THE DESIGN AND APPLICATION OF A
MICROPROCESSOR DEVELOPMENT SYSTEM

A Thesis
Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Jerry Burns Pace

December 1978

ii

ACKNOWLEDGEMENTS

I sincerely thank Dr. 0lin G. Johnson, my thesis advisor,
for his help and encouragement. Thanks also to Dr. Willis
K. King and Dr., James D, Bargainer who served on my thesis

committee,

A special thanks to Holly Frost, who designed the cards
used in the system, for his aid in accquiring the parts for
the system. Thanks to Buddy Peiser, a good friend, for his
support and encouragement. And thanks to MOSTEK for
donating the Z80 cross assembler which was especlally

appreciated.

Finally, I want to thank my wife, Jackie, who typed many
pages, my son, Jack, and my daughter, Elise, for continuing
support and patience through many years. They never doubted

I would make it,

iii

THE DESIGN AND APPLICATION OF A
MICROPROCESSOR DEVELOPMENT SYSTEM

An Abstract
of a Thesis
Presented To
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Jerry Burns Pace

December 1978

iv

ABSTRACT

The material presented in this Thesis concerns two topics:
the first is the design of a Microprocessor Development
System and the second is the application of this system

for developing a rather extensive programming example,

The Microprocessor Development System was designed around

a 2-80 microprocessor. The system contains 8K of RAM,

12K of ROM, 4 serial I/0 ports and room for 3 additional
cards, A 2K monitor was implemented in ROM and a cross
assembler was set up on a large mainframe HOST system,

An I/0 routine was written to allow the microprocessor
system to converse directly with the HOST system., Programs
could then be developed on the HOST system, assembled with
the cross assembler and loaded directly into the micro-

processor for debugging.

The programming example discussed is a program to emulate

a multi-terminal network processor, a device which is used
to multiplex several terminals on a timesharing system

via a single modem line. Excellent results were obtained
when using the HOST/Microprocessor combination for develop-

ing and testing programs for the microprocessor system.

TABLE OF CONTENTS

ACKNOWLEDGMENTS

ABSTRACT

LIST OF ILLUSTRATIONS

INTRODUCTION

PART I
Chapter 1

Chapter 2

Chapter 3
PART II

Chapter 4

Chapter 5

Chapter 6

CONCLUSION

MICROPROCESSOR DEVELOPMENT SYSTEM

HARDWARE

CPU Card
1/0 Card
Power Supply

MONITOR PROGRAM
General Functions

Z-80 to HOST I/0 Program

Z-8 CROSS ASSEMBLER

DEVELOPMENTAL EXAVNPLE
RNP EMULATION PROGRAM

RNP OVERVIEW

HOST/RNP LINK
XMIT BLOCK
Error Recovery

RNP EMULATION PROGRAM

Additional Functions
Device I/0 Buffers

SUBROUTINE DESCRIPTIONS

Main Program

Command Processor
Device I/0 Routines
HOST I/0 Routines
HOST Buffer Conversion
Queue Handler

ii
iii

vii

12

13
14

19

32

Lo

Appendix A

Appendix B
Appendix C

Appendix D
Appendix E
Appendix F

Bibliography

HARDWARE CIRCUIT DRAWINGS

CPU Card
I1/0 Card

ZAPPLE MONITOR COMMANDS

RMC MESSAGE FORMATS

XMIT BLOCK

Link Message

Logical Message

Z-80 to HOST I/0 PROGRAM LISTINGS
RNP PROGRAM LISTING

Operating Instructions

vi

Figure
1A
1B
1C
1D
2A
LA
5A
5B

5C
5D
5E
5F
5G

LIST OF ILLUSTRATIONS

SYSTEM BLOCK DIAG.

CPU CARD BLOCK DIAG.

I1/0 CARD BLOCK DIAG.
POWER SUPPLY BLOCK DIAG.
Z-80 to HOST I/0 PROGRAM
RNP LOGICAL CONFIGURATION
RNP BASIC FLOW DIAG,

MULTI-BLOCK BUFFER FORMAT
AND LINKAGE

HOST BUFFER FORMAT

DEVICE CONTROL BLOCK FORMAT
HOST CONTROL BLOCK FORMAT
DCB POINTER TABLE
QUEUE-BUFFER LINKAGE

O N W W

14
20

22
24
26
28
29
30

vii

INTRODUCTION

The recent availibility of low-cost microprocessors has
opened the door for many new and useful applications,

This thesis will discuss the design of one of these micro-
processor systems; specifically, a Z-80 microprocessor and

the application of this unit as a network processor,.

The work reported here divides naturally into two parts:
Part I was the development of the hardware, This included
purchasing and assembling the microprocessor, modifying
the software monitor so that the microprocessor could
communicate with a large HOST computer (HIS 66/60) and
installing a cross assembler on the HOST to assemble

programs for the microprocessor.

Part II involved choosing a development example which
would illustrate the capabilities of the development
system. It was decided to write a program which would

use the development system to develop an emulator for a
Remote Network Processor (HONEYWELL RCP 707), The network
processor was chosen to demonstrate the ability of the
microprocessor to do complex jobs with relatively in-

expensive hardware.

PART I
MICROPROCESSOR DEVELOPMENT SYSTEM

Chapter 1

HARDWARE

The microprocessor development system hardware is composed
of two 7" by 9" printed circuit cards (the CPU card and
the I/0 card), a printed circuit CPU BUS Mother Board with
provisions for 5 cards, and a multi-output power supply.

Detailed wiring diagrams of the CPU cards can be found in

Appendix A,
r——————— e e ———— 1
| |

|
: CPU POWER I
I CARD c c c SUPPLY |
| ol |o} |o I
| N N N |
I CONN Np[Np (N |
| |
| & >
L CPU BUS - :
| I
, cony] .

|
: 1/0 !
| CARD |
| }
I |
e e -5

AUX AUX
CHAN CHAN
TERM MODEM
Console j;
HOST
SYSTEM

Fig., 1A SYSTEM BLOCK DIAGRAM

The CPU card contains the 2-80 microprocessor, a 2 MHZ
crystal clock, 8K of dynamic RAM, and 4K of programmable
ROM, along with all the decoders, drivers, and receivers

necessary to handle the CPU bus,

e | 2wz
2-80 CLOCK 8 K 4 K
MICRO- RAM ROM
PROCESSOR (4051) (2708)
< N
~ CPU BUS -

Fig, CPU CARD BLOCK DIAG.

The CPU chosen for this project was a Z-80 microprocessor,
The reasons for choosing this particular unit were:

(1) It was one of the fastest and most powerful 8 bit
microprocessors available,

(2) It was very easy to design a system around,

(3) Parts for this system were readily available and
relatively inexpensive,

A crystal clock was u:u.:d, instead of another type, due to
its inherent stability and accuracy.

The 2708 programable ROMs used to store the programs,

both on the CPU card and the I/0 card, combined a large

storage capacity in a relatively small space, and were

also very cost effective,

The 4051 4K dynamic RAMs were

used because, at this time, 4K dynamic RAMs were the least

expensive type; and since the 2-80 had a built~-in refresh

counter, no extra hardware was required for refresh

circurity.

The I/0 card holds all the I/0 interfaces consisting of

4 programmable I/0 controllers (3 asynchronous and

1 synchronous unit), a 4 channel programmable real time

clock/timer unit, an 8 input interrupt request register,

and an additional 8K of programmable ROM,

1/0 1/0
USART USART INTR REQ
(8251) (8251) Z-80 CTC REG
(8259)
CPU BU
< ¢ S S sk >
4
USART USART
(8251) (8251) 8K ROM
:[(2708)
1/0 1/0
Fig. 1C 1/0 CARD BLOCK DIAG,

The programmable I/0 controllers used on the I/0 card were
8251 USARTs (UNIVERSAL SYNCHRONOUS/ASYNCHRONOUS RECEIVER/
TRANSMITTER). These units were chosen for thelr ability
to be programmed by the CPU, to operate in virtually

any serial data transmission technique presently in use,
They will operate in full duplex asynchronous mode to

9600 baud, and in full duplex synchronous mode to 50K
baud, They also connect directly to the CPU bus and

require no special interface circuitry.

The programmable clock/timer used on the I/0 board was

a 280-CTC. It contains 4 independent programmable 8 bit
counter/16 bit timer channels., Each channel can be
programmed to operate either as a counter or a timer,
which can generate interrupts and automatic interrupt

vectoring with no external logic.

The 8259 interrupt controller is used here only as an
interrupt request holding register. The software
interrupt routine uses a polling technique to find the

correct device to service,

The CPU BUS Mother Board serves simply as a mounting

surface for five 100 pin card edge connectors which
interconnect the signals and supply power to the cards,
All CPU bus signals and all power lines are connected

through this bus card,

The power supply is a three output regulated supply which
produced 5 volts at 6 amps, +12 volts at 1.5 amps and

-12 volts at 1.5 amps., Since a -5 volt supply was also
required by the system, a -5 volt regulator driven by

the -12 volt supply was used to supply -5 volts at 1 amp,
The power supply delivers much more power than is required
by the present system, which allows for the addition of

other cards for future expansion of the basic system,

-12velia -5ve1A +12velia +5V@bA
SUPPLY REG SUPPLY SUPPLY
In Out
+ - - + - +
A\ A\ Vv
COMM -12V -5V +12V +5V

Fig. 1D POWER SUPPLY BLOCK DIAG,

Chapter 2
MONITOR PROGRAM

A system monitor program (ZAPPLE MONITOR by TDL), located
on the CPU card in the upper 2K of ROM, provided all
necessary functions for loading, displaying, modifing,

and debugging assembly language programs., This monitor,
however, had no provisions for connecting a HOST processor
or for loading assembled code from a HOST processor,
Therefore, an 1/0 routine had to be written to connect the

2-80 system to the HOST system (Appendix D),

The monitor contains, among others,routines for the follow-
ing functions:
(1) assign alternate peripherial devices for I/0 or console,

(2) display and/or change any single location in memory
on the console,

(3) display blocks of memory on the console,
(4) fill blocks of memory with a single constant,
(5) display and/or change registers from the console, and

(6) set up one or two software break points,

Altogether, there are 23 separate functions in the standard
monitor and provisions for 3 user defined functions, In

addition, the monitor has many useful subroutines for

I1/0 and data conversion which can be called by other programs,

Appendix B gives a list of all the commands and a brief

explaination of their use.

A
N

READ CONSOLE
STATUS

— i)

T

READ CONSOLE
CHAR

&

SEND BREAK
TO HOST

T

F
‘L — T
'CTL B')

5

F

DS

é——-————(j@f} c’

SET UP FOR
HOST TO MEM

A

SEND CHAR TO
HOST

MOVE HEX CHAR
TO MEMORY

READ HOST
STATUS

UPDATE POINTER

——— (ot)

T

READ HOST
CHAR

PRINT CHAR
ON CONSOLE

END)
GOTO MONITOR
ROUTINE

Fig. 2A 2-80 to HOST I/0 Program

10

To make the task of conversing with the HOST processor

as simple as possible, the Z-80 system was made to emulate
a terminal and connected to the standard time sharing
network (TSS) of the HOST processor. A special routine,
which could be entered from this program, was written

to load assembled code from the HOST processor to the
memory of the 2-80 system, This made it possible to use
the HOST system for writing, editing, assembling, and
storing programs for the Z-80, The assembled code from
these programs could then be down loaded to the Z-80

system for testing and debugging.

Figure 2A is a flow chart of the Z-80 to HOST I/0 routine.
The main loop of the program continously teststhe status

of the console input and the modem input. When a character
is ready to be read, the status flag will be set and the
character will be read. If it is a console character,

it will be tested and if it is also one of the command -
characters, a special routine will be entered to execute
the command; otherwise, the character will be sent directly
to the modem for transmission to the HOST. If, however,
the character comes from the modem, it will immediately

be printed on the console,

There are 4 command characters input from the console:

(1) An 'ESC' character is used instead of the conventional
break key because the I/0 channel cannot detect a
break. This input causes the program to go to the
BREAK routine, which sends a break to the HOST for
250 MS and then returns to the main loop.

(2) A 'CTL B' (CONTROL B) is used to enter the HOST to
memory routine., This routine first asks for an
offset value, next asks for the HOST file name, and
then sends the command to the HOST to start input
to memory. The input to this program, which must
be a standard HEX FORMAT file — if not the programs
aborts and returns to the main loop —,is then loaded
and printed on the console at the same time. When
the file is completely loaded, the routine returns
to the main loop.

(3) A 'CTL C' is normally used to cause an immediate
disconnect., However, this was considered an un-
desirable feature., Therefore, this character is
ignored and not sent to the HOST.

(4) A 'CTL N' is used to cause a direct return to the
monitor program.

Other than the above U4 characters, all keyboard
characters are treated the same as in any standard

TSS terminal and sent directly to the HOST,

12

Chapter 3
Z-80 CROSS ASSEMBLER

To allow Z-80 programs to be assembled on the HOST system;

a cross assembler was acquired (XFOR-80 by MOSTEK)., This
cross assembler, although written in FORTRAN, was not written
specifically for the HONEYWELL 66/60. Therefore, some

slight modifications had to be made before it would work

on this system, Some of the special characters had to be
changed because they were not allowed on the TSS network

and some special file instructions had to be added to the

program,

The XFOR-80 is a 2 pass assembler which will assemble all
standard Z80 source statement and also MACROS. As implement-
ed on the HOST system (HIS 66/60), the input can be in the
form of a TSS file, created on line, or a deck of punched

cards or any other compatible file storage medium,

The output from the program is in the form of two separate
disk files, One file is the line printer listing containing
the assembled code along with the listing of the program
instructions., It can be displayed on the console of the
Z-80 system and/or printed on the line printer of the
HOST system. The other file is the assembled code in
standard HEX format which can be loaded into the Z-80

memory for execution or debugging.

PART II
DEVELOPMENTAL EXAMPLE
RNP EMULATION PROGRAM

13

14

CHAPTER 4
RNP_OVERVIEW

The Remote Network Processor is a device used for combining
several terminals and/or several remote computers and/or
remote batch facilities, in such a way that they can
communicate with a host processor on a single high speed
modem line., There are basically two protocols: one called
RMC (REMOTE MESSAGE CONCENTRATION) for remote terminals
and remote computers, and the other called RBS (REMOTE
BATCH SYSTEM) for remote batch stations., It was decided

to only implement the first, RMC, because it was simpler
and would still serve well as an example., The following

is a brief explanation of the RMC protocol. A more

detailed explanation is available in the HONEYWELL RNP/FNP

INTERFACE manual, number DB92,

HOST

SY STEM LINK RNP

Fig, 4A RNP LOGICAL CONFIGURATION

15

A logical configuration of the RNP system is shown in
Fig. 4A., The connection between the HOST and the RNP is
called the link. This can be in the form of a modem or

a direct wired connection,

The HOST/RNP link must be in one of the three following
states:

(1) Physically disconnected,

(2) Llogically disconnected (physically connected but idle),

(3) Logically connected (physically connected and active),

Control of the link is carried on through the exchange of
Q-Frames during all periods in which the link is active
and there is no link or logical messages to exchange,
This exchange is always initiated by the HOST, therefore,

avoiding contention of the line.,

All communication between the HOST and the RNP related

only to the HOST/RNP link is carried in the link message,

and communication between the HOST and each individual

terminal is carried in the logical message. These messages,

over the link, are carried in TRANSMISSION BLOCKS (XMIT
BLOCK), which consists of a link message as the first, or
only message., They may also contain one or more logical
messages, each of which contains a unique address identify-
ing its destination. The entire block is terminated by

the 'EOT! character.A

16

Each XMIT BLOCK must be acknowledged (ACK) in the next

received block or the same block is retransmitted (NAK),

No new XMIT BLOCK (one having a new sequence code and

different logical messages) may be sent until the previous

one is acknowledged (ACK). The sequence code and the

acknowledgement of the link message are used to insure

against lost or duplicate XMIT BLOCKS., In addition, if

no answer is received to a transmission within a specific

amount of time, the same XMIT BLOCK is retransmitted.

There are two types of XMIT BLOCKS: +the Service Message

and
the
and

the

The
the

(1)

(2)

(3)

(%)

the Data Message. The Service message differs from
Data message by the presents of only the link message
no logical messages in the XMIT BLOCK and the header of

link message contains a 102g instead of a 110g in the FC,

Service message is used to control the link and conveys

following 4 messages:

RFD - - Tells the receiver that the sender is going to
disconnect the link, Must be acknowledged with
an RFD,

DIS - Tells the receiver that the sender is disconnecting
the link., No reply is necessary and both processors
disconnect,

A CALL - Sent by the HOST to tell the RNP to accept all
incoming calls.

N CALL - Sent by the HOST to tell RNP to accept no new
incoming calls.

17

The followihg table illustrates the error recovery rules,

In these rules, the sequence code (SC) in the link message
refers to the code in the header which alternates between
101g and 102g. A changed SC indicates a new XMIT BLOCK.

The ACK or NAK refers to whether or not a message is received

in error. All retransmissions repeat the full XMIT BLOCK,

ERROR_RECOVERY RULES

RECEIVED BLOCK

Same New
SC SC ACK NAK ERR

X Transmit 1link message
with NAK and same SC.

X X Process Logical messages.
Change SC and transmit
next XMIT BLOCK with ACK.

X X Process Logical messages.
Change SC and transmit
next XMIT BLOCK with ACK.

X X Disregard Logical messages.
Change SC and transmit
next XMIT BLOCK with ACK,

X X Disregard Logical messages,
Retransmit last XMIT BLOCK
with same SC and ACK,

18

The XMIT BLOCKS are made up of messages which are composed
of strings of characters. All characters used on the
HOST/RNP link must be ASCII 8 bit (7 data bits + parity)

characters., The bit notation is shown below:

MSB LSB

P| 6 5 4 | 3 2 1 0

DATA

A detailed description of the XMIT BLOCKS plus a descrip-
tion of the link and logical messages, along with a break

down of their respective headers, is given in Appendix C.

19

Chapter 5
RNP_EMULATION PROGRAM

The RNP Emulation Program has been written to simulate the
actions of the HONEYWELL Remote Network Processor, con-
figured to handle only the RMC protocol., It is written
in modular form with individual subroutines for all major
functions. This makes the program easily adaptable to
many differing hardware configurations, without requiring
major programming changes. Also, some of the functions
are table driven to allow them to be changed or enlarged
more easily. The program is also written such that it

is 'ROMable' (i.e. written such that it can be stored in
ROM and executed), therefore, no program variables are
located within the program itself, but are all stored

in RAM outside the program.

In addition to the normal RNP functions (HOST to terminal
1/0), several additional functions were implemented, The
program also allows device to device transmissions, with-
out involving the HOST system; so this type of communication
can go on even when the HOST is off line, Each device on
the RNP has the ability to assign a destination device to
itself with a keyboard command, and it can connect to or
disconnect from the HOST with a similar command. This

capability eliminates the need for a control console,

POWER UP

INITALIZE
SYSTEM

(Hosm:§ﬁfi————-

Y

SERVICE RBUF
IF READY AND
XMIT XBUF IF
REQUIRED

RQ E@Ei)ii———

N

SERVICE RQ
AND START DEV
OUTPUT

y
G BT —

N

SERVICE EQ
AND RESOLVE
ERROR

b

I

I/0 INTR l

N 6:::
OST RDY

Y

SERVICE HOST
I/0 REQUEST

L

/
X (@Wa BwTY)

N

SERVICE WQ
AND MOVE BUF
TO RQ

Fig. 5A

N
DEV RDY

Y

FIND DEVICE
DCB ADDR AND
SERVICE DEVICE
I/0 REQUEST

[RETI |

4

TIMER INTR |

UPDATE TIMER
COUNT

/ N
TIME OUT
Y

REXMIT OLD XBUF
OR Q-FRAME

I

RETI |

RNP Basic Flow Diag,

20

21

The RNP program (Fig. 5A) accepts character input from
terminals and/or remote computers (designated devices),

and puts them into input buffers, Each completed buffer

is then placed on a queue, to await output to the HOST or
to another device. When the queue is services, each buffer
is either output to another device or converted to a
logical message. This logical message is then sent to

the HOST in an XMIT BLOCK which normally contains logical

messages from other devices.

Input from the HOST, in the form of an XMIT BLOCK, is
converted from logical messages for several devices into
individual output buffers, which are then placed on a queue,
When this queue is services, the buffers are output to'the

respective devices by the I/0 subroutines.

Device I/0 buffers are composed of 64 byte buffer blocks,

All available blocks are kept on the AQUE., When a block
is needed by a process it is removed from the top of the
AQUE, and when it is no longer needed it is put back on
the bottom of the AQUE., The total number of blocks

avallable is limited only by the amount of RAM available

in the system.

22

All device I/0 buffers are dynamic in size with a basic

block size of 64 bytes, of which 58 are usable

for

character storage, 4 are used for the buffer header,

and 2 are used for the linkage pointer,

The basic buffer

structure is shown in Figure 5B, along with the method

of block linkage,

Buffer size can vary from 1 to a

maximum of 4 blocks for a total of 232 characters.

[EEY

£ won

63
6L

63
64

STATUS (LNK=1)

TOTAL BYTE COUNT

SOURCE AC

DESTINATION AC

DATA = 58 BYTES

LINK POINTER L

LINK POINTER H e

STATUS (LNK=1)

DATA = 58 BYTES
t

LINK POINTER L

;

%

LINK POINTER H *

Fig. 5B

0

63
64

STATUS (LNK=1)

DATA = 58 BYTES

LINK POINTER L

LINK POINTER H e~

STATUS (LNK=0)

DATA = 58 BYTES

MULTI-BLOCK BUFFER FORMAT AND LINKAGE

23

Blocks are linked up into a buffer by the use of a linkage
pointer in the last 2 bytes of the block., There is also a
bit in the status byte (link bit) which must be set to
indicate that one block is linked to another. If the link
bit is not set, it indicates this 1s the last block, or the

only block, in the buffer

The buffer header (Fig. 5B) is only present in the first block
of each buffer. It contains the buffer status byte as the

1st byte, the total byte count of the buffer (1 £ count £ 232)
as the 2nd byte, the source address code of the buffer as the
3rd byte, and the destination address code as the 4th byte.
The 5th through the 62nd byte is used for data storage and

the 63rd and 64th hold the linkage pointer if necessary.

The status bytes also carries other information in addition
to the 1link bit. The following is the bit arrangement of
the status byte and the meaning of each bit,

7 6 5 L 3 2 1 0

BUFs -—- LNK ETB PAR |HOST - -—— -—-

INK - The Link bit indicates this is not the last block in
the buffer and that a linkage address will be found
as the end of the block.

