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Abstract 

This dissertation focuses on the following two research topics involving smart 

materials: 1) the advanced sliding mode controllers and their applications and 2) the 

development of an automatic de-icing system for roads by the electrical heating of 

embedded carbon fiber. 

Sliding mode control has widely been used in many different applications. In this 

dissertation, the active sliding mode control behavior was realized through analyzing the 

vibration suppression of vortex induced vibrations (VIV) of a jumper pipe structure via 

pounding tuned mass damper (PTMD) integrated with viscoelastic material. The force 

generated by the PTMD is analogous to the active sliding mode control. Comparison 

between simulation and experimental results demonstrated the similarity between the 

PTMD and the active sliding mode control.  

Sliding mode controllers are robust to uncertainties and immune to disturbances, 

but suffer chattering problems due to discontinuities in the control law. In this 

dissertation, an advanced sliding mode control using the continuous sign function and 

LQR approach to alleviate chattering is proposed. The desired sliding surface was 

designed using the stable eigenvectors of the controlled system. Simulation results show 

that the proposed approach is effective in disturbance rejection and chattering reduction. 

The robustness of the proposed optimal controller was demonstrated through the 

implementation of active vibration control on a flexible beam with mass uncertainty.  The 

experimental results show that the vibrations of the beam with mass uncertainty can be 

well controlled by the proposed approach. 



ix 
 

Due to the inability to guarantee stability of a system with unmatched 

uncertainties, the proposed approach is improved by replacing the LQR approach with 

the H∞ approach. The stability of the proposed approach was verified with the H∞ 

approach. The simulation results show that the control input generated by the proposed 

robust approach was very smooth compared to conventional sliding mode controllers. 

The experimental implementation for vibration control of a base-isolated structure 

equipped with an MR damper, where the nonlinear force generated by the MR damper 

acted as an uncertainty to the system, showing the effectiveness of the approach.  

Lastly, an innovative de-icing system using carbon fiber as the heating element 

was developed. A test sidewalk was prepared by embedding electrically powered carbon 

fiber frames into the concrete pavement. A LabVIEW interface controlled the de-icing 

process through two sidewalk surface temperature controllers (ON-OFF and Fuzzy 

Logic) and enabled the user to keep track of the environmental conditions. The 

experimental results showed that the proposed technique effectively prevented the 

formation of ice on the pavement surface and that the advanced temperature controller 

was 80% more power efficient compared to a manual on-off switch.  

Keywords: Smart Material, Sliding Mode Control, Scalar Sign Function, Pounding 

Tuned Mass Damper, Vibration Control, Carbon fiber, Electrical heating, de-icing 
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Chapter 1.  Introduction  

Intelligent materials, more popularly known as smart materials, have emerged as a 

key component of recent technological advancements. Their unique ability to respond to 

change in a physical parameter or quantity has introduced new horizons in engineering 

applications. Smart materials have their applications in almost every field and with each 

passing day new and innovative applications are designed, further advancing technology. 

To properly use these smart materials, different control algorithms are used to incorporate 

smart materials into these applications. Among them, sliding mode controllers are known 

for their robustness and stability. This dissertation aims at the development of optimal 

sliding mode control and applications of smart materials in advanced and novel industrial 

applications. In the following section, the motivation and objective of this dissertation are 

discussed.   

1.1 Motivation and Objective  

Vibrations of the flexible structures have always been a major concern for 

structural engineers. Undesired vibrations of the structure can lead to structural failure. 

Although many researchers are introducing different control algorithms to develop 

vibration controllers using active or semi-active control approaches, the industry still 

prefers passive control systems. The main advantages of passive control systems are 1) 

no external power needed, 2) simple and easy implementation and maintenance and, most 

importantly, 3) low cost. However, passive control systems require understanding of the 

passive device and tuning of system parameters to perform effectively. This makes the 

design of passive control systems very cumbersome. Many researchers have offered 

different design techniques and mathematical models to understand and design passive 
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damping devices. However, an active vibration control approach has never been realized 

through analyzing a passive system. 

 In this study, the sliding mode control approach is used to simulate the process of 

a passive damping device to suppress the vibrations of a pipe structure used in the oil and 

gas industry. The passive device using viscoelastic material, called a Pounding Tuned 

Mass Damper (PTMD), has been developed at the University of Houston (UH). The 

PTMD controls the vibrations of the system by dissipating the energy through pounding 

the PTMD device on a viscoelastic material. The passive vibration suppression process is 

analyzed as the sliding mode control effect, where the system is first pushed towards the 

stable region and then is kept under constraints so that the system states remains in the 

stable region. 

The concept of Sliding Mode Control (SMC) has received much attention in the 

past few decades. In sliding mode control, an appropriate control input is provided to the 

system’s states so that the system states are confined to a desired manifold of the state 

space. For the last few decades, the sliding mode controller has evolved. Many 

researchers are using this approach to develop new applications. The main advantages of 

sliding mode control are its ability to reject disturbances and its robustness to systems 

with uncertainties.  

Much research has been done to improve the sliding mode approach and work 

continues to develop its function. One particular area researchers are concentrating on is 

the chattering phenomenon commonly seen in sliding mode control. This phenomenon 

occurs when the system states are pushed very near to the sliding surface and these states 

start oscillating near the sliding surface due to high frequency oscillations from the 
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discontinuous switching function. A high gain is generally associated with this switching 

function to reduce the chattering. It has been seen that though many researchers are 

working on the optimal design of the sliding mode controller, few are attempting the 

optimal design of the controller gain associated with the switching function.  

In this dissertation, an optimal sliding mode control algorithm is proposed using 

the continuous sign function. The proposed sliding mode control law is divided into two 

parts. The first part of the controller attracts the plant states into a stable plane using the 

LQR approach. The second part of the controller is designed as a solution to a 

constrained tracking problem, where the control law makes the system states track the 

desired stable sliding surface/manifold and then the states are made to converge into a 

desired manifold. The matrix sign function approach is used to calculate the stable 

eigenvector. The desired stable sliding manifold is designed by using the stable 

eigenvector of the controlled plant to ensure optimal convergence of the system states to 

the desired surface. Also, the continuous scalar sign function is used to replace the 

discontinuous switching function. The continuous scalar sign function will help in the 

alleviation of chattering introduced by the discontinuous sign function. The stability of 

the proposed approach can be explained by Lyapunov’s second theorem. 

Sliding mode control approaches are famous for their disturbance rejection and 

robustness to matched or structured uncertainties. However, in the case of unstructured or 

unmatched uncertainties, the sliding mode approaches cannot guarantee the stability of 

the controlled system. Also, the LQR approach does not provide a prescribed degree of 

stability for unstructured uncertainties. It is very necessary for a controller to prove its 

stability for unmatched or unstructured uncertainties. In order to deal with unmatched 
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uncertainties, many researchers use the H∞ control approach, where uncertainties of the 

system are assumed to be bounded.  

In this dissertation, the proposed optimal sliding mode approach using the LQR 

approach is improved by replacing the LQR approach with H∞ control approach to deal 

with both matched and unmatched uncertainties. The objective of combining the H∞ 

approach and continuous sign function is to deal with matched and unmatched 

uncertainties of the system and to reduce the chattering effect. Both proposed sliding 

mode approaches are implemented on a simulated system and compared with a 

conventional sliding mode controller individually to test their effectiveness. Also, both 

approaches are implemented as active vibration control examples for uncertain systems. 

Control of undesired vibrations of the flexible structures has always been a major 

challenging task for structural engineers. System uncertainties due to model inaccuracies 

and structure nonlinearities and external disturbances make this challenging task more 

difficult. Many advanced control approaches have been discussed and implemented to 

suppress structural vibrations. Due to their immunity to system uncertainties and external 

disturbances, the sliding mode control approach has been popularly employed in active 

vibration control of flexible structures.  

The proposed robust optimal sliding mode approaches are implemented as active 

vibration control approaches on smart flexible systems to show their effectiveness against 

uncertainties and disturbances. The optimal sliding mode controller with LQR approach 

is implemented to control the multimodal vibrations of a smart flexible beam with mass 

uncertainty. This mass uncertainty can be treated as matched uncertainty of the system. 
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The piezoceramic sensor and actuator are used to sense and control the vibrations, 

respectively.  

The H∞ based robust optimal sliding mode controller is implemented on a two 

story base-isolated system to suppress the vibrations of the structure during earthquake. 

The proposed robust approach provides the excitation voltage to an MR damper 

controlling the vibrations of the system. The force generated by the MR damper shows 

highly nonlinear behavior. Also, the force generated by the MR damper depends upon 

many factors, such as concentration and sedimentation of iron particles, the type of oil in 

the MR fluid, viscosity of the MR fluid when no voltage is provided, etc. All these 

factors make MR dampers highly uncertain. This uncertainty due to the MR damper can 

be structured in to a system model and thus can be considered as matched uncertainty. 

Since the earthquakes are considered as undesired random disturbance, the effect of 

earthquake disturbance on the system states is considered an unmatched uncertainty to 

the system. 

Apart from advanced sliding mode controllers’ development, an automatic de-

icing system is also reported in the dissertation. The motivation and objective behind the 

development of automatic de-icing system is explained. The presence of snow and ice 

causes damages to roads, as well as many road accidents. Different techniques have been 

used to deal with the de-icing issue. All these techniques have disadvantages, such as 

how salting of the roads can accelerate cavity formation in concrete, in addition to being 

laborious. Heat exchangers are expensive and use large amounts of power. Snow movers 

are both expensive and laborious. There is a need of a power efficient system.  In this 

dissertation, an advanced de-icing system using carbon fiber embedded into the concrete 
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as the heating element is reported. An advanced fuzzy logic based temperature controller 

is implemented to control the surface temperature of the pavements. This advanced 

controller takes consideration of weather parameters and their effect on de-icing. Upon 

electrically heating the carbon fiber with the advanced controller, the surface temperature 

of the roads can be controlled and the de-icing system can be made more power efficient 

and economical.  

1.2 Organization 

The dissertation includes eight chapters. Chapter One gives the motivation, 

problem statement, contribution of research done for the dissertation and dissertation 

organization. Chapter two introduces different smart materials such as piezoceramics, 

MR fluids, viscoelastic material and carbon fiber as resistive heating element and their 

basics with application examples. Chapter three presents the introduction and literature 

review of sliding mode control and the evolution of sliding mode controls over the years 

and their applications. 

 Chapter four presents the realization of active sliding mode control law through 

vibration suppression of large flexible pipe structures by a passive device called a 

Pounding Tuned Mass Damper (PTMD). The force generated by the passive device is 

compared with the active sliding mode control law. The simulation results of the active 

approach are effectively compared with the experimental results of the passive device. 

Chapter five talks about the development of the optimal sliding mode controller 

with the Linear Quadratic Regulator (LQR) approach. The chapter includes the 

development of the optimal control approach and its subsequent simulation examples. To 

test the robustness of the approach, the implementation of the proposed controller as an 
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active vibration control of a flexible beam using a piezoceramic actuator and sensor is 

presented. 

 Chapter six describes the use of H∞ based sliding mode control to deal with 

systems with matched and unmatched uncertainties and noise rejection. A simulation 

example is provided to show the effectiveness of the approach. In chapter seven, the 

proposed optimal sliding mode controller for uncertain systems was later implemented on 

a two story building structure for vibration control under various earthquake excitation 

signals by a shaker table for example the Kobe, Northridge and El Centro earthquakes.  

Chapter eight explains the development of an automatic de-icing/anti-icing 

system for roads in very cold regions using carbon fiber as heating elements. This chapter 

talks about the development of the de-icing system, and field testing results. Two 

temperature controllers, the ON/OFF controller and Fuzzy logic based controller, are 

discussed and implemented to keep the surface temperature of roads above freezing 

point. A power cost analysis is presented to show the cost effectiveness of the proposed 

approach. Chapter nine includes the conclusions and future work related to research 

finding provided in this dissertation. 

1.3 Contribution 

The significant outcomes described in this dissertation are as follows: 

An analogy is successfully established between an active sliding mode control 

law and force generated by PTMD with viscoelastic material to suppress the vibrations of 

structure. This analogy is used to realize the active sliding mode control law through 

force generated by the PTMD. The simulation and experimental results supports the 

proposed relation between the sliding mode approach and passive device. 
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An LQR based optimal sliding mode controller using sign function is developed. 

The stability of the proposed controller is explained. The simulation results explain that 

the proposed controller uses less energy to converge the system states than the 

conventional sliding mode controller. The optimal controller is successfully implemented 

to control the vibrations of a smart beam with mass uncertainty using a piezoceramics 

sensor and actuator. The simulation and experimental results show that the proposed 

approach is very effective in rejecting disturbance and dealing with system uncertainties. 

Later, the optimal control gains are calculated using H∞ approach to deal with 

external disturbances and unmatched system uncertainties. The performance of the robust 

optimal controller is evaluated by implementing the controller to suppress the vibrations 

of a two story structure with nonlinear MR damper. The effect of the nonlinear MR 

damper is considered a highly matched uncertainty and the external earthquake excitation 

as an unmatched uncertainty. The experimental results show the effectiveness of the 

robust optimal sliding mode controller in dealing with matched and unmatched 

uncertainties.  

A cost effective de-icing system is developed using carbon fiber as the heating 

element and embedded into concrete pavements. Two control algorithms, the ON/OFF 

controller and the fuzzy logic based controller, are designed to control the surface 

temperature of the road. The fuzzy logic controller is based on surface temperature and 

weather parameters such as environmental temperature, dew point and chances of 

rain/snow. The power consumption cost is analyzed and from the analytical results, the 

fuzzy logic based controlled de-icing system is proven to be more economical than other 

de-icing technologies.  
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Chapter 2.  Introduction to Smart Materials 

Smart materials are defined as materials that exhibit coupling between multiple 

physical domains. The coupling between physical domains is manifested as a 

transformation of energy in one form to another in useful quantity. For example, 

piezoelectric materials will generate a charge signal when subjected to mechanical strain 

and vice versa. Commonly used smart materials include piezoceramics, shape memory 

alloy, magneto-rheological fluids (MR fluids), and fiber optical sensors, etc.  

Smart materials are called ‘smart’ due to their responsive nature to physical 

changes.  Sometimes smart materials are also described as active materials or intelligent 

materials due to their unique nature [1]. There are some materials which do not exhibit 

change in shape, but rather have some other properties which make them special, such as, 

magneto-rheological fluids and electro-rheological fluids which change their viscosity 

when under the influence of a magnetic field and an electric field, respectively.  

Smart materials, or active materials, can be used as a sensor or an actuator based 

on the response they generate. Upon application of a stimulus, the material can respond 

by change in shape or length and this change in shape or length can be used as an 

actuation principle for the system. Similarly, an input to the system can be sensed by the 

sensor. While working as a sensor, smart materials provide some signal or change that 

can be analyzed which corresponds to the physical behavior that is being sensed by the 

sensor.  

2.1 Classification of Smart Materials 

Smart materials are used to describe the system and its behavior. There are 

various approaches to categorize smart materials into groups. In a more standard way, 
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smart materials can be classified into various categories depending on the physical 

property they are responsive to and the output response from them; such as electrical 

field, magnetic field, light, or chemical composition. 

The first category of smart materials depends on the electrical field, where the 

electrical field is used as the medium to provide some change in the property of the 

materials, for example piezo-ceramics and ER fluids. The second category depends upon 

the magnetic field and examples are MR fluids and Magnetic Shape Memory Alloy 

(MSMA) material.  

Some smart materials are also responsive to thermal energy or changes in 

temperature, such as Shape Memory Alloys (SMA). Smart materials are also classified by 

dependence upon light. Fiber Bragg Grating sensors (FBGs) and photovoltaic cells comes 

under this category. There are some materials that are responsive to changes in chemical 

properties of the medium. For example, ionic polymer gels are used to measure the 

concentration of the chemical by measuring its pH value. In this dissertation, different 

smart materials have been used for different applications. A brief description of these 

smart materials is given in the following sections.  

2.2 Piezoceramics 

The piezoelectric effect in materials, by which a material changes shape when an 

electric field is applied to it and vice versa, was discovered in the nineteenth century.  

There are various applications of piezoceramics in research as well as in commercial 

applications. As a sensor, piezo materials are used in microphones, accelerometers and 

ultrasonic transducers. As actuators, piezo materials are used in ultrasonic motors, 

ultrasonic welders, and drilling and vibration control of flexible structures. 
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Piezoelectric materials refer to substances with unique properties of generating 

electric charge when it changes in shape and vice versa. Natural piezoelectric materials 

are quartz, tourmaline and Rochelle salt. Later, other piezoelectric ceramics were 

developed by using ferroelectric materials with the perovskite crystal structure, such as 

barium titanate and Lead Zirconium Titanate, commonly known as PZT.  

2.2.1 Piezoceramics as a Sensor 

As discussed earlier, piezoceramic devices are extensively used as a sensor to 

detect the vibration and strain in structures. One of the most used piezoceramics is PZT. 

The piezoceramic sensor effect can be described in the following Figure 2-1, where a 

beam is attached with a piezoceramics sensor. The beam is bent in the upward and 

downward direction. The voltage induced by bending the beam is opposite to the 

direction of poling. When no load is applied, no voltage is induced.  

 
Figure 2-1 Piezoceramics as sensor 

Piezoceramics are used as sensors in various applications such as gas and 

cigarette lighters, gramophone pick-ups and electric guitars. 

2.2.2 Piezoceramics as an Actuator 

Piezoceramic materials can also be used as actuators for vibration control, shape 

control and micro level positioning applications. The PZT is the most commonly used 



12 
 

piezoceramic actuator. The actuator effect can be explained by the following in Figure 

2-2, where a PZT patch as actuator is attached to the beam. When voltage is applied to 

the beam the patch expands and provides a lateral movement in the beam as compared to 

no movement when no voltage is applied. 

 
Figure 2-2 Piezoceramics as actuator 

If a sinusoidal voltage signal is provided to the patch, the beam will have a 

sinusoidal motion and this makes the beam vibrate. There are various types of piezo 

actuators, such as PZT patches, stack actuators, tube actuators, and bimorph and bender 

actuators. 

2.3 MR Fluids 

Magneto-Rheological (MR) fluid is one of the smart materials used in research. 

MR fluid shows dramatic changes in rheological behavior upon application of the 

magnetic field, depending upon the strength of the applied magnetic field. When 

subjected to large enough magnetic fields, MR fluid can instantly change its viscosity and 

change form from a free-flowing fluid to a semi-solid.  

MR fluids are typically composed of a carrier fluid with suspended magnetic 

metal particles.  Synthetic oils, mineral oils, glycol or water is used as carrier fluid and 

pure soft iron particles consisting of a diameter around 3 to 5 microns are used as 
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suspended metal particles (composing 10-50% by volume). The magnetization induced 

by the magnetic field makes the suspended particle line up as columnar structures parallel 

to the applied field. To discourage gravitational settling and to promote particle 

suspension, enhance lubricity, modify viscosity and inhibit wear, a variety of proprietary 

additives can be added in most MR fluids 

In recent years, MR fluid has shown great promise in the field of smart materials. 

MR fluid has been used in many commercial applications such as vehicle seat vibration 

control, automotive suspension systems, flow control valves and exercise modules. 

2.4 Viscoelastic Materials 

Viscoelastic material can be defined as a material that exhibits a time or 

frequency dependent relationship between stress and strain. An elastic material, much 

like a spring, retracts to its original position when stretched and released, whereas a 

viscous fluid, such as putty, retains its extended shape when pulled. A viscoelastic 

material (VEM) combines these two properties—it returns to its original shape after 

being stressed, but slowly enough to oppose the next cycle of vibration. The other 

affecting parameters other than time and frequency are temperature, dynamic strain rate, 

static pre-load, ageing etc. 

Viscoelastic materials often used to increase the damping of structures and vehicles. 

Since structural metal have low damping, viscoelastic layers are of use as attached layers 

in providing additional damping by introducing relative energy dissipation between 

layers [2]. Viscoelastic materials are used in many applications for example in passive 

noise reduction earplugs, the vibration control of structures, seals and gasket, sports 

equipment etc. 
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2.5 Carbon Fiber 

Carbon fiber is a light material with high tensile strength. The crystal alignment of 

carbon atoms gives the fiber a high strength to volume ratio. The carbon fiber is a 

material with high stiffness, high tensile strength, low weight, high chemical resistance, 

high temperature tolerance and low thermal expansion. The carbon fiber materials are 

very popular in aerospace and civil engineering, the military, and motor sports in 

reinforced composite material.  

According to the manufacturer [3], carbon fiber has a tensile strength of 170 ksi 

with a density of 0.057 pci. Its electrical resistivity is in the range of 8-40m Ωm [4]. 

Taking advantage of the high tensile strength and electrical resistivity, carbon fiber 

material can be used in the de-icing of roads in the sub-tundra region during winter time 

by heating the carbon fiber embedded roads. 
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Chapter 3.  Sliding Mode Controller 

The sliding mode control is famous for its ability of disturbance rejection and 

robustness. For the past few decades, this advantage has attracted many researchers all 

over the world. This chapter explains the literature review of sliding mode control and its 

development and improvements during these years. 

3.1 Introduction to Sliding Mode Controller 

Control system engineers always have to deal with the presence of uncertainties 

and disturbances in real systems, which affect the performance of a controller in a 

negative way. These uncertainties not only can worsen the performance of the system, 

but can lead to system instability. During the control system design, the issues of 

uncertainties are given higher priorities and the stability of the controller is guaranteed. 

Many control algorithms have been proposed to mitigates the effects of uncertainties in a 

control system such as fuzzy logic based controllers, model predictive controllers, 

adaptive and robust control techniques, etc.  

Sliding Mode Controller (SMC) is one such technology which is famous for its 

simple approach and ability to reject the effects of uncertainties and modeling errors. The 

concept of SMC has received much attention in the past few decades. Utkin [5] first 

proposed the concept of sliding mode control as an extension of the Variable Structure 

System (VSS) controller and showed that a sliding mode could be achieved by changing 

the controller structure. In a sliding mode controller, the system state trajectory is forced 

to move along a chosen stable manifold, called the sliding manifold, in the state space.  

The sliding manifold is always chosen in such a way that it itself guarantees system 
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stability once the control restrictions are achieved. Young et al. [6] presented a guide for 

control engineers to design different sliding mode controllers. 

A sliding mode controller is composed of two parts; the first includes the 

estimation term to approximate the system dynamics (linear or nonlinear) and the second 

part consists of a robust compensator which deals with model uncertainties and 

disturbances to ensure stability. The stability of the sliding mode controller is defined by 

Lyapunov’s second theorem. The robust compensator usually consists of an upper 

bounding of the system uncertainty with a discontinuous mathematic function, such as a 

sign function or a saturation function. The control input for the sliding mode controller 

can be mathematically described as 

 ( ) ( ) ( )ˆ , sgnu x f x x F sλ η= − − − +& & , (3-1) 
 

 ( ) ( ) ( ) , 0s t x t x tλ λ= + >& , (3-2) 
 

where λ  is a positive constant, η  is the adjustable parameter of arrival condition, 

( )ˆ ,f x x&  represents the dynamics of any nonlinear system, F  is the upper limit of 

external excitation, and s  is the sliding surface variable. 

Sliding mode controllers can be designed in a systematic approach to the problem 

of maintaining stability and dealing with model inaccuracies and uncertainties to provide 

a consistent performance. This is the reason that sliding mode controllers are employed in 

many industrial applications [7].  A basic theory  is given for the derivation of sliding 

mode control law to explain the basic aspects of the nonlinear controller design from 

Slotine et al. [7].  

3.1.1 Basic Theory 

Consider a second-order system, 
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 ( ) ( ) ( )( ) ( ),x t f x t x t u t= +&& & , (3-3) 
 

where ( )u t is the control input, ( )x t is the output of interest and ( ) ( )( ),f x t x t& are the 

unknown dynamics of the system. The unknown dynamics of the system can be estimated 

by ( ) ( )( )ˆ ,f x t x t&  which can be bounded by some known function ( ) ( )( ),F x t x t& : 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )ˆ , , ,f x t x t f x t x t F x t x t− ≤& & & , (3-4) 
 

In order to have the system track ( ) ( )dx t x t≡ , the sliding surface can be defined as

( ) 0s t = , namely 

 ( ) ( ) 0
d

s t x t
dt

λ λ = + > 
 

% , (3-5) 
 

where ( ) ( ) ( )dx t x t x t= −% is defined as the error of tracking. λ is chosen to be positive 

because the solution of Equation (3-5) at ( ) 0;s t = gives 

 ( ) ( ) ( )0

0
t tx t x t e λ − − =% % , (3-6) 

 

which implies that, for 0λ > , the system output error ( )x t% tends exponentially to zero.  

Now, the system stability can be defined with Lyapunov’s second theorem [8], which is  

 ( ) ( ) 0s t s t ≤& , (3-7) 
 

The control input ( )1u t is then defined as 

 ( ) ( )( )1 sgnu t k s t= − , (3-8) 
 

where ( )( ) ( )
( )

1 0sgn 1 0
s ts t s t

− >=  <
. This implies that 0k > . With large gain k , the 

switching can ensure the existence of the sliding mode even in the presence of matched 
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uncertainties and model error [9]. Once the system achieves the sliding manifold, it 

becomes independent from uncertainties and modeling errors. Then, 

 ( ) ( ) ( ) ( )ds t x t x t x tλ= − + && && && % . (3-9) 
 

From Equation (3-3), the Equation (3-9) can be written as 

 ( ) ( ) ( )( ) ( ) ( ) ( ), ds t f x t x t u t x t x tλ= + − + && & && % . (3-10) 
 

The best approximation for the control law ( )û t , when ( ) 0s t =& , is  

 ( ) ( ) ( )( ) ( ) ( )ˆˆ , du t f x t x t x t x tλ= − + − && && % . (3-11) 
 

Now after adding the Equation (3-8) and Equation (3-11), the control law can be derived 

as 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
ˆˆ , sgndu t u t u t f x t x t x t x t k s tλ= − = − + − −&& && % . (3-12) 

 
The Equation (3-12) can be written as 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )( )ˆ, , sgns t f x t x t f x t x t k s t= − −& & & . (3-13) 
 

Now, stability of the sliding mode control law can be defined by Lyapunov’s function  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )21 ˆ. , , sgn
2

d
s t s t s t f x t x t f x t x t k s t s t

dt
 = = − − & & & , (3-14) 

 

 ( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )21 ˆ, ,
2

d
s t f x t x t f x t x t s t k s t

dt
 = − −
 

& & . (3-15) 
 

Now, letting 

 k F η= + , (3-16) 
 

from Equation (3-4), the stability condition can further be derived as 

 ( ) ( )21
2

d
s t s t

dt
η≤ − . (3-17) 
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Now, from the control law in Equation (3-12), it can be seen that the sliding mode control 

law does not depend upon the system model parameters such as ( ) ( )( ),f x t x t& or system 

states ( ) ( )( ),x t x t& . Thus, it can be stated that the sliding mode controller is able to deal 

with system uncertainties due to modeling errors or external disturbances. 

 The above derivation of the sliding mode control law shows that sliding mode 

control is very robust to system modeling error and other uncertainties. This advantage 

has made the sliding mode control algorithm very popular in many applications. Many 

researchers are using this approach in different research and commercial applications. A 

literature review of the development of sliding mode controller is given in the following 

section. 

3.2 Literature Review 

For the past few decades, the sliding mode controller has attracted the interests of 

control system engineers all over the world due to their advantages of simplicity, 

robustness [10], independence from system modeled uncertainties and ability for 

disturbance rejection. Sliding mode control was introduced in the early 1940’s and after 

the 1970’s it became one of the most promising robust control strategies [11]. The sliding 

mode technique is currently being used in tracking, observer design, identification, 

stabilization and other control problems. Many modifications to the original sliding mode 

concept have been proposed and practically implemented [12]. The sliding mode 

controller has even been implemented for stochastic processes [13, 14].  Young et al. 

provided a guide to control engineers to understand the many different aspects of sliding 

mode control [15]. In their paper, different types of sliding mode controllers and their 

possible implementation techniques were discussed in detail.  
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Since its introduction, the sliding mode control approach has been used in many 

different applications involving different strategies. Wang et al. proposed a smooth 

sliding mode controller and filter based on state feedback. The proposed controller used 

model reference states for the control law [16]. Hsu et al. proposed a model referenced 

output feedback based sliding mode controller for multivariable nonlinear systems. A 

model reference adaptive control is employed for control parameterization with 

unmatched disturbances [17]. Chang developed an output feedback based sliding mode 

controller by using H∞ theory with mismatched disturbances [18]. Sivaramakrishnan et al. 

developed a sliding mode controller for unstable first order systems with time delay. 

They compared the robustness of the controller with a PID controller by checking the 

delay-time constant. Shieh et al. [19] proposed a robust sliding mode control approach 

for magnetic levitation systems.  In their approach, integral sliding mode control with a 

robust optimal approach was developed to achieve high performance in position tracking. 

