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Abstract

In this dissertation, we start by studying the operator system maximal tensor

product, called max, in [17] from different perspectives. One approach is by the fac-

torization technique used in Banach spaces [11] and operator spaces [5, 31]. Although

in [14] it was used in establishing the operator system version of complete positive ap-

proximation property, it was not fully utilized in terms of tensor products. From this

point of view, we are able to characterize max via approximate completely positive

factorization through the matrix algebras.

Motivated by the significant role of self-duality in factorization, we progress to

operator systems that are self-dual as matrix-ordered spaces, or in finite-dimensional

case, as operator systems. We construct the self-dual operator Hilbert system SOH

based on Pisier’s operator Hilbert space OH [29] and prove analogous structural re-

sults of SOH. This leads us to create a tensor product of finite-dimensional operator

systems via factorization through SOH, denoted by γsoh. We prove various tensorial

and nuclearity properties of γsoh, which distinguish γsoh from other known tensor prod-

ucts found in [8, 17, 18]. Then we extend such construction to the infinite-dimensional

case and conclude that γsoh indeed defines a new tensor product of operator systems.

The construction of SOH also motivates us to visit the Paulsen system SV of an

operator space V (see [26]). We examine some structural questions about SV including

the states, matrix-ordered dual, and operator system quotient. We characterize the

states on SV , hence lead to proving that the matrix-ordered dual of SV is again an

operator system regardless of the operator space V . Finally, we end this dissertation

with an exposition to an interesting quotient of SV .
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Chapter 1

Background and Motivation

1.1 Introduction

The theory of tensor products is fundamental in the literature of Banach spaces

and C*-algebras. In the past two decades, tensor products of operator spaces also

have been studied extensively (see [2, 4, 31]). Some of the structural properties of

operator spaces such as approximation property, exactness, local lifting property, and

weak expectation property, are shown to be deeply related to tensor products. In

recent years, a systematic study of tensor product of operator systems along with

characterization of various nuclearity properties has also arisen. Through a series

of papers (see [8, 9, 10, 14, 15, 17, 18]), the picture of nuclearity properties under

basic algebraic constructions such as quotients, coproducts, and duality has become

clear. Nevertheless, while the construction of tensor products via factorization on

the categories of Banach spaces [11] and operator spaces [5, 29, 30] has been worked

out, only little is known about the operator system analogue [14]. In this work,

we attempt to contribute to this missing part of the big picture. More precisely,
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1.1 INTRODUCTION

we attempt to provide construction and characterization of operator system tensor

products via factorization along with various techniques using duality and quotients.

We start with an introduction to operator systems, their matrix-ordered duals,

and operator system quotients. Then we give a brief survey on tensor products of

operator systems. In particular, we outline some important results about the maxi-

mal, the minimal, and the commuting tensor products together with their relation to

nuclearity.

In Chapter 2 we provide two characterizations of the maximal tensor product of

operator systems. The Schur tensor product of operator spaces was introduced in

[32]. We show that the analogous construction in the category of operator systems

yields precisely the maximal tensor product. This characterization leads to a distinct,

perhaps numerically more efficient, description of the maximal tensor product defined

in [17]. By this characterization, we generalize a result in [32] on the tensor norm

relation between the Schur tensor product and the maximal C*-norm in the category

of C*-algebras.

We then proceed to another characterization of the maximal tensor product by

employing the techniques of approximate completely positive factorization. More

precisely, we prove that u ∈ S ⊗max T is positive if and only if the associated map

û : Sd → T admits an approximate completely positive factorization through the

matrix algebras Mn. We show that earlier results on (min, max)-nuclearity in [14, 15],

hence the Choi-Effros-Kirchberg characterization of nuclear C*-algebras, are both

direct consequences of this theorem.

In the next two chapters, we build an operator system and its associated tensor

product through approximate completely positive factorization. Pisier in [29] proved

that, for each dimension n, there is a unique operator space OH(n) with the property

2



1.1 INTRODUCTION

that it is completely isometrically isomorphic to its dual space. In Chapter 3, we study

the analogous problem in the matrix-ordered setting. Since the dual of a matrix-

ordered space is still a matrix-ordered space, it is natural to ask if a matrix-ordered

space is completely order-isomorphic to its dual.

Unlike the operator space case, there are many operator systems that are com-

pletely order-isomorphic to their matrix-ordered dual. Since the dual of an operator

system also carries a matrix norm, it is natural to ask if an operator system is ever

simultaneously completely order-isomorphic and completely norm-isomorphic to its

dual. We show that this is impossible. In fact, we prove that any complete order

isomorphism between an operator system and its dual has a cb-condition number that

is bounded below by 2.

We look at some standard examples of self-dual and finite-dimensional operator

systems and show that the corresponding cb-condition number grows unbounded as

the dimension tends to infinity. We then create a “natural” operator system from

OH(n), that we denote by SOH(n). The operator system SOH(n) possesses the

property that the canonical map taking a basis to its dual basis is a unital com-

plete order isomorphism onto its dual, and it has cb-condition number of exactly 2.

We then explore some further properties and applications of the operator systems

SOH(n). In particular, we prove that operator subsystems and quotients of SOH(n)

are completely order-isomorphic to SOH(m) for some m < n.

In Chapter 4, we use “approximate cp-factorization through SOH” to construct

a new tensor product of finite-dimensional operator systems, denoted by γsoh, and

examine some of its properties. We prove that γsoh is distinct from the known ones,

adding a new member to the list of tensor products introduced in [17, 18]. Moreover,

we establish a few new nuclearity-related results, and then generalize such construc-
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1.2 PRELIMINARIES

tion to infinite-dimensional operator systems.

Motivated by the construction of SOH(n), we then turn to examine some nat-

ural questions about the Paulsen system by duality and operator system quotients.

Paulsen [26] proved that for a complete contraction ϕ : V → A from an operator

space V into a C*-algebra A, up to unital complete order isomorphism, there exist

a unique operator system SV and a unital completely positive map Φ: SV →M2(A)

such that ϕ is the off-diagonal corner of Φ. Many results on completely positive maps

are then extended to completely bounded maps by this theorem. Nevertheless, little

is known about its matrix-ordered dual SdV .

In Chapter 5, we begin the study by a characterization of the states of SV . We

prove that for any operator space V , SdV with an appropriate order unit is an operator

system. It is thus natural to study the relation between SdV and SV ∗ for general

operator space V . Finally, we end this work with an exposition to a natural quotient

of SV , denoted by SV /J . We show that J is completely order proximinal and deduce

that (SV /J )d can be regarded as an operator subsystem of SdV . We also prove that

SV /J , when equipped with the two operator space quotient norms obtained from

either the operator space or the operator system structures of SV , are completely

bounded-isomorphic.

1.2 Preliminaries

In this section we introduce the terminology as well as state the definitions and

basic results that shall be used throughout this thesis. By a ∗-vector space V , we

mean that V is a complex vector space equipped with an involution ∗ : V → V that is

conjugate linear. That is, (v∗)∗ = v and (αv+w)∗ = αv∗+w∗, for all v, w ∈ V, α ∈ C.

4



1.2 PRELIMINARIES

An element v is called hermitian, or self-adjoint, provided v = v∗. We denote Vsa

the set of all self-adjoint elements in V . We denote Mm,n(V ) the complex vector space

of n ×m matrices whose entries are elements of V and denote Mn(V ) for Mn,n(V ).

If V = C, then we simply write Mm,n for Mm,n(C) and Mn for Mn(C). Note that

Mn(V ) is also a ∗-complex vector space with [vij]
∗ = [v∗ji]. For A = [aij] ∈ Mm,n

and X = [xij] ∈ Mn,k(V ), by the left multiplication AX, we mean the element in

Mm,k(V ) whose ij-th entry is
∑n

r=1 airxrj, for 1 ≤ i ≤ m, 1 ≤ j ≤ k. We define the

right multiplication in a similar way.

Let V be a ∗-complex vector space. A matrix order, matricial order, or

matricial cones, on V is a family {Cn : Cn ⊂ Mn(V )}∞n=1 satisfying the following

axioms:

1. Cn ∩ (−Cn) = {0}.

2. Mn(V ) is the complex span of Cn.

3. For each n,m ∈ N, if A = [aij] ∈ Mn,m and [vij] ∈ Cn, then AV A∗ =

[
∑

k,l aikvklalj] ∈ Cm.

The third axiom is called compatibility. The pair (V, {Cn}) is called a matrix-

ordered ∗-vector space or simply matrix-ordered space. An element in Cn is

called a positive element in Mn(V ) and we sometimes denote Mn(V )+ for Cn and

V + for C1. For each n ∈ N, there is a natural order structure on Mn(V ) induced by

Cn given by A ≤ B if and only if B − A ∈ Cn.

In a matrix-ordered space, when we only consider the ground level (V, V +), an

element e ∈ Vsa is called an order unit for V if for every x ∈ Vsa, there exists a

positive real number r such that re+x ≥ 0. We call e an Archimedean order unit

5



1.2 PRELIMINARIES

if e is an order unit and satisfies the following property: For any x ∈ V , if re+ x ≥ 0

for all r > 0, then x ≥ 0. We call the triple (V, V +, e) an Archimedean order

space with unit (AOU space).

In the case of matrix level (V, {Cn}), we say that e is a matrix order unit for

(V, {Cn}) if the corresponding element

en =


e 0

. . .

0 e


is an order unit for Mn(V ), for every n ∈ N. We call e an Archimedean matrix

order unit, provided en is an Archimedean order unit for each n.

A triple (V, {Cn}, e), where (V, {Cn}) is a matrix-ordered space with an Archimedean

matrix order unit e, is called an (abstract) operator system. In brief we usually

call e “unit” and use S (or T , R) to denote the operator system (V, {Cn}, e). We

often use e or 1 for the unit of S, and add subscripts when there are two or more

operator systems. We also write S+ = C1 and Mn(S)+ = Cn.

An important example of matrix-ordered spaces is when we take V to be a ∗-closed

subspace of B(H), the C∗-algebra of bounded linear operators on a Hilbert space H.

We equip V with the induced matricial cone structure. More precisely, we identify

Mn(B(H)) with B(H⊕ · · · ⊕ H), the C∗-algebra of bounded linear operators on the

direct sum of n copies of H. Via this identification, we regard Mn(V ) again as a

∗-closed subspace of Mn(B(H)) with Cn = Mn(V )∩Mn(B(H))+, where Mn(B(H))+

denotes the cone of positive elements of Mn(B(H)). One can check that (V, {Mn(V )})

is a matrix-ordered space. By a concrete operator system, we mean a unital

6



1.2 PRELIMINARIES

self-adjoint subspace V of B(H), or in general a C*-algebra by the Gelfand-Naimark

theorem. Note that the matrix-ordered space (V, {Mn(V )}) together with the identity

operator I on H satisfies the axioms of an abstract operator system. Therefore, every

concrete operator system is an abstract operator system. For the converse, in the

next paragraph we introduce the appropriate morphisms of operator systems.

Suppose S and T are abstract operator systems and ϕ : S → T is a linear map.

We call ϕ a unital map if ϕ(1S) = 1T . It is called positive provided ϕ(x) ≥ 0 for

every x ∈ S+; or equivalently, ϕ(S+) ⊂ T +. We say that ϕ is completely positive

if its n-th amplification ϕ(n) : Mn(S) → Mn(T ) given by [xij] 7→ [ϕ(xij)] is positive

for each n ∈ N; or equivalently, ϕ(n)(Mn(S)+) ⊂ Mn(T )+ for every n. We call ϕ a

complete order embedding if it is an injective completely positive map with the

property that whenever [ϕ(xij)] is positive in Mn(T ), then [xij] ∈Mn(S) is positive.

A bijective map ϕ : S → T is called a complete order isomorphism if both ϕ

and ϕ−1 are complete order embeddings. If ϕ is unital, then we say S is unitally

completely order-isomorphic to T and denote it by S ∼=ucoi T . A unital and

self-adjoint subspace T of an operator system S is again an operator system together

with the induced matricial order structure; we call T an operator subsystem of

S. The inclusion map T ↪→ S is a unital complete order embedding, and sometimes

we denote it by T ⊂ucoi S. We write O for the category whose objects are operator

systems and morphisms are completely positive maps; and O1 is the category whose

objects are operator systems and morphisms are unital completely positive maps.

We now state the abstract characterization theorem of operator systems, due to

Choi and Effros [6]:

Theorem 1.1. Up to a unital complete order isomorphism, all the abstract and con-

7



1.2 PRELIMINARIES

crete operator systems coincide. That is, if S is an operator system, then there is a

Hilbert space H and a unital ∗-linear map ϕ : S → B(H) which is a complete order

embedding.

Finally we remark that every operator system S has a canonical operator space

structure. A subspace X of some B(H) or a C*-algebra is called a concrete operator

space. We refer the reader to [26] for an introduction to this subject along with the

abstract characterization by Ruan. If S is an operator system, then any concrete

representation ϕ : S → B(H) endows S with an operator space structure. It turns

out that this structure is independent of the representation and is intrinsic in the

matricial order structure. More precisely, the family of operator space norms on S is

given as follows: For X = [xij] ∈Mn(S)

||X||n = inf

r > 0: re2n +

 0 [xij]

[x∗ji] 0

 ∈M2n(S)+

 .

This is known as the canonical operator space structure of S. In the later

chapters, we will look at this structure on S and use results in operator space theory.

We refer the reader to [31] for an excellent resource on this subject.

1.2.1 Duality of operator systems

We assume that the reader is familiar with the basic definitions and properties of

operator spaces, operator systems, completely bounded and completely positive maps.

In this subsection, we define dual spaces of operator spaces and operator systems, and

outline some important aspects of the latter. For more details, the reader should see

[10] and the books [26, 30].

8



1.2 PRELIMINARIES

If V is an operator space, then the space of bounded linear functionals on V ,

denoted by V d, comes equipped with a natural dual matrix-norm. Briefly, a matrix

of linear functionals F = [fi,j] ∈Mn(V d) is identified with a linear map F : V →Mn

and we set ‖(fi,j)‖n = ‖F‖cb.

Given a matrix-ordered space V and a ∗-closed subspace V1 ⊂ V , note that if

V1 ⊆ V is a ∗-invariant vector subspace, then the cones Cn ∩Mn(V1) endow V1 with

a matrix-order that we call the subspace order, or more simply, we refer to V1 ⊆ V

as the matrix-ordered subspace. Given two matrix-ordered spaces V and W we

call a map φ : V → W completely positive provided that φ(n) : Mn(V ) → Mn(W )

is positive for all n.

Given a matrix-ordered space V, we let V ‡ denote the vector space of all linear

functionals on V . Given a linear functional f : V → C, if we let f ∗ : V → C be the

linear functional f ∗(v) = f(v∗), then this makes V ‡ a ∗-vector space. We identify

an n × n matrix of linear functionals [fij] with the linear map F : V → Mn defined

by F (v) = [fij(v)], and set Mn(V ‡)+ equal to the cone of completely positive maps.

Then this gives a compatible family of proper cones on the dual on V ‡, but in general

Mn(V ‡)+ does not span Mn(V ‡). When V is also a normed space, then we let V d

denote the space of bounded linear functionals on V, which is a subspace of V ‡ and

is endowed with the subspace order.

However, when V is an operator system, then V d endowed with this set of cones is

a matrix-ordered space and we refer to this as the matrix-ordered dual of V . The

easiest way to see that these cones span, is to use Wittstock’s decomposition theorem

[26, 34] which says that the completely bounded maps on an operator system are the

complex span of the completely positive maps.

Given two matrix-order spaces V and W and a linear map φ : V → W , the dual

9



1.2 PRELIMINARIES

map of φ, is the map φd : W d → V d given by φd(f)(x) = f(φ(x)). With the definitions

above, it is evident that φ is completely positive if and only if φd is completely positive.

The reader should note that when V and W are operator systems, the result still holds

except that V d and W d are considered only as matrix-ordered spaces since in general

they are not operator systems. However, when V and W are finite-dimensional, their

dual spaces are operator systems due to the following theorem by Choi and Effros [6].

Theorem 1.2. If S is a finite-dimensional operator system, then there exist faith-

ful states on S and each faithful state is an Archimedean matrix order unit for Sd.

Therefore, Sd is an operator system.

Henceforth, for finite-dimensional operator system S, we regard Sd as an operator

system dual with a fixed faithful state.

1.2.2 Quotients of Operator Systems

In this subsection we give an brief exposition to the quotient theory developed in

[18]. For more details, we refer the reader to [15, 18, 27, 28]. A ∗-closed subspace

J of an operator system S is called a kernel if J is a kernel of a unital completely

positive map φ : S → T , for some operator system T . Here is a brief characterization

of kernels from Proposition 3.1 in [18]which we shall use in the sequel.

Proposition 1.3. Let J be a subspace of an operator system S. Then the following

are equivalent:

1. J is a kernel of S.

2. There exists a completely positive map φ : S → T such that J = kerφ.

10



1.2 PRELIMINARIES

3. There exists a collection {fi}i∈I of states of S such that J =
⋂
i∈I ker fi.

We remark that the first two statements justify that kernels in O and O1 are all

equivalent. Also, the last statement provides an intrinsic description of kernels that

only relies on the states of S.

Suppose J is a kernel of S and q : S → S/J is its natural quotient map onto the

algebraic quotient. The space S/J is a ∗-vector space with involution (x + J )∗ =

x∗ + J . Define Dn = Dn(S/J ) = q(n)(Mn(S+)); that is,

Dn = {[xij + J ] ∈Mn(S/J ) : there exists yij ∈ J so that [xij + yij] ∈Mn(S)+}.

