL STRXBF REX MIT OLD XBUF
JR SRBF-$ /’GO START NEXT RBUF

PUSH HL ; (S P) = R B U F
CALL GETMSG ;get next msg
J R NZ zRE RR-$; I F N Z Z ERROR
J R C/PTRQ-$;BUF SAVEDz IF CARRY
CALL GETBU F /•GET NEXT AVAILABLE BUF
J R CzSVMG-S ; I F E M P T Y Z SAVE MSG
LD I X z R Q U E ; I X = R Q U E
CALL PUT /•PUT ADDR ON RQ
J R CzSVMG-$ /’IF FULLz SAVE MSG
CALL CONMSG /'CONVERT TO OBUF
J R NC zNXM-$ /"IF NOT 'EOT', NEXT MSG

CALL ACKMSG /’SEND ACK MSG

POP HL H L = R B U F
RES FULLz(HL) /•RBUF (FULL) =0
SET EMTY,(HL) ;rbuf(emty)=i

CALL STRBUF ,'START NEXT RBUF
RES ACKz(HL) ;rbuf(ack)=o
SET BSY,(HL) ;rbuf(bsy)=i
RET /

INC C /•SET SAVE FLAG
LD (SAVMSG)zBC /‘SAVE LENGTH & FLAG
LD (SAVMSG+2) zDE /‘SAVE MSG ADDR
LD (SAVMSG+4)zHL /’SAVE BUF ADDR
POP HL ;hl=rbuf
RES FULLz (HL) ;rbuf(fuld=o
RES EMTY, (HL) ; RBUF(EMTY)=0
RET •

STRLNK

ROUTINE TO STRIP LINK MSG AND SET RBUF FLAGS

ENTRY- HL=RBUF ADDR
EXIT- STATUS FLAGS IN RBUF SET AS INDICATED
IN LINK MSG

PUSH HL /'MOVE RBUF TO IX
POP IX •
LD (IX+O)zOOH /‘CLEAR ALL FLAGS
LD HLzRBUF+04H /’SET UP BUFFER POINTER
LD Az (HL) /•GET CHAR
CP 01 H ; = soh
JP NZ zLNKER R ; N 0 z ERROR
INC HL ; Y E S, CHECK FC
LD A,(HL) /NEXT CHAR
CP 48H ;=ACK\NAK MSG

E 5

J R Z,CHKSC-$;Y E S z CHECK SC
CP 42H ;no, =srvmsg
J R NZ/LNKER R-$;N 0, ERROR
SET SVM/(IX+O) ;yes, rbuf(svm)=i

CHKSC : INC HL ; CHECK sc
ID C, A ;START BCC
LD A, (HL) ; N E X T CHAR
CP 41 H ;=4i h
J R Z/CHKLSC-5 ;YESz CHECK LAST SC
CP 42H ; N 0 Z = 4 2 H
J R NZ/LNKERR-S ; N 0 Z ERROR

CHKLSC ! LD B, A ; b = s c
LD A,(SAVSC) ;get last sc
CP B ;=last sc
JR Zz CHKAC-S ;Y E S Z CHECK AC
LD AzB ;G E T NEW SC
LD (SAVSC)zA ;SAVE NEW SC
SET NSCz(IX+O) ;rbuf(nso = i

CHKAC : INC HL ; CHECK AC
XOR C ; C A L C BCC
LD CzA ;SAVE BCC
LD Az(HL) ;next char
CP 4OH ; = 4OH
JR NZzLNKERR-$; N 0, ERROR
INC HL ;yes, check oc
XOR C ; C a L C BCC
LD CzA ; S A V E BCC
LD Az(HL) ;next char
AND 70H ;clear lower byte
CP 40H ; = 4 0 H
J R NZ zLNKER R-$;no, error
LD Az(HL) ;yes, GET oc
BIT 3z A ;nak bit set
J R NZzSVO'c-$;Y E S Z SAVE 0 C
SET ACK, (IX + O) ;no, rbuf(ack)=i

svoc: LD (SAVOC)zA ;S a V E PRESENT 0 C
INC HL ; C H E C K I c
XOR C ; C A L C BCC
L D CzA /•SAVE BCC
LD A,(HL) ; N E X T CHAR
BIT 6, A ; B I T 6 SET
JR Z,LNKERR-$; N 0 Z ERROR
AND 3FH ; CLEAR MSB
LD (SAVI C)z A ; S A V E I c
INC HL ; C H E C K S T X
XOR C z'CALC BCC
LD CzA ;SAVE BCC
LD Az(HL) ;next char
CP O2H ; = s tx
J R NZzLNKERR-$;n o, error
LD BzOOH /•CLEAR B

CHKETX : DEC B ;b=b-i
J R ZzLNKERR-$;B>256, no etx found
INC HL /•FIND ETX

E 6

XOR C ;calc BCC
LD C, A /’SAVE BCC
LD A,(HL) /'NEXT CHAR
CP OSH ; = E T X
J R NZ,CHKET X-$ /•NO, CHECK NEXT CHAR
INC HL /" Y E S , CHECK BCC
XOR C ,’CALC BCC
LD C, A /"SAVE BCC
LD A,(HL) ;next char
CP C /• C=BCC
J R NZ,LNKER R-$ N 0 , ERROR
INC HL ;yes, check for eot
LD A,(HL) /•NEXT CHAR
CP 04H ; = E 0 T
J R NZ,LNKRET-$ /•YES, return
SET LOG,(IX + O) /• N 0 , RBUF(LOG)=1
LD (SAVMSG+2),HL /"SAVE LOCATION POINTER
LD HL,OOOOH /
LD (SAVMSG) ,HL ;COUNT=OO,SAVE FLAG=O
JR LNKRET-S /‘RETURN

LNKERR: SET ERR,(IX+O) /'SET ERR BIT
LNKRET: PUSH IX /"MOVE RBUF TO HL

POP HL r

RET /’RETURN
;;; file srvmsg

ROUTINE TO ANALYZE SERVICE MSG
ENTRY- SAVOC=PRESENT VALUE OF OC
EXIT- DECODE OC SERVICE MSG, ON ERROR,
SET CARRY & RETURN, ELSE, TAKE INDICATED ACTION

SRVMSG: LD A,(SAVOC) /'GET PRESENT OC
AND 07H ; C L E A R UPPER 5 BITS
J R Z,NOINST-$; = 0, NO INSTRUCTION
SUB OSH /
J R Z,ACALL-$;=3, ACCEPT ALL CALLS
DEC A /
J R Z,R F D-$;=4, READY FOR DISCONNECT
DEC A /
J R Z,NCALL-$;=5, ACCEPT NO CALLS
DEC A f
J R Z,DIS-$;=6, DISCONNECT

/
SCF /'ERROR, SET CARRY
RET /•RETURN

t
NO INST : J P ACKMSG /’SEND ACK MSG
t
ACALL : LD HL,HCB /’GET RNP STATUS AD DR

SET ACPT,(HL) ;hcb(acpt)=i
JP ACKMSG /'SEND ACK MSG i

/
RFD: LD A,44H /’ A = OC (ACK,R F 0)

LD (SBOC) ,A P U T IN SRVMSG BUFFER

E 7

FILE GETMSG

LD
XOR
LD
J P

A, (SBCC)
O4H
(SBCC)/A
STRSB F

;get bcc
;CALC NEW BCC
;PUT IN SBU F
;SEND SERVICE MSG

f
NCALL; LD HL/HCB ;get rnp status addr

RES ACPT,(HL) ;hcb(ac pt)=0
JP ACKMSG /•SEND ACK MSG

/
DIS: LD HL/HCB ;GET RNP STATUS ADDR

RES ON LN / (HL) ;hcb(onln)=o
RET f

ROUTINE TO GET NEXT MSG OFF RBUF
;***
f ENTRY - SAVMSG+2=MSG ADDR, SAVMSG+4=SAVED BUF
e EXIT- B=BYTE COUNT OF MSG, DE=MSG ADDR,
/ HL=BUF ADDR, CARRY IF BUFFER SAVED, NZ IF ERROR

GETMSG : LD A/(SAVMSG) ;get status
OR A ;C L E A R FLAGS
JR NZ/SAVED-i ;iF A>0, DATA SAVED
LD A,OSH ;no, get byte count
LD HL/(SAVMSG+2) ;hl=start of msg
LD BC/OOF FH ;no, SET BC=255
CPI R ;'etx' found
RET NZ ;no, error-ret with nz

f
• CALC BYTE COUNT

LD HL/OOFFH ;HL=255
SBC HL/BC ;hl=byte cnt
LD B/L ;b=byte cnt
LD DE/(SAVMSG+2) ;D E = M S G ADDR
XOR A ;SET ZERO
SC F ; S E T CARRY
RET

t
SAVED: SC F ;SET CARRY

DEC A ; S T A T U S > 1
J R Z/NOBUF-S ;N0, BUF NOT SAVED
XOR A ; CLEAR CARRY S SET Z
LD HL/(SAVMSG+4) ;YES, GET BUF ADDR

/
NOBUF: LD DE,(SAVMSG+2) ;GET MSG ADDR

RET •

; ROUTINE TO GET 1-4 LINKED BUFFERS OFF AGUE
/***
; ENTRY- B=BYTE COUNT
; EXIT- HL=BUF ADDR OF FIRST BUF IN LINKED SET
,* LINK BIT SET IN ALL BUT LAST BUFFER AND
; POINTER TO NEXT BUF IN LAST 2 BYTES

E 8

•
GETBUF: PUSH BC

PUSH DE
; S A V E C 0 U N T
; S A V E MSG A D D R
;a=byte count
;b=o
; I X = A Q u E

LD
LD
LD

A,B
B/OOH
I XzAQUE

NUMBUF : INC
CALL

B
GET

;b=b+i
;G E T B U F OFF A Q

J R
PUSH
SUB
JR

Cz RSAQ-S
HL
3AH
NCzNUMBUF-$

;iF EMPTYz RESTORE OTHER BUFS
; S A V E B U F A D D R
;A=A-58z A<=0
;noz next buf

f
POP
LD
DEC
JR

HL
(HL)zOOH
B
ZzLSTBUF-$

;get BUF AD DR
/•CLEAR STATUS
; B = B-1Z B = O
,"YESz ONLY BUF

»
LNKBUF : POP IX ;noz link buffers

LD (I X + 62)zL /"lower byte next buf addr
LD
PUSH
POP
SET
DJNZ

(IX+63)zH
IX
HL
LNKz(HL)
LNKBU F-$

/"UPPER BYTE NEXT BUF ADDR
/"MOVE IX TO HL
»
/"LINKED TO NEXT BUF
ILAST BUF

/
LSTBUF : XOR

POP
POP
RET

A
DE
BC

/"CLEAR CARRY
/‘RESTORE MSG ADDR
."RESTORE COUNT

•
RS AQ :
RSQ:

;;; file

LD IX/AQUE
SCF
DEC B
JR Z/LST8UF+1-S
POP HL
CALL PUT
JR RSQ-$
CONMSG

," L 0 A D QUEUE ADDR
,"SET CARRY
," B = B -1 Z B = 0
; Y E S Z RETURN
/"GET BUF ADDR
,"PUT BUF BACK
/"NEXT BUF

; ROUTINE TO CONVERT LOG MSG'S FROM RBUF TO OBUF'S
;***

ENTER- HL=OBUF, DE=RBUF MSG ADDRz
(SAVMSG+1)=BYTE COUNT

EXI T - CARRY SET IF ' EOT'
r
CONMSG: PUSH HL /"SAVE OBUF POINTER

EX DEzHL ;de=obuFz hl=msg
LD A,(HL) ," G E T CHAR
CP 01 H ," = ' S 0 H '
JP NZzLOGERRZ ," N 0 z ERROR
INC HL /
LD A,(HL) /"GET FC

E 9

CP 60H ; = fc
J p NZ/LOGERR2 N 0 z ERROR
LD Cz A ; START BCC
INC HL ;get sc
LD A,(HL > ;next byte
XOR C ;calc BCC
LD C/ A f
INC HL ;get ac
LD A,(HL) ;next byte
PUSH AF ;save AC
XOR C ;calc bcc
LD C, A z
INC HL ; G E T 0 C 1
LD A,(HL) ,-NEXT BYTE
CP 41 H ; = 0 C 1
JR NZ/LOGERR1-$;N 0, ERROR
XOR C ;calc BCC
LD C,A •
INC HL ;get oca
LD A,(HL) /•NEXT BYTE
PUSH AF /'SAVE OC2
XOR C ;calc BCC
LD C, A z
INC HL ; G E T I c
LD A,(HL) /‘NEXT BYTE
CP 48H ; = i C
J R NZ/LOGER R-$;N0z ERROR
XOR C /'CALC BCC
LD C, A /
INC HL /‘GET STX
LD A,(HL) /"NEXT BYTE
CP O2H ; = S T X
J R NZzLOGER R-$; N 0 Z ERROR
XOR C ,"CALC BCC

INC HL ;hl=pointer to text
LD (SAVMSG+2)zHL /•SAVE R B U F POINTER
LD (SAV8CC)zA JSAVE BCC

POP HL ; H L = 0 C 2
POP AF /• A = A C (LU#)
PUSH HL /‘SAVE OC2
CALL DEVDCB /GET DCB ADDR (A=DEV#z HL=DCB)
POP IX I X = D C B
POP AF /"GET OC2
LD (IX+4),A /‘PUT OC2 IN DCB
EX DEzHL /* H L = 0 B U F z D E = D C B

LD A,(SAVMSG+1) A = B Y T E COUNT
INC HL /
LD (HL)zA /'PUT IN OBUF
INC HL /
LD (HL)zE /•PUT DCB IN OBUF
INC HL •

El 0

LD (HL)/D f
INC HL ;hl=obuf data pointer
EX DE,HL ;de=obuf data pointer
LD HL,(SAVNSG+2) ;hl = rbuf msg ad dr

•
PUTMSG : LD A,(SAVMSG+1) ;a=byte count

LD C,A r
SUB 3AH ; A = A - 5 8
JP M,LTBF ;iF A>0, MOVE 58 BYTES
J R Z,NOB F-$;iF A=O NO MORE DATA

•
LD (SAVMSG+1),A ;SAVE REMAINING BYTE COUNT
LD BC,OO3AH ,'SET BC = 58 BYTES
CALL MOVMSG ;MOVE BLOCK OF DATA

•
EX DE,HL ;HL=OBUF POINTER
LD E, (HL) ;de=linked buf addr
INC HL /
LD D, (HL) /
LD HL,(SAVMSG+2) ;hl=rbuf pointer
INC DE /
INC DE /
INC DE /
Inc DE ; DE = OBUF DATA POINTER
J R PUTMSG-S ;PUT DATA IN OBUF

f
LTBF : LD B,00 ;no, move remaining bytes

CALL MOVMSG /•MOVE BLOCK OF DATA
NOB F : LD A,(SAVBCC) ;GET SAVED B C C

LD C,(HL) ;get MSG BCC
CP C ; a = c
J R NZ,LOGER R2-$; n o, error

/
XOR A ;a = o
LD (SAVMSG) ,A ; C L E A R STATUS
INC HL z
LD A,(HL) ;get next byte
CP 04H ; = * EOT•
SCF ;SET CARRY
RET Z ;yes, return with carry set
XOR A ;CLEAR CARRY
POP HL /
RET /

t
LOGERR: POP HL f
LOGERR 1 : POP HL t
LOGERR2: POP HL •

SET ERR,(HL) ;set obuf(err)=i
XOR A /‘CLEAR CARRY
RET r

r
MOVMSG: LD A,(SAVBC C) ;get bcc
MVMG : XOR (HL) /'CALC BCC

LDI /•MOVE BYTE

E1 1

JP PE,MVMG ;IF B C NOT 0, NEXT BYTE
LD (SAVBCC),A ,'SAVE BCC
LD (SAVMSG+2),HL ;SAVE RBUF MSG POINTER
RET »

; ; FILE GENXBF

ROUTINE TO GENERATE NEXT XBUF

; ROUTINE TO GENERATE LINK MSG IN XBUF
J***

GENXBF: LD HL,XBUF ;HL = XBU F
BIT BSY,(HL) ;XBUF(BSY)=1
RET NZ ;YES, RETURN
BIT FULL, (HL) ;no, xbuf(full)=i
J R NZ,STXB-$;yes, start xmit of xbuf
BIT EMTY,(HL) ; N 0, XBUF(EMTY) = 1
J R Z,GNMG-$; N 0, NEXT LOG MSG

/
CALL GENLNK /‘GENERATE LINK MSG
RES EMTY,(HL) /"XBUF (EMTY)=O

e

GNMG : PUSH HL ; (S P) = X B U F
GN I: LD IX,XQUE ; I X = X Q U E

CALL GET /GET NEXT IBUF OFF XQ
J R C,RTXB-$ I F X Q EMPTY, RETURN
CALL CONLOG ; CONVERT IBUF TO LOG MSG
J R NC ,GNI-$ /•IF XBUF NOT FULL, GET NEXT IBUF

r

CALL PUT /'PUT BACK ON XQ
POP HL ; H L = X B U F
SET FULL, (HL) ;XBUF(FULL)=1

z
S T X B : LD A,(RBUF) ;a=rbuf status

BIT BS Y,A ;rbuf(bsy)=i
RET NZ /• Y E S , RETURN
CALL STRXBF ,'NO, START XMIT XBUF
SET BSY,(HL) ;xbuf(bsy)=i
RET /

Z
RTXB: POP HL /'RESTORE HL

RET z

; ENTRY- H L = X B U F
EXIT- LINK SET UP IN XBUF, (SAVLOC)=END OF LINK

GENLNK: PUSH HL /‘SAVE BUF ADDR
LD HL,XBUF ;CHECK XBUF STATUS
BIT A C T V,(H L) ;XBUF(ACTV)=1
JR NZ,GXSC-$ Y E S, GENERATE NSC

/
LD HL,SBUF ,"NO, CHECK SBUF STATUS

E12

BIT
J R
LD
RES
J R

ACTV, (HL)
Z/NACTV-S
A, (SBSC)
ACTV,(HL)
GNSC-S

;SBUF(ACTV)=1
;NO, SEND ACK MSG
;YES, GET OLD SC
;SET SBUF(ACTV)=O
; G E N N S C

/
NACTV : LD A,42H ; START NSC

JR GNSC-S /
e
GXSC : LD A, (XBSC) ;get old sc

RES ACTV,(HL) ,’SET XBUF(ACTV)=O
e
GNSC: XOR OSH /"GENERATE NEW SC

POP IX ; I X = B U F A D D R
LD (IX + OAH) ,A /‘PUT NSC IN BUF
LD C,(IX+09H) /’GET FC
XOR C /‘START NEW BCC
LD C,(IX+OC H) /’GET OC
XOR C /'CALC BCC
LD (IX + 1OH) ,A /"PUT NEW BCC IN XBUF
PUSH IX M0 VE BUF AD D R TO HL
POP HL •
SET ACTV,(HL) /'SET BUF(ACTV)=1
LD BC#OO11H /
ADD HL,BC ;hl=end of link
LD A,O4H ; A = * EOT•
LD (HL) ,A /'PUT IN XBUF
LD (SAVLOC),HL /"SAVE END POINTER
RET •

; FILE CONLOG
/ ROUTINE TO CONVERT IBUFS TO LOG MSGS AND
/ PLACE THEM IN XBUF
;****** ^t ***** * ************** ****************************

f ENTRY - HL=IBUF
EXIT- RETURN WITH CARRY IF ERROR,

t (SAVLOC)=END OF MSG
/
CONLOG: PUSH HL JSAVE IBUF

SCF /"SET CARRY
BIT • BSY,(HL) /•IBUF(BSY) = 1
RET NZ ; Y E S , RETURN
BIT ERR, (HL) ,'IBUF(ERR)=1
RET NZ /‘YES, RETURN
SET BSY,(HL) /‘SET IBUF(BSY)=1

/
INC HL ,-GET BYTE COUNT
LD C,(HL) /’PUT IN C
LD B,00H ;b=o
LD HL, (SAVLOC) /'GET XBUF POINTER
PUSH HL /"SAVE XBUF POINTER
ADD HL,BC /’ADD BYTE COUNT
LD DE,XBFN-OCH ;GET XBUF END - HEADER COUNT
CALL HLDE /•RETURN CARRY IF HL>DE

