Determining the Relationship Between Crystal Structure and Ionic Conductivity of Solid-State Electrolytes Audrey E. Wang^{a*}, Karun K. Rao^b, Yan Yao^{a,b}, and Lars C. Grabow^b

Motivation

- Li-ion batteries lead the battery market due to their high ionic conductivity (in the order of 1 [mS cm⁻¹]).
- Traditional Li-ion batteries are made of organic liquid electrolytes, rendering them flammable.

Conventional Battery

All-Solid-State Battery

- **Superionic conductors**, or solid-state electrolytes or solid-state conductors, are **a** safer, non-flammable alternative to traditional Li-ion batteries.
- However, the ionic conductivities of solidstate electrolytes are not yet competitive with those of traditional Li-ion batteries.
- Our research seeks to develop specific criteria (based on crystal structure) for systematically identifying better superionic conductors.

Background

Ionic Conductivity is the movement of ions through a crystal structure. For superionic conductors, ions "hop" between interstitial sites. Best existing ionic conductivities for Li-ion SSC so far:

- Oxide-based in range of 10⁻³ to 1 [mS cm⁻¹]
- Sulfide-based above 1 [mS cm⁻¹]

Arrhenius relationship:

- Ionic conductivity (σ)
- Change in energy / Activation energy (E)
- Temperature (T)

$$\sigma = Ae^{\frac{-\Delta E}{kT}}$$

Activation energy:

- Def: **Amount** of energy necessary for an ion to "hop" from one interstitial site to another
- Decrease activation energy \rightarrow increase ionic conductivity \rightarrow ions move more easily

References

[1] Wang et al., "Design principles for solid-state lithium superionic conductors". (17 August 2015)

[2] https://chargedevs.com/newswire/toyota-researchers-develop-all-solid-state-li-ion-batteries [3] https://fidimag.readthedocs.io/en/latest/nebm.html [4] http://cmt.dur.ac.uk/sjc/thesis_ppr/node12.html

^aDepartment of Electrical and Computer Engineering; ^bDepartment of Chemical and Biomolecular Engineering; *email: yyao4@uh.edu

Methods

$$E[n(\mathbf{r})] = \int n(\mathbf{r})v_{ext}(\mathbf{r})d\mathbf{r} + F[n(\mathbf{r})]$$

Nudged Elastic Band Method (NEB)

energy at various points along a path

Cluster supported by the NSF award number ACI: 1531814

→BCC - T1 →BCC - T2 ---- FCC - T1 --FCC - O1 **-**FCC - T2