For each n ∈ N, Dn defines a proper cone in Mn(S/J )sa, and {Dn} is a compatible

family. Equipped with these {Dn}, S/J becomes a matrix-ordered space with matrix

order unit e+J . Nevertheless, often e+J is not Archimedean, so (S/J , {Dn}, e+J )

is not an operator system.

For this matter, in [27, 28] it is shown that every matrix-ordered order space

(Q, {Dn}, 1), where 1 is a non-Archimedean matrix order unit, gives rise to an op-

erator system through the Archimedeanization process. In brief, through this

process we expand each Dn to a slightly larger cone Cn, by taking its closure with re-

spect to an order topology generated by seminorms. Although this process is rather

technical (see Section 3 in [28]), it turns out that the structure of {Cn} is fairly

natural.

Proposition 1.4. Let S be an operator system and J ⊂ S be a kernel. If we define

Cn(S/J ) = {[xij + J ] ∈Mn(S/J ) : ∀ε > 0, ε(e+ J )n + [xij] ∈ Dn},

11



1.2 PRELIMINARIES

then (S/J , {Cn}, e + J ) is a matrix-ordered space with Archimedean matrix order

unit, hence an operator system. Moreover, the quotient map q : S → S/J is com-

pletely positive.

Definition 1.5. By an operator system quotient S/J , we always refer to this

triple defined in Proposition 1.4. In the case when C1 = D1, we say that J is order

proximinal, and it is called complete order proximinal if Cn = Dn for all n ∈ N.

We end the subsection with the following characterization of operator system quo-

tients in terms of a universal property, similar to quotient objects in other categories.

Proposition 1.6. Let S and T be operator systems and J be a kernel in S. If

φ : S → T is a unital completely positive map with J ⊂ ker(φ), then the induced

map φ̃ : S/J → T given by φ̃(x+J ) = φ(x) is unital completely positive. Moreover

if R is an operator system and ψ : S → R is unital completely positive, with the

property that whenever φ : S → T is completely positive with J ⊂ ker(φ), there

exists a unique unital completely positive map φ̂ : R → T such that φ̂ ◦ ψ = φ; then

there exists a completely order isomorphism γ : R → S/J such that γ ◦ ψ = q.

1.2.3 Tensor Products of Operator Systems

We outline a few basic facts about tensor products of operator systems. We also give

a brief survey on the maximal, the minimal, and the commuting tensor products, as

well as their relations to some nuclearity results. We refer the reader to [10, 15, 17, 18]

for the details.

Definition 1.7. Given a pair of operator systems (S, {Pn}∞n=1, 1S) and (T , {Qn}∞n=1, 1T ),

by an operator system structure on S ⊗ T , we mean a family τ = {Cn}∞n=1 of

cones, where Cn ⊂Mn(S ⊗ T ), satisfying:

12



1.2 PRELIMINARIES

(T1) (S ⊗ T , {Cn}∞n=1, 1S ⊗ 1T ) is an operator system denoted by S ⊗τ T .

(T2) Pn ⊗Qm ∈ Cnm, for all n,m ∈ N.

(T3) If φ : S → Mn and ψ : T → Mm are unital completely positive maps, then

φ⊗ ψ : S ⊗τ T →Mnm is a unital completely positive map.

By an operator system tensor product, we mean a mapping τ : O × O → O,

τ(S, T ) = S ⊗τ T , that satisfies axioms (T1) to (T3). We say τ is functorial,

provided in addition it satisfies the following property:

(T4) Given operator systems Si and Ti, i = 1, 2, if φi : Si → Ti is unital completely

positive, then φ1 ⊗ φ2 : S1 ⊗τ S2 → T1 ⊗τ T2 is unital completely positive.

Let τ be an operator system tensor product. If for all operator systems S and

T , the map θ : x ⊗ y 7→ y ⊗ x is a unital complete order isomorphism from S ⊗τ T

onto T ⊗τ S, then τ is called symmetric. If for any three operator systems S, T ,

R, the natural map from (S ⊗τ T )⊗τ R to S ⊗τ (T ⊗τ R) is a unital complete order

isomorphism, then τ is called associative.

We say that τ is left injective, provided whenever φ : S → R is a complete order

embedding, then for any operator system T , the map φ ⊗ id is a complete order

embedding from S ⊗τ T into R⊗τ T . It is equivalent to require that for every n ∈ N,

(φ⊗ id)(n) is bijective between Mn(S ⊗τ T )+ and Mn(R⊗τ T )+. Right injectivity is

defined in a similar vein, and we say τ is injective if it is both left and right injective.

We say that τ is left projective, provided whenever q : S → R is a complete

quotient map, then for any operator system T , the map q⊗ id is a complete quotient

from S ⊗τ T onto R ⊗τ T . It is equivalent to require that for every n ∈ N, every

u ∈Mn(R⊗τ T )+, and every ε > 0, there is ũε ∈Mn(S ⊗τ T )+ so that q ⊗ id(ũε) =

13



1.2 PRELIMINARIES

u+ε(In⊗1R⊗1T ). Right projectivity is defined similarly and we say τ is projective

if it is both left and right projective.

Given two operator system tensor products τ1 and τ2, we say that τ1 is greater

than τ2 provided the identity map from S ⊗τ1 T to S ⊗τ2 T is completely positive;

equivalently, Mn(S ⊗τ1 T )+ ⊂ Mn(S ⊗τ2 T )+, for every n. We denote it by τ2 ≤ τ1.

With this ordering, we have a lattice structure on the family of operator system tensor

products introduced in [17, Proposition 7.1]:

Proposition 1.8. The family of operator system tensor products with respect to

≤ defined above forms a complete lattice. The family of functorial operator system

tensor products is a complete sublattice of this lattice.

In recent years, various results are established using nuclearity and operator sys-

tem tensor products (see [8, 9, 15, 17, 18]). We devote the rest to this chapter on

three important tensor products and some of their nuclearity results.

The Maximal Tensor Product

Given operator systems S and T , their maximal tensor product, denoted by max, is

equipped the smallest family of cones for which the algebraic tensor product S ⊗ T

forms an operator system satisfying axioms (T1) to (T3). In O, the maximal tensor

product is the natural analogue of the projective tensor norm of operator spaces, as

well as a generalization of the maximal C*-norm on C*-algebras. More precisely, if

X and Y are operator spaces, and SX and SY are their Paulsen systems, respectively,

then the projective operator space tensor product X
∧
⊗Y can be embedded completely

isometrically into SX ⊗max SY . Also, when A and B are unital C*-algebras, the

operator system A⊗maxB is unitally completely order-isomorphic to the C*-maximal

14
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tensor product A⊗C*-max B before completion. For more details, we refer the reader

to Section 5 of [17].

The construction of the maximal tensor product is as follows. Given operator

systems S and T , we first define the family of cones

Dmax
n = Dmax

n (S, T ) = {A(P ⊗Q)A∗ : P ∈Mk(S)+, Q ∈Mm(T )+,

A ∈Mn,km, k,m ∈ N}.

We shall remark the following useful representation of Dmax
1 .

Lemma 1.9. Every u ∈ Dmax
1 can be represented as u =

∑
pij ⊗ qij for some [pij] ∈

Mn(S)+ and [qij] ∈Mn(T )+.

Proof. If u = A(P ⊗Q)A∗ as above with A ∈ M1,km, note that u is then the sum of

the entries of the Kronecker tensor product (A

[
P ... P
...

...
P ... P

]
A∗)⊗Q, where the operator

matrix is in Mm(Mk(S))+. Since we can replace Q by
[
Q 0
0 0

]
of an appropriate size and

likewise for the first operator matrix, we deduce such representation as claimed.

This matricial order {Dmax
n } is then a compatible family with matrix order unit

1S ⊗ 1T . However, it is not Archimedean, so we complete the cones through the

Archimedeanization process as described in the previous section by defining the fol-

lowing cones

Cmax
n (S, T ) = {U ∈Mn(S ⊗ T ) : r(1S ⊗ 1T ) + U ∈ Dn(S, T ),∀r > 0}.

Likewise we denote Cmax
n (S, T ) = Cmax

n . Now S ⊗ T equipped with this family

{Cmax
n }∞n=1 satisfies axioms (T1) to (T4), and it defines a symmetric and associa-

15
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tive operator system structure. We call it the maximal tensor product of S and

T and denote it S⊗max T . It turns out that the maximal tensor product is projective

by Proposition 1.6 in [10].

With respect to the lattice structure of operator system tensor products, the max-

imal tensor product is the largest one. Also, it has the following universal property

by Theorem 5.8 in [17].

Theorem 1.10. Let S and T be operator systems. A bilinear map φ : S×T → B(H)

is jointly completely positive if and only if its linearization Lφ : S ⊗max T → B(H) is

a completely positive map. Moreover, if τ is an operator system structure on S ⊗ T

satisfying this property, then S ⊗τ T = S ⊗max T .

Corollary 1.11. If we take B(H) = C in the above theorem, we obtain another

important aspect of the maximal tensor product:

(S ⊗max T )d,+ = CP (S, T d),

where the CP (S, T ) denotes the cone of all completely positive maps from S to T .

This statement is precisely the operator system analogue of a result by Lance in

[21]. The following lemma is in [17] and will be used in the next chapter. We include

the proof for completeness.

Lemma 1.12. Let S and T be operator systems and {Cn}∞n=1 be a compatible family

of cones of S ⊗ T satisfying axiom (T2). Then Dmax
n ⊂ Cn.

Proof. If P ∈Mn(S)+ and Q ∈Mm(T )+, then axiom (T2) implies P ⊗Q ∈ Cnm. By

compatibility of {Cn}, A(P ⊗Q)A∗ ∈ Ck, for all A ∈Mk,nm; hence Dmax
n ⊂ Cn.

16
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In [17], it is shown that for operator spaces V and W , the projective tensor

product V
∧
⊗W can be completely isometrically embedded onto the (1,2) entry of the

maximal tensor product of their corresponding Paulsen systems; that is, V
∧
⊗W ⊂

SV ⊗max SW , complete norm isometrically. Also, any unital C*-algebras A and B are

as well operator systems; in the same paper it is proved that their C*-maximal tensor

product A⊗C*-max B is completely order-isomorphic to A⊗max B. Consequently, the

maximal tensor product in O is an analogue of the projective tensor norm on operator

spaces and maximal C*-norm on C*-algebras.

The Minimal Tensor Product

In contrast to the maximal tensor product, the minimal tensor product, denoted

by min, of two operator systems S and T is equipped the largest family of cones

for which S ⊗ T forms an operator system satisfying axioms (T1) to (T3). In O,

the minimal tensor product is the natural analogue of the injective tensor norm of

operator spaces, as well as a generalization of the minimal C*-norm on C*-algebras.

We refer the reader to Section 4 of [17] for the analogous statements about the relation

among the injective operator space tensor product, the minimal tensor product, and

the C*-minimal tensor product.

The construction of S ⊗min T is rather natural. Given operator systems S and T ,

we define the family of cones

Cmin
n = Cmin

n (S, T ) = {[xij] ∈Mn(S ⊗ T ) : [(φ⊗ ψ)(xij)] ∈M+
nkm,

for all unital completely positive

φ : S →Mk, ψ : T →Mm, ∀k,m ∈ N}.

17
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The triple (S ⊗ T , {Cmin
n }, 1S ⊗ 1T ) satisfies axioms (T1) to (T4), and it defines a

symmetric and associative operator system structure. We call it the minimal tensor

product of S and T and denote it S ⊗max T . It turns out that the minimal tensor

product is injective, due to the following characterization.

Theorem 1.13. Let S and T be operator systems, and let ιS : S → B(H) and

ιT : T → B(K) be unital complete order embeddings. Then S ⊗min T is the operator

system structure on S ⊗ T arising from the embedding ιS ⊗ ιT : S ⊗ T → B(H⊗K).

Therefore, the minimal tensor product is the spatial tensor product in O. More-

over, with respect to the lattice structure of operator system tensor products, the

minimal tensor product is the smallest one.

In [17], given operator spaces V and W , the injective tensor product V
∨
⊗W can be

completely isometrically embedded onto the (1,2)-entry of the minimal tensor product

of their corresponding Paulsen systems; that is, V
∨
⊗W ⊂ SV ⊗minSW , complete norm

isometrically. Moreover, for any unital C*-algebras A and B, the C*-minimal tensor

product A⊗C*-min B is completely order-isomorphic to A⊗min B. Consequently, the

minimal tensor product in O is an analogue of the injective tensor norm on operator

spaces and minimal C*-norm on C*-algebras.

Another important aspect of the minimal tensor product arises when we combine

the duality result by Farenick and Paulsen [10, Proposition 1.9] and Corollary 1.11.

Theorem 1.14. Suppose S and T are finite-dimensional operator systems, then

Sd ⊗max T d and (S ⊗min T )d are complete order-isomorphic. Moreover,

(S ⊗min T )+ = (Sd ⊗max T d)d,+ = CP (S, T d) = CP (Sd, T ).

18
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In Chapter 2, we will see a similar description of (S ⊗max T )+ using approximate

completely positive factorization.

The Commuting Tensor Product

The commuting (or maximal commuting) tensor product, denoted by c, is another

important operator system tensor product. It coincides with the maximal C*-tensor

norm on the category of unital C*-algebra, but it is different from the maximal

tensor product on O. The construction arises by using completely positive maps with

commuting ranges. Let S and T be operator systems. We define the family of cones

Ccommn = Ccommn (S, T ) = {[xij] ∈Mn(S ⊗ T ) : [(φ⊗ ψ)(xij)] ≥ 0

for all unital completely positive

φ : S → B(H), ψ : T → B(H) that commute}.

The triple (S ⊗T , {Ccommn }, 1S ⊗ 1T ) satisfies axioms (T1) to (T3), and the resultant

operator system is denoted by S ⊗c T . The commuting tensor product is functorial

and symmetric. The following are important relations to the maximal tensor product

from Theorem 6.4 in [17] and Proposition 3.4 in [15]. This proposition uses the idea

of the universal C*-algebra generated by an operator system introduced in [20].

Theorem 1.15. If A is a unital C*-algebra and S is an operator system, then A⊗c

S = A⊗max S.

Proposition 1.16. Suppose S and T are operator systems. Then S⊗cT ⊂ C∗u(S)⊗max

T , where C∗u(S) denotes the the universal C*-algebra of S.
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Nuclearity

In Chapter 4, we will deal with various operator system tensor products and nucle-

arity. Here we only include a small amount of information regarding the topic. For

the details, we refer the reader to [15, 17, 18].

Definition 1.17. Let α ≤ β be operator system tensor products and S be an operator

system. We say that S is (α, β)-nuclear if the identity map between S ⊗α T and

S ⊗β T is a complete order isomorphism for every operator system T .

In [14], Han and Paulsen characterized (min,max)-nuclearity, which is part of the

motivation of our work in Chapter 2. We first introduce the definition of completely

positive factorization property (CPFP). An operator system S is said to have CPFP

if there exist nets of unital complete positive maps φλ : S →Mnλ and ψλ : Mnλ → S,

such that ψλ ◦ φλ converges to the identity map in the point-norm topology; that is,

for every x ∈ S, ||(ψλ ◦ φλ)x− x|| → 0. The following is Corollary 3.2 in [14].

Theorem 1.18. Let S be an operator system. Then S is (min,max)-nuclear if and

only if S has CPFP.

Since unital C*-algebras are operator systems, this theorem generalizes the Choi-

Effros-Kirchberg characterization of nuclear C*-algebras in [7, 19]. Consequently, the

classical term “nuclearity” coincides with (min,max)-nuclearity. We also state the

following nuclearity results concerning on min, c, and max from [15] that will be used

in the later chapters.

Proposition 1.19. An operator system S is (min, c)-nuclear if and only if S⊗minA =

S ⊗max A, for every unital C*-algebra A.
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1.2 PRELIMINARIES

Proposition 1.20. The following are equivalent for a finite-dimensional operator

system S:

1. S is (c,max)-nuclear.

2. S is unitally completely order-isomorphic to a C*-algebra.

3. S ⊗c Sd = S ⊗max Sd.

Note: Material in this dissertation has appeared elsewhere. Chapter 2 is available

in [22]; and Chapters 3 and 4 will be published in [23].
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Chapter 2

The Maximal Tensor Product

In this chapter we provide two characterizations of the maximal tensor product of

operator systems. In the first section, we introduce the Schur tensor product of oper-

ator spaces studied by Rajpal, Kumar, and Itoh in [32]. We show that the analogous

construction in the category of operator systems yields precisely the maximal tensor

product. This characterization leads to a distinct, perhaps numerically more efficient,

description of the maximal tensor product. By this characterization, we generalize a

result in [32] on the tensor norm relation between the Schur tensor product and the

maximal C*-norm in the category of C*-algebras.

In the second section, we characterize the maximal tensor product by employing

the techniques of approximate completely positive factorization. More precisely, we

prove that u ∈ S⊗maxT is positive if and only if the associated map û : Sd → T admits

an approximate completely positive factorization through the matrix algebrasMn. We

show that earlier results on (min, max)-nuclearity in [14, 15], or Theorem 1.18, are

direct consequences of this theorem. Therefore, it as well generalizes the Choi-Effros-

Kirchberg characterization of nuclear C*-algebras [7, 19]. It is worthwhile to note
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2.1 THE SCHUR TENSOR PRODUCT

that such technique in constructing operator system tensor products is the analogue

of that in operator spaces and Banach spaces. We will visit this construction again

in Chapter 4.