Li et al. [20] implemented a PD-sliding mode hybrid controller to control the speed of a 

permanent magnet synchronous motor robustly. 

You et al. implemented a sliding mode controller based on genetic algorithms. 

The genetic algorithm uses partial state feedback to model uncertainties and external 

disturbances and to give optimal gains for the control law. A robust observer was 

designed for the state and perturbation of the Stewart platform [21]. Mohammadi 

developed a flexible neuro-fuzzy based sliding mode controller for magnetic levitation 

systems [22]. The neuro-fuzzy approach is used to eliminate the Jacobean of the plant. 

Many complex  hybrid  sliding  mode  controller  structures also have been 

proposed in association with other techniques, such  as  adaptive  control techniques  and  
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fuzzy  control techniques [23-28]. These techniques ensure asymptotical stability and the 

reduction of chattering.  However, most of these hybrid controllers require complex 

implementation algorithms.  

The sliding mode controller is considered to be an effective technique for the 

control of systems with uncertainties. It is always required that these system uncertainties 

should be matched with sliding mode control. Researchers are developing sliding mode 

control approaches to deal with unmatched system uncertainties. Chan et al. proposed a 

sliding mode controller for linear systems with unmatched uncertainties [29]. Choi 

developed a sliding mode controller based on LMI approach. Based on LMIs, an explicit 

formula is given which guarantees the stability of the system with unmatched 

uncertainties [30]. Levant and his group studied and proposed higher order sliding mode 

controllers with finite time convergence [31-33]. They proved that higher order sliding 

mode controllers provide higher accuracy when properly used and reduced the chattering 

effect. In their approach, they tried to reduce the parameter estimation error by a 

proposed algorithm to produce an infinite number of valid parameters sets from a given 

one [31].  

Due to advances in embedded systems, digital implementation of sliding mode 

control has garnered great attention.  Controller implementation is generally done with 

the control gain designed to be constant over a single sampling instant. Young et al. 

discussed a sampled data based sliding mode controller for linear time invariant systems 

with uncertainties and external disturbances [15].  Bartoloni et al. proposed a digital 

second order sliding mode controller scheme. In their approach, it was shown that the 

direct discretization of continuous time control law guarantees the finite time attainment 
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of a motion in the sliding manifold; then an iterative learning procedure kept the states in 

the sliding manifold asymptotically [34]. Digital implementation of a sliding mode 

controller for a nonlinear system with time delay has been reported [35]. Yu et al. 

provide a design methodology based on the model reference approach for the discrete 

sliding mode controller [36].  

The sliding mode control approach has also been employed in optimal control 

design by many researchers. A literature review about optimal sliding mode control and 

chattering phenomenon is given in the following sections. 

3.2.1 Optimal Sliding Mode Controller 

It has been shown in analysis of an optimal control problem with restricted 

control that the optimal trajectory enters sliding mode for a finite time provided  that the 

control horizon is sufficiently large [37]. Recent developments in mathematical tools 

have enabled engineers to envision practical implementation of many applications in the 

field of robotics and mechatronics, high precision aerospace engineering, network-based 

control and signal processing, fault detection, bioengineering, optimally scheduled 

logistics and many industrial applications [37].  

Young et al. introduced a robust sliding mode control design method to solve 

linear optimal control problems with fixed terminal time and fixed terminal constraints 

[38]. Lu et al. has introduced a simplex sliding mode control for nonlinear uncertain 

systems [39]. In their approach, they used chaos optimization to calculate the sliding 

manifold to speed-up the convergence and to reduce chattering. Dinuzzo et al. developed 

a higher order sliding mode controller by robust generalization of Fuller’s problem [40]. 

The high order sliding control approach was designed to provide optimal finite time 
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reaching of the sliding manifold. Sakamoto developed an optimal sliding mode control 

approach by adding a neural network based optimal control problem [41]. Pukdeboon and 

Zinober applied the Lyapunov function based optimal sliding mode controllers to attitude 

tracking of a spacecraft [42]. The integral sliding mode control is applied to combine the 

sliding mode with optimal control.  

Xu et al. [9] proposed an optimal sliding mode controller to solve the infinite time 

optimal control problem. Xu used an LQR approach to calculate the optimal gain for the 

sliding mode controller and to deal with uncertainties stochastically.  Laghrouche et al. 

[43] proposed another higher order sliding mode control based on an optimal LQR 

approach. Edwards proposed a sliding mode controller using linear matrix inequalities 

using convex optimization problems [44].  

Nikkah et al. [45] proposed a novel method based on nonlinear predictive control 

to design optimal linear sliding surfaces for control of under-actuated systems. In this 

method, the proposed sliding surface is a combination of the classic linear surface and an 

adaptive time varying linear component. In their approach, even if optimization of the 

system is not feasible, the controller has to be implemented, making this approach a bit 

cumbersome.  On the other hand, Niu et al. [46] proposed an improved sliding mode 

control algorithm for discrete time systems. They proposed a new reaching law for the 

sliding surface. There are some conditions given in the paper, which must be satisfied for 

the reaching law.  

Azhmyakov proposed a theoretic framework for general optimal problem 

associated with sliding mode controllers [47]. The sliding manifold is assumed as a 

special constraint to the main optimization problem. Based on these constraints, some 
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approximation schemes are discussed which are numerically stable and can be applied to 

many different applications. 

From the above literature review of the optimal sliding mode controller, it was 

found that many researchers have proposed optimal sliding mode approaches, however, 

most of these approaches can be treated either suboptimal or partial optimal. A complete 

optimal sliding mode approach is still sought after. Some strategies use the optimal 

control law to track the desired sliding surface which is not optimally designed, as the 

gain associated with the switching function is not optimally calculated. Generally a high 

scalar gain is associated with the compensator, so that the states of the system quickly 

converge to the vicinity of the sliding surface. This high gain, if not properly selected, 

can also cause chattering in the closed loop system. 

3.2.2 Chattering Phenomenon 

Chattering was discussed as the main obstacle for sliding mode to be one of the 

most significant modern control theories. Chattering is generally referred to as the high 

frequency motion of system states around the sliding manifold due to the discontinuous 

function in sliding mode control law. This discontinuous function may excite the above 

mentioned high frequency motion due to un-modeled system modes and time delays, etc. 

The behavior is harmful because it leads to low control accuracy, high heat losses in 

power circuits, high wear in mechanical moving parts [48]. Many analytical design 

methods have been proposed to reduce chattering [49, 50].  

Researchers have analyzed the chattering phenomenon in detail [11] and proposed 

a system approach algorithm to analyze this phenomenon quantitatively and qualitatively. 

There are three main approaches to deal with chattering. The most common approach to 
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reduce the effects of chattering is to introduce a piecewise linear or smooth 

approximation of the discontinuous switching function. Song and Mukherjee proposed a 

continuous smooth tangent hyperbolic function to replace the discontinuous switching 

functions to alleviate chattering [51]. A comparative study was provided to show the 

effectiveness of the hyperbolic function compared with bang-bang and saturation based 

compensators. To show the effectiveness of the smooth robust compensator, sliding mode 

control was implemented on a smart flexible beam [52]. The experimental results showed 

that the tangent hyperbolic function can be used effectively to replace the high frequency 

oscillation exciting switching sign function. 

The second approach is to use the observer based sliding mode control. With this 

method, the system states are estimated by an observer since the model imperfections of 

the observer are smaller than those present in the system. Also, the discontinuous 

function take only estimated states into account not the actual physical states [15]. It is 

assumed that the observer error will be reduced to zero asymptotically. However, this 

approach may lead to the deterioration of robustness of the controller due to a mismatch 

between the observer and plant dynamics [11]. The third approach is to use higher order 

sliding manifolds. This approach enables finite time convergence to zero of not only the 

so-called sliding variable but its derivative also. This approach has been very attractive to 

researchers for the past few years [11, 30-34, 40]. Mathematically, chattering can be 

eliminated from the system using this approach. However, no model can estimate the 

dynamics of a system exactly; chattering cannot be eliminated practically but can be 

greatly reduced [11] and the use of smooth robust compensators is the most preferred 

way to deal with the chattering phenomenon due to its very simple implementation. In 
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this dissertation, a matrix/scalar sign function is used to calculate the control gains of the 

proposed optimal sliding mode control. A brief introduction of this function is given in 

following section. 

3.2.3 Introduction to Matrix Sign Function 

The matrix sign function can be described as an extension of the scalar sign 

function considering the scalar sign function as a special case of a 1 1× matrix.  The 

conventional scalar signum function can be defined over the complex plane minus the 

imaginary axis [53] as 

 

1 if Re( ) 0

sgn( ) Re( ) 0

1 if Re( ) 0

z

z undefined z

z

>
= =
− <

, (3-18) 
 

where 0z C∈  (i.e., C C+ −∪ ), and ,C C− + and 0C , respectively, denote the open right-

half complex pane, the open left-half complex plane and the imaginary axis.  

Shieh et al. [54] developed an alternative form to represent the scalar sign 

function, which is as follows: 

 

( )
if Re( ) 0

( ) Re( ) 0

( )
if Re( ) 0

g z
z

z
sign z undefined z

g z
z

z

 >


= =

− <


, (3-19) 
 

where 2g(z)= z is the principal square-root of the complex value 2z  and can be 

expressed as 

 
if Re( ) 0

( )
if Re( ) 0

z z
g z

z z

>
= 

− <
. (3-20) 
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Again, Re 0(z)= is not included in the definition. Shieh et al. [54] had shown that g(z) 

can be expressed by the continued fraction expansion form below: 

 

2
2

2

1
( ) 1

1
2

2

z
g z z

z
−

= = +
−

+
+ ⋅⋅⋅

, (3-21) 
 

where +z C C−∈ ∪ . Also, it has been shown that the jth truncation of the continued 

fraction expansion of g(z)can be written as  

 
(1 ) (1 )

( )
(1 ) (1 )

j j

j j j

z z
g z z

z z
+ − −

=
+ + −

, for j = 1, 2… (3-22) 
 

Substituting Equation (3-22) into Equation (3-19) gives an exact expression of scalar sign 

function as 

 
( )( )

( ) lim lim ( ),j
j j j

g zg z
sign z sign z

z z→∞ →∞= = =  (3-23) 
 

 
(1 ) (1 )

( )
(1 ) (1 )

j j

j j j

z z
sign z

z z
+ − −

≈
+ + −

, (3-24) 
 

and jsign (z)  is the jth-order approximation of the scalar sign function in Equation (3-18). 

( )jsign z can be then expressed as  

 

1, for 0 and

( ) 0, for 0

1, for 0 and
j

z j

sign z z

z j

+ > →∞
= =
− < →∞

. (3-25) 
 

As shown above, jsign (z)  is a continuous and differentiable function that includes 0z =  

in the definition. Since the matrix sign function can be written as 

 ( ) ( ) ( )( ) ( ) ( )( )1j j j j

jsign
−

= + −Z I + Z I - Z I + Z I - Z , (3-26) 
 

where n n×∈Z R and n n×∈I R is the identity matrix. 
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As shown in Equation (3-24) and Equation (3-25), when j=∞, jsign (z) is exactly 

the sign function sign(z) . Hence, for securing satisfactory accuracy, j in Equation (3-24) 

is naturally preferred to be a large number with which a precise approximation can be 

efficiently accomplished. This fact can be found from Figure 3-1-Figure 3-5.  When j 

becomes bigger, the accuracy improves in the scalar sign function. In the following 

figures, the proposed scalar sign function approach is explained by plotting the scalar 

sign function using even and odd values of truncation parameter j.  

 
Figure 3-1 Signum function with j = 2 

 
Figure 3-2 Scalar Sign Function Response with high z  and even j  
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Figure 3-3 Scalar Sign Function Response with high z and odd j  

 
Figure 3-4 Scalar Sign Function Response for Low z and even j  

 
Figure 3-5 Scalar Sign Function Response for Low z and odd j 



 

It can be seen in these figures that for an even number of 

sign function always remains within the limits of 

of j, if the input z is large

is always recommended to use even value of 

index j  becoming significantly large, the proposed sign function can create numerical 

difficulty. To overcome this difficulty, a recursive algori

[54] which is simply represented using 

 

where
1

n

m
m=

j = j∏ , and mj

(3-25) is used instead of 

sign function.  

Figure 3-6 Comparison of tangent hyperbolic and scalar sign function

 In the literature review of solution to the chattering problem of sliding mode 

controller, a tangent hyperbolic function

study of tangent hyperbolic function with discontinuous sign function and saturated type 

compensator has been effectively done. It was concluded that 
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It can be seen in these figures that for an even number of j, the value of the scalar 

sign function always remains within the limits of [ 1,1]− . However, with an odd number 

large, the scalar sign function can be 1 ( ) 1jsign z− ≤ ≥
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function can replace the discontinuous sign function as a smooth continuous switching 

function. In Figure 3-6, the comparison between outputs of tangent hyperbolic and scalar 

sign function (j=12) has been shown. It can be seen from Figure 3-6 that scalar sign 

function and tangent hyperbolic function both tend to mimic the signum function and can 

replace the discontinuous function with a smoother continuous function. It was found that 

the sign function can also be termed as a linear approximation of tangent hyperbolic 

function, where tangent hyperbolic function is 

 tanh( )
jz jz

jz jz

e e
jz

e e

−

−

−
=

+
. (3-28) 

 

After truncation of higher order terms, ze can be written as 
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≈
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1 1
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j j
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z z

z z
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. (3-29) 
 

 As shown in Figure 3-2 and Figure 3-3, it is shown that for the larger values of z 

the scalar sign function approach does not saturate at +1 or -1. This can be dealt with by 

using a recursive sign function approach. Compared to the traditional expression of the 

signum function, the proposed continuous sign function approach can replace the 

discontinuous switching function to alleviate chattering. The above mentioned sign 

function can also be used to calculate the stable eigenvectors of the system to design the 

sliding surface.  

The stability of sign function has been analyzed by various researchers. 

Attarzadeh [55] and  Mattheys [56] explains the stability of matrix sign function for 

linear time-invariant systems. Tsai et al. [57] provided a fast and stable algorithm for 
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computing the principal nth root of a complex matrix using matrix sign function. In their 

paper, the authors proved that the matrix sign function is numerically stable for small 

perturbations or errors. Tsai et al. successfully applied the numerically stable matrix sign 

function to continuous to discrete model conversion for the system with a singular system 

matrix [58]. 

From the above literature review, it can be seen that the sliding mode control is a 

very well researched and very famous approach. It is attracting many researchers and 

engineers due to its advantages of rejecting noise and uncertainties, simplicity and good 

performance. Researchers are still employing and developing new ways to implement or 

modify the sliding mode controller for various industrial applications as described in the 

following subsection. 

3.2.4 Application of Sliding Mode Controller 

The sliding mode controller has been used in many industrial applications of 

electromechanical systems such as controls of electric drives, AC/DC motors, power 

converters and advanced robotics [59]. Sliding mode control has been used in the 

automotive industry for vehicle suspension control, steering control, and tracking control. 

Fei et al. [60] proposed an adaptive sliding mode controller for semi-active vehicle 

suspension systems. 

Lee et al. [61] proposed a controller for torque and pitch control of permanent 

magnet synchronous generator (PMSG) wind power systems based on the sliding mode 

approach. Their simulation results suggest that the sliding mode control approach is 

effective in controlling the wind turbine parameters for better performance. Afkham and 
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Ehteram [62] recently used the sliding mode control approach to control the displacement 

of buildings under earthquake excitation. 

The sliding mode control approach has its application in the aerospace industry 

also. Pukdeboon [63] proposed an optimal sliding mode controller to control the attitude 

of a flexible spacecraft. An integral sliding mode controller was applied to combine the 

first-order sliding mode with optimal control. This controller was used to control attitude 

maneuvers with external disturbances.  

SMC approaches have found their application in chemical processing plants also. 

Camacho and Rojas [64] proposed that the sliding mode control approach can be used for 

a nonlinear chemical process. The proposed sliding mode controller was successfully 

tested for different systems such as MIMO systems and minimum and non-minimum 

systems with different experimental conditions (i.e. disturbances, noise and modeling 

errors). The simulation results for the proposed approach were very encouraging. 

Camacho et al. developed an integral model sliding mode controller to approximate the 

parameters of a nonlinear chemical process. The blend of internal model control and 

sliding mode control concepts have been used to design the controller [65]. Chen et al. 

proposed a sliding mode controller for the non-linear regulation control of chemical 

processes, which integrates an identified second-order plus dead-time (SOPDT) model, 

an optimal sliding surface and a delay-ahead predictor [66]. Demirci et al. proposed a 

sliding mode controller for underwater vehicles. In their approach, the sliding mode 

controller is re-configured based on disturbances information from the shallow water 

conditions [67]. 
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Takahashi et al. [68] have proposed the application of sliding mode controller to 

high speed optical disc drives. In their approach they dealt with the system having high 

numerical aperture and a narrow track, thus requiring high performance from the servo 

system. Their experimental results confirmed the effectiveness of the sliding mode 

controller to provide high accuracy, accessibility and defect resistance. 

Because of their immunity towards system uncertainties due to modeling 

inaccuracies, sliding mode control algorithms have been used extensively by researchers 

in vibration control of flexible structures. Song et al. [52] implemented a sliding mode 

based controller to suppress the vibrations of a flexible beam. In their approach, a robust 

smoother tangent hyperbolic function is used to replace the discontinuous switching 

function to alleviate the chattering effect. Later, Gu et al. [69] implemented a fuzzy logic 

based adaptive sliding mode controller for controlling the vibration of flexible aerospace 

structures. In their approach, the fuzzy logic based smooth compensator is used to 

alleviate chattering. Li et al. [70] proposed and successfully implemented a dynamic 

neural network based adaptive fuzzy sliding mode approach for nonlinear structural 

vibration suppression. 

 In this chapter, a literature review of sliding mode control development over the 

years and their applications has been discussed in detail. It can be concluded that even 

though many researchers have proposed robustly stable optimal sliding mode approaches, 

a sliding mode approach which can deal with optimality issues and the chattering 

problem is still desired. Also, few system have been addressed which are optimal which 

explains the stability of the highly uncertain systems.  
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This dissertation reports a robust optimal sliding mode controller using the 

continuous sign function approach which will fulfill the requirement of being a 

completely optimal sliding mode approach thus guaranteeing the stability of the system 

for bounded matched and unmatched uncertainties. The simulation and experimental 

results are shown to prove the effectiveness of the proposed optimal approach.  

 The literature review also found that the sliding mode controller has been used in 

active vibration control techniques for some time. However, for passive system design 

this approach has never been heard of. In this dissertation, the classic sliding mode 

control law is used to guide the design of a passive damping device, called the Pounding 

Tuned Mass Damper with a viscoelastic layer, to suppress the vibrations of a pipe 

structure used in the oil and gas industry. 
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Chapter 4.  Pounding Tuned Mass Damper- An Innovative Realization 

of Sliding Mode Control using a Passive Approach  

Passive devices are the oldest and the most preferred approaches to control the 

vibrations of structures. A passive control system consists of a device or set of devices, 

which affects the system damping or stiffness to control the undesired vibrations. 

Different types of passive control systems have been devised and their mathematical 

models have been developed and discussed.  The mathematical model of any system is 

very important to understand the concept behind the working of the system. It also helps 

researchers to optimally design the control system. In this chapter, mathematical 

modeling of a novel passive vibration control device, called Pounding Tuned Mass 

Damper (PTMD) is studied. The passive force generated by PTMD is analyzed through 

classical active sliding mode control law. An analogy is provided between the force 

generated by the PTMD to control the vibrations and sliding mode control law.     

4.1 Introduction 

Commercial pipes structures, such as jumpers, and risers used in the on-shore and 

off-shore oil and gas industry, are often subjected to different environmental conditions, 

such as internal and external temperature variations, earthquakes, and pulsating internal 

fluid flow. These structures have low natural frequencies and low structural damping due 

to their flexible geometry. Such geometry causes these to be susceptible to Vortex 

Induced Vibrations (VIV) in areas with a significant excitation source such as a wind or 

water current. The combined effect of the above factors can create excessive and/or 

harmful vibrations in which VIV plays a major role. These VIVs can trigger fatigue in the 

structure due to vibrations and potentially lead to failure of the pipe structure. 
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There are a number of ways to control vibrations of these large size structures 

through active, semi active and passive control devices. Each individual approach has its 

own advantages and limitations.  Historically, passive control devices are the first ones to 

be implemented. The biggest advantage of passive control systems is that they do not 

require an external power source.  

A passive control system can be defined as a mechanical system embedded or 

attached to a structure which is designed to modify the structural damping or stiffness so 

that this mechanical device can generate a control force to suppress the vibrations without 

requiring external power. This mechanical device can consist of a single device or set of 

devices [71-73]. Many different examples of passive control systems have been 

developed and implemented for control of structural vibrations e.g. Tuned Mass Dampers 

(TMD), tuned liquid dampers, tuned sloshing dampers, pendulum dampers and base 

isolation systems [73, 74].  

Many new concepts of active control are being developed these days for many 

types of applications. These new concepts include a number of control 

strategies/algorithms such as modern controls, sliding mode control, fuzzy logic based 

control and adaptive control. These control techniques are very flexible and tunable, and, 

can be designed to be robust and adaptable to uncertainties.  These control strategies have 

been implemented also for structural vibration control, but these active control systems 

require large external power which makes them almost impractical for structural 

vibration control [72, 73, 75-78]. In order to have advantages for both types of systems, 

passive and active, a promising technique is used these days by researchers and 

engineers. This is called the semi-active technique [75-79]. Researchers have 
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implemented semi-active controllers for structural vibration in many applications using 

smart materials [80-82]. 

Smart materials always play an important part in structural vibration control 

irrespective of the type of control systems. Many smart materials in the form of sensor or 

actuators are being used for vibration suppression e.g. piezoceramics materials are used 

to control the vibrations of flexible aeronautical structures [83], magneto-rheological 

dampers are used for semi-active vibration control of automotive and civil structures 

[80]. Many researchers are working on controlling the vibration of structures by various 

means. Some are using passive techniques to control the vibration in the system by using 

damping materials. The properties of some commercially available damping materials 

and associated damping techniques have been studied by Nashif [84]. Various materials 

are used commercially to increase the damping of the structures, such as MR fluids and 

visco-elastic tapes, etc.  Viscoelastic materials are one of the oldest in the field of 

structural vibration and noise control and  have been used in many civil structures around 

the world for vibration controls for a very long time [85-87]. Soong and Dargush have 

provided a detailed study of passive energy dissipation and active control [88].  

Researchers, scientists and engineers have studied and implemented various 

passive vibration control devices and active algorithms for structural vibrations. They 

even combined both approaches for performance, flexibility and robustness enhancement. 

Mathematical models have been discussed and analyzed for passive devices for their 

better design. Franchek et al. [89] have discussed the design of an adaptive passive 

vibration control system. However, using a passive device and strategies to design an 

active control system is almost left untouched. In this chapter, the control force generated 
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by the PTMD, a passive device, is compared with active sliding mode control law. Once 

the relation between the passive force and active control law is established, it will be very 

easy for engineers to tune the passive system according to structure.  

The sliding mode control, which was introduced by Utkin [5], is very robust to 

model uncertainty and have good disturbance rejection properties. Sliding mode 

controller strategy has since evolved with time. Researchers and engineers all over the 

world have proposed and introduced this strategy combined with other modern control 

techniques for different applications. This chapter explains the analogy between the force 

generated by PTMD to an active sliding mode control approach. The physical design of 

PTMD is described in section 2. This chapter presents the simulation and experimental 

results of a jumper structure setup at the Structures Lab in the Civil Engineering 

Department at the University of Houston. The simulation results of vibration suppression 

with analogical sliding mode control law for the structure verify the proposed approach. 

4.2 Description of System 

In simple terms, a pounding tuned mass damper is a constrained TMD integrated 

with viscoelastic damping material. The damper’s movement is limited by a limiter or 

other devices attached to the structure. The vibration amplitude of the structure is reduced 

by first transferring momentum between the structure and the added mass of the PTMD; 

then the consumed mechanical energy is dissipated as heat energy when impact occurs 

between the constrained mass and the viscoelastic damping material. A ring with 

viscoelastic (VE) materials is used as a delimiter to limit the vibration of the mass 

damper and to provide damping to the structure. The effectiveness of the PTMD depends 

on the dynamic characteristics of the mass damper component, such as the stroke, the 
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amount of added mass, and the damping properties of the damping VE material. Figure 

4-1 illustrates the structure of a pounding tuned mass damper. 

 
Figure 4-1 Pounding Tuned Mass Damper 

4.3 Experimental Setup 

An experimental model of a jumper was set up in the Structural Research 

Laboratory in Civil Engineering at UH, as shown in Figure 4-2-Figure 4-4. The proposed 

damping system consisted of an L-shaped circular rod and a specially designed damping 

element. The L-shaped rod was built using two sections of 5/8 inch steel rods: 12 inch 

vertical and 24 inch horizontal. The diameter of the rod was 0.625 inch.  

 
Figure 4-2 Experimental Jumper Setup 

 
Figure 4-3 Jumper Model in Structure Lab at University of Houston, TX 



41 
 

        
Figure 4-4 PTMD Device on Jumper Model 

As shown in Figure 4-4 the damping element consisted of a delimiter covered by 

a viscoelastic material. The constraints provided by the delimiter served the following 

two purposes: the first is to limit the motion of the TMD and the second is to dissipate the 

energy transmitted from the original structure to the TMD during impact. To simulate the 

effect of VIV, vibrations of the structure were induced manually by providing the 

harmonic force. The vibration response was measured by an accelerometer from an 

Analog Device (203EB) attached in the center section of the jumper model. 

4.4 Modeling of PTMD as Passive Sliding Mode Controller 

For a typical pipe structure with PTMD, the equation of motion can be described as 

 ( ) ( ) ( ) ( ) ( ) ( )a amx t cx t kx t c z t k z t f t+ + = + +&& & & , (4-1) 
 

 ( ) ( ) ( ) ( ) ( )a a a v am z t c z t k z t f t m x t+ + + = − &&&& & , (4-2) 
 

where , ,m c k are mass, coefficient of damping and stiffness of the structure,  , ,a a am c k  

are mass, coefficient of damping and stiffness of the damper, and ( ) ( ),x t z t  are the 

displacement of the structure and relative displacement of the damper with respect to the 

structure. ( )f t is the disturbance and ( )vf t is force exhibited by the pounding of damper 

on the circular ring covered by viscoelastic layer. After taking Laplace transformation of 

(4-1) and (4-2) assuming zero initial conditions 

 ( ) ( ) ( ) ( )2( ) a ams cs k X s c s k Z s F s+ + = + + , (4-3) 
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and ( ) ( ) ( ) ( )2 2
a a a v am s c s k Z s F s m s X s+ + + = − , (4-4) 
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Now, after putting (4-4) in (4-3) 

( ) ( ) ( ) ( )

( ) ( )
( )

2

2
2

2

...

( ) 1

a

a a a
a a

v
a a a

m s
X s

m s c s k
ms cs k X s c s k F s

F s
m s c s k

 −
 

+ + + + = + +
 − + + 

. 