ETB - The Extended Buffer bit indicates this is not the
last buffer in this I/0 operation (i.e, Input was
more than 232 bytes).

24

PAR =~ The Parity bit indicates a character with bad parity
occured somewhere within this buffer,

HOST - The HOST bit indicates this buffer's destination is
the HOST system.

The last 3 bits above only occur in the lst status byte of
each buffer (the buffer header), however, the link bit is
in every status byte of every block in the buffer to indicate

the presents or absence of another block,

The HOST buffers are a fixed size with 1024 bytes being

allocated for each (Fig. 5C). There are two HOST buffers;
one buffer (XBUF) for transmitting messages to the HOST, and
one buffer (RBUF) for receiving HOST message transmissions.
The buffer header for the HOST buffers consists of 4 bytes,
The 1lst byte holds the status information, the 2nd and

3rd bytes hold the total byte count (6 = count = 1020) and

the 4th is reserved for future designation.

STATUS

TOTAL BYTES L

TOTAL BYTES H

e N =)

DATA = 1020 BYTES
:

Fig. 5C HOST BUFFER FORMAT

———

25

The status bytes for the HOST buffers are explained below:
7 6 5 L 3 2 1 0

RBUF - ERR LOG SVM NSC ACK EMTY | FULL| BSY
XBUF - ERR - -—— -——- - - EMTY | FULL| BS3Y
ERR - The Error bit indicates an error of some kind
has occured in the buffer,
LOG - The Logical message bit indicates there are logical
messages present in the RBUF for processing.
SVM - The Service Message bit indicates this RBUF is a

service message,

NSC - The New SC bit indicates this RBUF has a different
SC in the header than the last transmission.

ACK - The Acknowledge bit indicates the HOST has acknow-
ledged the reception of the last transmission.

EMTY - The Empty bit indicates there is no data in the
buffer,

FULL - The Full bit indicates no more data can be put into
the buffer,

BSY - The Busy bit indicates the buffer is now in the act

of being changed by some process and cannot be
accessed by another,

Each I/0 device has associated with it a Device Control

Block (DCB) which contains all pertinent data for that
device, All permanent data such as bus channel address

and interrupt mask are stored here, and all temporary param-
eters such as byte count and buffer address used during I/0
operations are also stored here. Figure 5D shows the format

of the DCB used for device 1/0,

26

0 STATUS

1 INTR MASK

2 DEVICE BUS ADDR

3 AC (DEVICE LU#)

" DST AC (READ)

5 BUF ADDR L

6 BUF ADDR H

Vi REMAINING BYTES

8 BLOCK STATUS

9 TOTAL BYTES

10 DATA POINTER L

11 DATA POINTER H
Fig. 5D DEVICE CONTROL BLOCK FORMAT

The individual DCB bytes are as follows:

(1)
(2)

(3)
(%)

(5)
(6)

(7)

The device status holds the status bits for this device,

The interrupt mask is used for enabling/disabling the

interrupt register,

The device bus address is the number of the I/0 port.,

The address code is the logical unit number of the

device,.

The destination address code is the logical unit number

of the device,

The present buffer address is the address of the buffer

assigned to this device during an I/0 cycle.

The remaining bytes are the bytes left to be input to or
output from this block.

(8)

(9)

(10)

27

The present block status is a save area for the status

of the block in use,

The total bytes is the total remaining bytes left to
be input to or output from the buffer,

The buffer data pointer is the pointer to the next

by te of input or output.

The status byte of the DCB is explained below:

ERR

IDM

ETB

ONLN

ACK

XBF

BSY

DCB ERR IDM | ETB ONLN | ACK | XBF RD BSY

7 6 5 L 3 2 1 0

The Error bit indicates that an error has occured on
an I/0 transfer to this device.

The Identification Message bit indicates that an
ID header should be attached to the start of each
buffer sent by this device.,

The Entended Buffer bit indicates that the present
buffer is not the end of the message.

The On Line bit indicates that this device is ready
for 1/0.

The Acknowledge bit indicates that the last trans-
mission from this device to the host has been received,

The Xmit message buffer bit indicates that there 1is
now a message walting on the XQUE to be sent to the
HOST (only 1 message is allowed to be on the XQUE
from any single device at any particular time).

The Read bit indicates that this is an input
operation,

The Busy bit indicates that this device is performing an
1/0 operation and cannot start another until this
one is complete.

28

The HOST has associated with it a Host Control Block (HCB)

which contains all pertinent data for the HOST. Since the HOST
I1/0 driver routines are not shared by any other devices,
the HCB does not have to hold nearly as much information as

the DCB, Figure 5E shows the format of the HCB,

STATUS

REMAINING BYTES L

REMAINING BYTES H

DATA POINTER L

= W N e o

DATA POINTER H

Fig. 5E HOST CONTROL BLOCK FORMAT

The individual bytes are as follows:
(1) The Device Status byte holds the HOST status.

(2) The Remaining Bytes indicates the total bytes left to
be received or transmitted in this buffer.

(3) The Data Pointer is the pointer to the next byte to
be receilved or transmitted,

The status byte for the HCB is explained below:

7 6 5 L 3 2 1 0
HCB ERR | SYNC | ETB | ONLN | ACPT|{ --- | RD BSY

ERR -The Error bit indicates that an error has occured on
an I/0 transfer to the HOST.

SYNC-The Synchronized bit indicates that the HOST I/0 unit
has received the correct sync characters,

29

ETB - The Extended Buffer bit indicates the present buffer
is not the end of the message.

ONIN - The On Line bit indicates the HOST is ready for 1/0,

ACPT - The Accept all calls bit indicates the HOST will
accept all new devices which sign on.

RD -~ The Read bit indicates this is a HOST receive
operation.

BSY - The Busy bit indicates the HOST is performing 1/0.

The DCB for any particular device is acquired through a
table (DCBTAB). The AC of the device is all that is needed
to calculate the offset for the table, which contains all
of the DCBs for every device in the system, Figure 5F is

an example of how this table is set up.

DCBTAB
0 —>=
2 . DCB 0
— e e 4
T —————
2n o
DCB 1
DCB n

Fig., 5F DCB POINTER TABLE

30

A1l I/0 within the program between two devices and between
devices and the HOST is carried on through the I/0 buffer,

To prevent the possibility of interference between devices,
all buffers are handled through queues on a first.in first
out basis. If a buffer taken from the top of a queue is
destined for a device which 1s presently busy, it is put

back on the bottom of the same queue to wait until the device

is not busy. PFigure 5G is a diagram of the gqueue buffer

relationship.
RQUE
[N .
BUFFER POOL
XQUE 0
& 0
1 [N
WQUE 1 ll
o 0
AQUE -
o]

Fig. 5G QUEUE ~ BUFFER LINKAGE

31

The I/0 is structured such that when a read or a write is
started, for a particular device, the operation must run %o
completion before another can be started. This means that
for a write operation, the complete buffer must be output,
and for a read, either a line delimiter (CR) must be found,
or the total length of input must exceed 232 characters.

In the latter case, the present I/0 buffer is terminated
with an 'ETB' and put on a queue, and a new I/0 buffer is

started to receive the rest of the input.

There are 5 queues used by the program:
(1) The Available blocks queue (AQUE) holds the addresses
of all blocks not presently in use.

(2) The Receive queue (RQUE) holds the address of all
output buffers ready for output to a device,

(3) The Transmit queue (XQUE) holds the address of all
output buffers ready for output to the HOST.

(4) The Write queue (WQUE) holds all overflow from the
XQUE and the RQUE, and buffers which need to wait for
output to a device or to the HOST,

(5) The Error queue (EQUE) holds both buffer addresses
and queue designators which are placed there when
an error occurs in any other queue

32

Chapter 6

SUBROUTINE DESCRIPTIONS

MAIN_PROGRAM

The Main program loop (MAIN) is continously executed by
the system until an interrupt occurs from one of the
timers. If no device requires service at this time,

then control is returned to this routine. During its
execution the MAIN routine services each queue, if a
buffer is on the RQUE it takes the buffer off the queue
and starts output to the device indicated by the buffer,
if a buffer is on the WQUE it moves this buffer to either
the XQUE or the RQUE, and if a buffer is on the EQUE it

moves the buffer to the required new queue.

MAIN also services the host receive buffer (RBUF) and

the host transmit buffer (XBUF) when necessary. When

the RBUF needs service, a flag causes the RBUF service
routine to be entered which takes RBUF and converts all

of its messages to output buffers and stores the addresses
on the RQUE, And when the XBUF needs service, a flag
causes the XBUF service routine to be entered, which

takes all buffers off the XQUE and converts them to
logical messages and puts them into the XBUF for trans-

mission to the host processor.

33

The Initalize routine (INIT) is the routine which initalizes
all necessary variables, initalizes all queues, sets up the
stack pointer, sets up the I/0 controller, starts an input

cycle to all devices and enables the interrupts.

The Clock and I1/0 set up routine (CI0) is called by the

INIT routine to set up the clock and timer interrupts, to
set up the I/0 device controllers, and to set up the priority

encoder for device service requests.,

COMMAND _PROCESSOR

The Command Processor routine (CMDPRC) executes all system

commands., It receives these commands from all devices in
the form of buffers., The buffers are analyzed by the
command processor and the appropriate action is taken,

All commands start with a 'CTL C' followed by the command,
The commands are as follows:

ASSIGN - Consists of an 'A', followed by a one or two
digit number. This command assigns the device,
designated by the number, as the destination of
the device issuing the command., All further
inputs from the sorce device are routed to this
destination device.

ATTACH - Consists of 'CTL A'. This command does two things:
first it assigns the Host processor to the source
device and second, it sends a select message to
the Host to connect the source device to the Host.

34

DETACH - Consists of a 'D', Thié command causes a detach
message to be sent to the Host, which disconnects
the source device from the Host, (Causes an
immediate 'CP DISCONNECT')

The Command Input routine (CMDIN) is entered from DEVRD
when a 'CTL C' is detected. It sets up a buffer to receive

the command and pass it to the command processor routine.

DEVICE I/0 ROUTINES

The Device Input routine (DEVIN) sets up the parameters in

the device DCB for input from the device. It first acquires
a block from the buffer pool and stores its address in the
DCB. It then sets up the source and destination in the
buffer header, initalizes the other parameters in the DCB
for input from the device, and clears the read mask bit

for this device in the I/0 service mask,

The Device Output routine (DEVOUT) sets up the parameters

in the device DCB for output to the device. On entry the
buffer address is stored in the DCB. It then gets the
byte count from the buffer and stores it in the DCB,
initializes the other parameters in the DCB for output

to the device, and clears the write mask bit for this

device in the I/0 service mask.

-

35

The Interrupt routine (INTR) is the device interrupt

handler. This routine is entered mce every millisecond

from a timer interrupt. On entry it checks first for the
Host needing service and then for any device needing

service, If no service is needed, an exit is taken.

However, if the Host needs service, the Host service routine
is called, Additionally, if any device has a service request
bit set and the device is not masked, the routine finds the
correct DCB for that device, loads the registers with
parameters from it, and then calls the service routine

to service that device,

The Device Read routine (DEVRD), which is called by INTR,

reads a character from the device designated by the
parameters in the registers., It then stores this character
in the designated buffer, updates the parameters, checks

for the end of line character, checks for the last character

in the present block or checks for a command character,

If the character read indicates the end of the line, then
the buffer 1s closed and the device placed in idle mode.

».f the character read is the lst in the present'block. then
the block is closed and a new one linked to the present one,
and if the character read is a command character ('CTL C')
then the present buffer is aborted and a command buffer is

initiated by CMDIN,

36

The Device Write routine (DEVWR), which is called by INTR,

writes a character to the device designated by the parameters
in the registers, It then updates the parameters, checks
for the end of the buffer, checks for the end of the

present block, or checks for the extended buffer,

If this i1s the last character in the buffer, the routine
restores the block to the buffer pool and places the device
in the idle mode, if it is only the end of the present
block it restores this block to the buffer pool and gets
the address of the next block, and if it is an extended
buffer, it restores this block to the buffer pool and then

sets the device up to receive another output buffer,

HOST I1/0

The Start Receive Buffer routine (STRBUF) is called by

RBFSRV or GENXBF to start the next RBUF input cycle, It
sets up the necessary parameters in the Host Control Block

and unmasks the interrupt for input from the HOST,

The Start Transmit Buffer routine (STRXBF) is called by

RBFSRV or GENXBF to start the next XBUF output cycle,
It sets up the necessary parameters in the HCB and un-

masks the interrupt for output to the HOST.

37

The Host Receive routine (HOSTR) is entered from an interrupt,

and if the Host I/0 controller is in sync, a byte is read
from the Host and placed in the RBUF, If it is an end of
message character the full flag is set, the buffer is

closed, and the interrupt mask set.

The Host Transmit routine (HOSTX) is entered fron an interrupt,

and it transmits the next byte of XBUF to the Host, If it
is the end of the buffer, the empty flag is set and the

interrupt mask set,

HOST _BUFFER CONVERSION

The Receive Buffer Service routine (RBFSRV) is called by

MAIN to service the RBUF, It first strips the link message
from the RBUF, analyzes the link message and uses it to set
the RBUF status flags. Next, depending on the flag setting,
this routine will retransmit the old XBUF, transmit a
service message, generate and transmit a new XBUF or

convert all logical messages in the RBUF to output buffers
and put them on the RQUE, The routine then starts reception

of the next RBUF,

The Strip Link routine (STRLNK) is called by RBFSRV to

strip the link message off the RBUF. Depending on the data
in the header, it will set or clear the flags in the RBUF

status byte.

38

The Service Message routine (SRVMSG) is called by RBFSRV

to analyze RBUF service messages and either send back the
correct acknowledge message or initiate the appropriate

action,

The Get Message routine (GETMSG) is called by RBFSRV to

get the next logical message off RBUF. It also calculates
the length of the message and stores the address in a save

area.,

The Get_Buffer routine (GETBUF) is called by RBFSRV to get

a buffer to store the logical message. It gets enough
blocks off the AQUE to hold the logical message and links

them together as one buffer,

The Convert Logical Messages routine (CONMSG) is called by

RBFSRV to convert the logical message to an output buffer
and store the data in the buffer., It also puts the necessary

header data into the buffer header,

The Generate XBUF routine (GENXBF) is called by RBFSRV

to generate the next XBUF for dutput to the Host, It
first generates a new link header for the XBUF using in-
formation from the present RBUF, It then gets buffers off
the XQUE, converts them to logical messages and puts them
Into the XBUF. When the buffer is full or there are no
more buffers on the XQUE, it starts transmission of the

new XBUF,

39

The Generate Link routine (GENLNK) is called by GENXBF

to generate a link message for the new XBUF. It analyzes
the data in the present RBUF link header, generates the

new link header and puts it in XBUF.

The Convert To Logical Messages routine (CONLOG) is called

by GENXBF to convert input buffers to logical messages'
and put them into XBUF., I% first generates a logical
message header, puts it in the XBUF, and then moves the

data from the input buffer to XBUF,

QUEUE_HANDLERS

The queues are set up as simple linear lists with pointers
to the top and bottom stored in the header. The header also

holds the status byte, and the top and bottom buffer pointers

The Put _On Queue routine (PUT) is called by many routines

to put a value on a queue, It stores the two byte value,
in the HL register, at the location pointed to by the top
queue pointer, It then updates the pointer and,if the queue

is full, sets the flag.

The Get From Queue routine (GET) is called by many routines

to get a value from a queue. It gets the value pointed to
by the bottom queue pointer and places that value in the
HL register, -It then updates the pointer and if the queue

is empty, sets the flag,

Lo

CONCLUSION

This project has clearly shown the ability to produce a
useful microprocessor development system with a bare
minimum of hardware, Thé total cost of all hardware

for this system came to less than $1,000, The FORTRAN
cross assembler,however, which normally sells for $250.00,
was donated by MOSTEK.‘And the cost of the console terminal
is not considered because it was already owned by the
university. But even including the prices of these items,
this system still compares favorably with stand alone

systems selling for up to $10,000,.

This system would be perfect for an application such as
microprocessor training for a number of students, All
programs could be written and assembled on normal time-
share terminals and then loaded into the development
system for testing. The low price means several units
could be accquired for the same price as one expensive

stand alone system.

While the program discussed in the second part of the
thesis was written and tested on the microprocessor
development system, it was never completely tested with

the HOST system. This was due to the lack of availability
of an RNP line on the HOST system, And the effort necessary

41

to implement such a line on the HOST was too extensive
to be completed in the allotted time. However, the soft-
ware routines were all tested locally and worked well with

test programs.

Although the emulator program should be very useful as it

is, with a few changes to the harware and the software it
could be made much more versatile and efficient. For example,
the number of devices which it could service could be
increased considerably by adding a different interrupt

scheme and a DMA capability to the HOST I/0 line, although

as it stands, it could probably handle up to 16 low speed

terminals (300 baud).

In addition, the emulator could be used with a different
HOST machine just by changing the routines which determine
the protocol. However, the basic framework of the emulator
and most of the subroutines would remain the same as they

are presently.

APPENDIX A

HARDWARE DIAGRAMS

SYSTEM FRONT AND REAR VIEW
CPU CARD PHYSICAL LAYOUT

CPU CARD ELECTRICAL DIAGRAMS
1/0 CARD PHYSICAL LAYOUT

| 1/0 CARD ELECTRICAL DIAGRAMS

Al

page
A2
A3
AL
A7
A8

REAR VIEW

O

/

POWER SWITCH < /
AUX 1/0 CONSOLE 1/0

CONNECTORS CONNECTOR

10000

CPU BUS MOTHER BOARD

POWER
INDICATOR
I/0 CARD
Y N\
/)
LI/]
L/ | o O

IW))

C] O»
— — |
4

INTERRUPT /

CPU CARD SWITCH

FRONT VIEW RESET SWITCH

SYSTEM FRONT AND REAR VIEW

CLOCK

u24

z80
CPU

1Kx8
ROM
2708

8K DYNAMIC RAM

1Kx8
ROM
2708

1Kx8
ROM
270

1Kx8
ROM
2708

BUS DRIVERS AND RECEIVERS

CPU CARD PHYSICAL LAYOUT

1
MD 7
- ; MD ¢
i = MD 5
§ : MD 49
% e
mD 3
q
a MmD 2
5 - MmO
H
no @
17]]]| 903} 1|8 QI_ 1] 16| 5] 41 3| w14 4 11| t6] ¢S} 4] D3|) ial a 17{ i6 ld RIRHBUE K]
p? 06 05 D4 ¢3 DL DI Do
22, 1 1) 2l Ao
(3] 1Ad I Y
uvq ule . uz ; u3s ﬂa'—MAge
: AT —mAa g7
kS L3 L 2
2708 N 2708 3 2108 3 2708 AL —mAO
Ik %8 . K x8 P 1K X 8 " K X8 454Mﬂ¢$
PrROM P PromM ;. PRoMm . PRAM A% ——mA @4
AVI——mA 03
: < : arlé_mA g2
" . L Ak @1
4 & 8 e asl® . Ags
on Wy Y uT
Hi3T],
ues®
MmALY —la W[5 | -
~3] 2 ut \8
MA L 8 T " 1”3’- 1] 132 . ——
3 [7413 !
£y ws Al gy 2 2e—et £vewn
} s q ADS —A Lt
MAIL A ! — un 1 ! *— obp
mAs—Ne = i} 740! Y
"'—]1 A —— WRITE
4 EN)3 . EN
MA IS . Y " q wz W i5)
ue o > ¥
PYRY] :E; i 4 DATA SEL
. 13 "
RD 31 Iy LY
21 4
SEL ENB
+5Vv »
awl m s N
Ve 12 4400 / < " 41{ MEMR
“ . 46] INP
': ua 13 4 ouT
EARL L & 48| WALT
io q
5 a7 Swo
- ¢ b 27| cux
L [—4 3 : (Zmiz)
BUIACK O— . 7
19 IS o 2 LE"{D
MRER D 4..,3 tivees)
HALT PE
o Lad V3
LK
i\t i
21 (1 MWRT
/o Aqun>® £ u3 ;’ 8] oBIN
191 e s
uzd . _
wR \ ot Ebcu. 3 .3 57 wr
280 I uer V2 4 £ | rera
1408
ald 4 57
" p— - ur \3 q e Y__Y_.D
l__ L] 1452 . sy (~—— RF3SH
4 +
Tore b~ Hopot 3 >c) io%a
¢l MT .
REsn P Sut (59| RFsH
" N (L4 — ——
Nmz o ~ A8 Uk rry vy
INT D ’KW] o
WAIT L: lv 7L wWAIT
RST bre +5V—AAA W] Bsr
b X T TR poe
oND Busra o +sV +SV pPoc
*
l% LE 2% Loo1 DMk 3TLF
' +5v 'r)t "r%M Q;
h L} [A [} .
uzs S ude | . | us .
4 qéoL 5 qé02
e b 1 T M " BUS ComecT 10N D
osc & *—Q Wb—c

CPU CARD
Sheet 1 of 3

(LOGIC CIRCUITS)

MD O
mAD
mD 2
mo 3
mp 4
mop 8
mo 6
mo 7

L
p= 3 pe = “av_muvq
~
= .w“ " = Mm o 9s| BID ¢
"
I v S - "
™ v - p " ~ {az] BI0 §
- = = 3 TN_ Bro 3
=y ey ™ A4 pATA sen
ko lnﬂ K%l SEL ENE
RESH “
-l @
- BID
" ™ — < ~ @ 4
-
7
[l.-h. P ™ Wy - “&__WHDN
~Nm -~
3 ¢ - v 2
= i " o ~ ¥ 4 |BID I
13
[£ - = “mw BID &
Mol
b7) Y pe s Bob» 7
S5 > . - 49] BoD ¢
ps r g 39| 800 5
- < g) =] +
b4 = Y - - >8| Bop
D3 |z < ™~ = 83| BoD 3
Dz < = g8 Bop 2
DI o 35| Boo 1
bo |3 36) BoD 8
M) L
-+ (— 1V
] 93 = 86fBAI1E
5 3 ¥ — 8s|BA 13
« = 811 BA 1)
AlS i 37| BA |a
5 b r
A4 - - W
e Al |
VORA AT [p =
vy AN T = = {5 ea 15
O\ A0 SN = - " - 33| BA 12
ABY | = uﬂ = < w3 s 341BA @9
Aes [3 r = 5 T x = 84| B4 98
AQT n 83| BA @7
~ 2 -« = = .l.ﬂ
" e 4 = BI]BA Do
e A
Ade 5 - -
Aps iy T " = - = 9] BA B5
Asd i < H 3 = = . - 30| B4 B4
Aol = 9 S« = = BN — 3) [BA @3
ABt g s ~ - x 3 — i|pa g2
Adt = = gL BA B)
- - ~] - Sl
- —\ T = 7191 BA Q&
YTR o
” -
2203 saedssssdsexy
T o g < €CC T LT QT T T BUs CowvgCTiON
< R R RS R ERE R 0
CPU CARD (BUS INTERFACE)

