Quantifying the Net Cost of Transport Curve During Human Walking: How Much Time Is Required?

INTRODUCTION

- The U-shaped net cost of transport (COT) curve shows us that humans naturally select biomechanical conditions that help them minimize energy utilization during walking [1]. One of these biomechanical selections is speed as evidenced by all humans having an optimal walking speed at which they minimize the energy required to move a certain distance.
While the net COT curve provides unique insight into the determinants that underlie energy minimization, the process of quantifying such a curve is extremely time-consuming because this requires that each subject walk across a range of slow to fast walking speeds and that they reach a steady-rate of metabolism at each particular speed. This process is further complicated by the fact that there lacks an objective criterion that defines the period when a subject has reached a steady rate of metabolism.
As a result, the generally accepted practice in many walking studies is to use the last 3 minutes of a 6-10-minute walking trial, assuming that a steady-rate metabolism has been achieved [2-3]. This results in a time-consuming protocol, and therefore is not often conducted in walking studies.
We propose a slope method for determining the start of steady-rate metabolism With the current lengthy protocol in mind, we also sought to determine whether an earlier steady-rate interval could be found and would provide a net cost of transport curve that is not statistically different from that produced by the last 3-minute interval that we consider the current best practice.

METHODS

- Twenty-one subjects completed a randomized series of 7-minute walking trials across speeds ranging from $0.50-2.00 \mathrm{~m} / \mathrm{s}$ [4]. We calculated the net metabolic power over the course of each trial for each subject using the average $\dot{\mathrm{VO}} 2$ and $\dot{\mathrm{V} C O} 2$ values (ParvoMedics) and the Brockway equation [5].
We divided each 7-minute trial into overlapping 3-minute, 2-minute, and 1-minute intervals, and calculated the slope of net metabolic power over time for each interval per subject.
- We compiled these slopes across all speeds for each subject and averaged them Using Tukey's multiple comparison test, we determined when the average slope value was not statistically different from that of the last 3-minute interval from 4.007.00 minutes.
- We calculated net cost of transport by dividing the average value of net metabolic power from each trial shown in Fig. 3. (a) by the speed.

Figure 1. Average time-series course for net metabolic power for a representative subject. Note the sharp rise at the start of the trial that continues until the subject reaches a steady rate of metabolism while walking at moderate to fast speeds. Also note that a greater net metabolic power is required to achieve a faster speed, but nonetheless, a steady rate of metabolism is achieved after two minutes

Figure 2. For simplicity, the graph shows for all subjects, the absolute value of the average slopes for only the overlapping 2 -minute intervals. Note the downward trend of the average slopes until after two minutes where the average slope value remains fairly constant indicating the attainment of a steady rate of metabolism.

RESULTS AND ANALYSIS

- Statistical comparisons between intervals indicate that a steady rate of metabolism was reached by 2.50 minutes for all subjects at all speeds.
- Using paired t-tests, we found no significant differences between the net COT curve created from the first 2-minutes of steady-rate (2.50-4.50 min) and the widely used method of using the last 3-minute interval of the trial (4.00-7.00 min) (all p 's >0.05)
(a)

(b)

Walking Speed (m/s)
一ー $4.00-7.00 \mathrm{~min}$ —O. $2.50-4.50 \mathrm{~min}$

Figure 3. (a) The graph shows how average net metabolic power for all of the subjects increases with speed for the 4.00-7.00 minute and 2.50-4.50 minute intervals of the 7 minute trial. (b) The graph shows the net cost of transport (COT) curves for the 4.00-7.00 minute and 2.50-4.50 minute intervals of the 7 minute trial. The net COT curves overlap and are statistically similar, with a minimum value at $1.00 \mathrm{~m} / \mathrm{s}$. Furthermore, the graph shows that when humans walk below or above their optimal speed, the net COT increases, indicating that more energy is required to move one kilogram of body mass a unit distance.

KEY FINDING

Our analysis demonstrates that across all walking speeds, a minimum of 5 minutes is needed to generate a net COT curve for human walking. This would drastically reduce the overall experimental time by 7-35 minutes per subject.

[^0]ACKNOWLEDGEMENTS
We thank the Office of Undergraduate Research for support and funding through the Summer Undergraduate Research Fellowship program

CONTACT INFORMATION
Email: badeyeri@uh.edu

[^0]: REFERENCES

 1. Ralston. Int Z Angew Physiol. 17(4):277-83, 1958.
 2. Donelan et al. Proc Biol Sci. 268(1480):1985-1992 2001.
 3. Weyand et al. Conf Proc IEEE Eng Med Biol Soc. 2009:6878-6881, 2009.
 4. Thomas et al., 2020. J. Biomech. Manuscript under review.
 5. Brockway. Hum Nutr Clin Nutr. 41(6):463-471, 1987.