2.1 The Schur Tensor Product

Definition 2.1. Given matrix-ordered spaces V and W , X = [xij] ∈ Mn(V )+, and

Y = [yij] ∈Mn(W )+, we define the Schur tensor product X ◦ Y to be

X ◦ Y = [xij ⊗ yij] ∈Mn(V ⊗W ).

If V andW are operator spaces, define the Schur tensor norm for each U ∈Mn(V ⊗W )

to be

||U ||s = inf{||A||||X||||Y ||||B||},

where U = A(X ◦ Y )B, for some A ∈ Mn,m, B ∈ Mm,n, X ∈ Mm(V ), and Y ∈

Mm(W ). In [32], it is shown that || · ||s is matrix norm and the completion of V ⊗W

in this norm is an operator space. It is called the Schur tensor product of V and W ,

denoted by V ⊗sW . Moreover, it is distinct from the operator space projective tensor

product.

We are interested in the analogous construction in the category of operator sys-

tems. Firstly, the following lemmas outline an interesting relation between the Schur

tensor product and the ordinary algebraic tensor product.

Lemma 2.2. Every X ◦ Y ∈ Mn(S ⊗ T ) can be regarded as E(X ⊗ Y )E∗, for some

E ∈Mn,n2.
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2.1 THE SCHUR TENSOR PRODUCT

Proof. Let {Eij}ni,j=1 denote the standard matrix units of Mn and regard X ⊗ Y as

the Kronecker tensor product. In the case when n = 2, note that

[
E11 E22

]
X ⊗ Y

[
E11 E22

]∗
=

[
E11 E22

]


x11 ⊗ y11 x11 ⊗ y12 x12 ⊗ y11 x12 ⊗ y12

x11 ⊗ y21 x11 ⊗ y22 x12 ⊗ y21 x12 ⊗ y22

x21 ⊗ y11 x21 ⊗ y12 x22 ⊗ y11 x22 ⊗ y12

x21 ⊗ y21 x21 ⊗ y22 x22 ⊗ y21 x22 ⊗ y22


E11

E22



=

x11 ⊗ y11 x12 ⊗ y12

x21 ⊗ y21 x22 ⊗ y22

 = X ◦ Y.

In general, a similar calculation shows that X ◦ Y = E(X ⊗ Y )E∗, where E =

[E11 E22 . . . Enn].

Lemma 2.3. Every P ∈ Mn(S ⊗ T ) can be written as P = A(X ◦ Y )B, for some

X ∈ Mk(S), Y ∈ Mk(T ), A ∈ Mn,k and B ∈ Mk,n. In particular, we may take

B = A∗.

Proof. Write P as a sum of matrices whose entries are elementary tensors, that is,

P =
∑m

l=1 U
l, where U l = [xlij ⊗ ylij] ∈Mn(S ⊗ T ). Let U = U1 ⊕ · · · ⊕ Um, so

U =



U1 0 . . . 0

0 U2 . . . 0

...
...

. . .
...

0 0 . . . Um


which is X ◦Y for some X ∈Mnm(S) and Y ∈Mnm(T ). Now let A = [In In . . . In] ∈
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Mn,nm with m copies of In. Then, it is easy to see that AUA∗ =
∑m

l=1 U
l = P .

Hence, X◦Y and X⊗Y are almost identical except by a ∗-conjugation of matrices.

Motivated by this observation and the construction of the maximal tensor product,

we define the following family of cones.

Definition 2.4. Given operator systems S and T , we define

Csn(S ⊗ T ) = {A(X ◦ Y )A∗ ∈Mn(S ⊗ T ) :

X ∈Mk(S)+, Y ∈Mk(T )+, A ∈Mn,k, k ∈ N}.

In brief we denote Csn(S ⊗ T ) = Csn.

Proposition 2.5. The family {Csn} defines a matrix order on S ⊗ T with matrix

order unit 1⊗ 1.

Proof. We first check that Csn is a cone of Mn(S⊗T ). It is obvious from definition that

Csn ⊂Mn(S ⊗T )sa. Let A(X1 ◦Y1)A∗ and B(X2 ◦Y2)B∗ be in Csn, where X1 ∈Mk(S),

Y1 ∈Mk(T ), X2 ∈Mm(S), Y2 ∈Mm(T ), A ∈Mn,k(C), and B ∈Mn,m(C). Let

X = X1 ⊕X2 =

X1 0

0 X2

 ∈Mk+m(S)+,

and likewise Y = Y1 ⊕ Y2 ∈Mk+m(T )+. Consider [A B] ∈Mn,k+m, then

[
A B

]
(X ◦ Y )

[
A B

]∗
=

[
A B

]X1 ◦ Y1 0

0 X2 ◦ Y2

[A B

]∗

= A(X1 ◦ Y1)A∗ +B(X2 ◦ Y2)B∗
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is in Csn. If t > 0, then t(A(X ◦Y )A∗) = (
√
tA)(X ◦Y )(

√
tA)∗ ∈ Csn. Also, if B ∈Mr,n

then (BA)(X ◦ Y )(BA)∗ ∈ Csr . Therefore, {Csn}∞n=1 is a compatible family of cones on

S ⊗ T .

Finally, to see that they are proper, we claim that in fact Csn ⊂ Dmax
n . Indeed, let

A(X ◦ Y )A∗ ∈ Csn, for some X ∈ Mk(S)+, Y ∈ Mk(T )+, and A ∈ Mn,k. Then by

Lemma 2.2,

A(X ◦ Y )A∗ = A(E(X ⊗ Y )E∗)A∗ = (AE)(X ⊗ Y )(AE)∗,

which is in Dmax
n by definition. Since the latter cone is proper, −Csn ∩ Csn = {0}. The

fact that 1⊗ 1 is a matrix order unit with respect to {Csn} follows from the inclusion

Csn ⊂ Dmax
n and that 1⊗ 1 is a matrix order unit with respect to Dmax

n . Consequently,

{Csn} defines a matrix order on S ⊗ T .

From the last paragraph of the proof, we see that Csn ⊂ Dmax
n . In fact, one can

further deduce that Csn = Dmax
n after proving that this family satisfies axiom (T2).

Lemma 2.6. The family {Csn}∞n=1 satisfies axiom (T2). That is, given X ∈ Mn(S)+

and Y ∈Mm(T )+, X ⊗ Y ∈ Csnm.

Proof. Let X and Y be as above, note that we may view

X ⊗ Y = [xij ⊗ Y ]ni,j=1

=


x11 ⊗ Jm . . . xn1 ⊗ Jm

...
. . .

...

xn1 ⊗ Jm . . . xnn ⊗ Jm


nm×nm

◦


Y . . . Y

...
. . .

...

Y . . . Y


nm×nm

,
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where Jk ∈Mk is the matrix whose entries are all 1. It is easy to see that the second

matrix in the above equation is Y ⊗Jn. A straight-forward calculation shows that for

each k ∈ N, Jk has eigenvalues 0 and k, so Y ⊗ Jn ∈ Mnm(T )+. On the other hand,

the first matrix is unitarily equivalent to X ⊗ Jm, which is also positive in Mnm(S).

Therefore, X⊗Y = (X⊗Jm)◦(Y ⊗Jn) ∈ Csnm and the family {Csn}∞n=1 satisfies axiom

(T2).

Now by Lemma 1.12, we have the reverse inclusion Dmax
n ⊂ Csn, so the two families

of cones coincide. In particular, Lemma 1.2 follows easily: every u ∈ Dmax
1 = Cs1 can

be represented as u = A(P ◦Q)A∗ = (A∗PA) ◦Q, for some A ∈ M1,n, P ∈ Mn(S)+,

and Q ∈Mn(T )+. If we archimedeanize the cones {Csn}∞n=1, then we obtain the Schur

tensor product of operator systems and denote it S⊗sT ; and it is unitally completely

order isomorhpic to S ⊗max T .

Theorem 2.7. The cones Csn = Dmax
n , for every n ∈ N. Consequently, for operator

systems, the Schur tensor product is the maximal tensor product, i.e. S ⊗s T =

S ⊗max T .

Given operator systems S and T , S ⊗max T possesses a canonical operator space

matrix norm || · ||osy-max; that is, given U ∈Mn(S ⊗max T ),

||U ||osy-max = inf

r :

rI U

U∗ rI

 ∈M2n(S ⊗max T )+

 .

In particular, since A ⊗C*-max B = A ⊗max B for unital C*-algebras, the C*-

maximal tensor norm || · ||C*-max is precisely || · ||osy-max for unital C*-algebras. The

following proposition is a generalized version of || · ||C*-max ≤ || · ||s in [32].
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Proposition 2.8. Let S and T be operator systems. Then the identity map φ : S ⊗s

T → S ⊗max T is a complete contraction between the two operator spaces.

Proof. Let ||U ||s < 1, then by scaling, there exist scalar contractions A,B and X ∈

Mn(S) and Y ∈ Mn(T ), ||X||, ||Y || ≤ 1 such that U = A(X ◦ Y )B. Hence, the

matrices P = [ I X
X∗ I ] ∈M2n(S)+ and Q = [ I Y

Y ∗ I ] ∈M2n(T )+. Note that

A 0

0 B∗

P ◦Q
A∗ 0

0 B

 =

 AA∗ A(X ◦ Y )B

B∗(X∗ ◦ Y ∗)A∗ B∗B

 =

AA∗ U

U∗ B∗B

 ,
which is in M2n(S ⊗s T )+ = M2n(S ⊗max T )+.

On the other hand, since A and B are scalar contractions, I−AA∗ and I−B∗B are

positive inMn. Thus, the operator matrix
[
I−AA∗ 0

0 I−B∗B

]
is positive inM2n(S⊗maxT ).

By adding the two matrices, we obtain [ I U
U∗ I ] ∈M2n(S ⊗max T )+ which implies that

||U ||osy-max ≤ 1.

2.2 Factorization Through the Matrix Algebras

We now turn to study the maximal tensor product using factorization. Recall that

every u =
∑n

i=1 xi ⊗ yi ∈ S ⊗ T may be regarded as a linear map û : Sd → T ,

û(f) =
∑n

i=1 f(xi)yi, where Sd is the linear dual of S. The map û is independent of

representation of u and u 7→ û is an one-to-one correspondence between S ⊗ T and

B(Sd, T ), where the latter is the space of bounded linear maps from the linear dual

Sd to T .

In this section, we use the duality results from [10]. For the rest of the chapter,

to ensure Sd is an operator system, we assume S and T to be finite-dimensional.
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Fix a basis {y1 = 1T , . . . , ym} for T , where yi = y∗i and ||yi|| = 1, so that every

u ∈ S ⊗ T has a unique representation u =
∑m

i=1 xi ⊗ yi, for some xi ∈ S. To obtain

the main result in this chapter, we introduce a temporary norm on S ⊗ T by setting

|||u||| =
∑m

i=1 ||xi||.

Lemma 2.9. If u =
∑m

i=1 xi⊗ yi ∈ S ⊗T , where xi = x∗i , then |||u|||(1S ⊗ 1T ) + u ∈

Dmax
1 (S, T ).

Proof. Because

||si||1 si

si ||si||1

 ∈M2(S)+,

1 ti

ti 1

 ∈M2(T )+,

when we form their Schur tensor product, we obtain

||si||1⊗ 1 si ⊗ ti

si ⊗ ti ||si||1⊗ 1

 ∈ Cs2 = Dmax
2 .

By ∗-conjugating this matrix by [1, 1], we deduce that ||si||(1⊗1)+si⊗ti ∈ Dmax
1 (S, T )

for each i, thus the sum |||u|||(1⊗ 1) + u ∈ Dmax
1 (S, T ).

Lemma 2.10. Let uλ be a net in S ⊗ T . Then |||uλ||| → 0 in S ⊗ T if and only if

for each f ∈ Sd, ||ûλ(f)||T → 0.

Proof. Write each uλ =
∑m

i=1 x
λ
i ⊗yi, then |||uλ||| → 0 implies that limλ ||xλi || → 0 for

each i ∈ {1, . . .m}, which is equivalent to require that (xλi )→ 0 in the weak topology.

Thus for each f ∈ Sd,

||ûλ(f)||T ≤
m∑
i=1

|f(xλi )| · ||yi||T → 0.
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2.2 FACTORIZATION THROUGH THE MATRIX ALGEBRAS

Conversely, it suffices to show that for each i ∈ {1, . . . ,m}, limλ ||xλi || = 0. Note

that for t =
∑m

i=1 ciyi ∈ T , α(t) :=
∑m

i=1 |ci| defines a norm on T . Since T is

finite-dimensional, ||t||T ≤ α(t) ≤ K||t||T for some K > 0. For each f ∈ Sd, taking

ci = f(xλi ) shows that
m∑
i=1

|f(xλi )| ≤ K||ûλ(f)||T → 0.

Hence for each f ∈ Sd and i ∈ {1, . . . , n}, |f(xλi )| → 0. The latter condition is

equivalent to (xλi )→ 0 in the weak topology, which coincides with the norm topology

because S is finite-dimensional.

Definition 2.11. We say that a linear map θ : S → T admits an approximate

completely positive factorization through Mn, provided there exists nets of

completely positive maps φλ : S → Mnλ and ψλ : Mnλ → T such that ψλ ◦ φλ con-

verges to θ in the point-norm topology. In brief we say that θ factors through Mn

approximately. An operator system S is said to have complete positive approximation

property (CPAP) if the identity map factors through Mn approximately.

In [14] it is shown that S is (min,max)-nuclear if and only if S has CPAP. We

now establish the main theorem in the section.

Theorem 2.12. Let S and T be finite-dimensional operator systems and u ∈ (S⊗max

T )+. The following are equivalent:

1. u is positive in S ⊗max T .
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2.2 FACTORIZATION THROUGH THE MATRIX ALGEBRAS

2. The map û : Sd → T factors through Mn approximately:

Sd û //

ϕλ
!!

T

Mnλ

ψλ

==

Proof. Suppose u ∈ (S ⊗max T )+. Then for each ε > 0, uε = ε(1 ⊗ 1) + u is in

Dmax1 (S, T ). By Lemma 1.4, it can be written as uε =
∑
pεij ⊗ qεij, where Pε =

[pεij] ∈ Mnε(S)+ and Qε = [qεij] ∈ Mnε(T )+. Define ϕε : Sd → Mnε by ϕε(f) =

[f(pεij)] and ψε : Mnε → T by ψε([aij]) =
∑

i,j aijq
ε
ij. Note that ϕε is completely

positive by definition of Sd. For ψε, first consider the completely positive map [aij] 7→

[aij] ⊗ Qε. We then regard [aij] ⊗ Qε as the matrix [qεij[akl]]
nε
i,j and ∗-conjugate it by

[E11 E12 . . . E1nε ] to obtain the matrix [qεijaij]
nε
i,j=1 ∈ Mnε(T )+. Now ∗-conjugate it

by the row vector of length nε whose entries are 1; this yields
∑

i,j aijq
ε
ij, and ψε is

completely positive. It follows that ûε = ψε ◦ ϕε and it converges to û as ε → 0 in

the point-norm topology.

Conversely, every ψλ ◦ ϕλ corresponds to a wλ ∈ S ⊗ T so that ŵλ = ψλ ◦ ϕλ.

By the identification CP (Sd,Mn) = S ⊗min Mn from Theorem 1.14, together with

the facts that Mn(S)+ = S ⊗min Mn and Mn = Md
n, we can identify ϕλ to Pλ =

[pλij] ∈ Mnλ(S)+. Similarly, we identify ψλ to Qλ = [qλij] ∈ Mnλ(T )+, which shows

that wλ =
∑nλ

i,j p
λ
ij ⊗ qλij ∈ Dmax

1 (S ⊗T ). By the point-norm convergence and the last

lemma, limλ |||u− wλ||| → 0. Now for each λ, take ελ = |||u− wλ|||, and Lemma 2.9

asserts that ελ(1⊗ 1) + (u−wλ) ∈ Dmax
1 (S, T ). For each ε > 0 there exists a λ, such

that ελ < ε and ε(1 ⊗ 1) + (u − wλ) ∈ Dmax
1 (S, T ). Hence ε1 ⊗ 1 + u ∈ Dmax

1 (S, T )

and u ∈ (S ⊗max T )+.
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By the identification Mm(S ⊗max T ) ∼= S ⊗max Mm(T ), we establish the following

characterization of the matricial order structure of the maximal tensor product.

Theorem 2.13. An element U ∈ Mm(S ⊗max T ) is positive if and only if Û : Sd →

Mm(T ) factors through Mn approximately.

We would like to remark that this result is rather interesting. In [10] or Theorem

1.14, we have S ⊗min T = (Sd ⊗max T d)d. Combining with the result after Theorem

1.10, we deduce that (S ⊗min T )+ = CP (Sd, T ); whereas by Theorem 2.12, (S ⊗max

T )+ corresponds to a proper subcone of CP (Sd, T ) whose elements factor through

Mn approximately. Since the minimal and maximal tensor products each represents

respectively the largest and smallest matricial cone structure one can equip on S⊗T ,

it brings up the natural question about the corresponding subsets of the those cones

with respect to other tensor products in [17].

Here we show that symmetry and projectivity of the maximal tensor product can

also be obtained by this diagram.

Proposition 2.14. The maximal tensor product is symmetric and projective.

Proof. Let u =
∑
si ⊗ ti ∈ S ⊗max T . By dualizing the diagram in Theorem 2.12,

one sees that

T d

ψdλ %%

(û)d
// Sdd = S

Md
nλ

= Mnλ

ϕdλ

77

where (û)d is the map g 7→
∑
g(ti)si. Consequently,

∑
ti ⊗ si ∈ (T ⊗max S)+ if and

only if the above diagram holds, which by duality is equivalent to Theorem 2.12 (2).