Sheet 2 of 3

€ 30 ¢ 399yg
Quvd ndo

(I9VI0LS WVY)

MA @I
MA @2
MA@
MAg4q
MAGS
~MA Qe
MA g1
MAZ8
MA @9
MA 1o
mA gt
mA 12

ever
WRITE
oDD

MA g1

MA g
MA g4
MA @5

MA g7
MA @8
mA G
MA |IP
MA 11
mA 11

mp
mD
mp
mo
MO0
MmO
MDD
MDD

NP e wN - Q

4051

aps K
agy RAM

us7

4051

4r
RAM

u3s

4051

4%
RAM

jr‘:?'&l;::.nnv\-kw

u3q

4051

Ak
RAM

lolalzialz|afz [z | |ofa]s|uw

uig

4051

K
RAM

e lzzialzfsfrml=]s]s n]s]v

u 4

4051

4K
KAm

u4sz

4051

4x
RAM

u4s

4051

4K
ram

-
—d
A
A"

4
[D—&
-

Ads
Adt
A0 uzsb
AGS
Avs
Ads
Adb
161 4051
Ads 4K
Adq RAM
Ale
Al
I0

TH:FG\ZJF:.-‘;M.AU

un

405}
4K
RAM

uzg

4081

qu
RAM

u4

4051
4y

Imialzinislala 1= 1o le]n]sw

U3o

4051

4r
AM

hElelalzlclii=lalnln]s]w

" B-3

4of%i

qK

blsElalzlclmlz o Je]als v

u3z

405t

41
RAr

uis3

4ogc

213
nAm

DEVICE

ADDR

A
B
C
D
E

SWITCH
POS

10H
12H
14H
16H

NOT
USED

BAUD

1

O g OoOv\Wn & w

9600
L4800
2400
1200
600
300
150

DEVICE D & E DEVICE B & C CONSOLE
8259
INTR REG E D C B A
NOT 8251 8251 8251 8251
USED/J |[USART | |[USART | {USART | J[USART
CTC
1¥x8 | 1Kx8 | 1Kx8 | 1Kx8
ROM ROM ROM ROM
8 8] 1Kx8| 1Kx8
1Kx 1Kx 990090
ROM | ROM | ROM | ROM dbdddda
RES
ADDR SPEED
SELECTION SELECTION

I1/0 CARD PHYSICAL LAYOUT

c

CONNECTOR

B

CONNECTOR

A

CONNECTOR

~ g —O CLK E
-4 > Q_ U_
Rmo 17
4 14/
" ® 9
¥ k- .rHB 15
- 3] -
~ 19 hl
o , ki ” P -
z ARl — A ¢ P o U s
" Apz —={8 @ g "5 &
v AA3 3 'S 2 4 ” * 2
- by u 3 12 [
" 6l T e 28 18
o« I0£8L — L4
4 2! 21
“w _d GlA i
. @ %rrb ")
— —0 CLK D
" <fa]
- T2 17
=] iv
o = w IRS
10 8 24 : IR &
- 4| o0 3 3 [}
o ! M w 3 19 1
-~ -~
| r [T
> A% 3 o~
2 Y N
k3 !
) H 3] TNI 2/ z8
3 4 11 z7
A Bl
2 ~ %
) O CLK C
* sl 5S¢ [w] -[51
- 12 22 17
= " sl)
" 2 ~q = IR 3
3 2 - IR 4
3 [
L ad
- 19 o~ 7
= [D> — EX ny e e
- il gz [o 35 [
0] 6)3 3
- 5+ o
13 " 12 1
[}
- 20 T8
N 21 t?
z
- 4 3
© 1¢ P -]
1{ mo 3
m -
- 13 3= 1 Q_ b
~ T ¥ ¥ 17
<+ € osrF & ¢T3
o 24d ore raepté INTR
| 22 ars rreptE IRQ
iz 2_{ by j-2
I .u(9 xD . e 1
. s B ._-o ct ™\ psfE
] ¢ ; rits IR T E2
~ s q 1335 |2
p e
L 1e] 2 e o L
© 2 2 26 e p1 2
~ U 1B P o |27
= o CONCLK
r[%]
«
33 ¥y !
0 “Olpsr v & 18 Uv
24 "
v —derr [11 - IR
L 2drrs var IR 2
1Y
o ¥ 21 rxo o1 k2 —— 8D 7
23 .w TAD AN =~ Db u —— BD &
i “ges 3% es — 0 5
oY Pqwe © ®pe L — %0 4
TNP _un RD ps P2 f—— B8P 3
* OPTIONA L AUK AS L c/B b2 ! e BD 2
2@ z8
cK LK D 7 8o |
RsT LI be e
I/0 CARD (SERIAL PORTS)

Sheet

4

nf 3

Bepgm ©~am™ TVenr Twvman~ +vg~
Q@ aQa 8
3333 2838 2558 8234 zeee s 5 5 (5 Vi
[3B BN [G2l -] Qo | w0 a ol O wv m rN,. —W- N_M W
/.S_B_a._ —s_oﬁn_z_ RN —[e I’ . _ _ _
T‘._l ®|® Tie (T MmN io —rau_o.—mu_a‘ (23 Mm ..M n.w n E ﬂ U M
o
T
)
lv,.u..&—ﬁlvnmzz yiLlsja f2|siot 5 € b
® - - -
$5233 20000 w er {21 ft |5 Aq ANAQ © PR -
[$9 -
[v (1AL UEVEEE TT] o < <
2128 2128 71¢ ¢ S S wy |z fx¥s &
2ih N3T 1 nhn ? S58s1bL Z2 fez2g =2
° " ' st ra m+.H.L bhn ! R Y
-~ =
> % 3 AR s=v X 2 !L:apw%! _v.. _m. —! 2
t |9 o fxt € 15 ot (51 Q0 3
? 2% _w < e byoz tw gy 32 PRI -
N o v
= T 2
- 18301 - 942-083 YO NT M
IE Y 5\ I2n 4o G
e [0 1 5 e Sth 13 -
FEY
90 1€ 20 S¢ v 30 90 L0 ;5 } L .w
< mnnIcinannon
i\ t2h - 193w/ \G—v D
— | [TTTTTTT
ul G $3JINT w1 - mth g
— 52 22 » aacsaassgs
b m Lt Lyfg rra] L¥T o Lo —.Hv.mlo emaGanan
8 23 |
N .Q_.n “ \Ncn 5119 73 241 rep il ¢ 150 P 2. ®
¥ u Vg om& by s3I - 50 Nmulﬂlo ” “ N m o 3 0—
? 5T vnﬂs s 9w ¢ [z P¥I E.ouatu.wlo A A H\.HH H
als RIS 3 m:Mﬁ b— £2T rnouunuI:Io 2L OB o
« M ST T W 7" o = Z¥r rua*vﬂu.ﬂlo 40 Oﬂo
_m s s ._c. 3 ik o 1y1 <1'° {0 va
oa L—0
v CTN I 13 | T R e p¥I L | r3le 41t 1q
w ' wanr
- % 24
z H A8 & - 4° @ o =~
M LI o S o ast 2
N L fo ﬂﬂ © 5 s
rx tX
24 bo W * " r
*| M, 3 . " 4
; 7% 5 115 et o T La s
J . LWH 5 s *TT o i [vels o [@ls s |s [« 153 Y
N PL uoocn._...uo._ux qu 25 50 4O VL a5 38 30 ve Lybpe
- AN FTIE B TM wweaory | o 191 bL iz EPEML ang o
x s | ?
A 3 X VD £In s v Lin R | 423ms
. < " 2 Q3348
2705N0D

I/0 CARD (INTERRUPTS AND CLOCK)

Sheet 2 of 3

€ 30 ¢ 3994g
agvd 0/1

(I9V¥0LS WO¥d)

st nlrel ¢ IR AAG IR IR, wiisld |] 15[4] 5%
PRI
PROM O PROM & 26 PRoMm 4 2 PROM &
2108 o 2708 s raLY:) s z108
TRIE 23
234151 6]7|8 2viM 1zl 34| 5 212} 2R IRSKs LR R1Y 2| 3] 45
fAS HEIEIEIRAE: wf2syriz|s|4is 2223 LAEIRIE] 221 2] 3] 445
PROM | 24 PROM 3 78 z¢ PROM 5 20/ PROM T
2708 €8 P 27108 ° g ¢s z108 —q s 2708
lilisl ¢ 11 1€) 15| 16 i3} 11| 20 wlisfi4las 16] 18] 141 13
\l l‘ll l
D 26 L]
Dﬁ o"—-Bnﬂ
! 3
OI—;—BDI +5¢
:" X ozf—Bs2 i) 3,
D: :: °;LBDB B}h!(> = > >
I DCJ—-BDC 13 2k u 7 X > >
o5 - - 748§ > >
» ost— Bos uio 234 547 A w 3} i3]] alw
o U o 15 pac B2 %1 BS AL Al A6 = 61 P 45V t
L o1 }3— £07 o 4% 74L5138 74Ls3es P
wnuis ui9 w | s
c s A P——C
D 7 qAe N e
o
<
o
w @ © w
g HEE MEE HERE HEGERE
e LA d 2 » A w ® R om TEY R e
. >> > m > 3 > x> g):.»:.;
222 -_ 7 a8 8 e
-3 T 73‘ rIZg 2aSRe 422323

(3nw) 592

oT

APPENDIX B

ZAPPLE MONITOR COMMANDS

NOTE - The text in Appendix B was copied from the
ZAPPLE MONITOR OPERATIONS MANUAL
by

Roger Amidon, Technical Design Labs

B1

B2

APPENDIX B

COMMAND S

The following is a list of commands for the Zapple
Monitor. Precise definitions and usage notes are
covered in the next section,

N K XE < B8 n A OWoIIREHR GgH xxeEumo aw

ASSIGN reader, punch, console or list device options
from the console,

- BYE (system shut down).
- COMPARE the contents of memory with the reader input

and display any differences.

- DISPLAY the contents of any defined memory area in Hex,

END OF FILE statement generator.

- FILL any define area of memory with a constant,

GOTO an address and execute. With breakpointing.

HEX MATH. Gives the sum and difference of two Hex
numbers,

VERIFY ROM., Verifies contents of ROM against memory,
JUSTIFY MEMORY - a non-destructive test for hard memory
failures.

Jump to HOST I/0 Routine.

LOAD a binary file.

MOVE a defined memory area to another starting address.
NULLS to the punch device.

PROGRAM ROM. Programs ROM from memory.

PUT ASCII characters into memory from the keyboard,
QUERY - I/0 ports - may output or input any value to or
from any I/0 port,

READ a Hex file. Performs checksum, relocating,
offsetting, etc.

SUBSTITUTE and/or examine any value at any address

(in hex).

TYPES the contents of a defined memory block in their
ASCII equivalent,

- UNLOAD a binary tape to the punch device.
- VERIFY the contents of a defined memory block agains

that of another block and display the differences.
WRITE a checksummed hex file to the punch device,

- eXAMINE and/or modify any or all registers including

the special 2-80 registers.

"Yis there". Search memory for defined byte strings
and display all addresses where they are found,

"Z end", Locate and display the highest address in
memory .

COMMAND SET USAGE

B3

The following section lists the commands, and describes

their format and their use,

It should be noted that the

Zapple Monitor recognizes both upper and lower case letters
for its commands, and that in general, a command which is
printing can be stopped with a CONTROL C, which is checked

during a carrage return - line feed sequence,

The following

EXAMPLES show a comma (,) as a delimiter between parameters,

however a space may also be used,

If an error is made while

inputting a command from the keyboard, it may be terminated

by a rubout and the command re-typed.

An asterisk is dis-

played indicating an ABORT of some kind,

COMMAND

DESCRIPTION

A ASSIGNMENT OF I/0 DEVICE:

The monitor system is

capable of supporting up to 4 logical devices, these

being:
LIST DEVICE.

the CONSOLE, the READER, the PUNCH, and the
To these may be connected 4 different

actual I/0 devices, for a total of 16 direct combina-

tions of I/0 device and function.

permutations are:

LOGICAL DEVICE

The specific

ASSIGNED DEVICES

CONSOLE TTY
CRT
BATCH
USER (user defined)
READER TTY
CASSETTE
PAPER (HIGH SPEED READER
user written)
USER (user defined)
PUNCH TTY
CASSETTE
PAPER (HIGH SPEED PUNCH
user written)
USER (user defined)
LIST DEVICE TTY
CRT

LINE PRINTER (user written)
USER (user defined)

The default mode for each logical device is always

the teleprinter,

Assignments are made using the following format;

B4

EXAMPLE: AC=C(cr)

assigns the console equal to the Crt (video terminal)
device, similarly:

EXAMPLE: AR =T(cr)
agssigns the reader device to be the teleprinter.

While performing a command which requires a reader
input (C,L,R), if the assigned reader is the Tele-
printer, the software will look for a character from
the TTY input. If a character is not recieved within
a few seconds, it will ABORT, printing an asterisk (*)
and return to the command mode. Similarly, if the
assigned reader is the Cassette device, and you WISH
to abort for some reason, changing the position of any
of the SENSE switches will force an ABORT. On the
external reader routines, returning with the carry set
indicates an abort (or OUT OF DATA) conditinn,

When assigning a device, only the first letter initial
of its name is required,

The Monitor itself is set-up to support the TTY, CRT,
and Cassette routines. The other assignments require
the addition of user's routines. These are addressed
via the commands, which vector to starting addresses.

EXAMPLE; AL=L(cr)

assigns the lig¢ device to be the line printer. It
vectors to (start address) +812H, or 12H above the
end of the monitor. That would be the address for
the line printer routine. For details of these
arrangements, see the Source Documentation,

Within the above, the assign console equals batch
"AC=B(cr)" deserves further mention. In BATCH mode,
the READER is made the Keyboard input, and the LIST
DEVICE is made the console output. This allows the
running of a job directly from the reader input, with
the result being output to the list device,

A typical use of this assignment would be the recon-
struction of a lengthy text editing job where the text
and your editing commands have all been saved on paper
tape. With the BATCH MODE, you may assign the reader
equals the TTY, the List device equals the TTY, and
Console equals BATCH, Running the tape through the
reader is the same as you redoing the entire text
editing by hand, and the output will go to the TTY

and be printed, On a very lengthy job, you could

even start the process, and go away until it's done.
Its usefullness is limited only by your imagination,

B5

BYE. This command completely shuts down the system,
It is useful where children might have access to the
system, where a telephone communications link is
established under remote control, or anytime when the
operator wishes to make the system inaccessible to
unauthorized use.

EXAMPLE: B

completely kill the keyboard, Recovery from the
shut-down is accomplished simply by inputting a
CONTROL-SHIFT N from the keyboard., (ASCII equivalent
is a Record Separator - "RS"; HEX character is a 1EH,)
The monitor will sign on and print a greater-than sign
(»), however, the register storage area will not be
cleared.

COMPARE the reader input with memory. This command
is useful for verifying correct loads, verifying
that a dumped tape matches with its source, etc,

EXAMPLE: €1000,2000(cr, start reader)

compares the memory block 1000H to 2000H with the
input from the reader device,

For those with automatic readers, the operation is
very simple. Assign the Reader equal to the device
you wish to enter the data against, type C (starting
address), (ending address)(cr), and the reader will
start., The first character read by the reader will be
the one matched with the starting address. If any
discrepencies are encountered, the reader will stop,
and the address (in hex) of the error will be printed
on the display. The reader will restart, and continue
in this fashion until the entire tape is compared,

If your reader cannot operate automatically, start

the reader manually. If an error is encountered,
however, while the incorrect address is being printed,
the reader will continue, and get "out of sync" with
the compare action. Therefore, it is necessary to
manually stop the reader if an error is encountered,
and manually reposition the tape to the byte following
the error. (An excellent article on how to convert
ASR33 type readers to automatic operation was recently
presented in INTERFACE magazine,)

DISPLAY memory contents, This command displays the
contents of memory in Hex., Memory is displayed 16
bytes per line, with the starting address of the line
given as the first piece of data on the line,

B6

EXAMPLE: D100,1FF (cr)

will display in hex the values contained in the memofy
block 100H to 1FFH,

END OF FILE, This command generates the end of file
pattern for the checksum loader, It is used after
punching a block of memory to the punch device using
the "W" command, An address parameter for the end of
file may be given if so desired.

EXAMPLE: E(cr)
will generate an "end of file marker",

EXAMPLE: E100(cr)

generates the EOF marker with the address parameter
"100H"., When loading such a file, upon completion,
the address contained in the End of File will be
placed in the "P" register. Execution of the program
may then be initiated by typing "G(cr)".

FILL command., This command.fills a block of memory
with a specific value, It is quite handy for
initializing a block to a specific value (such as for
tests, zeroing memory when starting up, etc.) *NOTE:
Avoid doing this over the monitor's stack area, This
area may be determined as being between the value you
get when typing the Z command, and the value in the

S register upon sign-on. It is approximately 60H
bytes below the "Top of.memory"(Zg.

The format for the command is:

EXAMPLE: F100,1FF,FF
fills memory block 100H to 1FFH with the value FFH,

GOTO command., This command allows the user to cause
the processor to GOTO an address and execute the
program from that address. In the actural performing
of the G command, a program, which has been placed in
the stack area during the sign-on of the monitor, is
executed., This program will first take all of the
values in the register storage area (displayed with
the X command), and stuff them in their correct reg-
isters in the CPU, and finally JMP to the program
address being requested by the operator. If this
short program up in the stack has been destroyed (as
a result of a"blow-up", or the F or M commands, etc,)
the monitor will not be able to GO anywhere, and a

B?

manual restart of the monitor will be required.
Whenever the monitor is restarted at the initial-
ization point (first address I.E. OFOOOH), the
contents of the registers are set to ZERO with the
exception of the S (stack), which contains a valid
stack address. This actual value depends on the amount
of memory in the system, etc. In its simplest form,
the letter "G" accompanied by a parameter causes the
processor to go to that address and start execution.

EXAMPLE: G1000

would cause the processor to goto address 1000(H)
and execute from that address.

Additionally, one or two breakpoints may be set.

EXAMPLE: G1000,1005,1010

would cause the program to start execution at address
1000H, and IN THE EVENT that the program gets to
address 1005, OR 1010, the program will stop execution
and return to the monitor, printing an "at" sign,

and the address of the breakpoint that was executed,
(ie, @1010). It then prints the "s"prompt, awaiting
further instructions. This action also cancels any
breakpoints previously set,

Breakpoints must be set at locations containing an
instruction byte. This is a SOFTWARE breakpoint
system, and requires either RAM at RST 7 (restart 7,
addr. 0038H), or if using ROM, a permanent JMP to :
the monitor TRAP address (OFOlEH) at 0038H. Remember,
this is a SOFTWARE breakpoint system, and the program
being debugged must be in non-protected Read/Write
memory .

EXAMPLE: *¥C2 JNZ 1234H

#3E MVI A,CR
#21 IXI H,1000H
*77 MOV M,A
#213 INX H
#CD CALL 5678H
78
56
The asterisks (*) mark the bytes that may be used
as breakpoints,

B8

HEX MATH. This command allows the execution of
hexidecimal arithmetic directly from the console., It
will give the sum and difference of any two hex numbers
entered.

EXAMPLE: H1000,1010(cr)

2010 FFFO
>

2010H being the sum, and FFFO being the difference
of the two hex values.

The J command is a non-destructive memory test, The
command reads any given byte, complements it, writes

into the location the complement, compares the complement
with the accumulator, and rewrites the original byte

into the location., The command is used with two para-
meters, delineating the block of memory to be checked.

EXAMPLEs J1000, 1FFF

>
would perform the above test on the block 1000H to
1FFFH,

If errors are detected, the address at which the
error is found and the error are displayed on the
console before the test 1s continued,

EXAMPLE: J1000,1FFF(cr)
1F00 00001000

>
would indicate that the 4th bit (D3) at location
1FOOH did not correctly complement itself.

This test is useful for the discovery of hard memory
failures, and also serves as a quick check for acci-
dentally protected memory. A fully protected memory
block would print out as entirely "1ls". (11111111)

LOAD BINARY FILE, This command loads a binary file
from either a cassette or paper tape.

EXAMPLE L1000(cr)

would load the tape at address 1000H. This would
require that the program be an absolute program,
designed for address 1000H. The start-of-file mark
(automatically generated by the "U" command) is a
series of 8 OFFH's (rubouts), When this is detected
at the start of file, the bell will ring on the TTY

to indicate the start of the load process. When the
end-of-file is detected (again, a series of 8 rubouts)
the load is terminated, and the address of the NEXT

B9

location that would have been loaded is printed on
the console, There are two constraints on this

type of file system., The middle of the program can
not contain more than 6 OFFs (11111111) in a row

(an unusual occurence), and if OFFH is the LAST data
byte in the file, it will be ignored., This too is
unusual, and only a minor inconvienience.

Binary programs loaded at other than their design
address will not run. The "L" command does not
perform checksum functions, and cannot handle re-
locatable files, This is a pure and simple byte-for-
byte binary loader (see "U" command,)

MOVE COMMAND, This command is used to move a block

of memory from one location to another. The original
block is NOT affected by the move, remaining intact

so long as the block moved into does not overlap with
the block currently occupied., This command, like

the "F" command should be used with some caution as
moving a block into an area occupied by the stack,

or the program or the monitor will cause unpredictable
results,

EXAMPLE: M1000, 1FFF, 2000 (cr)

moves the contents of memory contained in the block
1000H to 1FFFH to a starting address of 2000H., The
new block has the limits 2000H to 2FFFH.

This command is very useful for working on programs
without destroying the original, verifying blocks of
memory loaded with existing memory, etc.

NULL., This command punches nulls to the punch device,
72 nulls are punched whenever the command is used.

It may be used repetitively for any desired leader
length.

EXAMPLE: (N)
*Note: the "N" or "n" will NOT echo, so as
to not spoil the paper tape.

It will punch 72 nulls to the punch device,

PUT ASCII characters into memory. This command allows
ASCII characters to be written directly into memory.
It is useful for placing labels in files, etc.

EXAMPLE: P1000(cr)

activates the command, and any further inputs via the
keyboard would be placed into memory in their ASCII

equivalent. The command is terminated by a CONTROL D
character, w th the address of the location following

B10

the last entry printed on the console (the Control-D
is NOT stored). Recovery of the input data is affected
by use of the "T" or "U" command.

