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Abstract

The unprecedented big data in modern communication networks presents us opportunities and

challenges. An efficient analytic method for the sheer volume of data is of significant importance

for smart grid evolution, intelligent communication network management, efficient medical data

management, personalized business model design and smart city development. Meanwhile, the

huge volume of data makes it impractical to collect, store and processing in a centralized fashion.

Moreover, the massive datasets are noisy, incomplete, heterogeneous, structured, prone to outliers,

and vulnerable to cyber-attacks. Overall, we are facing a problem in which the classic resources of

computation such as time, space, and energy, are intertwined in complex ways with the massive data

sources, and new computational mathematical models as wellas methodologies must be explored.

With the rapid development of the modern communication networks comes the need of novel

algorithms for large-scale data processing and optimization. In this thesis, we investigate the appli-

cation of big data optimization methods for smart grid security and mobile data traffic management.

Firstly, we review the parallel and distributed optimization algorithms based on an alternating di-

rection method of multipliers for solving big data optimization problems. The mathematical back-

grounds of the algorithms are given, and the implementations on large-scale computing facilities

are also illustrated. Next, the applications of big data processing techniques for smart grid security

are studied from two perspectives: how to exploit the inherent structure of the data, and how to

deal with the huge size of the data sets. Explored problems are the sparse optimization approach

for false data injection detection, and the distributed parallel approach for the security-constrained

optimal power flow problem, respectively. Finally, we consider big data optimization methods for

data traffic management in mobile cloud computing by two specific application cases: the mobile

data offloading in a software defined network at the network edge, and the management of mobile

cloud service request allocation and response routing. It is shown by numerical results that effec-

tive management and processing of big data have the potential to significantly improve smart grid

security as well as resource utilization and service quality of the mobile cloud computing.
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Chapter 1

Introduction and Background

Nowadays, modern communication networks play an importantrole in electric power sys-

tem, mobile cloud computing, smart city evolution and personal health care. The employed novel

telecommunication technologies make data collection mucheasier for power system operation and

control, enable more efficient data transmission for mobileapplications, and promise a more in-

telligent sensing and monitoring for metropolitan city-regions. Meanwhile, we are witnessing an

unprecedented rise in volume, variety and velocity of information in modern communication net-

works. A large volume of data are generated by our digital equipments such as mobile devices

and computers, smart meters and household appliances, as well as surveillance cameras and sensor-

equipped mass rapid transit around the city. The information exposition of big data in modern

communication networks makes statistical and computational methods significantly important for

data analysis, processing, and optimization. The network operators or service providers who can

develop and exploit efficient methods to tackle big data challenges will ensure network security and

resiliency, gain market share, increase revenue with distinctive quality of service, as well as achieve

intelligent network operation and management.

This chapter gives introduction and background of big data optimization for modern commu-

nication networks. In particular, big data processing techniques for smart grid system security and

scalable mobile networks traffic management are considered. The rest of this chapter is organized

as follows. The motivation and context are provided in Section 1.1. Section 1.2 describes the thesis

outline and major contributions. The published results aregiven in Section 1.3. Finally, Section 1.4

introduces notational conventions used in this thesis.

1



1.1 Motivation and Context

1.1.1 Big Data Optimization for Smart Grid Security

The smart grid is a modernized power system which enables bidirectional flows of energy as

well as using two-way communication and control capabilities to improve efficiency, reliability, eco-

nomics and sustainablility of the production and distribution of electricity. In the conceptual model

of the smart grid, seven components are introduced as described in Table 1.1 [1], and an illustration

of their interaction is explained in Fig. 1.1 [1]. The smart grid is an integration of electrical and

communication infrastructures. The inevitable coupling between information/communication tech-

nologies and physical operations is expected to present unique challenges as well as opportunities

for the smart grid.

On one hand, we are observing increasing integration between cyber operations and physical

infrastructures for generation, transmission, and distribution control in the electric power grid. Yet

security and reliability of the power grid are not always guaranteed and some failures can cause

significant problems for the grid. For example, the 2003 Northeast power blackout showed that

even a small failure in a part of the grid can have cascading effects causing billions of dollars

in economic losses. Nowadays, the consolidation of physical and cyber components gives rise to

security threats in power grids, which can result in power outages and even system blackouts [2], or

substantial economical loss due to non-optimal operationsof the power grid.

On the other hand, the anticipated smart grid data deluge, generated by sensing and mea-

surement devices and reinforced by communication and information technologies, provides us the

potential to enhance security and reliability of the power system. For example, the deployment of

phasor measurement units (PMUs), which provide real-time assessments of power system health

to system operators, for the future North American power grid will generate 4.15 TB phasor data

per day. It is estimated that 61.8 million smart meters will be deployed in the U.S. by the end

of 2013, and the estimated amount of compressed smart meter data for one million users per year

is 27.3TB [3]. Those big data, if effectively managed and translated into actionable insights, has

2



Table 1.1 Domains and roles/services in the smart grid conceptual model.

Domain Roles/Services

1 Customer The end users of electricity. May also generate, store, and man-
age the use of energy. Traditionally, three customer types are dis-
cussed, each with its own domain: residential, commercial,and

industrial.

2 Markets The operators and participants in electricity markets.

3 Service Provider The organizations providing services to electrical customers and
to utilities

4 Operations The managers of the movement of electricity.

5 Generation The generators of electricity. May also store energy for later dis-
tribution.

6 Transmission The carriers of bulk electricity over long distances. May also store
and generate electricity.

7 Distribution The distributors of electricity to and from customers. May also
store and generate electricity.

Secure Communication Flows

Electrical Flows

Domain

CustomerCustomerCuDistribution

Service 

Provider

nication FlowsFlows

Markets

TransmissionTransmisTrTr

Operations

Generation

2222

Figure 5-1. Interaction of Roles in Different Smart Grid Domains2223
Figure 1.1 An illustration of the updated NIST smart grid framework 3.0.
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the potential to increase operational efficiency and ensuregrid resiliency of the power system. The

adopted methods should be able to utilize the inherent structure of data to extract useful information.

Moreover, big data should be processed in a timely fashion. Thus, new computational mathematical

models and methodologies must be explored to effectively operate an ever-complicated power grid

and achieve the vision of a smart grid.

1.1.2 Scalable Traffic Management for Mobile Networks

Now wireless has become the primary or even the sole access method for more and more

people. The global mobile data traffic has reached 1.5 exabytes per month by the end of 2013, and

will increase nearly 11-fold between 2013 and 2018, reaching 15.9 exabytes per month by 2018 [4]

as shown in Fig. 1.2 [4]. The sheer volume of mobile big data traffic far exceeds the growth in

service revenues as well as in budgets required to address these new demands. Mobile service

operators need to enhance their infrastructures and services in a timely and cost-effective manner to

carry higher volumes of traffic and support more sophisticated services.

The traditional static network architecture is ill-suitedto dynamic computing and storage re-

quirements of today’s mobile cloud computing environment.Conventional networks are hierarchi-

cal, built with tiers of network switches arranged in a tree structure. With the rise of cloud service

and the increasingly employing mobile personal device, thetraditional network architecture can

not address changing traffic patterns and increasing amounts of traffic in the network. The rise of

mega data sets is fueling constant demand for additional network capacity. Meanwhile, operators of

hyper-scale mobile networks face the daunting task of scaling the network (to a previously unimag-

inable size), maintaining connectivity, and satisfying the quality of service requirement. Hence, new

network paradigm and service traffic management mechanism are necessary to accommodate huge

bandwidth needs for big data.

Further, efficient and scalable service management mechanisms are needed to address big

data traffic and coordinate different entities (data centers, service hosts, and routers) to provide end

users with qualified services at a reasonable cost in the mobile cloud computing. The mobile cloud

4



Page

Figure 1.2 The global mobile data traffic forecast by region.

computing can improve the performance of mobile applications by offloading data processing and

storage from a mobile device to the cloud. By deploying services on several cloud-enabled data

centers, the service provider can optimally locate serviceinstances on the cloud to provide qual-

ified services at a reasonable cost. However, a centralized approach for both request allocation

and response routing does not scale due to the large number ofmobile clients involved in the ser-

vice management problem. Moreover, the random and unpredictable wireless network performance

(such as delays) complicates the problem. Hence, scalable and distributed mechanisms for service

management are needed in the mobile cloud computing.

1.2 Thesis Outline and Contributions

The research dealt with in this thesis contributes to the development of efficient and scal-

able methods for big data optimization problem in modern communication networks. The proposed

methods are based on the alternating direction method of multipliers (ADMM), which are able to

leverage the inherent sparse or low rank structure of data aswell as enjoy the robustness and scala-

bility. The applications of ADMM for smart grid security andscalable mobile traffic management

are investigated. The contributions of this thesis are enumerated as follows

5



• We reviewed parallel and distributed optimization algorithms based on ADMM for solving

big data optimization problems. We introduced the development of ADMM and describe

several direct extensions and sophisticated modificationsof ADMM from 2-block toN -block

settings. The iterative schemes and convergence properties of those extensions/modifications

were given, and implementations on large-scale computing facilities were also illustrated.

• We investigated big data processing techniques for smart grid security. In particular, we

studied the sparse optimization for false data injection detection, which exploited intrinsic

low dimensionality and sparsity of the data set, and the distributed approach for the security

constrained optimal power flow, which scalably solved the large-scale optimization problem.

Numerical simulations were conducted to validate the performance of the proposed algorithm.

• We considered big data traffic management in mobile networks. We proposed a distributed

mechanism for mobile data offloading in software defined network at the network edge, and

designed a decentralized approach for service request allocation and response routing in mo-

bile cloud computing. Numerical simulations were performed to test proposed mechanisms.

The elaborate discussion of these contributions outlines the organization of this thesis. In Chapter 2,

we review the mathematical background of the ADMM. The dual ascent method and the method of

multipliers, two precedents of the ADMM, are introduced first. Then we describe the general form

of ADMM and its relationship to the method of multipliers. After that, we review several state-of-

the-artN -block ADMM algorithms. For each algorithm, the iterative update scheme is described

and its convergence property is discussed. The implementations on large-scale computing facilities

such as high performance computers and cloud computing infrastructures are illustrated. Finally,

we summarize the relationships among reviewed algorithms.