This shows that S ⊗max T ∼=ucoi T ⊗max S at the ground level. At each matrix level
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n, identifying Mn(S ⊗max T ) = S ⊗max Mn(T ) and replacing T by Mn(T ) proves

symmetry of the maximal tensor product.

For projectivity, first consider a complete quotient map q : S → R. We claim

that every u ∈ (R ⊗max T )+ can be lifted to some w ∈ (S ⊗max T )+. Indeed, by

Theorem 2.12 there are ϕλ and ψλ such that ψλ ◦ ϕλ converges to u in the point-

norm topology. Since qd : Rd → Sd is a complete order inclusion, by the Arveson’s

extension theorem [1, 26], there is a completely positive Φλ : Sd → Mnλ extending

ϕλ. Hence, the following diagram commutes:

Rd û //

qd

��
ϕλ

''

T

Sd
Φλ

//Mnλ

ψλ

>>

Let [sλij] ∈ Mnλ(S)+ be the corresponding matrix of Φλ and likewise for [tλij] ∈

Mnλ(T )+ of ψλ. Then wλ =
∑

i,j s
λ
ij ⊗ tλij ∈ (S ⊗max T )+ by the Schur character-

ization and ŵ = ψλ ◦Φλ. To this end, we claim that there is a subnet wλα converging

to some positive w such that ŵ ◦ qd = û.

Let δ0 denote the unit in Rd ⊂coi Sd. Then ||ŵλ(δ0)|| = ||ψλ ◦ ϕλ(δ0)|| → ||û(δ0)||

asserts there is λ0 such that the set {||ŵλ(δ0)|| : λ > λ0} is bounded. However, for

completely positive maps, ||ŵλ(δ0)|| = ||ŵλ||cb = ||ŵλ|| and the latter norm also

defines a norm on S ⊗ T . By the equivalence of norm topologies, {wλ : λ > λ0} is

bounded in (S ⊗max T )+ and possesses a convergent subnet wλα → w ∈ (S ⊗max T )+.

Therefore for each f ∈ Rd,

||(ŵ ◦ qd − û)f || = ||(lim
α
ŵλα ◦ qd − û)f || = ||(lim

α
ψλα ◦ Φλα ◦ qd − û)f ||
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= ||(lim
α
ψλα ◦ ϕλα − û)f || = lim

α
||(ψλα ◦ ϕλα − û)f ||

= lim
λ
||(ψλ ◦ ϕλ − û)f || → 0,

where the second line follows from Lemma 2.10. Consequently every positive u ∈

R ⊗max T can be lifted to a positive w ∈ S ⊗max T . This implies that for every

such u and for each ε > 0, the element w + ε(1S ⊗ 1T ) ∈ (S ⊗max T )+ satisfies

(q ⊗ id)(w + ε(1S ⊗ 1T )) = u+ ε(1R ⊗ 1T ).

Finally, again by identifying Mn(R ⊗max T ) to R ⊗max Mn(T ) and likewise for

S ⊗max Mn(T ), we prove that the maximal tensor product is left projective. By

symmetry, it is right projective and hence projective.

At last, we prove that this characterization of the maximal tensor product indeed

leads to the (min,max)-nuclearity result in [14, 15].

Corollary 2.15. Let T be a finite-dimensional operator system with basis {yi : 1 ≤

i ≤ m} and let δi be the dual basis of yi for T d. Then u =
∑m

i=1 δi ⊗ yi ∈ T d ⊗max T

is positive if and only if T is (min, max)-nuclear.

Proof. Let S = T d and note that û is the identity map on T . Moreover, u ∈ (T d⊗max

T )+ if and only if û factors through Mn approximately, which by Theorem 1.18, if

and only if T is (min, max)-nuclear.

At last we remark that although Theorem 2.12 characterizes max in the finite-

dimensional case, there is a natural extension to the infinite-dimensional case. We

will cover this in a more general setting in Section 4.2.
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Chapter 3

The Operator Hilbert System SOH

In [29], Pisier constructed, for each cardinal n, a unique operator space OH(n) that

is completely isometrically isomorphic to its operator space dual OH(n)∗. In this

chapter, we study the analogous problem with operator systems. Unlike the operator

space case, there are many operator systems that are completely order-isomorphic to

their matrix-ordered dual. Since an operator system is also an operator space, its

dual comes equipped with two structures: an operator space structure and a matrix-

ordered structure. It is natural to ask if an operator system is ever simultaneously

completely order-isomorphic and completely norm-isomorphic to its dual. We show

that the answer is negative. Indeed, we prove that the cb-condition number of any

complete order isomorphism between an operator system and its dual is bounded

below by 2.

Next we proceed to create a natural operator system from OH(n), that we denote

by SOH(n). The operator system SOH(n) possesses the property that the canonical

map taking a basis to its dual basis is a unital complete order isomorphism onto its

dual, and it has cb-condition number of exactly 2. We then explore some further
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3.1 OPERATOR SYSTEM AND OPERATOR SPACE DUALITY

properties and applications of the operator systems SOH(n). In particular, we prove

that operator subsystems and quotients of SOH(n) are completely order-isomorphic

to SOH(m) for some m < n.

3.1 Operator System and Operator Space Duality

We begin with some examples. We always identify the dual of Cn with Cn again via

the map that sends the standard basis {ej} to the dual basis {δj}.

Example 3.1. The identification of `∞n with the continuous functions on an n point

space makes `∞n into an operator system with
∑

j Aj ⊗ ej ∈ Mm(`∞n )+ if and only if

Aj ∈ M+
m for all j. Moreover, a map Φ : `∞n → Mm with Φ(ej) = Aj is completely

positive if and only if Aj ∈ M+
m for all j. From this it follows that the map ej → δj

is a complete order isomorphism between `∞n and (`∞n )d. Thus, as a matrix-ordered

space `∞n is self-dual.

On the other hand `∞n is also an operator space and the normed dual is `1
n via

the same identification. The operator space structure on (`∞n )d is the operator space

MAX(`1
n) = span{u1, ..., un} ⊆ C∗(Fn) where C∗(Fn) denotes the full C*-algebra of

the free group on n generators and uj are the generators [35]. In this case the norm

and cb-norm of the identity map id : `∞n → `1
n is n. The cb-condition number is

‖id‖cb‖id−1‖cb = n.

Example 3.2. If we consider Mn as an operator system with the usual structure,

then [28] the map that sends the matrix units Ei,j to their dual basis {δi,j} defines

a complete order isomorphism between Mn and Md
n. This map sends the identity

operator In =
∑n

j=1Ej,j to the trace functional tr, where tr([ai,j]) =
∑n

j=1 aj,j. Thus,
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3.2 THE OPERATOR HILBERT SYSTEM SOH

Mn is also completely order-isomorphic to its dual.

However, recall that the normed dual, with this same identification, is the trace

class matrices S1
n, together with their operator space structure. Again the norm, cb-

norm, and cb-condition number of the identity map (between these n2-dimensional

spaces) is n.

Thus, in both these examples we have operator systems that are completely order-

isomorphic to their ordered duals, but the identification does not preserve the operator

space structure of the dual.

3.2 The Operator Hilbert System SOH

In this section, for each cardinal number n, we introduce an operator system SOH(n)

of dimension n + 1 based on Pisier’s self-dual operator space OH(n) and analyze

their properties. In particular, we prove that these operator systems are self-dual

as matrix-ordered spaces and that the natural map from φ : SOH(n) → SOH(n)d

satisifes ‖φ‖cb · ‖φ−1‖cb = 2, which we show is as close to being a complete isometry

as is possible for any operator system that is completely order-isomorphic to its dual.

We begin with a result that shows that the lower bound of 2 is sharp.

Proposition 3.3. Let S be an operator system of dimension at least 2 and assume

that φ : S → Sd is a complete order isomorphism of S onto its dual space. Then

‖φ‖ · ‖φ−1‖ ≥ 2.

Proof. Let I denote the identity element of S and let δ0 = φ(I). Choose H = H∗ ∈ S

that is not in the span of I. Since δ0 is positive, δ0(H) ∈ R. Replacing H by H−δ0(H)I

we may assume that δ0(H) = 0. Now let δ1 = φ(H), which is a self-adjoint functional
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3.2 THE OPERATOR HILBERT SYSTEM SOH

on S. Set M = inf{r : rI ≥ H} and set m = sup{rI : H ≥ rI}. Since H is

not a multiple of I, it follows that m < M. For any real numbers a, b we will have

that ‖aI + bH‖ = max{|a + bM |, |a + bm|} and that aI + bH ≥ 0 if and only if

min{a + bM, a + bm} ≥ 0. Since φ is a complete order isomorphism, aδ0 + bδ1 is

completely positive if and only if min{a+ bM, a+ bm} ≥ 0.

Now note that ‖MI − H‖ = M − m = ‖H − mI‖ and that MI − H ≥ 0,

H − mI ≥ 0, and so Mδ0 − δ1 and δ1 − mδ0 are both completely positive. Let

δ1(I) = s. The complete positivity of these last two maps, implies that ‖Mδ0− δ1‖ =

(Mδ0− δ1)(I) = M −s ≥ 0 and that ‖δ1−mδ0‖ = (δ1−mδ0)(I) = s−m ≥ 0. Hence,

m ≤ s ≤M . Finally,

‖φ‖ · ‖φ−1‖ ≥ max{ ‖MI −H‖
‖Mδ0 − δ1‖

,
‖H −mI‖
‖δ1 −mδ0‖

} = max{M −m
M − s

,
M −m
s−m

} ≥ 2.

This last inequality follows by observing that the minimum of this maximum over s

occurs when s = (M +m)/2.

To construct SOH, we consider the finite-dimensional case, the extension to

infinite-dimension case is standard. We use a few facts that are implicitly contained in

Pisier’s book [30, Exercise 7.2]. Fix a Hilbert space of dimension n and let {ei} be an

orthonormal basis. Asume that OH(n) ⊆ B(H) is a completely isometric inclusion,

so that ei are identified with operators. Let

Hi =

 0 ei

e∗i 0

 ∈ B(H⊕H),

so that the Hi’s are self-adjoint operators.
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3.2 THE OPERATOR HILBERT SYSTEM SOH

Given matrices, we have that

‖
∑
i

Ai ⊗Hi‖ = max{‖
∑
i

Ai ⊗ ei‖, ‖
∑
i

Ai ⊗ e∗i ‖} =

max{‖
∑
i

Ai ⊗ Ai‖1/2, ‖
∑
i

A∗i ⊗ Ati‖1/2} = ‖
∑
i

Ai ⊗ ei‖.

This last equality follows since At ⊗Bt = (A⊗B)t and so,

‖
∑
i

A∗i ⊗ Ati‖ = ‖(
∑
i

Ai ⊗ Ai)t‖ = ‖
∑
i

Ai ⊗ Ai‖ = ‖
∑
i

Ai ⊗ ei‖2.

Note in particular, we have that ‖
∑

iAi ⊗ ei‖ = ‖
∑

iA
∗
i ⊗ ei‖ = ‖

∑
iA

t
i ⊗ ei‖.

Thus, the map ei 7→ Hi is a complete isometry and we have that OH(n) is also the

span of these self-adjoint elements. The particular form of these self-adjoint operators

will be useful in the sequel.

For notational convenience we let H0 denote the identity operator on H⊕H.

Definition 3.4. We let SOH(n) ⊆ B(H⊕H) denote the (n+1)-dimensional operator

system that is the span of the set {Hi : 0 ≤ i ≤ n}.

We now examine the norm and order structure on SOH(n).

Proposition 3.5. Let Ai ∈Mm, 0 ≤ i ≤ n. Then the following are equivalent:

•
∑n

i=0 Ai ⊗Hi is positive,

• A0 ⊗H0 −
∑n

i=1Ai ⊗Hi is positive,

• A0 ∈ M+
m, Ai = A∗i , 1 ≤ i ≤ n and −A0 ⊗ A0 ≤

∑n
i=1Ai ⊗ Ai ≤ +A0 ⊗ A0, in

Mm ⊗Mm = Mm2 .
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Proof. Let U =
[
−I 0
0 I

]
∈ B(H ⊕H), which is unitary. Note that U∗H0U = H0 and

U∗HiU = −Hi, 1 ≤ i ≤ n, from which the equivalence of the first two statements

follows.

Adding the first two equations shows that A0 ≥ 0. Since a positive element must

be self-adjoint it follows that Ai = A∗i , 1 ≤ i ≤ n.

To see the final equations, first assume that A0 is positive and invertible. Then∑n
i=0Ai⊗Hi is positive iff (A0⊗H0)−1/2(

∑n
i=0Ai⊗Hi)(A0⊗H0)−1/2 is positive which

is iff Im ⊗H0 +
∑n

i=1Bi ⊗Hi is positive, where Bi = A
−1/2
0 AiA

−1/2
0 . As operators on

H⊕H, we have that  IH
∑

iBi ⊗ ei∑
iBi ⊗ ei IH


is positive.

This last equation is equivalent to requiring that the (1,2)-entry of this operator

matrix is a contraction and hence, ‖
∑

iBi ⊗ Bi‖ ≤ 1. But since these matrices are

self-adjoint, this is equivalent to

−Im ⊗ Im ≤
∑
i

Bi ⊗Bi ≤ Im ⊗ Im.

Conjugating this last result by A
1/2
0 ⊗ A1/2

0 yields the desired inequality.

When A0 is not invertible, one first considers A0 + rIm, r > 0 and then lets r → 0.

This completes the proof.

We now consider the matrix-ordered dual of SOH(n). To this end we let δi ∈

SOH(n)d, 0 ≤ i ≤ n denote the linear functionals such that δi(Hj) = δi,j, 0 ≤ i, j ≤ n.

Theorem 3.6. The map κ : SOH(n)→ SOH(n)d defined by κ(Hi) = δi, 0 ≤ i ≤ n,
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is a complete order isomorphism that satisfies

‖
n∑
i=0

Ai ⊗ δi‖cb ≤ ‖
n∑
i=0

Ai ⊗Hi‖ ≤ 2‖
n∑
i=0

Ai ⊗ δi‖cb

for any matrices A0, ..., An ∈Mm and any m and ‖κ‖cb · ‖κ−1‖cb = 2.

Proof. First, we prove that κ is completely positive. Keeping the notation from

the last proof, assume that
∑n

i=0Ai ⊗ Hi is positive. We must prove that the map

Φ : SOH(n)→Mm given by Φ(X) =
∑n

i=0Ai⊗δi(X) is completely positive. Assume

that A0 is invertible and define Bi as above. Let P =
∑n

i=0 Pi⊗Hi ∈Mq(SOH(n))+.

We must show that

Φ(q)(P ) =
n∑
i=0

Ai ⊗ Pi ∈ (Mn ⊗Mq)
+.

Assuming that P0 is also invertible, we set Qi = P
−1/2
0 PiP

−1/2
0 . By the last propo-

sition, we have that ‖
∑n

i=1 Bi ⊗ ei‖ ≤ 1 and ‖
∑n

i=1Qi ⊗ ei‖ ≤ 1. Hence, by the

self-duality of OH(n), we have that ‖
∑n

i=1Bi ⊗Qi‖Mm⊗Mq ≤ 1. Using the fact that

all these matrices are self-adjoint, yields

−Im ⊗ Iq ≤
n∑
i=1

Bi ⊗Qi ≤ +Im ⊗ Iq.

Thus, Im⊗ Iq +
∑n

i=1 Bi⊗Qi ≥ 0, which after conjugation by A
1/2
0 ⊗P

1/2
0 yields that

Φ(q)(P ) ≥ 0.

Conversely, if Φ =
∑n

i=0 Ai ⊗ δi ∈ Mm(SOH(n)d) is completely positive, then it

follows that A0 ≥ 0, and that Ai = A∗i , 1 ≤ i ≤ n. Taking Bi’s as before, we have that

Ψ = Im⊗ δ0 +
∑n

i=1 Bi⊗ δi is a unital completely positive map and hence completely
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contractive. Applying this map to any element
∑

iCi⊗ ei ∈Mq(OH(n)) of norm less

than one, yields that ‖
∑n

i=1Bi ⊗ Ci‖ ≤ 1. Thus, by self-duality of OH(n) we have

that ‖
∑n

i=1Bi ⊗ Bi‖ ≤ 1. Hence, −Im ⊗ Im ≤
∑n

i=1 Bi ⊗ Bi ≤ +Im ⊗ Im and the

Proposition 3.5 implies that
∑n

i=0Ai ⊗ HI is positive. Thus, κ is a complete order

isomorphism.

We now consider the norm inequalities. Let X =
∑n

i=0Ai⊗Hi, set Φ =
∑n

i=0Ai⊗

δi and assume that ‖X‖SOH(n) ≤ 1. Here, the matrices Ai are no longer necessarily

self-adjoint. We then have that

0 ≤

IH ⊗ Im X

X∗ IH ⊗ Im

 =

Im A0

A∗0 Im

⊗H0 +
n∑
i=1

 0 Ai

A∗i 0

⊗Hi.

From the fact that κ is completely positive, it follows that

Im A0

A∗0 Im

⊗ δ0 +
n∑
i=1

 0 Ai

A∗i 0

⊗ δi =

 Im ⊗ δo
∑n

i=0Ai ⊗ δi∑n
i=0A

∗
i ⊗ δi Im ⊗ δ0

 =

Ψ Φ

Φ∗ Ψ

 ,
and Ψ is a unital completely positive map. Hence, ‖Φ‖cb ≤ 1 and it follows that

‖κ(m)(X)‖cb ≤ ‖X‖ for any X ∈Mm(SOH(n)) and any m.