E 1 3

J R Cz FULRET-$;XBUF FULL YESz RETURN
•

POP DE ; G E T X B U F
PUSH DE /‘SAVE FOR LATER
LD BCzOOOBH ;bc=byte count
ID HL/LOGHDR ;hl=log msg header buf
LDIR /•MOVE HEADER TO XBUF
LD (SAVLOC)zDE /•SAVE NEW XBUF LOC

f
POP IX ; I X = S T A R T OF HEADER
POP HL ;hl=ibuf
CALL DSTDCB ;hl = dst dcbz iy = ibuf
PUSH IY /•MOVE DCB TO IY
PUSH HL e
POP I Y /• I Y = D C B

f
LD Cz 29H /"START BCC
LD Az(IY+3) /'GET AC FROM DCB
OR 4OH z
LD (IX + 5) zA ; PUT IN XBUF
XOR C /"CALC BCC
LD Cz A f

f
LD A,(IY+A) /'GET OC2 FROM DCB
OR 40H z
LD (IX+7)zA /•PUT IN XBUF
XOR C ;CALC BCC
LD Cz A /

t
LD A,(IY+5) /’GET IC FROM DCB
OR 40H /
LD (IX+8)zA ; P U T IN XBUF
XOR C /’CALC BCC
LD Cz A /‘SAVE BCC
POP HL ; H L = I B U F

e
MVBF; LD A,(HL) ; G E T IB U F STATUS

BIT LNKz A ; I B U F (L N K) = 1
J R Z,LSB F-$ /•NOz LAST BUFFER

/
INC HL z
LD Bz(HL) /■B = 8YTE COUNT
CALL MOVBLK /‘MOVE BLOCK OF DATA
PUSH DE /"SAVE XBUF LOC
LD Ez (HL) ,'GET NEXT BUF AD DR
INC HL z
LD Dz(HL) z
EX DEzHL ;hl=next buf addr
POP DE ;de=xbuf loc
JR MVBF-$ /•MOVE NEXT BLOCK

/
LSBF; INC HL ;hl=byte count POINTER

LD B,(HL) ;b=byte count
LD (DE) zA ;PUT BCC IN XBUF

E14

/**

LD A,04H ; A = 1 E 0 T *
INC DE z
LD (DE)zA ;PUT IN XBUF
LD (SAVLOC)zDE /•SAVE XBUF LOC

•
XOR A ; CLEAR CARRY
RET /

f
FULRET: SCF ; S E T CARRY

POP HL ; A D J U S T STACK
POP HL /•RESTORE HL
RET /

e
MOVBLK: I NC HL f

INC HL f
INC HL ;hl=data loc

/
MVBT : LD A,(HL) ; G E T DATA

LD (DE)z A ;P U T IN XBUF
XOR C ;calc BCC
LD Cz A /"SAVE BCC
INC HL ; I N C POINTERS
INC DE /
DJNZ MVBT-S /'CONTINUE TILL 8 = 0
RET /

/
LOGHDR: DEFW 1616H ; S Y N Z S Y N

DEFB 01 H ,• SOH
DEFB 60H ,■ FC
DEFB 4 1 H ;sc
DEFB 40H ;AC (40H+DEV#)
DEFB 41 H ;oci
DEFB 40H ;0C2 (40H+ACK+REQ)
DEFB 48H ;ic (48H=TTY)
DEFB 02H ;stx
DEFB 03H ; ETX

e
;;; file DEVOUT

ROUTINE TO SET UP OUTPUT TO A DEVICE

z ENTER - HL=DST DCB, IY=OBUF ADDR
/ EXIT­ IF CARRYz DEVICE IS BUSY OR RD IS SET
z IF BAD COUNT OR DEV NOT ON LINE, OBUF
z PUT ON AQ
/ ELSE, PARAMETERS STORED IN DCB (IX=DCB)

LIST X
DEVOUT : SCF ;SET CARRY

BIT BSY,(HL) ; D C B (B S Y) = 1
RET NZ /"YES, RETURN WITH CARRY
BIT RD,(HL) /’NO, DCB (RD) =1
RET NZ /'YES, RETURN WITH CARRY

El 5

BIT ONLN,(HL) ;DCB(ONLN)=1
J R Z,IOERR-S ;NO/ DEV NOT ON LINE
SET BSY,(HL) ; S E T D C 8 (B S Y) = 1
RES ERR/(HL) ; S E T DCB(ERR)=O
RES ETB/(HL) /’SET DCB(ETB)=O
ID A,(IY+3) ;get DST AC
JP Z/CMDPRC ;A=O YES/ PROCESS COMMAND

•
PUSH I Y f
EX (SP)/HL ;hl=obuf
POP IX ; I x = d c b
LD (I X + 8)/H /•PUT OBUF ADDR IN DCB
LD (I X + 7 > /L f
BIT ETB/(HL) ;OBUF(ETB)=1
JR Z/6 ;nO/ skip next inst
SET ETB/(IX+O) ; Y E S/ SET D C B(E T B)=1
L D E/(HL) ;e=present buf status
LD C/(IX+2) ;C=DEVICE BUS ADDR
INC HL /

/
BIT LNK/E ;OBUF(LNK)=1
J R Z/NLNK-S ;NO/ GET BYTE COUNT
LD B/3AH ;YES/ SET B=58 bytes
LD A/ (HL) ;a=total byte count
SUB 8 ;A=REMAINING BYTE COUNT
JR C/IOERR-$;iF A<0/ ERROR IN BYTE COUNT
LD D/A ;D = REMA INING BYTES
JR 3 ;SKIP NEXT INST

•
NLNK: LD B/(HL) ;8=T0TAL BYTE COUNT

INC HL
INC HL /
INC HL ;hl=obuf data pointer

•
CALL SAVPR4 /■SAVE ALL PARAMETERS IN DCB

■
CALL SETMSK /"SET I/O MASK BIT
XOR A ; A=OO
OUT (C) /A r
RET •

•
IOERR: RES BSY,(IX + O) JSET DCB(BSY)=O

PUSH I Y z
POP HL ;hl=obuf

PUTAQ; LD IX/AQUE z
CALL PUT /•RESTORE BLOCK TO AQ
XOR A C L E A R CARRY
BIT LNK/(HL) ;OBUF(LNK)=1
RET Z ,* N 0 / RETURN
LD L/(IY+62) /"YES/ MOVE NEXT BLOCK
LD H,(IY+63) /•HL = BLOCK ADDR
PUSH HL z
POP I Y ;iY=BLOCK ADDR
J R PUTAQ-S /•RESTORE BLOCK

E 1 6

;;; file devin
; ROUTINE TO SET UP INPUT FROM A DEVICE
J***

; ENTER- HL=SRC DCS
; EXIT- IF CARRY, DEVICE IS BUSY OR NOT ON LINE
; OR RD NOT SET OR NO BUFFERS LEFT IN AQ

ELSE, PARAMETERS STORED IN DCB (IX = DCB)
/
DEVIN: SCF ;S E T CARRY

BIT BSY,(HL) ; D C B (B S Y) = 1
RET NZ ,‘YES, RETURN WITH CARRY
BIT ONLN,(HL) ;dcb(ONLN)=1
RET Z ;NO, RETURN WITH CARRY
BIT RD,(HL) ; D C B (R D) = 1
RET Z ;NO, RETURN WITH CARRY
SET BSY,(HL) ;SET DCB(BSY)=1
RES ERR,(HL) ; S E T DCB(ERR)=O
RES ETB,(HL) ; S E T DCB(ETB)=O

/
PUSH HL ; (S P) = D C B
LD IX,AGUE ; IX=AQUE
CALL GET ;get ibuf off aq
POP IX ; I X = D C B
RET C ; I F EMPTY, RETURN WITH CARRY
PUSH HL r
POP I Y ;iY=IBUF

f
XOR A ; a=oo
L D E, A ; C L E A R E
LD (HL) , A ;CLEAR IBUF STATUS
LD (IX+7),L /•PUT IBUF ADDR IN DCB
LD (I X + 8) ,H r
INC HL ■
LD (HL) ,A /‘CLEAR BYTE COUNT
LD D,3AH ;d=58 BYTES
LD C, (I X + 2) ;C=DEVICE BUS ADDR
INC HL f
LD A,(IX+3) ;get SRC AC
LD (HL),A ; PUT IN IBUF
INC HL t
LD A,(IX+4) ; G E T D S T AC
LD (HL) , A ;PUT IN IBUF
INC HL ;hl=obuf data pointer

f
OR A ;dst ac=o
JR Z,SETHST-$;yes, skip id header

f
BIT IDM,(IX+O) ; D C B (I D M) = 1
J R Z,SETCNT-S ;no, skip id header

t
LD A,(IX+3) ;get SRC AC

El 7

LD (HDR I D),A JSAVE
CALL IDHDR /‘PUT ID HEADER ON IBUF
J R FININ-S

/
SETHST : SET HOST,(IY+O) /•SET IBUF(H0ST)=1
SETCNT: LD B, D JINITAL BYTE COUNT
■
finin: CALL SAVPR4 /'SAVE PARAMETERS IN DCS

CALL SETMSK /"SET I/O MASK BIT
IN A, (C) /"CLEAR DEVICE STATUS
E I
RET

/‘ENABLE INTR

f •
• ID HEADER ADDED TO BUFFER- [XX] , XX=LU#
IDHDR : LD A, 5BH /‘START OF ID HEADER, ' C 1

LD (HL),A /‘PUT IN IBUF
INC HL /
LD A, (HDRI D) /’GET AC VALUE
PUSH AF /"SAVE
SRL A /’GET UPPER 4 BITS
SRL A.
SRL A z
SRL A z
CALL HEXASC /"CONVERT TO ASCII
LD (HL) , A ; P U T IN IBUF
INC HL /
POP AF /GET LOWER 4 BITS
CALL HEXASC /‘CONVERT TO ASCII
LD (HL),A /‘PUT IN IBUF
INC HL z
LD A,SDH /‘END OF ID HEADER, *] '
LD (HL),A ,‘ P U T IN IBUF
INC HL z
LD A, ' ' S P A C E
LD (HL) , A PUT IN IBUF
INC HL z
LD B, 35H ;b = 53
RET;;; file in t r

/
; INTERRUPT HANDLER
;******* ****** **
•
• ENTER - INTERRUPT FROM LEVEL 1
• EXIT­ INTERRUPT DEVICE SERVICED

INTR : PUSH AF /‘SAVE REG'S
I N A,(13H) /‘GET HOST STATUS
BIT 01 H, A /‘ R E A D = 1
JP NZ/HOSTR /‘YES, GO READ CHAR
PUSH BC z
LD A,0AH z
OUT (1 EH) ,A z
IN A,(1 EH) /‘INTR REQUEST REG