QUERY INPUT/OUTPUT PORTS. This command allows any
value to be output to any I/0 port, and allows the
value in binary on any I/0 port to be read on the
console.,

EXAMPLE: Q01,7(cr)

would output an ASCII "7" to I/0 PORT 1, (ASCII
seven is a "bell"” so on a TTY, the bell would ring.)

EXAMPLE: QIl(cr) 00001101

inputs the value at port 1, in the illustration above,
we see that bits 0,2 and 3 are high, the others low,
This is useful for observing the condition of status
bits and other diagnostic activities.

READ A CHECKSUMMED HEX FILE. This command reads
checksummed hex files in the INTEL format, as well

as being capable of loading theé relocatable TDL files
at any selected address and bias offset. When reading
an ABSOLUTE file (INTEL format), there may be only a
BIAS added. These files cannot be relocated. The
format is: R(bias),(relocation)(cr).

If a checksum error or a failure to write the data to
memory occurs, the loading process is stopped, an
asterisk is printed (indicating some error condition),
and the address that was attempting to be written will
be displayed on the console device. This is to assist
in determining the failure.

EXAMPLE: R(cr, start reader)
will load a hex file at its absolute address.

EXAMPLE: R,1000(cr, start reader)

will load a TDL relocatable hex file at address 1000H
and modify the program to run at address 1000H.

EXAMPLE: R1000,100 (cr, start reader)
loads the file set up to run at 100H, but with a

positive BIAS of 1000H added to it. Thus, the file,
set up to run at 100H will be loaded at 1100H.

Bll

EXAMPLE: R1000(cr)

will load the file, set up to run at address 0COOH,
at address 1000. In other words, using the TDL
relocating format, you may load any program, to
execute anywhere in memory, anywhere in memory,
(Think about it......)

SUBSTITUTE and examine. This command allows any
address in memory to be examined directly, and allows
substitution of one value for another at that address
if desired.

EXAMPLE: SF810(sp)00-(sp)1A-(sp)C3-(sp){cr)
>

In this case the "S" command examines address F810H,
The hitting of the space bar (sp) displays the value

of that address. (assuming value O0OH at that address.)
Hitting the space bar again displays the NEXT location
in memory (F811H), and so forth. Simply typing S(sp)
starts display from address O000OH. By repetitive
typing of (sp), all of memory could be displayed

one address at a time.

EXAMPLE: SF810 (sp)00~(kb)FF{cr)

This command examines address F810H, showing the
value O0OH at that address. Immediately typing in FFH
from the keyboard SUBSTITUTES FFH for OOH at that
address. Repeating the example above would show:

EXAMPLE; SF810 (sp)FF-

When an address is being examined, the address being
examined may be moved BACKWORD by entering a backarrow
(ba) or SHIFT-0, or underline, depending on the ter-
minal used.

EXAMPLE: SF810 (sp)00-(ba)AA~

shows that at address F80FH, the value AA exists.,
Typing a space bar will examine F810H again.

TYPE ASCII characters from memory. This command allows
the contents of memory to be displayed in their ASCII
-equivalents. All non-printing characters will be dis-
played as periods (.). It may be used to display the
results of the 'P' command which allows keyboard entry
of ASCII characters directly into memory. Also useful
for finding text strings and messages in:.'software. The
initial address if first displayed, then the first 64
characters, the next address, etc., until the upper limit
has been reached.

Bl2

EXAMPLE: T1000,2000(cr)

displays the ASCII equivalents of memory locations
1000H to 2000H., If the 'P' command had been used to
place a 'message' into memory somewhere in that
memory block, it would soon be apparent on the console
display.

UNLOAD BINARY. This command simply dumps core to the
punch device, It may be used with a cassette system

as well, with no start-up problems., It does not
generate a checksum, The format which is generated

will be a leader, eight OFFHs, binary data, eight OFFHs,
and a trailer. The OFFHs are 'rubouts’' and are called
files ques. These are detected and counted to deter-
mine the start and the end of files.

EXAMPLE: UO0O,FF (cr, start reader)

will generate a binary tape, formated as discribed
above, of the values contained in memory locations
OOH to FFH.

VERIFY. This command allows the user to verify the
contents of one memory block agains the contents of
another memory block. This is very useful for
functions such as verifying that a file generated from
a program is a duplicate of the actual program, etc.

EXAMPLE: Vv1000,2000, 3000

will compare the contents of the memory block 1000H
to 2000H against the contents of the memory bhlock
commencing at 3000H and extending to 4000H. Any
differences will be displayed,

EXAMPLE: Vv1000,2000, 3000
100F 00 FF

indicated that the contents of address 100FH is a 00
while that at 300FH is an FF.

WRITE Hex file., This command dumps memory to the punch
device in the standard ‘'Intel-style' hex file format.
Both start and end of file parameters are required.

The proper 'end of file' (EOF) is generated by the

'‘E' command,

EXAMPLE: W00, FF(ecr,start punch)
(after punching)
E(cr)

B13

will generate a checksummed hex file of the values
in the memory block O0OH to FFH. If the assigned
punch and console are the same, the program will
pause and wait for the operator to turn on the
punch (ASR33, etc.). Use of the 'N' command at
either the beginning and/or end of the file is
optional, but recommended,

eXAMINE REGISTERS. The "X" command allows the user
to examine and/or modify all of the Z80 registers.

A - Accumulator

B,C,D,E,H,L -~ CPU REGISTERS

- Memory (pointed to by H & L)
- Program Counter (PC)

Stack Pointer (SP)

- Interrupt Register

- Index (IX)

- Index (IY)

- Refresh Register

ARXHWNY=R
!

EXAMPLE; X(cr)

displays the contents of MAIN registers A, B, C, D,
E' F' H' L’ M. P. S and I' in hex.

EXAMPLE X' (cr)

displays the contents of PRIME registers A, B, C, D,
E, ¥, H, L, M, X, ¥ and R,

Typing the letter "X" (or X'), followed by a specific
register letter will display the contents of that
register. Entering a new value via the keyboard (kb)
will substitute the new value in the specific register.
Hitting the space bar will display the next register
in which you may then perform substitutions, etc.

In the unique case of the "M" register, you may modify
the 16 bit pointer (H&L) to that memory location.

EXAMPLE; XA 00-(kxb)FF(cr)
XA FF-(sp)00-(kb)FF{cr)
fA FF-(sp)FF-(cr)

first examines the contents of register "A" (OOH),

then substitutes an FF. In the next line, the FF is
displayed, a space character displays the next register
(again a O0H), and substitutes an FF for this value.
The last line displays both registers as containing
FFHs,

Bi4

SEARCH., This command allows unique byte strings,
from one up to 255 bytes to be searched for in
memory, and the addresses where they are found to be
displayed. It is advisable to search for unique
patterns rather than single bytes. The search
operation may be stopped with a control-C.

EXAMPLE: YC3,21,F3,01(cr)
0081
00B2
OF08
>

indicates that the byte string (in hex) C3, 21, F3,
01, is found in memory at locations 0081H, 00B2H and
OFO08H. This routine will search all 65-K of memory
for a unique sequence of bytes in less that one
second,

Z TOP OF MEMORY. This command locates and gives the
highest address of available memory in your system,

EXAMPLE: Z
7FFF
>

indicates that the highest available memory is at
address 7FFFH., Note that NO carriage return is
required. Also, if only one 1K board were in the
system, and it was addressed to have its top byte
at address 7FFFH, the Z command would so indicate
regardless of the absence of lower memory.

B15

Additional Functions

The following functions are not part of the original
Zapple Monitor, One of the functions, (K), cause a jump
to the HOST I/0 routine. The other two, (I and 0), are
used to ﬁrogram and verify PROMS using an auxillary PROM

programming card.

K - JUMP TO HOST 1/0.
EXAMPLE: K
will go to the HOST I/0 routine and start execution.

I - VERIFY ROM, This command will verify that a 1K block
of data has been correctly written into ROM by the
'0' function.

EXAMPLE: I1000
will compare the program in the ROM with the data in
the block from 1000H to 1400H. Any differences will
be displayed,
EXAMPLE: I1000

10F0 OQFF
indicates that the contents of location FOH in the ROM
is OOH, while that at 10FOH in memory is FFH,

0 - PROGRAM ROM, This command will write data into a
PROM from a 1K block of memory.
EXAMPLE: 01000
writes the data from 1000H to 1400H into the PROM,
NOTE - The above +two commands (I and 0) require a special

card which contains a ROM programmer for 1K by 8

programmable ROMs,

Cc1

Appendix C

RMC MESSAGE FORMATS

XMIT BLOCK
sislsle
Q-FRAMES Y{y|o|o (Implies NAK)
NIN|H|T
SERVICE MSG E .
LINK |0 (Service Request in LINK MSG)
MSG |T
E
DATA MSG LINK | LOGICAL|-—--4LOGICAL|O|(1%n<# Devices)
MSG MSG #1 MSG #n |T

l=—Total length = 1024 Char —=|

LINK MSC
SISIS|SIS S|E|B (BCC = Block)
Y{Y|Y[Y|O|F|S{AJO{I|T|T|C (Check)
NININ|[N[{H|IC|C|C|CiCIX1X|C (Char)
f= Header —>|

LINK MSG INFORMATION

SYN - All XMIT BLOCKS must start with 2 or more SYN characters,
SYN characters may also appear anywhere within the XMIT
BLOCK but are disregarded,

SOH -~ Start Of Header character.

FC - Format Code 1103 Transmission ACK/NAK.
102g Service message (RFD, DIS).
SC =~ Sequence Code 1018,1028 Alternates on each new
XMIT BLOCK,
AC - Address Code 1008 Alway this value in single

RNP networks

oC

IC

STX

ETX
BCC

- Operation Code

1xyg

Identification Code

1xxg

Start Of Text character

End Of Text character

Block Check Character

LOGICAL MSG

c2

x= 0 ACK
1 NAK

y= 0 No Instruction
3 A Call (accept all calls)
4 Ready for Disconnect

(RFD)

5 N Call (accept no calls)
6 Disconnect (DIS)
7 Reserved

xx= # of messages in XMIT BLOCK,
xx= 63

Text may follow this character,
but not normally found in LINK,

Follows text, if present,
X-0R of all characters from

SOH to ETX not including SOH
or any SYN characters in msg.

S S E|B
OIFISIA|ICICYIIT TEXT T1C
HIC|CiC|1]|2|C|X] 0-232 Char [X|C
fs— Header —=|
LOGICAL MSG INFORMATION
SOH -~ Start of Header
FC - Format Code Bits 5-6=1 Bits 0-4 Indicate Mode
SC - Sequence Code 101g,102g Set but not checked.
AC - Address Code 1xxg xx= Destination
Device #
0C1 - Operation Code 1 Indicates 0C2 to be used.

1018

0C2 - Operation Code 2 1xyg

IC - Identification Code

110
1112
1124

1308

STX - Start Of Text

X=

nHswhhe o ~NNoe O

C3

ACK
Break ACK
DIS ACK
NULL

No Request

Break

DIS

SELECT (Connect Term)
Bad Parity

Logical DIS

Remote Computer

TTY

VIP

110 baud
150 baud
300 baud

Text of logical message
follows.,

TEXT- This area may contain 0-232 ASCII characters excluding
the following special characters:
(soH, ETX, ETB, STX, ACK, NAK, ENQ, US, DLE, EOT)

ETX = End Of Text

BCC - Block Check Character

Follows text, can also be

ETB character for messages

which are longer than 232 char.

Same as for LINK MSG including
all text characters,

:1/0 PROGRAM FOR MODEYM TO Z80 SYSTEM

ZEF: EQy DS00H FMAIN MONITOR PROGRAM
TRAP: £QU J81EH sTRA® RETURN ADDR
LFAOR EQU JC70H JPRINT CRLF & HL
FXPRT EQu DD33H sGETS 2 BYTE PARAMETER
T0STS: FQU 1018BH ;1/0 STATUS BYTE
LODO: EQU QA28H ;TARPF READ ROUTINE
Co: EQU DC78H ;CONSOLE OUT ROUTINE
cr: EQU JF13H sCONSOLE IN ROUTINE
FILF: EQU 1020H sFILE NAME BUFFFR
TOMT: EQU DC&40H FMESSAGE PRINT ROUTINF
CRLF: EQU D004H ;CR & LF TO CONSOLE
’
ENTER ¢ CALL INIT FRESET I/0
LD A,0DH +CR
LD (FILF+DAH),A 7PUT AT END OF FILE BUFF
CALL CRLF ;CR & LF
Ln 3,05H sCHAR COUNT
LD HL»MSGO ;PROGRAM NAME
CaLL TOM? JPRINT IT
’
START : LD Cor'+! sPROMPT CHAR
CALL CO FsPRINT IT
INCO: IN Ar(114) +READ CONSOLE STATUS
AND 02 ;INPUT DATA .
JR Z,INM-% +NO», CHECK MODEM
caLL €1 +YES, READ CHAR
’
cp 13H ;= ESC
JR 1,CON3RK~-S ;YES, SEND BREAK
cPp 0?H /= "CNTL-B'
JR Z,HOSTLD~% rYES, LOAD FROM MODEM
ce D3H ;= 'CNTL-C'
JR 2,INM=-% sIGNORE I1T...
cep 0EH ;= "CNTL-N'
RET 2 +GO TO MONITOR
’
oOUYT™: CALL DJTMOD ;OUTPUT TO MODEM
INM: IN A, (154) sREAD MODEM STATUS
AND 02 s INPUT DATA RDY
JR 1,INCO-% +NO, CHECK CONSOLE
CALL TNWOD +YES, READ CHAR
LD CrA H
CALL CO +PRINT ON CONSOLE
JR INCO-3%
INMOD ¢ IN A, C(15H) sREAD MODEM STATUS
AND 07 sIN2UT DATA RDY
JR Z,INMOD-% FNO» WAIT
IN 4, (14H) sYES, READ CHAR
AND 7FH FMASK PARITY

RET

OUTMOD:

.
’

CONBRK ¢

-
’

BRFAK ¢

HOSTLD:

RQ:

~s

PUSH
IN
AND
JR
poe
ourT
RET

CALL
JR

Ln
ouT
LD
CALL
Lo
ouT
LD
JP

Lo
DUNZ
DEC
JR
RET

CALL
PUSH
PUSH
LD
CALL
POP
poP
OR
RET

LD
CALL
CALL
LD
SuB
LD
LD
POP
JR
caLL
porP
EX
EXX
CALL

Ln
Ln

AF
A, (1SH)
N1

Z,0UTMOD+1-3

AF
(14HY,A

3REAK
START=-S

A,3DH
(FSH) ,A
A,200
JAIT
A,35H
(15H) LA
C'|<l
co

R,090Y
WAIT+2-%
A

INMOD
AF

3cC
CrA
€o

3C

AF

A

CI.>.
coD
EXPR1
A,B
IDH
3,A
CrA
DE
72,R0~-%
EXPR1
3C
DE,HL

CRLF

3,0AH
HL ,MSG?

NZ,WAIT-%

sSAVE A

;READ MODEM STATUS
sXMIT RDY

sNO» WAIT

sYES, GET DATA
;SEND DATA

;SEND BREAK TO MODEM

rLOAD BREAK CONE
;OUTPUT TO MODEM USART
FWALT COUNT (200 MS)
FWATT...

;LOAD NORMAL OPERATION CODE
¢OUTPUT TO USART

sPRINT < ON CONSOLE

’

(8251)

sDELAY COUNT

FWAIT 1 MS

;DEC WAIT COUNT, = 0
+NO, DELAY AGAIN
sYES, RETURN

FREAD CHAR

7sSAVE AF

/SAVE 8C

sPRINT ON CONSOLE
sRESTORE BC
sRESTORE AF
;CLEAR CARRY

sPROMPT CHAR
sPRINT ON CONSOLE
;GET BIAS, IF ANY
»LOOK AT DELIMITER
;IF = CR
sRELOCATION = 0
+DE=RIAS

+CR ENTERED

sGET RELOCATION
;BC=RELOCATION

HL'=RIAS, BC'=RELOCATION

e wa

sCHAR COUNT
+LOAD POINTER

CALL TOM1 /PRINT MSG?2
LD HL,FILE ;FILE NAME BUFFER
LD 3,0AH sMAX LENGTH
H1: CALL CI rREAD NAME
Lo (HL) »A ;sPUT IN BUF
CP -~ ODH rCARRIAGE RET
JR Z,H2-% sYES, LAST (CHAR
cP 13H ;= ESC .
JR 2,CON3RK=-% sYES, SEND BREAK
INC HL sINC POINTER
DIJNZ H1-% rCHECK MAX LNGTH
H2: CALL CRLF sCRLF TO CONSOLE
LD 3,5 sCHAR COUNT
Lh HL,MSG1 sLOAD POINTER
CALL ™MOUT ;OUTPUT MESSAGE TO MODEM
Lh 3,0RH sMAX FILE LENGTH
Lo HL,FILE sFILE NAME POINTER
CALL wOUT sOUTPUT TO MODEM
’
LD A, (10STS) ;GET I1/0 STATUS
PUSH AF ;SAVE OLD STATUS
AND JF3H sCLEAR READER STATUS
OR N4H sSET NEW STATUS
LD (I0STS),A sPUT IN 10BYT
LD A,0C3H ;JUMP CODE
LD (100A4) ,A ;PLACE IN USER ROUTINE AREA
LD HL,RDVOD sMODEM I/0 DRIVER
Lo (10074) ,HL sPLACE IN USER ROUTINE AREA
CALL LODD ;GO READ TAPE
POP AF sRECALL 1/0 STATUS
LD (I10STS),A sRESTORE OLD STATUS
JP START
MOUT: LD A, (HL) GET CHAR FROM BUFFER
CALL OUTMOD sOUTRPUT TO MODEM
LD CrA H
CALL CO JPRINT IT
INC HL ;INC POINTER
cP IDH /= CARRIAGE RET
JR 2,¥01-% sNO, CHECK COUNT
DJNZ MOUT-% ;= MAX COUNT
MO1: RFT
;
MSGN: DEFVM '210'
DEFAN DAQODH ;CR & LF
MSG1: DEFM 'L IST sMESSAGE TO HIS
MSG?: DEFYM *FILE!
DEFFM ' NAM!
DEFM 'F=t

SET JP I/0 CHANNELS

4 %e %o N

NIT: XOR A sCLEAR ACC
LD BC,4011H FRESET USART, I/0 CHAN(13,11)

~e

Lo
CALL
LD
CALL
LD
CALL
RET

ourT
ouT
our
ouT
RET

END

DE,LOFA3SH
USET
C,15H
USET
C,17H
USET

(C),A
(C),8
(C),D
(CY,E

0300H

JSET MODE & FUNCTIONS
JOUTPUT COMMANDS

J1/0 CHANC(C14,15)
JOUTPUT COMMANDS

J1/0 CHANC16,17)
JOUTPUT COMMANDS

’

sCLEAR COMMAND REG
sRESET USART

;SEND MODE COMMAND
;SEND FUNCTION COMMAND

’

APPENDIX E
RNP PROGRAM LISTINGS

PROGRAM FUNCTION PAGE
001 CI0 CLOCK & I/0 INIT £29
002 CMDIN COMMAND INPUT E25
003 CMDPRC COMMAND PROCESSOR E25
004 CONLOG CONVERT BUFS TO LOG MSG E12
005 CONMSG CONVERT LOG MSGS TO BUFS E 8
006 DEVIN DEVICE INPUT SET UP E16
007 DEVOUT DEVICE OUTPUT SET UP E14
008 DEVRO DEVICE READ ROUTINE E21
009 DEVWR DEVICE WRITE ROUTINE E19
010 ERROUT ERROR PRINT OUT E27
011 GENLNK GENERATE LINK MSG E1
012 GENXBF GENERATE NEW XBUF E11
013 GET GET VALUE OFF QUEUE E33
014 GETBUF GET BUFS FOR LOG MSG STORAGE E 7
015 GETMSG GET NEXT MSG FROM RBUF E 7
016 HBUFS HOST BUFFER STORAGE E34
017 HOSTR HOST READ ROUTINE E23
018 HOSTW HOST WRITE ROUTINE E24
019 INIT INITALIZE ROUTINE E29
020 INTR DEVICE INTERRUPT SERVICE E17
021 MAIN MAIN PROGRAM LOOP £ 2
022 PUT PUT A VALUE ON A QUEUE E32
023 RBFSRV SERVICE RBUF E 2
024 SRVMSG ANALYZE SERVICE MSG E 6
025 STRBUF START INPUT TO RBUF E23
026 STRG PROGRAM VARIABLES STORAGE E3S
027 STRLNK STRIP OFF RBUF LINK MSG E 4
028 SuUBS GENERAL USE SUBROUTINES E31

029 QUES QUEUE STORAGE AREA E35

¢/ FILE MAIN
’
; MAIN RNP SERVICE ROUTINE
SR KA A AR Rk KRR AR RN A AR R AR A AN AR A AR AR AR A AR ARk R Ak Ak ok ko ko ok kA ok hokk ok
’
START: CALL INIT sINITALIZE SYSTEM
’
MAIN: LD A, (HCB) sGET RNP STATUS
BIT ONLN,A sRNP ON LINE
JR Z,CHKRG=$% /NO, CHECK RQ@ FOR OUTPUT
’
CALL RBFSRV /YES, SERVICE RBUF
’
CHKRQ: LD IX,RQUE ;s IX=RQUE
CALL GET +GET ADDR OFF RQ
JR C,CHKEQ-% /1F EMTY, CHECK EQ
CALL DSTDCH sHL=DST DCB, IY=BUF ADDR
CALL DEVOUT ¢START BUF OUTPUT
JR NC,CHKEQ~S ;DCB(BSY)=1 NO, CHECK EQ
' 4
PUSH IY sYES, MOVE BUF ADDR
POP HL +TO HL
CALL PUT +PUT ON RQ
’
CHKEQ: LD IX,EQUE ¢ IX=EQUE
CALL GET sGET ADDR OFF EQ
JR C,CHKWQR-5 ;IF EMTY, CHECK Wa
POP IX sIX=QUEUE ADDR, HL=BUF ADDR
CALL PUT +PUT BUF ON Q
JR NC,CHKWQ-$% +1F OK, CHECK WQ
CALL FULERR ;ELSE PUT BACK ON EQ
4
CHKWaQ: LD IX,WQUE sIX=WQUE
CALL GET sGET ADDR OFF WaQ
JR CoMAIN-S ;1F W@ EMTY, GO TO MAIN
CALL DSTDCB sHL=DST DCB, IY=BUF ADDR
BIT ACK,(HL) sDEV(ACK) =1
PUSH 1Y +MOVE BUF ADDR
POP HL sTO HL
JR Z,RSWQ-3 +NO, PUTBACK ON WQ
Lo IX,RQUE +YES, PUT ON RQ
RSWGQ: CALL PUT sPUT ON Q
JR NCoMAIN=-S sNOT FULL, BACK TO MAIN
LD IX,WQUE sFULL, PUT BACK ON WQ
JR RSRQA-% H
14
» FILE RBFSRV
; HOST RECEIVE BUFFER SERVICE ROUTINE
R R R R R R S 2R
;
H ENTER-
; EXIT- RBUF SERVICED, IF ERROR=-CARRY SET
’
RBFSRV: LD HL,RBUF +CHECK NEXT RBUF

e

RERR:

4
CKNAK?:

.
’

STRBF:

BIT
RET
BIT
JR

CALL
BIT
JR

LD
BIT
JR
Lo
BIT
JR

BIT
JR
SET
Lo
XOR

PUSH
PUSH
POP
CALL
POP
JR

CALL
JR

BIT
JR
BIT
JR
81T
JR
PUSH
CALL
poP
JR

BIT
JR
JR

CALL
JR
JR

BIT
JR
BIT

BSY,{(HL)

NZ

FULL, (HL)
Z,RBMT-%

STRULNK
ERR, (HL)
Z,CKSV~3%

IX,XBUF
ACTV,(IX+0)
NZ,CKNAK=%
IX,SBUF
ACTV,(IX+0)
Z,NKMG=3

3,(IX+0CH)
NZ»STRBF-%
3,(IX+0CH)
A,08H
(IX+10H)

HL
IX
HL
STRXBF
HL
SRBF-3

NAKMS G
SRBF~-%

SVM, (HL)
NZ,SRMG-%
LOG, (HL)
NZ,CKSC-%
ACK, (HL)
L,RXMT-%
HL

GENXBF

HL

SRBF-%

EMTY, (HL)
NZ,SRBF-%
NXMSG-$%

SRVMSG
C,RERR-%
SRBF=-%

NSC», (HL)
NZ,NXMSG~$%
ACK, (HL)

FRBUF(BSY) =1

sYES, RETURN

N0, RBUF(FULL)=1
NO, CHECK RBUF(EMTY)

sYES, STRIP OFF LINK MSG
sRBUF(ERR) =1
/NO» CHECK SERV MSG

s IX=XBUF

JXBUF (ACTV) =1
rYES, GO CHECK NAK
sNO» IX=SBUF
sSBUF(ACTV) =1

sNO, SEND NAK MSG

sO0C(NAK) =1

sYES,» GO START BUF
sNOs, SET OC(NAK)=1
sRECALC BCC

’

+SAVE RBUF ADDR
/MOVE BUF ADDR TO HL
;REXMIT OLD XBUF
sRESTORE RBUF ADDR
sSTART NEXT RBUF

sSEND NAK MSG
sSTART NEXT RBUF

sRBUF(SVM) =1

sYES, SEND SERVICE MSG
FRBUF(LO0G) =1

7YES, CHECK SC

/NO, RBUF(ACK) =1

+NO, REXMIT OLD XBUF
sSAVE HL

sYES, START NEW XBUF
sRESTORE HL

sSTART NEXT RBUF

sRBUF(EMTY) =1
sYES, START NEXT RBUF
+NO,

JXMIT SERVICE MSG
JLF CARRY, ERROR
;GO START NEXT RBUF

sRBUF(NSC)=1
sYES, PROCESS RBUF
sRBUF(ACK) =1

CONTINUE PROCESSING RBUF

JR NZ,AKMG=-3% sYES, SEND ACK MSG
RXMT: CALL STRXBF sREXMIT OLD XBUF
JR SRBF-3 /GO START NEXT RBUF
’
NXMSG: PUSH HL s (SP)=RBUF
NXM: CALL GETMSG /sGET NEXT MSG
JR NZ,RERR-S ;IF NZ, ERROR
JR C,PTRG-% sBUF SAVED, IF CARRY
CALL GETBUF +sGET NEXT AVAILABLE BUF
JR CrSVMG-5 ;1F EMPTY, SAVE MSG
PTRQ: LD IX,RQUE s IX=RQUE
CALL PUT +sPUT ADDR ON RAQ
JR C,rSVMG-% sIF FULL», SAVE MSG
CALL CONMSG sCONVERT TO OBUF
JR NC,NXM-3% s1F NOT 'EOT', NEXT MSG
14
AKMG: CALL ACKMSG 7SEND ACK MSG
14
POP HL +HL=RBUF
RES FULL., (HL) sRBUF(FULL)=0
SET EMTY, (HL) FRBUF (EMTY) =1
’
SRBF: CALL STRBUF sSTART NEXT RBUF
RES ACK., (HL) JRBUF(ACK)=0
SET BSY,(HL) FRBUF(BSY) =1
RET ’
;
SVMG: INC C +SET SAVE FLAG
LD (SAVMSG) »BC sSAVE LENGTH & FLAG
LD (SAVMSG+2)»DE 7SAVE MSG ADDR
LD (SAVMSG+4) ,HL 7SAVE BUF ADDR
POP HL sHL=RBUF
RES FULL., (HL) FRBUF(FULL)=0
RES EMTY, (HL) JRBUF(EMTY) =0
RET ’
H
sss FILE STRLNK
4
; ROUTINE TO STRIP LINK MSG AND SET RBUF FLAGS
Jh kR kkkkkhkh ok kk ok hhk Ak ok k kAR A ARk Ak Ak k ke hk kAR bk k kA A Ak Ak ok kk &
; ENTRY- HL=RBUF ADDR
’ EXIT~- STATUS FLAGS IN RBUF SET AS INDICATED
’ IN LINK MSG
STRLNK: PUSH HL sMOVE RBUF TO IX
pop IX ’
LD (Ix+0),00H sCLEAR ALL FLAGS
LD HL,RBUF+04H sSET UP BUFFER POINTER
LD As (HL) sGET CHAR
ce 01H s=S0H
JpP NZ,LNKERR +NO, ERROR
INC HL sYES, CHECK FC
LD As(HL) sNEXT CHAR
cp 48H ;=ACK\NAK MSG

CHKSC:

CHKLSC:

CHKAC:

svoc:

CHKETX:

JR
cp
JR
SET
INC
LD
LD
cpP
JR
cP
JR
LD
LD
P
JR
LD
LD
SET
INC
XOR
LD
LD
cpP
JR
INC
XOR
LD
LD
AND
cp
JR
LD
BIT
JR
SET
LD
INC
XOR
LD
LD
BIT
JR
AND
LD
INC
XOR
LD
LD
cp
JR
LD
DEC
JR
INC

Z,CHKSC~-%
42H

NZ,LNKERR=-$%

SVM, (IX+0)
HL

CrA

As(HL)

41H
2,CHKLSC-%
42H

NZ,LNKERR=-%

Bs,A

A, (SAVSC)
B
2,CHKAC-%
A,B
(SAVSC),A
NSC,(IX+0)
HL

C

Cr,A

Ar (HL)

40H
NZ,LNKERR-%
HL

C

Cr,A

A, (HL)

70H

40H

NZ,LNKERR-3

As (HL)

3,A
NZ,SVOC-$
ACK,(IX+0)
(SAVOC),A
HL

C

C,A

As, (HL)

6,A
1,LNKERR=-$
3FH
(SAVIC),A
HL

C

CrA

A, (HL)

02H

NZ,LNKERR=S

8,00H

B
Z,LNKERR-%
HL

sYES,
/NO,

CHECK S¢C
=SRVMSG
sNO, ERROR
sYES, RBUF(SVM)=1
sCHECK §¢C
sSTART BCC
JNEXT CHAR
;=41H
JYES,
‘NO,
sNO,
+B=SC
GET LAST SC
sr=LAST SC
/YES,» CHECK AC
sGET NEW SC
/SAVE NEW SC
JRBUF(NSC)=1
sCHECK AC
+CALC BCC
/SAVE BCC
sNEXT CHAR
7=40H
sNO, ERROR
rYES, CHECK OC
sCALC BCC
+SAVE BCC
FNEXT CHAR
;CLEAR LOWER BYTE
;=40H
sNO, ERROR
sYES, GET OC
JNAK BIT SET
sYES, SAVE 0C
/NO, RBUF(ACK) =1
/sSAVE PRESENT 0C
JCHECK 1C
sCALC BCC
sSAVE BCC
sNEXT CHAR
/BIT 6 SET
+NO, ERROR
;CLEAR MSB
sSAVE IC
sCHECK STX
sCALC BCC
/SAVE BCC
+NEXT CHAR
;=STX
/NO, ERROR
;CLEAR B
;B=B-1
fB>256, NO ETX FOUND
sFIND ETX

CHECK LAST SC
=42H
ERROR

LNKERR:
LNKRET:

e
e

N Se Sa Ne N N3 Ng N

RVMSG:

“e

.
’

NOINST:

ACALL:

XOR
LD
LD
cp
JR
INC
XOR
LD
LD
cp
JR
INC
LD
cep
JR
SET
LD
LD
LD
JR
SET
PUSH
popP
RET

C

CsA

As,(HL)

0O3H
NZ»CHKETX-3
HL

C

CrA

A, (HL)

C
NZ,LNKERR=-%
HL

As(HL)

04H
NZ,LNKRET-$
LOG, (IX+0)
(SAVMSG+2) sHL
HL»0000H
(SAVMSG) ,HL
LNKRET-%
ERR, (I1X+0)
IX

HL

FILE SRVMSG

+CALC BCC

/SAVE BCC

sNEXT CHAR

FSETX

sNO, CHECK NEXT CHAR
+YES, CHECK BCC
;CALC BCC

sSAVE BCC

sNEXT CHAR

;C=BCC

sNO, ERROR

sYES, CHECK FOR EOT
sNEXT CHAR

s=EQT

sYES, RETURN

sNOs» RBUF(LOG) =1
sSAVE LOCATION POINTER

-
’

;COUNT=00,SAVE FLAG=0
sRETURN

+SET ERR BIY

+MOVE RBUF TO HL

’

sRETURN

ROUTINE TO ANALYZE SERVICE MSG

ENTRY~-
EXIT~
SET CARRY & RETURN.,

LD
AND
JR
suB
JR
DEC
JR
DEC
JR
DEC
JR

SCF
RET

JP
LD
SET
JpP

LD
LD

SAVOC=PRESENT VALUE OF 0OC

DECODE OC SERVICE MSG, ON ERROR,

A, (SAVOC)
O7H
2,NOINST-%
03n
Z,ACALL=$
A

Z,RFD-%3

A
ZoNCALL-3
A

1,0IS5-%

ACKMSG

HL,HCB
ACPT, (HL)
ACKMSG

Asb44H
(SBOC),A

ELSE, TAKE INDICATED ACTION
sGET PRESENT OC

s CLEAR UPPER 5 BITS

;=0, NO INSTRUCTION

1"
N
-

ACCEPT ALL CALLS

i
~
~

READY FOR DISCONNECT

n
(V]
“

ACCEPT NO CALLS

g NS Ne % N Ve Ny Ny

H
o)
~

DISCONNECT

sERROR.,
sRETURN

SET CARRY

sSEND ACK MSG

JGET RNP STATUS ADDR
JHCBCACPT) =1 A
JSEND ACK MSG '

sA=0C(ACK,RFD)
+PUT IN SRVMSG BUFFER

LD A, (SBCC) +GET BCC
XOR 0O4H ;CALC NEW BCC
LD (SBCC), A sPUT IN SBUF
JP STRSBF SEND SERVICE MSG
L4
NCALL: LD HL,HCB ¢+GET RNP STATUS ADDR:
RES ACPT, (HL) FHCB(ACPT)=D
JP ACKMSG ¢sSEND ACK MSG
’
DIS: LD HL,HCB sGET RNP STATUS ADDR
RES ONLN, (HL) FHCBC(ONLN) =0
RET H
7?7 FILE GETMSG
’
H ROUTINE TO GET NEXT MSG OFF RBUF
R A A A 2 sy s R R R R R
; ENTRY- SAVMSG+2=MSG ADDR, SAVMSG+4=SAVED BUF
’ EXIT- B=BYTE COUNT OF MSG, DE=MSG ADDR,
’ HL=BUF ADDR, CARRY IF BUFFER SAVED, NZ IF ERROR
’
GETMSG: LD A, (SAVMSG) /sGET STATUS
OR A sCLEAR FLAGS
JR NZ,SAVED-3% ;IF A>0, DATA SAVED
LD A,03H sNO, GET BYTE COUNT
LD HL» (SAVMSG+2) JHL=START OF MSG
LD BC,OCFFH sNO, SET BC=255
CPIR sYETX' FOUND
RET N2z sNO,» ERROR=-RET WITH NZ
’
; CALC BYTE COUNT
LD HL,OOFFH sHL=255
SBC HL.BC sHL=BYTE CNT
LD B,L ;B=BYTE CNT
LD DE,(SAYMSG+2) ,DE=MSG ADDR
XOR A /SET ZERO
SCF sSET CARRY
RET ;
;
SAVED: SCF +SET CARRY
DEC A ¢STATUS>1
JR 2,NOBUF=3 sNO, BUF NOT SAVED
XO0R A sCLEAR CARRY & SET 2
LD HL, (SAVMSG+4) /SYES, GET BUF ADDR
’
NOBUF: LD DE, (SAVMSG+2) 7GET MSG ADDR
RET ;

ROUTINE TO GET 1-4 LINKED BUFFERS OFF AQUE

Ak KRR KR KA AR R R AR A Ak kA AR KA R R AR KA AR AR Ak N kAR AR Ak AN kAR AR A A Ak R
ENTRY- B=BYTE COUNT
EXIT- HL=BUF ADDR OF FIRST BUF IN LINKED SET
LINK BIT SET IN ALL BUT LAST BUFFER AND
POINTER TO NEXT BUF IN LAST 2 BYTES

e Ve N3 ws %o Ny N N

’
GETBUF: PUSH

BC JSAVE COUNT
PUSH DE JSAVE MSG ADDR
LD A,B JA=BYTE COUNT
LD 8,00H ;B=0
LD IX,AQUE JIX=AQUE
NUMBUF: INC B ;B=B+1
CALL GET JGET BUF OFF AQ
JR C,RSAQ-S J1IF EMPTY, RESTORE OTHER BUFS
PUSH HL JSAVE BUF ADDR '
SUB 3AH JA=A-58, A<=(0
JR NC,NUMBUF-$% JNO, NEXT BUF
’
POP HL JGET BUF ADDR
LD (HL) »00H JCLEAR STATUS
DEC B ;8=8-1, B8=0
JR 2,LSTBUF~-3% JYES, ONLY BUF
,
LNKBUF: POP IX JNO» LINK BUFFERS
LD (IX+62)sL JLOWER BYTE NEXT BUF ADDR
LD (IX+63),H JUPPER BYTE NEXT BUF ADDR
PUSH IX JMOVE IX TO HL
POP HL ;
SET LNK,(HL) JLINKED TO NEXT BUF
DJNZ LNKBUF-% JLAST BUF
’
LSTBUF: XOR A JCLEAR CARRY
POP DE JRESTORE MSG ADDR
POP BC JRESTORE COUNT
RET ;
’
RSAG: LD IX,AQUE JLOAD QUEUE ADDR
RSQ: SCF JSET CARRY
DEC B ;B=B=-1, 8=0
JR Z,LSTBUF+1-3% JYES, RETURN
POP HL JGET BUF ADDR
CALL PUT JPUT BUF BACK
JR RSQ~-% JNEXT BUF
;727 FILE CONMSG
’
; ROUTINE TO CONVERT LOG MSG'S FROM RBUF TO OBUF'S
;*****i*******************t*********k***********************
’
; ENTER- HL=0BUF, DE=RBUF MSG ADDR.,
; (SAVMSG+1)=BYTE COUNT
; EXIT- CARRY SET IFf 'EOT'
’
CONMSG: PUSH HL JSAVE OBUF POINTER
EX DESHL JDE=0BUF, HL=MSG
LD A, (HL) JGET CHAR
cP 01H J='SOH’
JpP NZ,LOGERR?2 sNO, ERROR
INC HL ;
LD A, (HL) JGET FC

“e

e

e

cp
JP
LD
INC
LD
XOR
LD
INC
LD
PUSH
XOR
LD
INC
LD
cpP
JR
XOR
LD
INC
LD
PUSH
XO0R
LD
INC
LD
cp
JR
XOR
LD
INC
LD
cpP
JR
XOR

INC
LD
LD

POP
POP
PUSH
CALL
POP
POP
LD
EX

LD
INC
LD
INC
LD
INC

60H
NZ,LOGERR?2
C,A

HL

As(HL)

C

CrA

HL

A, (HL)

AF

C

CrA

HL

As(HL)

41H
NZ,LOGERR1-%
C

Co,A

HL

A, (HL)

AF

C

C,A

HL

As,(HL)

48H
NZ,LOGERR-3
C

C,A

HL

As,(HL)

02H
NZ,LOGERR-%
C

HL
(SAUMSG+2) ,HL
(SAVBCC) »A

HL

AF

HL
DEVDCB
IX

AF
(IX+4),A
DE,HL

A, (SAVMSG+1)
HL

(HL) » A

HL

(HL) »E

HL

/=FC

sNO, ERROR
sSTART BCC
sGET SC
FNEXT BYTE
sCALC BCC

.
’

sGET AC
+sNEXT BYTE
sSAVE AC
+CALC BCC
sGET 0C1
/NEXT BYTE
;=001

/N0, ERROR
+CALC BCC
sGET 0C2
sNEXT BYTE
sSAVE 0C2
sCALC BCC
sGET IC
+NEXT BYTE
;=IC

sNO, ERROR
sCALC BCC

-
r’

+GET STX
sNEXT BYTE
+=STX

sNO, ERROR
;CALC BCC

sHLU=POINTER TO TEXT
sSAVE RBUF POINTER
sSAVE BCC

sHL=0C2

sA=AC (LUW)

;SAVE 0C2

/GET DCB ADDR (A=DEVH#, HL=D(B)
+1X=DCB

JGET 0C2

sPUT 0C2 IN DCB

/HL=0BUF, DE=D(B

A=BYTE COUNT .

;

;PUT IN OBUF

’

;PUT DCB IN OBUF
H

E10

LD (HL) »D H
INC HL sHL=0BUF DATA POINTER
EX DE,HL +DE=0BUF DATA POINTER

LD HL, (SAVMSG+2) /SHL=RBUF MSG ADDR

PUTMSG: LD A, (SAVMSG+1) sA=BYTE COUNT

LD C,A ’
SuB 3AH JA=A-58
JP M,LTBF ;1f A>0, MOVE 58 BYTES
JR 2,NOBF-3% JIF A=0 NO MORE DATA
LD (SAVMSG+1),A ;SAVE REMAINING BYTE COUNT
LD BC»003AH JSET B(C=58 BYTES
CALL MOVMSG JMOVE BLOCK OF DATA
’
EX DE,HL JHL=O0BUF POINTER
LD €, (HL) JDE=LINKED BUF ADDR
INC HL ;
LD Ds(HL) H
LD HL, (SAVMSG+2) HL=RBUF POINTER
INC DE ;
INC ODE ;
INC DE ;
INC DE JODE=0BUF DATA POINTER
JR PUTMSG-$;PUT DATA IN OBUF
’
LTBF: LD B,0O iNO, MOVE REMAINING BYTES
CALL MOVMSG JMOVE BLOCK OF DATA
NOBF: LD A, (SAVBCC) JGET SAVED BCC
LD Cr(HL) JGET MSG BCC
cP C JA=C
JR NZ,LOGERR2-% ;NO, ERROR
XOR A JA=0
LD (SAVMSG) ,A JCLEAR STATUS
INC HL ;
LD As (HL) JGET NEXT BYTE
ce 04H J='EOT"
SCF JSET CARRY
RET 2 JYES, RETURN WITH CARRY SET
XOR A JCLEAR CARRY
POP HL ;
RET ;

’

LOGERR: POP HL
LOGERR1: POP HL
LOGERRZ2: POP HL

* Ne Ne o

SET ERR,(HL) 7SET OBUF(ERR) =1
XOR A +CLEAR CARRY
RET H

;

MOVMSG: LD A, (SAVBCC) /GET BCC

MVMG: XOR (HL) rCALC BCC

LDI +MOVE BYTE

JP PE,MVMG sIF BC NOT 0, NEXT BYTE
LD (SAVBCC) »A /SAVE BCC
LD (SAVUMSG+2),HL 7SAVE RBUF MSG POINTER
RET ;

s/s FILE GENXBF

%e e %a Se “e N

ROUTINE TO GENERATE NEXT XBUF

Ahk Ak A AR AAAhhkkhkhkhkhkhkk khk Ak kA Arhk kb bk bkhkhbhdkhkhkhkhkhkkhhkhhkhkhrk

E11

GENXBF: LD HL,XBUF +sHL=XBUF
BIT BSY,(HL) ;XBUF(BSY)=1
RET NZ sYES,» RETURN
BIT FULL,(HL) sNO, XBUF(FULL)=1
JR NZ,STXB-% YES, START XMIT OF XBUF
BIT EMTY,(HL) sNO, XBUF(EMTY)=1
JR 1,GNMG-% +NO, NEXT LOG MSG
H
CALL GENLNK sGENERATE LINK MSG
RES EMTY, (HL) sXBUF(EMTY) =0
;
GNMG: PUSH HL s (SP)=XBUF
GNI: LD IX,XQUE ;IX=XQUE
CALL GET ;GET NEXT IBUF OFF Xa@
JR C,RTXB=-$;1F XQ@ EMPTY, RETURN
CALL CONLOG sCONVERT IRBUF TO LOG MSG
JR NC,GNI-% ;1F XBUF NOT FULL, GET NEXT IBUF
H
cALL PUT +PUT BACK ON XQ
POP HL ¢cHL=XBUF
SET FULL,(HL) FXBUF(FULL) =1
;
STXB: LD A, (RBUF) +sA=RBUF STATUS
BIT BSY,A FRBUF(BSY)=1
RET NZ +YES, RETURN
CALL STRXBF sNO, START XMIT XBUF
SET BSY,(HL) s XBUF(BSY)=1
RET ;
RTXB: POP HL rRESTORE HL
RET ‘
;
’ ROUTINE TO GENERATE LINK MSG IN XBUF
TR KKK AR kR Ak Rk Ak Ak Ak kA kAR AN AR A A A AR A AR Ak k kA A A A A kA Ak ko ok k k&
; ENTRY- HL=XBUF
; EXIT- LINK SET UP IN XBUF, (SAVLOC)=END OF LINK
‘
GENLNK: PUSH HL /SAVE BUF ADDR
LD HL,XBUF +CHECK XBUF STATUS
BIT ACTV,(HL) sXBUF(ACTV) =1