In Chapter 3, the big data processing techniques for smart grid security are investigated. Two

problems, the false data injection attacks detection for state estimation and the security constrained

optimal power flow problem, are considered. The state estimation in the electric power grid is

vulnerable to false data injection attacks, and diagnosingthese kinds of malicious attacks has sig-
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nificant impact on ensuring reliable operations for power systems. By noticing the intrinsic low

dimensionality of temporal measurements of power grid states, as well as the sparse nature of false

data injection attacks, we propose a novel false data detection mechanism based on the separation of

nominal power grid states and anomalies. Two methods, the nuclear norm minimization and the low

rank matrix factorization, are presented to solve this problem. It is shown that proposed methods are

able to identify proper power system operation states as well as detect malicious attacks, even under

situations in which collected measurements are incomplete. Numerical simulation results, both on

synthetic and real data, validate the effectiveness of proposed mechanisms. The second problem

of security constrained optimal power flow determines the optimal control of power systems un-

der constraints arising from a set of postulated contingencies. This problem is challenging due to

the significantly large problem size, the stringent real-time requirement, and the variety of numer-

ous post-contingency states. The ADMM is utilized to solve the resultant large-scale optimization

problem with manageable complexity. The problem is decomposed into independent subproblems

corresponding to pre-contingency and post-contingency cases. Each computing node addresses its

local optimization problem, and computing nodes are coordinated through dual (prices) variables.

Numerical tests validate the effectiveness of the proposedalgorithm.

In Chapter 4, big data traffic management in mobile networks are considered. Two cases,

the mobile data offloading in a software defined network, and the service management in mobile

cloud computing, are studied. The mobile data offloading hasbeen introduced to alleviate the con-

gestion of cellular networks and improve the quality of service for mobile end users. We present

a distributed mechanism for mobile data offloading in a software defined network at the network

edge. The proposed mechanism is based on the proximal Jacobian multi-block ADMM. Base sta-

tions and access points perform offloading decision updatesconcurrently, and are coordinated by the

software defined network controller through dual variablesto reach a consensus on the offloading

decision. Numerical simulations validate the effectiveness of the proposed algorithm. The second

problem relates to the service traffic management in mobile cloud computing. The mobile cloud

computing has been introduced to improve the performance ofmobile applications by offloading

7



data processing and storage from a mobile device to the cloud. By deploying service on several

cloud-enabled data centers, the service provider can optimally locate service instances on the cloud

to provide qualified services at a reasonable cost. However,a centralized approach for both request

allocation and response routing does not scale due to the large number of mobile clients involved in

the service management. Moreover, the random and unpredictable wireless network performance

complicates the problem. We present a stochastic distributed optimization framework for mobile

cloud services management, which takes the impact of randomwireless network characteristics into

account. Utilizing the ADMM, the optimization problem is decomposed into independent subprob-

lems, which can be solved in a parallel fashion on distributed computing nodes. The convergence

issue is addressed, and numerical tests validate the effectiveness of the proposed algorithm.

In chapter 5, we investigate the interdisciplinary research of big data optimization methods.

In particular, we study the decentralized approach of the Gauss-Newton method for nonlinear least

squares on a wide area network, and the compressive sensing framework for high-throughput hy-

perspectral imaging. Numerical simulations are performedto validate the effectiveness of proposed

methods.

In Chapter 6, we conclude our work and explore possible extensions of our proposed big data

optimization frameworks. Three potential applications, the distributed state estimation in electric

power system, the efficient air quality monitoring in metropolitan city-regions, and the customer

profiles extracting from smart meter reading data are described.

1.3 Published Results

The present Ph.D. work on big data optimization for modern communication networks has

resulted in the publication of one book chapter [5] and threejournal papers in the Institute of Elec-

trical and Electronic Engineering (IEEE) Transaction on Smart Grid [6], System Journal [7] and

European Alliance for Innovation Transactions on WirelessSpectrum [8]. The work has also been

disseminated at pertinent conferences, where a total of seven articles have been accepted for pre-

sentation [9–15].
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1.4 Notational Conventions

In this thesis, matrices are bold capital, vectors are bold lowercase and scalars or entries are

not bold. The notationx = (x⊤
1 , . . . ,x

⊤
n )

⊤ is used to represent the column vector form by stacking

vectorsx1, . . . ,xn. For a block matrixM, (M)i,j is used to denote the(i, j) block. The notation

diag(M1, . . . ,Mn) is a diagonal matrix whoseith diagonal block isMi, and the⊗ denotes the

Kronecker product. The identity matrix is denoted asIN ∈ R
N×N , whereR denotes the real set.

A N × 1 column vector with all ones is denoted as1N . The‖x‖2 represents Euclidean norm of

vectorx and‖X‖F represents the Frobenius norm of matrixX. The norm ofx with respective

to a Hermitian positive definite matrixG is denoted as‖x‖G. X⊤, X−1, σmax(X) andσmin(X)

denote the transpose, the inverse, the largest singular value, and the smallest nonzero singular value

of matrixX, respectively.
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Chapter 2

Alternating Direction Method of Multipliers

In the era of big data, numerous problems in machine learning, compressed sensing, social

network analysis, and computational biology formulate optimization problems with millions or bil-

lions of variables. Since classical optimization algorithms are not designed to scale to problems

of this size, novel optimization algorithms are emerging tosolve problems with big data. An in-

comprehensive list of such algorithms includes the block coordinate descent method [16–18]1, the

stochastic gradient descent method [19–21], the dual coordinate ascent method [22, 23], the alter-

nating direction method of multipliers (ADMM) [24, 25], andthe Frank-Wolf method (also known

as the conditional gradient method) [26, 27]. Each type of the algorithm enumerated has its own

strength and weakness. The list is still growing and due to our limited knowledge and the fast

development of this active field of research, many efficient algorithms are not mentioned here.

This chapter gives a brief introduction to the alternating direction method of multipliers

(ADMM) for solving big data optimization problems in moderncommunication networks. The

introduction focuses on explaining the algorithm itself along with its motivations and basic prop-

erties. We first introduce the background of ADMM in Section 2.1. We briefly review the dual

ascent method and the method of multipliers, which provide useful backgrounds and motivations to

ADMM. The canonical formulation of ADMM is also given. In Section 2.2, we focus on several

direct extensions and sophisticated modifications of ADMM for large-scale optimization problems.

The iterative schemes and convergence properties of those extensions/modifications are given, and

implementations on large-scale computing facilities are also illustrated. Finally, Section 2.3 con-

cludes the chapter.

1 [18] proposes a stochastic block coordinate descent method.
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2.1 From Dual Ascent to Alternating Direction Method of Mult ipliers

In this section, we first have a short overview of two important precursors of ADMM, the dual

ascent method and the method of multipliers. Then we give thecanonical form of ADMM.

2.1.1 Dual Ascent Method

Consider an optimization problem of the form

min
x∈X

f(x) s.t. Ax = c, (2.1)

whereX ⊂ R
n is a closed convex set,A ∈ R

m×n, andf : Rn → R is a closed convex proper

function. The Lagrangian functionL : Rn × R
m → R associated with the problem (2.1) is defined

as

L(x,λ) = f(x) + λ⊤(Ax− c), (2.2)

whereλ ∈ R
m is the Lagrangian multiplier associated with the equality constraintAx = c. In the

dual ascent method, the optimal solutionx∗ to the problem (2.1) is obtained by

{

xk+1 = argminx L(x,λk),

λk+1 = λk + ρk(Axk − c),
(2.3)

whereρk > 0 is the step size at iterationk. The convergence of the dual ascent method requires

an appropriate step sizeρ and assumptions of strong convexity as well as finiteness of the objective

functionf , which limit the spectrum of applications of the dual ascentmethod.

2.1.2 Method of Multipliers

The method of multipliers finds the optimalx∗ of the constrained optimization problem (2.1)

by solving a sequence of unconstrained problems. The augmented Lagrangian function for (2.1) is

Lρ(x,λ) = f(x) + λ⊤(Ax− c) +
ρ

2
‖Ax− c‖22, (2.4)

where the term‖Ax−c‖22 is called the augmentation, andρ > 0 is the penalty parameter. Therefore,

the method of multipliers is also called the augmented Lagrangian methods. In the method of
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Algorithm 2.1 Method of multipliers.

Initialize: x0, λ0, ρ > 0;

for k = 0, 1, . . . do
xk+1 = argminx Lρ(x,λ

k);
λk+1 = λk + ρ(Axk − c);

end for

multipliers,x andλ are updated iteratively as

{

xk+1 = argminx Lρ(x,λ
k),

λk+1 = λk + ρ(Axk − c),
(2.5)

where the penalty parameterρ > 0 is fixed during the iteration, which balances the objective descent

and constraint satisfaction. A proper update ofρ can noticeably accelerate the convergence.

The method of multipliers finds wide applications in sparse optimization problems. For ex-

ample, consider the followingl1 norm minimization problem

min
x∈Rn

‖x ‖1 s.t. Ax = c. (2.6)

The iterative scheme of the method of multipliers for (2.6) is

{

xk+1 = argminx ‖x ‖1 + λ⊤(Ax− c) + ρ
2‖Ax− c‖22,

λk+1 = λk + ρ(Axk − c),
(2.7)

where thex-update can be obtained analytically through the soft-thresholding. The method of

multipliers returns a pair of primal-dual solutions at the end of iteration. For convex optimization

problems, anyρ > 0 leads to the convergence. More details about the method of multipliers can be

found in [28], and the iterative scheme is illustrated in Algorithm 2.1.

2.1.3 Alternating Direction Method of Multipliers

The ADMM was proposed in [29], [30] and recently revisited by[25]. The general form of

ADMM is expressed as

min
x1∈X1,x2∈X2

f1(x1) + f2(x2) s.t. A1x1 +A2x2 = c. (2.8)
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Algorithm 2.2 Two-block ADMM.

Initialize: x0, λ0, ρ > 0;

for k = 0, 1, . . . do
xk+1
1 = argminx1

Lρ(x1,x
k
2 ,λ

k);
xk+1
2 = argminx2

Lρ(x
k+1
1 ,x2,λ

k);
λk+1 = λk + ρ(A1x

k+1
1 +A2x

k+1
2 − c);

end for

The augmented Lagrangian function for (2.8) is

Lρ(x1,x2,λ) = f1(x1) + f2(x2) + λ⊤(A1x1 +A2x2 − c) +
ρ

2
‖A1x1 +A2x2 − c‖22, (2.9)

whereλ ∈ R
m is the Lagrangian multiplier, andρ > 0 is the parameter for the quadratic penalty

term. The iterative scheme of ADMM is







xk+1
1 = argminx1

Lρ(x1,x
k
2,λ

k),

xk+1
2 = argminx2

Lρ(x
k+1
1 ,x2,λ

k),

λk+1 = λk + ρ(A1x
k+1
1 +A2x

k+1
2 − c),

(2.10)

where at each step, the augmented Lagrangian function is minimized overx1 andx2, respectively.