E 1 8

LD B, A ; S A V E IN B
LD Az(MASK) ,* I/O MASK
AND B r'CLEAR MASKED REQUESTS
J R Zz FIN-$ /‘RETURN IF NO REQ'S
SRL A ;bit 1 SET
JP Cz SYNWR ;YESz SYNC WRITE

•
PUSH DE ;N0z SAVE REMAINING REG'S
PUSH HL /
PUSH IX /
PUSH I Y z
LD HLzINTTAB+2 ; H L = I N T R TABLE A D D R + 2

LSB: SRL A ; L S B = 1
J R CzDCBA-$;yesz get dcb addr
INC HL ; N 0 z H L = H L + 2
INC HL !
J R LSB-$;next bit

■
DCBA : LD Ez (HL) ;e=lower byte dcb addr

INC HL z
LD Dz(HL) ;d=upper byte dcb addr

/ /
/ ROUTINE TO HANDLE IO INTERRUPTS
/

PUSH DE z
POP IX ; I X = D C B
LD Az(DE) ;DEV ICE STATUS BYTE
BIT BS Y, A /"DEVICE B S Y
J R Zz INTERR-S ;N 0 z GOTO ERROR ROUTINE
LD Bz (I X+9) /'GET BYTE COUNT
LD Cz(IX+2) ;get dev bus addr
LD Hz(IX + 13) /’GET DATA POINTER
LD Lz(IX + 12) z
BIT RDzA ; D C B (R D) = 1
JR ZzWRITE-$;nOz go write byte

z
z READ DATA BYTE

CALL OEVRD /READ BYTE
J R NCzSVPR-$ /’SAVE PARAMETERSz IF NC
BIT ETBz(IX+O) /•DCB(ETB)=1
J R ZzFINIO-S /•NOz END OF READ
BIT ERRz(IX + O) ;yesz dcb(err)=i
J R Zz F IN IO-$;noz end of read
PUSH IX /•YESz input not finished
POP HL ; H L = D C B ADDR
RES BSYz(IX + O) /SET DCB(BSY)=O
RES IDM,(IX + O) /‘SET DCB (IDM) =0
CALL DEVIN /‘START NEW READ CYCLE
J R SVPR+3-S /’END OF THIS READ

z
WRITE: CALL DEVWR /'WRITE BYTE

J R NCzSVPR-$ /’SAVE PARAMETERSz IF NC
z
FINIO: RES BSYz(IX+O) /SET DC8(BSY)=0

E 1 9

ROUTINE TO WRITE A BYTE TO A DEVICE

JR 5 /‘SKIP NEXT INST
z
svpr : CALL SAVPR2 ; S A V E PARAMETERS

POP I Y /•RESTORE REG'S
POP I X /
JP RRET /‘RETURN FROM I N T R

e
INTERR: SET ERR,(IX + O) /'SET D C B (E R R) = 1

J R FINIO-S /

SAVPR4 : LD (I X + 11),D /’SAVE 4 PARAMETERS IN DCB
LD (IX+10),E /

SAVPR2: LD (IX + 9) ,B /’SAVE 2 PARAMETERS IN DCB
LD (IX+13),H f
LD (IX+12),L
RET •

e
SETMSK: LD b, (ix + n /'GET DEV MASK

BIT RD,(1X+0) /' D E V (R D) = 1
JR NZ,4 /’YES, SKIP NEXT INST
SLA B A D J U S T FOR WRITE
LD A,(MASK) /’GET I/O MASK
OR B ,'SET BIT
LD (MASK),A /•RESTORE MASK
RET /

•»
•
CLRMSK : LD A,(IX+1) /GET DEV MASK

BIT RD,(IX + 0) D C B (R D) = 1
JR NZ,4 ,'YES, SKIP NEXT INST
SLA A AD JUST FOR WRITE
CPL I N V E R T
LD B, A /"MOVE TO B
LD A,(MASK) G E T PRESENT I/O MASK
AND B /'CLEAR BIT
LD (MASK) , A /‘RESTORE MASK
RET /

;;; file DEVWR

;**

ENTER- HL=OBUF DATA POINTER, IX=DST DCB
B=PRESENT REMAINING BYTES
C=DEVICE BUS ADDR

t EXIT CHAR MOVED TO DEVICE, PARAMETERS UPDATED

DEVWR: LD A,(HL) /’GET CHAR FROM OBUF
OUT (C) ,A JWRITE TO DEVICE
INC HL /"UPDATE POINTER
D JNZ SVWR-S /'CONTINUE TILL B=0

E20

/
PUSH HL /'SAVE POINTER
PUSH IX S A V E D C B A D D R
LD H/(IX+8) ;get old obuf addr
LD L/(I X + 7) 9
LD IX/AQUE ; IX = AQUE
CALL PUT ;PUT ON AQ
CALL C, FULERR ;if full, put on eq
POP IX ; I X = D C B
POP HL ;hl=pointer

f
BIT LNK,(IX+1O) ;OLD OBUF(LNK)=1
J R NZ,NXLK-$;yes, next buf
CALL CLRMSK ; CLEAR I/O MASK BIT
BIT ET8,(IX+O) ; D C 8 (E T B) = 1
JR NZ/6 ;yes, skip next inst
SET RD,(IX + O) ; S E T D C B (R D) = 1
SCF ; SET CARRY
RET ;end of output

9
NXLK: LD E, (HL) ;get next obuf addr

INC HL z
LD D,(HL) /
EX DE,HL ;hl=new obuf
LD (IX + 8),H ; SA VE NEW OBUF ADDR IN D C B
LD (IX + 7) ,L •

/
LD D,(IX + 11) /GET TOTAL REMAINING BYTES
LD E, (HL) ;e=new BUF STATUS
BIT LNK, E ;OBUF(LNK)=1
J R Z,NOLNK-$; N 0, LAST BLOCK
LD B, 3AH ;B=58 BYTES
LD A, D ;A=TOTAL REMAINING BYTES
SUB B A = TOTAL-58
J R C,BDLK-$;iF A<0, BAD LNK BIT
LD (IX + 1 1) , A S A V E IN D C B
J R NOLNK+1-$;S KIP NEXT INST

z
BDLK : RES LNK, E ;SET OBUF(LNK)=O

NOLNK: LD B, D ;b=TOTAL REMAINING BYTES
LD (IX + 10) , E ,*SAVE PRESENT OBUF STATUS
INC HL 9
INC HL 9
INC HL 9
INC HL ;hl=new obuf data pointer

z
svwr : XOR A /’CLEAR CARRY

RET z
•
FULERR : PUSH IX /SAVE QUEUE ADDR

EX (SP),HL ;hl=queue addr, (sp)=buf addr
LD IX,EQUE ;IX=EQUE
CALL PUT /•PUT ON EQ

E 21

RET
POP
CALL
CALL
RET

C
HL
PUT
C/GET

/•RETURN IF FULL
; H L = B U F A D D R
/‘PUT ON EQ
; I F FULL, REMOVE QUEUE A D D R

/
;;; file DEVRD
f
t ROUTINE TO READ A BYTE FROM A DEVICE
^***
•
! ENTER - HL=IBUF DATA POINTER, IX=SRC DCB
f B = PRES ENT REMAINING BYTES
f C=DEVICE BUS ADDR
f EXIT­ CHAR MOVED TO IBUF, PARAMETERS UPDATED
t
DEVRD: IN A, (C) ;read CHAR

CP 03H ; A = ' C N T L C 1
JP Z,CMD IN ;yes, set cmd input buf
LD (HL) , A ; PUT IN IBUF
INC HL /‘UPDATE POINTER
LD D, A /MOVE CHAR TO D
LD A, (ENDCHR) ,eGET BUFFER TERMINATOR
CP D /* D = E N D CHARACTER
J R Z,FINRD-$; Y E S, END OF LINE
DJNZ SVRD-S ;NO, CONTINUE TILL 8=0

/
LD A,OAEH /•A = 3*58, 3 BLOCKS
CP (I X + 11) /"TOTAL COUNT <= A
J R NC,NX BK-$ /’YES, NEXT BLOCK
SET ERR,(IX+O) N 0 , SET D C 8 (E R R) = 1
J R EMTAQ+3-S /‘CLOSE BUFFER

/
NXBK: PUSH IX /’SAVE SRC DCB ADDR

PUSH HL /"SAVE POINTER
LD IX,AGUE /
CALL GET /"GET NEW BUF OFF AQUE
JR C,EMTAQ-$,‘IF CARRY, AQ EMPTY
POP DE /
EX DE,HL ;DE=NEW BUF , HL=LINK LOC
LD (HL),E /PUT LINK ADDR IN OLD BUF
INC HL •
LD (HL),D z
PUSH HL z
POP IY ;iY=OLD BUF POINTER
SET LNK,(IY-63) ,*SET OLD BUF(LNK)=1

f
POP I X /‘RESTORE SRC DCB ADDR
LD A,3AH A = 5 8
LD 8, A ,-8 = 5 8
ADD A,(IX + 11) /‘INCREASE TOTAL COUNT BY 58
LD (IX+11),A /'STORE IN SRC DCB
EX DE,HL /•HL = NEW BUF ADDR
XOR A ;a=o

E22

LD (HL)»A ,eCLEAR STATUS
INC HL /
LD (HL)»A z’CLEAR COUNT
INC HL • •
LD (HL) / A ; CLEAR SRC AC
INC HL e
LD (HL) zA ; CLEAR DST AC
INC HL ;hl=new buf data pointer

V
SVRD: XOR A z’CLEAR CARRY

RET •
e
EMTAQ: POP HL ;hl=buf pointer

POP IX ; I x = d c b
SET ETB,(IX+O) z’SET SRC DCB(ETB)=1
J R 3 S K I P NEXT INST

•
FINRD: DEC B A D J U S T B

LD Az(IX + 11) z’GET TOTAL BYTE COUNT
SUB B z’SUBTRACT UNUSED BYTES
LD Lz(IX+7) z’GET MAIN I BUF AD DR
LD Hz(IX+8) ,’HL = IBUF
INC HL ; H L = B Y T E C N T A D D R
LD (HL)zA z’PUT FINAL BYTE COUNT IN IBUF
DEC HL ,’HL = I BUF A DDR
PUSH IX z’SAVE SRC DCS ADDR
INC C ,’DE VICE STATUS ADDR
IN Az (C) z’GET STATUS BYTE
AND OSH ,’ B A D PARITY BIT
J R Zz CKHOST-$,’NOz CHECK HOST BIT
SET PARz(HL) ; Y E S Z SET I B U F(P A R)=1