 

(4-6) 

 

Equation (4-6) can be rewritten as  
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 (4-7) 

After taking the inverse Laplace, the Equation (4-7) can be written in time domain as  

 ( ) ( ) ( ) ( ) ( ) ( )( )p a a p vmx t cx t kx K c x t k x t f t f tβ+ + = − + − +&& & & , (4-8) 
 

where 
2

2 2,a a a
p p

a a a a a as j s j

m s c s k
K

m s c s k m s c s k
ω ω

β
= =

+
= =

+ + + +
, and ω  is the excitation 

frequency of the structure and damper. All these variables will be of maximum value 

when the damper is excited at the natural frequency. The viscoelastic pounding force on 

the system is introduced by putting the motion constraints on the mass damper by adding 

a circular ring with the viscoelastic layer. Linear and nonlinear force generated by the 

viscoelastic pounding have been studied and proposed by many researchers [90-93]. In 

this paper, the nonlinear model given by R. Jankowski [94] is used to explain the force 

generated by the pounding of PTMD on the viscoelastic layer. The force exhibited by 

pounding phenomenon can be explained as 
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 ( ) ( ) ( )
( )

,
0v

f t y t rf t y t r
δ >=  <

, (4-9) 
 

where ( )y t is the absolute displacement of the damper, r is the radius of the circular ring 

for pounding including the viscoelastic tape thickness, and ( ),f tδ is the viscoelastic 

pounding force on the structure during the pounding phenomenon and δ is the 

deformation of the viscoelastic surface during pounding. The pounding force ( ),f tδ  

during impact between structures [94] is expressed as: 

 ( )
( ) ( ) ( )

( ) ( )

3/2

3/2

0
,

0

t t for t
f t

t for t

φδ ξδ δ
δ

φδ δ
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& &

&
,                     (4-10) 

 

where δ&  denotes the relative velocity between damper and pipe structure, φ  is the 

impact stiffness parameter depending on material properties and the geometry of 

colliding bodies and ξ  is the impact damping. The deformation ( )tδ  of viscoelastic 

layer depends upon the displacement ( )y t  of PTMD; when it hits the viscoelastic layer 

and the direction of displacement. This means that viscoelastic force ( )vf t can be further 

redefined as  

 ( ) ( ),vf t f t Hδ= , (4-11) 
 

where H is a function, defined for direction of motion of PTMD. That is  

 
1

1
0

r
H r

otherwise

δ
δ
>= − < −


, (4-12) 

 

where r is the radius of the viscoelastic ring. The positive and negative sign defines the 

direction of motion of PTMD. The control force by PTMD to control the vibrations of 

structure can be extracted from Equations (4-8) and (4-11), resulting in  
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 ( ) ( ) ( )( ) ( )c p a a p vf t K c x t k x t f tβ= − + −& . (4-13) 
 

From (4-11) and (4-12), the force generated by PTMD to counter the vibrations of 

structure can be rewritten as  

 ( ) ( ) ( )( ) ( ),c p a a pf t K c x t k x t f t Hβ δ= − + −& . (4-14) 
 

4.4.1 Comparison of PTMD and Sliding Mode Control Law 

 The sliding mode controller is a robust controller. The sliding mode controller is 

composed of two parts; the first includes the estimation term to approximate the system 

dynamics (linear or nonlinear) and the second part consists of a robust compensator 

which deals with model uncertainties and disturbances to ensure stability. The stability of 

the sliding mode controller is defined by Lyapunov’s second theorem. The robust 

compensator usually consists of an upper bounding of the system uncertainty with a 

discontinuous mathematic function, such as a sign function. The control input for the 

sliding mode controller for vibration suppression can be mathematically described as [52] 

 ( ) ( ) ( )sgn (du t K s t s tγ= − − , (4-15) 
 

 ( ) ( ) ( )1 1, 0 ,s t c x t x t c= + >&  (4-16) 
 

where 1
a

a

k
c

c
=  is a positive constant, γ is the adjustable parameter of arrival condition, 

and ( )s t is the sliding surface variable. The signum function sgn() in Equation (4-15) is a 

discontinuous function. Since the modeling of PTMD is supposed to be continuous, the 

signum function can be replaced with the continuous sign function [95] defined in (3-24) 

and (3-25). 

 Also, the output of the signum function is +1 or -1 depending upon the positive 

or negative sign of the input. However, for practical considerations, the force generated 
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by this part of control law has to be continuous and converging. In Figure 4-5, the output 

of scalar sign function is converging with time and the output of the signum function 

keeps fluctuating between +1 and -1, the continuous scalar sign function is a more logical 

choice than the discontinuous signum function. 

 
Figure 4-5 Comparison of scalar sign function with signum function 

The Equation (4-15) can further be rewritten as  

 ( ) ( ) ( )( ) ( )( )1du t K c x t x t sign s tγ= − + −& , (4-17) 
 

⇒  ( ) ( ) ( ) ( )( )a
d d

a

k
u t K x t K x t sign s t

c
γ= − − −& . (4-18) 

 
Now, on comparing the forms of Equations (4-14) and (4-18), it is found that the right 

hand terms of both control forces are analogous to each other.  

Also, from both Equations (4-14) and (4-18), it is very clear that the PTMD is 

controlling the vibrations of the structure by first constraining the motion in to a smaller 

range under the constraints of the circular viscoelastic layered ring. These dynamics in 

this constrained area can be defined as the sliding surface of the structure. Once the 

motion is constrained in to this area, the vibration energy is dissipated by the pounding of 

the mass damper on the viscoelastic layer, which can be linked to the switching 
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phenomenon of a sliding mode control to keep the states in the sliding surface. The 

analogy between both controls forces are shown in Table 4-1. 

Table 4-1 Analogy between passive sliding mode controller and PTMD 
Passive Sliding Mode Control law Pounding Tuned Mass Damper control 

force 
a

d
a

k
K

c
 p aK k  

dK  p aK c  
γ  

pβ  

( )( )sign s t  ( ),f t Hδ  

4.5 Comparison of Simulation and Experimental Results 

A finite element analysis based mathematical model of the jumper structures 

explained in an earlier section of the experimental setup was prepared using SAP2000. 

The jumper model was divided into 11 lump elements.  The stiffness matrix was 

modified to match the real experimental data from the jumper system. The damping 

matrix of the structure was calculated using the Rayleigh’s method. The overall damping 

ratio of the real system was calculated to be about 0.25%. The natural frequencies of the 

jumper model were 1.85 Hz for out-plane vibrations and 1.97 Hz for in-plane vibrations. 

A Simulink model was built to simulate the control of the jumper with sliding mode 

control law. The parameters for PTMD are given in the following Table 4-2. 

Table 4-2 Parameters for PTMD 
S. no Parameters  

1 Mass ( am ) 18.18 Kg 
2 Stiffness ( ak ) 2325.6 Nm 
3 Damping Coefficient ( ac ) 83.24 Ns/m 

4.5.1 Simulation Results 

The following simulations procedures were carried out on a Matlab/Simulink 

environment to analyze PTMD as a passive sliding mode control algorithm for in-plane 

(vertical) and out-plane (horizontal) vibrations. The jumper models were simulated for 



47 
 

free in-plane and out-plane vibrations with and without PTMD, where PTMD is modeled 

as a sliding mode control law. Figure 4-6 shows the comparison of in-plane vibrations of 

the structure and Figure 4-7 shows the force generated by sliding mode control law to 

control the in-plane vibrations of structure. It can be seen that that the force limits to 

control the vibrations are within the practical limits.  

 
Figure 4-6 Simulated in-plane vibrations of jumper with and without PTMD 

 
Figure 4-7 Force generated by PTMD for in-plane vibration suppression 
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Figure 4-8 Simulated out-plane vibrations of jumper with and without PTMD 

 
Figure 4-9 Force generated by PTMD for out-plane vibration suppression

Figure 4-8 and Figure 4-9 show the comparison of out-plane vibrations of 

structure with and without PTMD as passive sliding mode controller, and, the force 

generated by PTMD to control the out-plane vibrations of the structure.

4.5.2 Experimental Results 

The experimental study was conducted in two stages. In the first stage, free 

vibrations of the structure were excited in the vertical direction and the response of the 

system with and without PTMD were recorded. In the second stage, the jumper model 

was excited in the horizontal direction and then the response of the jumper with and 

without PTMD was recorded. Since the first few modes are the dominant modes, only the 
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first two modal vibrations of the structure were targeted for control; thus a noise filter of 

20 Hz cut off frequency was used. 

 
Figure 4-10 In-plane vibrations of with and without control 

 
Figure 4-11 Horizontal vibrations of with and without 

The damping ratio ( )ς of the structure during horizontal and vertical vibrations 

were calculated using the log decrement formula as shown in Equation (4-19), 
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where n is number of oscillations, 1x is amplitude of first oscillation and nx is amplitude of 

nth oscillation. The damping ratios of structural vibrations in both directions were 

calculated with PTMD enabled and PTMD disabled. Table 4-3 compares the damping 

ratios of in-plane and out-plane vibrations of the jumper for three cases; with the 

simulated PTMD as passive sliding mode controller, with physical PTMD and with 

PTMD disabled. 

Table 4-3 Comparison of damping ratio with and without PTMD 
Structural 
Vibrations 

Damping Ratio 
(without PTMD) 

Damping Ratio 
(PTMD Simulated) 

Damping Ratio 
(PTMD Experiment) 

Horizontal 
vibrations 

0.26% 3.08 % 3.33% 

Vertical vibrations 0.24% 2.18 % 2.02% 

4.6 Conclusion 

This chapter presents the realization of pounding tuned mass damper with the 

classical sliding mode control algorithm. The control force generated by PTMD was 

derived and the analogy between components of control force of PTMD and sliding mode 

control law was prepared. The simulation results of the proposed technique are compared 

with the experimental results. The simulation results support the proposed hypothesis. In 

conclusion, the vibration suppression of the jumper via PTMD can be comprehended as 

the sliding mode control law which will help to optimally design the PTMD on a different 

structure in an analytical way.  
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Chapter 5.  Development of Optimal Sliding Mode Control using Sign 

Function with LQR approach 

A novel optimal sliding mode control approach is proposed in this chapter. The 

optimal sliding mode control law is designed using the LQR approach and matrix sign 

function. The stable sliding manifold is designed using the stable eigenvectors of the 

robustly stable system to ensure the convergence of the states. This chapter includes the 

development of the new approach and the stability proof. The performance of the 

proposed approach is evaluated by comparing the simulation results of the optimal 

approach with that of the conventional system. Later, the proposed controller is 

implemented to control the multimodal vibrations of a flexible beam. The robustness of 

the controller is tested by adding a mass uncertainty to the beam. 

5.1 Introduction  

In this chapter, a new optimal sliding mode control strategy is proposed based on 

an optimal LQR approach. First, a robustly stable system is designed using the LQR 

approach by optimally placing the poles of the system in a vertical strip of the left half of 

the s-plane. The sliding surface will be chosen with stable eigenvectors and the controller 

designed using scalar and matrix sign functions [96], ensuring the satisfaction of the 

conditions in [46] and convergence of states to the desired sliding surface. As constrained 

optimization, the states of the robustly stable system track the desired sliding surface. The 

desired eigenvectors are calculated using the matrix sign function to avoid the complex 

eigenvectors of system. The chapter includes the development of an optimal control 

algorithm incorporating the scalar and matrix sign function method. A stability analysis of 

the proposed controller is also provided. The developed control algorithm is simulated as 
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an example and compared with the classical sliding mode control technique [8]. The sign 

function is used to calculate the eigenvectors which are used to design the stable sliding 

surface and to replace the signum function in the sliding mode control algorithm. 

5.2 Design of the Optimal Sliding Mode Controller using the LQR Approach 

The optimal controller is defined as the controller which operates the dynamic 

system at a minimum cost.  The minimum cost is the energy usage to regulate the system 

for desired results. This energy cost function is defined with a linear quadratic equation 

involving the system states and the control input known as the Linear Quadratic Regulator 

(LQR). In this section, an optimal sliding mode controller law is derived using the LQR 

approach with scalar sign function.  

Consider the optimal sliding mode controller design for the state-space model 

which is both controllable and observable as  

 
( ) ( ) ( )
( ) ( )

x t x t u t
y t x t

= +
=

A B
C

&
, (5-1) 

 

where , , , ( ) , ( )n n n m m n n mx t u t× × ×∈ ∈ ∈ ∈ ∈A R B R C R R R and ( ) my t ∈R . The initial 

condition is (0)x α= . The proposed sliding mode controller can be expressed as 

 ( ) ( ) ( ( ))c cu t x t sign S t= − +K E , (5-2) 
 

where m n
c

×∈K R  and m m
c

×∈E R  are control gains calculated by the optimal control law. 

( ) mS t ∈R  is defined as the sliding surface variable to be determined. The sliding mode 

controlled system becomes  

 ( ) ( ) ( ( ))c cx t x t sign S t= +A BE& , (5-3) 
 

where c c= −A A BK . The objectives of the sliding mode controller design in Equation 

(5-2) are as follows: 
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1. The optimally designed system in Equation (5-2) is robustly stable. 

2. The stable sliding surface can be chosen so that the designed state trajectory 

can converge to the equilibrium point. 

3. The designed system will optimally converge to the sliding manifold ( ) 0.S t =  

4. The designed system has reduced the chattering response.  

To achieve the aforementioned design objectives, we first review the following 

optimal regional pole assignment method. The regional pole assignment method will 

ensure that the controlled system’s poles will stay either inside the designated vertical strip 

in the left half of the s-plane. If any pole of the system is already located to the left of the 

vertical system, the controller will keep that pole location unchanged. 

Lemma 1  LQR with optimal eigen-value placement [97]  

Let the quadratic cost function for the system in Equation (3-27) be 

 
0

( ) ( ) ( ) ( )T TJ x t x t u t u t dt
∞
 = + ∫ Q R , (5-4) 

 

where 0≥Q  and 0>R . The optimal state-feedback control law is given by  

 ( ) ( )cu t x t= −K , (5-5) 
 

and 1 T
c

−=K R B P , where 0>P  is the solution of the following Riccati equation, 

 1T T−+ + − =A P PA Q PBR B P 0 . (5-6) 
 

Then, to optimally place the closed-loop eigenvalues in a vertical strip { }2 1,h h− −  with 

2 1 0h h> ≥ ,  as shown in Figure 5-1, the optimal control gain in Equation (5-4) can be 

modified as 

 1 T
c γ −=K R B P , (5-7) 

 
where 0>P  is the solution of the following modified Riccati equation 
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 1ˆ ˆT T−+ − =A P PA PBR B P 0 , (5-8) 
 

in which 2 1
1 1

ˆ , 0.5
( )n T

h h
h

tr
γ −

−
= + = +A A I

BR B P
, and ( )tr �  denotes the trace of ( )� . 

 
Figure 5-1 Region of interest in the continuous-time s-plane 

Remark 1. If the open-loop system matrix A  has stable eigenvalues and

2 max Re ( )h λ− >  A , then all of the closed-loop eigenvalues lie in the vertical strip, 

where ( )λ −
�  designates the stable eigenvalues of ( )�  and Re( )�  denotes the real part of 

( )� . It should be noted that for any 2 1 0h h> ≥ , the open-loop stable eigenvalues, which lie 

within and to the left of the vertical strip, remain invariant as the closed-loop eigenvalues, 

and all the other closed-loop eigenvalues lie in the vertical strip. 

It is well-known that a stable eigenvalue with a small absolute magnitude gives a 

slow response, whereas a stable eigenvalue with a large absolute magnitude yields a fast 

response, which becomes negligible after the settling time. Hence, the whole system 

response can be approximated by the slow response after the settling time. As a result, the 

small (slow) eigenvalue can be known  the dominant eigenvalue and its eigenvector as the 

dominant eigenvector. In this approach, the dominant eigenvector is utilized to construct a 
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specific sliding surface called as the eigen-surface. Based on the optimal regional pole 

assignment method and the aforementioned design objectives, we have the following 

design steps for the optimal sliding mode control law. 

Design step 1: To achieve design objective 1, we assign the value of 1h  in Lemma 1, 

which indicates the degree of relative stability or robust stability. Also, to achieve design 

objective 2, we assign the value of 2h , which indicates the speed of the system response. 

The larger value of 2h  results in large feedback gains and larger designed eigenvalues. 

Hence, the values of 1h  and 2h  become design parameters. Therefore, the first optimal 

controller for the system in Equation (5-1) can be designed as  

 ( )1 (1)( ) ( )cu t x t= −K , (5-9) 
 

where (1)
cK  is determined from Lemma 1. The optimally designed system becomes 

 (1)( ) ( )cx t x t= A& , (5-10) 
 

where (1) (1)
c c= −A A BK . The superscript in Equation (5-9) in ( )1 ( )u t , (1)

cK  and (1)
cA  

designates that the associated input function, feedback gain and system matrix are 

obtained in design step 1. From the designed system in Equation (5-10), we can determine 

the dominant eigen-values (designated as { }(1) , 1, ,k k mλ = L ) and their associated dominant 

eigenvector matrix (designated as (1)
1

n m×∈M R ). This dominant eigenvector matrix (1)
1M

can be utilized to construct the sliding surface ( )S t  as 

 (1)( ) ( )cS t x t= C , (5-11) 
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where (1) m n×∈C R , and (1) (1)
1 =C M 0  with (1)

1 =M any m independent column vectors in the 

matrix n n×∈M R , where the matrix M with 2 1
ˆ ˆ 0h h> ≥  can be computed from the matrix 

sign function in Equation (3-25) as 

 ( )(1) (1)
2 1

1 ˆ ˆ( ) ( )
2 c n c nsign h sign h= + − +M A I A I , (5-12) 

 

The dominant eigenvalues { }(1) , 1, ,k k mλ = L  associated with the dominant eigenvectors in 

(1)
1M  are lying in the vertical strip { }2 1

ˆ ˆ,h h− −  [54]. The reason to choose the dominant 

eigenvector matrix (1)
1M  to construct the sliding surface (1)( ) ( ) 0ct x t= =S C  with 

(1) (1)
1 =C M 0  is due to the fact that any state trajectory lies on the specific sliding surface 

(the stable eigen-surface) will surely converge to the equilibrium point. Also, the 

eigenvector matrix (1)
1M  enables 

 (1) (1) (1) (1) (1) (1)
1 1( ) ( ) ( ) 0c k k kt t t λ= = = = =(1) (1) (1)

c c cS C x C A x C A M C M& & , (5-13) 
 

where (1) 1
1

n
k R ×∈M  is an eigenvector in (1)

1
n mR ×∈M  associated with the eigen-value (1)

kλ  for

1, ,k m= L . Hence, we have the two sliding conditions as (1)( ) ( ) 0cS t x t= =C and 

(1)( ) ( ) 0cS t x t= =C& &  for (1) (1)
1 0=C M . The orthogonal matrix (1)C  of the dominant 

eigenvector matrix (1)
1M for (1) (1)

1 =C M 0 can be determined from a Hermitian matrix [23]. 

To construct the Hermitian matrix n n×∈H R [24], we compute the following matrix 

n n×∈N R  via the matrix sign function in Equation (3-25) as: 

 (1) (1)
2 1

1 ˆ ˆ( ) ( )
2 c n c nsign h sign h = + + + N A I A I . (5-14) 
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The non-dominant eigenvalues { }(1) , 1, ,k k m nλ = + L  in (1)
cA  are lying outside the vertical 

strip { }2 1
ˆ ˆ,h h− − . The associated non-dominant eigenvector matrix (denoted as

(1) ( )
2

n n m× −∈M R ) can be determined from the matrix N  in Equation (5-14) [24] as (1)
2 =M

any n m−  independent column vectors in N . 

The Hermitian matrix n n×∈H R  and its inverse matrix n n×∈V R  can be expressed as  

where (1) (1) ( )
1 2 1, ,n m n n m m n× × − ×∈ ∈ ∈M R M R V R and ( )

2
n m n− ×∈V R  for 2n m≥ . Since n=VH I , 

hence, (1)
2 1 ( )n m m− ×=V M 0  and (1) ( )

2
n m nC − ×= ∈V R . For 2n m< , the corresponding block 

eigenvectors are chosen as (1) ( )
1

n n m× −∈M R , (1)
2

n m×∈M R , ( )
1

n m n− ×∈V R  and 2
m n×∈V R . 

Hence, (1)
2 1 ( )m n m× −=V M 0  and (1)

2
m n×= ∈V C R . It is noted that when 2n m< , the number 

of the dominant eigenvectors in (1)
1M  is chosen as n m−  but not m . In addition, the (1)

kλ  

can also be complex eigen-values, and their eigenvectors become complex eigenvectors. 

To avoid the use of the complex eigenvector as the sliding surface, an alternative real 

eigenvector can be obtained from the block eigenvector (1)
1M  obtained in Equation (5-15). 

Design step 2: To achieve the design objective 3, we design the second optimal tracker for 

the system in Equation (5-10), so that the output of the designed system is able to 

optimally track and stay in the desirable sliding surface. For simplicity in notation, we 

consider a 2-input and 2-output system model as 

 
(1)

(1)

( ) ( ) ( )

( ) ( )
c cx t x t u t

S t x t

= +

=

A B

C

&

, (5-16) 
 

 
1 11 (1) (1)

1 2
2

−−  
 = = =   

 

V
H M M V

V
, (5-15) 
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where (1) 4 4 2 1 (1) 2 4, ( ) ,c u t× × ×∈ ∈ ∈A R R C R , and (1) (1)
1 =C M 0 . 2 1( )S t ×∈R  is the sliding 

surface and (1) 4 2
1

×∈M R  are the dominant eigenvector matrices obtained by using the 

Equation (5-15). The sliding surface equation in (5-16) can be expressed as 

 
(1) (1)(1) (1)

1 3(1) 13 1411 12
(1) (1)(1) (1)

2 423 2421 22

( ) ( ) 0
( ) ( )

( ) ( ) 0

x t x tC CC C
S t x t

x t x tC CC C

        
= = + =        

       
C . (5-17) 

 

The constrained equation can be written as 

 
1 (1) (1)(1) (1)

1 13 143 313 1411 12
(1) (1)(1) (1)

2 23 244 423 2421 22

( ) ( ) ( )
( ) ( ) ( )

c

c

x t q qx t x tC CC C
x t q qx t x tC CC C

−
        

= −         
         

� . (5-18) 
 

Suppose the output of the system in Equation (5-16) is chosen as 

 

1

1 2

2 3

4

( )

( ) ( )1 0 0 0
( ) ( )

( ) ( )0 1 0 0

( )

x t

x t x t
y t x t

x t x t

x t

 
 

     = = =       
 
 

C . (5-19) 
 

The performance index for the tracking problem can be defined as 

 [ ] [ ]10
( ) ( ) ( ) ( ) ( ) ( )

T TJ y t S t y t S t u t u t dt
∞
 = − − +
 ∫ Q R . (5-20) 

 

Letting 1 2=Q I and substituting the output function in Equation (5-19) and the constrained 

Equation (5-18) into Equation (5-20), we obtain ( ) 0S t =  and 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
1 20

2 2
33 3 34 3 4 44 40

0

( ) ( ) ( ) ( )

ˆ ˆ ˆ2

ˆ

T

T

T T

J x t x t u t u t dt

q x t q x t x t q x t u t u t dt

x t x t u t u t dt

∞

∞

∞

 = + + 

 = + + + 

 = + 

∫

∫

∫

R

R

Q R

,  (5-21) 
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where 2 2
33 13 23 34 13 14 23 24

33 34

34 44

0 0 0 0

0 0 0 0ˆ ˆ ˆ, ,
ˆ ˆ0 0
ˆ ˆ0 0

q q q q q q q q
q q

q q

 
 
 = = + = +
 
 
 

Q and 2 2
44 14 24q̂ q q= + . Thus, 

the constrained optimization problem for the sliding surface tracking in Equations (5-16), 

(5-17) and (5-20) can be converted into an equivalent LQR problem in the following. 

Rewriting Equation (5-16) and Equation  (5-21) yields 

 (1)( ) ( ) ( )cx t x t u t= +A B& , (5-22) 
 

 
0

ˆ( ) ( ) ( ) ( )T TJ x t x t u t u t dt
∞
 = + ∫ Q R , (5-23) 

 

The optimal control law becomes ( ) ( )2 2 1( ) ( ) ( )T
cu t x t x t−= − = −K R B P , where 0>P , the 

solution of the following Riccati equation is 

 (1) (1) 1ˆT T
c c

−+ + − =A P PA Q PBR B P 0 . (5-24) 
 

Then, the second optimal controller for the system (5-22) is  

 (2) (2)( ) ( )cu t x t= −K , (5-25) 
 

where ( 2 )
cK  is determined from the solution of the equivalent LQR problem described in 

Equations (5-22), (5-23) and (5-24). The designed system becomes  

 (2)( ) ( )c cx t x t= A& , (5-26) 
 

where (2) (1) (2)
c c c= −A A BK . Subsequently, the total sliding mode controller in (5-2) for the 

system in (5-1) can be determined from (5-9) and (5-25) as  

 

(1) (2)

(1) (2)

( ) ( ) ( ) ( ( ))

( ) ( ) ( ( ))

( ) ( ( ))

c

c c c

c c

u t u t u t sign S t

x t sign S t

x t sign S t

= + +

= − + +

= − +

E

K K E

K E

, (5-27) 
 

where (1) ( 2)
c c c= +K K K . The optimally designed sliding mode controlled system becomes 
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( ) ( ) ( ) ( ( ))

( ) ( )
c c cx t x t sign S t

y t x t

= − +

=

A BK BE

C

&

. (5-28) 
 

Since ( ( ))sign S t  is a constant vector with each component 1+  or 1− , the final value 

theorem can be applied to (5-28) to determine the forward gain cE  in (5-28) as  

 
11( )c c

−− = − E C A-BK B . (5-29) 
 

The optimally designed controller in (5-27) is able to minimize the tracking error 

between the output trajectory ( )y t  and the sliding surface ( )S t  in (5-20) and enables the 

controlled state trajectory to satisfy the constrained equation in (5-18) or stay in the sliding 

surface ( ) 0S t =  in (5-11) and (5-17). 

Design step 3: To achieve the design objective 4, the chattering effects caused by a non-

smooth signal, such as the signum (sgn) function in (3-18), can be reduced by introducing 

the smooth sign function discussed in (3-24). Because the thi  entry ( )ix t  in ( )x t  can be 

represented as ( ) ( ) ( )( ) ( ) ( )( )i i i i j ix t x t sign x t x t sign x t= ≅ , the sliding surface is 

rewritten as 

( ) ( )( ) ( ) ,...
T

1 j 1 2 j 2 n j nS t x t x (t) sign (x (t)), x (t) sign (x (t)) , x (t) sign (x (t)) = ≅  
1 1C C , (5-30) 

 

Since ( )ja a sign a= ⋅ , (5-30) can be written as 

 ( ) ( ) 2 2 2...
T

1 j 1 2 j 2 n j nS t x (t)sign (x (t)),x (t)sign (x (t)), ,x (t)sign (x (t)) ≅  
1C . (5-31) 

 

The term 2
i j ix (t)sign (x (t))

 in (5-31) is a nonlinear smooth function. According to Wu et al. 

[98] and [8], we can use a single variable function approach such that  

 ( )x f x=& , (5-32) 
 



61 
 

where ( )f x  is a nonlinear single variable function. The optimized linear model can be 

written as  

 kx a x=& , (5-33) 
 

where 
( )k

k
k

f x
a

x
=

 
is an exact linear model of the nonlinear function ( )f x  at any 

operating point 0kx ≠ [95, 98]. When 0kx = , the ka  in (5-33) reduces to the gradient 

value of ( )f x  in (5-32) evaluated at the operating point .kx x=  Thus, the exact linear 

model of the nonlinear function ( ) ( )( )2
i ix t sign x t can be expressed as 

 2
i j i i ix (t)sign (x (t)) d x (t)≈ , (5-34) 

 

where 0 12
i j id sign (x (t))≤ ≈ ≤

 for 1,2,3,...,i n=  and even values of j. It follows that 

 ( ) ( ) ( )( )
1 1 2 2( ) , ,..., ( )

T

i n nt d x t d x t d x t x t⇒ = =  
1

dS C C , (5-35) 
 

where ( )iS t  is the optimally linearized sliding surface of ( )S t  in (5-31) with 

(1) (1) (1) (1)
1 2, ,..., nC C C =  C

 
and (1) (1) (1)

1 1 2 2, ,..., .n nC d C d C d =  dC  

Subtracting (5-35) from (5-11), we obtain the following modified sliding mode surface  

 ( ) ˆ( ) ( ) ( ) ( ) ( ) ( )it t t x t x t= − = − =1
e dS S S C C C , (5-36) 

 

where ( ) ( ) ( )( ) (1) (1) (1)
1 1 2 2

ˆ 1 , 1 ,..., 1 n nd C d C d C = − = − − − 
1

dC C C , 2 (( ))i j id sign x≈  and 

0 1id≤ ≤  for even values of j. It is observed that ( ) 0t =eS  when 1id = . It can be seen 

from the developments in (5-30) to (5-35) that with the tuning parameters id , we can map 

the value of the modified sliding surface function ˆ( ) ( )t t=eS Cx  in (5-36) into the interval 

[ ]1, 1−  smoothly and without changing its sign thus it can be used to reduce chattering in 
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sliding mode control. The comparison of the magnitudes of (1)( ( ))sgn C x t  and 

ˆ( ( ))jsign Cx t  is shown in Figure 5-2. 

 
Figure 5-2 Magnitude of ( ( ))sgn t(1)C x and ˆ( ( ))jsign tCx with 1 2 0.6, 2d d j= = = and white noise 

It is observed that both functions have the same sign, but different magnitude. 

Hence, the sliding mode controller in (5-27) can be implemented as  

 ( ) ( ) ( ( ))jt t sign t= − +c c eu K x E S , (5-37) 
 

where ˆ( ) ( )t t=eS Cx  for a small even value of j in ( ( ))jsign teS ,and small components in 

Ĉ  with large values of id  for 1,2,...i n=  in (5-36). The optimally designed sliding mode 

controlled system with the controller in (5-37) becomes 

 ( ) ( )( )jt t sign tc c ex( ) = A x + BE S& , (5-38) 
 

where c cA = A - BK .    

5.3 Stability Analysis 

For a control algorithm, it is very important that the proposed control algorithm be 

stable for a desired performance. Based on design step 2, the designed state trajectory 

would optimally track and stay in the sliding surface ( ) 0t =S in (5-11).  Hence, the 



63 
 

sliding surface variable ( )S t for the stability analysis is used. Consider the Lyapunov’s 

function 

 ( ) ( )t t= T
cV(x ) S S , (5-39) 

 

or 
ˆ( )

ˆ
= = ≥

⇒ = ≥

T (1)T (1) T

(1)T (1)

V x x C C x x Px 0

P C C 0
, (5-40) 

 

where ( ) 1,m n mt× ×∈ ∈(1)C R S R . 