JR NZ,GXSC-3 sYES, GENERATE NSC

hl)

LD HL,SBUF /NO, CHECK SBUF STATUS

E12

BIT ACTV,(HL) JSBUF (ACTV) =1
JR Z,NACTV-% ;NO, SEND ACK MSG
LD A,(SBSC) JYES, GET OLD SC
RES ACTV, (HL) JSET SBUF(ACTV)=0
JR GNSC-% JGEN NSC
’
NACTV: LD A,42H JSTART NSC
JR GNSC-$% ;
GXSC: LD A, (XBSC) JGET OLD SC
RES ACTV,(HL) JSET XBUF(ACTV)=0
GNSCs XOR O3H JGENERATE NEW SC
POP IX ;IX=BUF ADDR
LD (IX+0AH) ,A JPUT NSC IN BUF
LD Co(IX+09H) JGET FC ,
XOR ¢ JSTART NEW BCC
LD Cr(IX+0CH) JGET OC
XOR C JCALC BRCC
LD (IX+10H) ,A ;PUT NEW BCC IN XBUF
PUSH IX ;MOVE BUF ADDR TO HL
POP HL ;
SET ACTV, (HL) JSET BUF(ACTVY) =1
LD BC,0011H H '
ADD HL,BC JHL=END OF LINK
LD A,QO4LH JA='EQT!
LD (HL) LA JPUT IN XBUF
LD (SAVLOC),HL SSAVE END POINTER
RET ;
; FILE CONLOG
; ROUTINE TO CONVERT IBUFS TO LOG MSGS AND
; PLACE THEM IN XBUF
;************t**
’
H ENTRY~- HL=IBUF
; EXIT- RETURN WITH CARRY IF ERROR,
; (SAVLOC)=END OF MSG
CONLOG: PUSH HL JSAVE IBUF
SCF JSET CARRY
BIT - BSY, (HL) JIBUF(BSY)=1
RET NZ SYES, RETURN
BIT ERR,»(HL) JIBUF(ERR) =1
RET N2 JYES, RETURN
SET BSY,(HL) JSET IBUF(BSY)=1
’
INC HL JGET BYTE COUNT
LD Cs(HL) JPUT IN C
LD B,0OH ;B=0
LD HL,(SAVLOC) JGET XBUF POINTER
PUSH HL JSAVE XBUF POINTER
ADD HL,BC JADD BYTE COUNT
LD DE,XBFN=OCH 7GET XBUF END = HEADER COUNT
CALL HLDE JRETURN CARRY IF HL>DE

A1)

e

e

e

~s

MVBF:

e

JR

POP
PUSH
LD
LD
LDIR
LD

POP
POP
CALL
PUSH
PUSH
POP

LD
LD
OR
LD
XOR
LD

LD
OR
LD
XOR
LD

LD
OR
LD
XOR
LD
PoP

LD
BIT
JR

INC
LD
CALL
PUSH
LD
INC
LD
EX
POP
JR

INC
LD
LD

C,FULRET-%

DE

DE
BRC,0008H
HL»,LOGHDR

(SAVLOC) »DE

IX
HL
DSTDCB
Iy
HL
IY

ClZQH

A, (IY+3)
40H
(IX+5),A
C

C,A

A, (1Y+4)
40H
(IX+7),A
C

CrA

A, (I1Y+5)
4LOH
(IX+8).,A
C

CrA

HL

A, (HL)
LNK,A
Z,LSBF-%

HL

Bs (HL)
MovsLK
DE
Es,(HL)
HL

D, (HL)
DE,HL
DE
MVBF-3

HL
Bs (HL)
(DE),A

s XBUF FULL YES, RETURN

sGET XBUF

/SAVE FOR LATER
;/BC=BYTE COUNT

+HL=LOG MSG HEADER BUF

*MOVE HEADER TO XBUF

sSAVE NEW XBUF LOC

sIX=START OF HEADER
sHL=IBUF

sHL=DST DCB, IY=IBUF
+sMOVE DCB TO IY

’

/1Y=DC(CB

sSTART BCC

sGET AC FROM DCB
sPUT IN XBUF
sCALC BCC

’

;GET 0C2 FROM DCSB
;PUT IN XBUF
+CALC BCC

’

/sGET IC FROM DCB
‘

+PUT IN XBUF
sCALC BCC

sSAVE BCC
sHL=IBUF

;GET IBUF STATUS
s IBUF (LNK) =1
#/NO, LAST BUFFER

sB=BYTE COUNT

+MOVE BLOCK OF DATA
+SAVE XBUF LOC

sGET NEXT BUF ADDR

e v

+HL=NEXT BUF ADDR
sDE=XBUF LOC
/sMOVE NEXT BLOCK

/HL=BYTE COUNT POINTER
sB=BYTE COUNT
sPUT BCC IN XBUF

E13

Lo
INC
LD
LD

e

XOR
RET

.
4

FULRET: SCF
POP
POP
RET

MovBLK: INC
INC

INC

“e

MVBT: LD
Lo
XOR
LD
INC
INC
DINZ
RET

’

LOGHDR: DEFW
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

A,Ob4H

DE

(DE),A
(SAVLOC) »DE

A

HL
HL

HL
HL
HL

A, (HL)
(DEY,A
C

C,A

HL

DE
MVBT=-3

1616H
01H
60H
41H
40H
41H
LOH
48H
(02H
034

E14

sA='EOT!
sPUT IN XBUF
sSAVE XBUF LOC

+CLEAR CARRY

sSET CARRY
sADJUST STACK
sRESTORE HL

’

.
’

.
’
.
4

HL=DATA LOC

srGET DATA
/PUT IN XBUF
sCALC BCC
sSAVE BCC
sINC POINTERS

CONTINUE TILL B=0

e Sa N

sSYN,SYN
7SOH
+FC
rSC
7AC
;0C1
;002 (LOH+ACK+REQ)
sIC (48H=TTY)

7STX

sETX

(4O0H+DEVH)

FILE DEVOUT

~a
L Y]

ROUTINE TO SET UP QUTPUT TO A DEVICE

I 22 REE RS RS RR R R SR RRRERERRNR SRR RS R RRRR RS RS RRRRRRR RSN,

We N4 e %e Ne Ne Ne %o Ne N2 Ne S

ENTER- HL=DST DCB, IY=0BUF ADDR

EXIT~- IF CARRY, DEVICE IS BUSY OR RD IS SET
IF BAD COUNT OR DEV NOT ON LINE, OBUF
PUT ON AG
ELSE, PARAMETERS STORED IN D(CB (IX=DCB)

LIST X

DEVOUT: SCF sSET CARRY

BIT BSY,(HL) sDCB(BSY) =1

RET NZ YES, RETURN WITH CARRY

BIT RD,(HL) sNO, DCB(RD)=1

RET NZ sYES, RETURN WITH CARRY

~e

“e

e

~e

I0ERR:

PUTAQ:

BIT
JR
SET
RES
RES
LD
JP

PUSH
EX
por
LD
LD
BIT
JR
SET
LD
LD
INC

BIT
JR
LD
LD
suB
JR
LD
JR

LD

INC
INC
INC

CALL

CALL
XOR
ouT
RET

RES
PUSH
POP
LD
CALL
XOR
BIT
RET
LD
LD
PUSH
PoP
JR

ONLN, (HL)
2,10ERR~-%
BSY, (HL)
ERR, (HL)
ETB, (HL)
A, (1Y+3)
2,CMDPRC

1Y
(SP),HL
IX
(IX+8),H
(IX+7).L
ETB,» (HL)
2,6
ETB,(IX+0)
E,(HL)
Cr(IX+2)
HL

LNK,E
ZoNUNK=$
B,3AH

A, (HL)

B
C,I0ERR-3%
Dr,A

3

B, (HL)
HL
HL
HL

SAVPRY4

SETMSK
A
(C) A

BSY,(IX+0)
1Y

HL
IX,AQUE
PUT

A

LNK, (HL)
z
Lo(IY+62)
Hy (1Y+63)
HL

1Y
PUTAQ-%

E15

sDCB(ONLN) =1

/NO, DEV NOT ON LINE

JSET DCB(BSY)=1

JSET DCBC(ERR)=0

;SET DCB(ETB)=0

»GET DST AC

sA=0 YES, PROCESS COMMAND

HL=0BUF
IX=0(8
PUT OBUF ADDR IN DCB

Ny Ne N5 %wa N

sOBUF(ETB) =1

¢NO, SKIP NEXT INST
sYES, SET DCB(ETB)=1:
sE=PRESENT BUF STATUS
;C=DEVICE BUS ADDR

14

sOBUF (LNK)=1

sNO, GET BYTE COUNT

;rYES, SET B=58 BYTES
sA=TOTAL BYTE COUNT
sASREMAINING BYTE COUNT

/1F A<D, ERROR IN BYTE COUNT
sD=REMAINING BYTES

sSKIP NEXT INST

B=TOTAL BYTE COUNT

N
sHL=0BUF DATA POINTER
sSAVE ALL PARAMETERS IN DCB

¢SET I/0 MASK BIT
:A=00

“e W

JSET DCB(BSY)=0
sHL=0BUF

+RESTORE BLOCK TO AQ
;CLEAR CARRY

sOBUF (LNK) =1

sNO», RETURN

sYES, MOVE NEXT BLOCK
+HL=BLOCK ADDR

+1Y=BLOCK ADDR
sRESTORE BLOCK

’
72+ FILE DEVIN
H ROUTINE TO SET UP INPUT FROM A DEVICE
Jhhkkhkk ok khhk ok kA Ak Ak k kA AR A A kA Ak Ak kA ARk kA kA ARk ARk kkkhkkk kkk &
H ENTER- HL=SRC DCB
H EXIT- IF CARRY, DEVICE IS BUSY OR NOT ON LINE
’ OR RD NOT SET OR NO BUFFERS LEFT IN AQ
H ELSE, PARAMETERS STORED IN DCB (IX=DCB)
’
DEVIN? SCF sSET CARRY
BIT BSY,(HL) ;DCB(BSY)=1
RET NZ /YES, RETURN WITH CARRY
BIT ONLN, (HL) ;DCBC(ONLN) =1
RET 2 sNO, RETURN WITH CARRY
BIT RDs(HL) ;DCB(RD) =1
RET 2 sNO, RETURN WITH CARRY
SET BSY,(HL) /SET DCB(BSY)=1
RES ERR,(HL) 7SET DCB(ERR)=0
RES ETB,(HL) ;SET DCBC(ETBI)=0
’
PUSH HL ;(SP)=0CB
) IXsAQUE s IX=AQUE
CALL GET ;GET IBUF OFF AQ
POP IX ;IX=DCB
RET C ;IF EMPTY, RETURN WITH CARRY
PUSH HL H
POP IY 1Y=1IBUF
’
XOR A sA=00
LD EsA sCLEAR E
LD (HL) » A ¢+CLEAR IBUF STATUS
Lo (IX+7) L sPUT IBUF ADDR IN DCB
LD (IX+8),H ’
INC HL ;
LD (HL)Y»A sCLEAR BYTE COUNT
Lo Ds3AH ;D=58 BYTES
LD Cr(1X+2) +C=DEVICE BUS ADDR
INC HL ;
LD A, (IX+3) sGET SRC AC
LD (HL) »A sPUT IN IBUF
INC HL H
Lo A, (IX+4) frGET DST AC
LD (HL) » A ;PUT IN IBUF
INC HL sHL=0BUF DATA POINTER
OR A ;DST AC=0
JR 1,SETHST-% /YES, SKIP ID HEADER
’
BIT IDM,(IX+0) ;0CBCIDM) =1
JR Z,SETCNT-% /NO, SKIP ID HEADER

“e

LD A, (IX+3) GET SRC AC

E17

LD (HDRID),A 7SAVE
CALL IDHDR +PUT ID HEADER ON IBUF
JR FININ-% ’

’
SETHST: SET HOST,(IY+0) /SET IBUF(HOST)=1

SETCNT: LD B,D sINITAL BYTE COUNT
FININ: CALL SAVPR4 7SAVE PARAMETERS IN DCB
CALL SETMSK sSET 1/0 MASK BIT
IN As(C) sCLEAR DEVICE STATUS
EI sENABLE INTR
RET ;
(4
H ID HEADER ADDED TO BUFFER- [XX] » XX=LU#H
IDHDR: LD As5BH /START OF ID HEADER, ‘'[!
LD (HL) » A rPUT IN IBUF
INC HL ’
Lo A, (HDRID) 7sGET AL VALUE
PUSH AF sSAVE
SRL A ;GET UPPER 4 BITS
SRL A H
SRL A H
SRL A ;
CALL HEXASC sCONVERT TO ASCI!I
LD (HL) ,A /PUT IN IBUF
INC HL ;
POP AF /GET LOWER 4 BITS
CALL HEXASC sCONVERT TO ASCl!
LD (HL)» A sPUT IN IBUF
INC HL ;
LD A,50H END OF ID HEADER, 'a

LD (HL),»A
INC HL

LD At !
LD (HL) ,A

PUT IN IBUF

SPACE
PUT IN IBUF

%o Mo Ne Na N Mo Ny N N

INC HL
LD B,3SH B=53
RET

HH FILE INTR

INTERRUPT HANDOLER

IS SRS RS SRS R R R R R RERERR SRR RERR SRR R R R RS RS R SRR R R RS R R R XS R

ENTER- INTERRUPT FROM LEVEL 1
EXIT=- INTERRUPT DEVICE SERVICED

bt N8 Wa %2 %o Ns N N3 N

NTR: PUSH AF JSAVE REG'S
, IN A, (13H) JGET HOST STATUS

BIT O01H,A JREAD=1

JP NZ,HOSTR JYES, GO READ CHAR
PUSH BC ;

LD A,OAH ;

OUT (1EH) ,A ;

IN AL CT1EHD JINTR REQUEST REG

LD BsA sSAVE IN B

LD A, (MASK) ;1/0 MASK
AND B sCLEAR MASKED REQUESTS
JR Z,FIN-% sRETURN IFf NO REQ'S
SRL A ;BIT 1 SET
JP CrSYNWR +rYES, SYNC WRITE
’
PUSH DE sNO, SAVE REMAINING REG'S
PUSH HL ‘
PUSH IX H
PUSH TIY M
LD HL,INTTAB+2 sHL=INTR TABLE ADDR+2
LSB: SRL A : sLSB=1
JR C,DCBA-S YES, GET DCB ADDR
INC HL +NO» HL=HL+Z
INC HL H
JR LSB-$% SNEXT BIT
r
DCBA: LD Er (HL) +E=LOWER BYTE DCB ADDR
INC HL ’
LD D, (HL) r0=UPPER BYTE D(B ADDR
’r e
; ROUTINE TO HANDLE IO INTERRUPTS
’
PUSH DE ;
popP IX ;IX=DCB
LD A,(DE) sDEVICE STATUS BYTE
BIT BSY.,A +sDEVICE BSY
JR Z,INTERR-% sNO, GOTO ERROR ROUTINE
LD Br(IX+9) sGET BYTE COUNT
LD Cr(IX+2) /GET DEV BUS ADDR
LD He (IX+13) sGET DATA POINTER
LD LoC(IX+12) ’
BIT RD,A ;DCB(RD)=
JR Z,WRITE~-S +NO, GO WRITE BYTE

s %

READ DATA BYTE

CALL DEVRD sREAD BYTE

JR NC,SVPR-% sSAVE PARAMETERS, IF NC

BIT ETB,(IX+0) ;DCB(ETB) =1

JR Z,FINIO-% +NO, END OF READ

BIT ERR,(IX+() +YES» DCB(ERR)=

JR 2,FINIO-S +NO», END OF READ

PUSH IX +sYES, INPUT NOT FINISHED

POP HL sHL=D(B ADDR

RES BSY,(IX+0) sSET DCB(BSY)=0 ,

RES IDM,(IX+0) +SET DCB(IDM)=0

CALL DEVIN +START NEW READ CYCLE

JR SVPR+3-% sEND OF THIS READ
WRITE: CALL DEVWR sWRITE BYTE

JR NC,SVPR=-3 sSAVE PARAMETERS, IF NC

FINIO: RES BSY,(IX+0) sSET DCB(BSY)=0

JR 5 JSKIP NEXT INST
CALL SAVPR2 JSAVE PARAMETERS
POP 1Y JRESTORE REG'S
POP IX ;
JP RRET JRETURN FROM INTR
SET ERR,(IX+0) JSET DCB(ERR)=1
JR FINIO-$S ;
;
LD C(IX+11),D JSAVE 4 PARAMETERS IN
LD (IX+10),E ;
SAVPR2: LD (IX+9),8 JSAVE 2 PARAMETERS IN
© LD (IX+13),H ;
LD (IX+12),L ;
RET ;
i3
;
s LD B,CIX+1) JGET DEV MASK
BIT RD,(IX+0) JDEV(RD) =1
JR NZ,4 JYES, SKIP NEXT INST
SLA B JADJUST FOR WRITE
LD As(MASK) JGET I/0 MASK
OR B JSET BIT
LD (MASK),A JRESTORE MASK
RET ;
::
;
c LD A, CIX+1) JGET DEV MASK
BIT RD,(IX+0) ;DCB(RD) =1
JR NI, JYES, SKIP NEXT INST
SLA A JADJUST FOR WRITE
cPL JINVERT
LD B,A JMOVE TO B
LD A, (MASK) JGET PRESENT I/0 MASK
AND 8 JCLEAR BIT
LD (MASK),A JRESTORE MASK
RET ;
;
277 FILE DEVWR ,
’
; ROUTINE TO WRITE A BYTE TO A DEVICE
shkhkkhkhkhhhkhkhhhkAA bRk kA kAR KRR A XA AR AR A AR AR kA AR A h ko k ko kk ok *
’
; ENTER- HL=0BUF DATA POINTER, IX=DST DCB
; B=PRESENT REMAINING BYTES
; C=DEVICE BUS ADDR
; EXIT= CHAR MOVED TO DEVICE, PARAMETERS UPDATED
’
DEVWR: LD A, (HL) JGET CHAR FROM OBUF
OUT (C),A JWRITE TO DEVICE
INC HL JUPDATE POINTER
DJNZ SVWR-3 JCONTINUE TILL B=0

“e

e

~e

BDOLK:

NOLNK:

’
FULERR

PUSH
PUSH
LD
LD
LD
CALL
CALL
PoOP
POP

BIT
JR
CALL
BIT
JR
SET
SCF
RET

LD
INC
LD
EX
LD
LD

LD
LD
BIT
JR
LD
LD
susB
JR
LD
JR

RES

LD
Lo
INC
INC
INC
INC

XOR
RET

PUSH
EX
LD
CALL

HL

IX

Ho (1X+8)
Lo (IX+7)
IX,AQUE
PUY
C,FULERR
X

HL

LNK, (IX+10)
NZ,NXLK=~3
CLRMSK
ETB,(IX+0)
NZ.,6

RD, (IX+0)

Es(HL)
HL

D, (HL)
DE,HL
(IX+8),H
(IX+7),L

D,r(IX+11)
Es, (HL)
LNK,E
Z2,NOLNK=-%
Bs3AH

A,D

B
C,BOLK-3
(IX+11),A
NOLNK+1-3%

LNK,E

Bs,D
(IX+10),E
HL

HL

HL

HL

A

IX
(SP),HL
IX,EQUE
PUT

E20

7SAVE POINTER
/SAVE DCB ADDR
/GET OLD OBUF ADDR
sIX=AQUE
sPUT ON AQ
¢LIF FULL,
s IX=DCB
sHL=POINTER

PUT ON EQ

sOLD OBUF(LNK)=1
YES, NEXT BUF
sCLEAR I1/0 MASK BIT
;DCB(ETB) =1

sYES, SKIP NEXT INST
/SET DCB(RD)=1

/SET CARRY

+sEND OF QUTPUT

GET NEXT OBUF ADDR

e %o Na “ws

x
r
1]
=
m
=
Qo
o+
<
-

sSAVE NEW OBUF ADDR IN DCB

-

sGET TOTAL REMAINING BYTES
sE=NEW BUF STATUS
sO0BUF(LNK) =1

/NO», LAST BLOCK

+B=58 BYTES

sA=TOTAL REMAINING BYTES
sA=TOTAL-58

s1F A0, BAD LNK BIT

sSAVE IN DCB

sSKIP NEXT INST

#SET OBUF(LNK)=0

;B=TOTAL REMAINING BYTES
+SAVE PRESENT OBUF STATUS

.
’
.
’
-
’
.
’

HL=NEW OBUF DATA POINTER

sCLEAR CARRY

+SAVE QUEUE ADOR
sHL=QUEUE ADDR.,
s IX=EQUE

;PUT ON EQ

(SP)=BUF ADDR

E21

RET € sRETURN IF FULL
POP HL sHL=BUF ADDR
CALL PUT +PUT ON EQ
CALL C,GET ;1F FULL, REMOVE QUEUE ADDR
RET H
H
777 FILE DEVRD
’
H ROUTINE TO READ A BYTE FROM A DEVICE
JRAk Rk k kkhkkkk ok kkk kA k ko k Ak A kA kAN KA R A AR AR A A AR Rk kAR AR A Ak ok ok ke kA k ok
14
H ENTER- HL=IBUF DATA POINTER, IX=SRC D(CB
; B=PRESENT REMAINING BYTES
H C=DEVICE BUS ADDR
H EXIT- CHAR MOVED TO IBUF, PARAMETERS UPDATED
’
DEVRD: IN A, (C) sREAD CHAR
cp 03H sA='CNTL C!
JP Z,CMDIN sYES, SET CMD INPUT BUF
LD (HL) » A +PUT IN IBUF
INC HL sUPDATE POINTER
LD D,A sMOVE CHAR TO D
LD A, (ENDCHR) +GET BUFFER TERMINATOR
cpP D /D=END CHARACTER
JR 1,FINRD~S sYES, END OF LINE
DIJNZ SVRD-% +NO, CONTINUE TILL B=0
r’
LD A,OAEH +A=3%x58, 3 BLOCKS
cP (Ix+11) sTOTAL COUNT <= A
JR NC,NXBK=-$% sYES, NEXT BLOCK
SET ERR,(IX+0) /NO», SET DCBC(ERR) =1
JR EMTAQ+3-% +CLOSE BUFFER
14
NXBKz: PUSH IX ;SAVE SRC DCB ADDR
PUSH HL sSAVE POINTER
LD IX,AQUE ;
CALL GET /sGET NEW BUF OFF AQUE
JR C,EMTAQ-3 ;1F CARRY, AQ EMPTY
POP DE ;
EX DE,HL sDE=NEW BUF , HL=LINK LOC
LD (HL) »E ¢+PUT LINK ADDR IN OLD BUF
INC HL H
LD (HL) »D ;
PUSH HL ’
POP 1Y ;1Y=0LD BUF POINTER
SET LNK,(IY~-63) #SET OLD BUF (LNK)=1
’
PoOP IX +RESTORE SRC DCB ADDR
LD As,3AH sA=58
LD BrA ;B=58
ADD A, (IX+11) +INCREASE TOTAL COUNT BY 58
LD (IX+11),A +STORE IN SRC DCB
EX DE,HL sHL=NEW BUF ADDR
XOR A ;A=0