CKHOST : BIT HOSTz(HL) ,’IBUF(HOST)=1
J R ZzCKCMD-$ z’NOz CHECK FOR COMMAND

f
LD IX zXQUE ,’IX = XQUEz HL = IBUF
J R IBPT-S z’PUT ON QUEUE

CKCMD: LD Az(IX+6) ,’ G ET DST AC
SCF z’SET CARRY
OR A ; a=o
CALL ZzCMDPRC ;YESz PROCESS CMD
J R NCzIBPT+6-S ? I F CARRY, SAVE BUF

z
PUTWQ: LD IXzWQUE ,’GET WQUE ADDR
IBPT: CALL PUT z’PUT IBUF ON QUEUE

CALL Cz FULERR ,’QUEUE FULL PUT ON EQ
z

POP IX z’RESTORE SRC DCB ADDR
CALL CLRMSK z’CLEAR I/O MASK BIT
BIT ETBz(IX+O) ,’ D C B (E T B) = 1
J R Zz6 z’NO, SKIP NEXT 2 INST
SET ETBz(HL) z’YES, SET IBUF(ETB)=1
J R NZz6 ,’SKIP NEXT INST
RES RDz(IX+O) z’SET D C B (R D) = 0
SCF ,’ S E T CARRY

E23

RET
r
;;; file hostio
f
; ROUTINE TO SET UP HOST READ
;***

ENTER * • e
EXIT­ • f

ED HL/RBUF ; G E T R B U F A D D R
BIT EMTY, (HL) ;rbuf(emty)=i
RET Z ;noz return
PUSH HL /•SAVE RBUF
LD HL/HCB ,'GET HCB AD DR
BIT BSY,(HL) ; H C B (B S Y) = 1
RET NZ ; Y E S/ RETURN
BIT RD/(HL) ; H C B (R D) = 1
RET Z ;N 0/ RETURN

I N A,(13H) ;get STATUS
BIT DSR/ A ;host(dsr)=i
J R Z/NODSR-S /

SET BSY/(HL) ; S E T H C B (B S Y) = 1
/
LD BC/400H-4 ;bc=byte count
LD DE/R8UF+4 ;de=data pointer
LD (HCB+2)/BC ; S A VE IN HCB
LD (HCB+4),DE •
XOR A ; CLEAR CARRY
RET •

;;; routine to read a char from host chan
;***

■ ENTER - ALL INTR •S DISABLED
• EXIT­ PUT CHAR FROM HOST IN RBUF
e
HOSTR; PUSH BC /'SAVE REG’S

PUSH DE t
PUSH HL ■

•
LD BC/(HCB+2) ,'GET COUNT
LD DE/(HCB+4) ,'GET POINTER
LD HL/HCB ,' H L = H C B A D D R

•
BIT SYNC/ (HL) ,'MODEM IN SYNC
J R NZ/RDAT-5 ,'YES/ READ CHAR
BIT SYNC/A ;NO/ modem sync bit set
JR Z/RRET-S ;nO/ ret
SET SYNC/(HL) ,'YES/ SET HCB(SYNC)=1

E 24

RDAT: IN A,(12H) /•READ CHAR
CP SYN ; = S YNC CHAR
J R Z,RRET-$ /'YES, SKIP CHAR

- LD (DE) , A ;no, save in rbuf
INC DE /"UPDATE POINTER
DEC BC •/‘UPDATE COUNT
CP EOT ;=EOT CHAR
JR Z/FINSR-S ;yes, end of rbuf

e
LD A/B /
ADD A, C ;bc=o
J R Z/FINSR—$ /•YES, END OF BUFFER

r
S R E T : LD (HCB+2)/BC ;save count

LD (HCB+4),DE /’SAVE POINTER
f
RRET : POP HL /•RESTORE REG'S

POP DE
FIN: POP BC f
ARET ; POP AF /•RESTORE. AF

El f
RETI f

■
FINSR: RES RD,(HL) /•SET HCB(RD)=O

RES 8SY,(HL) /’SET HC8(BSY)=O
RES SYNC, (HL) ;SET HCB(SYNC)=O
LD HL,RBUF •
SET FULL, (HL) ; S E T RBUF(FULL)=1
LD HL,400H-4 /‘CALCULATE BYTE COUNT
SBC HL,BC /
LD (RBUF + 1) ,BC ;PUT IN RBUF
JR RRET-S /’RETURN

;;; routine to send char to host
;***

; ENTER- ALL I N T R'S DISABLED
X IT - CHAR SENT TO HOST

PUSH DE /’SAVE DE
LD BC,(HCB+2) /'GET COUNT
LD DE , (HCB + 4) /GET POINTER
LD HL,HCB /HL=HCB
LD A,(DE) /'GET CHAR
OUT (12H) ,A /‘SEND TO HOST
INC DE I N C POINTER
DEC BC /DEC COUNT
CP EOT ; =' EOT '
J R Z,FINSW-S /’YES, END OF BUFFER
LD A,B /
ADD A, C ; a = o
J R Z,FINSW-$;yes, end of buffer
LD (HCB+2),BC /•SAVE COUNT
LD (HCB+4),DE /•SAVE pointer

FINSW:

^ww*****

CMDIN:

/*******

F I N c :

E 2 5

CMDPRC

JR RRET-S /‘RETURN

SET RD, (HL) ; S E T H C B (R D) = 1
RES BSY,(HL) S E T HCB(BSY)=O
LD HLzXBUF ; H L = X B U F
SET EMTY, (HL) /‘SET XBUF(EMTY)=1
J R RRET-S /•RETURN

ROUTINE TO SET UP COMMAND BUFFERS

ENTER- IX=DCB
EXIT- BUFFER SET UP TO RECEIVE COMMAND

LD L,(IX+7) /GET BUF ADDR
LD H, (I X+8) z
PUSH IX /'SAVE DCB ADDR
CALL I OERR /‘RESTORE PRESENT BUF TO AQ
POP IX •
LD A,(IX+6) /‘GET PRESENT AC
PUSH AF /’SAVE AC

LD (I X + 6),OOH /‘PUT CMD PROCESSOR # IN DCB
CALL DEVIN /'SET UP INPUT TO CMD PROC
POP AF /‘GET OLD AC
LD (IX+6),A /‘RESTORE TO DCB
SC F
RET t

ROUTINE TO HANDLE COMMANDS

ENTER- IX=DCB, HL=BUF
EXIT- COMMAND PROCESSED

CMDPRC: PUSH HL
I I Y = BUFPOP IY

INC HL z
INC HL t
INC HL •
INC HL ; H L = D A T A POINTER
LD A,(HL) ,'GET FIRST CHAR
CP 1 A' ; = a
J R Z,ASGN-S ,*YES, ASIGN H TO DCB(SRC AC)
CP ' D 1 ; = ' d '
J R Z,DO IS-$ /'YES, DISCONNECT DEVICE FROM HOS
CP 01 H ;= 'CNTL A'
J R Z,DSEL-$;yes, send select TO HOST 8 asgn

XOR A f
RET •

E26

/ /
ASGN: CALL AHBYTE '•CONVERT ASCII CHAR TO HEX BYTE

J R C/F INC-S ; CARRY, IF ERROR
OR A ; A = H 0 S T
J R Z,CKHST-S ;YES, CHECK HOST
CP 04H ; A < 0 4 H
J R NC/NONE-5 ,‘N0, NO SUCH DEVICE/
PUSH AF /•SAVE AC
CALL DEVDCB ; G E T D C B A D D R
POP HL ; H L = D C B
BIT ONLN, (HL) ;dcb(onln)=i
J R Z,NODEV-$;nO, DEV NOT ON LINE
POP AF ;yes, get ac

PTAC: LD (IX + 6) /A ;PUT NEW AC IN DCB
RET /

z
CKHST: LD HL/HC8 ,'GET HOST DCB AD DR

BIT ONLN, (HL) ;HCB(ONLN)=1
J R NZ,PTAC-$;yes, host is on line
PUSH I Y •
POP HL f
INC HL •
INC HL

z
LD B,3AH ;b=remaining bytes in BUF
LD A,OOH ;a=error msg #
J R ER ROUT-$;send error msg

z
NODEV: PUSH I Y z

POP HL
INC HL •
INC HL »
LD (H D R I D) , A
CALL IDHDR ;put header on buf
LD A,01 H ; A = E R R 0 R MSG #
J R ERROUT-S ;S E N D ERROR MSG

z
NONE : PUSH I Y

POP HL
LD (HDR I D),A
CALL IDHDR ;PUT HEADER ON BUF
LD A,OSH ;a=error msg #
JR ERROUT-S ;send error msg

f
DDIS : CALL AHBYTE /‘CONVERT ASCII CHAR TO HEX BYTE

JR C,FINC-S
OR A ;a = o

J RET Z ;Y E S, RETURN
CP 04H ; A < 0 4 H
RET NC ; N 0, RETURN
CALL DI SGEN '•GENERATE DISCONNECT MSG
LD IX/XQUE z
CALL PUT /'PUT MSG ON QUEUE
XOR A z

E27

^***

RET
•
DSEL: CALL AHBYTE /‘CONVERT ASCII CHAR TO HEX BYTE

J R C,FINC-$ /
OR A ; a=o
RET Z ; Y E S , RETURN
CP 04H ; A < 0 4 H
RET NC ;N 0, RETURN
CALL SELGEN ;GENERATE SELECT MSG
LD IX,XQUE
CALL PUT /‘PUT MSG ON QUEUE
XOR A
RET /

f
» »
AHBYTE: LD B,0 ;b=o

J R GTNBL-$;get first nibble
/
NXNBL: ADD A,B /‘ADD PREVIOUS VALUE*4

ADD A,B /
LD B, A ,‘SAVE IN B

GTNBL: INC HL /GET CHAR FOR NIBBLE
LD A,(HL) /
CALL ASCHEX CONVERT TO HEX NIBBLE
J R NC,NXNBL-$,‘CARRY, IF NON-HEX CHAR

/
LD A,ODH /
CP (HL) ; = cr
SCF /
RET NZ /‘NO, RET WITH CARRY
XOR A /‘YES, CLEAR CARRY
LD A,B /’PUT VALUE IN A
RET /

/
f !
ASCHEX: SUB 3OH ;a<,0'