Now, 
( )

.

= +

= +

T T
c

T (1)T (1) T (1)T (1)

V x S S S S

x C C x x C C x

& &&

& &

, (5-41) 
 

From (5-38) and (5-40), we have 

 ˆ ˆˆ ˆ ˆ ˆ 
 

T T T T T
c c e c c eV(x) = x A P + PA x +S (PBE ) x + x PBE S& , (5-42) 

 

where ˆ
eS designated as ( ( ))jsign teS  and cA is designed to be asymptotically stable, with a 

positive semi-definite matrix P̂ , if (Ac, B) is stabilizable and (A, C) are detectable [99].  

According to Lyapunov’s equation, for a stable system  

 ˆˆ ˆ = −T
c cA P + PA Q , (5-43) 

 

where ˆ η<Q , 0η ≥   and ˆ .≥P 0  Equation (5-42) can be written as 

 
( )

( )
ˆ ˆ

ˆ 0ˆˆ

 −     ≤      
 

cT T
Te

eec

Q PBE x
V(x) = x S

SPBE 0
& . (5-44) 

 

When the system states will be on the sliding surface then ˆ
eS = 0 , 

 0⇒ ≤V(x)& . (5-45) 
 

This result implies that the above designed system will be stable in accordance 

with Lyapunov’s second theorem of stability. Thus we can conclude that the optimal 

sliding mode controller is stable. The proposed controller is applied on two examples on 



64 
 

single input single output (SISO) systems. In the first example, the optimal sliding mode 

controller performance is compared with the classical sliding mode controller. The system 

used is a SISO unstable system. For the second example, the proposed controller is 

implemented as a vibration controller on a smart flexible beam with piezoceramic sensor 

and actuator. In the following sections, both examples have been explained. 

5.4 Example 1: Optimal Sliding Mode Control on SISO System 

For comparison, we consider a controllable, observable and unstable system in a 

controller-type companion form as 

 
( ) ( ) ( ) ( )

( )

t t t t

y t

ξ= + +

=
c c c

c

x Ax Bu B

Cx

&

, (5-46) 
 

where [ ]   
   
   

0 1 0
A = ,B = ,C = 1 0

0 0 1
, and ( )tξ is a band-limited white noise with the 

magnitude within [ ]15 15− shown in Figure 5-2. 

Design step 1: To achieve the robust stability with a sufficient stability margin, we choose

1 1h = . In addition, to create a large non-dominant eigenvalue, we choose 2 160h = . 

Furthermore, to optimally place the designed eigenvalues of the closed-loop system matrix 

(1) (1)
c c= −A A BK  within the vertical strip{ 160, 1}− − , the first optimal control gain (1)

cK  

can be computed as 

 (1) 1
1

T
c γ −=K R B P , (5-47) 

 
where 1P  is the solution of the Riccati equation, 

   1
1 1 1

ˆ ˆ 0T T−+ − =1A P P A P BR B P , (5-48) 
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where 2 1
1 2 1

1

ˆ , 0.5
( )T

h h
h

tr
γ

−
= + = + -A A I

BR B P
, and 1=R . This provides [ ](1) 161 161c =K , 

and 1 (1) 0 1
161 161c c

 
− =  − − 

( )A = A BK . 

The eigenvalues of (1)
cA are{ } { }(1) , 1,2 1.0063, 159.9937k kλ = = − − . The small (slow) 

eigenvalue (1)
1 1.0063λ = −  is chosen as the dominant eigenvalue, its associated dominant 

eigenvector is determined from (5-12), (5-14) and (5-15) with 1̂ 0h =  and 2 1 2

1ˆ ( )
2

h h h= +  

as ( )
( )

1(1)
1 1 1

1

1 1.0063

1.0126
λ

λ

   
= − =   −  

M , and the sliding surface is constructed as 

 

[ ]

( )

(1)

1 2(1) (1)
1 1

1 2(1)
1

( ) ( ) 1 0.9937 ( )

1 1
1 ( ) ( ) 0,

1
( ) ( )

S t x t x t

x t x t x t

x t x t

λ λ

λ

= =

 
= − = − = 
 

⇒ =

C

, 
(5-49) 

 

and
( )

(1)
1

2(1) (1)
1 1

1
1 0

λ

λ λ

 − −
 = = 
 −   

(1) (1)C M . 

Design step 2: The performance index of the tracking problem in (5-20) with 

( )11, ( )Q y t x t= =  and ( ) 0S t =  (i.e., ( ) ( )1 2(1)
1

1
x t x t

λ
 

=  
 

) is reduced to that in (5-23) as 

 

( )2
10

2

2
2(1)0

1

0

( ) ( )

1
( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

T

T

T T

J x t u t u t dt

x t u t u t dt

x t x t u t u t dt

λ

∞

∞

∞

 = + 

  
 = + 
   

 = + 

∫

∫

∫

R

R

Q R

, (5-50) 
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where 22 22 (1) 2
1

1ˆ ˆ ˆ{0 }, 0.9875
( )

diag q q
λ

= = =Q and 1=R . The second optimal control gain 

was found to be [ ](2) 0 0.0031c =K , the total optimal control gain was

[ ](1) (2) 161  161.0031c c c= + =K K K , the eigenvalues of closed loop system ( 2 )
cA  are 

{ } { }(2) , 1,2 1.0063, 159.9968k kλ = = − −  and the forward gain 161c =E . The closed-loop 

system becomes 

 

[ ]

0 1 0 0
( ) ( ) ( ( )) ( )

161 161.0031 161 1

( ) 1 0 ( ),

j ex t x t sign S t t

y t x t

ξ
     

= + +     − −     

=

&

, (5-51) 
 

and initial conditions ( ) [ ]0 3 0Tx =  with the sliding surface 

( ) [ ]( ) 1 0.9937 ( )S t x t x t= =(1)C  and ˆ( ) ( ) 0eS t x t= =C . It is noted that based on the 

specific state-weighting matrix Q̂  in the performance index j in design step 2, the 

optimally designed dominant eigenvalue (2)
1λ  and its associated dominant eigenvector 

(2 )
1M  for the second system matrix (2)

cA  are invariant (i.e. (2) (1)
1 1λ λ= , and (2 ) (1)

1 1M M= ). 

The reason is that the specific state-weighting matrix Q̂  is obtained by pre-substituting the 

constrained equation (1)
1 1 2( ) (1 / ) ( )x t x tλ=  or the sliding surface ( ) 0S t =  into the 

performance index J. As a consequence, the states (i.e. 1( )x t , and 2 ( )x t ) of the optimally 

designed second system must satisfy the constrained equation (1)
1 1 2( ) (1 / ) ( )x t x tλ=  or the 

sliding surface ( ) 0S t = . Hence, the dominant eigenvalue (1)
1λ  in the constrained equation 

must be equal to (2)
1λ  resulting in (1) (2 )

1 1M M= and it is associated with sliding surface ( )S t  

is invariant also. 
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Design step 3: To determine the ( )eS t , we use the modified sliding surface ( )ˆ x tC in 

(5-36). For simplicity, the parameters 1d  and 2d  are chosen as 1 2 0.9d d= =  in the row 

vector Ĉ  in (5-36). The sign function in (5-51) used in the simulation is 

 ( )( )
ˆ ˆ(1 ) (1 )
ˆ ˆ(1 ) (1 )

j j
c c

j e j j
c c

sign S t
+ − −

=
+ + −

Cx Cx

Cx Cx
, (5-52) 

 

where j=2. A small value of j is used to reduce the magnitude of ( )( )j esign S t . The 

simulation results are shown in Figure 5-4 and Figure 5-5. From the simulation result in 

Figure 5-5, we observe that the state trajectory directly tracks to the eigen-surface

( )( ) 0S t =   and converges to the equilibrium point.  

 
Figure 5-3 Band-limited white noise 

 
Figure 5-4 State Response with new optimal 

sliding mode controller 

 
Figure 5-5 Trajectory tracking of sliding surface
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Figure 5-6 State Response of Conventional 

sliding mode controller 

 
Figure 5-7 Sliding surface tracking with 

conventional sliding mode controller 

The proposed optimal sliding mode controller performance was compared with 

conventional sliding mode controller described in Zak [8]. The conventional sliding mode 

control law is defined as 

 ( ) ( ) ( )( )sgneq equ t K x t E s t= − + , (5-53) 
 

where 1( ) ;eq s s eq sK C B C A E C B−= − = − and the sliding surface is defined as 

( ) ( ) 0ss t C x t= = . The conventional sliding mode controller has one condition to satisfy 

( )sC B should be non-singular. For comparison purpose, the parameters for conventional 

sliding mode controller are [ ] [ ]1 0.9937 , 0 1.0063s eqC K= − = and 0.9937eqE = − . The 

initial conditions, band limited white noise and sliding surface parameters are kept same 

for the system with proposed controller. The simulation results for the conventional 

sliding mode controller are shown in Figure 5-6 and Figure 5-7. From the above 

comparison, it can be observed that the state response of optimal sliding mode controller is 

faster than conventional system. Also, the percentage output energy usage before 

convergence of both controller were calculated by 
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 2

2

100os
s

sc

y
r

y
= × , (5-54) 

 

where ( )
2osy t is H2 norm of the output with proposed optimal sliding mode controller 

and ( )
2scy t is H2 norm of output with conventional controller.  

It was found that proposed optimal sliding mode controller used about 66% of total 

energy used by conventional controller, which explains the effectiveness of the proposed 

approach. Since the chattering occurs when system states converge to the desired sliding 

manifold, the energy of the states after both states converge to sliding manifold is 

calculated for proposed sliding mode approach and conventional sliding mode approach. It 

was found that the state (x1) has 71.2% less chattering with proposed approach than with 

conventional sliding mode approach. Similarly, the state (x2) shows approximately 31% 

less chattering, which explains the great chattering alleviation performance of the 

proposed approach. 

The proposed optimal sliding mode controller was also compared with 

conventional sliding mode controller by replacing the discontinuous function with 

saturation function and tangent hyperbolic function. 

 
Figure 5-8 State Response with Conventional 

Sliding Mode Controller with saturation function 

 
Figure 5-9 Trajectory Response with Conventional 
Sliding Mode Controller with saturation function 
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Figure 5-10 State Response with Conventional 

Sliding Mode Controller with tangent hyperbolic 
function 

 
Figure 5-11 Trajectory Response with Conventional 

Sliding Mode Controller with tangent hyperbolic 
function 

From the above comparison in Figure 5-8-Figure 5-11, it was seen that the tangent 

hyperbolic function is helping in reducing the chattering of the system with conventional 

sliding mode controller. However, the optimal sliding mode controller using the sign 

function method still has less chattering than the conventional sliding mode controller. 

The x1 state has about 23% less chattering and x2 state has about 54% less chattering than 

conventional sliding mode controller with tangent hyperbolic function. Also, it was seen 

that the saturation function can be used to replace the discontinuous switching function, 

however the system will have less disturbance rejection. The robustness of the proposed 

optimal sliding mode controller is demonstrated by implementing the proposed approach 

for active vibration suppression of a flexible beam with mass uncertainty and using the 

piezoceramic actuator and sensor. 

5.5 Example 2: Vibration control of Smart Flexible Experiment 

The novel optimal sliding mode approach using the sign function was implemented 

to control the multi-modal vibrations of an aluminum beam. The novel sliding mode 

approach using the sign function was implemented to control the multi-modal vibrations 

of an aluminum beam. The experimental setup for this experiment includes a flexible 
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aluminum beam with a surface bonded piezoceramic sensor and actuator. The aluminum 

beam properties and piezoceramic sensor and actuator properties are discussed in Table 

5-1 and Table 5-2.  The integrated system with data acquisition and hardware accessories 

are shown in Figure 5-12. The beam has very low damping characteristics and the 

vibration amplitude is considerable upon excitation. 

Table 5-1 Beam Properties 
Symbol Quantity Units Value 

L Length (mm) 529.9 
W Width (mm) 48.7 
T Thickness (mm) 0.68 
Ρ Beam density Kg/m3 2690 
E Y. Modulus N/m2 7.03×1010 

Table 5-2 PZT actuator and sensor properties 
Symbol Quantity Units PZT Actuator PZT Sensor 
L Length  (mm) 73.3×28×0.12 12.7×6.35×0.25 

W Width (mm) 28 6.35 
T Thickness (mm) 0.12 0.25 

d33 Strain Coeff. (C/N) 4×10-10 3.5×10-10 

d31 Strain Coeff. (C/N) 1.79×10-10 1.79×10-10 
ρp PZT density Kg/m3 7300 7700 
E Young Modulus N/m2 3.3×1010 6.9×1010 

      

Figure 5-12 Experimental Setu

Two PZT patches, one as actuator (P1-8528) an

used. To activate vibration through the actuator, a piezoc

gain of twenty was used. The system is interfaced with a

the dSPACE Data Acquisition Board RT1103. The s

dSPACE 

Smart Aluminum 

Beam 
p 

d one as sensor (

eramic amplifier w

 Matlab Simulink 

ensor signal was

Power Amplifier 

 

QP 10s) were 

ith a negative 

model through 

 fed into the 
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dSPACE’s Analog to Digital Converter (ADC).  The actuator signal was broadcast 

through the Digital to Analog Converter (DAC) from dSPACE. The sampling time for the 

system was selected to be 0.001 sec.   

For implementing the optimal sliding mode control, non-parametric system 

identification of the smart beam with piezo actuator and sensor was conducted [95, 100, 

101]. The modal frequencies were found by plotting the frequency response function with 

the help of data acquired from the piezoceramic sensor when a frequency rich signal is 

passed through the actuator to vibrate the beam. The magnitude and phase plots frequency 

response function of the identified system compared with the model data, as discussed in 

[95, 100, 101], are shown in Figure 5-13 and Figure 5-14.  

 
Figure 5-13 Magnitude Plot of FRF for the Beam 

    
Figure 5-14 Phase Plot of FRF for the Smart Beam

By analyzing the above plots, it can be stated that the system identification is 

accurate. The first two modal frequencies were considered for vibration control. After 

cancelling the unobserved poles and zeros, the transfer function of the system was  

 
3 2

4 3 2

( ) 0.06213 35.82 271.4 7367
( ) 1.999 4722 3825 739400

Y s s s s
U s s s s s

− + + +
=

+ + + +
, (5-55) 

 

and its state-space representation in a controller-type companion form is  

 
( ) ( ) ( )
( ) ( )

x t x t u t
y t x t

= +
=

A B

C

&

, ( )0x = 0  (5-56) 
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where the system matrices are 

0 1 0 0 0
0 0 1 0 0

, ,
0 0 0 1 0

739400 3825 4722 1.999 1000

   
   
   = =
   
   − − − −   

A B

and [ ]7.367 0.2714 0.003582 0.00006= −C . The eigenvalues of the system are

{-0.3981 12.7292 ,-0.6011 67.5177 }i i± ± . 

For robust stability and to retain the pair of the larger eigenvalues 

-0.6011 67.5177i±  of A for smaller controller gain design, we choose 1 0.4h =  and 

2 12 5h h= = in Lemma 1. The optimal control gain for the first designed system (1)
cA in 

(5-10) was computed from Lemma 1 as [ ](1) 2.9246 7.3121 0.0026 0.0016c =K . The 

eigenvalues of (1)
cA  are { }-0.6011 67.5177 ,-1.2 12.7042i i± ± . 

It is observed that the pair of eigenvalues -0.6011 67.5177i±  is invariant. Then, 

the other pair of eigenvalues -1.2 12.7042i± was chosen as the dominant eigenvalues since 

they have a smaller absolute magnitude than the invariant pair, which could provide 

quickly damped oscillation. To avoid the use of a complex eigenvector to construct the 

sliding surface, we computed the block eigenvector from (5-12) with 1 0.8h
∧

=  and 2̂ 4h =  

as
(1)

(1) 11
1 (1)

12

0.1804 0.1329 -7.1105 37.8719

0.0008 0.1784 -0.2395 -6.5426

T
T

T

M

M

−   
= =   

  
M . (1)

11M  is chosen as the 

dominant eigenvector for constructing the sliding surface. The orthogonal matrix 

3 4
2

×∈V R for (1)
2 11 0=V M can be computed from (5-12). One of the three row vectors in 2V  

is chosen as (1) 1 4×∈C R to construct the sliding surface as 

 (1)( ) ( ) 0cS t x t= =C , with (1) (1)
11 0M =C , (5-57) 
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where [ ](1) (1) (1) (1) (1)
1 2 3 4 1 0 0.0218 -0.0007C C C C = = C . 

Solving a constrained equation from (1)( ) ( ) 0cS t x t= =C  in (5-57) yields 

 
(1)(1) (1)
32 4

1 2 3 4(1) (1) (1)
1 1 1

( ) ( ) ( ) ( )c c c c

CC C
x t x t x t x t

C C C
= − − − . (5-58) 

 

Substituting (5-58) into the output function ( )y t  in (5-56) gives 

 

1 1 2 2 3 3 4 4

(1)(1) (1)
32 4

1 2 3 4 2 2 3 3 4 4(1) (1) (1)
1 1 1

1 1 2 2 3 3 4 4

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

c c c c

c c c c c c

c c c c

c

y t C x t C x t C x t C x t

CC C
C x t x t x t C x t C x t C x t

C C C

C x t C x t C x t C x t

x t

= + + +

 
= − − − + + + 

 

= + + +

=C

% % % %

%

, (5-59) 
 

where [ ] 5
1 2 3 4 7.367 0.2714 0.003582 6 10C C C C − = = − × C  and 

(1)(1) (1)
32 4

1 2 1 3 1 4(1) (1) (1)
1 1 1

0
CC C

C C C C C C
C C C

 
= − + − + − + 
 

C% . Then, substituting (5-58) and 

(5-59) into the performance index J in (5-20) with =Q I  results in ( ) 0S t =  and  

 
0

0

( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

T T
c c

T T
c c c c

J y t y t u t Ru t dt

x t x t u t Ru t dt

∞

∞

 = + 

 = + 

∫

∫ Q
, (5-60) 

 

where 

0 0 0 0
0 0.0737 -0.0338 0.0013
0 -0.0338 0.0156 -0.0006
0 0.0013 -0.0006 0.00002

T

 
 
 = =
 
 
 

Q C C% % % . The second optimal control gain in 

(5-25) for the second designed system in (5-26) with 1R = and Q̂ in (5-60) yields 

  [ ](2) 0 1.0860 0.0063 0.0043c =K . (5-61) 
 

The total optimal gains cK  in (5-27) and cE in (5-29)become 
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[ ](1) (2) 2.9246 8.3981 0.0089 0.0059

100.6771
c c c

c

= + =

=

K K K

E
. (5-62) 

 

The eigenvalues of the optimally designed sliding mode controlled system cA  are

{ } -1.2437 12.7063 ,-2.7421 67.4308i i± ± . To determine the modified sliding surface ( )eS t  

in design step 3, we choose 0.9id =  for 1, ,4i = L  and the 2j =  in the ( ( ))j esign S t . A full 

order Kalman observer is also designed to approximate the system states. The observer 

gain was calculated as [ ]0.99 33.43 485.47 85130.03
T

=L .  

⊗

⊗

ˆ ( )eS t  
Figure 5-15 Block diagram of control system 

The block diagram of the control system is given by Figure 5-15. The block 

diagram of the noise-free original system in (5-56) and the optimally designed sliding 

mode control law in (5-62) are shown Figure 5-15. 

5.5.1 Simulation Results 

For controller implementation, a Simulink model was designed. First, the initial 

control gains were calculated as discussed in a previous section regarding the optimal 

sliding mode controller. The system vibrations were analyzed with and without control. 

They were excited for the first five seconds by applying the first modal frequency signal 

of 2.07 Hz to the system. After five seconds, the excitation signal was turned off and the 

control signal turned on.The simulations of various modal vibrations are shown in Figure 
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5-16, Figure 5-17 and Figure 5-18.  The effectiveness of the controller can be seen in the 

above figures. It can be clearly seen that the vibration of the system was controlled 

effectively with optimal sliding mode controller, as compared to free vibration damping 

without control. 

 
Figure 5-16 First Modal Vibrations 

 
Figure 5-17 Second Modal Vibrations 

 
Figure 5-18 Multimodal Vibrations 

5.5.2 Experimental Results 

For controller implementation, a Simulink model was designed. First, the initial 

control gains were calculated as discussed in the above section regarding the optimal 

sliding mode controller. The system vibrations were analyzed with and without control. 

They were excited for the first five seconds by applying the first modal frequency signal 

of 2.07 Hz to the system. After five seconds, the excitation signal was turned off and the 



 

control signal turned on. Sensor data was recorded for both with control and without 

control with a cut-off frequency of 30 Hz. A comparison between the first modal vibration 

with and without control is shown in 

is also shown in Figure 5-

figures. It can be clearly seen that the first modal vibration of the system was controlled in 

approximately 5 seconds, as compared to mo

without control. The effectiveness of the controller can be seen in the PSD of the system. 

It can be seen that there is a reduction of around 30 dB for the first modal frequency. 

Figure 5-19 Vibration control for first modal 
frequency 

Figure 5-20 PSD comparison for First Modal 
Vibration Control
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control signal turned on. Sensor data was recorded for both with control and without 

off frequency of 30 Hz. A comparison between the first modal vibration 

with and without control is shown in Figure 5-19. A Power Spectrum Density (

-20. The effectiveness of the controller can be seen in the above 

figures. It can be clearly seen that the first modal vibration of the system was controlled in 

approximately 5 seconds, as compared to more than 15 seconds in free vibration damping 

without control. The effectiveness of the controller can be seen in the PSD of the system. 

It can be seen that there is a reduction of around 30 dB for the first modal frequency. 

 
Vibration control for first modal 

 
PSD comparison for First Modal 

Vibration Control 

Figure 5-21 Vibration control for 
frequency

Figure 5-22 PSD comparison for vibration 
control for second modal frequency

control signal turned on. Sensor data was recorded for both with control and without 

off frequency of 30 Hz. A comparison between the first modal vibration 

Power Spectrum Density (PSD) plot 

The effectiveness of the controller can be seen in the above 

figures. It can be clearly seen that the first modal vibration of the system was controlled in 

re than 15 seconds in free vibration damping 

without control. The effectiveness of the controller can be seen in the PSD of the system. 

It can be seen that there is a reduction of around 30 dB for the first modal frequency.  

 
Vibration control for second modal 

frequency 

 
PSD comparison for vibration 

modal frequency 



 

Figure 5-23 Vibration control for multimodal 
vibrations 

A multimodal vibration control test was also performed where the syste

excited at its first two natural frequencies. The data was compared and shown in 

5-23. Again, the controller controlled the multimodal vibration in approximately 4 

seconds, as compared to more than 10 seconds of free vibration. The PSD for multimodal 

vibration control is shown

mode controller, there is a reduction of 30 dB in the first modal frequency

second modal frequency is almost cut off.

mode controller, a test was performed by adding an uncertain mass to the beam tip. The 

system’s first natural frequency shifted from 2.0

Figure 5-25: Vibration control with Mass 
Uncertainty 

78 

    
Vibration control for multimodal 

 
Figure 5-24 PSD comparison for 

vibrations with and without control

A multimodal vibration control test was also performed where the syste

two natural frequencies. The data was compared and shown in 

Again, the controller controlled the multimodal vibration in approximately 4 

seconds, as compared to more than 10 seconds of free vibration. The PSD for multimodal 

vibration control is shown in Figure 5-24. It can be seen that with the optimal sliding 

mode controller, there is a reduction of 30 dB in the first modal frequency

second modal frequency is almost cut off. To test the robustness of the optimal sliding 

mode controller, a test was performed by adding an uncertain mass to the beam tip. The 

system’s first natural frequency shifted from 2.07 Hz to 1.85 Hz with the uncertain mass. 

 
: Vibration control with Mass 

 
Figure 5-26: PSD plot of System with Mass 

Uncertainty
 

 
PSD comparison for multimodal 

vibrations with and without control 

A multimodal vibration control test was also performed where the system was 

two natural frequencies. The data was compared and shown in Figure 

Again, the controller controlled the multimodal vibration in approximately 4 

seconds, as compared to more than 10 seconds of free vibration. The PSD for multimodal 

It can be seen that with the optimal sliding 

mode controller, there is a reduction of 30 dB in the first modal frequency. In addition, the 

To test the robustness of the optimal sliding 

mode controller, a test was performed by adding an uncertain mass to the beam tip. The 

Hz with the uncertain mass.  

 
: PSD plot of System with Mass 

Uncertainty
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The frequency shift due to uncertain mass corresponds to approximately 25% of 

mass uncertainty. The tests were conducted in the same way as discussed before. First, the 

system was excited at its new natural frequency for five seconds. Then, control action was 

turned on. The performances of the controller in both tests are shown in Figure 5-25 and 

Figure 5-26. It can be seen from the response plot that the optimal sliding mode controller 

is robust enough to deal with the uncertainties in the system, as vibration can be 

suppressed in almost 5 seconds even with mass uncertainties.  

5.6 Conclusions 

In this chapter, a novel optimal sliding mode controller was presented. The scalar 

sign function approach was used to design the stable sliding surface. The proposed 

controller was successfully simulated on a single input single output system. The 

simulation results shows that control performance of the optimal sliding mode controller is 

better than the conventional sliding mode controller in terms of disturbance rejection and 

chattering alleviation of up to 71% for one state. The output convergence with optimal 

sliding mode controller used 34% less energy than the conventional sliding mode 

controller. Also, the stability of the proposed controller was proved using the energy 

function. The proposed optimal sliding mode controller was later implemented on the 

smart flexible beam experiment to suppress the multimodal vibrations of the beam. It was 

found that the proposed controller is able to suppress the beam’s multimodal vibrations 

effectively. The power spectrum plots show that the optimal sliding mode controller 

provides approximately 30dB reduction for the first modal vibrations. The controller was 

successfully tested on the smart beam with constructive mass uncertainty up to 25% of the 

total mass of the beam and provides approximately about 25dB reduction.   
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Chapter 6.  Robust H∞ based Optimal Sliding Mode Control 

The sliding mode controller is known for its robustness to matched or structured 

uncertainty. However, for the mismatched or unstructured uncertainty, the sliding mode 

controller does not guarantee the stability of the controlled system [102]. For unmatched 

uncertainties, H∞ norm based approach is always preferred, as the H∞ norm based 

approach considers the worst case scenario of an uncertain system for control objectives. 

Many researchers have used H∞ approach for effective attenuation of disturbance and in 

dealing with matched and unmatched uncertainties in the system [103].  In this chapter, a 

robust state-feedback based optimal sliding mode controller is described as an extension 

of the previously explained optimal sliding mode controller with LQR approach. The new 

sliding mode controller guarantees its stability by H∞ norm.  

6.1 Introduction 

For matched uncertainties, the sliding mode control approach always stands out 

among the best approaches. However, for unmatched uncertainties, the control law does 

not guarantee stability. Many researchers are working on dealing with the issues by 

employing different approaches with the sliding mode approach [104-107], for example 

the adaptive approach, reduced order matching and back-stepping design to relax the 

matching of uncertainties. However, these techniques have some requirements to be 

fulfilled or have some tradeoffs [102]. The optimal sliding mode controller with the LQR 

approach discussed in the previous chapter proves only the asymptotic stability of the 

control system with matched uncertainty. It was proved that the system is robust enough to 

deal with structural uncertainties. However, for unstructured uncertainties or unmatched 
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uncertainties which are unknown to the systems, the prescribed degree of stability cannot 

be proved [108].  

In this chapter, the extension of optimal sliding mode controller is discussed for 

systems with unmatched uncertainties. The first part of the optimal control can be 

designed with H∞ approach rather than the LQR approach by taking into account the 

unmatched properties. The stability of the system is defined with H∞ norm of the system. 

The controller is designed based on the hypothesis that if there exists a finite H∞ norm for 

the closed loop system i.e., ( )T jω γ
∞
< than the system is stable, where T is the transfer 

function of the closed loop system with respect to the unstructured uncertain input. In the 

following section, the development of the robust optimal sliding mode controller is 

discussed. The proposed approach is compared with a conventional sliding mode 

controller and its performance is evaluated. 

6.2 Optimal Sliding Mode Controller for an Uncertain System 

Given an uncertain system as 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0x t x t u t w t

y t x t v t

= + +

= +
0A + A B G

C s

& �

, (6-1) 
 

the selected output to be regulated as 

 ( ) ( )
( )
x t

z t
u t

 
=  
 

0H
, (6-2) 

 

where ( )x t is the state, ( )u t is the control input, ( )y t is the measured output, ( )0w t and 

( )v t are the input and output disturbances, respectively, and ( )z t is the controlled output. 