In (2.10), functionsf1 andf2 are treated separately, so easier subproblems can be generated. This

feature is quite attractive and advantageous for a broad spectrum of applications. The convergence

of ADMM for convex optimization problems with two blocks of variables has been proven in [24],

[25], and the iterative scheme is illustrated in Algorithm 2.2.

2.2 Multi-block Alternating Direction Method of Multiplie rs

In this section, we review several multi-block ADMM algorithms for solving large-scale op-

timization problems. The direct extensions of ADMM for convex optimization problems with N

blocks of variables are first introduced. Then we introduce three sophisticated modifications of

ADMM, the variable splitting ADMM [24,25,31], the ADMM withGaussian back substitution [32]

and the Proximal Jacobian ADMM [33, 34]. Specifically, we consider the following convex opti-
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mization problem with a canonical form as

min
x1,x2,...,xN

f(x) = fi(xi) + . . .+ fi(xN ), (2.11)

s.t. Aixi + . . .+ANxN = c, and (2.12)

xi ∈ Xi, i = 1, . . . , N, (2.13)

wherex = (x⊤
1 , . . . ,x

⊤
N )⊤, Xi ⊂ R

ni(i = 1, 2, . . . , N) are closed convex sets,Ai ∈ R
m×ni(i =

1, 2, . . . , N) are given matrices,c ∈ R
m is a given vector, andfi : Rni → R (i = 1, 2, . . . , N) are

closed convex proper but not necessarily smooth functions.The non-smooth functions are usually

employed to enforce structured solutions.

2.2.1 Direct Extensions to Multi-block Setting

We can directly extend the ADMM described in algorithm 2.2 tosolve the optimization prob-

lem (2.11). In the following, we present two kinds of direct extensions, the Gauss-Seidel extension

and the Jacobian extension, for problem (2.11). We first givethe augmented Lagrangian function of

problem (2.11)

Lρ(x1, . . . ,xN ,λ) =

N
∑

i=1

fi(xi) + λ⊤(
N
∑

i=1

Aixi − c) +
ρ

2
‖

N
∑

i=1

Aixi − c‖22. (2.14)

2.2.1.1 The Gauss-Seidel Extension

Intuitively, a natural extension of the classical Gauss-Seidel type update of2-block variables

to N -block variables is straightforward. We can replace the two-block alternating minimization

scheme by a sequential update ofxi for i = 1, 2, . . . , N . In particular, at iterationk, xi is updated

by

xi = argmin
xi

Lρ({xk+1
j }j<i,xi, {xk

j}j>i,λ
k), (2.15)

where{xj}j<i denotes the set of variables prior toi. The augmented Lagrangian function is split

and updated alternatingly. The direct Gauss-Seidel type extension is illustrated in Algorithm 2.3.

14



Algorithm 2.3 Gauss-Seidel multi-block ADMM.

Initialize: x0, λ0, ρ > 0;

for k = 0, 1, . . . do

for i = 1, . . . , N do
{xi is updatedsequentially.}
xk+1
i = argminxi

Lρ({xk+1
j }j<i,xi, {xk

j }j>i,λ
k);

end for
λk+1 = λk + ρ(

∑N
i=1Aix

k+1
i − c);

end for

Algorithm 2.3 has been utilized in practical problems [35–37] despite a lack of rigourous

proof for the convergence. Actually, the convergence of Gauss-Seidel multi-block ADMM is not

well understood and is ambiguous for a long time: Neither affirmative convergence proof nor

counter examples for convergence failure are shown in the literature. Recently, [38] has shown

that the direct extension of Gauss-Seidel mulit-block ADMMis not necessarily convergent. In [39],

the convergence of Algorithm 2.3 is proven with a sufficient small step size for Lagrangian mul-

tiplier update and additional assumptions on the problem (2.11). It is conjectured in [40] that an

independent uniform random permutation of the update orderfor blocks in each iteration will re-

sult in a convergent iteration scheme. [32,41] propose someslightly modified version of Algorithm

2.3 with provable convergence, competitive iteration simplicity, and computing efficiency. We will

illustrate this later in Section 2.2.3.

2.2.1.2 The Jacobian Extension

Another possible iterative scheme for theN -block ADMM is the Jacobian type update, which

performs the update ofxi in a parallel fashion fori = 1, . . . , N . In particular, the update ofxi is

calculated as

xi = argmin
xi

Lρ(xi, {xk
j }j 6=i,λ

k), (2.16)

where{xk
j }j 6=i denotes the set of variables except forxi. Different from the sequential update ofxi

in Algorithm 2.3, the update in the Jacobian ADMM can be performed concurrently, i.e., allxi can

be calculated in a parallel fashion. This advantage makes the Jacobian type ADMM preferred for
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Algorithm 2.4 Jacobian multi-block ADMM.

Initialize: x0, λ0, ρ > 0;

for k = 0, 1, . . . do

for i = 1, . . . , N do
{xi is updatedconcurrently.}
xk+1
i = argminxi

Lρ(xi, {xk
j}j 6=i,λ

k);
end for
λk+1 = λk + ρ(

∑N
i=1Aix

k+1
i − c);

end for

parallel implementation, and the direct Jacobian type extension is illustrated in Algorithm 2.4.

Though Algorithm 2.4 is more computational efficient in the sense of parallelization, [42]

shows that Algorithm 2.4 is not necessarily convergent in the general case, even in the 2 blocks

case. In [33] it is proven that if matricesAi are mutually near-orthogonal and have full column-

rank, the Algorithm 2.4 converges globally. A proximal Jacobian ADMM is also proposed in [33]

with provable convergence, which we will illustrate later in Sec. 2.2.4

2.2.2 Variable Splitting ADMM

We can apply variable splitting [24, 25, 31, 43] for the multi-block variables to solve the op-

timization problem (2.11). In particular, the optimization problem (2.11) can be reformulated by

introducing the auxiliary variablez

min
x,z

N
∑

i=1

fi(xi) + IZ(z) and (2.17)

s.t. Aixi + zi =
c

N
, i = 1, . . . , N, (2.18)

wherez = (z⊤1 , . . . , z
⊤
N )⊤ is partitioned conformably according tox, andIZ(z) is the indicator

function of the convex setZ, i.e., IZ(z) = 0 for z ∈ Z = {z|∑N
i=1 zi = 0} andIZ(z) = ∞

otherwise. The augmented Lagrangian function is

Lρ =
N
∑

i=1

fi(xi) + IZ(z) +
N
∑

i=1

λ⊤
i (Aixi + zi −

c

N
) +

ρ

2

N
∑

i=1

‖Aixi + zi −
c

N
‖22, (2.19)
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Algorithm 2.5 Variable splitting multi-block ADMM.

Initialize: x0, z0, λ0, ρ > 0;

for k = 0, 1, . . . do

for i = 1, . . . , N do
{xi, zi andλi are updatedconcurrently.}
xk+1
i = argminxi

Lρ(xi, z
k
i ,λ

k
i );

zk+1
i = argminzi Lρ(x

k+1
1 , zi,λ

k
i );

λk+1
i = λk

i + ρ(Aixi + zi − c
N );

end for

end for

where we have two groups of variables,{x1, . . . ,xN} and{z1, . . . , zN}. Hence, we can apply the

two-block ADMM to update these two groups of variables iteratively, i.e., we can first update the

group{xi} and then update the group{zi}. In each group,xi andzi can be updated concurrently

in parallel at each iteration. In particular, the update rules forxi andzi are







xk+1
i = argminxi

Lρ(xi, z
k
i ,λ

k
i ),

zk+1
i = argminzi Lρ(x

k+1
1 , zi,λ

k
i ), ∀i = 1, . . . , N,

λk+1
i = λk

i + ρ(Aixi + zi − c
N ).

(2.20)

The variable splitting ADMM is illustrated in Algorithm 2.5. Algorithm 2.5 converges to the optimal

solution with the same rate as the 2-block ADMM. However, thenumber of variables and constraints

will increase substantially whenN is large, which will impact the efficiency and incur significant

burden for computation.

2.2.3 ADMM with Gaussian Back-Substitution

Many efforts have been made to enable the convergence of the Guass-Seidel type multi-

block ADMM [32, 41]. In this part, we describe the ADMM with Gaussian back-substitution [32],

which asserts that if a new update is generated by correctingthe output of Algorithm 2.3 with

a Gaussian back-substitution procedure, then the sequenceof updates converge to a solution of

problem (2.11). We first define vectorv = (x⊤
2 , . . . ,x

⊤
N ,λ⊤)⊤, vectorṽ = (x̃⊤

2 , . . . , x̃
⊤
N , λ̃

⊤
)⊤,
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matrixH = diag(ρA⊤
2 A2, . . . , ρA

⊤
NAN , 1ρIm) andM as

M =

















ρA⊤
2 A2 0 . . . . . . 0

ρA⊤
3 A2 ρA⊤

3 A3
.. .

...
...

...
.. . . . .

...
ρA⊤

NA2 ρA⊤
NA3 . . . ρA⊤

NAN 0
0 0 . . . 0 1

ρIm

















. (2.21)

Each iteration of the ADMM with Gaussian back substitution consists of two procedures, a

prediction procedure and a correction procedure. Theṽ is generated by Algorithm 2.3. In particular,

x̃i is updated sequentially as

x̃k
i = argmin

x̃i

Lρ({x̃k
j}j<i,xi, {xk

j }j>i,λ
k), (2.22)

where the prediction procedure is performed in a forward manner, i.e., from the first to the last block

and to the Lagrangian multiplier. Note that the newly-generatedx̃i is used in the update of the next

block in accordance with the Gauss-Seidel update fashion. After the update of the Lagrangian

multiplier, the correction procedure is performed to updatev using

H−1M⊤(vk+1 − vk) = α(ṽk − vk), (2.23)

whereH−1M⊤ is a upper-triangular block matrix according to definitionsof H andM. This

implies that the update of the correction procedure is in a backward fashion, i.e., first update the

Lagrangian multiplier, and then updatexi from the last block to the first block sequentially. Note

that an additional assumption regardingA⊤
i Ai(i = 1, 2, . . . , N) being nonsingular is made here.x1

serves as an intermediate variable and is unchanged during the correction procedure. The algorithm

is illustrated in Algorithm 2.6, and its global convergenceis proven in [32].

2.2.4 Proximal Jacobian ADMM

The other type of modification on the ADMM for multiple blocksof variables is based on the

Jacobian iteration scheme [33,34,42,44]. Since the Guass-Seidel update is performed sequentially
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Algorithm 2.6 The ADMM with Gaussian back-substitution.