RET C /‘YES, RET WITH CARRY
CP 17H ,‘ A > ' F '
CCF f
RET C ,‘YES, RET WITH CARRY
CP OAH ;0<=A<=9
CCF /
RET NC ,‘YES, RET NO CARRY
SUB 07H ; A D J U S T CHAR
CP OAH ,‘NO CARRY IF, ,A,<=A<=* F 1
RET /

f
• ft ROUTINE TO OUTPUT ERROR MESSAGES

ENTER- HL=BUF DATA POINTER, IY=BUF ADDR
A=ERROR CODE, B=RE^AINING BYTES, IX=DST DCB

EXIT- ERROR MSG PUT IN BUF AND DEVOUT ENTERED

E 28

ERROUT : PUSH BC ,‘SAVE BYTE COUNT
PUSH HL ; S A V E DATA POINTER
ID HLzERRTAB ;HL = ERROR TABLE AD DR
ADD A, A ; A=A + A
LD B,00 ■
ID Cz A ;bc=error code offset
ADD HLzBC ;hl=errtab+offset
LD Ez(HL) /
INC HL •
LD Dz(HL) ;de=error msg addr

/
LD A, (DE) ;a=msg byte count
LD Cz A z’BC = ERR msg byte count
INC DE ;de=err msg pointer
POP HL z‘HL = BUF DATA POINTER
EX DEzHL f
LD I R ;move error msg to buf
POP BC ;get remaining bytes
SUB B z
ADD Az3AH ;calculate total byte count
LD (IY+1) zA ;PUT IN BUF
RES BSYz(IX+O) ,*SET DCB(BSY)=O
RES RDz(IX+O) ; S E T D C B (R D) = 0
PUSH IX z
POP HL ; H L = D S T D C B
JP DEVOUT ,'OUTPUT MESSAGE

•
ERRTAB : DEFW ERROO z’ERROR MSG 00

DEFW ERRO1 ; ERROR MSG 01
DEFW ERR02 ,* ERROR MSG 0 2
DEFW ERR02 ; ERROR MSG 0 2
DEFW ERR02 ; ERROR MSG 0 2
DEFW ERRO2 ERROR MSG 0 2
DEFW ERRO2 /‘ERROR MSG 0 2
DEFW ERR02 /"ERROR MSG 02

»
ERROO: DEFB 1 3H /BYTE COUNT

DEEM 'HOST ' z
DEFM ' NOT ’ z
DEFM ' ON ' z
DEFM 'LINE ' z
DEFM • i z
DEFW OAODH ; L F , C R

z
ERRO1 : DEFB OFH /’BYTE COUNT

DEFM ' NOT ' z
DEFM ' ON ' /
DEFM ' LINE ' z
DEFM । i z
DEFW OAODH ; L F , C R

z
ERRO2 : DEFB 1 2H /‘BYTE COUNT

E29

DEFM'NOT' ,*
D E F M ' D E F '
D E F M ' I N E D '
D E F M ' . . . '
DEFWOAODH ;iF,CR

t
; FILE IN IT
,* ROUTINE TO INIT SYSTEM
;***

SET UP RESTART JUMPS

LD SP/2FFFH ;STACK=TOP OF MEMORY

LD A,03C H /"CODE FOR JUMP
LD BCzSTART /'JUMP ADDR FOR RST OOH
LD (00) , A /'STORE JUMP
LD (01H),BC /"STORE ADDR
LD BC,MA I N /•JUMP ADDR FOR RST 66H
LD (66H) , A /"STORE JUMP
LD (67H),BC /‘STORE ADDR

CALL
RET

CIO /'SET UP I/OzINTR & TIMERS

; ROUTINE TO SET UP INTERRUPTS
; SET UP OF CLOCK DEVICE (CTO

& IN T R HANDLER (8259)
J***

CIO: LD C, 1 8H /"CHANNEL II0
L 0 DE/95 1 FH /■(TIMRz.25MSzINTR)
OUT (C) zD /
OUT (C) zE /
INC C /‘CHANNEL # 1
LD DEz953EH /•(TIMRz.5MSzINTR)
OUT (C) z D •
OUT (C) zE t
INC C /'CHANNEL H2
LD DEz9570H /•(TIMRzIMSzINTR)
OUT (C) zD /
OUT (C) zE /
INC C /'CHANNEL #3
LD DEzOCSFAH /' (CNTRzCNT = 2 50zINTR)
OUT (C)zD 9
OUT (C) zE f
LD BCzIVEC ;IN T R VECTOR ADDR
LD AzB /
LD Iz A /’SET UP UPPER BYTE
LD A, C •
OUT (18H),A /•SET UP LOWER BYTE

LD A, 1 2H /‘SET UP INTR DEVICE (8259)
OUT (1 EH)zA ■

E30

/**

XOR A CL EAR A

/

/
e

•

OUT (1FH),A
LD (MASK),A
CPL
OUT (1FH),A

IM 2

SET UP I\O CHANNELS

L D B C , 4 01 1 H
L D DE,OFA35H ;
CALL MSET
L D C , 1 3 H
CALL MSET
L D C , 1 5 H
CALL MSET
L D C , 1 7 H
CALL MSET
CALL CIO
RET

;INIT MASK
/‘INVERT A

/‘SET INTR MODE 2

RESET USART, IVO CHAN(1O,11)
SET MODE & FUNCTIONS
OUTPUT COMMANDS
IVO C HAN(12,13)
OUTPUT COMMANDS
IVO CHAN(14,15)
OUTPUT COMMANDS
IVO CHAN(16,17)
OUTPUT COMMANDS
SET UP INTR 8 TIMERS

MSET • OUT (C),B
OUT (C),D
OUT (C),E
RET

OUTPUT B
OUTPUT D
OUTPUT E

INTO

•

NOP
NOP
NOP
E I
RETI

/•INTERRUPT LEVEL 0

INTI • EQU INTR INTERRUPT LEVEL 1

INT2 NOP
NOP
NOP
E I
RETI

/'INTERRUPT LEVEL 2

INT3

f
• ft
•

FILE

NOP
NOP
NOP
E I
RETI

SUBS

/‘INTERRUPT LEVEL 3

! FILE CONTAINING FLAG BIT ASSIGNMENTS AND
SMALL SUBROUTINES
OTHER ROUTINE.

USED BY MORE THAN ONE

E 31

BS Y : EQU 0 /'QUEUE OR BUFFER BUSY
FULL : EQU 1 /•FULL QUEUE OR BUFFER
RD: EQU 1 /•DEVICE READ BIT
EMTY : EQU 2 /•EMPTY QUEUE OR BUFFER
ACPI: EQU 2 /•RNP ACCEPTING CALL
ACK : EQU 3 /"PREVIOUS MSG ACKNOWLEDGED
HOST: EQU 3 /‘BUFFER TO OR FROM HOST
NSC : EQU 4 ,"NEW SEQUENCE COUNT
ONLN: EQU 4 ,'RNP OR DEVICE ON LINE
PAR: EQU 4 /"BAD PARITY IN BUFFER
svm: EQU 5 /'SERVICE MESSAGE REQUEST
ACTV : EQU 5 /'BUFFER PRESENTLY ACTIVE
ETB: EQU 5 /'END OF BUF, NOT END OF TEXT
LOG: EQU 6 /’LOG MSG IN RBUF
LNK : EQU 6 ;buf linked to next buf
IDM: EQU 6 /’ID MESSAGE REQUEST
SYNC : EQU 6 ; S Y N C R D / W R IN SYNC
ERR: EQU 7 /’ERROR IN BUFFER

DSTDCB: PUSH HL /'MOVE BUF AD DR
POP I Y /•TO IY
LD A,(I Y + 3) /GET DST AC
CALL DEVDCB G E T D C B , (S P) = D C B
POP HL ; H L = D S T D C B

/ f
RET /

INITAQ : LD I X/AGUE ;IX=AQUE (AVAILABLE BUFFERS)
LD BC,40H /•BC = 64 (SIZE OF EACH BUF)

e
LD HL,ABUF ;H L = A B U F (START OF BUF AREA)

PTBF : CALL PUT /PUT ADDR ON AQUE
RET C /‘RETURN WHEN AQUE FULL
ADD HL ,BC /‘NEXT BUF

• e
J R PTB F-$,* C 0 N T I N U E TILL AQUE FULL

t
DEVDCB : ADD A, A /* A = A + A

LD C, A ;C=OFFSET
LD B,OOH z
LD HL, DCBTAB ;HL=DCBTAB ADDR
ADD HL,BC ;hl=dcbtab+offset
L D C,(HL) ;dcb l
INC HL /
LD B, (HL) ;dcb u
POP HL /GET RETURN ADDR
PUSH BC /’SAVE DCS ADDR
PUSH HL /"RESTORE RETURN ADDR

» »
RET /

HLDE : LD A, E /'LOWER BYTE

E 32

VERSION 1.0 REV C

SUB L
LD A/D ,'UPPER BYTE
SBC A/H CARRY SET IF HL>DE
RET /

/ f
f
HEXASC: AND OFH /"CLEAR UPPER 4 BITS

ADD A/90H /" A = A + 9 0 H
DAA ," DECIMAL ADJUST
ADC A/ 40H ;A=A+40H+CARRY
DAA ," DECIM AL ADJUST
RET /"ASCII VALUE IN A

/
;;; file que; input -OUTPUT QUEUE ROUTINES

; ROUTINE TO PUT AN ADDRESS INTO QUEUE.
;***
,* ENTRY- IX CONTAINS QUEUE CONTROL BLOCK AD DR

AND HL CONTAINS DATA TO BE PUT ON QUEUE.
; EXIT- IF QUEUE IS FULL/ RETURN WITH CARRY SET
; NORMAL RETURN IS WITH CARRY CLEAR.
/
put : SC F /"SET CARRY FLAG

BIT BSY/ (IX + O) /"TEST FOR BSY QUEUE
RET NZ ," Y E S / RETURN
BIT FULL/(IX+O) ITEST FOR FULL QUEUE
RET NZ Y E S / RETURN
SET BSY/(IX+0) ,"SET BSY BIT
RES EMTY/(IX+O) /"CLEAR EMPTY FLAG
EX DE/ HL ," D E = A 0 D R
LD L/(I X + 3) /"LOWER BYTE BQP
LD H,(IX+4) ," U P P E R BYTE BQP

LD (HD/E /"PUT LOWER BYTE
INC HL ," N E X T BYTE
LD (HL)/D IPUT UPPER BYTE
INC HL ," HL = BQP + 2

<
CALL CHKBB /"IF BQP = BB/ SET BQP = TB

#
LD A, (I X + 1) ," LOWER BYTE TQP
CP L /"= L
J R NZ/PUTR-S /"NO/ QUEUE NOT FULL
LD A/(IX+2) ," Y E S / UPPER BYTE TQP
CP H ; = h
J R NZ/PUTR-S ;no/ queue not full
SET FULL/(IX+O) /"YES/ SET QUEUE FULL