Conversely, assume that Φ =
∑

i=0Ai ⊗ δi. To prove the other inequality, it will

be enough to assume that ‖Φ‖cb ≤ 1 and show that ‖X‖SOH(n) ≤ 2.

Since ‖Φ||cb ≤ 1, there exist unital completely positive maps Ψj : SOH(n) →

Mm, j = 1, 2 such that the map Γ =
[

Ψ1 Φ
Φ∗ Ψ2

]
: SOH(n)→M2m is completely positive.

Writing Ψj =
∑n

i=0 C
j
i ⊗ δi, we have that Γ =

∑
i=0

[
C1
i Ai

A∗
i C

2
i

]
⊗ δi. Moreover, since

the maps Ψj are unital, C1
0 = C2

0 = Im. By the Proposition and the fact that κ is

a complete order isomorphism, we assert that complete positivity of Γ implies that
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Γ1 =
[
Im A0
A∗

0 Im

]
⊗ δ0 −

∑n
i=1

[
C1
i Ai

A∗
i C

2
i

]
⊗ δi is completely positive. Adding Γ + Γ1, and

using the positivity, yields that ‖A0‖ ≤ 1.

Next, if we let Γ2 be the completely positive map obtained by conjugating the

coefficient matrices of Γ1 by the unitary U =
[ −Im 0

0 Im

]
, we find that Γ2 =

[
Im −A0
−A∗

0 Im

]
⊗

δ0 +
∑n

i=1

[
−C1

i Ai
A∗
i −C2

i

]
⊗δi. The average 1/2(Γ+Γ2) =

[
Im 0
0 Im

]
⊗δ0 +

∑n
i=1

[
0 Ai
A∗
i 0

]
⊗δi

is a unital completely positive map.

Using that κ is a complete order isomorphism and replacing the δi’s by Hi’s, yields

that ‖
∑n

i=1Ai ⊗Hi‖ ≤ 1. Hence,

‖
n∑
i=0

Ai ⊗Hi‖ ≤ ‖A0 ⊗H0‖+ ‖
n∑
i=1

Ai ⊗Hi‖ ≤ 2

and the desired inequality follows.

Finally, we have that ‖κ‖cb ≤ 1 and ‖κ−1‖cb ≤ 2, so that ‖κ‖ · ‖κ−1‖cb ≤ 2 and so

we must have equality by Proposition 3.3.

By the above results we see that, among all self-dual operator systems, the oper-

ator systems SOH(n) acheive the minimal cb-condition number of 2. However, this

does not uniquely characterize these spaces. In fact, M2 is another self-dual operator

system that attains this minimum.

One other example is `∞2 , but it is not hard to see that this operator system is uni-

tally, completely order-isomorphic to SOH(1). Indeed, consider the map φ : SOH(1)→

l∞2 , φ(H0) = (1, 1) and φ(H1) = (1,−1). By Proposition 3.5, αH0 + βH1 ≥ 0 if and

only if αH0 − βH1 ≥ 0, if and only if −α2 ≤ β2 ≤ α2. An easy calculation shows

that these conditions are equivalent to α ≥ 0 and −α ≤ β ≤ α, if and only if

φ(αH0 + βH1) = (α + β, α − β) is positive. Since l∞2 is a C*-algebra, φ−1, hence φ,

is a unital complete order isomorphism.

43



3.3 SOME STRUCTURE RESULTS FOR SOH

It would be interesting to try to characterize the self-dual operator systems that

attain this minimal cb-condition number.

3.3 Some Structure Results for SOH

In [30], OH(n) is defined in a basis-free fashion. In this section we show that SOH(n)

is also independent of basis, which leads to proving that every quotient and operator

subsystem of SOH(n) is unitally completely order-isomorphic to some SOH(m). We

also derive a few properties of SOH(n) that will be useful in the sequel. To avoid

ambiguity, whenever we work with SOH(n) and SOH(m), we denote H
(n)
i and H

(m)
j ,

respectively, the basis elements Hi as defined in the last section.

Proposition 3.7. Let 1 ≤ n ≤ m and let {~ui = (uij) ∈ Rm}ni=1 be an orthonormal

set. Then the map Φ: SOH(n) → SOH(m) defined by Φ(I) = I and Φ(H
(n)
i ) :=∑m

j=1 uijH
(m)
j is a unital complete order inclusion.

Proof. Consider self-adjoint
∑n

i=0Ai ⊗H
(n)
i ∈ Mp ⊗ SOH(n). Let B0 = A0 and for

j = 1, . . . , n, let Bj =
∑n

i=1 uijAi. Then
∑n

i=0 Ai ⊗ Φ(Hi) is

B0 ⊗H(m)
0 +

n∑
i=1

Ai ⊗ (
m∑
j=1

uijH
(m)
j ) = B0 ⊗ I +

m∑
j=1

Bj ⊗H(m)
j .

Observe that Bj = B∗j ; and by orthonormality of the ~ui’s,

m∑
j=1

Bj ⊗Bj =
m∑
j=1

(
n∑

i,k=1

uijukj

)
Ai ⊗ Ak =

n∑
i,k=1

(
m∑
j=1

uijukj

)
Ai ⊗ Ak

=
n∑

i,k=1

δi,kAi ⊗ Ak =
n∑
i=1

Ai ⊗ Ai.
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3.3 SOME STRUCTURE RESULTS FOR SOH

Therefore, {Ai}ni=0 satisfies the third condition in Proposition 3.5 if and only if {Bj}mj=0

satisfies the same condition, proving that
∑n

i=0Ai⊗H
(n)
i ≥ 0 if and only if

∑n
i=0Ai⊗

Φ(H
(n)
i ) ≥ 0; this is equivalent to Φ being a unital complete order inclusion.

Corollary 3.8. Let U = [uij] ∈Mn(R) be an orthonormal matrix and set K0 = H0,

Ki =
∑n

j=1 uijHj. Then the map Φ: SOH(n)→ SOH(n) given by Φ(H0) = K0 and

Φ(Hi) = Ki is a unital complete order isomorphism.

Given n ≤ m, it is now clear that SOH(n) ⊂ucoi SOH(m). We will see that every

operator subsystem of SOH(m) is necessarily SOH(n).

Corollary 3.9. If T is an operator subsystem of SOH(m) of dimension n+ 1, then

T is unitally completely order-isomorphic to SOH(n).

Proof. Let {K0 = I,Ki = K∗i : i = 1, . . . , n} be a basis for T . Without loss of

generality, we assume for each i = 1, . . . , n, Ki =
∑m

j=1 aijH
(m)
j for some aij ∈ R.

We first claim that the vectors ~ai = (aij) ∈ Rm are linearly independent. For if not,

then ~ai =
∑n

k=1,k 6=i λk~ak, for some i, leading to Ki =
∑m

j=1

∑n
k=1,k 6=i λkH

(m)
j , which

contradicts our assumption.

Now consider the n-dimensional subspace of Rm spanned these ~ai’s. Pick an

orthonormal basis {~ui = (uij) ∈ Rm}ni=1 for this subspace and define Φ: SOH(n) →

SOH(m) by Φ(I) = I and Φ(H
(n)
i ) =

∑m
j=1 uijH

(m)
j . By the last proposition, Φ is a

complete order inclusion. It remains to check that the image of Φ is T . Since every

~ai =
∑n

k=1 λ
i
k~uk, for each Ki we can write

Ki =
m∑
j=1

aijH
(m)
j =

m∑
j=1

n∑
k=1

λikukjH
(m)
j =

n∑
k=1

λikΦ(H
(n)
j ),

proving that Φ(SOH(n)) = T . Consequently T ∼=ucoi SOH(n) via Φ.
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3.3 SOME STRUCTURE RESULTS FOR SOH

Hence every operator subsystem of SOH(n) is again of the same form. The next

result characterizes quotients of SOH(n) based on self-duality.

Proposition 3.10. Let J be a non-trivial self-adjoint subspace of SOH(n). Then

the following are equivalent:

1. J is the kernel of some unital, completely positive map with domain SOH(n).

2. There existm < n and a surjective unital completely positive map φ : SOH(n)→

SOH(m) such that J = ker(φ).

3. There is unital completely positive map φ on SOH(n) for which J = ker(φ).

Proof. The direction (2) =⇒ (3) =⇒ (1) is obvious. Now assume (1) and let

q : SOH(n)→ SOH(n)/J be the canonical quotient map. Then qd : (SOH(n)/J )d →

SOH(n)d = SOH(n) is a unital complete order embedding [10]. Since J is non-

trivial, (SOH(n)/J )d has dimensionm < n and by the last corollary (SOH(n)/J )d ∼=

SOH(m). By duality, SOH(n)/J ∼= SOH(m)d = SOH(m).

In Section 8 of [15], it is shown that the coproduct of two operator systems S and

T can be obtained by operator system quotients. Namely, S ⊕1 T ∼=ucoi (S ⊕ T )/J ,

where J = C(1S ,−1T ).

Proposition 3.11. For any p ∈ N, let H
(p)
0 , ..., H

(p)
p denote the canonical basis for

SOH(p). Then for any n,m ∈ N, the map φ : SOH(n)⊕ SOH(m)→ SOH(n + m)

defined by φ(H
(n)
j ) = H

(n+m)
j , 0 ≤ j ≤ n and φ(H

(m)
j ) =


H

(n+m)
0 , j = 0

H
(n+m)
n+j , j > 0

induces a

unital completely positive map Φ : SOH(n) ⊕1 SOH(m) → SOH(n + m), but this

map is not an order isomorphism.
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3.3 SOME STRUCTURE RESULTS FOR SOH

Proof. It is easy to check that the restriction of φ to each direct summand is a

unital completely positive map. Hence, Φ is a unital completely positive map by the

universal property of the coproduct.

To see that Φ is not an order isomorphism, it suffices to show that SOH(1) ⊕1

SOH(1) 6= SOH(2). Suppose the contrary and consider the positive element P =
√

2H
(2)
0 + H

(2)
1 + H

(2)
2 in SOH(2). Then there must be positive numbers a and b

such that (aH
(1)
0 +H

(1)
1 ) and (bH

(1)
0 +H

(1)
1 ) are positive in SOH(1) and sum to P in

SOH(2). By Proposition 3.5, each of a2 and b2 is greater than 1; however a+ b =
√

2

implies that 2ab ≤ 0, contradicting a and b are positive.

Question 3.12. The last result brings up a natural question. Is there a notion of

Hilbert coproduct, or 2-coproduct, of operator systems in general? If so, does it

naturally identify SOH(n)⊕2 SOH(m) ∼= SOH(n+m)?

Proposition 3.13. Let S be an operator system and {hi : hi = h∗i , ||hi|| ≤ 1}ni=1 ⊂ S.

Then there is r > 0 such that the map φ : SOH(n)→ S given by H0 7→ r1S , Hi 7→ hi

is completely positive.

Proof. Choose r > n1/2 and suppose A0 ⊗ H0 +
∑n

i=1Ai ⊗ Hi is positive in Mm ⊗

SOH(n). We will show that rA0⊗1S+
∑n

i=1Ai⊗hi is positive. First assume A0 > 0

is invertible. We claim  rA0 ⊗ 1S
∑n

i=1Ai ⊗ hi∑n
i=1A

∗
i ⊗ h∗i rA0 ⊗ 1S


is positive in M2m ⊗ SOH(n), which is equivalent to

r−1||
n∑
i=1

A
−1/2
0 AiA

−1/2
0 ⊗ hi||Mm⊗S ≤ 1.
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3.3 SOME STRUCTURE RESULTS FOR SOH

Write Bi = A
−1/2
0 AiA

−1/2
0 , then by Proposition 3.5, ||

∑n
i=1Bi⊗Bi|| ≤ 1. Now embed

S ⊂ B(H) and regard hi ⊗ hi as an operator in B(H⊗H). Then by a version of the

Cauchy-Schwarz inequality due to Haagerup [13, Lemma 2.4],

r−1||
n∑
i=1

Bi ⊗ hi||Mm⊗S ≤ r−1||
n∑
i=1

Bi ⊗Bi||1/2M2m
· ||

n∑
i=1

hi ⊗ hi||1/2B(H⊗H)

≤ r−1n1/2 < 1.

Hence, the above matrix is positive as claimed. By ∗-conjugating it by [1, 1], we

deduce that 2(rA0⊗ 1S +
∑n

i=1Ai⊗ hi) is positive. When A0 is not invertible, apply

the standard A0 + εIm argument as in the proof of Proposition 3.5. Consequently, φ

is completely positive.

Corollary 3.14. In the previous settings, if S is an operator system, then the map

θ : Sd → SOH(n) by θ(f) = rf(1S)H0 +
∑n

i=1 f(hi)Hi is completely positive.

Proof. The dual map φd : Sd → SOH(n)d, φd(f)(Hi) = f ◦ φ(Hi), is completely

positive. Let κ : SOH(n)→ SOH(n)d be the map hi 7→ δi as in Theorem 3.6. Then

by self-duality of SOH(n), the map κ−1 ◦ φd : Sd → SOH(n) is completely positive

and an easy calculation shows that κ−1 ◦ φd(f) = θ(f).
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Chapter 4

The γsoh Tensor Product

Some of the important Banach space tensor products arise via factorization of bounded

maps through Hilbert space. For operator spaces, Pisier in [29, 30] also constructed

the γoh tensor product of operator spaces via factorization of complete contractive

maps through the operator Hilbert space OH. In Chapter 2, we already had a sim-

ilar result on the maximal tensor product through the matrix algebras Mn. In this

chapter, we are seeking an analogue to γoh for operator systems, via factorization of

completely positive maps through the operator Hilbert system SOH.

We first construct this tensor product with finite-dimensional operator systems.

We denote it by γsoh and examine some of its properties. More importantly, we show

that γsoh is distinct from the other tensor products found in [17, 18], and establish

some nuclearity-related results about γsoh. Then we provide a general method to

extend functorial tensor product of finite-dimensional operator systems to the infinite-

dimensional case. Consequently, we can extend γsoh and generalize Theorem 2.12 to

infinite-dimensional operator systems.
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4.1 THE γSOH TENSOR PRODUCT

4.1 The γsoh Tensor Product

In Chapter 2, it is shown that the positive cone of the maximal tensor product of

finite-dimensional operator systems, S ⊗max T , can be identified with the completely

positive maps from Sd to T that factor through Mn approximately; equivalently

these are the nuclear maps. Motivated by this characterization, we will construct

the γsoh tensor product similarly by using Mp(SOH(n)) instead of Mn. We show

that φ1 ⊗ φ2 : S1 ⊗γsoh S2 → T1 ⊗γsoh T2 is completely positive whenever φi : Si →

Ti is completely positive. We prove that γsoh is a functorial and symmetric tensor

product structure in the category of finite-dimensional operator systems. We also

prove that γsoh is a distinct tensor product from many of the functorial tensors studied

in [8, 17, 18].

Definition 4.1. Let S and T be operator systems. We say that û : Sd → T factors

through SOH approximately, provided there exist nets of completely positive

maps φλ : Sd → Mpλ(SOH(nλ)) and ψλ : Mpλ(SOH(nλ)) → T such that ψλ ◦ φλ

converges to û in the point-norm topology.

Definition 4.2 (The γsoh-cone). Let S and T be finite-dimensional operator systems.

Define

Cγ1 (S, T ) = {u ∈ S ⊗ T : û factors through SOH approximately}.

For u = [uij] ∈ Mn(S ⊗ T ), we regard û = [ûij] as a map from Sd to Mn(T ). Thus

there is no confusion to define Cγn(S, T ) = Cγ1 (S,Mn(T )) in Mn(S ⊗ T ). We denote

the triple (S ⊗ T , {Cγn(S, T )}∞n=1, 1S ⊗ 1T ) by S ⊗γsoh T .

Proposition 4.3. The collection {Cγn(S, T )} is a compatible family of proper cones
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4.1 THE γSOH TENSOR PRODUCT

of S ⊗ T .

Proof. Since Cγn(S, T ) = Cγ1 (S,Mn(T )), it suffices to check that Cγ1 (S, T ) is a proper

cone. It is obvious that Cγ1 (S, T ) is closed under positive scalar multiplication. Let

u1, u2 ∈ Cγ1 (S, T ), so there are nets of completely positive maps φλk , ψλk , where

k = 1, 2 such that limλ ψλk ◦ φλk = ûk in the point-norm topology.

Consider the directed set Λ = {(λ1, λ2)} with the natural ordering. For each

λ = (λ1, λ2) ∈ Λ, regard Mpλ = Mpλ1
⊕ Mpλ2

as the 2-by-2 block and let nλ =

max{nλ1 , nλ2}. Note that every completely positive map on SOH(nλk), k = 1, 2, can

be extended naturally on SOH(nλ). Thus without loss of generality we may assume

that φλk maps into Mpλ ⊗ SOH(nλ) and ψλk has domain Mpλ ⊗ SOH(nλk).

Thus, for each λ = (λ1, λ2), we take Mpλ(SOH(nλ)), with completely positive

maps φλ = φλ1⊕φλ2 and ψλ = ψλ1⊕ψλ2 . It remains to check that ψλ◦φλ converges to

̂(u1 + u2) in the point-norm topology. Indeed, given f ∈ Sd and ε > 0, by assumption

there exist µ1 and µ2 so that ||ûk(f) − ψλk ◦ φλk(f)|| < ε
2
, for λk > µk. Thus if

µ = (µ1, µ2) and λ > µ, then

|| ̂(u1 + u2)(f)− (ψλ ◦ φλ)(f)|| ≤
2∑

k=1

||ûk(f)− (ψk ◦ φk)(f)|| < ε

shows that u1 + u2 is in Cγ1 (S, T ).