Initialize: x0, x̃0, λ0, λ̃
0
, ρ > 0, α ∈ (0, 1);

for k = 0, 1, . . . do

for i = 1, . . . , N do
{xi is updatedsequentially.}
x̃k
i = argminx̃i

Lρ({x̃k
j}j<i,xi, {xk

j }j>i,λ
k);

end for
λ̃
k+1

= λk + ρ(
∑N

i=1Aix̃
k+1
i − c);

{Gaussian back substitution correction step}
H−1M⊤(vk+1 − vk) = α(ṽk − vk);
xk+1
1 = x̃k

1 ;
end for

and is not amenable for parallelization, Jacobian type iteration is preferred by distributed and paral-

lel optimization methods. In this part we describe the proximal Jacobian ADMM [33], in which a

proximal term [45] is added to the update to improve convergence. In particular, the update ofxi is

xk+1
i =argmin

xi

Lρ(xi, {xk
j }j 6=i,λ

k)+
1

2
‖xi−xk

i ‖2Pi
, (2.24)

where‖xi‖2Pi
= x⊤

i Pixi for symmetric and positive semi-definite matrixPi � 0. The involvement

of the proximal term can make the subproblem ofxi strictly or strongly convex, and thus make the

problem more stable. Moreover, multiple choices ofPi can make the subproblems easier to solve.

The update of the Lagrangian multiplier is

λk+1 = λk + γρ(

N
∑

i=1

Aix
k+1
i − c), (2.25)

whereγ > 0 is the damping parameter. The algorithm is illustrated in Algorithm 2.7. The global

convergence of the proximal Jacobian ADMM is proven in [33].Moreover, it enjoys a convergence

rate ofo(1/k) under conditions onPi andγ. More details can be found in [33].

2.2.5 Implementations

The recent developments in high performance computing (HPC) and cloud computing provide

flexible and efficient solutions for implementing large-scale optimization algorithms. In this part,
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Algorithm 2.7 Proximal Jacobian ADMM.

Initialize: x0, λ0, ρ > 0, γ > 0;

for k = 0, 1, . . . do

for i = 1, . . . , N do
{xi is updatedconcurrently.}
xk+1
i =argminxi

Lρ(xi, {xk
j }j 6=i,λ

k)+ 1
2‖xi−xk

i ‖2Pi
;

end for
λk+1 = λk + γρ(

∑N
i=1 Aix

k+1
i − c);

end for

we describe possible implementation approaches of those distributed and parallel algorithms on

current mainstream, large-scale computing facilities.

One possible implementation utilizes available computing-incentive techniques and tools like

MPI, OpenMP, and OpenCL. The MPI is a language-independent protocol used for inter-process

communications on distributed memory computing platform.It is widely used for high-performance

parallel computing today. The (multi-block) ADMM using MPIhas been implemented in [25]

and [46]. Besides, the OpenMP, which is a shared memory multiprocessing parallel computing

paradigm, and the OpenCL, which is a heterogenous distributed-shared memory parallel computing

paradigm incorporating CPUs and GPUs, can also implement distributed and parallel optimization

algorithms. It is expected that supercomputers will reach one exaFLOPS (1018 FLOPS) and even

one zettaFLOPS (1021 FLOPS) in the near feature, which will largely enhance the computing ca-

pacity and significantly expedite the program execution.

Another possible approach exploits the ease-of-use cloud computing engine like Hadoop

MapReduce and Apache Spark. The cloud computing infrastructure available for Hadoop MapRe-

duce makes it convenient to use for large-scale problems, though it is awkward to implement

ADMM using MapReduce since it is not designed for iterative tasks. The in-memory comput-

ing feature of Apache Spark enables it to run iterative computations much faster. It is now prevalent

for large-scale machine learning and optimization tasks oncomputer clusters [47]. This imple-

mentation approach is much simpler than previous computing-incentive techniques and tools. The

advance in the cloud/cluster computing engine provides a simple method to implement the large-

scale data processing. Recently Google, Baidu and Alibaba are developing and deploying massive
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Figure 2.1 An illustration of the relationships between Algorithms2.1 − 2.7.

cloud computing engines to perform the large-scale distributed and parallel computation.

2.3 Conclusion

In this chapter, we have given an introduction of ADMM for bigdata optimization prob-

lems. We have described precursors of ADMM and their background. After that, several direct

extensions and sophisticated modifications of ADMM have been introduced for large-scale op-

timization problems. We have explained iterative schemes and convergence properties for those

extensions/modifications, and have illustrated implementations on large-scale computing facilities.

The relationships among algorithms introduced in this chapter can be summarized in Fig. 2.1.
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Chapter 3

Ensuring Power Grids Security Using Big Data

The development of the smart grid, impelled by the increasing demand from industrial and

residential customers together with the aging power infrastructure, has become an urgent global pri-

ority due to its potential economic, environmental, and societal benefits. The smart grid refers to the

next generation electric power system which aims to providereliable, efficient, secure, and quality

energy generation/distribution/consumption using modern information, communications, and elec-

tronics technologies. A distributed and user centric system will be introduced in the smart grid,

which will incorporate end-consumers into its decision processes to provide a cost-effective and

reliable energy supply. In the smart grid, the modern communication infrastructure [48] will play a

vital role in managing, controlling, and optimizing different devices and systems. Information and

communication technologies will offer the power grid with the capability of supporting two-way en-

ergy and information flows, quick isolating and restoring power outages, facilitating the integration

of renewable energy sources into the grid and empowering theconsumer with tools for optimizing

their energy consumption.

In this chapter, the applications of big data processing techniques for the smart grid security

are investigated from two perspectives: how to exploit the inherent structure of the data, and how to

deal with the huge size of the data sets. Two specific applications are included in this chapter: the

sparse optimization for false data injection detection, and the distributed parallel approach for the

security constrained optimal power flow (SCOPF) problem. The rest of this chapter is organized as

follows. The sparse optimization for false data injection detection is described in Section 3.1. The

distributed parallel approach for the security constrained optimal power flow problem is developed

in Section 3.2. Finally, some conclusions are drawn in Section 3.3.
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3.1 Sparse Optimization for False Data Injection Detection

In this section, we first introduce the state estimation and false data injection attacks in power

systems. Then we describe two detection methods, the nuclear norm minimization and the low rank

matrix factorization, which exploit inherent structure ofstate estimation data to detect false data

injection attacks. Finally we present numerical simulation results of proposed methods.

3.1.1 State Estimation and False Data Injection Attacks

3.1.1.1 State Estimation in Power systems

State estimation [49], which estimates the power system operating state based on a real-time

electric network model, is a key function of the Energy Management System (EMS). A linearized

measurement model is often used to estimate states in power systems based on measurements from

remote meters on buses or transmission lines. Specifically,every several seconds or minutes, the

Energy Control Center (ECC) collects active/reactive power flows and injections from transmission

lines and buses across the power grid as measurement data viathe Supervisory Control and Data

Acquisition (SCADA) system. The state estimation results reflect the real-time power grid operation

state and are essential for operators to make decisions in order to maintain security and stability of

the system.

In an electric power grid, the control center needs to monitor the voltage phase angles of all

buses to make real-time decisions on operations. However, it is impractical to directly measure all

bus voltage phase angles. In this regard, the control centercollects readings from remote electric

meters to estimate the system operation state. Specific measurement data include branch active

power flows and bus active power injections, which can be usedto estimate bus voltage angles in

the system. Letθ = (θ1, θ2, . . . , θn)
⊤ denotes the power system state variables, whereθi is the

phase angle on busi. The measurement at the control center is expressed asz = (z1, z2, . . . , zm)⊤

and is related toθ by

z = h(θ) + e, (3.1)
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whereh(θ) = (h1(θ), h2(θ), . . . , hm(θ))⊤, andhi(θ) is a nonlinear function relating theith mea-

surement to the state vectorθ. The vectore denotes independent Gaussian measurement errors with

zero mean and known covarianceR.

To analyze the efficiency of various state estimation methods considering the measurement

configuration in a power system, a simplified DC approximation model is utilized. Assuming that

bus voltage magnitudes are already known and normalized, and neglecting all shunt elements and

branch resistances, the active power flow from busi to busj can be approximated1 [50] by the

first-order Taylor expansion as

Pij =
θi − θj
Xij

+ ω, (3.2)

whereXij is the reactance of the transmission line between busi and busj, andω is the measure-

ment error. Similarly, the power injection measurement at busi can be expressed as

Pi =
∑

j

Pij + ν, (3.3)

whereν is the measurement error.

The DC model for real power measurements can be written in a linear matrix form as

z = Hθ + e, (3.4)

wherez is the measurement vector including active power flows and injection measurements, and

H ∈ R
m×n is the Jacobian matrix of the power system, which is assumed to be known to the

independent system operator (ISO).

Suppose that measurement errorse in (3.4) are not correlated, and thus the covariance matrix

R is a diagonal matrix. The weighted least squares estimator of the linearized state vectorθ is

θ̂ = (H⊤R−1H)−1H⊤R−1z. (3.5)

LetK = (H⊤R−1H)−1H⊤R−1, and then measurement residuals can be expressed as

r = z−Hθ̂ = (I−K)(Hθ + e) = (I−K)e, (3.6)

1In general, one can approximate the impedance of a transmission line with its reactance due to the high reactance
over resistance (X/R) ratio.
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whereI is the identity matrix and the matrix(I−K) is called the residual sensitivity matrix.

The detection and identification of bad data in measurementscan be accomplished by pro-

cessing of the measurement residuals. Specifically, theχ2-Test can be applied on measurement

residuals to detect bad data. Regarding the detection of baddata, two kinds of methods, the largest

normalized residual test and the hypothesis testing identification method, can be used to identify the

specific measurement that actually contains bad data [49].

3.1.1.2 False Data Injection Attacks

The accuracy of state estimation can be affected by bad measurements in the grid. Bad data

could be due to topology errors in the grid, measurement abnormalities caused by meter failures,

or malicious attacks. To detect and identify bad measurements in the power grid state, techniques

based on the statistical testing of measurement residuals [49] have been developed and are widely

used. However, [51] reveals the fact that false data injection attacks are able to circumvent tra-

ditional detection methods based on residual testing. By exploiting the configuration of a power

system, synchronized data injection attacks on meters can be launched to tamper with their mea-

surements. Moreover, attack vectors can be systematicallyand efficiently constructed even when the

attacker is limited in resources required to compromise meters, which will mislead the state estima-

tion process, and thus affect power grid control algorithms. Hence, attention should be given over

the vulnerability of state estimation to false data injection attacks, which may cause catastrophic

consequences in the power grid.

Malicious attack vectors are able to circumvent existing statistical tests for bad data detection

if they leave measurement residuals unchanged. One such example is the false data injection attack,

which is defined as follows:

Definition 3.1. (False data injection attack) [51] The malicious attack vector a = (a1, a2, ..., am)⊤

is called a false data injection attack ifa can be expressed as a linear combination of columns of

H; i.e.,a = Hc for some vectorc.