The initial conditions are ( )0x α= . The pair ( )A, B and ( )0A,H are assumed to be 
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controllable and observable, respectively. Also, the pair ( )A,C is observable. The 

bounded structured uncertainty can be written as 

 = = 1 1A E G H� � � . (6-3) 
 

where 1= ±� and E is matrix involving the uncertain parameters of the system. To find 

1G and 1H in (6-3), the 1G can be chosen as a non-zero column vector of E  and 1H can 

be calculated as 

 T -1 T
1 1 1 1H = (G G ) G E . (6-4) 

 
The uncertain system in (6-1) can be alternatively represented by an extended system as  

 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

ˆ ˆ

ˆ
ˆ

x t x t u t w t

y t x t v t

x t
z t

u t

= + +

= +

 
=  
  

A B G

C s

H

, 
(6-5) 
 

where [ ] ( ) ( )0 1
ˆ ˆˆ ,w w t w t  =     

T T T
0 1 0 1G = G G , H = H H . The robust state-feedback 

control law,  

 ( ) ( ) ( )u t x t= − 1
cK , (6-6) 

 
can be designed from the extended system in (6-5), such that it will stabilize the uncertain 

system in (6-1) and the closed loop transfer function ( )T s from ( )0w t to ( )z t satisfies 

( )T jω γ
∞
≤  [109], where ( ) [ ] ( )1

,T s s
− =   

10
0 c

1

H I - F G F = A + A - BKH � is a Hurwitz 

matrix. The feedback gain ( )1
cK in (6-6) can be expressed as  

 ( ) =1 T
c 1K B P , ( 6-7) 

 
where 0>1P is solved from the following Riccati equation, 
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1 ˆ ˆ ˆ ˆ
γ
 

= 
 

T T T T
1 1 1 12P A + A P + P GG - BB P + H H 0 . (6-8) 

 

The stable closed loop system can be described as 

 
( ) ( ) ( ) ( )
( ) ( ) ( )

0x t x t w t

y t x t v t

= +

= +

1
c 0A G

C s

&

, (6-9) 
 

where ( ) ( )
2

1 ˆ ˆ
γ

1 1T
c cA = A + GG - BK .  

The dynamic system in (6-9) can be considered as a conventional system, from 

which the control law can be designed. The states can be estimated using the Kalman 

filter. The system in (6-9) can be used to design the sliding surface and second control law 

using the Equations (5-22) to (5-37).  

So the final control law can be described as   

 ( ) ( ) ( ( ))jt t sign t= − +c c eu K x E S , (6-10) 
 

where ( ) ( )2= +1
c c cK K K , and ( )1

cK can be calculated from ( 6-7) and ( )2
cK can be calculated 

using (5-23), (5-24) and (5-25). cE is the optimal tracking gain for the tracking of the 

sliding surface and can be calculated from (5-29). ( )teS is the desired sliding surface 

calculated using the robust stable system ( )1
cA . The desired sliding surface ( )teS can be 

designed using Equations (5-12), (5-14) and (5-15). 

The stability of the proposed robust controller can also be explained in a way 

similar to that described in chapter 4, from Equations (5-39) to (5-45). The proposed 

robust controller is tested on an uncertain system. The simulation results of the proposed 

controller are compared with the simulation results of a conventional sliding mode 

controller.  
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6.3 Simulation Example   

Given the uncertain system as  

 ( ) ( ) ( ) ( ) ( )0 0c c cx t A A x t Bu t G tω= + ∆ + +& , (6-11) 
 

the selected output to be regulated is  

 ( ) ( )
( )

0 c

c

H x t
z t

u t

 
=  
 

. (6-12) 
 

The measured output is  

 ( ) ( ) ( )0cy t Cx t tη= + , (6-13) 
 

where ( )0 tω  and ( )0 tη  are independent white noise disturbances. In an illustrative 

example, we select the initial conditions as [ ]0 0.5 0.5 0.5
T

x = . 

The pairs ( ),A B  and ( )0,A H  are assumed to be controllable and observable, 

respectively. In addition, the pair ( ),A C  is observable. In this example 

0 0 3

0 1 0 0 0 0
1 0 1

0 0 0 , 1 0 , 0.1 , ,
0 1 1

0 0 0 0 1 0

A B G H q C
     

      = = = = ⋅ =                   

I . 

The matched uncertain matrix A∆  is given by 

 1 1

0 0 0

0

0

A k k E G H

k k

 
 ∆ = ∆ −∆ ∆ = ∆ = ∆ 
 ∆ −∆ 

, (6-14) 
 

where 10, 1, 0.5q k= ∆ = ± ∆ = , k∆  is the variation of the constant, and ( ) 1rank E = . To 

find 1G  and 1H  in (6-14), we choose 1G , a non-zero column vector of E, as

[ ]1 0
T

G k k= −∆ ∆ . 
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Then, the non-zero row vector 1H  can be determined from E as [ ]1 1 0 1H = − . 

The uncertain system in (6-11) can be alternatively represented by an extended system 

[109] as 

 

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )0

ˆ ˆ

ˆ
c c c

c

c

c

x t Ax t Bu t G t

Hx t
z t

u t

y t Cx t t

ω

η

= + +

 
=  
  

= +

&

, (6-15) 
 

where [ ] ( ) ( )0
0 1 0 1

1

10 0 0
0 0

0 10 0ˆ ˆ ˆ0.1 0.5 , and
0 0 10

0 0.5
1 0 1

TH
G G G H t t

H
ω ω ω

 
       = = − = = =              − 

. 

A robust state-feedback control law from (6-6) 

 ( ) ( )(1)
c c cu t K x t= − , (6-16) 

 

and its feedback gain (1)
cK  in (6-16) can be expressed as 

(1)
1

20.135 24.635 12.399

9.121 12.399 21.381
T

cK B P
− 

= =  − − 
, 

where 1 0P >  can be solved from the following Riccati equation, 

 ˆ ˆ ˆ ˆ 
 
 

T T T T
1 1 1 12

1
P A + A P + P GG - BB P + H H = 0

γ
, (6-17) 

 

where 0.75γ = . Substituting the robust state-feedback control law in (6-17) into (6-15) 

results in the stable closed-loop system as 

 
( ) ( ) ( )
( ) ( ) ( )

(1)
0 0

0

c c c

c

x t A x t G t

y t Cx t t

ω

η

= +

= +

&

, (6-18) 
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where (1) 2 (1)
1

0 1 0
ˆ ˆ 6.775 7.738 2.834

3.882 4.061 6.368

T
c cA A GG P BKδ −

 
 = + − = − − − 
 − − − 

 and the eigen-values of 

( )1
cA are ( ) [ ](1) 9.956 1.037 3.112cAσ = − − − . 

To obtain the sliding surface matrix (1) 2 3C ×∈R  such that (1) (1)
1 2 10C M ×= , where 

(1)
1M  is the dominant eigenvector vector associated with the dominant eigenvalue 

(1)
1 1.037λ = − , we compute the following two matrices: 

( ) ( )(1) (1)
2 3 1 3

1.308 0.288 0.153
1 ˆ ˆsign sign 1.357 0.299 0.159
2

0.081 0.018 0.009
c cM A h A h

− 
  = + − + = − −  
 − 

I I , 

( ) ( )(1) (1)
2 3 1 3

0.308 0.288 0.153
1 ˆ ˆsign sign 1.357 1.299 0.159
2

0.081 0.018 1.009
c cN A h A h

− 
  = + + + = − −  
 − 

I I , 

where 1 2
ˆ ˆ0, 2h h= = . Next, the associated dominant eigenvector vector 3 1×∈(1)

1M R  is 

chosen and the non-dominant eigenvector matrix 3 2×∈(1)
2M R  from M and N, respectively. 

Then, we construct the Hermitian matrix H  =  
(1) (1)
1 2M M  and its inverse matrix V as 

 
1 11 (1) (1)

1 2
2

4.571 1 0.532

1 0.964 0

0 0.060 1

V
V H M M

V

−−

− 
   = = − − =        − − 

� , (6-19) 
 

where (1)
2

1 0.964 0

0 0.060 1
V C

− − 
=  − − 

� .  

The desirable sliding surface equation can be expressed as 

( ) ( ) ( )(1) 1 0.964 0

0 0.060 1c cS t C x t x t
− − 

= =  − − 
. 
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Solving ( ) 0S t =  gives the constrained equations as ( ) ( )1 21.098c cx t x t= − ×  and

( ) ( )3 20.097c cx t x t= × . Solving the constrained optimal tracking problem gives the 

weighting matrix { }ˆ 0, 1.932, 0Q diag=  and 2R = I . Then, the resulting optimal tracking 

control gain is (2)
2

0.017 0.136 0.029

0.030 0.029 0.013
T

cK B P
− − 

= =  − 
, where 2 0P >  can be solved 

from the following Riccati equation, 

 ˆ(1)T (1) -1 T
c 2 2 c 2 2A P + P A + Q - P BR B P = 0 . (6-20) 

 
The total sliding mode control law becomes 

 ( ) ( ) ( )signc c c cu t K x t E S t= − +    , (6-21) 

where
20.117 24.772 12.428

9.090 12.428 21.394

− 
=  − − 

cK and ( )
6.757 3.951

3.912 2.468

−   =     

-1-1

c cE = - C A B , 

and 2

0 1 0
1 ˆ ˆ 6.757 7.874 2.806

3.912 4.032 6.380
γ

 
 + − = − − − 
 − − − 

T
c 1 cA = A GG P BK . The robust sliding mode 

controlled uncertain system is  

 ( ) ( ) ( ) ( )1 0 02

1 ˆ ˆ T
c c cx t A GG P x t Bu t G tω

γ
 

= + + + 
 

& , (6-22) 
 

 ( ) ( ) ( )signc c c cu t K x t E S t= − +    , (6-23) 
 

 ( ) ( )(1)
cS t C x t= , (6-24) 

 

 ( ) ( )c cy t Cx t= . (6-25) 
 

For comparison of the proposed approach with the conventional sliding model 

control (SMC) approach [8], we are using the nominal system (6-11) without considering 

noise and uncertainty with the same initial conditions and output functions. The 
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conventional sliding surface (denoted as ( )sS t ) for the normal system in (6-11) has been 

determined in [8] as 

 ( ) ( )(1)
2 10s s sS t C x t ×= = , (6-26) 

 

where (1) 1 1 0

0 0 1sC
 

=  
 

 is denoted as the conventional sliding surface matrix and ( )sx t  is 

denoted as the corresponding state. The conventional sliding mode control law (denoted as

( )su t ) can be expressed [8] as 

 ( ) ( ) ( )sgns eq s eq su t K x t E S t= − +    , (6-27) 
 

where ( ) ( ) ( )
( )
( )
( )

1 1(1) (1) (1)

1, if 0

, and sgn 0, if 0

1, if 0

s

eq s s eq s s s

s

S t

K C B C A E C B S t S t

S t

− −
>

= = − = =   
 − <

. 

For fair comparison of the proposed SMC method with the conventional SMC 

method, which utilizes the normal system matrix A only, we consider the noise-free and 

uncertain-free normal system in (6-11) as 

 

( ) ( ) ( )

( ) ( )
( )

( ) ( )

0

,

,

,

c c c

c

c

c c

x t Ax t Bu t

H x t
z t

u t

y t Cx t

= +

 
=  
 

=

&

 (6-28) 
 

By utilizing the same design methodology for the robust controller design with ˆ 0G = , 

0 3Ĥ H q= = ⋅I  and 10q = , we obtain the optimal sliding mode control law as 

 ( ) ( ) ( )( )c c c c j eu t K x t E sign S t= − + , (6-29) 
 

 ( ) ˆ( ) ( ) ( ) ( ) ( ) ( )it t t x t x t= − = − =1
e dS S S C C C , (6-30) 

 



89 
 

where ( ) ( ) ( )( ) (1) (1) (1)
1 1 2 2

ˆ 1 , 1 ,..., 1 n nd C d C d C = − = − − − 
1

dC C C , 2 (( ))i j id sign x≈  and 

0 1id≤ ≤  for even values of j. for simplicity, 0.9id =  is chosen and 

(1) 1.005 1 0

0 0 1
C

− − 
=  − 

, 
10 11.045 0

0 0 10cK
 

=  
 

, 
10 10

0 10cE
− 

=  
 

 and 

0 1 0

10 11.045 0

0 0 10
c cA A BK

 
 = − = − − 
 − 

. 

Let us define ( ) ( ) ( ), andc c cu t x t y t  in the robustly controlled uncertain system 

in (6-15) be ( ) ( ) ( ), andrc rc rcu t x t y t , respectively. Also, denote the respective 

( ) ( ) ( ), andc c cu t x t y t  in the optimally controlled normal system using the control law 

as given in (6-29) as ( ) ( ) ( ), andoc oc ocu t x t y t . 

6.4 Simulation Results  

The performance of the robustly controlled uncertain system in (6-15), the 

conventional controlled normal system, and the optimally controlled normal system in 

(6-28) are shown in the following figures. 

Figure 6-1 shows the comparison of states trajectories of the proposed optimal 

sliding mode controlled uncertain system with the proposed controller on an uncertainty 

free system and the conventional sliding mode controlled system. It can be seen that the 

proposed robust controller is very effective in dealing with uncertainties. 
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Figure 6-1 Trajectories of the sliding surface 

 
Figure 6-2 Comparison of states response 

 
Figure 6-3 Comparison of output response 
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Figure 6-2-Figure 6-4 show the comparison among the states responses, output 

responses and the control inputs, respectively. The robust SMC refers to the proposed 

controller performance while considering the system uncertainties and optimal SMC refers 

to proposed controller without considering the uncertainties in the system. In Figure 6-2, 

the states responses are compared. It can be seen clearly that the proposed controller has 

much better performance than that of conventional sliding mode controller both with and 

without considering uncertainties. 

 In Figure 6-3, the output response of the system with these controllers is shown. 

It is clearly visible that output response of the uncertain system with the proposed robust 

controller is very much like the output response of the system without considering 

uncertainty and that both systems converge faster than that of the controlled by the 

conventional sliding mode controller. The comparison is further analyzed by comparing 

the energy ratios of the controllers. 

 The output energy ratios (denoted as yjr ) in percentage for ( )ocjy t  and ( )sjy t  as  

 2

2

( )
100% for 1, 2,

( )

ocj

yj

sj

y t
r j

y t
= × = , (6-31) 

 

where ( ) ( ) ( )1 2, , ,T
ocj ocj ocj ocj Ny y t y t y t =  L , ( ) ( ) ( )1 2, , ,T

sj sj sj sj Ny y t y t y t =  L are energy 

usage for the conventional sliding mode controller and the proposed optimal sliding mode 

controller, respectively, and the sampling time is T = 0.001 seconds . According to (6-31), 

the percentage energy ratios are given by 1 162.23%yr =  and 2 144.95%yr = . Based on the 

computed energy ratios, it can be concluded that the conventional SMC consumes more 

energy than the proposed optimal SMC. 
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Figure 6-4 Comparison of control input generated by controller 

Figure 6-4 shows the comparison of control inputs generated by the discussed 

sliding mode controllers. The chattering in the conventional controller is very much there 

however, the control inputs with the proposed sliding mode controller are much smoother. 

This observation proves that proposed strategy is very effective in chattering alleviation 

also.  

To further test the performance of the proposed controller, the optimal sliding 

mode controller is implemented on a two story structure with an MR damper installed to 

control the vibrations of the structure under various earthquake excitations. While 

implementing the controller on the structure, the controller has to deal with the nonlinear 

behavior of the MR damper and the model uncertainties of the analytical model of the 

system. The next chapter describes the implementation and results of the proposed 

implemented controller to control the vibrations of structures under Kobe, El-Centro and 

the Northridge earthquake excitation signals. 
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Chapter 7.  Vibration control of Base Isolated Structure with MR 

Damper using Optimal Sliding Mode Controller 

The previous chapter explained the development of the robust optimal sliding 

mode controller. The simulation results showed that the proposed control approach is very 

effective in dealing with uncertainties. In this chapter, the robust optimal control approach 

is implemented on a base isolated two story structure. Nonlinear MR damper is used to 

control the vibrations of the structure. The nonlinearity of MR damper is used as the 

matched uncertainty of the system. The system is placed on a shaker table and the 

earthquake excitation signals are provided to the base of the structure as the external 

disturbances. This external disturbance is treated as the unmatched uncertainty to the 

structure. This chapter discusses about the implementation of proposed approach and its 

ability to reject the effects of uncertainties. The experimental results show that the 

proposed strategy controls the vibrations of the structure very effectively and, also at the 

same time, proves its robustness to the uncertainties. 

7.1 Introduction and Literature Review 

Despite their nonlinear behavior, MR dampers have been used in many vibration 

control applications such as car suspension systems, medical prosthetic joints and base 

isolation systems [110-112]. Especially, for base isolation systems, MR dampers have 

been used to yield better performance through semi-active control techniques [113]. Many 

different types of controller have been implemented on vibration control of base isolation 

systems with MR dampers [114]. Yoshioka et al. have implemented the H2/LQG approach 

with clipped optimal approach on vibration control of base isolated structures [115]. In 

their approach, the researchers used the Bouc-Wen model to approximate the 
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nonlinearities of the MR damper. Shirazi et al. implemented a linear parameter varying 

(LPV) approach based semi-active controller [116]. In their research, they compared the 

LuGre model with the modified Bingham model. 

Many different models for nonlinear MR fluids behavior have been discussed such 

as LuGre [111], Bingham [81], Bouc-Wen and Polynomial models [117]. To employ these 

models in control algorithms, parameter identification is required. An alternative approach 

is to use genetic algorithms [118], neural networks [119], adaptive laws [120] and fuzzy 

logic based approaches [121] to determine the nonlinear dynamic effects of the MR 

damper on the control system.  

In this chapter, the optimal sliding mode controller for uncertain systems approach 

discussed in the previous chapter is implemented on a base isolated two-story structure 

under various earthquake signals. The nonlinear behavior of MR dampers is used as the 

matched uncertainty and earthquake signal excitation is used as an unknown external 

disturbance or unmatched frequency. The controller performance is later compared with 

passive control with MR damper and activated MR damper at different power levels. The 

chapter consists of a system description, development of the optimal controller followed 

by results and conclusions. 

7.2 System Description  

The nonlinear experimental setup for the MR damper and two story structure is 

shown in Figure 7-1. The experimental setup consists of the following major parts: the 

shaking table and its driving components, a two-story model building, the MR damper, 

and sensors for displacement and acceleration measurements. Customized earthquake 

wave signals from real earthquakes are provided for Shaker II (1-D shaker table) from 
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Quanser. MEMS Accelerometers (ADXL203EB) from Analog Devices are attached at the 

base floor, middle and top floor for vibration measurement. Also laser sensors (LB-70) 

from Keyence are used to measure the displacement of each floor.  

 
Figure 7-1: Experimental Setup 

The MR damper under study is a custom-made device in the Sma

Structure Laboratory (SMSL) at the University of Houston. The dampe

magnetic coil, MR fluid and a sliding bar. The coil is excited by the voltag

MR damper which increases the viscosity of the MR fluid and consequ

exerted on the sliding bar. The structure is supported by a slider with low 

isolation of the two story structure. Two springs of equivalent stiffness of

connected to the base floor of the base isolated structure to restrict the base

and spring matrices of the two story structure are 
1.958 0

0 1.258
0 0 1


= 


M

[ ]
1587.1 1218.6 0
1218.6 2716.3 1497.7 . /

0 1497.7 1497.7
N s m

− 
= − − 
 − 

K . The damping matrices are c

Rayleigh’s method [122] to be 

Spring Slider 
Spring 
rt Material and 

r consists of a 

e applied to the 

ently the force 

friction for base 

 338.5 N/m are 

 drift. The mass 

[ ]
0
0

.212
kg





 and

alculated using 
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 1 2

1.0426 0.6093 0

0.6093 1.5182 0.7489

0 0.7489 0.9030

α α
− 

 = + = − − 
 − 

C M K . (7-1) 
 

 The constant 1 0.1372α = and 2 0.0005α =  are calculated assuming that the damping ratio 

is 1% for all the modal frequencies. 

The state space equation for the system will be 

 g

mr

x

F
    
    

     
-1 -1 -1

0 I 0 0
x = x +

-M K -M C -Λ M Γ

&&
& , (7-2) 

 

where 
 
 
 

q
x =

q&
, [ ]1 2

T

bq x x x= and mrF is the control input (Force from MR damper). 

The distribution matrices Λ and Γ are defined as [ ]TΛ = 1 1 1 and [ ]TΓ = -1 0 0 . 

1,bx x  and 2x denote the displacement of the base, middle floor and top floor, respectively, 

and gx&& is the ground acceleration due to earthquake. The matrices M,C,K are the mass 

matrix, damping matrix and stiffness matrix of the system, respectively. The natural 

frequencies of the structure are 0.5045 Hz, 4.69 Hz and 8.94 Hz, respectively, for the 1st, 

second and 3rd natural frequency. 

The nominal base isolation system can be represented as  

 mr gF x+ + 0x = Ax B G& && , (7-3) 
 

where  
  

-1 -1
0 IA = -M K -M C , 1−

 =   
0B M Γ ,  = −  0

0G Λ . 

7.3 Control System Development 

For the nonlinear MR damper, the modified Bingham model is used for the control 

system development [116], and is given as 
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 ( ) ( )
2

0
0 0sgn( )

bx

mr a b b b v bF f f V x c x c x V e ν
 
− 
 = + + +
&

& & & , 
(7-4) 

 

where the variables and parameters are defined as mrF is the force generated by the MR 

damper to counter the motion, V is the input voltage, af is the Coulomb frictional passive 

force, bf Coulomb frictional force influenced by voltage V , 0c  is the viscous damping 

coefficient and 0vc  is the viscous damping coefficient influenced by the voltage V, vo is 

normalized velocity. The force mrF can be divided in to two parts such that 

 

2 2

0 0
0 0sgn( ) sgn( )

b bx x

mr a b b b b v bF f x c x e f x c x e Vν ν
   
− −   
   

 
 = + + +
 
 

& &

& & & & , (7-5) 
 

or  ˆ
mr k b mrVF d x f V= +&� , (7-6) 

 

where 

2

0
0sgn( )

bx

k b a b bd x f x c x e ν
 
− 
 = +
&

& & &� and 

2

0
0

ˆ sgn( )
bx

mrV b b v bf f x c x e ν
 
− 
 = +
&

& & . 

From the Bingham model in (7-4), it can be seen that, apart from voltage applied, 

the force generated by the MR damper is influenced by the velocity of the base floor, 

which is one of the states of the system. The uncertain system under the effect of the MR 

damper and unmatched uncertainty for external input disturbance matrix, can be written as   

 ( ) ( ) gV x+∆ + + +∆0 0x = A A x B G G& && , (7-7) 
 

or 

1 1

2 2

41 42 43 44 45 46

51 52 53 54 55 561 1

61 62 63 64 65 662 2

00 0 0 1 0 0
00 0 0 0 1 0
00 0 0 0 0 1

ˆ

0

0

b b

kb b mrV

x x

x x

x x

a a a a d a ax x f
a a a a a ax x

a a a a a ax x

     
     
     
     

= +      + ∆     
    
    

           

&

&

&

&& &

&& &

&& &

1

2

3

0

0

0
,

1

1

1

gV x

 
 
 
 

+  − + ∆  
  − + ∆
  

− + ∆   

0

0

0

G

G

G

&&

 

(7-8) 
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where 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

kd

 
 
 ∆ =  ∆
 
  

A is the matched uncertainty of the structure due to MR 

damper force. The uncertainty ( 2, 2)kd∆ = − is assumed to cover the high uncertainty in 

the nominal system parameter. Also for the above system, the earthquake signal to the 

system through shaker table is considered as a random unknown external input 

disturbance.  The matrix 0G  is the input disturbance matrix. The matrix 

[ ]1 2 30 0 0
T

∆ = ∆ ∆ ∆0 0 0 0G G G G can be treated as an unmatched uncertainty in 

the system model.  

From Equation (6-3) and (6-4), the parameters ( )1 1G , H for the matched 

uncertainty of the system can be calculated. The uncertain matrix 

[ ]1 0 0 0 1 0 0
T

=G is can be calculated that. 

 ( ) [ ]0 0 0 2 0 0∆ =
-1T T

1 1 1 1H = G G G A . (7-9) 
 

The selected output to be regulated is 

 ( ) ( )x t
z t

V

 
=  
 

0H
, (7-10) 

 

where 6 6
0H I ×= ∈R so that all states of the system can be regulated.  

Then, the non-zero row vector 1H  can be determined from E as

[ ]1 0 0 0 2 0 0H = . The uncertain system in (7-7) can be alternatively represented 

by an extended system as 
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 ( )

( )

ˆ ˆ

ˆ

V

z t
V

y t

ω= + +

 
=  
 

=

x Ax B G

Hx

Cx

&

, (7-11) 
 

where [ ] 0
0 1

1

1 0 0 0 0 0
0 0

0 1 0 0 0 0
0 0

0 0 1 0 0 0
0 0ˆ ˆ, 0 0 0 1 0 0
1 1

0 0 0 0 1 0
1 0

0 0 0 0 0 1
1 0

0 0 0 2 0 0

H
G G G H

H

 
   
   
   
     = = = =     −     
 −  
   −    

,  

( )ˆT
b gf x xω  =  & && and ( )bf x& is the uncertain effect of the MR damper force. 

A robust state-feedback control law from (6-6) 

 ( ) ( )(1)
c c cu t K x t= − , (7-12) 

 

and its feedback gain (1)
cK  in (7-12) can be expressed as 

(1) 4
1 [0.4635 -1.1175 0.6819 0.0063 -0.0145 0.0087] 10T

cK B P= = × , where 1 0P >  

can be solved from the following Riccati equation, 

 ˆ ˆ ˆ ˆ 
 
 

T T T T
1 1 1 12

1
P A + A P + P GG - BB P + H H = 0

γ
, (7-13) 

 

where 1γ =  for the bounded uncertainty. Substituting the robust state-feedback control 

law in (7-13) into (7-11) results in the stable closed-loop system as 

 
( ) ( ) ( )
( ) ( )

ˆ ˆt t t

y t t

ω= +

=

(1)
cx A x G

Cx

&

, (7-14) 
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where (1) 2 (1)
1

ˆ ˆ T
c cA A GG P BKδ −= + −  and the eigen-values of ( )1

cA are 

( )(1)

0.1659 10.0652

0.2358 30.9215

0.7539 56.1894
c

i

A i

i

σ
− ± 
 = − ± 
 − ± 

.  

Now the 1γ =  is chosen to explain the stability of the controlled system for 

matched and unmatched uncertainties, so that ( )T jω γ
∞
≤ , where  

( ) [ ] ( )1
( ),T s s

− = +∆  
10

0 0 c
1

H I - F G G F = A + A - BKH � . From the calculation of H∞ norm of 

the closed loop system,  1γ = is able to stabilize the system with uncertainty in 0G . 

Since, the displacement of all three floors [ ]1 2
T

bq x x x=  are to be controlled, 

the three states for displacement of each floor will be used to track the sliding surface. The 

output function is chosen as ( ) [ ]1 1 2

T

by t x x x= .  

To obtain the sliding surface matrix, (1) 3 6C ×∈R is calculated such that

(1) (1)
1 3 10C M ×= , where (1)

1M  is the dominant eigenvector vectors associated with the 

dominant eigenvalues ( )1 0.1659 10.0652 , 0.2358 30.9215i iλ = − ± − ± ,  

( ) ( )(1) (1)
2 6 1 6

0.0270 0.0011 0.0045 0 0 0

0.0064 0.0226 0.0057 0 0 0

0.0064 0.0016 0.0275 0 0 01 ˆ ˆsign sign
0.0515 0.1028 0.0581 0.0271 0.0009 0.00462
0.0607 0.1210 0.0684 0.0065 0.0224 0.0058

0.0642 0.1277 0.072

c cM A h A h = + − + =   − −

− −

− −

I I

2 0.0065 0.0014 0.0276

 
 
 
 
 
 
 
 
  

, 

( ) ( )(1) (1)
2 6 1 6

1.0270 0.0011 0.0045 0 0 0

0.0064 1.0226 0.0057 0 0 0

0.0064 0.0016 1.0275 0 0 01 ˆ ˆsign sign
0.0515 0.1028 0.0581 1.0271 0.0009 0.00462
0.0607 0.1210 0.0684 0.0065 1.0224 0.0058

0.0642 0.1277 0.072

c cN A h A h = + + + =   − −

− −

− −

I I

2 0.0065 0.0014 1.0276

 
 
 
 
 
 
 
 
  

, 
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where 1 2
ˆ ˆ0, 0.5h h= = . Next, the associated dominant eigenvector vector 6 3×∈(1)

1M R  is 

chosen and the non-dominant eigenvector matrix 6 3×∈(1)
2M R  from M and N, respectively. 