Next we verify compatability. Let u = [uij] ∈ Cγn(S, T ) with û factors through

SOH approximately via nets ψλ and φλ. Write A = [akl] ∈ Mm,n, and write w =

AuA∗ ∈Mm(S ⊗ T ). We claim that ŵ also factors through SOH approximately via

the nets (θA ◦ ψλ) and φλ, where θA : Mn(T )→Mm(T ) by B 7→ ABA∗ is completely
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4.1 THE γSOH TENSOR PRODUCT

positive. To this end, note that by writing w = [
∑n

k,l ai,kuk,lal,j]
m
i,j=1, for each f ∈ Sd

ŵ(f) =

[
n∑

k,l=1

ˆ(ai,kuk,lal,j)(f)

]m
i,j=1

=

[
n∑

k,l=1

ai,kûk,l(f)al,j

]m
i,j=1

= Aû(f)A∗ = (θA ◦ û)(f).

Thus, for each f ∈ Sd,

||ŵ(f)− θA ◦ ψλ ◦ φλ(f)|| = ||θA ◦ (û− ψλ ◦ φλ)(f)|| → 0.

Therefore, {Cγn(S, T )} is a compatible family of proper cones.

Proposition 4.4. The unit 1S⊗1T is an Archimedean matrix order unit for S⊗γsohT .

Proof. Again by identifying Cγn(S, T ) = Cγ1 (S,Mn(T )), it suffices to prove that 1S⊗1T

is an Archimedean order unit for S ⊗γ T on the ground level. Let u ∈ S ⊗ T be

self-adjoint, we must find an r > 0 so that r1S ⊗ 1T − u is in Cγ1 (S, T ). Without

loss of generality, we may assume u =
∑n

i=1 xi ⊗ yi, where xi = x∗i and yi = y∗i .

By Proposition 3.13 and Corollary 3.14, there exist r1, r2 > 0 such that the map

φ : Sd → SOH(n) by φ(f) = r1f(1S)H0 −
∑n

i=1 f(xi)Hi, and ψ : SOH(n) → T by

ψ(H0) = r21T , ψ(Hi) = yi are completely positive. Choose r = r1r2, then

ψ(φ(f)) = r1r2f(1S)1T −
n∑
i=1

f(xi)yi = ̂(r1S ⊗ 1T − u)(f)

shows that ( ̂r1S ⊗ 1T − u) factors through SOH(n) exactly. Consequently, 1S ⊗ 1T

is an order unit for S ⊗γ T .

Finally suppose u =
∑n

i=0 xi⊗yi ∈ S⊗T and for each ε > 0, uε = u+ε(1S⊗1T ) ∈
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Cγ1 (S, T ). For each ε, there is a net of completely positive maps φλε and ψλε such

that

Sd ûε //

φλε ''

T

Mpλε
(SOH(nλε))

ψλε

77

and ||ûε(f)− (ψλε ◦ φλε)(f)|| → 0, for each f ∈ Sd.

Hence for each fixed ε, by finite dimensionality of Sd, there exist a sufficiently

large k > 1
ε

and a pair of completely positive maps φλ(ε,k) and ψλ(ε,k) from the net

(ψλε ◦ φλε), such that ||ûε(f)− (ψλ(ε,k) ◦ φλ(ε,k))(f)|| < 1
k
, for every ||f || ≤ 1.

Consider the directed set Λ consisting of (ε, k) subject to the above condition,

and order it by (ε, k) ≤ (ε′, k′) if and only if ε′ ≤ ε and k′ ≥ k. Now we claim that

(ψλ ◦ φλ)λ∈Λ converges to û in the point-norm topology. Given f ∈ Sd with ||f || ≤ 1,

for each m > 0, consider for ε > 1
2m

and those λ = (ε, k),

||û(f)− (ψλ ◦ φλ)(f)|| = ||û(f)− ûε(f) + ûε(f)− (ψλ ◦ φλ)(f)||

≤ ||û(f)− ûε(f)||+ ||ûε(f)− (ψλ ◦ φλ)(f)||

<
1

2m
+

1

2m
.

Therefore, û factors through Mp(SOH(n)) approximately and u ∈ Cγ1 (S, T ). Conse-

quently, 1S ⊗ 1T is an Archimedean matrix order unit.

Definition 4.5. The triple (S ⊗T , Cγn(S, T ), 1S ⊗ 1T ) is an operator system, and we

denote it by S ⊗γsoh T .

Theorem 4.6. The γsoh tensor product defines a functorial operator system tensor

product structure in the category of finite-dimensional operator systems.
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Proof. Let P ∈ Mn(S)+ and Q ∈ Mm(T )+. Note that by regarding S = (Sd)d and

P : Sd → Mn, then ˆ(P ⊗Q) : Sd → Mnm(T ) maps f to P (f)⊗Q. Moreover, ˆP ⊗Q

factors through Mn ⊗ SOH(1) via

Sd

P⊗H0 &&

ˆ(P⊗Q)
//Mnm(T )

Mn ⊗ SOH(1)

In⊗Q

77

Therefore, P ⊗Q ∈ Cγnm(S, T ).

For the functorial property, let ρ : S → V and κ : T → W be completely positive

maps between finite-dimensional operator systems, and let u ∈ S ⊗γ T be positive.

Thus û factors through Mp(SOH(n)) approximately via some φλ and ψλ. Let w =

(ρ⊗ κ)(u) ∈ V ⊗W . Notice this diagram

Vd ŵ //

ρd

��

W

Sd û //

φλ &&

T

κ

OO

Mpλ(SOH(nλ))
ψλ

88

commutes and the maps are all completely positive. Indeed, if w =
∑n

i=1 ρ(xi)⊗κ(yi),

where u =
∑n

i=1 xi ⊗ yi, then for each f ∈ Vd,

ŵ(f) =
n∑
i=0

f(ρ(xi))κ(yi) = (κ ◦ û ◦ ρd)(f)

= lim
λ

(κ ◦ ψλ) ◦ (φλ ◦ ρd)(f).

Therefore, ŵ also factors through Mp(SOH(n)) approximately and w ∈ (V⊗γsohW)+.
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For u = [uij] ∈ Mn(S ⊗γsoh T )+, in the same vein we regard û : S → Mn(T ). Then

by replacing κ by κ⊗ In and W by Mn(W) we deduce that û factors through SOH

approximately. Consequently ρ⊗κ is completely positive and the γsoh tensor product

is functorial.

In [8], the ess tensor product S⊗essT arises by the inclusion in C∗e (S)⊗maxC
∗
e (T ),

where C∗e (S) is the enveloping C∗-algebra of S. It was yet to know whether this tensor

product is functorial. Recently in [12, Proposition 3.2], Gupta and Luthra proved that

the ess tensor product is not functorial. This allows us to distinguish γsoh from ess.

Corollary 4.7. The γsoh tensor product is not the ess tensor product.

We deduce further properties of the γsoh tensor product.

Proposition 4.8. The γsoh tensor is symmetric.

Proof. If u ∈ (S ⊗γsoh T )+, then by self-duality of SOH(n) we see that

T d ûd //

ψdλ &&

Sdd = S

Mpλ(SOH(nλ))
φdλ

66

commutes. Indeed, if u =
∑n

i=1 xi ⊗ yi, then for g ∈ T d and f ∈ Sd,

(ûd)(g)(f) = g(û(f)) =
n∑
i=1

g(yi)f(xi) = û(f)(g).

Hence, û factors through Mp(SOH(n)) approximately if and only if ûd does. At the

matrix level, we identify Mn(S ⊗γsoh T )+ = (S ⊗γsohMn(T ))+ = (Mn(T )⊗γsoh S)+ =

(T ⊗γsoh Mn(S))+ = Mn(T ⊗γsoh S)+. This shows that x⊗ y 7→ y ⊗ x is a complete

order isomorphism from S ⊗γsoh T onto T ⊗γsoh S.
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In [17], there are some tensor products constructed using the injective envelope.

These come from the identifications, S ⊗el T ⊂coi I(S) ⊗min T , where I(S) is the

injective envelope of S, and likewise for S⊗erT . It turns out that the el and er-tensor

products are not symmetric.

Corollary 4.9. The γsoh tensor product is neither the er nor the el tensor product.

Theorem 4.10. The γsoh tensor product is not the maximal tensor product. In par-

ticular, for n ≥ 2, SOH(n)⊗γsoh SOH(n) 6= SOH(n)⊗max SOH(n).

Proof. By self-duality of SOH(n), it suffices to show that SOH(n)d⊗γsoh SOH(n) 6=

SOH(n)d ⊗max SOH(n). Consider the element u =
∑n

i=0 δi ⊗ Hi. Note that û is

in fact the identity map on SOH(n) and factors through SOH trivially, so u ∈

(SOH(n)d ⊗γsoh SOH(n))+.

On the other hand, if u ∈ SOH(n)d ⊗max SOH(n) were positive, then by Theo-

rem 2.12, û factors through the matrix algebras approximately. Thus SOH(n) has

CPFP and by Theorem 1.18, SOH(n) must be (min,max)-nuclear. It follows that

SOH(n) is (c,max)-nuclear and by Proposition 1.20, it is unitally completely order-

isomorphic to a finite-dimensional C*-algebra. However it follows that OH(n) could

be completely isometrically represented on a finite-dimensional Hilbert space and

is hence 1-exact, contradicting Pisier’s result [30]. Therefore, u is not positive in

SOH(n)d ⊗max SOH(n). Consequently the two operator systems are not completely

isomorphic.

We have seen that γsoh is likely a new tensor product. The next natural question

is to ask which operator systems are nuclear with respect to γsoh. The following result

characterizes (min, γsoh)-nuclearity by identifying the matricial cone structures of the
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4.1 THE γSOH TENSOR PRODUCT

minimal tensor product to completely positive maps. Following this characterization,

we are able to deduce that γsoh is also distinct from the commuting tensor product,

and that γsoh is a not self-dual tensor product.

Theorem 4.11. Let S and T be finite-dimensional operator systems. Then S ⊗min

T = S ⊗γsoh T if and only if every completely positive map from Sd to T factors

through SOH approximately.

Proof. By Theorem 1.14, S ⊗min T =ucoi (Sd ⊗max T d)d, whose cone (Sd ⊗max T d)d,+

is in one-to-one correspondence to CP (Sd, T ). Hence φ ∈ CP (Sd, T ) if and only if

φ = û for some u ∈ (S ⊗min T )+; and û factors through SOH approximately if and

only if u ∈ (S ⊗γsoh T )+. Consequently, (S ⊗min T )+ = (S ⊗γsoh T )+ if and only

if every completely positive φ : Sd → T admits such a factorization. At the matrix

level, we identify Mn(S⊗τ T )+ with (S⊗τMn(T ))+ for τ = min, γsoh; then the result

follows from the base case.

Corollary 4.12. SOH(n) is (min, γsoh)-nuclear.

Corollary 4.13. The γsoh tensor product is not the commuting tensor product.

Proof. If γsoh = c, then SOH(n)⊗minSOH(n) = SOH(n)⊗γsohSOH(n) = SOH(n)⊗c

SOH(n). By self-duality of SOH(n), SOH(n)⊗minSOH(n)d = SOH(n)⊗cSOH(n)d.

By Proposition 1.20, it follows that SOH(n) is C*-nuclear, thus exact. This is a con-

tradiction to Pisier’s result that OH(n) is not exact [30], as in the proof of the last

theorem.

Corollary 4.14. The γsoh tensor product is not self-dual.

Proof. Suppose γsoh is self-dual; that is, (S⊗γsohT )d = Sd⊗γsohT d. Then SOH(n)⊗min

SOH(n)d = SOH(n) ⊗γsoh SOH(n)d and by dualizing one obtains SOH(n)d ⊗max
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4.2 EXTENSION TO THE INFINITE-DIMENSIONAL CASE

SOH(n) = SOH(n)d ⊗γsoh SOH(n). Again by Proposition 1.20, SOH(n) is C*-

nuclear, which is a contradiction.

4.2 Extension to the Infinite-Dimensional Case

In this section we show that every functorial tensor product structure defined on the

category of finite-dimensional operator systems can be extended to infinite-dimensional

operator systems. We also prove that this extension preserves symmetry, injectivity,

and projectivity. Therefore, the γsoh tensor product defined in the previous section,

as well as the characterization of maximal tensor product given by Theorem 2.12, can

now be extended to infinite-dimensional operator systems.

Given an operator system S, we denote the collection of finite-dimensional oper-

ator subsystems of S by F(S).

Definition 4.15. Let τ be a functorial tensor product structure on the category of

finite-dimensional operator systems. We define τ̃ on the category of operator systems

in the following way: Given S and T , for each n ∈ N, define the family of proper

cones

C τ̃n(S, T ) :=
⋃

E∈F(S),F∈F(T )

Mn(E ⊗τ F )+.

Theorem 4.16. τ̃ defines a functorial tensor product structure on the category of

operator systems.

Proof. Let us denote C τ̃n = C τ̃n(S, T ). We first claim that it defines a matrix-ordering

on S ⊗ T . It is trivial that C τ̃n is a proper cone for each n. To show that this is a

matrix-ordering, we first check that for each m,n ∈ N, A ∈ Mn,m(C), A∗C τ̃nA ⊂ C τ̃
m.
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4.2 EXTENSION TO THE INFINITE-DIMENSIONAL CASE

Since every B ∈ C τ̃n belongs to Mn(E ⊗τ F )+, for some E ∈ F(S) and F ∈ F(T ), we

have A∗BA ∈ Cm(E ⊗α F ) ⊂ C τ̃m.

To see that 1 ⊗ 1 is an Archimedean matrix order unit for (S ⊗ T , C τ̃n), consider

A ∈ Mn(S ⊗ T ) such that for each ε > 0, Aε = ε(1 ⊗ 1) ⊗ In + A ∈ C τ̃n. By

definition, there exist Eε ∈ F(S) and Fε ∈ F(T ) for which Aε ∈ Mn(Eε ⊗τ Fε)+.

Let E =
⋂
ε>0Eε ∈ F(S) and F = ∩ε>0Fε ∈ F(T ), then by functorial property of

τ , for each ε > 0, Mn(E ⊗τ F )+ ( Mn(Eε ⊗τ Fε)+. Finally, since E ⊗τ F defines an

operator system, as ε→ 0 we see that Aε → A ∈Mn(E ⊗τ F )+. Consequently, 1⊗ 1

is an Archimedean matrix order unit; and (S ⊗ T , C τ̃n, 1⊗ 1) is an operator system.

It remains to show the (T2) and (T3) axioms. Given P = (pij) ∈ Mn(S)+ and

Q = (qst) ∈ Mm(T )+, by choosing E and F to be the spans of pij’s and qst’s, we

have P ⊗ Q ∈ Mnm(E ⊗τ F )+. This shows that Mn(S)+ ⊗Mm(T )+ ⊂ C τ̃nm. For

(T3), we show further that it is functorial. Suppose φ : S1 → S2 and ψ : T1 → T2 are

completely positive maps. If A ∈ C τ̃k , then there are E1 ∈ F(S) and F1 ∈ F(T ) such

that A ∈Mk(E1 ⊗τ F1)+. Let E2 and F2 denote the ranges of φ and ψ, respectively.

By functorial property of τ , the map φ⊗ψ|E1⊗τF1 : E1⊗τ F1 → E2⊗τ F2 is completely

positive. In particular, (φ⊗ψ)(k)(A) ∈Mk(E2⊗τ F2)+. Therefore, φ⊗ψ is completely

positive and τ̃ is functorial.

Proposition 4.17. τ̃ preserves injectivity, symmetry, and projectivity.

Proof. Let τ be injective, S1 ⊂ S and T1 ⊂ T be operator subsystems, and A ∈

Mn(S ⊗τ̃ T )+ ∩ Mn(S1 ⊗ T1). By definition, A ∈ Mn(E ⊗τ F )+ for some finite-

dimensional operator subsystems E ⊂ S and F ⊂ T . Hence E ∩ S1 and F ∩ T1 are
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4.2 EXTENSION TO THE INFINITE-DIMENSIONAL CASE

finite-dimensional operator subsystems of S1 and T1 respectively. By injectivity of τ ,

A ∈Mn(E ⊗τ F )+ ∩Mn(S1 ⊗ T1) = Mn((E ∩ S1)⊗τ (F ∩ T1))+.

This shows that A ∈ Mn(S1 ⊗τ̃ T1)+, and S1 ⊗τ̃ T1 is complete order included in

S ⊗τ̃ T , proving τ̃ is injective.

Let τ be symmetric, and φ : S ⊗τ̃ T → T ⊗τ̃ S be the map x ⊗ y to y ⊗ x. If

u ∈ Mn(S ⊗τ̃ T )+, then u ∈ Mn(E ⊗τ F )+, for some finite-dimensional E and F ; so

φ(n)(u) ∈Mn(F ⊗τ E)+ ⊂Mn(S ⊗τ̃ T )+ and τ̃ is symmetric.

Suppose τ is projective, and q : S → V and ρ : T → W are complete quotient

maps. We claim that every U ∈Mn(V⊗τ̃W)+ can lift to a positive Ũ ∈Mn(S⊗τ̃ T ).

Since U ∈ Mn(X ⊗τ Y )+, for some X ∈ F(V) and Y ∈ W(T ), using projectivity of

τ , there is Ũ ∈ Mn(E ⊗τ F )+ for which E ∈ F(S), F ∈ F(T ) and q ⊗ ρ(Ũ) = U .

Therefore, τ̃ is projective.

Remark 4.18. We remark that τ̃ indeed extends τ . If S and T are finite-dimensional,

then C τ̃n(S, T ) = Mn(S ⊗τ T )+ by functorial property of τ , thus S ⊗τ T = S ⊗τ̃ T .