If a false data injection attack is applied to the power system, the collected measurements at
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the ISO can be expressed as

za = z0 + a = H(θ + c) + e. (3.7)

Suppose the state estimate using the malicious measurementza is θa, the norm of measurement

residuals||za −Hθa||2 in this case is

||za −Hθa||2 = ||z0 + a−H(θ + c)||2 = ||z0 −Hθ||2, (3.8)

which means that measurement residuals are unaffected by the injection attack vectora, and the

attacker successfully tricks the system into believing that the true state isθa = θ + c instead ofθ.

Note thata is the attack vector, which is under the control of attackers, whilec reflects error induced

by a.

Unveiling false data injection attacks is crucial to security and reliability of power systems.

This task is challenging, since attackers may be able to construct false data attack vectors against the

protection scheme, and inject attack vectors into the powergrid that can bypass traditional methods

for bad measurement detection. Furthermore, the incomplete measurement data due to intended

attacks or meter failures complicates the task of maliciousattack detection, and thus makes state

estimation even more difficult.

The effects of false data injection attacks have been studied in [51–53]. False data injection

attacks against state estimation in electric power grid were presented in [51]. By capitalizing on

the configuration of the power system, malicious attacks canbe launched to bypass the existing bad

measurement detection techniques and manipulate results of state estimation. [52,53] demonstrated

that false data injection attacks were able to circumvent bad data identification techniques equipped

in the EMS, and could lead to congestion of transmission lines as well as profitable financial mis-

conduct in the power market.

On the other hand, schemes to protect against false data injection attacks are investigated

in [13, 54–59]. [54] proposed an efficient method for computing the security index with sparse

attack vectors, and described a protection scheme to strengthen system security by placing encrypted

devices in the electric power grid appropriately. [55] modeled and analyzed this situation as a zero-

sum game between attackers and defenders. [56] characterized two kinds of malicious attacks on
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electric power grids: the strong attack regime, in which false data injection attacks exist, and the

weak attack regime, in which the generalized likelihood ratio test can be used to detect attacks.

[13] formulated the bad data detection problem as a low-rankmatrix recovery problem, which is

solved by a convex optimization method that minimizes a combination of the nuclear norm and

the l1 norm. In [57], a low-complexity attacking strategy was designed to construct sparse false

data injection attack vectors, and strategic protection schemes were also proposed based on greedy

approaches. [58] provided a survey of existing detection methods for false data injection attacks,

and [59] studied the fundamental limits of cyber-physical security in presence of false data injection

attacks in the system.

3.1.1.3 Sparse Optimization Problem Formulation

Denote the measurement of the electric power system observed by the ISO at timek aszk.

In presence of false data injection attacks, the measurement zk is contaminated by the attack vector

ak. DenoteZ0 = [z1, z2, . . . , zt] ∈ R
m×t as the measurement of the power state for a time period

of t, andA = [a1,a2, . . . ,at] ∈ R
m×t as the false data attack matrix. The obtained temporal

observationsZa can be expressed as

Za = Z0 +A. (3.9)

Note that gradually changing power system state variables will typically lead to a low-rank measure-

ment matrixZ0. In addition, due to the capability limitation of attackers, they are either constrained

to some specific measurement meters or unable to compromise measurement meters persistently.

Hence, only a small fraction of observations can be anomalous at a given time instant. This implies

that the false data injection matrixA is sparse across both rows and columns. With a slight abuse of

notation, we use Rank(Z0) to denote the rank of the matrixZ0, and‖A‖0 to represent the number

of nonzero entries of the matrixA. Noticing intrinsic structures ofZ0 andA, the detection and

identification of false data injection attacks can be converted to a matrix separation problem as

min
Z0,A

Rank(Z0) + ‖A‖0, s.t. Za = Z0 +A. (3.10)
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Solving (3.10) extracts the power state measurement matrixZ0 and the sparse attack matrixA from

their sumZa. Considering missing measurements due to meter failures orcommunication link

outages in practical applications, (3.10) can be formulated as

min
Z0,A

Rank(Z0) + ‖A‖0, s.t. PΩ(Za) = PΩ(Z0 +A), (3.11)

whereΩ is an index subset, andPΩ(·) is the projection operator. Specifically,PΩ(M) is the

projection of a matrixM onto the subspace of matrices whose non-zeros entries are restricted toΩ

[PΩ(M)]ij = 0, ∀(i, j) /∈ Ω. (3.12)

In the following, we propose two methods to solve this problem.

3.1.2 Nuclear Norm Minimization

The optimization problem in (3.10) captures the low rank property of the power state mea-

surement matrixZ0 as well as the sparseness of the malicious attack matrixA. However, it is

known to be impractical to directly solve (3.10). One possible approach is to replace Rank(Z0)

and‖A‖0 with their convex relaxations,‖Z0‖∗ and‖A‖1, respectively. Here,‖Z0‖∗ is the nuclear

norm ofZ0, which is the sum of its singular values, and‖A‖1 is the l1 norm ofA, which is the

sum of absolute values of its entries. Hence, (3.10) can be reformulated as the following convex

optimization problem

min
Z0,A

‖Z0‖∗ + λ‖A‖1, s.t. Za = Z0 +A, (3.13)

whereλ is a regularization parameter. Correspondingly, (3.11) can be reformulated as

min
Z0,A

‖Z0‖∗ + λ‖A‖1, s.t. PΩ(Za) = PΩ(Z0 +A). (3.14)

The optimization problem in (3.14) has been extensively studied in fields of compressive

sensing [60] and matrix completion [61, 62], and can be solved by many off-the-shelf convex opti-

mization algorithms. Motivated by [63], the method of multipliers is utilized here to detect the false
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data matrixA as well as to recover the measurement matrixZ0. According to Algorithm 2.1, the

optimization problem in (3.14) can be solved iteratively via the method of multipliers [64], where

the augmented Lagrangian for (3.14) is given by

L(Z0,A,Y, µ) = ‖Z0‖∗+λ‖A‖1+〈Y,PΩ(Za − Z0 −A)〉+µ

2
‖PΩ(Za − Z0 −A)‖22. (3.15)

The value ofλ is set to 1√
max(m,t)

, wherem andt are dimensions of the measurement matrixZa.

With k = 1, 2, . . . , indexing iterations, optimalZ0 andA are found according to

Ak+1 = argmin
A

L(Z0
k,A, uk,Yk) and (3.16)

Z0
k+1 = argmin

Z0

L(Z0,A
k, uk,Yk), (3.17)

where (3.16) can be explicitly computed from the soft-shrinkage formula, and (3.17) can be solved

via the singular value shrinkage operator [65]. Specifically, we define this operator asSτ{x} =

sgn(x)max(|x| − τ, 0) for a real variablex, where sgn is the sign function. This operator can be

extended to vectors and matrices by applying it element-wise. Using this operator, (3.16) can be

solved iteratively via

Ak+1 = S λ

uk
{Za−Z0

k +
Yk

uk
}. (3.18)

To solve (3.17), a singular value decomposition (SVD) is applied to the matrix (Za−Ak+1 + Yk

uk ):

(Za−Ak+1 +
Yk

uk
) = USV⊤, (3.19)

whereU ∈ R
m×m andV ∈ R

t×t are unitary matrices, andS ∈ R
m×t is a diagonal matrix

containing the singular values of(Za−Ak+1+Yk

uk ). The singular values are arranged in a decreasing

order, andZ0 is updated via

Z0
k+1 = US 1

uk
{S}V⊤. (3.20)

During each iteration of the optimization, both Lagrange multipliers Y andµ are updated,
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Algorithm 3.1 Nuclear norm minimization approach.

Input: Za ∈ R
m×t; λ = 1√

max(m,t)
;

Initialize: Y[0] = 0; Z0[0] = 0; A[0] = 0; µ[0] > 0; α > 0; k = 0;
while not convergedo

Z0
k+1 = Z0

k; Ak+1 = Ak; j = 0;
Yk+1 = Yk + uk(Za − Z0

k+1 −Ak+1);
µk+1 = αµk;

k = k + 1;

end while
return Z0

k; Ak;
OutputZ0

k; Ak;

which improves the performance of the algorithm

Yk+1 = Yk + uk(Za − Z0
k+1 −Ak+1) and (3.21)

µk+1 = αµk, (3.22)

whereα is a positive constant. The algorithm is outlined as Algorithm 3.1.

3.1.3 Low Rank Matrix Factorization

The speed and scalability of the nuclear norm minimization approach are limited by the com-

putational complexity of singular value decomposition. When matrix size and rank increase, com-

putational operations for singular value decomposition will become quite expensive. To improve

the scalability of solving large-scale problems of malicious attack detection in power systems, a low

rank matrix factorization approach is proposed here.

Given observationsZa, the measurementsZ0 and the false data injection attack matrixA can

be separated by the minimization problem

min
U,V,Z0

‖Za − Z0‖1, s.t. UV − Z0 = 0, (3.23)

where the low rank matrixZ0 is expressed as a product ofU ∈ R
m×r andV ∈ R

r×n for some

adjustable rank estimater. Correspondingly, (3.14) can be rewritten as

min
U,V,Z0

‖PΩ(Za − Z0)‖1, s.t. UV − Z0 = 0. (3.24)

30



Note that a low-rank matrix factorization is explicitly applied toZ0 instead of minimizing its nu-

clear norm as in (3.14), which avoids the singular value decomposition completely. To solve the

minimization problem in (3.24), the augmented Lagrangian can be expressed as

L(U,V,Z0,Y, µ) = ‖PΩ(Za − Z0)‖1 + 〈Y,UV − Z0〉+
µ

2
‖UV − Z0‖22, (3.25)

whereµ is a penalty parameter andY is the vector of Lagrange multipliers corresponding to the

constraintUV − Z0 = 0. Motivated by the idea in the alternating direction method for convex

optimization, the augmented Lagrangian can be minimized with respect to block variablesU,V,

andZ0 individually via the following framework at each iterationk [66]

Uk+1 = argmin
U

L(U,Vk,Z0
k,Yk, µk), (3.26)

Vk+1 = argmin
V

L(Uk+1,V,Z0
k,Yk, µk), and (3.27)

Z0
k+1 = argmin

Z0

L(Uk+1,Vk+1,Z0,Y
k, µk), (3.28)

where (3.26) and (3.27) are least squares problems

Uk+1 = (Z0 −
Yk

uk
)V⊤(VV⊤)−1 and (3.29)

Vk+1 = (U⊤U)−1U⊤(Z0 − Yk

uk
). (3.30)

and (3.28) can be solved by the shrinkage formula

PΩ(Z0
k+1) = PΩ(S 1

uk
{Uk+1Vk+1 − Za +

Yk

uk
}). (3.31)

The Lagrangian multipliersY andµ are updated during each iteration as follows

Yk+1 = Yk + uk(Uk+1Vk+1 − Z0
k+1) and (3.32)

µk+1 = αµk, (3.33)

whereα is a positive constant. At the end of each iteration, a rank estimation strategy [67] is

applied to updater to ensure the success of the algorithm. The proposed algorithm is illustrated in

Algorithm 3.2.
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Algorithm 3.2 Low rank matrix factorization.