Then, we construct the Hermitian matrix H  =  
(1) (1)
1 2M M  and its inverse matrix V as 

 
1 11

2

V
V H

V
−−  

 = =   
 

(1) (1)
1 2M M� , (7-15) 

 

and (1)
2

0.9737 0.0010 0.0043 0.0014 0.0015 0.0010

0.730 0.9780 0.0016 0.0016 0.0017 0.0011

0.0788 0.0014 0.0017 0.0017 0.0018 0.0012

V C

− − − − 
 = − − − 
 − − − − 

� . (7-16) 
 

For the sliding surface design, any row of ( )1C can be chosen from Equation (7-16). The 

desirable sliding surface equation can be expressed as 

 ( ) ( )(1)S t C t= x . (7-17) 
 

Solving ( ) 0S t =  gives the constrained equations as  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 1 1 1 1 1
11 12 13 14 15 16

1 1 1 1 1 1
1 21 22 23 24 25 26 1 1

1 1 1 1 1 1
2 2 231 32 33 34 35 36

b b b
C C C C C Cx x x

x C C C C C C x x

x x xC C C C C C

−
                = − =                           

Z

& &

& &

& &

. (7-18) 
 

The constrained optimal tracking problem for displacement of each floor is 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1

T TJ y t S t y t S t u t Ru t dt = − − +
 ∫ Q , (7-19) 

 

where ( )
( )
( )
( )

1 1

2

bx t
y t x t

x t

 
 =
 
 

, ( ) ( ) ( )1 0S t C t= =x , ( )u t V= is the control input, and 6 , 1R= =Q I

. This implies that the Equations (7-18) and (7-19) can be rewritten as  

 2 2 2 2
1 2bJ x x x V dt = + + + ∫ , (7-20) 
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or ( )2ˆJ V dt= +∫ Tx Qx , (7-21) 
 

where [ ]1 2 1 2

T

b bx x x x x x=x & & & , 3 3 3 3

3 3

0 0ˆ
0

× ×

×

 =   
1Q Z Z and V is the control input. Then, 

the resulting optimal tracking control gain is 

( ) [ ]178.92 421.24 254.48 2.77 3.49 1.11= = − −2 T
c 2K B P , where 0>2P  can be 

solved from the following Riccati equation, 

 ˆ(1)T (1) -1 T
c 2 2 c 2 2A P + P A + Q - P BR B P = 0 . (7-22) 

 
The total sliding mode control law becomes 

 ( ) ( ) ( )signc eu t x t S t= − +   c cK E , (7-23) 

where ( ) ( )2+1
c c cK = K K , ( )

11 479.72c cE C A B
−− = − =  , and  ( )eS t can be calculated from 

(7-17) by referring to (5-30) to (5-36).  

The closed loop system will be 
2

1 ˆ ˆ
γ

+ −T
c 1 cA = A GG P BK .  

 The dSPACE DAQ DS1104 RD is used for data acquisition purposes. The optimal 

controller is implemented in Matlab/Simulink. An Agilent 6542A programmable power 

supply is used to activate the MR damper. The control voltage signal is provided from the 

dSPACE board to the power supply and processed through the controlled strategy built on 

Matlab/Simulink. The states of the system can be obtained from the displacement sensors 

and accelerometers. The experimental results are discussed in the following section. 

7.4 Experimental Results 

 The optimal controller was implemented on the base isolated system. Earthquake 

signals, such as Kobe (0.3g), El-Centro (0.6g) and Northridge (0.6g), were used as 



 

excitation signals. For practical consideration, a saturation block was placed to keep the 

control voltage saturated between 0 and 

the system with optimal sliding mode controller is compared with the response of 

system with the passive effect of 

Figure 7-2 Relative 

Figure 7-3 Acceleration Response 
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For practical consideration, a saturation block was placed to keep the 

between 0 and 12 volts. In the following figures, the response of 

th optimal sliding mode controller is compared with the response of 

passive effect of the MR damper at 0 volts.  

Relative Displacement of floors to El-Centro Earthquake (0.6g) Excitation

Acceleration Response with El-Centro Earthquake (0.6g) Excitation

For practical consideration, a saturation block was placed to keep the 

In the following figures, the response of 

th optimal sliding mode controller is compared with the response of the 

 
Excitation 

 
Centro Earthquake (0.6g) Excitation 
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In Figure 7-2, the comparison of the relative displacement of the middle and top 

floor with respect to the base floor is shown.  It is very clear that the optimal sliding mode 

controller is very effective in controlling the relative displacement of the top and middle 

floor throughout the earthquake excitation. The relative displacement of the middle floor 

with respect to the base floor has about 48% displacement reduction and the top floor has 

an approximately 54% reduction in Root Mean Square (RMS) average response of the 

system. Also, the absolute maximum relative displacement for the middle floor has a 26% 

reduction in maximum absolute displacement and the top floor has a 16% of reduction of 

the peak value. In Figure 7-3, the acceleration data of each floor is shown. The reduction 

in peak values for the acceleration of each floor is, respectively, 2.5%, 2.23% and 25% for 

the base, middle and top floor. However, on analyzing the RMS average of the data, the 

reduction is approximately 33%, 40% and 46% for the base, middle and top floor 

respectively, which shows the effectiveness of the approach. 

The performance of the proposed sliding mode controller was also evaluated using 

other earthquake signals such as the Kobe and Northridge earthquakes. The Kobe 

earthquake signal was scaled down to 0.3g level so that the base movement remains within 

the slider limits. The Northridge signal was also scaled down to 0.6g for the same reason. 

The responses for the displacements and acceleration of every floor have been shown in 

Figure 7-4-Figure 7-7. The effectiveness of the optimal control can be evaluated through 

these figures. It can be seen that the proposed control algorithm is very robust to system 

uncertainties and able to deal with external disturbances. A detailed analysis of the control 

performance is evaluated in Table 7-1 and Table 7.2. In Table 7-1, the percentage 

reduction in the RMS average of data for the optimal sliding mode controller is provided 



 

in comparison with that of passive control (MR damper at 0 volts

percentage reduction in peak values of displacement and accelerations of every floor is 

given. 

Figure 7-4 Relative 

Figure 7-5 Acceleration Response 
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in comparison with that of passive control (MR damper at 0 volts). In

percentage reduction in peak values of displacement and accelerations of every floor is 

Relative Displacement of floors to Kobe Earthquake (0.3g) Excitation

Acceleration Response with Kobe Earthquake (0.3g) Excitation

). In Table 7-2, the 

percentage reduction in peak values of displacement and accelerations of every floor is 

 
Excitation    

 
Kobe Earthquake (0.3g) Excitation    



 

Figure 7-6 Displacement 

Figure 7-7 Acceleration Response

Table 7-1 
 
El-Centro Earthquake 
Kobe Earthquake 
Northridge Earthquake 
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Displacement of floors to Northridge Earthquake (0.6g) Excitation

Acceleration Response with Northridge Earthquake (0.6g) Excitation

 Performance Analysis for RMS average of system data 
x1b x2b xba x1a 

48% 54% 33% 40% 
53% 58% 37% 50% 

 36% 34% 25% 26% 

 
to Northridge Earthquake (0.6g) Excitation 

 
Northridge Earthquake (0.6g) Excitation 

x2a 

 46% 
 51% 
 35% 
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Table 7-2 Performance Analysis for Peak values of system data 
 x1b x2b xba x1a x2a 

El-Centro Earthquake 26% 16% 2.5% 2.23% 25% 
Kobe Earthquake 31% 30% -14% 20% 33% 
Northridge Earthquake 28% 36% 18% -1% 21% 

where xb, x1 and x2 correspond to the displacement of the base, middle and top floor, and, 

xba, x1a and x2a correspond to the acceleration of these floors, respectively. 

From the above analysis in Table 7-1 and Table 7-2, the effectiveness of the 

proposed controller can be explained. It can be seen that the controller performance is 

effective throughout the earthquake excitation. For the Kobe and Northridge earthquake 

excitation, the controller may have a larger peak response for accelerations, but the RMS 

average data shows that the controller is able to control the overall vibrations of structure. 

 For the base isolation system, it is expected that the relative displacements and 

accelerations of each floor are reduced during vibration control. More concentration is 

given to the reduction of these relative displacements and accelerations than base 

displacement [114]. The relative displacement depends upon the base displacement. When 

relative displacements or accelerations of the floors decrease, the base displacement is 

expected to increase within limits to compensate the displacement of other floors. If the 

base exceeds or tends to exceed out of limits, or in other words the base bumps into the 

end of the slider, additional vibrations will be introduced into the system. During the 

design of the base isolation system, the stiffness of the springs attached to the base of the 

structure is chosen to keep the motion within limits of the slider. The maximum 

amplitudes and RMS averages of the selected responses to these earthquakes are 

considered. The top floor acceleration (x2_accel), relative displacement of the top floor with 

respect to the base floor (x2b) and base displacement (xb) are considered. The performance 
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of the proposed controller is compared with the response of the system with passive 

control, and semi-active control when the MR damper was activated at different voltages 

(4 volts, 6 volts, 8 volts and 10 volts). A comparison of the vibration control performance 

of the proposed robust optimal controller with passive MR damper at different voltage 

levels is provided in Table 7-3-Table 7-5. 

Table 7-3 Experimental Analysis with El-Centro 0.6g Earthquake Excitation 
Control method x2_accel (m/s2) x2b (mm) xb (mm) 
 Abs RMS Abs RMS Abs RMS 
Base fixed 13.00 5.73 47.82 24.90 1.53 0.20 
Passive (0 volts) 8.73 3.08 32.81 16.00 25.09 11.86 
Passive (4 volts) 6.08 1.70 26.68 8.27 18.09 5.29 
Passive (6 volts) 5.48 1.59 22.64 7.80 15.07 4.02 
Passive (8 volts) 5.63 1.63 23.33 7.89 14.24 3.47 
Passive (10 volts) 5.96 1.70 24.74 8.32 11.89 2.71 
Proposed Controller 6.58 1.67 27.54 8.02 14.65 4.36 

Table 7-4 Experimental Analysis with Kobe 0.3g Earthquake Excitation 
Control method x2_accel (m/s2) x2b (mm) xb (mm) 

 Abs RMS Abs RMS Abs RMS 
Base fixed 9.43 5.19 35.71 23.73 1.99 0.41 

Passive (0 volts) 7.37 4.59 108.37 12.06 25.69 18.56 
Passive (4 volts) 5.06 2.36 22.27 12.26 15.85 7.53 
Passive (6 volts) 4.64 2.15 20.09 11.14 13.54 4.63 
Passive (8 volts) 4.04 2.04 18.01 10.61 11.13 6.11 
Passive (10 volts) 4.39 2.13 20.14 10.84 7.68 3.39 

Proposed Controller 5.12 2.21 22.85 10.99 12.87 6.07 

Table 7-5 Experimental Analysis with Northridge 0.6g Earthquake Excitation 
Control method x2_accel (m/s2) x2b (mm) xb (mm) 
 Abs RMS Abs RMS Abs RMS 
Base fixed 7.36 1.76 27.62 7.18 1.16 0.17 
Passive (0 volts) 7.85 1.78 31.10 8.25 27.64 6.68 
Passive (4 volts) 5.90 1.30 25.86 6.20 24.39 4.61 
Passive (6 volts) 5.13 1.13 23.36 5.46 22.54 3.61 
Passive (8 volts) 6.42 1.13 23.06 5.31 22.01 3.29 
Passive (10 volts) 6.19 1.00 20.86 4.77 19.07 2.46 
Proposed Controller 6.19 1.14 21.33 5.37 21.44 3.29 

From the above tables, the best performance, in the case of the strong and long 

duration based El-Centro earthquake excitation, was from the passive control of the MR 

damper at 6 volts. For the stronger Kobe earthquake excitation, the passive control of the 
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MR damper at 8 volts gave the best performance. For the relatively weaker and short 

duration Northridge earthquake, again the MR damper (activated at a constant of 6 volts) 

showed the best results. However, the performance of the proposed controller for each 

excitation is comparable to the performance of the best configuration for each excitation 

signal. Also, it is not practical and realistic to provide constant actuating voltage to the 

structure.  Therefore, considering the good performance through all excitations, the 

proposed approach can be treated as a robust and optimal approach. 

7.5 Conclusion 

In this chapter, the proposed optimal sliding mode controller explained in chapter 5 

is implemented on a base isolated system. The controller considers the nonlinearity in the 

system as matched uncertainty and the unknown external disturbance as unmatched 

uncertainty. The implemented control strategy was able to control the vibrations of the 

structure very efficiently. The performance of the controller was evaluated against passive 

control of the MR damper at a different voltage level. From the comparison results, it was 

observed that the novel control technique provides optimal performance in controlling the 

relative displacements of the floors through all earthquake excitations. The experimental 

results and comparison results showed that the proposed controller is effective in dealing 

with unknown uncertainties of the system and thus can be treated as a robust control 

technique.  
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Chapter 8.  Automatic Road De-icing System using Carbon Fiber as the 

Heating Element 

Snow and ice on roads is a big problem in sub-tundra regions which leads to many 

road hazards. Though many methods are employed to prevent ice or to de-ice the road 

surface, each one has some disadvantages of their own. Some are not energy efficient, 

others laborious and costly, and some may cause road damage. In this chapter, a de-icing 

method is described using carbon fiber as heating elements. A test sidewalk is prepared by 

embedding continuous carbon fiber into concrete blocks and connecting the carbon fiber 

to the electric grid. An electric current is used to heat the concrete test slabs to de-ice the 

surface. A LabVIEW interface is prepared to analyze the de-icing process, which consists 

of two temperature controllers, an ON-OFF controller and a fuzzy logic based controller, 

of the test sidewalk. The advanced fuzzy logic controller considers the uncertain 

environmental parameters such as environmental temperature, chances of rain/snow and 

dew point to generate the control signal. The LabVIEW interface enables the user to keep 

track of environmental conditions and to save data on demand.  

8.1 Introduction and Literature Review 

In freezing climates, snow and ice cause a number of dangerous roadway 

conditions that are both hazardous and inconvenient.  Due to the dramatic increase of 

driving accidents in slippery conditions caused by snow or sleet, improving road 

conditions in a timely and safe fashion is imperative.  Though there have been a number of 

strategies developed to de-ice roadways, their disadvantages range from being destructive 

to the road structure itself to being cost ineffective [123]. 
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8.1.1 Literature Review of De-icing Technologies 

The effects of road salting on concrete structures and the environment have been 

well studied.  Williams et al. [124] showed a strong relationship between saline pollution 

in groundwater and springs in urban areas, specifically due to the use of de-icing salts.  

Elevated concentrations of salt in groundwater and on roadsides damage vegetation and 

decrease aeration and availability of water in soil [125].   

In their review of chloride effects on reinforced concrete, Mussato et al. [126] 

summarized chloride salt’s effects on concrete deterioration. The effects of salt on the 

corrosion of steel reinforcement are well known and extensive studies on the costs and 

extent of damage due to roadway salting have been conducted [127]. The other 

alternatives of salt (NaCl) were also studied including magnesium chloride (MgCl2) and 

calcium chloride (CaCl2) as liquid brines, which reduce the amount of chemical used, 

speed up the de-icing process, and remain effective longer.  Unfortunately, at the same 

time this process requires additional operation costs for sprayer equipment and special 

storage tanks for the brine [128].  Furthermore, studies have found mixed effectiveness of 

these alternatives to reduce structural damage, such as surface scaling and rebar corrosion 

due to chemical ion gradients, as compared to the use of conventional NaCl [126].  More 

complex chemical solutions with less damaging side effects to the concrete structure have 

also been proposed [129, 130], for example,  Urea,  formadide solutions, calcium 

magnesium acetate (CMA) and  tetrapotassium pyrophosphate (TKPP), etc.  However, all 

of these chemical alternatives are generally less effective and much more expensive than 

conventional salts; TKPP can cost as much as 15 times the cost of NaCl [129]. 
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Infrared heat lamps as external heating elements were explored in the 1960’s on 

the Mississippi Avenue Bridge in Denver, Colorado [130].  Coupled with the use of an 

insulation layer, the infrared lamps were mounted on the underside of the bridge structure 

as part of an ice prevention system.  However, heating with infrared heat lamps was not 

effective in preventing ice on the surface. In addition to the use of external heat lamps to 

heat roadway surfaces, external application of insulation onto existing concrete structures 

has been attempted in order to preserve heat in the structure volume and reduce the 

number of freeze-thaw cycles [131, 132].  Polystyrene, urethane, and Styrofoam were 

applied to the structure under the surfaces in a number of states with limited success [123].  

Polystyrene foam insulation was able to prevent frost action on highway pavements, but 

urethane was ineffective in both frost prevention and the reduction of freeze-thaw cycles.  

In fact, in some cases bonding problems between the foam and concrete surface resulted in 

de-bonding and loss of foam insulation. 

Heat pipe and fluid heat exchanger systems, with working fluids such as propylene 

glycol and Freon, were installed in Wyoming, Oregon, Nebraska, and Virginia with great 

effectiveness in raising the concrete temperatures thus preventing ice formation on road 

surfaces [123].  In these systems, installation and maintenance costs are significantly 

higher, as the heat exchanger and pipe systems must be constructed and maintained 

through the year.  Furthermore, operational costs are high due to the costs of working fluid 

and power to operate pumps and heat exchangers. 

More recent implementations of automated de-icing systems for road surfaces 

incorporate sensing technology and more conventional chemical de-icing methods in the 

form of liquid sprays [133].  Fixed Automated Spray Technology (FAST) systems 
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integrate cast in spray and pump systems with embedded temperature and moisture 

sensors in the road surface, allowing for remote operation and monitoring.  When 

environmental conditions are favorable for ice formation, chemical de-icers or salt brine 

solutions are pumped to road surface sprayers and sprayed onto the road surface.  

Structurally integrated heating elements and FAST systems have been shown to be 

effective in ice prevention and de-icing operations in the field.  However, though the 

operation of such systems are cost effective in terms of labor costs, additional installation 

costs for support structures, such as piping, valves, and holding tanks for de-icing 

chemicals must be considered. 

More recently, carbon nanofiber (CNF) materials are also being incorporated into 

concrete as electrically conductive admixtures.  Gau and Sturm studied the relationship 

between concrete strain and resistivity using different CNF types [134].  They found that 

the addition of CNF fibers reduced the resistivity of self-consolidating Concrete (SCC) 

concrete by 80%, though there is a compositional threshold for CNF concentration at 

which improved electrical conductivity plateaus.  Furthermore, they found that SCC aids 

in fiber dispersion, reduces resistivity, and improves electrical sensitivity to stress and 

strain when using the SCC concrete as its own strain sensor. 

In addition to electrically conductive concrete, self-heating concrete designs have 

used structurally integrated heating and de-icing methods, most commonly embedded 

heating wires and hot water pipes.  Yehia and Tuan’s literature review [123] summarized a 

mass of efforts between 1970-1996 to incorporate structurally integrated heating elements 

for highway roadway de-icing and ice prevention.   Electrically heated cables have been 

retrofitted onto highway surfaces with mixed success; a system installed in Newark, New 
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Jersey in 1961 employed surface installed electrical cables underneath an overlay of 

asphalt.  Though the installation costs of this system were low ($54/ft2), the system was 

abandoned when the heat cables were pulled up due to heavy traffic.  A similar system 

installed three years later in Teterboro, New Jersey, operated satisfactorily at similar 

installation and power costs.  Similar electrical systems installed in Ohio, Oregon, 

Pennsylvania, South Dakota, Texas, and West Virginia were abandoned due to high power 

consumption or malfunctions of the electrical heating elements. 

Later, carbon fiber had shown great potential as a replacement for the heater lamp. 

A review by Chung of self-heating concrete research showed that uncoated fiber mats 

were able to achieve a maximum self-heated temperature of 134°C, second only to 

flexible graphite (which is not suitable as a structural material), at a lower power 

consumption [135]. The combination of low power and fast response time makes carbon 

fiber material ideal for use as self-heating elements in concrete. Sun et al. used carbon 

black mortar slabs (CBMS) to form self-heating concrete flooring material [136].  The 

study found that the CBMS was able to uniformly heat a small room 10°C above the “cold 

state” temperature in 330 minutes.  Yehia et al. [123, 137] and Tuan [138] studied the use 

of steel shavings and fibers in electrically conductive concrete for bridge deck de-icing 

and snow melting.  An optimized mix proportion of 20% steel shavings per volume and 

1.5% steel fiber per volume of concrete was found to be effective in resistively heating the 

bulk concrete model bridge deck for de-icing functions [137].  Both ice melting and ice 

prevention processes were tested and found to be effective [138].   

Preliminary cost analysis showed that the electrically conductive concrete bridge 

deck was less expensive than conventional concrete de-icing methods, such plowing, 
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when considering operation and installation costs.  Additionally findings include the 

advantages of AC over DC power sources, physical property testing, and workability 

evaluation of various mix proportions [139].  Reports from a field test of their steel fiber 

based conductive concrete on the Roca Spur Bridge in Nebraska indicate high efficiency 

and effectiveness in de-icing and ice prevention applications [140]. However, steel fibers 

are not very effective in preventing crack propagation due to their high modulus of 

elasticity [141].  

From the above literature review, it can be seen that there are many ways which 

have been tried to deal with icing issues on the roads. Each idea has one or more 

problems. Salting on roads is laborious and also at the same time, it can cause damage to 

roads. Heating lamps and heat exchangers are effective but they are very costly and power 

inefficient. Electrically conductive concrete with steel fiber is being used recently where 

concrete can be heated electrically. However, steel fibers ineffectiveness against crack 

propagation comes as a big problem for concrete lifespan. The steel fiber can be replaced 

with carbon fiber based concrete which is lighter material and helps in enhancing 

structural strength also. The resistive property of carbon fiber can be used to melt/prevent 

the ice by heating the concrete surface above freezing temperature. The efficiency of 

system can be further reduced by employing an intelligent temperature controlled system 

which can save the additional cost when heating is still on while no ice or snow is on the 

surface or while weather conditions are unlikely for ice formation. Temperature control is 

one of the most used control application in many industries. Many different temperature 

controllers have been proposed and successfully implemented. A brief literature review of 

different temperature controllers in different industries is presented. 
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8.1.2 Literature Review for Temperature Control 

In most cases, temperature is the most important and easiest parameter to control 

in de-icing applications. Frequently changing environmental conditions, time delays 

inherent in heating systems, and temperature dependence upon the heat absorption by the 

concrete structure make it very difficult to model the system. Experimental results show 

that the variations in surface temperature of the concrete structure due to heating are 

significantly different from ambient [142] and that the system response for heating the 

concrete is very slow [143]. For slow responsive system, generally, ON-OFF control and 

PID schemes are employed in commercial products for automatic feedback control system 

[144]. Design of a temperature controller with faster response time and with smaller 

steady state error is a challenge in the control research field. 

Many control algorithms have been studied and implemented for temperature 

control. Widely used in industry, the PID controller was first proposed in 1936. There are 

techniques to tune the PID controller, such as Zeigler and Nicholas method and Internal 

Model Control (IMC) method, for accurate dynamic models of a given system. Apart from 

these methods, a trial and error process can also be used to get better performance with the 

PID controller. However, PID performance may deteriorate with external disturbance or 

uncertainty in the system. This problem leads researchers’ attention to model free and 

robust control algorithms. Various self-tuning techniques have been discussed to make the 

temperature controller robust to external disturbances and uncertainties [145-147]. 

Recently, the fuzzy control theory has been employed in many applications. Great 

robustness and easy implementation has attracted many control researchers. Many 
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different type of controller were implemented using fuzzy approach for temperature 

controller [148-151].   

In this report, a fuzzy logic based temperature controller which deals with 

uncertain environmental parameters, such as environmental temperature, probability of 

rain/snow and dew point relative to the surface temperature of the concrete block, is 

proposed and implemented. Before the development of the temperature control system, a 

simple modeling of the surface temperature with respect to electrical power for the de-

icing process is discussed. 

8.2 Modeling of Surface Temperature with respect to Electrical Power 

A simple analytical model is determined for the concrete block heating. The 

surface temperature is considered as the output and electrical power is considered as the 

input. Initial temperature of the concrete surface is assumed to be -10 ºC and 

environmental temperature is considered to be -10 ºC. The properties of materials (carbon 

fiber and concrete) are taken from American Society for Materials (ASM) standards [152]. 

An analytical model is prepared using Gambit version 2.4 for geometry and meshing, and, 

FLUENT solver version v.6.3 from ANSYS.  

The dimension of concrete block is 72×48×4 inch3. For simplicity, the carbon fiber 

heating element is considered as a constant layer and placed after 3 inch thickness of 

concrete. The thickness of carbon fiber element is considered as 0.001 inch. The surface 

temperatures of each concrete layers along its length and width are assumed to be uniform. 

The equation of heat transfer in solid regions is used to model the de-icing process [153], 

which is  
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where hS is volumetric heat source, 32400
kg
m

ρ =  is density of concrete materials, 

ref

T

pT
h c dT= ∫ is sensible enthalpy and 837 / .pc J kg K= is specific heat of concrete, 

2.07 / .k watt m K= is thermal conductivity and T is the surface temperature of concrete 

layer.  It is assumed that 300 watt of electrical power is continuously provided to the 

carbon fiber heating element and all of heat energy is transferred towards the outer surface 

of the concrete which is exposed to environment. After considering the heating of concrete 

block for 11.11 hours, the temperature profile of the concrete block along the thickness of 

the block is shown in Figure 8-1. 

 
Figure 8-1 Temperature profile along the thickness of concrete block 

The surface temperature with respect to electrical power is modeled as a single 

order system. It is found that the heating process has a delay of 0.1 hour. After comparing 

the data with step response of a single order system, the first order model is estimated as 
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where t is time in hours. The time constant for the heating process is 5.4 hrs. Figure 8-2 

shows the comparison of the step response of the modeled system with analytical model. It 

can be seen that first order model of heating process matches the analytical data very well. 

 
Figure 8-2 Modeling of heating process of concrete with carbon fiber 

From the above estimated model, it can be seen that the heating of concrete for de-

icing purposes is a slow process. To make it faster and cost effective in terms of power 

usage, an adequate control system is needed. In the following section, the control system 

development of de-icing process is discussed.  

8.3 Control System Development 

A LabVIEW based interface was developed for data acquisition and temperature 

control in Figure 8-3. The LabVIEW interface has the following capacities. 

• Web Based Weather Monitoring of test site 

• Manual Turn On/OFF electrical heating of carbon fiber 
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• ON-OFF Control for Surface Temperature of Sidewalk 

• Fuzzy Logic based temperature Control 

• Data Saving 

 
Figure 8-3 LabVIEW based user interface 

8.3.1 Web Based Weather Monitoring 

A web based weather monitoring was included in the LabVIEW interface. The 

LabVIEW interface used Simple Object Access Protocol (SOAP) server. The SOAP 

server provides different sub VIs which can be used to get the information about the 

location of interest and environmental data at that location. For this project, The SOAP is 

used to get the weather information by putting the longitude and latitude information of 

the test site location.  

The information about weather forecast data is collected from the National Digital 

Forecast Database (NDFD) XML service, which is a service providing the public, 

government agencies, and commercial enterprises with data from the National Weather 

Service’s (NWS) digital forecast database. The SOAP connects the LabVIEW interface to 

NDFD database when requested. The NDFD database gets updated after 45 minutes – 1 
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hour. The following Figure 8-4 describes the process of collecting weather data from 

national weather services. 

 
Figure 8-4 Collection of Weather Data from LabVIEW interface 

The following information is collected by LabVIEW interface through SOAP request. 

• Maximum Temperature 

• Minimum Temperature 

• Percentage chances of Rain/Snow 

• Dew Point 

8.3.2 Manual Turn On/off 

 The user interface is programmed to manually turn on/off the electrical heating of 

the concrete structure. A software manual switch is programmed to send high signal to the 

solid state relay (SSR) through NI DAQ to turn on the electric current from the 

transformer to the carbon fiber. Apart from a software manual switch, every block is 

connected to a 3-way switch to activate the heating. One side of the switch keeps the 

heating off, the second side manually turns on/off the heating. The 3rd side keeps system 

controlled via user interface. The user interface has an on/off controller and a fuzzy logic 

based temperature controller to control the surface temperature of test sidewalk. The 

description of both controllers is given in the following section. 
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8.3.3 On/OFF Controller 

The heating of a concrete block to raise the surface temperature is a slow process. 

It takes a few hours to raise the temperature from sub-zero to above melting point at a 

limited control power. For this type of systems, ON-OFF controller generally shows 

optimized performance [144]. 

The ON-OFF controller is the simplest form of control and is often used in 

temperature controlled heating processes. When the temperature of the system is less than 

the set-point temperature the heater is turned on at maximum power and once the system 

temperature is above the set-point, the heater is switched off completely. To keep the 

system temperature near the set-point temperature, the turn-on and the turn-off 

temperature are kept at very small difference. This can be done by in many ways by 

introducing a hysteresis or a dead zone in actuation. In this study, a dead-zone is 

introduced to eliminate the temperature fluctuations. The block diagram of ON-OFF 

controller is given in Figure 8-5. 