■
PUTR: LD (IX +3)/L ," LOWER BYTE BQP

LD (IX + 4) ,H /"UPPER BYTE BQP
E X DE/HL ," H L = A D D R
XOR A ," C L E A R CARRY FLAG

E33

RES BSY/(IX + O) /‘RESET BSY FLAG
RET

; ROUTINE TO GET ADDRESS FROM QUEUE
;***
e ENTRY- IX CONTAINS QUEUE CONTROL BLOCK ADDR
■ EXIT- HL CONTAINS DATA REMOVED FROM QUEUE,
* IF QUEUE IS EMPTY , RETURN WITH CARRY SET
• NORMAL RETURN IS WITH CARRY CLEAR,

GET : SC F ,‘SET CARRY FLAG
BIT BSY,(I X + 0) ,* T E S T FOR BSY QUEUE
RET NZ Y E S , RETURN
BIT EMTY,(IX+O) /‘TEST FOR EMPTY QUEUE
RET NZ Y E S , RETURN
SET BSY,(IX + 0) S E T BSY FLAG
RES FULL,(IX+O) C L E A R FULL FLAG
LD L,(IX+1) ;LOWER BYTE TQP
LD H,(IX+2) ;UPPER BYTE TQP

LD E,(HL) /‘GET LOWER BYTE
INC HL /‘NEXT LOCATION
LD D,(HL) IGET UPPER BYTE

e
INC HL ; HL = TQP + 2

•
CALL CHKBB ,‘IF TQP = BB, SET TQP = TB

LD A,(IX+3) /‘LOWER BYTE BQP
CP L ;= l
JR NZ,GETR-$ /‘NO, QUEUE NOT EMPTY
LD A,(I X+4) ,‘ Y E S , UPPER BYTE BQP
CP H ; = h
J R NZ,GETR-$ /‘NO, QUEUE NOT EMPTY

♦
SET EMTY,(IX+O) /‘YES, SET QUEUE EMPTY

GETR: LD (IX +1) , L ,‘LOWER BYTE TQP
LD (IX + 2) ,H ,* UPPER BYTE TQP
EX DE,HL J H L = A D D R
XOR A /‘CLEAR CARRY FLAG

e •

RES
R ET

BSY,(IX + O) /‘RESET BSY FLAG

CHKBB : LD A,(IX + 7) ,‘LOWER BYTE BB
CP L /’= L
RET NZ /‘NO, RETURN
L D A,(IX+8) ,‘ Y E S , UPPER BYTE B B
CP H ,‘ = H
RET NZ ,‘ N 0 , RETURN
LD L,(I X + 5) ,‘LOWER BYTE TB
LD H,(IX+6) ,* U P P E R BYTE T B
RET /

• • • FILE HBUFS

E34

; BUFFER STORAGE AND QUEUES
;***

ORG 2OOOH

HOST XMIT AND RECEIVE BUFFERS

RBUF : EQU $ DECEIVE BUFFER (FROM HOST)
DEFB O4H /STATUS BYTE
DEFW OOOOH /‘BYTE COUNT
DEFS 400H-03H /‘BUFFER STORAGE LOCATIONS

RBFN: EQU $ /‘END OF RBUF
•
f
XBUF : EQU $ /‘XMIT BUFFER (TO HOST)

DEFB 04H ,‘STATUS BYTE
DEFW OOOOH /‘BYTE COUNT
DEFB OOH /
DEFW 1 6 1 6 H ; S Y N , S Y N
DEFW 1616H /SYN#SYN
DEFB 01 H ,‘ SOH
DEFB 48H ,‘ F C (ACK/NAK MSG)

XBSC: DEFB 41 H ,‘ S C (4 1 H OR 4 2H)
DEFB 40H /‘AC

XBOC : DEFB 40H ,‘ 0 C (ACK/NO INST)
DEFB 41 H /‘IC (41H + #MSG)
DEFB 02H ; stx
DEFB 03H ;etx

xbcc : DEFB OOH /•BCC (BLOCK CHECK CHAR)
DEFW 1 61 6H ; S Y N , S Y N

LOG1 : DEFB 01 H /• S 0 H (START OF FIRST LOGICAL MSG
DEFS 400H-14H BUFFER STORAGE LOCATIONS

xbfn: EQU $; E N D OF XBUF
/

SBUF : EQU $,‘SERVICE MESSAGE BUFFER
DEFB 04H ,‘ S T A T U S BYTE
DEFW OOOEH /‘BYTE CNT
DEFB OOH /
DEFW 1616H /• S Y N , S Y N
DEFW 1 61 6H ,‘ S Y N , S Y N
DEFB 01 H ,‘ SOH
DEFB 42H ; F C (S R V MSG)

S8S C: DEFB 41 H ;S C (41H OR 4 2H)
DEFB 40H ; ac

SBOC : DEFB 40H ;oc (40H+ACK/NAK+SVM)
DEFB 41 H ; i c (i msg)
DEFB 02H ,‘STX (NO TEXT)
DEFB 03H ,‘ETX

SBCC : DEFB 42H /‘BCC (42H+SC + 0C)
DEFB 04H /‘EOT

/
QFRM : EQU $; Q-F R A M E BUFFER

DEFB OOH ,‘STATUS BYTE
DEFW 0006H ■

E35

^***

DEFB OOH f
DEFW 1 61 6H ; S Y N , S Y N
DEFW 161 6H ; S Y N , S Y N
DEFB 01 H ; soh
DEFB 04H ;eot

Z / f FILE QUES
! QUEUE CONTROL AND STORAGE BUFFERS

ORG 281 CH
RQUE : EQU $; RECEIVE QUEUE

DEFB 04H ;RQ UE FLAG
DEFW TRB ,'TOP RQUE POINTER
DEFW TRB /‘BOTTOM RQUE POINTER
DEFW TRB T 0 P RQUE BUFFER
DEFW TRB+20H /‘BOTTOM RQUE BUFFER

TRB: DEFS 20H /‘RQUE BUFFER
e
XQUE : EQU $,‘ T R A N S M I T QUEUE

DEFB 04H ,‘ X Q U E FLAG
DEFW TXB /‘TOP XQUE POINTER
DEFW TXB /‘BOTTOM XQUE POINTER
DEFW TXB /‘TOP XQUE BUFFER
DEFW TXB+20H ,‘BOTTOM XQUE BUFFER

TXB: DEFS 20H /‘XQUE BUFFER
z
AGUE : EQU $ /‘AVAILABLE BUFFERS QUEUE

DEFB 04H ,‘ A Q U E FLAG
DEFW TAB /‘TOP AGUE POINTER
DEFW TAB /‘BOTTOM AQUE POINTER
DEFW TAB ,‘ T 0 P AQUE BUFFER
DEFW TAB+20H /‘BOTTOM AQUE BUFFER

TAB : DEFS 20H ,‘ A Q U E BUFFER
•
WQUE : EQU $ /'WAIT QUEUE

DEFB 04H ;WQUE FLAG
DEFW TWB ,‘TOP WQUE POINTER
DEFW TWB /‘BOTTOM WQUE POINTER
DEFW TWB /‘TOP WQUE BUFFER
DEFW TWB+20H /‘BOTTOM WQUE BUFFER

tub: DEFS 20H /‘WQUE BUFFER
/
EQUE : EQU $,‘ E R R 0 R QUEUE

DEFB 04H ;EQUE FLAG
DEFW TEB ; T 0 P E Q U E POINTER
DEFW TEB /‘BOTTOM EQUE POINTER
DEFW TEB ,‘ T 0 P E Q U E BUFFER
DEFW TEB+20H BOTTOM EQUE BUFFER

TEB : DEFS 20H ,‘EQUE BUFFER

;;; file s t r g
; GENERAL STORAGE AREA
;***

E36

HDR I D : DE FB OOH /'HEADER ID SAVE AREA
•
SAVSC : DE FB OOH I SAVE PRESENT SC (RBUF)
SAVIC: DEF8 OOH /'SAVE PRESENT IC (RBUF)
SAVOC: DEFB OOH /'SAVE PRESENT OC (RBUF)
SAVMSG : DEFW OOOOH /SAVE MSG LENGTH & FLAG (RBUF)

DEFW OOOOH /‘SAVE MSG LOCATION
DEFW OOOOH /'SAVE BUF LOCATION

SAVLOC : DEFW OOOOH /'SAVE LOCATION POINTER (XBUF)
SAVBCC : DEFB OOH .'SAVE NEW BCC (XBUF)
■
MASK : DEFB OF FH LEVEL 3 INTR MASK
ENDCHR : DEFB ODH /'BUFFER TERMINATING CHAR <CR>

ORG 2900H e
ABUF : EQU $ /'AVAILABLE BUFFER AREA

DEFS 1OH*AOH ;16 BUFS * 64 BYTES PER BUF

IVEC: EQU $ /'INTERRUPT VECTOR TABLE
DEFW INTO ,'INTERRUPT LEVEL 0
DEFW INTI ,'INTERRUPT LEVEL 1
DEFW INT2 /'INTERRUPT LEVEL 2
DEFW INT3 /'INTERRUPT LEVEL 3

■
INTTAB: DEFW DCBOO /'HOST DC8 (HCB)

DEFW DCBO1 ,'CONSOLE DCB
DEFW DCBO1 /'CONSOLE DCB
DEFW DCBO2 I R M C1 DCB
DEFW DCB02 ; R M C1 DCB
DEFW DCB03 ; R M C 2 DCB
DEFW DCBO3 /' R M C 2 DCB
DEFW DCBO1 ,'EXTERNAL INTR DCB

•
DCBTAB: DEFW DCBOO /'DEVOO DCB (HOST)

DEFW DCBO1 ,' DE V01 DCB (CONSOLE)
DEFW DCBO2 /' D E V 0 2 DCB (R M C 01)
DEFW DCB03 ,'DEV03 DCB (RMC02)
DEFW DCBXX IDEVOA DCB
DEFW DCBXX ;DEVO 5 DCB
DEFW DCBXX ,'DEV06 DCB
DEFW DCBXX ; D E V 0 7 DCB

/
DCBXX : EQU OF F F FH ; DUMMY DCB
e
HCB: EQU $ /'HOST DCB = DCBOO
DCBOO: DEFB O2H /'DEVICE STATUS FLAGS

DEFW OOOO /'SAVE BYTE COUNT
DEFW 0000 /'SAVE BUFFER POINTER

t
DCBO1: DEFB 02H ,' D E V I C E STATUS FLAGS

DEFB 02H ;DEVICE MASK
DEFB 10 H IDEVICE #
DEFB 01 H ;A C (LU#)