Input: Za ∈ R
m×t; Initial rank estimater.

Initialize: U ∈ R
m×r; V ∈ R

r×t; Z0[0] = U ∗ V ; Y[0] = 0; µ[0] > 0; α > 0; k = 0.
while not convergedo

Uk+1 = (Z0 − Yk

uk )V
⊤(VV⊤)−1;

Vk+1 = (U⊤U)−1U⊤(Z0 − Yk

uk );

Z0
k+1 = S 1

uk
{Uk+1Vk+1 − Za +

Yk

uk };

Yk+1 = Yk + uk(Uk+1Vk+1 − Z0
k+1);

µk+1 = αµk;

k = k + 1;

Checkr, possibly re-estimater and adjust sizes of the iterates;
end while
return Z0

k;
OutputZ0

k; Za − Z0
k;

3.1.4 Numerical Results

Numerical simulations are presented here to evaluate the performance of proposed algorithms.

Power flow data for IEEE 57 bus, IEEE 118 bus test cases, and Polish system [68] during winter the

peak conditions in 2007-2008 are used to evaluate the proposed algorithms.

3.1.4.1 Receiver Operating Characteristic Analysis

Assume loads on each bus in the power system are uniformly distributed between50% and

150% of its base load. When state estimation measurements are collected, a small portionǫ of

measurement data are compromised by malicious attackers with an arbitrary amount of injection

data, andǫ is defined as the attack ratio in this context. Methods for false data injection attack

construction can be found in [56, 57]. Here, we focus on the protection scheme and suppose that

the locations of attacks are chosen randomly and are of duration ∆t1. Totally a number ofT time

instance measurements are obtained for analysis. The receiver operating characteristic analysis of

proposed algorithms is first given, and then we compare the performance of proposed algorithms

with that of the principal component analysis (PCA)2. In this analysis, the attack ratio is fixed at

1Note that the attack vectors used in this chapter are more general compared to those described in [56, 57] and will
not affect the efficiency of proposed algorithms.

2For PCA, we retain the largestK singular values of the matrix such that
∑

K

1
si∑

N
1

si
> 95%.
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Figure 3.1 The ROC performance for the IEEE 57 bus system. SNR= 10dB.

ǫ = 0.1 and SNR = 10dB.

The ROC curves for IEEE57 bus and IEEE118 bus cases are shown in Fig. 3.1 and Fig. 3.2,

respectively. From those figures, it is apparent that proposed algorithms can detect the false data

accurately at a low false alarm rate. For example, in the IEEE57 bus system, the true positive rate

of nuclear norm minimization is93%; and it is95% with low rank matrix factorization when the

false alarm ratepf = 10%. Moreover, the low rank matrix factorization approach performs slightly

better than the nuclear norm minimization method. In this case, the sparse attack matrix is not

the dominant part in measurements, which makes the low rank matrix factorization approach more

suitable. Fig. 3.1 and Fig. 3.2 show that proposed algorithms outperform the PCA-based approach

significantly. The PCA method neglects the corruptions of malicious attacks. Even though the

matrix Z0 is of low rank, the sum ofZ0 andA will not be of low rank any more. Thus, directly

applying the PCA method will result in a poor performance. However, proposed algorithms exploit

the low rank structure of the anomaly-free measurement matrix, and the fact that malicious attacks
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Figure 3.2 The ROC performance for the IEEE 118 bus system. SNR = 10dB.

are quite sparse, which render better performance.

3.1.4.2 Performance vs. Measurement Missing Ratio

Next, we investigate the performance of proposed algorithms under different measurement

missing ratios. In particular, we assume that a portion of measurements collected at the control cen-

ter are missing due to meter failures or communication link outages, and evaluate the performance

of proposed algorithms under different measurement missing ratios up to10% on the IEEE118 bus

system. The attack ratio is fixed atǫ = 0.1 with SNR = 10dB.

The ROC curves for the IEEE 118 bus case are depicted in Fig. 3.3. From the figure we

see that with10% missing measurements, proposed algorithms are still able to detect the malicious

attacks at acceptable true positive rates, and the low rank matrix factorization method performs

slightly better. By comparing with Fig. 3.2, we see that the missing measurements deteriorate the

performance of proposed algorithms as we would expect. Since the PCA-based method is unable to
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Figure 3.3 The ROC curves of the proposed algorithms for the IEEE 118 bus system.10% mea-
surements are missing and SNR = 10dB.

detect anomalies in this case, we omitted its simulation results. Note that the existence of missing

entries will result in an incorrect estimation of the low-dimensional subspace of matrixZ0, which

leads to the failure of PCA.

To investigate the performance under different measurement missing ratios, the percentage of

missing measurements is varied from0% (no missing) to10%, and results are shown in Fig. 3.4.

The true positive rates are calculated for both algorithms when the false alarm rate equals10%.

It is shown that the performance is improved monotonically as more and more measurements are

collected. In the worst case when10% of measurements are missing, proposed algorithms can still

achieve true positive rates of85% and90% for the nuclear norm minimization and the low rank

matrix factorization methods, respectively.

A more detailed demonstration for recoverability of proposed algorithms for power system

states is shown in Fig. 3.5. Here, we assume10% of the measurements are missing with SNR =

10dB, and cumulative distribution functions of relative reconstruction errors att = 50 andt = 100
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Figure 3.4 Performance of the proposed algorithms under different missing ratios for the IEEE 118
bus system. The false alarm rate is10% and SNR = 10dB.

are calculated. The relative reconstruction error is defined as

ε = (θ̂ − θ)./|θ|, (3.34)

where./ denotes componentwise division, and|θ| denotes the element-wise absolute value of the

vector θ . The vectorθ (in radian units) is obtained from the recoveredZ0, and the vectorε

represents the relative error of each component in the statevector θ. We calculate the relative

error for each bus in the system, and plot the corresponding cumulative distribution functions. From

Fig. 3.5 we see that proposed algorithms are able to reconstruct power system states quite accurately.

At t = 50, the majority of relative errors concentrate between interval [−0.1, 0.1], and similar

results are shown att = 100. These imply that proposed algorithms are able to preciselydetect

the malicious attacks as well as accurately estimate power system states, even under some severe

situations of missing partial measurements.

36



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.5

1

Relative error at t = 100

 

 

C
D

F

Nuclear Norm Minimization
Low Rank Matrix Factorization

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.5

1

Relative error at t = 50

 

 

C
D

F

Nuclear Norm Minimization
Low Rank Matrix Factorization

Figure 3.5 Power state reconstruction performance of the proposed algorithms at specific time in-
stancet = 50 andt = 100. 10% of the measurements are missing and SNR = 10dB.
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Figure 3.6 Performance of the proposed algorithms under different attack ratios for the IEEE 118
bus system. The false alarm rate is10% and SNR = 10dB.
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3.1.4.3 Performance vs. Attack Ratio

Thirdly, we investigate the performance of proposed algorithms under different attack ratios

for the IEEE 118 bus system. In particular,ǫ is varied from5% to 15%, and SNR = 10dB.

From Fig. 3.6, the true positive rate is quite high at low sparsity ratios for both proposed

algorithms. Particularly, when the sparsity ratio is5%, true positive rates are93.6% and94.3% at

fa = 10% for the nuclear norm minimization method and the low rank matrix factorization method,

respectively. Compared with the PCA-based method, the performance of proposed algorithms is

quite stable as the attack ratio increases. When the attack ratio reaches15%, true positive rates for

both algorithms are still around90%. The true positive rates of proposed algorithms will decrease

dramatically when attackers attack the power system massively. This is because, when the attack

matrix is not sparse enough, the mixed-norm minimization isnot able to separate the low rank

anomaly-free matrix from the attack matrix.

3.1.4.4 Performance on Large-Scale Systems

Finally, we analyze the scalability and computational efficiency of proposed algorithms on

power flow data for the Polish system during winter peak conditions in 2007-2008. The attack ratio

is fixed atǫ = 0.1 with SNR = 10dB.

The ROC curve is shown in Fig. 3.7. It is shown that the performance of proposed algorithms

is quite stable on the large scale system compared to the IEEE57 bus and the IEEE 118 bus. A

comparison of the computational efficiency of two proposed algorithms is shown in Fig. 3.8. The

data matrix row dimensionm is varied from100 to 3400. The proposed algorithms are applied to a

subset of the measurement matrix each time, and the CPU computation time is logged. It is shown in

Fig. 3.8 that as the dimension of the measurement matrix increases, the CPU time for computation

will increase, and the low rank matrix factorization approach performs better than the nuclear norm

minimization method, which demonstrates a better scalability to large problems, as expected.

The numerical results validate the effectiveness of proposed algorithms. According to sim-

ulation results, both low rank matrix factorization and nuclear norm minimization techniques can
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Figure 3.7 Performance on power flow data for the Polish system during winter peak conditions,
2007-2008. SNR = 10dB.
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Figure 3.8 The CPU computing time versus matrix dimension for the proposed nuclear norm mini-
mization and low rank matrix factorization algorithms.
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solve the matrix separation problem, and the performance ofthe low rank matrix factorization is

slightly better than that of the nuclear norm minimization technique. From the perspective of re-

coverability, since the false data attack matrixA is not the dominant part compared withZ0 in

this setting, the performance of the low rank matrix factorization technique is better. From the per-

spective of computation time, the low rank matrix factorization technique is much faster than the

nuclear-norm minimization technique due to its SVD-free feature. A detailed comparison of the

complexity of two algorithms is beyond the scope of this chapter, and useful discussions can be

found in reference [66].

3.2 Distributed Parallel Approach for Security Constrained Optimal

Power Flow

In this section, we first introduce the background of the security constrained optimal power

flow (SCOPF) problem. Then we propose a distributed parallelapproach to address it. Finally,

numerical simulations are given to validate the effectiveness of the proposed algorithm.

3.2.1 Security Constrained Optimal Power Flow

The deregulation of electric power grids offers the opportunity for electricity market partici-

pants to exercise least-cost or profit-based operations [69]. Despite the market-driven tendency of

the electric power business, security remains a significantconcern of sustainable power system op-

erations, which cannot be compromised. Security-constrained optimal power flow [70, 71] aims at

minimizing the cost of system operation while satisfying a set of postulated contingency constraints.