 
Figure 8-5 Block Diagram of ON-OFF Controller 

The ON-OFF controller explained above can give optimal performance only under 

similar ambient conditions. However, environmental conditions are always changing and 

are sometimes very unpredictable. These fluctuating conditions affect the performance of 
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the controller. To overcome this, a fuzzy logic based controller is employed to take into 

account environmental parameters and also help the system to behave in a more 

economical way. 

8.3.4 Fuzzy Logic Based Temperature Controller 

The fuzzy logic control approach is based on the ability of humans to learn, 

represent, manipulate and implement any idea to control the system accordingly. This 

ability makes the fuzzy control approach very interesting and popular among engineers. 

Fuzzy controllers are very robust and handle nonlinearities and model uncertainties of the 

system very well. However, design of a fuzzy logic controller requires an in-depth 

knowledge of the system and its behavior. A general fuzzy logic controller block diagram 

can be represented with four elements as shown in Figure 8-6. 

 
Figure 8-6 Block Diagram of Fuzzy Logic Controller 

The set of rules, which contains the fuzzy logic quantification of expert knowledge of the 

system for good control, is as follows: 

Inference Mechanism: An inference mechanism describes the fuzzy outputs based on the 

expert’s knowledge of the system. The inference mechanism basically has two tasks: 

1. Determining the extent to which each rule is relevant to the current situation. 

2. Formulate a decision based on the current input and information from the rule-

base. 
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In general, the inference mechanism works on the if/then principle and decides the output 

of the controller based on information from the sensor. 

Fuzzification: Fuzzy sets are used to quantify the information in the rule-base. It can be 

defined as an interface which converts controller inputs into a fuzzy input set that can be 

understood by the inference mechanism, or “fuzzify” the raw input of the sensor. 

Generally, a Singleton function is used, which produces a fuzzy set that defines a 

membership function to quantify the information in the rule-base for the control output. 

Defuzzification: Defuzzification is the interface used to convert decisions made by the 

inference mechanism to physical output for the controller to control the plant. There are 

different types of defuzzification strategies that exist in fuzzy logic control systems. Some 

of these are as follows: 

1. Center of gravity (COG): The crisp output is chosen by the center of the area and 

the area of each implied fuzzy set. 

2. Center Average: The crisp output is chosen using the centers of each of the 

output and membership functions and the maximum certainty of each of the 

conclusions that represent the implied fuzzy set. 

3. Max criterion: The crisp output is chosen as the maximum value that can be 

achieved for the overall fuzzy set.  

4. Mean of maximum: The crisp output in this strategy is the mean value of all 

elements having maximum membership in their defined fuzzy set.  

Generally, center average defuzzification technique is used as it is easy to 

compute. A model of a fuzzy system can be expressed by using the product inference 

engine, Singleton fuzzifier, and center average defuzzifier, as 
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 The fuzzy controller described above can be used to estimate the nonlinearities and 

uncertainties of the system by analyzing the crisp input by the fuzzy approach. For 

temperature control of the concrete test-sidewalk, the input parameters for the fuzzy logic 

controller are 

1. Local surface temperature of concrete test block (TL oC) 

2. Environmental minimum temperature from NDFD website (TW oC) 

3. Dew point < relative local environmental temperature 

4. Percentage chance of precipitation  

The output parameter of the fuzzy logic based controller is the duty cycle for the 

pulse width modulation (PWM) signal to activate the SSR. The range of duty cycle ranges 

from (0%-100%). The block diagram of the fuzzy logic based controlled heating of 

surface temperature is given in Figure 8-7. 
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Figure 8-7 Block diagram of fuzzy logic based temperature controller 

Generally, if the dew point is lower than the environmental temperature, chances 

are high that snow/rain will happen in the area. For the fuzzy logic controller it is 

considered that if the chances of precipitation is greater than 40%, there are moderate 

chances that rain/snow will happen and for chances of precipitation to be greater than 

60%, the chances are considered to be very high. Chances of precipitation under 40% are 

considered to be low for rain/snow. The fuzzy rules for the temperature controller are 

given in the following Table 8-1 and Table 8-2. 

 The temperature range for these rules is defined as “Very Low” = less than -15ºC, 

“Low” = (-10ºC, -5ºC), “Less Zero” = (-5ºC, -2ºC), “Zero” = (-2ºC, 2ºC), “High” = (2ºC, 

5ºC), and “Very High” = greater than 5ºC. 

Table 8-1 If Precipitation>40%, Dew Point > Minimum Temperature 

TL 

 
TW  

Very Low Low Less Zero Zero High Very High 

Very 
Low Low/Moderate Low/Moderate High/Moderate High/Moderate Zero Zero 

Low High/Moderate High High High Zero Zero 

Less 
Zero High High High High Zero Zero 

Zero High High High High Zero Zero 

High Moderate Moderate Moderate Low Zero Zero 

Very 
High Moderate Moderate Low Low Zero Zero 
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Table 8-2 If Probability of Rain/Snow>60, Dew Point > Minimum Temperature 

8.4 Experimental Setup in Lab 

For the de-icing project, a concrete block with embedded carbon fiber tape was 

casted at the University of Houston. The dimension of the concrete block was 12˝×18˝×6˝.  

The carbon tape of 3˝ width was embedded in to the block as shown in Figure 8-8. The 

tape was clamped between two copper rods on each side as electrodes. 

 
Figure 8-8 Configuration of Concrete Block with embedded Carbon Fiber Tape 

To simulate the real time cold weather effect on the block, the concrete block was 

kept in a freezer.  The temperature inside the freezer was set to be -15 ºC. Three 

thermocouples were placed on the surface of the block to measure the temperature and the 

weighted average of these thermocouples was used as the surface temperature reading. 

Water was poured on to the surface of the concrete block to produce surface ice 

TL 

 
TW  

Very Low Low Less Zero Zero High Very High 

Very 
Low High High High/Moderate High/Moderate Zero Zero 

Low High High High High Zero Zero 

Less 
Zero High High High High Zero Zero 

Zero High High Moderate Moderate Zero Zero 

High Moderate Moderate Low Low Zero Zero 

Very 
High Moderate Moderate Low Low Zero Zero 



 

formations, as shown in Figure 8-9. The aluminum roads were connected to the electrical 

system via electrical cables as shown in Figure 8-10.  
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fuzzy logic based controller. The following figures demonstrate the performance of both 

controllers. 

 
Figure 8-12 De-icing with ON/OFF controller 

 
Figure 8-13 De-icing with fuzzy logic based controller 

 It can be seen in Figure 8-12 and Figure 8-13 that both controllers were able to 

raise the surface temperature of the concrete test specimen above the freezing point 

effectively. It was found that the temperature at the edges of the concrete test specimen 

where the electrodes are placed show higher readings due to high contact resistance 

between the metal electrodes and the carbon fiber tape. Due to this high resistance, the 
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heat generated is greater in this area, resulting in higher surface temperature at the edges. 

This issue can be resolved by adopting a distributive temperature controller. 

8.6 Field Experiment Setup 

A test sidewalk with a conventional surface pavement was constructed at the 

University of Alaska Anchorage (UAA) campus following the concrete standards in the 

Municipality of Anchorage Standard Specifications (MASS). The completed sidewalk is 

shown in Figure 8-14. Besides the sidewalk with embedded heating panels, there were 

installed a power supply box and a data acquisition/control box which house the power 

supply and data acquisition/control equipment of the field experiment facility, 

respectively. The three heating panels were powered and controlled individually. Figure 

8-15 describes the carbon fiber frame in each block of the test sidewalk. Block 2-Block 4 

have an embedded carbon fiber frame. Figure 8-16 describes the cross sectional area of 

test sidewalk. 

 
Figure 8-14 Test Sidewalk Dimensions 

 
Figure 8-15 Carbon Fiber Frame  

 
Figure 8-16 Cross Sectional View of Test Sidewalk 
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Figure 8-17 describes the block diagram of the automatic de-icing system. The 

electrical power supply box consists of a power meter, three step-down transformers and 

solid state relays. Power and energy usage can be tracked from the power meter. The 

transformers used in this de-icing system are PH1000PG HPS Machine Tool Industrial 

Control Transformers with a primary voltage of 120/240V, a secondary voltage of 12/24 

V, and a VA rating of 1000VA. In the experiments, the transformers were connected to 

110V/60Hz AC power outlet and the heating panels were charged with by 24V AC for 

heat generation.  

 
Figure 8-17 Block Diagram of Automatic De-icing System 

The electronic control box houses three main units: an industrial computer, a data 

acquisition unit (NI 9188) and a power-switching unit. The NI-9188 is an Ethernet chassis 

manufactured by National Instruments. It consists of a 16-channel thermocouple reader 

(NI 9213) and an 8-channel solid state relay driver (NI 9485). The data were retrieved 

through a remote computer via internet.  

8.7 Field Experimental Results  

The automatic de-icing system was tested under natural conditions at the UAA 

campus. It was found that during the day, direct sunlight falling on the concrete blocks 

also helps temperature to rise. Now, since the thermocouple used to sense the surface 
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temperature is also exposed to sunlight, it also gives higher temperature reading. The 

fluctuations in the surface temperature reading can be attributed towards the 

environmental effects beyond human control. 

The temperature profile of a concrete block with fuzzy logic based controller is 

shown in Figure 8-19. The target surface temperature was chosen to be around 4oC. It can 

be seen that fuzzy logic based controller took about 4 hours to raise the temperature from 

less than -5oC to above 0oC. Also it is able to keep the temperature around 4oC as 

environmental conditions were almost the same for the whole duration. 

 
Figure 8-18 Temperature Control with Fuzzy Logic based Controller 

The temperature profile of a concrete block with fuzzy logic based controller is 

shown in Figure 8-19 over a longer time (approx. 260 hours). The high temperature peaks 

in the range of (5oC – 10oC) are due to direct sunlight on these concrete blocks. The target 

surface temperature was chosen to be around 4oC. It can be seen that fuzzy logic based 

controller is able to keep the temperature above freezing point under different 

environmental conditions. 
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The temperature profile of the concrete block with the ON/OFF controller is 

shown in Figure 8-20 and Figure 8-21. Again fluctuation due to sunlight and other 

environmental effects can be seen. The concrete test sidewalk was not cooled down to 

below freezing point under natural condition before putting it under ON/OFF controller. 

This is the reason why the temperature data in Figure 8-21 with the ON/OFF controller 

starts from above 0oC.  

 
Figure 8-19 Surface Temperature with fuzzy logic based controller 

 
Figure 8-20 Temperature control with ON/OFF Controller 
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Figure 8-21 Surface Temperature with ON/OFF controller 

To test the surface temperature profile, IR images were taken using the Thermal 

Imaging Camera from FLIR. The images from the thermal IR camera show that the 

temperature along the surface is almost constant. The following figures show the images 

taken from the thermal imaging camera.  

         
Figure 8-22 Thermal camera images (Block with ON/OFF Controller) 

          
Figure 8-23 Thermal camera images (Block with Fuzzy Logic based Controller) 
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 From the above images, it can be seen that the surface temperature is uniform 

along the whole surface of the concrete block. Also, the surface temperature of the 

concrete block is around 4oC as desired. Since the surface temperature is uniform, the 

thermocouple used for temperature feedback can be placed anywhere on the concrete 

surface.  

8.8 Power Consumption Analysis 

Cost effectiveness has always been a very important factor for employing a new 

system. It is very important to compare the recurring cost for the electrical power that the 

system will consume.  The power consumption data was recorded and compared with 

power consumption by manual control in the earlier study of the same system [154].  In an 

earlier study, after analyzing the data it was found that power consumption for de-icing 

and anti-icing tests was almost same. Also on comparing with other existing technologies, 

the proposed de-icing system was proved to be much cheaper. It was envisioned that the 

system can be made more efficient if used in a controlled way by preventing waste of 

power consumption when there is no ice or no chances of rain and snow. Also, it was 

stated that the installation cost for the physical system that included cost of heating panels, 

electrical and control equipment was relatively lower than that of other existing 

technologies. In addition to it, remote access of the system made it cheaper in terms of 

labor cost. During testing of these temperature controllers for the test sidewalk, the 

electrical power consumed by the system is recorded and compared with other 

technologies. During this time, the system was running under one control algorithm either 

ON/OFF Control or Fuzzy Logic based Control. A detailed power consumption analysis 
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for the ON/OFF controller and fuzzy logic based controller are given in Table 8-3 and 

Table 8-4. 

Table 8-3 Power Consumption of test sidewalk (ON/OFF controller) 
Date Time b/w 

reading 

Energy Usage 

(kWh) 

Energy Cost 

($) 

Energy 

Cost 

Cost/Unit 

Area 03/02~05/2012 80 22.157 4.4314 1.3294 0.298 

03/05~06/2012 22 4.03 0.8060 0.8784 0.197 

03/06~07/2012 20 3.81 0.7620 0.9144 0.205 

03/07~09/2012 48.33 8.786 1.7572 0.8736 0.196 

Total 170.33 38.7830 7.7566 1.0929* 0.245* 

Table 8-4 Power Consumption of test sidewalk (fuzzy logic temperature controller) 
Date Time b/w 

reading 

Energy Usage 

(kWh) 

Energy Cost 

($) 

Energy 

Cost 

Cost/Unit 

Area 03/09~12/2012 76.5 15.197 3.0394 0.9535 0.208 

03/12~13/2012 23.5 4.545 0.9090 0.9283 0.151 

03/13~14/2012 22.33 3.142 0.6284 0.6753 0.156 

03/14~19/2012 123 17.79 3.5580 0.6942 0.166 

Total 245.33 40.6740 8.1348 0.7968* 0.178* 

The comparison of power consumption cost among the manual control, ON/OFF control 

and fuzzy logic based controller for de-icing of the test sidewalk is given in Table 8-5. 

Table 8-5 Comparison of power consumption cost 
Controller Type Energy Cost Cost/Unit Area 

Manual 4.1088*a 0.9214*a 

On-Off Controller 1.0929* 0.249* 

Fuzzy Logic 0.7968* 0.178* 

Note: Cost for sidewalk preparation and system components is not considered. 
*average energy cost/day and average energy cost/[day.m2], energy cost assumed =$0.2/kWh 
a values calculated from earlier study [154]. 

From above tables of comparison, it can be stated that the de-icing system with the 

ON/OFF controller and fuzzy logic based controller are very efficient in terms of power 

consumption cost. The de-icing system with the ON/OFF controller is 72.97% more 
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efficient than the always ON manual controller, with the fuzzy logic controller, the system 

is 80.68%. Also, the de-icing system with the fuzzy logic controller is 27.35% more 

efficient than with the ON/OFF controller.  

8.9 Conclusion 

In this study, the design, development, and testing of a carbon fiber based de-icing 

system for concrete structures was presented. A carbon fiber fabric based heating element 

was embedded in a concrete pavement and field tested at the University of Alaska 

Anchorage using an internet based remote control system.  A LabVIEW interface was 

built to enable the remote access and monitoring of the de-icing system. Two control 

algorithms, the ON/OFF controller with dead-zone and an advanced fuzzy logic based 

controller, were implemented and tested over the winter of 2011-2012. The controller 

performances were satisfactory and helped lower the cost of power consumption as 

compared to always ON, manual control. The designed fuzzy logic based advanced 

controller was over 25% more energy efficient than the ON/OFF controller. It is 

envisioned that after employing the models for effects of environmental changes, such as 

daily temperature cycles and wind conditions, on the de-icing system, the de-icing process 

can be made even more economical. 
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Chapter 9.  General Conclusions and Future Work 

Smart materials have been used for many commercial engineering applications. 

These applications require some controllers to achieve high performance. This dissertation 

includes the development of an advanced optimal sliding mode controller and its 

applications using smart materials. The optimal sliding mode controller consisted of two 

parts. The first guarantees the robust stability of the controller and the second keeps the 

states of the system in a desired sliding surface trajectory. The desired sliding surface 

trajectory was designed using the stable eigenvectors. The stability of the proposed 

controller was explained.  

A simulation example was used to evaluate the performance of the proposed 

approach. According to the simulation results comparison, the optimal sliding mode 

controller demonstrates better performance than the conventional sliding mode control and 

uses 34% less energy to converge the states with less chattering (71% and 31% for both 

the states). To further test the proposed approach, the optimal approach was successfully 

implemented to control the multimodal vibrations of a smart flexible beam with 

piezoceramic sensor and actuator. To test the robustness of the controller, the proposed 

controller was effectively tested on the smart beam with uncertain mass. The random mass 

uncertainty added to the system was about 25%. It was found that the proposed optimal 

controller was able to provide 30dB reduction in power for the first modal frequency and 

approximately 25dB reduction in power for the uncertain modal vibrations.  

It was found that the LQR approach guarantees controller stability for matched 

system uncertainties; however, for unmatched uncertainties the stability of the controller 

cannot be explained properly. In order to deal with both, matched and unmatched 
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uncertainties, the optimal control gains are calculated using H∞ approach. The improved 

sliding mode controller was again compared with a conventional sliding mode controller 

on a multiple input multiple output simulation system with uncertainties. The improved 

proposed approach was found to be highly effective in dealing with these uncertainties and 

proved to be better than the conventional sliding mode approach. The performance of the 

robust optimal controller was evaluated by implementing the controller to suppress the 

vibrations of a two story structure with base isolation and a nonlinear MR damper. The 

MR damper nonlinearity was considered a matched uncertainty and the earthquake 

disturbance to base isolated structure was considered an unmatched uncertainty. The 

experimental results of the optimal sliding mode controller were compared with the 

passive damping of the MR damper at different voltages level for different earthquake 

excitations. The experimental results showed that the proposed vibration control was 

optimally designed for all earthquake excitations and dealt with uncertainties effectively.  

The passive control systems are the oldest and still, the most preferred way to 

control the vibrations of the structures. Many types of passive systems have been 

introduced and implemented from time to time. Generally, active/semi-active control 

systems are designed using specific control algorithms to have better results. For passive 

control systems, even for a simple design, the mathematical model could be very complex. 

In this study, a passive vibration control device was modeled as a passive sliding mode 

controller. An analogy was made between the analytical model of the force generated by 

the passive device (PTMD) and the sliding mode control law to suppress the vibrations of 

a jumper used in the oil and gas industry. A simulation was done on the jumper model 

with the PTMD as a passive sliding mode controller. The simulation results were 
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compared with experimental results. The comparison between experimental data and 

simulation data of the passive sliding mode controller model of the PTMD verified the 

proposed hypothesis. Thus, it can be stated that the proposed passive sliding model can be 

helpful in designing and understanding vibration suppression of the system with PTMD. 

A cost effective de-icing system was developed using carbon fiber as the heating 

element. A mathematical model was developed for the de-icing process considering the 

carbon fiber heating as input and surface temperature as output. Two control algorithms, 

the ON/OFF controller and fuzzy logic based controller, were designed to control the 

surface temperature of the road. The fuzzy logic controller was developed by taking the 

surface temperature and weather parameters, such as environmental temperature, dew 

point and chances of rain/snow into consideration. The experimental lab and field results 

showed that the electrical heating of carbon fiber is very efficient for the de-icing of roads 

in cold regions. The power cost analysis for the fuzzy logic based temperature controller 

of the de-icing system was compared with an ON-OFF controller and manual controller. 

The comparison results showed that the fuzzy logic based automatic system is about 27% 

more economical than ON-OFF control based system and about 80% cheaper than manual 

operation. 

Although, the power analysis shows that the fuzzy logic based temperature 

controlled de-icing method is very economical in comparison with other existing 

technologies, it can be improved further by employing more environmental parameters 

such as wind speed and historical weather data comparison to present data, etc. 
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This dissertation will be able to generate four journal papers. The papers have been 

submitted for journal publications and, currently, the authors are waiting for the approval. 

The list of papers is as follows 

1. Mithun Singla, Leang-San Shieh, Gangbing Song, Linbo Xie, Yongpeng Zhang, 

“Development of a Novel Optimal Sliding Mode Controller with LQR Approach and 

Matrix Sign Function,” 2012. 

2. Mithun Singla, Chen-Yin Woo, Leang-San Shieh, Gangbing Song, Linbo Xie, Jason 

Tsai, “Optimal Vibration Control of Base-Isolated Structure with Robust H∞ Based 

Sliding Mode Controller with Matrix Sign Function for Matched and Unmatched 

Uncertainties,” 2012. 

3. Mithun Singla, Gangbing Song, Peng Zhang, Leang-San Shieh, “Pounding Tuned 

Mass Damper: An Innovative Realization of Sliding Mode Control using a Passive 

Approach,” 2012. 

4. Mithun Singla, Christiana Chang, Gangbing Song, Zhaohui Yang, “Development of a 

Novel De-icing System with Advanced Temperature Control for Roads using Carbon 

Fiber as Heating Element,” 2012. 

  

  



142 
 

Reference 

[1] V. K. Wadhawan, Smart Structures :Blurring the Distinction between the Living 

and the Nonliving vol. 65: Oxford Science Publications, 2007. 

[2] R. S. Lakes and J. Quackenbush, "Viscoelastic behaviour in indium tin alloys over 

a wide range of frequency and time," Philosophical Magazine Latters, vol. 74, pp. 

227-232, 1996. 

[3] "www. fiberglast.com," Fiberglast Inc. 

[4] R. L. Powell and G. E. Childs, "American Institute of Physicas Handbook," vol. 4, 

pp. 142-160, 1972. 

[5] V. I. Utkin, "Variable structure systems with sliding modes: a survey," IEEE 

transactions of Automation and Control, vol. 22, pp. 212-222, 1977. 

[6] K. D. Young, V. I. Utkin, and U. Ozguner, "A Control Engineer's Guide to sliding 

Mode Control," IEEE Transactions on Control Systems Technology, vol. 7, pp. 

328-342, May, 1999. 

[7] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. New Jersey: Prentice Hall 

International Inc., 1991. 

[8] S. H. Zak, Systems and Controls. New York: Oxford University Press, 2003. 

[9] R. Xu, "Optimal Sliding Mode Controller and Stablization of Underactuated 

Systems," in Department of Electrical and Computer Engineering. vol. Ph. D.: 

Ohio State University, 2007, p. 167. 

[10] C. Vecchio, "Sliding Mode Control: theoretical developments and applications to 

uncertain mechanical systems," in Department of Computer and System. vol. Ph. 

D. Pavia, Italy: University of Pavia, 2008, p. 250. 



143 
 

[11] I. Boiko, A. Pisano, and E. Usai, "Analysis of Chattering in Systems with Second-

Order Sliding Modes," IEEE Transactions on Automatic Control, vol. 52, pp. 

2085-2102, 2007. 

[12] M. Basin and D. Calderon-Alvarez, "Sliding mode regulator as solution to optimal 

control problem for non-linear polynomial systems," Journal of the franklin 

Institute, vol. 347, pp. 910-922, 2010. 

[13] M. Basin, "Integral sliding mode design for robust filtering and control of linear 

stochastic time-delay system," Internation Journal of Robust and Nonlinear 

Control, vol. 15, pp. 407-421, 2005. 

[14] M. Basin, L. Fridman, and M. Skliar, "Optimal and Robust sliding mode filter for 

systems with continuous and delayed measurements," in Proceeding of the 41st 

Conference on Decision and Control Las Vegas, NV, 2002. 

[15] K. D. Young, V. I. Utkin, and U. Ozguner, "A Control Engineer's Guide to Sliding 

Mode Control," IEEE Transaction on Control System Technology, vol. 7, pp. 328-

342, 1999. 

[16] S. Wang, S. Habibi, and R. Burton, "The Smooth Sliding Mode Controller and 

Filter," Control and Intelligent Systems, vol. 38, pp. 130-139, 2010. 

[17] L. Hsu, R. R. Costa, and J. P. V. S. d. Cunha, "Model-Reference Output-feedback 

Sliding Mode Controller for a Class of Multivariable Nonlinear Systems," Asian 

Journal of Control, vol. 5, pp. 543-556, 2003. 

[18] J.-L. Chang, "Output Feedback Sliding Mode Controller Design via H∞ Theory," 

Asian Journal of Control, vol. 5, pp. 24-31, 2003. 



144 
 

[19] H. J. Shieh, J. H. Siao, and Y.-C. Liu, "A Robust Optimal Sliding Mode Control 

Approach for Magnetic Levitation Systems," Asian Journal of Control, vol. 12, pp. 

480-487, 2010. 

[20] Y.-F. Li and J. Wikander, "Model reference discrete-time sliding mode control of 

linear motor precision servo systems," Mechatronics, vol. 14, pp. 835-851, 2004. 

[21] K. S. You, M. C. Lee, and W. S. Yoo, "Sliding Mode Controller with Sliding 

Perturbation Observer Based on Gain Optimization using Genetic Algorithm," 

KSME International Journal, vol. 18, pp. 630-639, 2004. 

[22] Z. Mohammadi, M. Teshnehlab, and M. A. Shoorehdeli, "Designing Flexible 

Neuro-Fuzzy System Based on Sliding Mode Controller for Magnetic Levitation 

Systems," International Journal of Computer Science Issues, vol. 8, pp. 160-171, 

2011. 

[23] A. Hazzab, I. K. Bousserhane, M. Kamli, and M. Rahil, "A New Fuzzy Sliding 

Mode Controller for Induction Motor Speed Control," in Proceedings of Second 

International Symposium on Communications, Control and Signal Processing, 

Marrakech, Morocco, 2006. 

[24] G. L. Hou, J. H. Zhang, J. Wang, and Q. H. Wu, "Adaptive Sliding Mode and 

Fuzzy Gain Scheduling Control for Steam Temperature in Power Plants," in 

International Control Conference Glasgow, Scotland, 2006. 

[25] S.-J. Huang, H.-Y. Chen, and C.-C. Wang, "Fuzzy Sliding Mode Controller with 

Gain Auto-tuning for Un-symmetric Input Temperature Control System," in IEEE 

International Conference on Systems, Man, and Cybernetics Taipei, Taiwan, 2006. 



145 
 

[26] J. Jing and Q.-H. Wu, "An Intelligent Sliding Mode Control Algorithm for Position 

Tracking Servo System," International Journal of Information Technology, vol. 

12, pp. 57-62, 2006. 

[27] M. Singla and G. Song, "Positive Position Feedback and Fuzzy Logic Based 

Active Vibration Control of a Smart Beam with Mass Uncertainty," in Structures, 

Structural Dynamics, and Materials Conference Schaumberg, IL, USA, 2008. 

[28] M. C. Pai, "Design of adaptive sliding mode controller for robust tracking and 

model following," Journal of the Franklin Institute, vol. 347, pp. 1837-1849, 2010. 

[29] M.-L. Chan, C. W. Tao, and T.-T. Lee, "Sliding mode controller for linear systems 

with mismatched time-varying uncertainties," Journal of Franklin Institute, vol. 

337, pp. 105-115, 2000. 

[30] H. H. Choi, "An Explicit Formula of Linear Sliding Surfaces for a Class of 

Uncertain Dynamic Systems with Mismatched Uncertainties," Automatica, vol. 34, 

pp. 1015-1020, 1998. 

[31] A. Levant and A. Michael, "Adjustment of high-order sliding mode controllers," 

International Journal of Robust and Nonlinear Control, vol. 19, pp. 1657-1672, 

2009. 

[32] A. Levant, "Higher-order sliding modes, differentiation and output-feedback 

control," International Journal of Control, vol. 76, pp. 924-941, 2003. 

[33] A. Levant, "Universal Single-Input-Single-Output (SISO) Sliding Mode Controller 

with Finite Time Convergence," IEEE Transactions on Automatic Control, vol. 46, 

pp. 1447-1451, 2001. 



146 
 

[34] G. Bartolini, A. Pisano, and E. Usai, "Digital second-order sliding mode control 

for uncertain nonlinear systems," Automatica, vol. 37, pp. 1371-1377, 2001. 

[35] N. K. Yadav and R. K. Singh, "Discrete time nonlinear sliding mode controller," 

International Journal of Engineering, Science and Technology, vol. 3, pp. 94-100, 

2011. 

[36] W.-C. Yu, G.-J. Wang, and C.-C. Chang, " Discrete sliding mode control with 

forgetting dynamic sliding surface," Mechatronics, vol. 14, pp. 737-755, 2004. 

[37] M. Basin, "Optimal sliding mode algorithms for dynamic systems," Editorial in 

Journal of The franklin Institude, vol. 349, 2012. 

[38] K. D. Young and U. Ozguner, "Sliding Mode Design for Robust Linear Optimal 

Control," Automatica, vol. 33, pp. 1313-1323, 1997. 

[39] Z. Lu, L. S. Shieh, G. Chen, and N. P. Coleman, "Simplex sliding mode control for 

nonlinear uncertain systems via chaos optimization," Chaos, Solitons and Fractals, 

vol. 23, pp. 747-755, 2005. 

[40] F. Dinuzzo and A. Ferrara, "Higher order Sliding mode Controllers with Optimal 

Reachning," IEEE Transactions on Automatic Control, vol. 54, pp. 2126-2136, 

2009. 