Lemma 4.19. Let τ be a symmetric tensor product structure. Then τ is left projective

(resp. injective) if and only if it is right projective (resp. injective), if and only if it

is projective (resp. injective).

Proof. Let q : S → R be a complete quotient map. Then this commuting diagram

S ⊗τ T //

q⊗id
��

T ⊗τ S
id⊗q
��

R⊗τ T T ⊗τ Roo
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4.2 EXTENSION TO THE INFINITE-DIMENSIONAL CASE

asserts the equivalent condition. Similarly, if R is a operator subsystem of S, then

S ⊗τ T //

ι⊗id
��

T ⊗τ S
id⊗ι
��

R⊗τ T T ⊗τ Roo

shows that τ is left injective if and only if it is right injective.

Consequently, given functorial τ on finite-dimensional operator systems, there is

no ambiguity to say that τ defines a tensor product structure on arbitrary operator

systems. Now the construction of γsoh and characterization of max in Theorem 2.12

can be extended in the infinite-dimensional case. In particular, the cone Mn(S ⊗γsoh

T )+ is precisely the set of u ∈ S ⊗Mn(T ) so that û : Ed → Mn(F ) factors through

SOH approximately, for some E ∈ F(S) and F ∈ F(T ).

Some questions about γsoh remain. We do not know if it is injective or projective.

By the lemma above, it suffices to check these properties on one side. We do not

yet know if γsoh is distinct from any of the symmetric tensors that arise from two-

sided inclusions into the maximal tensor products of the injective envelope or the

C*-envelope.
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Chapter 5

The Paulsen System

Given a concrete operator space V ⊂ B(H), Paulsen [26] proved that there is operator

system SV , now known as the Paulsen system of V, given by

SV =


λI X

Y ∗ µI

 : λ, µ ∈ C, X, Y ∈ V

 ⊂M2(B(H)).

This operator system has the property that for any complete contraction ϕ : V → A

into a C*-algebra A, the induced map Φ: SV →M2(A) given by

Φ


λI X

Y ∗ µI


 =

 λI ϕ(X)

ϕ(Y )∗ µI


is a unital completely positive map. Many results on complete contractions and

completely positive maps can then be extended easily to completely bounded maps

by the use of the Paulsen system. Nevertheless, little is known about its matrix-

ordered dual SdV .
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We begin the study by a characterization of the states of SV . By this characteri-

zation, we deduce that SdV with an appropriate order unit is an operator system. This

motivates us to study the relation between SdV and SV ∗ , where V ∗ denotes the opera-

tor space dual of V . Moreover, we examine a natural operator system quotient of the

SV by a certain kernel J , and deduce that (SV /J )d can be regarded as an operator

subsystem of SdV . We also prove that SV /J , when equipped with the two operator

space quotient norms obtained from either the operator space or the operator system

structures of SV , are completely bounded-isomorphic.

5.1 States on the Paulsen System

It is more convenient to study the matricial order structure of SV by a faithful repre-

sentation. Henceforth, let A be a unital C*-algebra represented on a Hilbert space H

and V be an operator space in A. We begin by recalling a simple, yet useful, relation

between M2(A)+ and inner product in Chpater 3 of [26]. This tool becomes handy

when we study the relation between Mn(SV )+ and Mn(V ).

Lemma 5.1. Suppose A is a unital C*-algebra faithfully represented on H. A 2-

by-2 matrix [ A T
T ∗ B ] ∈ M2(B(H))+ if and only if for every x, y ∈ H, |〈Tx, y〉|2 ≤

〈Ax, x〉〈By, y〉. In particular, for any X ∈ A, ||X|| ≤ 1 if and only if [ I X
X∗ I ] ∈

M2(A)+.

Corollary 5.2. The matrix Q =
[
λI X
Y ∗ µI

]
is positive in SV if and only if λ, µ ≥ 0,

Y = X, and ||X|| ≤
√
λµ.

Proposition 5.3. Given Q =

[[
λijI Xij
Y ∗
ij µijI

]
ij

]
in Mn(SV ), write Λ = [λij], U = [µij] ∈

Mn, and X = [Xij] ∈ Mn(V ). Then Q is unitarily equivalent to
[

Λ X
[Yji]

∗ U

]
in
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5.1 STATES ON THE PAULSEN SYSTEM

M2(Mn(A)). Moreover, if both Λ and U are strictly positive, then Q is positive

if and only if ||Λ−1/2XU−1/2|| ≤ 1.

Proof. The first assertion is known as the canonical shuffle; it can be seen using tensor

notation:

Q =
n∑
i,j

(λijI ⊗ E11 +Xij ⊗ E12 + Y ∗ij ⊗ E21 + µijI ⊗ E22)⊗ Ei,j

= (
n∑
i,j

λijI ⊗ Eij)⊗ E11 + (
n∑
i,j

Xij ⊗ Eij)⊗ E12

+ (
n∑
i,j

Y ∗ij ⊗ Eij)⊗ E21 + (
n∑
i,j

µijI ⊗ Eij)⊗ E22,

which is unitarily equivalent to the above matrix. Hence it is positive if and only[
Λ X

[Y ∗
ij ] U

]
is positive in M2(Mn(A)); if and only if Λ, U ≥ 0 and Xij = Y ∗ji. If Λ and U

are strictly positive, multiplying [ Λ X
X∗ U ] on both the left and the right by Λ−1/2⊕U−1/2

yields that
[

Λ−1/2XU−1/2 I
I Λ−1/2XU−1/2

]
. By the previous lemma, it is positive if and only

if ||Λ−1/2XU−1/2|| ≤ 1.

Note that if either Λ or U is 0, then Q must be 0 by the first lemma. To avoid

triviality, in the sequel when we say [ Λ X
X∗ U ] is positive, we always assume Λ, U > 0.

Corollary 5.4. Let Q =

[[
λijI Xij
Y ∗
ij µijI

]
ij

]
in Mn(SV )+. Let f : V →Mm be completely

bounded, then the matrix

||f ||cbΛ⊗ Im f (n)(X)

f (n)(X)∗ ||f ||cbU ⊗ Im


is positive in M2(Mnm).
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5.1 STATES ON THE PAULSEN SYSTEM

Proof. Observe that if A,B ∈Mn(C), then

f (n)(AXB) = (A⊗ Im)f (n)(X)(B ⊗ Im).

As in the proof of last lemma, ||Λ−1/2XU−1/2|| ≤ 1, so

||(Λ−1/2 ⊗ Im)f (n)(X)(U−1/2 ⊗ Im)||Mnm

= ||f (n)(Λ−1/2XU−1/2)||

≤ ||f (n)|| · ||Λ−1/2XU−1/2||

≤ ||f (n)|| = ||f ||cb.

Hence, the matrix

 ||f ||cb(In ⊗ Im) (Λ−1/2 ⊗ In)f (n)(X)(U−1/2 ⊗ In)

[(Λ−1/2 ⊗ In)f (n)(X)(U−1/2 ⊗ In)]∗ ||f ||cb(In ⊗ Im)


is in M2(Mnm)+. Now ∗-conjugate this matrix by (Λ1/2⊗ Im)⊕ (U1/2⊗ Im), then we

obtain the desired result.

The above results establish a clear picture of the matricial order structure of SV

in general. It is thus natural to ask about the states of SV and their relation to linear

functionals on V .

Theorem 5.5. Let s be a state on SV . Then there exist t ∈ [0, 1] and a linear

functional f on V , with ||f || ≤
√
t(1− t) such that

1. s


I 0

0 0


 = t and s


0 0

0 I


 = 1− t.
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2. s


0 X

0 0


 = f(X) and s


 0 0

X∗ 0


 = f(X).

Conversely, for every such pair t and f , the map Φt,f given by the above formulae

defines a state on SV .

Proof. We first prove the converse. Since s is a state on SV , the fact that IA ⊗ E11

and IA ⊗ E22 are positive and sum up to IM2(A) asserts that there is a t ∈ [0, 1]

satisfying condition (1). Define f : V → C by f(X) = s(X ⊗ E12). We claim that

||f || ≤
√
t(1− t).

By Corollary 5.2, for each ||X|| ≤
√
λµ,

s


λI X

X∗ µI


 = λt+ µ(1− t) + f(X) + f(X) ≥ 0.

By choosing a unimodular eiθ so that f(eiθX) = −|f(X)|, we deduce that 2|f(X)| ≤

λt+ µ(1− t), for each ||X|| ≤
√
λµ. Let Y be the unit vector of X, we see that

|f(Y )| ≤ 1

2
√
λµ

(λt+ µ(1− t)),

for every unit vector Y , and every λ, µ > 0. Let ht be the function of (λ, µ) ∈

[0,∞)×[0,∞) in the above inequality, hence ||f || ≤ ht(λ, µ). By elementary Calculus,

for 0 < t < 1, ht attains its global minimum value
√
t(1− t) at λt = µ(1 − t). If

t = 0, 1, then inf ht = 0. Therefore, ||f || ≤
√
t− (1− t) as claimed.
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Now suppose t ∈ (0, 1), ||f || ≤
√
t(1− t) and define

Φt,f


λI X1

X∗2 µI


 = tλ+ (1− t)µ+ f(X1) + f(X2).

By Lemma 5.1,

λI X

X∗ µI

 ≥ 0 if and only if ||X|| ≤
√
λµ and λ, µ ≥ 0. Thus,

tλ+ (1− t)µ+ f(X) + f(X) ≥ tλ+ (1− t)µ− 2|f(X)|

≥ tλ+ (1− t)µ− 2
√
λµ
√
t(1− t)

= (
√
tλ+

√
(1− t)µ)2 ≥ 0.

Consequently, Φt,f defines a state on SV .

Corollary 5.6. For any t ∈ (0, 1), f ∈ V ∗ with ||f || <
√
t(1− t), the state Φt,f is

faithful.

Proof. Let

λI X

X∗ µI

 > 0, and consider

Φt,f


λI X

X∗ µI


 = tλ+ (1− t)µ+ 2Re(f(X)).

By the same argument in the last proof, this quantity is strictly greater than tλ +

(1 − t) − 2
√
λu
√
t(1− t) = (

√
tλ −

√
(1− t)µ)2 ≥ 0, whenever λ, µ > 0; so Φt,f is

faithful.

From the proof above, we see that by maximizing the function G(t) =
√
t(1− t)
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at t = 1
2
, indeed any f for which ||f || = r ≤ 1

2
yields a state Φ1/2,f . Moreover, there

correspond t1 <
1
2
< t2 such that G(ti) = r. Hence, every such f produces a subset

S(f) = {Φt,f : t ∈ [t1, t2]} of the state space on SV . The state space of SV is thus the

union of all such S(f), where ||f || ≤ 1
2
.

5.2 SV ∗ and SdV

For an operator system S, recall that Sd is a matrix-ordered space by the iden-

tification Mn(Sd) ∼= L(S,Mn). At the matrix level, the involution is given by

[fij]
∗(X) = [fij(X

∗)]∗ = [fji(X∗)] . We then equip Mn(Sd) with following matri-

cial order structure:

Mn(Sd)+ = {F = [fij] | F : S →Mn,

F (x) = [fij(x)] is completely postive}.

By Theorem 1.2, if S is finite-dimensional, there exists a state s on S that serves as

an Archimedean matrix order unit for Sd, hence making Sd into an operator system.

However, the result fails in infinite-dimensional case because of the absence of such

state. In the case of the Paulsen system SV , regardless of dimension of V , it turns

out that there always exists such a state on SV .

Proposition 5.7. The mapping tr : SV → C by

tr


λI X

Y ∗ µI


 = λ+ µ

is an Archimedean order unit for SdV .
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Proof. We first show that tr is a matrix order unit, let h ∈ Mn(SdV ) be self-adjoint.

By viewing h : SV →Mn, then

h


λI X

Y ∗ µI


 = λA+ µB + f(X) + f(Y )∗,

where A = h(I ⊗ E11) and B = h(I ⊗ E22) are self-adjoint, and f(X) = h(X ⊗ E12)

is bounded from V to Mn since h is bounded. Choose r ≥ 0 such that rIn − A and

rIn −B ≥ ||f ||cbIn.

We first claim that r(tr ⊗ In) − h is a positive map from SV to Mn. For each[
λI X
X∗ µI

]
∈ S+

V , since f(X) + f(X)∗ is self-adjoint, by Corollary 5.2, f(X) + f(X)∗ ≤

2||f ||
√
λµIn ≤ 2||f ||cb

√
λµIn. The following shows that

(r(tr ⊗ In)− h)


λI X

X∗ µI


 = λ(rIn − A) + µ(rIn −B)− (f(X) + f(X)∗)

≥ λ(rIn − A) + µ(rIn −B)− 2||f ||
√
λµIn

≥ (λ+ µ− 2
√
λµ)(||f ||cbIn)

= (
√
λ−√µ)2(||f ||cbIn) ≥ 0.

Hence, r(tr ⊗ In)− h is a positive map from SV to Mn.

Now we will show that r(tr ⊗ In)− h is completely positive. Recall that a linear

map φ : S → Mn is completely positive if and only if it is n-positive. Suppose Q =[[
λijI Xij
Y ∗
ij µI

]
ij

]
is positive in Mn(SV ). Then

[(r(tr ⊗ In)− h)(Q)]ni,j=1 = [λij(rIn − A) + µij(rIn −B)− (f(Xij) + f(Yij)
∗)]ni,j=1.

69



5.2 SV ∗ AND SdV

By Lemma 5.3, the scalar matrices Λ = [λij], U = [µij] ≥ 0 and Yij = Xji. Then the

above matrix can be viewed as

Λ⊗ (rIn − A) + U ⊗ (rIn −B)− [f(Xij) + f(Xji)
∗]ni,j=1. (†)

Note that [f(Xij)]
n
i,j=1 = f (n)(X), so by our choice of r, we will be done if we show

Λ⊗ (||f ||cbIn) + U ⊗ (||f ||cbIn)− f (n)(X)− f (n)(X)∗

is positive. Indeed, Corollary 5.4 asserts that the matrix

||f ||cbΛ⊗ In f (n)(X)

f (n)(X)∗ ||f ||cbU ⊗ In



is positive in M2(Mn2). By ∗-conjugating the above matrix by

[
In In

]
, we deduce

that (†) is positive. Consequently, r(tr ⊗ In) − h is completely positive, hence in

Mn(SdV )+, and tr is a matrix order unit.

Finally it suffices to check that tr is Archimedean. Suppose P = [Pij] ∈ Mn(SdV )

such that for each ε > 0, the map Pε = P + ε(tr⊗ In) is completely positive from SV

to Mn. Let [Qkl] ∈Mm(SV )+, where Qkl =

λklI Xkl

Y ∗kl µklI

. Then,

[Pε([Qkl])] = [P ([Qkl])] + ε[(λkl + µkl)In]mk,l=1 ∈ (Mm ⊗Mn)+.

By letting ε→ 0 we see that P (m)([Qkl]) ∈ (Mm ⊗Mn)+, so P is completely positive

and belongs to Mn(SdV )+. Consequently, tr is an Archimedean matrix order unit.
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Since any positive multiple of an Archimedean order unit is still Archimedean,

1
2
tr is also Archimedean. Moreover, it is a faithful state on SV . Henceforth, we view

SdV = (SdV , {Mn(SdV )+}, 1
2
tr) as an operator system. We write V ∗ for the dual operator

space of bounded linear functionals on V and embed V ∗ into A′ for some unital C*-

algebra A′. We now turn to study the relation between SV ∗ and SdV . Recall that an

element T ∈ SV ∗ is of the form

T =

aI f

g∗ bI

 ,
where a, b ∈ C and f, g ∈ V ∗, where g∗ denotes the operator adjoint of g in A′.

Given φ ∈ SdV , as in the proof of Theorem 5.5, we decompose φ into four compo-

nents and a = φ(1⊗E11), b = φ(1⊗E22), f(X) = φ(X⊗E12), and g(X) = φ(X∗⊗E21).

Define the map Γ: SdV → SV ∗ by

Γ(φ) =

2aI f

g∗ 2bI

 .
It is easy to see that Γ(φ) ∈ SV ∗ for every φ ∈ SdV and Γ is a surjective C-linear map.

To see that it is self-adjoint, note that

Γ(φ∗) =

2aI g

f 2bI

 =

2aI g∗

f ∗ 2bI

 = Γ(φ)∗,

so Γ is a vector space ∗-isomorphism.

The next theorem shows that Γ is a completely positive map. In order to obtain

the result, we recall the numerical radius of an operator. Given T ∈ B(H), the
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numerical radius of T , denoted by ω(T ), is ω(T ) = sup{|〈Tx, x〉| : x ∈ H, ||x|| ≤ 1}.

The next lemma about ω(T ) will be used, and we include the proof for completeness.

For a deeper study of numerical radius and matrix range, we refer the reader to

[25, 26, 33].

Lemma 5.8. Let T ∈ B(H), ω(T ) ≤ 1 if and only if for every unimodular λ,

2 + λT + (λT )∗ ≥ 0. Moreover, ω(T ) ≤ ||T || ≤ 2ω(T ).

Proof. It is easy to see that 2 +λT + (λT )∗ ≥ 0 if and only if 1 + Re λ〈Tx, x〉 ≥ 0 for

each x ∈ H. For each x ∈ H, choose a unimodular λ such that λ〈Tx, x〉 = −|〈Tx, x〉|.