It is an important management task allowing optimal controlof power systems securely.

The SCOPF is an extension of the conventional optimal power flow (OPF) problem [72],

whose objective is to determine a generation schedule that minimizes the system operating cost

while satisfying the system operation constraints such as hourly load demand, fuel limitations, en-

vironmental constraints and network security requirements. It has been recognized [73] that the

optimal control of the normal state may violate system operation constraints after the occurrence of
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some disturbance events, and thus jeopardize the security of power systems. To address this prob-

lem, SCOPF is performed by considering both pre-contingency and post-contingency constraints to

guarantee sustainable operations of the electric grid. Thesystem security level is improved by tak-

ing into account a number of contingencies in a selected contingency list. The solution to SCOPF

should satisfy the so calledN − 1 criterion, which requires that operational limits of the power

system should not be violated in case of a single contingency(a line and/or generator outage).

The SCOPF can be broadly classified as preventive, where control variables are restricted to

their pre-contingency condition settings, and corrective, whose control variables are allowed to be

rescheduled [74]. We will focus on the corrective model in this example. The seminal paper [73]

proposed the generalized Benders decomposition method to solve the corrective SCOPF problem.

Since then, an extensive literature for SCOPF in power systems exists both for traditional operations

and under market environments [71,75–78]. The nested Benders decomposition method was utilized

in [75] to solve the SCOPF problem for determining the optimal daily generation scheduling in a

pool-organized electricity market, and was tested in an actual example of the Spanish power system.

[76] embedded SCOPF into the security-constrained unit commitment (SCUC) model, and designed

an effective corrective contingency dispatch over a24-hour period, which balanced the economics

and security in the restructured markets. An iterative approach was proposed in [77] to obtain the

solution of SCOPF, which aims to efficiently identify a superset of binding contingencies to achieve

the SCOPF optimum. [78] applied the Benders decomposition to decompose the traditional SCOPF

problem, and the underlying computational complexity was analyzed in this approach. [71] solved

the SCOPF problem by a non-decomposed method based on the compression of post-contingency

networks, which can reduce the size of security constraintsand relieve the computational burden in

the problem.

Before presenting the distributed parallel approach for this problem, it is useful to recall a
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general formulation of the conventional SCOPF problem compactly described as follows:

minimize
x0,...,xC ;u0,...,uC

f0(x0,u0) (3.35)

subject to g0(x0,u0) = 0, (3.36)

h0(x0,u0) ≤ 0, (3.37)

gc(xc,uc) = 0, (3.38)

hc(xc,uc) ≤ 0, and (3.39)

|u0 − uc| ≤ ∆c, c = 1, . . . , C, (3.40)

wheref0 is the objective function, which (3.35) aims to maximize thetotal social welfare or equiv-

alently minimize offer-based energy and production cost,xc is the vector of state variables, which

includes voltage magnitudes and angles at all buses, anduc is the vector of control variables, which

can be generator real powers or terminal voltages. The superscript c = 0 corresponds to the pre-

contingency configuration, andc = 1, . . . , C correspond to different post-contingency configura-

tions. In addition,∆c is the maximum allowed adjustment between the normal and contingency

states for contingencyc.

In the conventional SCOPF problem, the equality constraints 3.38 ongc, c = 0, . . . , C, rep-

resent the system nodal power flow balance over the entire grid, and the inequality constraints 3.39

on hc, c = 0, . . . , C, represent the physical limits on the equipment, such as theoperational lim-

its on the branch currents and bounds on the generator power outputs. Constraints (3.36)-(3.37)

capture the economic dispatch and enforce the feasibility of the pre-contingency state. Constraints

(3.38)-(3.39) incorporate the security-constrained dispatch and enforce the feasibility of the post-

contingency state. Constraint (3.40) introduces the security-constrained dispatch with rescheduling,

which couples control variables of pre-contingency and post-contingency states and prevents un-

realistic post-contingency corrective actions. Note thatthere are some variations on the objective

function and constraints of the SCOPF problem, and we focus on the above conventional formula-

tion in this chapter.

Following the standard approach to formulating the SCOPF problem, the objective here is to
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minimize the cost of generation while safeguarding the power system sustainability. For the sake

of simplicity and computational tractability, constraints (3.36)-(3.39) are modeled with the linear

DC load flow, and we assume that the list of contingencies is given. Thus, assuming a DC power

network modeling and neglecting all shunt elements, the standard SCOPF problem can be simplified

to the following optimization problem

minimize
θ0,...,θC ;Pg,0,...,Pg,C

∑

i∈G
f g
i (P

g,0
i ) (3.41)

subject to B0
busθ

0 +Pd,0 −Ag,0Pg,0 = 0, (3.42)

Bc
busθ

c +Pd,c −Ag,cPg,c = 0, (3.43)

|B0
fθ

0| − Fmax ≤ 0, (3.44)

|Bc
fθ

c| − Fmax ≤ 0, (3.45)

Pg,0 ≤ Pg,0 ≤ Pg,0, (3.46)

Pg,c ≤ Pg,c ≤ Pg,c, (3.47)

|Pg,0 −Pg,c| ≤ ∆c, and (3.48)

i ∈ G, c = 1, . . . , C, (3.49)

where the notation is given in Table 3.1.

The solution to (3.41) ensures economical dispatch while guaranteing power system security,

by taking into account a set of postulated contingencies. The major challenge of SCOPF is the prob-

lem size, especially for large systems with numerous contingency cases to be considered. Directly

solving the SCOPF problem by simultaneously imposing all post-contingency constraints will result

in prohibitive memory requirements and a substantial CPU burden. To achieve efficient and secure

operations of the entire electrical grid, a distributed approach is proposed in next sections.

3.2.2 Distributed and Parallel Approach for SCOPF

The proposed distributed optimization method is based on the ADMM. The use of ADMM

for optimization in power systems has been considered in [79] and [80]. However, the optimiza-
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Table 3.1 Notation definitions.

G Set of generators

N Set of buses

B Set of branches

θc ∈ R
|N | Vector of voltage angles

Pg,c ∈ R
|G| Vector of real power flows

f g
i Generation cost function

P
g,0
i Displaceable real power of each individual generation uniti

for the pre-contingency configuration

Bc
bus ∈ R

|N |×|N | Power network system admittance matrix

Bc
f ∈ R

|B|×|N | Branch admittance matrix

Pd,c ∈ R
|N | Real power demand

Ag,c ∈ R
|N |×|G| Sparse generator connection matrix, whose(i, j)-th element

is 1 if generatorj is located at busi and 0 otherwise

Fmax Vector for the maximum power flow

Pg,c Upper bound on real power generation

Pg,c Lower bound on real power generation

∆c Pre-defined maximum allowed variation of power outputs

tion problem (3.41) cannot be readily solved using ADMM, since the constraint (3.48) couples the

pre-contingency and post-contingency variables, and the inequalities make the problem even more

complicated. To address these challenges, the optimization problem (3.41) can then be reformulated

by introducing a slack variablepc ∈ R
|G|

minimize (3.41) (3.50)

subject to Constraints (3.42)-(3.47), (3.51)

Pg,0 −Pg,c + pc = ∆c, and (3.52)

0 ≤ pc ≤ 2∆c, c = 1, . . . , C. (3.53)

The above optimization problem can be solved distributively using ADMM. The scaled aug-
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mented Lagrangian can be calculated as

Lρ({Pg,c}Cc=1; {pc}Cc=1; {µc}Cc=1) =
∑

i∈G
f g
i (P

g,0
i )+

C
∑

c=1

ρc

2
‖Pg,0−Pg,c+pc−∆c+µc‖22. (3.54)

The optimization variablesPg,0,Pg,c, andpc are arranged into two groups,{Pg,0} and

{Pg,c,pc}, and updated iteratively. The variables in each group are optimized in parallel on dis-

tributed computing nodes, and coordinated by the dual variable vectorµc during each iteration.

At the kth iteration, thePg,0-update solves the base scenario with squared regularization

terms enforced by the coupling constraints and expressed as

Pg,0[k + 1] = argmin
Pg,0

∑

i∈G
f g
i (P

g,0
i ) +

C
∑

c=1

ρc

2
‖Pg,0 −Pg,c[k] + pc[k]−∆c + µc[k]‖22,

subject to Constraints(3.42), (3.44),and(3.46). (3.55)

ThePg,c-updating solves a number of independent optimization subproblems correspond to post-

contingency scenarios and can be calculated distributively at thecth computing nodes via

Pg,c[k + 1] = argmin
Pg,c,pc

ρc

2
‖Pg,0[k + 1]−Pg,c + pc −∆c + µc[k]‖22,

subject to Constraints(3.43), (3.45), (3.47),and(3.53), (3.56)

where the scaled dual variable vector is also updated locally at thecth computing utility as

µc[k + 1] = µc[k] +Pg,0[k + 1]−Pg,c[k + 1] + pc[k + 1]−∆c. (3.57)

At the kth iteration, the original problem is divided intoC + 1 subproblems of approxi-

mately the same size. The computing node handlingPg,0 needs to communicate with all computing

nodes solving (3.56) during the iterations. The results of the Pg,0-update,{Pg,0}, will be dis-

tributed among the computing nodes for thePg,c-update. After thePg,c-update, the computed

{Pg,c,pc,µc} will be collected to calculate the pre-contingency controlvariables. The subproblem

data are iteratively updated such the block-coupling constraints (3.52) are satisfied at the end. Note

that since each of the subproblems is a smaller-scale OPF problem, existing techniques for OPF can

be applied with minor modifications.The proposed algorithmis illustrated in Algorithm 3.3.
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Algorithm 3.3 Distributed SCOPF.

Input: Bc
bus, B

c
f , Ag,c, Pd,c, Pg,c, Pg,c, ∆c;

Initialize: θc, Pg,c, pc, µc, ρc, k = 0;

while not convergedo
Pg,0-update:
Pg,0[k + 1] = argminPg,0

∑

i∈G f
g
i (P

g,0
i )

+
∑C

c=1
ρc

2 ‖Pg,0 −Pg,c[k] + pc[k]−∆c + µc[k]‖22
subject to Constraints (3.42),(3.44), and (3.46).