CKHOST:

.
’

CKCMD:

PUTWAQ:
IBPT:

e

LD
INC
LD
INC
LD
INC
LD
INC

XOR
RET

POP
POP
SET
JR

DEC
Lo
sus
LD
LD
INC
LO
DEC
PUSH
INC
IN
AND
JR
SET
BIT
JR

LD
JR
LD
SCF
OR
CALL
JR

LD

CALL
CALL

POP
CALL
BIT
JR
SET
JR
RES
SCF

(HL) » A
HL
(HL) A
HL
(HL) »A
HL
(HL) »A
HL

A

HL

IX
ETB,(IX+0)
3

8

A, (IX+11)
B

Lo (IX+7)
Hso (IX+8)
HL

(HLY » A

HL

IX

C

Ar(C)

08H
Z,CKHOST-%
PAR, (HL)
HOST, (HL)
1,CKCMD-%

IX,XQUE
18PT-5%
A, (IX+6)

A
Z,CMDPRC

NC,1IBPT+6~-%

IX,WQUE
PUT
C,FULERR

IX

CLRMSK
ETB,(IX+0)
2,6

ETB, (HL)
NZ,6
RD,(IX+0)

CLEAR STATUS
CLEAR COUNT

CLEAR SRC AC

e %r Ng %o %y N

sCLEAR DST AC
+sHL=NEW BUF DATA POINTER

sCLEAR CARRY
;

sHL=BUF POINTER
s1X=DCB

sSET SRC DCB(ETB)=1
/SKIP NEXT INST

/sADJUST B

sGET TOTAL BYTE COUNT
+SUBTRACT UNUSED BYTES
+sGET MAIN IBUF ADDR
sHL=IBUF

sHL=BYTE CNT ADDR

E22

/PUT FINAL BYTE COUNT IN IBUF

+HL=IBUF ADDR

+SAVE SRC DCB ADDR
sDEVICE STATUS ADDR
+GET STATUS BYTE

;BAD PARITY BIT

/NO, CHECK HOST BIT
/YES, SET IBUF(PAR) =1
sIBUF(HOST)=1

/NO, CHECK FOR COMMAND

sIX=XQUE, HL=IBUF
;PUT ON QUEUE

sGET DST AC

sSET CARRY

sA=0

rYES, PROCESS CMD
+s1F CARRY, SAVE BUF

+GET WQUE ADDR
sPUT IBUF ON QUEUE
sQUEUE FULL PUT ON EQ

sRESTORE SRC DCB ADDR
sCLEAR I/0 MASK BIT
/DCB(ETB) =1

/NO, SKIP NEXT 2 INST
YES, SET IBUF(ETB)=1
sSKIP NEXT INST

+SET DCB(RD)=0

/SET CARRY

/s FILE

LN Se “e %o Ng N8 N3 %o Vs N

TRBUF:

“e

AT

o e
4

* ok ok ok ok k ok

T %e Se Ne Ve %o %o So

OSTR:

s

~e

e

RET

HOSTIO

E23

“e

ROUTINE TO SET UP HOST READ

.
4

ENTER-
EXIT= ;.

LD HL,RBUF

BIT EMTY, (HL)
RET 2

PUSH HL

LD HL,HCB
BIT BSY,(HL)
RET NZ

BIT RD,(HL)
RET 2

IN A, (13H)
BIT DSR,A

JR Z)NODSR-&
SET BSY,(HL)

H

LD BC,400H-4
LD DE,RBUF+4
LD (HCB+2),8BC
LD (HCB+4),DE

XOR A
RET

ROUTINE TO READ

khkkhkkkhhkhkhhkhhhkhrhkhkhkkhhk khkkhrhhkhhbkhkkhhbhkkhkhhhkdkkhkkdhhkhkhdhdhhkkkkhkkx

sGET RBUF ADDR
/RBUF(EMTY) =1
sNO» RETURN

+SAVE RBUF
;GET HCB ADDR
JHCB(BSY)=1
sYES, RETURN
+HCB(RD) =1
sNO, RETURN

/GET STATUS
FHOST(DSR) =1

sSET HCB(BSY)=1
sBC=BYTE COUNT
sDE=DATA POINTER
sSAVE IN HCB

CLEAR CARRY

%e “e “a

A CHAR FROM HOST CHAN

Ak khkhkhk kA A Ak kA k AARAR A AR A A A A A A A A A b A Ak Ak bk bbbk A d kA ok h ok

ENTER- ALL INTR'S DISABLED

EXIT~ PUT CHAR FROM HOST IN RBUF
PUSH B(;SAVE REG'S
PUSH DE ;

PUSH HL H

LD BC,(HCB+2)
LD DE,(HCB+4)
LD HL,HCB

BIT SYNC,(HL)
JR NZ,RDAT-3%
BIT SYNC,A

JR L,RRET-%

SET SYNC, (HL)

/GET COUNT
sGET POINTER
+HL=HCB ADDR

sMODEM IN SYNC

/sYES, READ CHAR

+NO, MODEM SYNC BIT SET
+NO, RET

sYES, SET HCB(SYNC)=1

E24

IN A, (12H) +sREAD CHAR
cp SYN 7=SYNC CHAR
JR Z,RRET-% sYES, SKIP CHAR
LD (DE),A +NO, SAVE IN RBUF
INC DE sUPDATE POINTER
DEC B¢C “7UPDATE COUNT
ce EOT ;s=EOT CHAR
JR 2,FINSR-% sYESs, END OF RBUF
’
LD A,B ;
ADD A,C /8C=0
JR 2,FINSR-9% YES, END OF BUFFER
LD (HCB+2),B¢C sSAVE COUNT
LD (HCB+4) ,DE sSAVE POINTER
RRET: POP HL sRESTORE REG'S
POP DE ;
FIN: pOP BC H
ARET: POP AF sRESTORE AF
El ;
RETI ;

JSET HCB(RD)=0
RES BSY,(HL) JSET HCB(BSY)=0
RES SYNC, (HL) JSET HCB(SYNC)=D
LD HL,RBUF ;

SET FULL,(HL) JSET RBUF(FULL)=1

LD ML »400H=4 JCALCULATE BYTE COUNT
SBC HL.,BC ;

LD (RBUF+1) ,BC ;PUT IN RBUF

FINSR: RES RD,(HL)

JR RRET-% sRETURN
’
viz ROUTINE TO SEND CHAR TO HOST
SRR AR R ARk Ak kR R R Rk k kAR kAR AR AN R A AR AR R AR AR AR Ak hk kA kk ko k ok ok ok k ke k
H ENTER- ALL INTR'S DISABLED
; EXIT = CHAR SENT TO HOST
’
HOSTW: PUSH DE SAVE OE
LD BC,(HCB+2) sGET COUNT
LD DE,(HCB+4) +GET POINTER
LD HL,HCB sHL=HC(CB
LD A, (DE) sGET CHAR
OUT (12H) »,A 7SEND TO HOST
INC DE sINC POINTER
DEC BC sDEC COUNT
cp EOQT ;='EOT!
JR Z,FINSW=5 rYES, END OF BUFFER
LD A,B ’
ADD A,C ;A=0
JR Z,FINSW-5 sYES, END OF BUFFER
LD (HCB+2),BC sSAVE COUNT
LD (HCB+4),DE /SAVE POINTER

E25

JR RRET=-% JRETURN
;
FINSW: SET RD,(HL) JSET HCB(RD)=1
RES BSY,(HL) JSET HCB(BSY)=0
LD HL,XBUF JHL=XBUF
SET EMTY, (HL) JSET XBUF(EMTY)=1
JR RRET-% JRETURN
22 FILE CMDPRC

ROUTINE TO SET UP COMMAND BUFFERS

ek sk ok ok d ke ok ok k ko ok k ke sk sk ok ko ko ok ke ke ok ok ok ok R A ek ok ok ok ke ok ok ke b Ak ok ke ok ok ok ko sk ok bk

ENTER- IX=DCB
EXIT- BUFFER SET UP TO RECEIVE COMMAND

€ Ne %e Ne MU N Ve %o Ve %o

MDIN: LD L, (IX+7) sGET BUF ADDR
LD Hs (IX+8) ;
PUSH IX sSAVE DCB ADDR
CALL IOERR sRESTORE PRESENT BUF T0 AQ
POP IX ;
LD Ar(IX+6) sGET PRESENT AC(
PUSH AF sSAVE AC
’
LD (IX+6),00H +PUT CMD PROCESSOR # IN DCB
CALL DEVIN sSET UP INPUT TO CMD PROC
POP AF GET OLD AC
LD (IX+6),A sRESTORE TO 0OCB
SCF H
RET ’

ROUTINE TO HANDLE COMMANDS

.
’
I ZEESEEEEREES SRR AR ERE R R R RS SS R St RSl RRRERSRRRRSRSS N

ENTER- IX=DCB, HL=BUF
EXIT- COMMAND PROCESSED

€ %e %2 %e Ns Na %s N3

MDPRC: PUSH HL ;
POP 1Y ;1Y=BUF
INC HL : '
INC HL H
INC HL ;
INC HL SHL=DATA POINTER
LD As(HL) JGET FIRST CHAR
cP 'p ;=A
JR 2,ASGN-% JYES, ASIGN # TO DCB(SRC AC)
cP 'p! ;= 'p!?
JR 2,DDIS-% JYES, DISCONNECT DEVICE FROM HOS
cP 01H 7= YCNTL A'
JR Z,0SEL-% JYES, SEND SELECT TO HOST & ASGN

FINC: XOR A
RET

Ne “e

PTAC:

CKHST:

s

NODEV:

CALL
JR
OR
JR
cp
JR
PUSH
CALL
POP
BIT
JR
POP
LD
RET

LD
BIT
JR
PUSH
POP
INC
INC

LD
LD
JR

PUSH
POP
INC
INC
LD
CALL
LD
JR

PUSH
POP
LD
CALL
LD
JR

CALL
JR
OR
RET
cp
RET
CALL
LD
caLL
XOR

AHBYTE
CrFINC-S
A
7,CKHST=-3%
O4H
NC,NONE=-$
AF

DEVDC(CB

HL

ONLN# (HL)
2,NODEV~-3
AF
(IX+6),A

HL,HCSB
ONLN, (HL)
NZ,PTAC-%
1Y

HL

HL

HL

B,3AH
A,O0H
ERROUT-~%

1Y

HL

HL

HL
(HDRID),A
IDHDR
A,01H
ERROUT-3

1Y

HL
(HDRID),»A
IDHDR
A,0O3H
ERROUT-3

AHBYTE
CrFINC-3
A

z

04H

NC
DISGEN
IX,XQUE
PUT

A

E26

sCONVERT ASCII CHAR TO HEX BYTE
sCARRY, IF ERROR
sA=HOST

*YES, CHECK HOST

s A<Q4H

+NO, NO SUCH DEVICE
¢SAVE AC

+GET DCB ADDR
+HL=DC(B

sDCB(ONLN)=1

sNO, DEV NOT ON LINE
tYES, GET AC

/PUT NEW AC IN DCB

’

sGET HOST DCB ADOR
sHCBC(ONLN) =1
+YES, HOST IS ON LINE

s Wwe “gp

.
4

sB=REMAINING BYTES IN BUF
sA=ERROR MSG #
+SEND ERROR MSG

e e Vs N

sPUT HEADER ON BUF
sA=ERROR MSG #
sSEND ERROR MSG

e v

+PUT HEADER ON BUF
sA=ERROR MSG #
¢SEND ERROR MSG

CONVERT ASCII CHAR TO HEX BYTE

ES, RETURN

0, RETURN
ENERATE DISCONNECT MSG

PUT MSG ON QUEUE

.
’
.
’
.
’
-
’
»
’
.
’
.
’
.
4
-
’
-
I'd

E27

RET ;

’

DSEL: CALL AHBYTE JCONVERT ASCII CHAR TO HEX BYTE
JR C,FINC-3 ;
OR A JA=0
RET 2 JYES, RETURN
CP 04H JA<O4H
RET NC JNO, RETURN
CALL SELGEN JGENERATE SELECT MSG
LD IX,XQUE ;
CALL PUT JPUT MSG ON QUEUE
XOR A ;
RET ;

;

Y

AHBYTE: LD B,O ;B=0
JR GTNBL-S JGET FIRST NIBBLE

’

NXNBL: ADD A,B JADD PREVIOUS VALUE*4
ADD A,B ;
LD B,A JSAVE IN B

’

GTNBL: INC HL JGET CHAR FOR NIBBLE
LD AsC(HL) ;
CALL ASCHEX JCONVERT TO HEX NIBBLE
JR NC,NXNBL-$ JCARRY, IF MON-HEX CHAR

’
LD A,ODH ;
P (HL) J=CR
SCF ;
RET N2 ;NO, RET WITH CARRY
XOR A ;YES, CLEAR CARRY
LD A.B SPUT VALUE IN A
RET ;

;

;:

ASCHEX: SUB 30H JACTO!
RET € JYES, RET WITH CARRY
cP 17H SA>'EY
CCF ;
RET ¢ JYES, RET WITH CARRY
CP OAH ;0<=A<=9
CCF ;
RET NC JYES, RET NO CARRY
Sus 07H JADJUST CHAR
CP OAH JNO CARRY IF, 'A'<=A<='F'
RET ;

:: ROUTINE TO OUTPUT ERROR MESSAGES

ISR SRR R ERRERS SRR RS ERSEEE RS ERS R SR RERREREEERERERSREERRE N RN

ENTER~ HL=BUF DATA POINTER, 1Y=BUF ADDR
A=ERROR CODE, B=REMAINING BYTES, IX=DST DCB
EXIT- ERROR MSG PUT IN BUF AND DEVOUT ENTERED

Ne Ws %a %s Na N N

»
L4

ERROUT:

s

~e

ERRTAB:

ERROO:

l4
ERRO1:

ERRO2:

PUSH
PUSH
LD
ADD
LD
LD
ADD
LD
INC
LD

LD
LD
INC
poP
EX
LDIR

poP
sus
ADD
LD
RES
RES
PUSH
poP
JP

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

DEFB
DEFM
DEFM
DEFM
DEFM
DEFM
DEFW

DEFB
DEFM
DEFM
DEFM
DEFM
DEFW

DEFB

BC

HL
HL,ERRTAB
AsA

8,00

CrA

HL»,BC
Es(HL)

HL

Ds (HL)

A, (DE)
C,A

DE

HL
DE,HL

BC

R

As,3AH
(IY+1),A
BSY,(IXx+0)
RD,(IX+0)
IX

HL

DEVOUT

ERROO
ERRO1
ERROZ2
ERROZ2
ERRQ2
ERRQZ2
ERRQO2
ERROZ2

13H

'*HOST!
vt NOT!
' ON
'LINE'

OAODH

OFH
' NOT!
' ooN !
'LINE®
U

OAQDH

12H

E28

sSAVE BYTE COUNT
sSAVE DATA POINTER
sHU=ERROR TABLE ADDR
FASA+A

/sBC=ERROR CODE OFFSET
sHL=ERRTAB+OFFSET

-
’
.
4
.
r

DE=ERROR MSG ADDR

sA=MSG BYTE COUNT
+BC=ERR MSG BYTE COUNT
+DE=ERR MSG POINTER
sHL=BUF DATA POINTER

’

+sMOVE ERROR MSG TO BUF

+GET REMAINING BYTES
sCALCULATE TOTAL BYTE COUNT
JPUT IN BUF

/SET DCB(BSY)=0

/SET DCB(RD)=0

sHL=DST DC(CB

sOUTPUT MESSAGE

sERROR MSG 0O
sERROR MSG 01
sERROR MSG 02
FERROR MSG 02
sERROR MSG 02
/ERROR MSG 02
sERROR MSG 02
+ERROR MSG 02

BYTE COUNT

.
’
L]
’
.
’
.
r
-
’
.
’
.
’

sBYTE COUNT

e %o % Mg %o e No

e

“s

€ %8 N VYo N Ne N

10:

“s

DEFM ' NOT®
DEFM * DEF'
DEFM 'INED'
DEFM *,.. '
DEFW OAODH

FILE INIT

E29

LF,CR

ROUTINE TO INIT SYSTEM

Je ok e kode ook ook ke ok sk ko Y ok de sk ok sk e e sk e ok e ok ok ke ok e ok e ok sk e ki ok ok e ok ok bk ke ke ok ke e ok kb

SET UP RESTART JUMPS

LD SP,2FFFH

LD A,03CH
LD BC,START
LD (00),A
LD (01H) ,BC
LD BC,MAIN
LD (66H) » A
LD (67H) ,BC

CALL CIO
RET

sSTACK=TOP OF MEMORY

;CODE FOR JUMP

;JUMP ADDR FOR RST 0OH
;STORE JumMP

sSTORE ADDR

;s JUMP ADDR FOR RST 66H
/STORE JUMP

/STORE ADDR

/SET UP I/0,INTR & TIMERS

ROUTINE TO SET UP INTERRUPTS
SET UP OF CLOCK DEVICE (CTC)
& INTR HANDLER (8259)

LD C,18H

LD DE,9S51FH
ourT (CY,D
ourT (C),E
INC C

LD DE,953EH
ouT (€C),0

our (C),E
INC C

LD DE,9570H
ouT (C,D
ouT (C),E
INC C

LD DE,OCSFAH
ourT (C),D
ourT (C),E

LD BC,IVEC
LD A,B

LD I,A

LD A,C

OUT (18H),A

LD A,12H
ouT (1EH) »A

LA S AR RS R SR REEEEESESERRRERS RS SRR ERERREER SRR ERERRRREEREEREEREEREESE]

CHANNEL #0
(TIMR,.25MS,INTR)

CHANNEL #1
(TIMR,.5MS,INTR)

We Ne Ns Ne N Ng SF N,

CHANNEL #2
(TIMR,TMS,INTR)

CHANNEL #3
(CNTR,CNT=250,INTR)

INTR VECTOR ADDR

SET UP UPPER BYTE

Ne Ve Ne NE N %A Ne N2 Ny Ne Ne Ne N

SET UP LOWER BYTE

SET UP INTR DEVICE (8259)

E30

XOR A sCLEAR A
OUT (1FH) LA ;
LD (MASK) ,A ¢INIT MASK
CPL sINVERT A
OUT (1FH) A H
’
IM 2 sSET INTR MODE 2
’ SET UP I\NO CHANNELS
LD BC,4011H FRESET USART, INO CHANC(10.,11)
LD DE,OFA3S5H 7SET MODE & FUNCTIONS
CALL MSET sOUTPUT COMMANDS
LD Cr,13H ;INO CHANC(C12,13)
CALL MSET sOUTPUT COMMANDS
LD C,15H sING CHANC14,15)
CALL MSET sOUTPUT COMMANDS
LD C,17H sINO CHANC16,17)
CALL MSET sOUTPUT COMMANDS
CALL CIO sSET UP INTR & TIMERS
RET H
H
MSET: ouT (C>.,B ;OUTPUT B
ouT (L) ,D +sOUTPUT D
ouT (C),E ;OUTPUT E
RET ;
INTO: NOP sINTERRUPT LEVEL O
NOP ;
NOP ’
EI ’
RETI H
14
INT?: EQU INTR sINTERRUPT LEVEL 1
INTZ2: NOP ;INTERRUPT LEVEL 2
NOP N
NOP H
€1 ;
RETI H
INT3: NOP sINTERRUPT LEVEL 3
NOP H
NOP ;
El ;
RET! H
/s FILE SUBS

FILE CONTAINING FLAG BIT ASSIGNMENTS AND
SMALL SUBROUTINES USED BY MORE THAN ONE
OTHER ROUTINE.

I E X EEE RS EARREEEREERNERERR SRR R R RS R RS R SRR RERREREER R R R RN

Ne %es %o Ng %o N %o e

O Ne N

T e Ne

NITAQ:

EVD(CB:

L

EQU
EQU
EQU
EQU
EQU
EQu
EQU
EQu
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

PUSH
POP
LD
CALL
POP
RET

Lb
LD
LD

CALL
RET
ADD
JR

ADD
LD
Lo
LD
ADD
LD
INC
LD
POP
PUSH
PUSH
RET

LD

NOO OOV SS NN 2O

HL

1Y
A,(1Y+3)
DEVDCB
HL

IX,AQUE
BC,40H
HL,ABUF

PUT

C
HL,BC
PTBF-$

AsA
CrA
B,0OH
HL,DCBTAB
HL,BC
Cr (HL)
HL
Bs,(HL)
HL

BC

HL

As,E

E31

sQUEUE OR BUFFER BUSY
sFULL QUEUE OR BUFFER
sDEVICE READ BIT

;EMPTY QUEUE OR BUFFER
sRNP ACCEPTING CALL
sPREVIOUS MSG ACKNOWLEDGED
sBUFFER TO OR FROM HOST
/NEW SEQUENCE COUNT

sRNP OR DEVICE ON LINE
+BAD PARITY IN BUFFER
sSERVICE MESSAGE REQUEST
¢+BUFFER PRESENTLY ACTIVE
sEND OF BUF, NOT END OF TEXT
+LOG MSG IN RBUF

sBUF LINKED TO NEXT BUF
/1D MESSAGE REQUEST

sSYNC RD/WR IN SYNC

sERROR IN BUFFER

MOVE BUF ADDR

;TO0 1Y
¢GET DST AC
;GET DCB, (SP)=DC(CB

+HL=DST DCB

’

s IX=AQUE (AVAILABLE BUFFERS)
sBC=64 (SIZE OF EACH BUF)
sHL=ABUF (START OF BUF AREA)

sPUT ADDR ON AQUE
sRETURN WHEN AQUE FULL
FNEXT BUF

sCONTINUE TILL AQUE FULL

FA=A+A

+C=0FFSET

+HL=DCBTAB ADDR
sHL=DCBTAB+OFFSET
/DCB L

H

;0CB U

/GET RETURN ADDR
+SAVE DCB ADDR
sRESTORE RETURN ADDR

’

sLOWER BYTE

* kok kok ok ok

T %o %e %e %o N N5 Ny Na Ny Ne Ne N

o=
—
(1]

e

e

~e

E32

sus L H
LD A,D sUPPER BYTE
SBC A,H sCARRY SET IF HL>DE
RET ;
M
H
HEXASC: AND OFH sCLEAR UPPER &4 BITS
ADD A,90H sA=A+90H
DAA sDECIMAL ADJUST
ADC A,40H sA=A+40H+CARRY
DAA sDECIMAL ADJUST
RET +ASCII VALUE IN A
/s FILE QUE

INPUT-0UTPUT QUEUE ROUTINES
VERSION 1.0 REV C

ROUTINE TO PUT AN ADDRESS INTO QUEUE,

KA KR KA AR KRN ARk AR R R A Kk ok kA AR Ak khk khh kA Ak A AR Ak kkhh kk ko &
ENTRY- IX CONTAINS QUEUE CONTROL BLOCK ADDR

AND HL CONTAINS DATA TO BE PUT ON QUEUE.