Then |〈Tx, x〉| = −λ〈Tx, x〉 = −Re λ〈Tx, x〉 ≤ 1. Conversely, if ω(T ) ≤ 1, for every

unimodular λ and x ∈ H, −Re λ〈Tx, x〉 ≤ |λ〈Tx, x〉| ≤ |〈Tx, x〉| ≤ ω(T ) ≤ 1. Thus,

2 + λT + (λT )∗ ≥ 0.

Proposition 5.9. The map Γ is unital and completely positive, but not a complete

order isomorphism.

Proof. It is easy to see that Γ is unital. Suppose Φ = [φij] ∈ Mn(SdV )+, and [Tij] =

Γ(n)(Φ) ∈ Mn(SV ∗). Write A = [aij] = [Φ(I ⊗ E11)], B = [bij] = [Φ(I ⊗ E22)],

and F (X) = [fij(X)] = [Φ(X ⊗ E12)], so A and B are positive scalar matrices. By

positivity of Φ, we deduce that

Tij =

2aijI fij

f ∗ji 2bijI

 .
By the canonical shuffle, [Tij] is positive if and only if [ 2A F

F ∗ 2B ] is positive inM2(Mn(A′)),

which by Lemma 5.3, is equivalent to

||A−1/2FB−1/2|| ≤ 2. (††)
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Recall that the norm on F in Mn(A′) is the cb-norm of F : V → Mn, so we will be

done if we show ||F ||cb ≤ 2||A||1/2||B||1/2.

To this end, recall that ||F ||cb = ||F (n)||. Let X = [Xkl] ∈ Mn(V ) with ||X|| = 1.

Note that
[
In X
X∗ In

]
∈M2(Mn(A)) is positive. By left and right multiplying this matrix

by B1/2 ⊕ A1/2, one sees that

 B B1/2XA1/2

A1/2X∗B1/2 A

 ∈M2(Mn(A))+.

Let Q = [Qkl] ∈ Mn(SV )+, such that Q is unitarily equivalent to the above matrix

via the canonical shuffle. Since Φ: SV → Mn is completely positive, [Φ(Qkl)] ∈ M+
n2 ,

but this matrix is precisely

A⊗B +B ⊗ A+ F (n)(B1/2XA1/2) + F (n)(B1/2XA1/2)∗.

Write κ = F (n)(B1/2XA1/2), which equals to (B1/2⊗ In)F (n)(X)(A1/2⊗ In). Replace

X by eiθX, we deduce that

2||A||||B||(In2) + eiθκ+ e−iθκ∗ ≥ 0,

for all θ.

By the last lemma, ω(κ) ≤ ||A||||B||, so ||κ|| ≤ 2||A||||B||. Hence,

||F (n)(X)||Mn2
= ||(B−1/2 ⊗ In)κ(A−1/2 ⊗ In)||

≤ ||B||−1/2(2||A||||B||)||A||−1/2

= 2||A||1/2||B||1/2,
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for all X ∈ Mn(V ), where ||X|| = 1. Therefore, ||F ||cb ≤ 2||A||1/2||B||1/2 and (††)

is verified. Consequently, [Tij] is positive in Mn(SV ∗), and Γ is a unital completely

positive map.

Now if Γ was a complete order isomorphism, then for any f : V → C such that

||f || = 1, the map φ : SV → C such that Γ(φ) =
[
I f
f∗ I

]
would be a positive linear

functional. But it is easily checked that

φ


λ x

y∗ µ


 =

λ+ µ

2
+ f(x) + f(y).

So φ of the identity is 1, and hence, φ is a state. But by Theorem 5.5, ||f || ≤ 1
2
,

which is a contradiction. Hence, Γ is not a complete order isomorphism.

5.3 An Operator System Quotient of SV

Let S be an operator system with a kernel J . In [18], it is shown that the quotient

S/J has two natural operator space structures induced from S: one from the operator

space quotient and one from the operator system quotient. We denote each structure

by (S/J )ops and (S/J )opsys and their norms by || · ||(n)
ops and || · ||(n)

opsys, respectively.

More precisely, by Proposition 4.1 in [18],

||([xij + J )||(n)
osp = sup{||[φ(xij)]||},

||([xij + J )||(n)
opsys = sup{||[ψ(xij)]||},

where φ, ψ : S → B(H) vanishes on J , φ is completely contractive, and ψ is unital

completely positive. It is known that the identity map (S/J )ops → (S/J )opsys is a
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complete contraction; that is || · ||(n)
opsys ≤ || · ||(n)

ops, for each n.

It is then natural to ask when the two structures are completely bounded-isomorphic

(or completely norm-equivalent). In [18], the question is answered by decomposability

of completely positive maps with respect to the kernel J .

Definition 5.10. Let S and T be operator systems and J be a kernel of S. A

completely bounded map φ : S → T with φ(J ) = {0} is called J -decomposable if

there exist completely positive maps φi : S → T , with φi(J ) = {0}, i = 1, 2, 3, 4,

such that φ = (φ1 − φ2) + i(φ3 − φ4).

It turns out that such φ is J -decomposable if and only if there are completely

positive maps ψ1, ψ2 : S → T vanishing on J such that the map Φ: S → M2(T )

given by

Φ(x) =

ψ1(x) φ(x)

φ(x)∗ ψ2(x)


is completely positive. This observation leads to the following definition:

||φ||J−dec = inf max{||ψ1||, ||ψ2||},

over all such ψi as above.

By Theorem 4.10 in [18], J -decomposability characterizes norm equivalence of

the two operator space quotient structures.

Theorem 5.11. Let S be an operator system and J be a kernel in S. Then the

following are equivalent:

1. For every Hilbert space H, every completely bounded map from S into B(H)

that vanishes on J is J -decomposable.
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2. There exists a constant C such that for all n and all [xij] ∈ Mn(S), we have

that ||[xij + J ]||(n)
osp ≤ C||[xij + J ||(n)

opsys.

Moreover, in these cases the least such constant C is equal to the least constant sat-

isfying ||φ||J−dec ≤ C||φ||cb, for all completely bounded maps φ : S → B(H) vanishing

on J .

Nevertheless, checking the first condition of this theorem is rather difficult. For

example, when S = SV , finding ||φ||J−dec for just one completely bounded map φ on

SV amounts to checking Φ(x), where each x is in fact a 2× 2 operator matrix.

In the next definition, we establish an easier notion that only depends on S and

T , and it is sufficient to conclude complete norm equivalence of the two operator

space structures. The following notion can also be found in the work of Ortiz and

Paulsen [24, Section 4].

Definition 5.12. Let J be a kernel of an operator system S. We define

Θn(J ) = sup{||en + [yij]|| : yij ∈ J , en + [yij] ∈M+
n (S)}.

We also define Θcb(J ) = supn Θn(J ).

Proposition 5.13. If Θcb(J ) < ∞, then the two quotient norms are completely

equivalent.

Proof. Consider the identity map Γ: (S/J )opsys → (S/J )ops and suppose Θcb(J ) <

∞. We claim that ||Γ||cb ≤ Θcb(J ). Let [xij + J ] ∈Mn((S/J )opsys) with norm 1, so

that  en [xij]

[xij]
∗ en

+M2n(J ) ∈M2n(S/J )+.
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By the lifting property, for each ε > 0, there exist aij, bij, cij ∈ J (dependent on ε)

such that (1 + ε)en + [aij] [xij + bij]

[xij + bij]
∗ (1 + ε)en + [cij]

 ∈M2n(S)+.

By Lemma 5.3,

||[xij] + [bij]||2 ≤ ||(1 + ε)en + [aij]|| · ||(1 + ε)en + [cij]|| ≤ (1 + ε)2Θcb(J )2,

by the definitions of the operator space quotient and of Θcb(J ). Since ε > 0 is

arbitrary,

||[xij + J ]||(n)
ops ≤ Θcb(J ).

Therefore, ||Γ||cb ≤ Θcb(J ) and the two quotient norms are equivalent.

We are now ready to examine a natural quotient of SV .

Proposition 5.14. The subspace

J =


λI 0

0 −λI

 ∈ SV : λ ∈ C

 ,

is a kernel of SV .

Proof. Let I be the set of linear functional f on V with ||f || ≤ 1
2
. Define the map

Φ: SV → ⊕f∈IC = l∞(I) by

Φ


λI X

Y ∗ µI


 =

(
1

2
λ+

1

2
µ+ f(X) + f(Y )

)
f∈I

.
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Since l∞(I) is an abelian C*-algebra and for each f ∈ I, 1
2
(λ + µ) + f(X) + f(Y )

defines a state on SV by Theorem 5.5, the map Φ is unital completely positive.

We now claim that J = ker(Φ). It is obvious that J ⊂ ker(Φ). Suppose
[
λI X
Y ∗ µI

]
∈

ker(Φ) but not in J . If µ 6= −λ, take f to be the zero functional and the f -th entry

of Φ
([

λI X
Y ∗ µI

])
is non-zero, which is a contradiction. Hence, µ must be −λ.

Now suppose X = Y 6= 0 and without loss of generality, let ||X|| = 1. By

the Hanh-Banach Theorem, there is a linear functional f on V with ||f || = 1 and

f(X) = 1. Take g = 1
2
f ∈ I, so that the g-th entry is non-zero, again a contradiction.

Finally, if X 6= Y and both are not 0, then the matrix

λI X

Y ∗ µI

+

λI X

Y ∗ µI


∗

is selfadjoint and is in ker(Φ). Apply the previous step and we have a contradiction.

Therefore, ker(Φ) = J and J is a kernel of SV .

By Proposition 1.3, SV /J is a quotient operator system. By duality of quotient

maps, we conclude that its dual is again an operator system.

Corollary 5.15. The matrix order space (SV /J )d is an operator subsystem of SdV .

Proof. Since the quotient map q : SV → SV /J is a complete quotient, its dual map

qd : (SV /J )d → SdV is a complete order embedding between two matrix ordered spaces.

Recall that SdV is an operator system with unit 1
2
tr, so it remains to choose a faithful

state on SV /J that serves as an Archimedean order unit on its dual space. Let

tr(X + J ) = 1
2
tr(X) on SV /J , it is elementary to check that tr is an Archimedean

matrix order unit for (SV /J )d and qd(tr) = 1
2
tr.
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We remark that Proposition 5.14 can be proved using Lemma 2.3 in [15] in a

more general setting. By Kavruk’s result, J is completely proximinal; that is, the

matricial order structure of SV /J is given by

Mn(SV /J )+ = {[xij + J ] : [xij] ∈Mn(SV )+},

without the need of Archimedeanization.

In the next result, we use Θcb(J ) to show that the two natural operator space

structures on SV /J are completely bounded-isomorphic.

Proposition 5.16. Let SV and J be as above, then (SV /J )ops and (SV /J )opsys are

completely bounded-isomorphic.

Proof. Since J = C(1⊗E11− 1⊗E22), for each n ∈ N, let ε > 0 and yij ∈ J so that

(1 + ε)In ⊗

1 0

0 1

+ [yij]⊗

1 0

0 −1

 ≥ 0.

Then (1 + ε)In + [yij] 0

0 (1 + ε)In − [yij]

 ∈Mn(SV )+ ⊂M2n(A)+.

Hence, the matrix [yij] is a contraction, and ||In+[yij]|| ≤ 2. By taking the supremum

over all such yij’s and all n, we deduce that Θcb(J ) ≤ 2. By Proposition 5.13,

(SV /J )ops and (SV /J )opsys are completely bounded-isomorphic.

From the above proof, we see that on SV /J , || · ||(n)
opsys ≤ || · ||(n)

ops ≤ 2|| · ||(n)
opsys

for each n. By Theorem 5.11, every completely bounded map φ : SV → T vanishing
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on J is J -decomposable. Finally, we end this chapter with some interesting open

questions concerning on SV .

Question 5.17. In [3], it is shown that if A′ is the dual Banach space of a nontrivial

C*-algebra A with its usual cone, then there does not exist any isometric positive map

from A′ into another C*-algebra. Hence, A′ cannot be an ordered operator space.

Indeed one can take A = l∞2 . In this regard, what can we conclude about SA, SA∗ ,

and A′?

Question 5.18. In Proposition 5.9, we saw that the natural map Γ between SdV and

SV ∗ is not a unital complete order isomorphism. Is there any other natural map

between these two operator systems that is a unital complete order isomorphism?

Question 5.19. Is the quotient operator system SV /J self-dual? If so, is its cb-

condition number equal to 2? How is it related to Θcb(J )?

Question 5.20. The embedding V → SV by T 7→ T ⊗ E12 is a complete isometric

inclusion. What about V 7→ SV /J by T 7→ T⊗E12+J , or T 7→ T⊗E12+T ∗⊗E21+J ?

Do these maps preserve the numerical radius ω(T ), instead of ||T ||?

80



Bibliography

[1] W. B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141–224.

[2] D. P. Blecher and B. L. Duncan, Nuclearity-related properties for nonselfadjoint

algebras, J. Operator Theory 65 (2011) 47–70.

[3] D. P. Blecher, K. Kirkpatrick, M. Neal, and W. Werner, Ordered involutive

operator spaces, Positivity 11 (2007), no. 3, 497–510.

[4] D. P. Blecher and C. Le Merdy Operator algebras and their modules — An

operator space approach, Oxford Univ. Pres, 2004.

[5] D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces, J. Funct.

Anal. 99 (1991) 262–292.

[6] M. D. Choi and E. G. Effros, Injectivity and operator spaces, J. Funct. Anal. 24

(1977), 156–209.

[7] M. D. Choi and E. G. Effros, Nuclear C*-algebras and the approximation prop-

erty, Amer. J. Math. 100 (1978), 61–79.

81



BIBLIOGRAPHY

[8] D. Farenick, A. S. Kavruk, V. I. Paulsen, and I. G. Todorov, Operator sys-

tems from discrete groups, Communications in Mathematical Physics 329 (2014),

no. 1, 207–238.

[9] D. Farenick, A. S. Kavruk, V. I. Paulsen, and I. G. Todorov, Characterisations

of the weak expectation property, arXiv:1307.1055 (2013).

[10] D. Farenick and V. I. Paulsen, Operator system quotients of matrix algebras and

their tensor products, arXiv:1101.0790 (2011).

[11] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Séminaire

Bourbaki 2 (1955), 193–200.

[12] V. P. Gupta and P. Luthra, Operator system nuclearity via C*-envelopes,

arXiv:1408.4312 (2015).

[13] Uffe Haagerup, Injectivity and decomposition of completely bounded maps,

Springer, 1985.

[14] K. H. Han and V. I. Paulsen, An approximation theorem for nuclear operator

systems, J. Func. Anal. 261 (2011), no. 4, 999–1009.

[15] A. S. Kavruk, Nuclearity related properties in operator systems, J. Operator

Theory 71 (2014), 95–156.

[16] A. S. Kavruk, On a non-commutative analogue of a classical result of Namioka

and Phelps, J. Funct. Anal. 269 (2015), no. 10, 3282–3303.

[17] A. S. Kavruk, V. I. Paulsen, I. G. Todorov, and M. Tomforde, Tensor products

of operator systems, J. Funct. Anal. 261 (2011), no. 2, 267–299.

82



BIBLIOGRAPHY

[18] A. S. Kavruk, V. I. Paulsen, I. G. Todorov, and M. Tomforde, Quotients, exact-

ness, and nuclearity in the operator system category, Advances in Mathematics

235 (2013), 321–360.

[19] E. Kirchberg, C*-nuclearity implies CPAP, Math. Nachr. 76 (1977), 203–212.

[20] E. Kirchberg and S. Wassermann, C*-algebras generated by operator systems, J.

Funct. Anal. 155 (1998), no. 2, 324–351.

[21] C. Lance, On nuclear C*-algebras, J. Funct. Anal. 12 (1973), no. 2, 157–176.

[22] W. H. Ng, Two characterizations of the maximal tensor product of operator sys-

tem, arXiv:1503.07097 (2015).

[23] W. H. Ng and V. I. Paulsen The SOH operator system, J. Operator Theory, to

appear.

[24] C. M. Ortiz and V. I. Paulsen, Quantum Graph Homomorphisms via Operator

Systems, arXiv:1505.00483 (2015).

[25] V. I. Paulsen, Preservation of essential matrix ranges by compact perturbations,

J. Operator Theory 8 (1982), 299–317.

[26] V. I. Paulsen, Completely bounded maps and operator algebras, vol. 78, Cam-

bridge Univ. Press, 2002.

[27] V. I. Paulsen and M. Tomforde, Vector spaces with an order unit, IMUJ, 58

(2009), no. 3 1319–1359.

[28] V. I. Paulsen, I. G. Todorov, and M. Tomforde, Operator system structures on

ordered spaces, Proc. of the London Math. Soc., 102 (2010), no. 1, 25–49.

83



BIBLIOGRAPHY

[29] G. Pisier, The operator Hilbert space OH and type III von Neumann algebras,

Bull. of the London Math. Soc. 36 (2004), no. 4, 455–459.

[30] G. Pisier, The operator Hilbert space OH, complex interpolation, and tensor

norms, vol. 122, American Mathematical Soc., 1996.

[31] G. Pisier, Introduction to operator space theory, vol. 294, Cambridge Univ. Press,

2003.

[32] V. Rajpal, A. Kumar, and T. Itoh, Schur tensor product of operator spaces,

arXiv:1308.4538 (2013).

[33] R. R. Smith and J. D. Ward, Matrix ranges for hilbert space operators, Amer. J.

Math. (1980), 1031–1081.

[34] Gerd Wittstock, Ein operatorwertiger Hahn-Banach satz, J. Funct. Anal. 40

(1981), no. 2, 127–150.

[35] C. Zhang, Representation and geometry of operator spaces, Ph.D. thesis, Univer-

sity of Houston, 1995.

84