E37

DEFB OOH ;DST AC (READ ONLY)
DEFW OOOO ; S A V E MAIN B U F A D D R
DEFB 0000 ; S A V E REMAINING BYTES
DEFW 0000 /'SAVE DE (STATUS, TOTAL BYTES)
DEFW 0000 ; S A VE HL (POINTER)

/
DCB02: DEFB 02H ; D E V I C E STATUS FLAGS

DEFB OSH /"DEVICE MASK
DEFB 14H /‘DEVICE //
DEFB 02H /•AC (L U ti)
DEFB OOH /‘DST AC (READ ONLY)
DEFW 0000 /‘SAVE MAIN BUF A DDR
DEFB 0000 /‘SAVE REMAINING BYTES
DEFW 0000 /‘SAVE DE (STATUS, TOTAL BYTES)
DEFW 0000 /'SAVE HL (POINTER)

/
DCB03: DEFB 02H /‘DEVICE STATUS FLAGS

DEFB 20H DEV ICE MASK
DEFB 16H /'DEVICE #
DEFB 03H ; A C (LU//)
DEFB OOH /•DST AC (READ ONLY)
DEFW 0000 ;SAVE MAIN BUF ADDR
DEFB 0000 ; S A V E REMAINING BYTES
DEFW 0000 /SAVE DE (STATUS, TOTAL BYTES)
DEFW 0000 /•SAVE HL (POINTER)

/
END 0000 ;E N D OF R N P . . .

Fl

APPENDIX F

I. Getting on line with TSS

The modem line can be in any one of several states,

depending on what has happened since it was last

used. The following routine will usually get the

time sharing system connected, regardless of the

state the line is presently in,

1) Turn on power to CPU and CONSOLE, (Green light
on CPU should light if power is ok,)

2) Press lower push button on CPU panel to reset
CPU, (Illustrated in App, A) The following
message should appear on the console: Zee OS Vl.2,
If it does not appear, press button again.

3) You are now in the monitor program (described
in Chapter 2). Next press "K" on the console
keyboard. This should cause the CPU to enter the
HOST I/O routine (described in Chapter 3)• The
following message should appear on the console:
ZIO+. If it does not appear, go back to step 2.

You are now ready to connect to the TSS system.
Press "CR" on the console. The TSS system may
answer with the sign-on message. If so, continue
as if you were on a dial-up terminal, (Refer to
Honeywell Time-Sharing System Pocket Guide, BS12,
page 13i TSS Terminal Operation.)

5) If there is no response from the previous input,
press a "CTL A". The system may respond with:
Program Name? If so, answer with TSS, and continue
like a dial-up terminal ■

F2

6) If there is still no response, press the "ESC"
key on the console and go back to step 4, This
serves as the "break" key on this system.

7) If, after repeating the above procedure (from to 6)
several times, there is still no response from the
HOST system, disconnect the power to the data
modem and reconnect (this should reset the data
line to the HOST system). Then go back to step 4-
and start over.

8) If none of the above procedures get a response from
the HOST system, then there is probably something
wrong with the HOST system. In this case, you
should check with the Computing Center on the
status of TSS.

II. Loading and debugging programs
Since the HOST system does not require continous I/O

to remain connected, you can jump from the I/O routine

back into the monitor and then back into the I/O

program and still remain connected to TSS. This

capability allows you to load programs from the HOST,

jump to the monitor for debugging and then jump back
to the I/O program without disconnecting from TSS.

However, you must remember that TSS will time out

. if it sees no input within 10 minutes. Therefore,

you should go into the IDLE mode if you plan to be

off longer, or sign off completely.

F3

To load a program from the HOST, the program must

be in absolute HEX format. (This format is explained

in the Zapple Monitor Operating Manual.)

The following shows how to load a program from the

HOST and then go to the monitor,

1) You must be in the I/O program and connected to TSS.

2) Press "CTL B" on the console and the console will
return a

3) You must now type in an offset value in HEX, or if
no offset is required, just press "CR".

M-) You now type in the name of the file which holds
the assembled program, followed by a "CR", The
console will then print LIST <file>, after which
the HOST system will start sending the program code.
The program code is both placed in memory and printed
on the console so you can tell if an error occurs,
(ERROR recovery will be explained later.)

5) After the program has been loaded, you may press
"CTL N" to return to the monitor.

6) While in the monitor you may run the program just
loaded, display the code, modify the code, etc.
(All monitor functions are explained in Appendix B
and the Zapple Monitor Operating Manual.)

7) When finished with the monitor, you press "K",
which will go to the I/O program, and you can use
the HOST system without signing back on to TSS.

ERROR recovery - if an error is detected during the

the file transfer, the program will exit to the monitor

routine and print to indicate an error. Any non-

Hex character detected during the transfer of a block

F4-

or a bad checksum will cause an error exit. If an

error is indicated it means you have returned to the

monitor program. Therefore, you must re-enter the
HOST I/O routine by entering a "K" from the keyboard

before you can continue with TSS operations.

III. Creating and assembling microprocessor programs.

Programs for the microprocessor are written on the

HOST system using the standard text editor. They

must be written in standard ZILOG or MOSTEK Z-80

neumonics and include only the pseudo ops given in

the assembler instruction manual (MOSTEK XF0R-80

CROSS ASSEMBLER MANUAL).

The file created with the editor is used as the input

file to the assembler (XF0R-80), which is run using

the standard FORTRAN system on the HIS 66/60. The

input file number is 05» the line printer output

file is 06, and the assembled Hex code file is 03.

Two temporary files, 02 and 0^, are also generated,

but are of no use and need not be saved,

The following command is the format for assembling

a file called MYSRC (Z80 SOURCE CODE), putting the

listing into a file called MYLP (LINE PRINTER LISTING)

and putting the assembled code into a file called
MYCODE (Z80 HEX CODE).

F5

RUNY Z80#MYSRC"05" |MYLP"06" ;MYC0DE,,03"

The results of the assembly can be displayed on the

console, using LIST or EDIT, to check for errors, etc.

Naturally, since the assembler is written in FORTRAN,
it can also be run under batch and the I/O files can

be any medium acceptable to the FORTRAN system.

(For detailed information on the FORTRAN system,

refer to Honeywell FORTRAN Pocket Guide, DD82.)

IV. Console Baud Rate Considerations

Since the I/O program is run in real time and uses no

buffering, the console must not be run slower than

the modem link to the HOST system. In fact, to

prevent loss of characters, it should be faster

than the modem speed (ie. if the modem is set at

1200 baud, run the console at 2^00 baud).

The console baud rate is selected on the CPU by the

rotary switch on the AUX card (illustrated in App. A).

The setting here should match the setting on the

rear of the console.

BIBLIOGRAPHY

I. Abrams, Blanc and Cotton, Computer Networks - A
Tutorial, IEEE, 1975.

y 2. Amidon, Roger, The Zapple Monitor, Technical Design
Labs, 1976.

3. Basket, F., "Open, Closed and Mixed Nets of Queues",
Journal of ACM, COM 22, No. 2, April *75» PP- 2^8-260.

M-. Booth, Taylor L., Digital Networks and Computer Systems,
John Wiley & Sons, NY, 1971.

5. Brant, G. J.,"IEEE Transactions on Communication
Techniques", Proceedings of IEEE, COM 17, No. 3i
June *69, pp. 3^-0-349.

6. Carlson, D. E., ADCCP, IEEE COMPCON 75. pp. 110-113.

7. Chang, J. H., IEEE Transactions on Communication, COM 20,
No. 3. part II, June 72, pp. 619-629.

8. Coit, Kenneth T., "Programmable Multiline Communications
Processor Provides Front-End Flexibility", Computer
Design, May 1977. pp. 99-102.

9. Denning, Peter J. "Operating System Principles for
Data Flow Networks", Computer, July 178. pp. 86-96.

10. Fratta, L. M., Networks. John Wiley & Sons, NY,
1973. PP- 97-133.

I1. Gear, William C., Computer Organization and Programming,
McGraw-Hill, Inc., 1969.

12. Gerla, M., PhD Dissertation, Department of Computer
Science, UCLA, 1973.

13. Hirsch, Abe, "Minis Used as Data Interfaces Merit
Multilevel Considerations", EDN, Jan. 5, 1978,
pp. 61-67.

1^. Honeywell Information System, FORTRAN Pocket Guide,
DD 82, 1975.

15. Honeywell Information Systems, RNP/FNP Interface,
DB 92 A, 197^.

16. Honeywell Information Systems, Time-Sharing System
Pocket Guide, BS 12, 197^.

17. Lesea, Austin and Urkumyan, Nishan, "Multiplexer
System Reduces Cost of Terminal Interfacing",
Computer Design, Aug. 1977, pp. 109-113.

18. Leventhal, Dr. Lance A., "Cut Your Processor Computation
Time", Electronic Design, Aug. 16, 1977, pp. 82-89.

19. Madnick, Stuart E. and Donovan, John J., Operating
' Systems, McGraw-Hill, Inc., 197^.

20. Mills, David L., "Executive Systems and Software
Development for Minicomputers", Proceedings of IEEE,
Nov. 1973, Vol. 61, No. 11, pp. 1556-1652.

/ 21. Mostek Corporation, Mostek Z80 Technical Manual, 1977.

' 22. Mostek Corporation, XF0R-80 FORTRAN IV Cross Assembler,
1977.

. 23. Mostek Corporation, Z80 Programming Manual, 1977.
42^. Muller, Donald J., "Microcomputers Decentralize

Processing in Data Communication Networks", Computer
Design, Oct. 1977, PP« 81-88,

25. Schoeffler, James D., Tutorial: Minicomputer Realtime
Executives, COMPCON, Fall ,7ZI.

.—-26. Schwartz, Mischa, Computer Communication Network
Design and Analysis, Prentis-Hall, 1977.

27. Scrupski, Stephen E., "Communications Data - Handling
Gains Flexibility", Electronics, July 11, 197^, pp. 88-91.

28. Ulrickson, Robert W., "Real-time Systems Often Use
Interrupts", Electronic Design, May 10, 1977, pp. 80-8^.

29. Villasener, Tony, "Need a multi-terminal interface?
Try a microprocessor network", EDN, Oct. 5, 1977,
pp, 63-68.