EXIT- IF QUEUE IS FULL, RETURN WITH CARRY SET

NORMAL RETURN IS WITH CARRY CLEAR,

SCF /SET CARRY FLAG

BIT BSY,(IX+0) sTEST FOR BSY QUEUE
RET NZ sYES, RETURN

BIT FULL,CIX+0) TEST FOR FULL QUEUE
RET N2Z sYES, RETURN

SET BSY,(IX+0) +SET BSY BIT
RES EMTY,(IX+0) /7CLEAR EMPTY FLAG

EX DE,HL sDE=ADDR

LD LoC(IX+3) +LOWER BYTE BQP

LD Hr (IX+4) sUPPER BYTE BQP

LD (HL) ,E sPUT LOWER BYTE

INC HL sNEXT BYTE

LD (HL) »D +PUT UPPER BYTE

INC HL ;HL=BQP+2

CALL CHKBB 1F BQP=BB, SET BQP=T78B
LD A, (IX+1) +LOWER BYTE TQP

cp L ;= L

JR NZ,PUTR-% +NO», QUEUE NOT FULL
LD A,(IX+2) ;YES, UPPER BYTE TQP
cp H 7= H

JR NZ,PUTR-% +NO,» QUEUE NOT FULL
SET FULL,(IX+0) 7YES, SET QUEUE FULL
LD (IX+3),L sLOWER BYTE BG@QP

LD (IX+4)sH sUPPER BYTE BQP

EX DE,HL sHL=ADDR

XOR A sCLEAR CARRY fLAG

E33

RES BSY,{(IX+0) +RESET BSY FLAG ’
RET
P
H ROUTINE 70O GET ADDRESS FROM QUEUE
SRRk kR Ak kR Ak AR R AR A R kR KRR AR A AR AR Ak A A AR A Ak kA k kA Ak ANk ok ke
; ENTRY- IX CONTAINS QUEUE CONTROL BLOCK ADDR
; EXIT- HL CONTAINS DATA REMOVED FROM QUEUE,
H 1F QUEUE IS EMPTY, RETURN WITH CARRY SET
; NORMAL RETURN IS WITH CARRY CLEAR,
GET: SCF sSET CARRY FLAG
BIT BSY,(IX+0) sTEST FOR BSY QUEUE
RET N2Z ¢rYES, RETURN
BIT EMTY,(IX+0) ~7TEST FOR EMPTY QUEUE
RET NZ +YES, RETURN
SET BSY,(IX+0) rSET BSY FLAG
RES FULL,(IX+0) ZCLEAR FULL FLAG
LD LoC(IX+1) sLOWER BYTE TQP
LD Hy (IX+2) +UPPER BYTE TQ@P
’
LD E,(HL) sGET LOWER BYTE
INC HL NEXT LOCATION
LD Ds(HL) sGET UPPER BYTE
INC HL sHL=TQP+2
’
CALL CHKBB +I1F TQP=BB, SET TQP=TB
LD As(IX+3) sLOWER BYTE BQP
cpP L ;= L
JR NZ,GETR-% /NO, QUEUE NOT EMPTY
LD A, (IX+4) +YES, UPPER BYTE BQP
cpP H r= H ’
JR NZ,GETR~-S +NO, QUEUE NOT EMPTY
SET EMTY,(IX+0) 7YES, SET QUEUE EMPTY
’
GETR: LD (IX+1),L sLOWER BYTE TQP
LD (IX+2),H UPPER BYTE Ta@P
EX DE,HL sHL=ADDR
XOR A sCLEAR CARRY FLAG
RES BSY,(IX+0) FRESET BSY FLAG
RET
Y
CHKBB: LD Ar(1IX+7) sLOWER BYTE BB
CcP L ;= L
RET N2 +NO, RETURN
LD A,(1IX+8) sYES, UPPER BYTE BB
ceP H ¢= H
RET NZ +NO, RETURN
LD Lo(IX+5) +LOWER BYTE T8B
LD Hy (1X+6) +UPPER BYTE T8
RET ;

e
e
“e

FILE HBUFS

E34

BUFFER STORAGE AND QUEUES

.
’
ISR R R R R RS RER SRR SRR SRR Rt R R RS EREERlRRERERERSRE]

ORG 2000H
, HOST XMIT AND RECEIVE BUFFERS
RBUF: EQU % sRECEIVE BUFFER (FROM HOST)
DEFB 04H ¢STATUS BYTE
DEFW OOOOH +BYTE COUNT
DEFS 400H-03H sBUFFER STORAGE LOCATIONS
RBFN: EQU 3 +END OF RBUF
;
;
XBUF ¢ EQU % sXMIT BUFFER (TO HOST)
DEFB 04H /STATUS BYTE
DEFW OOOOH sBYTE COUNT
DEFB Q0OH ;
DEFW 1616H sSYN,SYN
DEFW 1616H sSYN,SYN
DEFB O1H s SOH
DEFB 48H ;FC (ACK/NAK MSG)
XBSC: DEFB 41H #SC (4TH OR 42H)
DEFB 40H - sAC
XBocC: DEFB 40H ;0C (ACKA,NO INST)
DEFB 41H ;IC (4TH+HMSG)
DEFB 02H sSTX
DEFB CO3H FETX
XBCC: DEFB O0O0H ¢BCC (BLOCK CHECK CHAR)
DEFW 1616H sSYN,SYN
LOG?: DEFB 01H sSOH (START OF FIRST LOGICAL MSG
DEFS 400H-14H sBUFFER STORAGE LOCATIONS
XBFN: EQU 3 sEND OF XBUF
SBUF: EQU 3 sSERVICE MESSAGE BUFFER
DEFB O4H sSTATUS BYTE
DEFfW OOQOOEH sBYTE CNT
DEFB OOH ’
DEFW 1616H sSYN,SYN
DEFW 1616H sSYN,SYN
DEFB8 O1H s SOH
DEFB 42H ;FC (SRV MSG)
$BSC: DEFB 41H sSC (41H OR 42H)
DEFB 4OH sAC
SBOC: DEFB 4OH ;O0C (40H+ACK/NAK+SVM)
. DEFB 41H ;1C (1 MSG)
DEFB 02H ;STX (NO TEXT)
DEFB 03H JETX
SBCC: DEFB 42H sBCC (42H+SC+00)
DEFB 04H +EOT
’
QFRM: EQU & ;Q-FRAME BUFFER
DEFB 0OH /STATUS BYTE

DEFW OO0O06H ’

DEFB
DEFW
DEFW
DEFB
DEFB

FILE QUES

QUEUE CONTROL AND

00H
1616H
1616H
01H
04H

-e
e

e %o % N

ORG 281CH
EQU 3

DEFB O4H
DEFW TRB
DEFW TRB
DEFW TRB
DEFW TRB+20H
DEFS 20H

RQUE:

TRB:
;
XQUE: EQU %

DEFB 04H
DEFW TXB
DEFW TXB
DEFW TXB
DEFW TXB+20H
TXB: DEFS 20H
’

AQUE EQU %

DEFB 0Q4H
DEFW TAB
DEFW TAB
DEFW TAB
DEFW TAB+20H
TAB: DEFS 20H
WQUE: EQU 3

DEFB 04H
DEFW TWB
DEFW TWA
DEFW TWB
DEFW TWB+20H
TWB: DEFS 20H

EQU 3

DEFB 04H
DEFW TEB
DEFW TEB
DEFW TEB
DEFW TEB+20H
DEFS 20H

EQUE:

m
[oe)
[

FILE STRG
GENERAL STORAGE AREA

E35

’
sSYN,SYN
sSYN,SYN
s SOH
FEOT

STORAGE BUFFERS

kA hkhrhhhbhhhhhhhhkdhhhhhhhbrdhhhkhkhddrhhdhbhAhdh khkdhihkhkhhkik

sRECEIVE QUEUE

+RQUE FLAG

;TOP RQUE POINTER
;BOTTOM RQUE POINTER
;TOP RQUE BUFFER
;BOTTOM RQUE BUFFER
/sRQUE BUFFER

sTRANSMIT QUEUE

s XQUE FLAG

;TOP XQUE POINTER
;BOTTOM XQUE POINTER
sTOP XQUE BUFFER
+BOTTOM XQUE BUFFER
/s XQUE BUFFER

sAVAILABLE BUFFERS QUEUE
+AQUE FLAG

;TOP AQUE POINTER
+sBOTTOM AQUE POINTER
+TOP AQUE BUFFER

;BOTTOM AQUE BUFFER
;AQUE BUFFER

sWAIT QUEUE

sWQUE FLAG

;TOP WQUE POINTER
;BOTTOM WQUE POINTER
;TOP WQUE BUFFER
+BOTTOM WQUE BUFFER
;WQUE BUFFER

sERROR QUEUE

+sEQUE FLAG

;TOP EQUE POINTER
/BOTTOM EQUE POINTER
;TOP EQUE BUFFER
+BOTTOM EQUE BUFFER
+sEQUE BUFFER

AhkAhhkhkhkhkhkhkhhhkhkhbhkrhArAhkkdAhhkhkhkhAhkhbhhhkhhkhhhhkhhkhhkhkhkkhkhkdhkhhdkhkkkkkkkk

e N N %o % 4
e
-e

HDRID:
SAVSC:
SAVIC:
SAVOC:
SAVMSG:

’
SAVLOC:
SAvVBCC:

MASK:
ENDCHR:

’

ABUF :

’
INTTAB:

I 4
DCBTAB:

4

DCBXX:
HCB:
pDCBOO:

DCBO1:

DEFSB

DEFB
DEFS8
DEFB
DEFW
DEFW
DEFW

DEFW
DEFB

DEFB
DEFB

ORG
EQU
DEFS

EQU

DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

EQu

EQU

DEFB
DEFW
DEFW

DEFB
DEFB
DEFB
DEFB

00H

00H
O00H
00H
0000H
00O0O0H
0000H

000O0H
00H

OFFH
OoH

2900H
3
10H*40H

3

INTO
INTT
INT?2
INT3

DCBOQO
DCBO1
pCcBO1
bcBO?2
bcBO?2
DCBO3
DCBO3
bCBO1

DCBOD
DCBO1
pcBO?2
bCBO3
DCBXX
DCBXX
DCBXX
DCBXX

OFFFFH

%
02H
0000
0000

02H
02H
10H
01H

E36

sHEADER ID SAVE AREA

sSAVE PRESENT SC (RBUF)

sSAVE PRESENT IC (RBUF)

+SAVE PRESENT 0C (RBUF)
"7 SAVE MSG LENGTH & FLAG (RBUF)
sSAVE MSG LOCATION

sSAVE BUF LOCATION

sSAVE LOCATION POINTER (XBUF)
;SAVE NEW BCC (XBUF)

sLEVEL 3 INTR MASK
/sBUFFER TERMINATING CHAR <CR>

.
¢

+AVAILABLE BUFFER AREA
;16 BUFS * 64 BYTES PER BUF

sINTERRUPT VECTOR TABLE
+sINTERRUPT LEVEL
sINTERRUPT LEVEL
+sINTERRUPT LEVEL
sINTERRUPT LEVEL

WM =20

sHOST DCB (HCB)
;CONSOLE DCB
/CONSOLE DCB

sRMCY1 DCB

/RMCY DCB

sRMC2 DCB

;RMC2 DCB
FEXTERNAL INTR D(B

sDEVOO DCB (HOST)
;DEV0O1 DCB (CONSOLE)
sDEVOZ2 DCB (RMCOM)
sDEV03 DCB (RMCO2)
+DEVO4 DCB

;DEVOS DCB

sDEV0O6 DCB

;DEVOY7 DCB

sDUMMY DC(CB

;HOST 0CB = DCBOO
+DEVICE STATUS FLAGS
/SAVE BYTE COUNT
sSAVE BUFFER POINTER

DEVICE STATUS FLAGS
sDEVICE MASK

sDEVICE #

FAC (LUK

’
pcBO2:

DCBO3:

“e

DEFB
DEFW
DEFB
DEFW
DEFW

DEFB
DEFB
DEFB
DEFB
DEFB
DEFW
DEFB
DEFW
DEFW

DEFB
DEFB
DEFB
DEFB
DEFB
DEFW
DEFB
DEFW
DEFW

END

00H

0000
0000
0000
0000

02H
08H
14H
0D2H
DOH
0000
0000
0000
0000

02H
20H
16H
03H
O0H
0000
0000
0000
0000

0000

E37

;DST AC (READ ONLY)
;SAVE MAIN BUF ADDR
sSAVE REMAINING BYTES

sSAVE DE (STATUS.,
;SAVE HL (POINTER)

TOTAL BYTES)

sDEVICE STATUS FLAGS

+DEVICE MASK
/DEVICE #
FAC (LUK

sDST AC (READ ONLY)
7SAVE MAIN BUF ADDR
+SAVE REMAINING BYTES

;SAVE DE (STATUS,
sSAVE HL (POINTER)

TOTAL BYTES)

JDEVICE STATUS FLAGS

frDEVICE MASK
;DEVICE #
FAC (LU

;DST AC (READ ONLY)
+SAVE MAIN BUF ADDR
sSAVE REMAINING BYTES

;SAVE DE (STATUS.,
;SAVE HL (POINTER)

+rEND OF RNP...

TOTAL BYTES)

F1

APPENDIX F

Getting on line with TSS

The modem line can be in any one of several states,

depending on what has happened since it was last

used, The following routine will usually get the

time sharing system connected, regardless of the

state the line is presently in,

1)

2)

3)

k)

5)

Turn on power to CPU and CONSOLE. (Green light
on CPU should light if power is ok.,)

Press lower push button on CPU panel to reset
CPU. (Illustrated in App. A) The following
message should appear on the console: Zee 0S V1.2,

If it does not appear, press button again.

You are now in the monitor program (described

in Chapter 2). Next press "K” on the console
keyboard, This should cause the CPU to enter the
HOST I/0 routine (described in Chapter 3). The
following message should appear on the console:
210+, If it does not appear, go back to step 2.

You are now ready to connect to the TSS system,
Press "CR" on the console, The TSS system may
answer with the sign-on message. If so, continue
as if you were on a dial-up terminal, (Refer to
Honeywell Time-Sharing System Pocket Guide, BS12,
page 13, TSS Terminal Operation.)

If there is no response from the previous input,
press a "CTL A". The system may respond with:
Program Name? If so, answer with 7SS, and continue

like a dial-up terminal .

II.

F2

6) If there is still no response, press the "ESC"
key on the console and go back to step 4, This
serves as the "break" key on this system,

7) If, after repeating the above procedure (from 4 to 6)
several times, there is still no response from the
HOST system, disconnect the power to the data
modem and reconnect {this should reset the data
line to the HOST system). Then go back to step 4
and start over,

8) If none of the above procedures get a response from
the HOST system, then there is probably something
wrong with the HOST system, In this case, you
should check with the Computing Center on the
status of TSS.

Loading and debugzing programs

Since the HOST system does not require continous I/0
to remain connected, you can jump from the I/0 routine
back into the monitor and then back into the 1/0
program and still remain connected to TSS. This
capability allows you to load programs from the HOST,
jump to the monitor for debugging and then jump back
to the I1/0 program without disconnecting from TSS.
However, you must remember that TSS will time out

if it sees no input within 10 minutes. Therefore,

you should go into the IDLE mode if you plan to be

off longer, or sign off completely.

F3

To load a program from the HOST, the program must

be in absolute HEX format. (This format is explained
in the Zapple Monitor Operating Manual.)

The following shows how to load a program from the

HOST and then go to the monitor,

1) You must be in the I/0 program and connected to TSS,

2) Press "CTL B" on the console and the console will
return a "»",

3) You must now type in an offset value in HEX, or if
no offset is required, just press "CR".

4) You now type in the name of the file which holds
the assembled program, followed by a "CR". The
console will then print LIST {file), after which
the HOST system will start sending the program code.

The program code is both placed in memory and printed
on the console so you can tell if an error occurs,
(ERROR recovery will be explained later.)

5) After the program has been loaded, you may press
"CTL N" to return to the monitor. ,

6) While in the monitor you may run the program just
loaded, display the code, modify the code, etc.
(A1l monitor functions are explained in Appendix B
and the Zapple Monitor Operating Manual.)

7) When finished with the monitor, you press "XK",
which will go to the I/0 program, and you can use
the HOST system without signing back on to TSS.

ERROR recovery - if an error is detected during the
the file transfer, the program will exit to the monitor
routine and print "#*" to indicate an error, Any non-

Hex character detected during the transfer of a block

III.

Fh4

or a bad checksum will cause an error exit, If an
error is indicated it means you have returned to the
monitor program, Therefore, you must re-enter the
HOST I/0 routine by entering a "K" from the keyboard

before you can continue with TSS operations.

Creating and assembling microprocessor programs.

Programs for the microprocessor are written on the
HOST system using the standard text editor. They
must be written in standard ZILOG or MOSTEK Z-80
neumonics and include only the pseudo ops given in
the assembler instruction manual (MOSTEK XFOR-80
CROSS ASSEMBLER MANUAL).

The file created with the editor is used as the input
file to the assembler (XFOR-80), which is run using
the standard FORTRAN system on the HIS 66/60. The
input file number is 05, the line printer output

file is 06, and the assembled Hex code file is 03.
Two temporary files, 02 and O4, are also generated,

but are of no use and need not be saved,

The following command is the format for assembling

a file called MYSRC (280 SOURCE CODE), putting the
listing into a file called MYLP (LINE PRINTER LISTING)
and putting the assembled code into a file called

MYCODE (Z80 HEX CODE),

Iv,

F5

RUNY Z80#MYSRC"O05";MYLP"06";MYCODE"03"

The results of the assembly can be displayed on the

console, using LIST or EDIT, to check for errors, etc,

Naturally, since the assembler is written in FORTRAN,
it can also be run under batch and the I/0 files can
be any medium acceptable to the FORTRAN system,

(For detailed information on the FORTRAN system,

refer to Honeywell FORTRAN Pocket Guide, DD82,)

Console Baud Rate Congiderations

Since the I/0 program is run in real time and uses no
buffering, the console must not be run slower than
the modem link to the HOST system. In fact, to
prevent loss of characters, it should be faster

than the modem speed (ie. if the modem is set at

1200 baud, run the console at 2400 baud).

The console baud rate is selected on the CPU by the
rotary switch on the AUX card (illustrated in App. A).
The setting here should match the setting on the

rear of the console.

-

g‘; 2.

10.

11.

12,

130

14,

BIBLIOGRAPHY

Abrams, Blanc and Cotton, Computer Networks - A
Tutorial, IEEE, 1975,

Amidon, Roger, The Zapple Monitor, Technical Design
Labs, 1976. "

Basket, F., "Open, Closed and Mixed Nets of Queues",
Journal of ACM, COM 22, No. 2, April '75, pp. 248-260,

Booth, Taylor L., Digital Networks and Computer Systems,
John Wiley & Sons, NY, 1971.

Brant, G. J.,"IEEE Transactions on Communication
Techniques", Proceedings of IEEE, COM 17, No. 3,
June '69, pp. 340-349,

Carlson, D, E., ADCCP, IEEE COMPCON 75, pp. 110-113,

Chang, J. H., IEEE Transactions on Communication, COM 20,
No. 3, part II, June 72, pp. 619-629,

Coit, Kenneth T., "Programmable Multiline Communications
Processor Provides Front-End Flexibility", Computer

Denning, Peter J. "Operating System Principles for
Data Flow Networks", Computer, July *78, pp. 86-96,

Fratta, L. M., Networks, John Wiley & Sons, NY,
1973, pp. 97-133.

Gear, William C., Computer Organization and Programming,
McGraw-Hill, Inc., 1969,

Gerla, M., PhD Dissertation, Department of Computer
Science, UCLA, 1973.

Hirsch, Abe, "Minis Used as Data Interfaces Merit
Multilevel Considerations", EDN, Jan. 5, 1978,
pp. 61-6?.

Honeywell Information System, FORTRAN Pocket Guide,
DD 82, 1975.

15.

16,

17.

18,

19.

20,

/32

2 o,
22,

. 23,
L2k,
25.
26,
27,
28,

29.

Honeywell Information Systems, RNP/FNP Interface,
DB 92 A, 1974,

Honeywell Information Systems, Time-Sharing System
Pocket Guide, BS 12, 19?4.

Lesea, Austin and Urkumyan, Nishan, "Multiplexer
System Reduces Cost of Terminal Interfacing",
Computer Design, Aug. 1977, pp. 109-113,

Leventhal, Dr., Lance A., "Cut Your Processor Computation
Time", Electronic Design, Aug. 16, 1977, pp. 82-89,

Madnick, Stuart E, and Donovan, John J., Operating

" Systems, McGraw-Hill, Inc., 1974.

Mills, David L., "Executive Systems and Software

Development for Minicomputers", Proceedings of IEEE,
NOV. 1973’ VOl. 61. NO. 11, ppo 1556"‘16520 '

Mostek Corporation, Mostek Z80 Technical Manual, 1977.

Mostek Corporation, XFOR-80 FORTRAN IV Cross Assembler,
1977.

Mostek Corporation, 280 Programming Manual, 1977.

Muller, Donald J., "Microcomputers Decentralize
Processing in Data Communication Networks", Computer
Design, Oct. 1977, pp. 81-88,

Schoeffler, James D,, Tutorial: Minicomputer Realtime
Executives, COMPCON, Fall *'74. ‘

Schwartz, Mischa, Computer Communication Network
Design and Analysis, Prentis-Hall, 1977.

Scerupski, Stephen E,, "Communications Data - Handling
Gains Flexibility", Electronics, July 11, 1974, pp, 88-91,

Ulrickson, Robert W., "Real-time Systems Often Use
Interrupts", Electronic Design, May 10, 1977, pp. 80-84,

Villasener, Tony, "Need a multi-terminal interface?
a microprocessor network", EDN, Oct. 5, 1977,
pp. 63-68,

