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Conclusions & Future Work
• Our plot of Insertion Energy vs. Volume 

supports Wang et. al.’s conclusion that BCC 

structures have better ionic conductivity

• Will repeat calculations with Na+ & Mg2+ 

ions and with O2- & Se2- sub-anion lattices

to see if relationships hold true for other ions 

and anion lattices

• Will verify relationship between crystal 

structure and ionic conductivity by performing 

Ab Initio Molecular Dynamics simulations 

for various existing superionic conductors

Motivation
• Li-ion batteries lead the battery market due 

to their high ionic conductivity (in the order of 1 

[mS cm-1]).

• Traditional Li-ion batteries are made of organic 

liquid electrolytes, rendering them 

flammable.

• Superionic conductors, or solid-state 

electrolytes or solid-state conductors, are a 

safer, non-flammable alternative to traditional 

Li-ion batteries.

• However, the ionic conductivities of solid-

state electrolytes are not yet competitive 

with those of traditional Li-ion batteries.

• Our research seeks to develop specific 

criteria (based on crystal structure) for 

systematically identifying better superionic 

conductors.
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Methods 
• Began with premise from Wang et al. “Design Principles for solid-state 

lithium superionic conductors” (2015) that superionic conductors can 

be mapped to simple frameworks of anions (bcc, fcc, hcp).

• Density Functional Theory (DFT)

− Gives the ground state energy of a crystal structure

− Hohenerg-Kohn Theorem: the external potential vext 𝐫 , and hence 
the total energy, is a unique functional E n 𝐫 of the electron density

n 𝐫 :

• Nudged Elastic Band Method (NEB)

− Gives the energy landscape and activation energy by finding the 

energy at various points along a path

Li10GeP2S12

Background
Ionic Conductivity is the movement of ions 

through a crystal structure. For superionic 

conductors, ions “hop” between interstitial 

sites. Best existing ionic conductivities for Li-ion

SSC so far:

• Oxide-based in range of 10-3 to 1 [mS cm-1] 

• Sulfide-based above 1 [mS cm-1]

Arrhenius relationship:

• Ionic conductivity (σ)

• Change in energy / Activation energy (E)

• Temperature (T)

Activation energy:

• Def: Amount of energy necessary for an ion

to “hop” from one interstitial site to another

• Decrease activation energy  increase ionic 

conductivity  ions move more easily

σ = Ae
−∆E
kT
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EInsertion = ES+Li − ES−sublattice − ELi
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Used NEB calculations to 

find energy landscapes

− Low energy 

landscape  high 

ionic conductivity

− Results so far not 

as expected; will 

need to continue 

refining calculation 

settings. Should 

match plots from 

Wang et. al.

Used DFT calculations to find relationship 

between activation energy and unit cell 

volume.

− With increased volume per S, the 

distance between Li-ions and anions in the 

sub-lattice increases, resulting in 

decreased attractive force and a 

decrease in overall energy

− FCC insertion energies are higher than 

the BCC curves because the distance 

between Li-ions and the sub-anion 

lattice is smaller, and thus the attractive 

forces are greater, for each volume than 

for the BCC cases. Example: For the case 
where volume = 40 [Å3] per atom:

E n 𝐫 = නn 𝐫 vext 𝐫 d𝐫 + F n(𝐫)