[41] N. Sakamoto, "Optimal Control Problem via Self-Adaptation Sliding Mode 

Controller with Neural Network," Electronics and Communications in Japan, vol. 

94, pp. 1043-1049, 2011. 

[42] C. Pukdeboon and A. S. I. Zinober, "Control Lyapunov function optimal sliding 

mode controllers for attitude tracking of spacecraft," Journal of Franklin Institute, 

vol. 349, pp. 456-475, 2012. 



147 
 

[43] S. Laghrouche, F. Plestan, and A. Glumineau, "Higher Order Sliding Mode 

Control based on Optimal Linear Quadratic Control," Automatica, vol. 43, pp. 531-

537, 2007. 

[44] C. Edwards, "A practical method for the design of sliding mode controllers using 

linear matrix inequalities," Automatica, vol. 40, pp. 1761-1769, 2004. 

[45] M. Nikkhah, H. Ashrafiuon, and K. R. Muske, "Optimal Sliding Mode Control for 

Underactuated Systems," in Proceedings of the 2006 American Control 

Conference, Minneapolis, Minnesota, USA, 2006. 

[46] Y. Niu, D. W. C. Ho, and Z. Wang, "Improved sliding mode control for discrete 

time systems via reaching law," IET Control Theory and Applications, vol. 4, pp. 

2245-2251, November, 2010. 

[47] V. Azhmyakov, "On the set-valued approach to optimal control of sliding mode 

processes," Journal of The Franklin Institute, vol. 349, pp. 1323-1336, 2012. 

[48] V. I. Utkin and H. Lee, "Chattering Problem in Sliding Mode Control Systems," in 

Proceedings of the 2006 International Workshop on Variable Structure Systems, 

Alghero, Italy, 2006, pp. 346-350. 

[49] W.-C. Su, S. V. Drakunov, U. Ozgiiner, and K. D. Young, "Sliding Mode with 

Chattering Reduction in Sampled Data Systems," in Proceedings of the 32nd 

Conference on Decision and Control, San Antonio, TX, 1993, pp. 2452-2457. 

[50] K. D. Young and S. V. Drakunov, "Sliding Mode Control with Chattering 

Reduction," in American Control Conference, 1992, 1992, pp. 1291-1292. 



148 
 

[51] G. Song and R. Mukherjee, "A Comparative Study of Conventional Nonsmooth 

Time-Invariant and Smooth Time-Varying Robust Compensators," IEEE 

Transaction of Control Systems Technology, vol. 6, pp. 571-576, 1998. 

[52] G. Song and H. Gu, "Active Vibration Suppression of a Smart Flexible Beam 

using a Sliding Mode Based Controller," Journal of Vibration and Control, vol. 

13, pp. 1095-1107, 2007. 

[53] J. D. Roberts, "Linear Model Reduction and Solution of the Algebraic Riccati 

Equations by Use of Sign Function," International Journal of Control, vol. 130, 

pp. 677-687, 1980. 

[54] L. S. Shieh, Y. T. Tsay, and R. Yates, "Some Properties of Matrix Sign Function 

Derived from Continued Fractions," IEEE Proceedings of Control Theory and 

Applications, vol. 130, pp. 111-118, 1983. 

[55] F. Attarzadeh, "Relative Stability Test for Continuous and Sampled-Data Control 

Systems " Proceedings of IEE, vol. 129, pp. 189-192, 1982. 

[56] R. L. Mattheys, "Stability Analysis via the Extended Matrix Sign Function," 

Proceedings of IEE, vol. 125, pp. 241-243, 1978. 

[57] J. S. H. Tsai, L. S. Shieh, and R. E. Yates, "Fast and Stable Algorithms for 

Computing the Principal nth Root of a Complex Matrix and The Matrix Sector 

Function," Computers & Mathematics with Applications, vol. 15, pp. 903-913, 

1988. 

[58] J. S. H. Tsai, C.-C. Huang, S.-M. Guo, and L.-S. Shieh, "Continuous to Discrete 

Model Conversion for the System with a Singular System Matrix based on mAtrix 

Sign Function," Applied Mathematical Modeling, vol. 35, pp. 3893-3804, 2011. 



149 
 

[59] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical 

Systems. Bristol PA: Taylor and Francis, 1999. 

[60] J. Fei and M. Xin, "Robust Adaptive Sliding Mode Controller for Semi-active 

Vehicle Suspension System," Interbational Journal of Innovative Computing, 

Information and Control, vol. 8, pp. 691-700, 2012. 

[61] S.-H. Lee, Y. Joo, J. Back, J.-H. Seo, and I. Choy, "Sliding Mode Controller for 

Torque and Pitch Control of PMSG Wind Power Systems," Journal of Power 

Electronics, vol. 11, pp. 342-349, 2011. 

[62] B. Afkham and S. Ehteram, "Nonlinear Control of Buildings Subjected to 

Earthquakes by Using Sliding Mode Controller (SMC)," Modern Applied Science, 

vol. 4, pp. 170-176, 2010. 

[63] C. Pukdeboon, "Optimal Sliding Mode Controllers for Attitude Stabilization of 

Flexible Spacecraft," in Mathematical Problems in Engineering. vol. 2011, 2011, 

pp. 1-20. 

[64] O. Camacho and R. Rojas, "A General Sliding Mode Controller for Nonlinear 

Chemical Processes," Transaction of the ASME, vol. 122, pp. 650-655, 2000. 

[65] O. Camacho, C. Smith, and W. Moreno, "Development of an Internal Model 

Sliding Mode Controller," Industrial and Engineering Chemistry Research, vol. 

42, pp. 568-573, 2003. 

[66] C.-T. Chen and S.-T. Peng, "Design of a sliding mode control system for chemical 

processes," Journal of Process Control, vol. 15, pp. 515-530, 2005. 

[67] U. Demirci and F. Kerestecioglu, "A re-configuring sliding-mode controller with 

adjustable robustness," Ocean Engineering, vol. 31, pp. 1669-1682, 2004. 



150 
 

[68] K. Takahashi, K. Tateishi, Y. Tomita, and S. Ohsawa, "Application of the Sliding-

Mode Controller to Optical Disk Drives," Japanese Journal of Applied Physics, 

vol. 43, pp. 4801-4805, 2004. 

[69] H. Gu, G. Song, and H. Malki, "Chattering-free fuzzy adaptive robust sliding-

mode vibration control of a smart flexible beam," Smart Material and Structures, 

vol. 17, pp. 1-7, 2008. 

[70] L. Li, G. Song, and J. Ou, "Nonlinear Structural Vibration Suppression Using 

Dynamic Neural Network Observer and Adaptive Fuzzy Sliding Mode Control," 

2009. 

[71] G. W. Housner, L. A. Bergam, T. K. Cauchy, A. G. Chassiakos, R. O. Claus, S. M. 

Skelton, T. T. Soong, B. F. Spencer, and J. P. T. Yao, "Structural Control: Past, 

Present and Future Control," Journal of Engineering Mechanics, vol. 123, pp. 897-

971, 1997. 

[72] S.-G. Luca, F. Chira, and V.-O. Rosca, "Passive, Active and Semi-Active Control 

systems in Civil engineering," Bulletin of the Polytechnic Institute of Iaşi, pp. 23-

31, 2005. 

[73] C. Pastia, S.-G. Luca, F. Chira, and C.-O. Rosca, "Structural control systems 

implemented in civil engineering," Bulletin of the Polytechnic Institute of Iaşi, pp. 

41-49, 2005. 

[74] M. A. Lackner and M. A. Rotea, "Passive structural control of offshore wind 

turbines," Wind Energy, vol. 14, pp. 373-388, 2011. 



151 
 

[75] J. Ou and H. Li, "Design approaches for active, semi-active and passive control 

systems based on analysis of characteristics of active control force," Earthquake 

Engineering and Engineering vibrations, vol. 8, pp. 493-506, 2009. 

[76] J. Ou and H. Li, "Analysis of capability for semi-active or passive damping 

systems to achieve the performance of active control systems," Structural Control 

and Health Monitoring, vol. 17, pp. 778-794, 2010. 

[77] T. R. M. Rao, G. V. Rao, k. S. Rao, and A. Purushottam, "Analysis of Passive and 

Semi-Active controlled suspension systems for ride comfort in an omnibus passing 

over speed bump," International Journal of Research and Reviews in Applied 

Sciences, vol. 5, pp. 7-17, 2010. 

[78] M. D. Symans and M. C. Constantinou, "Semi-active control systems for seismic 

protection of structures: a state-of-the-art review," Engineering Structures, vol. 21, 

pp. 469-487, 1999. 

[79] M. H. Chey, "Passive and Semi-active tuned mass damper building systems," in 

Civil and Natural Resources Engineering Christchurch, New Zealand: University 

of Canterbury, 2007. 

[80] S. J. Dyke, B. F. S. Jr., M. K. Sain, and J. D. Carlson, "Modeling and Control of 

Magnetorheological Dampers for Seismic Response Reduction," Smart Material 

and Structures, vol. 5, pp. 565-575. 

[81] B. F. J. Spencer, S. J. Dyke, M. K. Sain, and J. D. Carlson4, "Phenomenological 

Model of a Magnetorheological Damper," Journal of Engineering Mechanics, vol. 

123, 1997. 



152 
 

[82] B. F. J. Spencer and T. T. Soong, "New applications and development of active, 

semi-active and hybrid control techniques for seismic and non-seismic vibration in 

the USA," in Proceedings of International Post-SMiRT Conference Seminar on 

Seismic Isolation, Cheju, Korea, 1999. 

[83] M. Singla, J. B. Dabney, and G. Song, "Development of an interactive smart 

vibration beam experiment," in Proceedings of the 11th International Conference 

on Engineering, Science, Construction, and Operations in Challenging 

Environments Long Beach, CA, 2008. 

[84] A. D. Nashif, "Control of Noise and Vibration with damping materials," Sound and 

Vibration, vol. 17, pp. 28-36, 1983. 

[85] C. K. Crosby, "Utilizing Viescoelastic Dampers in Seismic Retrofit of a Thirteen 

Story Steel Frame Building," in Structures Congress XII Atlanta, GA, 1994. 

[86] P. R. Mahmoodi, L. E. Robertson, M. Yontar, C. Moy, and L. Feld, "Performance 

of Viescoelastic Dampers in World Trade Center Towers," in Dynamics if 

structures, Proceedings of the sessions of Structural Congress, Orlando, FL, 1987. 

[87] D. R. Morgenthaler, "Design and Analysis of of Passive Damped Large Space 

Structures," ASME, vol. 5, pp. 1-8, 1987. 

[88] T. T. Soong and G. F. Dargush, "Passive Energy Dissipation and Active Control," 

in Structural Engineering Handbook, Chen-Wai-Fah, Ed.: CRC Press LLC, 1999. 

[89] M. A. Franchek, M. W. Ryan, and R. J. Bernhard, "Adaptive Passive Vibration 

Control," Journal of Sound and Vibration, vol. 189, pp. 565-585, 1995. 



153 
 

[90] H. S. Jing and M. Young, "Impact interactions between two vibration systems 

under random excitation," Earthquake Engineering and Structural Dynamics, vol. 

20, pp. 667-681, 1991. 

[91] X. Ma and C. P. Pantelides, "Linear and Nonlinear pounding of structural 

systems," Computers and Structures, vol. 66, pp. 79-92, 1998. 

[92] B. F. Maison and K. Kaisai, "Analysis for type of structural pounding," Journal of 

Structural Engineering (ASCE), vol. 116, pp. 957-977, 1990. 

[93] B. F. Maison and K. Kaisai, "Dynamics of pounding when two buildings collide," 

Earthquake Engineering and Structural Dynamics, vol. 21, pp. 771-786, 1992. 

[94] R. Jankowski, "Non-linear viscoelastic modeling of earthquake-induced structural 

pounding," Earthquake Engineering and Structural Dynamics, vol. 34, pp. 595-

611, 2005. 

[95] M. Singla, "Advanced Control of Piezoceramic Devices," in Electrical 

Engineering. vol. Master of Science Houston, TX: University of Houston, 2008. 

[96] L. S. Shieh, Y. T. Tsay, and R. Yates, "Some Properties of Matrix Sign Function 

derived from continued time fractions," IEEE Proceeding of Control Theory and 

Applications, vol. 130, pp. 111-118, 1983. 

[97] L. S. Shieh, H. M. Dib, and B. C. Mcinnis, "Linear Quadratic Regulators with 

Eigen-value Placement   in a Vertical Strip," IEEE Transaction on Automatic 

Control, vol. 31, pp. 241-243, 1986. 

[98] J. Wu, M. Singla, C. Olmi, L. S. Shieh, and G. Song, "Digital Controller Design 

for Absolute Value Function Constrained Nonlinear Systems via Scalar Sign 

Function Approach," ISA Transactions, vol. 49, pp. 302-310, 2010. 



154 
 

[99] S. Kilicaslan and S. P. Banks, "Existence of Solutions of Riccati Differential 

Equations," Journal of Dynamics Systems, Measurement, and Control, vol. 134, p. 

11, 2012. 

[100] V. Sethi and G. Song, "Multimodal Vibration Control of a Flexible Structure using 

Piezoceramic Sensor and Actuator," Journal of Intelligent Material Systems and 

Structures, vol. 19, pp. 573-582, 2007. 

[101] V. Sethi, M. Franchek, and G. Song, "Active multimodal vibration suppression of 

a flexible structure with piezoceramic sensor and actuator by using loop shaping," 

Journal of Vibration and Control, vol. 17, pp. 1994-2006, 2011. 

[102] S. H. Jang and S. W. Kim, "A new sliding surface design method of linear Systems 

with Mismatched Uncertainties," IEICE Transaction Fundamentals, vol. 88, pp. 

387-391, 2005. 

[103] S.-G. Wang, H. Y. Yeh, and P. N. Roschke, "Robust Control for Structural 

Systems with Parametric and Unstructured Uncertainties," Journal of Vibration 

and Control, vol. 7, pp. 753-772, 2001. 

[104] A. S. I. Zinober and P. Liu, "Robust control of nonlinear uncertain systems via 

sliding mode with backstepping design," Exeter, UK, 1996, pp. 281-286. 

[105] P. Swaroop, J. K. Hedrick, and P. P. Yip, "Dynamic surface control for a class of 

nonlinear systems," IEEE Transaction on Automatic Control, vol. 45, pp. 1893-

1899, 2000. 

[106] J. Hu, J. Chu, and H. Su, "SMVSC for a class of time delay uncertain systems with 

mismatched uncertainties," IEEE Proceedings of Control Theory and Applications, 

vol. 147, pp. 687-693, 2000. 



155 
 

[107] H. P. M. and S. M. C., "Structurally Constrained Robust Optimal Control," 

Chilean Journal of Engineering, vol. 14, pp. 276-283, 2006. 

[108] B. D. O. Anderson and J. B. Moore, Linear Optimal Control. Englewood Cliffs, 

NJ: Prentice Hall, 1971. 

[109] R. J. Veillette, J. V. Medanic, and W. R. Perkins, "Robust Stabilization and 

Disturbance Rejection for System with Structured Uncertainty," in 28th 

Conference on Decision and Control, Tampa, Florida, 1989. 

[110] M. Kciuk and R. Turczyn, "Properties and application of magnetorheological 

fluids," Journal of Achievements in Materials and Manufacturing Engineering, 

vol. 18, pp. 127-130, 2006. 

[111] S. J. Dyke, B. F. S. Jr., M. K. Sain, and J. D. Carlson, "Modeling and Control of 

Magnetorheological Dampers for Seismic Response Reduction," Smart Material 

and Structures, vol. 5, pp. 565-575, 1996. 

[112] A. Do, O. Sename, and L. Dugard, "An LPV Control Approach for Semi active 

Suspension Control with Actuator Constraints," in Proceedings of American 

Control Conference, Baltimore, USA, 2010, pp. 4653-4658. 

[113] F. A. Shirazi, K. M. Grigoriadis, and G. Song, "Parameter varying control of an 

MR damper for smart base isolation," in American Control Conference San 

Francisco, CA, 2011. 

[114] H. Wang, "Advanced Controls on Base Isolation System," in Electrical and 

Computer Engineering. vol. Master's of Science Houston: University of Houston, 

2009. 



156 
 

[115] H. Yoshioka, J. C. Ramallo, and B. F. S. Jr., "Smart Base Isolation Strategies 

Employing Magnetorheological Dampers," Journal of Engineering Mechanics, 

vol. 128, pp. 540-551, 2002. 

[116] F. A. Shirazi, J. Mohammadpour, K. M. Grigoriadis, and G. Song, "Identification 

and Control of an MR Damper with Stiction Effect and its Application in 

Structural Vibration Mitigation," IEEE Transaction of Control System Technology, 

vol. 1, pp. 1-17, 2011. 

[117] H. Du, K. Y. Sze, and J. Lam, "Semi-active H∞ Control of Vehicle Suspension 

with Magnetorheological Dampers," Journal of Sound and Vibration, vol. 283, pp. 

981-996, 2005. 

[118] M. Giuclea, T. Sireteanu, D. Stancioiu, and C. W. Stammers, "Modeling of 

Magnetorheological Damper Dynamic Behaviour By Genetic Algorithms based 

Inverse Method," Proceedings of the Roman Academy, vol. 5, pp. 1-10, 2004. 

[119] M. Zapateiro and N. Luo, "Neural Network Modeling of a Magnetorheological 

Damper," in Proceedings of the 2007 conference on Artificial Intelligence 

Research and Development, Sant Julia De Loria, Andorra, 2007, pp. 351-358. 

[120] C. Sakai, T. Terasawa, and A. Sano, "Integration of Bilinear H∞ Control and 

Adaptive Inverse Control for Semi-Active Vibration Isolation of Structures," in 

Proceedings of 44th IEEE Conference on Decision and Control, Seville, Spain, 

2005, pp. 5310-5316. 

[121] W. Han, H. A. Malki, and S. Gangbing, "Fuzzy semi-active control of MR damper 

for structural base isolation," in Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE 

International Conference on, 2009, pp. 2035-2040. 



157 
 

[122] I. Chowdhury and S. P. Dasgupta, "Computation of Rayleigh damping coefficients 

for large systems," The Electronic Journal of Geotechnical Engineering, vol. 8, 

2003. 

[123] S. Yehia and C. Tuan, "Conductive concrete overlay for bridge deck deicing," 

American Concrete Institute Materials Journal, vol. 96, pp. 382-390, 1999. 

[124] D. Williams, N. Williams, and Y. Cao, "Road salt contamination of ground water 

in major metropolitan area and development of a biological index to monitor its 

impact," Water Research, vol. 34, pp. 127-138, 2000. 

[125] P. H. Jones, B. A. Jaffrey, P. K. Watler, and H. Hutchon, Environmental impact of 

road salting: Chemical deicers and the enviroment. Chelsea, MI: Lewis 

Publishers, 1992. 

[126] B. Mussato, O. Gepraegs, and G. Farnden, "Relative Effects of Sodium Chloride 

and Magnesium Chloride on Reinforced Concrete: State of the Art," 

Transportation Research Record, vol. 1866`, pp. 59-66, 2004. 

[127] T. R. Menzies, "National cost of damage to infrastructure from highway deicing," 

in Corrosion forms and control for infrastructure San Diego, CA, 1991. 

[128] S. Birst and M. Smadi, "Evaluation of North Dakota's Fixed Automated Spray 

Technology Systems," North Dakota State University, Fargo, ND 2009. 

[129] D. E. Kuemmel, "Managing Roadway Snow and Ice Control Operations,"  1994. 

[130] J. A. Zenewitz, "Survey of Alternatives to the Use of Chlorides for Highway 

Deicing," Department of Transportation 1977. 

[131] H. B. Britton, "The Value of Insulated Forms for Winter Bridge Construction," 

Highway Research Record, vol. 111, pp. 79-93, 1963. 



158 
 

[132] M. D. Oosterbahn and G. A. Leonards, "Use of Insulating Layer to Attenuate Frost 

Action in Highway Pavements," Highway Research Record, vol. 1318, pp. 23-27, 

1965. 

[133] B. L. Ward, "Evaluation of a Fixed Anti-Icing Spray Technology (FAST) System,"  

2002. 

[134] D. Gao, M. Sturm, and Y. L. Mo, "Electrical resistance of carbon-nanofiber 

concrete," Smart Material and Structures, vol. 18, pp. 1-7, 2009. 

[135] D. D. L. Chung, "Self Heating structural materials," Smart Material and 

Structures, vol. 13, pp. 562-565, 2004. 

[136] M. Sun, X. My, Z. Wang, Z. Hou, and Z. Li, "Experimental studies on the indoor 

electrical floor heating system with carbon black mortar slabs," Energy and 

Buildings, vol. 40, pp. 1094-1100, 2008. 

[137] S. Yehia, C. Tuan, D. Ferndon, and B. Chen, "Conductive concrete overlay for 

bridge deicing: Mixture proportioning, optimization, and properties," American 

Concrete Institute Materials Journal, vol. 97, pp. 172-181, 2000. 

[138] C. Tuan, "Electrical resistance heating of conductive concrete containing steel 

fibers and shavings," American Concrete Institute Materials Journal, vol. 101, pp. 

65-70, 2004. 

[139] S. Yehia and C. Tuan, "Current Events," Roads and Bridges, vol. 46, pp. 32-35, 

2008. 

[140] S. Yehia, "No-stick surface," Roads and Bridges, vol. 42, pp. 26-28, 2004. 

[141] P. Rossi, "Steel or Synthetic Fiber Reinforcement?," in Structure Magazine. vol. 

11, 2011. 



159 
 

[142] J. P. D. Charpin, T. G. Myers, A. D. Fitt, Y. Ballim, and A. Patini, "Modeling 

Surface Heat Exchanges from a Concrete Block into the Environment," 

Mathematics in Industry, 2004. 

[143] C. Chang, M. Ho, G. Song, Y.-L. Mo, and H. Li, "A Feasibility Study of Self-

Heating Concrete Utilizing Carbon Nanofiber Heating Elements," Smart Material 

and Structures, vol. 18, December, 2009 2009. 

[144] M. Sen, "A review of the principles and applications of thermal control," Journal 

of the Mexican Society of Mechanical Engineering, vol. 1, pp. 115-131, 2004. 

[145] E. Grassi and K. Tsakalis, "PID controller tuning by frequency loop-shaping," in 

35th IEEE Conference on Decision and Control, Kobe, Japan, 1996, pp. 4776-

4781. 

[146] S.-J. Huang and Y.-h. Lo, "Metal Chamber Temperature control by Using Fuzzy 

PID Gain Auto-tuning strategy," WSEAS Transactions on Systems and Control, 

vol. 4, pp. 1-10, January, 2009 2009. 

[147] R. Yusof, S. Omatu, and M. Khalid, "Application of self-tuning PI(PID) controller 

to a temperature control system," in 3rd IEEE Conference on Control Applications, 

Glasgow, UK, 1994, pp. 1181-1186. 

[148] S.-Z. He, S. Tan, F.-L. Xu, and P.-Z. Wang, "Fuzzy self-tuning of PID 

controllers," Fuzzy Sets and Systems, vol. 56, pp. 37-46, May, 1993 1993. 

[149] C. Jia-Xin and L. Wei, "Application of fuzzy control PID algorithm in temperature 

controlling  systems," in 2nd International Conference on Machine Learning and 

Cybernetics, Henan, China, 2003, pp. 2601-2604. 



160 
 

[150] U.-C. Moon and K. Y. Lee, "Temperature control of glass melting furnace with 

fuzzy logic and conventional PI control," in Proceedings of American Control 

Conference, Chicago, IL, USA, 2000, pp. 2720-2724. 

[151] A. Visioli, "Tuning of PID controllers with fuzzy logic," Control Theory and 

Applications, vol. 148, pp. 1-8, Jan 2001 2001. 

[152] ASM, "Material about Materials." 

[153] FLUENT, FLUENT 6.3 Tutorial Guide: Tutorial: Heat Transfer Theory. 

[154] T. Yang, Z. J. Yang, M. Singla, G. Song, and Q. Li, "Experimental study on 

Carbon Fiber based Deicing Technology," Journal of Cold Regions Engineering, 

pp. 1-30, 2011. 

[155] P. Zhang, "Pounding Tuned Mass Damper (PTMD): An Innovative Device to 

Control the Vibration of Subsea Jumpers," Houston: University of Houston, , 

2012. 

 

 

  



161 
 

Appendix I 

Modeling of Jumper used in chapter 4 for realizing the active sliding mode control law by 

analyzing the PTMD is found by SAP2000 by Zhang et al. [155]. The jumper was divided 

into 11 nodes and the mass and the stiffness matrix were calculated. The damping of the 

system is assumed to be 2% and the damping matrix was calculated using Rayleigh’s 

Method. 

 

Figure. Modeling of Jumper with 11 nodes 

The mass and stiffness matrix for in-plane vibrations are  

Mass Matrix of Jumper (Kgs) 

 

 

74.19 0 0 0 0 0 0 0 0 0 0 
0 5.54 0 0 0 0 0 0 0 0 0 
0 0 44.34 0 0 0 0 0 0 0 0 
0 0 0 54.96 0 0 0 0 0 0 0 
0 0 0 0 72.78 0 0 0 0 0 0 
0 0 0 0 0 68.56 0 0 0 0 0 
0 0 0 0 0 0 72.78 0 0 0 0 
0 0 0 0 0 0 0 54.96 0 0 0 
0 0 0 0 0 0 0 0 44.34 0 0 
0 0 0 0 0 0 0 0 0 5.54 0 
0 0 0 0 0 0 0 0 0 0 74.20 
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In-plane Stiffness Matrix (N/m) 

From Column 1 to 7 

4776697 -1700979 231983.5 -232362 506.0766 -576.146 428.6348 
-1700979 1072744 -437771 88423.04 112137.2 -29345.7 7372.364 
231983.5 -437771 399720.7 -50253.7 -112299 29533.98 -7513.59 
-232362 88423.04 -50253.7 258266.3 -216344 122659.5 -31263.9 

506.0766 112137.2 -112299 -216344 488010.3 -407980 167534.7 
-576.146 -29345.7 29533.98 122659.5 -407980 570694 -407980 
428.6348 7372.364 -7513.59 -31263.9 167534.7 -407980 488010.3 
4375.315 -4751.78 26114.21 -18861.9 -31263.9 122659.5 -216344 
-4783.46 3154.996 -24388.3 26114.21 -7513.59 29533.98 -112299 
2084.908 -757.284 3154.996 -4751.78 7372.364 -29345.7 112137.2 
-4044.42 2084.908 -4783.46 4375.315 428.6348 -576.146 506.0766 

 

From Column 8 to 11 

4375.315 -4783.46 2084.908 -4044.42 
-4751.78 3154.996 -757.284 2084.908 
26114.21 -24388.3 3154.996 -4783.46 
-18861.9 26114.21 -4751.78 4375.315 
-31263.9 -7513.59 7372.364 428.6348 
122659.5 29533.98 -29345.7 -576.146 
-216344 -112299 112137.2 506.0766 

258266.3 -50253.7 88423.04 -232362 
-50253.7 399720.7 -437771 231983.5 
88423.04 -437771 1072744 -1700979 
-232362 231983.5 -1700979 4776697 
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For out-plane vibrations, the same mass matrix is used as in-plane vibrations and the 

stiffness matrix for out-plane vibrations are  

From Column 1 to 7  

4458250 -1587580 216518 -216872 472.3382 -537.736 400.0592 
-1587580 1001227 -408586 82528.17 104661.4 -27389.3 6880.873 

216518 -408586 373072.7 -46903.5 -104813 27565.05 -7012.69 
-216872 82528.17 -46903.5 241048.6 -201922 114482.2 -29179.6 

472.3382 104661.4 -104813 -201922 455476.3 -380781 156365.8 
-537.736 -27389.3 27565.05 114482.2 -380781 532647.7 -380781 
400.0592 6880.873 -7012.69 -29179.6 156365.8 -380781 455476.3 
4083.628 -4435 24373.26 -17604.4 -29179.6 114482.2 -201922 
-4464.57 2944.663 -22762.4 24373.26 -7012.69 27565.05 -104813 
1945.914 -706.799 2944.663 -4435 6880.873 -27389.3 104661.4 
-3774.79 1945.914 -4464.57 4083.628 400.0592 -537.736 472.3382 

 

From Column 8 to 11 

4083.628 -4464.57 1945.914 -3774.79 
-4435 2944.663 -706.799 1945.914 

24373.26 -22762.4 2944.663 -4464.57 
-17604.4 24373.26 -4435 4083.628 
-29179.6 -7012.69 6880.873 400.0592 
114482.2 27565.05 -27389.3 -537.736 
-201922 -104813 104661.4 472.3382 

241048.6 -46903.5 82528.17 -216872 
-46903.5 373072.7 -408586 216518 
82528.17 -408586 1001227 -1587580 
-216872 216518 -1587580 4458250 
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