Pg,c-update, distributively at each computing node:
Pg,c[k + 1] = argminPg,c,pc

ρc

2 ‖Pg,0[k + 1]−Pg,c + pc −∆c + µc[k]‖22
subject to Constraints (3.43),(3.45),(3.47), and (3.53),
µc[k + 1] = µc[k] +Pg,0[k + 1]−Pg,c[k + 1] + pc[k + 1]−∆c.
Adjust penalty parameterρc is necessary;
k = k + 1;

end while

return θc, Pg,c;

Outputθc, Pg,c;

The ADMM approach is a primal-dual algorithm in which each computing nodec solves

its own subproblem (3.56), and variations to constraint (3.52) are systematically penalized at cer-

tain prices through the scaled dual variable to each individual subproblem. Note that in ADMM

frameworks for distributed computing, the dual variables,or prices, are not uniformly set up for all

nodes, which will require costly synchronization. For convex optimization problems, the ADMM

converges to the optimum geometrically [81], and the convergence rate can be improved by warm

start techniques [82].

3.2.3 Numerical Results

In this section, numerical studies are examined to evaluatethe performance of the proposed

algorithm. Three classical test systems are used: the IEEE 57 bus, the IEEE 118 bus, and the IEEE

300 bus [68], whose structures and characteristics are summarized in Table 3.2.

Two kinds of contingencies are considered in the numerical tests: branch outages and genera-

tor failures. The contingencies are artificially generatedand the number of contingencies considered
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Table 3.2 Characteristics of test cases.

Case |N | |G| |B| Number of contingency cases

IEEE 57 bus 57 7 80 50

IEEE 118 bus 118 54 186 100

IEEE 300 bus 300 69 411 100
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Figure 3.9 Convergence performance of the proposed distributed algorithm on test systems.

are listed in Table 3.2. We follow physical limits on equipments of test systems. The numerical

tests are implemented via MATLAB7.10 on a PC with an Intel Q8200 2.33GHz processor and

8GB memory. The basic OPF problem solver is the same for all test systems. The performance of

convergence and computing time of the proposed algorithm are investigated in the following. The

results are averaged over a total of 500 Monte Carlo implementations.
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Table 3.3 Computing time performance of the proposed algorithm on different test systems.

Cases Centralized Distributed ADMM

Cost Time Cost Time Cost (e =1%) Time

IEEE 57 bus 487.53 5.22 487.53 3.55 492.40 1.18

IEEE 118 bus 1606.73 36.03 1606.73 18.92 1622.79 7.93

IEEE 300 bus 9567.12 221.67 9567.12 95.74 9662.80 52.87

3.2.3.1 Convergence Performance

We first consider the convergence issue of the proposed algorithm. Since the number of

contingencies and the optimal value for each test system differs, the relative error is used here to

present results. Supposer[k] is the resulting value of the objective function at thekth iteration,

andr∗ is the optimal solution. The relative errore is defined ase =
∣

∣

∣

r[k]−r∗

r[0]−r∗

∣

∣

∣
. The convergence

performance is shown in Fig. 3.9. It can be seen that after a moderate number of iterations, the

proposed algorithm converges to optimal values in cases considered. From Fig. 3.9, we see that the

IEEE 57 system gives the fastest convergence rate. A large system leads to a large scale optimization

problem, and a large number of contingencies considered will make the problem scale even larger.

Note that, after very few iterations, the algorithm gets very close to the optimal value, which means

that the proposed algorithm is able to yield a good approximation to the optimal value in a short

time.

3.2.3.2 Computing Time Performance

The computing time for test systems with different numbers of contingency cases is investi-

gated and results are given in Fig. 3.10, Fig. 3.11, and Fig. 3.12. The number of contingencies is

increased by20% each time and the computing time is recorded. It can be seen from these figures

that with an increase in the number of contingency cases for the SCOPF problem, the computing

time of the centralized algorithm increases much faster than that of the proposed algorithm. Thus,

the proposed distributed algorithm is more scalable and stable than the centralized approach.
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Figure 3.10 Computing time for the IEEE 57 bus system with different numbers of contingencies.
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Figure 3.11 Computing time for the IEEE 118 bus system with different numbers of contingencies.
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Figure 3.12 Computing time for the IEEE 300 bus system with different numbers of contingencies.

The computing time to achieve an approximate solution with arelative error ofe = 1% is

also considered for the distributed case. To better illustrate the numerical results, a speedup factor

is defined asSp = Tc/Tp, whereTc is the computing time of the centralized approach, andTp is

the computing time of the distributed approach. The resultsof the computing time performance

are presented in Table 3.3. It is shown in Table 3.3 that the proposed distributed approach obtains

the same optimum as the centralized approach, and can achieve a speedup factorSp of 1.4 ∼ 2.4.

Note that if only an approximate result is needed, the speedup factor can even be improved toSp

of 4.4 ∼ 4.8 by using the proposed distributed algorithm. The speedup factor for the smallest test

system, IEEE 57 bus, is the smallest, due to the relatively more significant communication overhead

between different computing nodes during the simulation. AlargerSp can be achieved on a large-

scale test system since the communication overhead is negligible compared with the computing time

of the optimization subproblem handled by each computing node.
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3.3 Conclusion

In this chapter, we have investigated the applications of big data processing techniques for

enhancing security in the smart grid. We have introduced twosecurity concerns, the false data in-

jection attacks against state estimation and the security constrained optimal power flow in power

systems. We have explored possibilities of exploiting the inherent structure of data sets and effec-

tively processing large data sets to enhance power system security. We have designed a sparse opti-

mization approach for the false data injection detection problem, and a distributed parallel approach

for the security constrained optimal power flow problem. We have performed numerical studies to

validate the effectiveness of proposed approaches. We haveshown that effective management and

processing of big data has the potential to significantly improve smart grid security.

51



Chapter 4

Scaling into Clouds with Big Data

The mobile cloud computing has become a part of people’s daily lives and is expected to

play a significant role in the future cloud computing industry. Nowadays, people are used to access

various mobile applications such as search engine, email, GPS navigation, streaming video and

social networks from their mobile terminals through wireless access networks. Meanwhile, small

and medium enterprises seize the opportunity to utilize thecloud computing paradigm as a flexible

and economically efficient solution for service provisioning. It has great potential for mobile service

providers to generate huge revenues without investing muchcapital for building and maintaining

their own infrastructures. The rapid development of cloud infrastructures, mobile computing and

wireless networks poses a complicated mobile cloud computing system, and numerous applications

produce a huge amount of data traffic with diverse performance objectives.

The remaining of this chapter is organized as follows. Section 4.1 describes a distributed ap-

proach for mobile data offloading in a software defined network. The scalable service management

in mobile cloud computing is developed in Section 4.2. Section 4.3 concludes this chapter.

4.1 Distributed Mobile Data Offloading in Software Defined Network

This section presents a distributed mechanism for mobile data offloading in a software defined

network (SDN) at the network edge. We first give an introduction to mobile data offloading in the

SDN-at-the-edge. Then, the proposed distributed mobile data offloading is described. Finally, we

present numerical results of the proposed algorithm.

4.1.1 The Mobile Data Offloading in SDN

The mobile data offloading [83], which refers to offloading traffic from cellular networks

to alternate wireless technologies like WiFi or small cell networks, is able to address tremendous

growth in mobile data and rapidly evolving mobile services.The mobile data offloading can be
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Figure 4.1 An illustration of the network model. The mobile data offloading can be enabled by the
SDN at the network edge to dynamically route the data traffic in a mobile network.

enabled by a software defined network (SDN) [84] at the edge, which can dynamically route the

traffic in a mobile network. An illustration of mobile data offloading via SDN is shown in Fig. 4.1.

In this model, the access network discovery and selection function (ANDSF) can discover wireless

networks close to mobile users and perform mobile data offloading. The ANDSF interacts with the

virtual SDN centralized controller for offloading management, which can be implemented by stan-

dardized interfaces such as OpenFlow [85]. The mobile service operators have already deployed

their own WiFi access points or initiated collaboration with existing WiFi networks to enable mo-

bile data offloading, and the SDN-at-the-edge can significantly alleviate both cost and operational

difficulties incurred by the simultaneous operation of access networks with multiple wireless tech-

nologies.

The benefits of mobile data offloading have been quantitatively studied in [83,86,87], which

indicate that WiFi or small cell network can largely boost cellular network capacity, offload cellular

data traffic, and save a huge amount of battery power for mobile users. [88] proposed an incentive
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framework to motivate mobile users to leverage their delay tolerance for cellular data traffic of-

floading. It could opportunistically offload cellular data traffic to WiFi networks or small cells, and

relieved the cellular traffic overload. A dynamic resource allocation and parallel execution frame-

work for mobile code offloading was presented in [89], which exploited the concept of smartphone

virtualization in cloud computing and provided method-level computation offloading. [90] utilized

opportunistic communications to facilitate information dissemination and data offloading in mobile

social networks, which can significantly reduce the amount of mobile data traffic. [91] considered

a market-based mobile data offloading solution, which utilized the non-cooperative game theory to

decide how much traffic should each access point (AP) offload for each base station (BS) and what is

the corresponding payment. [92] extended [91] by formulating the offloading problem based on the

network utility maximization [93] framework, and proposedan iterative double auction mechanism

to solve it.

In this work, we propose a distributed mechanism for mobile data offloading in SDN at the

netowrk edge. The SDN controller dynamically routes data traffic in a mobile network to decide

how much data should APs offload for BSs. A total revenue maximization problem is formulated

by jointly considering the offloading utility of BSs and the cost of APs. The optimization problem

is solved in a distributed fashion based on the proximal Jacobian multi-block alternating direction

method of multipliers (ADMM). The BSs and APs perform the offloading decision update concur-

rently, and are coordinated by the SDN controller through dual variables to reach a consensus on

offloading demand and supply. The proposed mechanism has following characteristics.

1. Simple computation at the SDN controller: To alleviate the computation burden of mobile

data offloading at the SDN controller, the operations at the SDN controller is designed to be

simple one-time algebraic calculation instead of solving an optimization in related work [92].

2. Privacy preserving: During the process of the optimization for offloading decision, the utility

functions at BSs and cost functions at APs are only known to themselves.

3. Concurrent update at BSs and APs: The updating process at BSs and APs are performed
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concurrently.

4.1.2 System Model and Problem Formulation

We consider a mobile network which consists ofB cellular base stations (BSs) andA access

points (APs). A BSb ∈ {1, . . . , B} serves a group of mobile users and has the demand to offload

its traffic to APs. An APa ∈ {1, . . . , A} is a WiFi or femtocell AP which operates in a different

frequency band and supplies its bandwidth for data offloading. The maximum available capacity for

data offloading of each APa is denoted byCa. The SDN controller manages BSs and APs through

the ANDSF, and makes mobile data offloading decisions according to various trigger criteria. Such

criteria can be the number of mobile users per BS, available bandwidth/IP address of each BS, or

aggregate number of flows on a specific port at a BS.

Let xb = [xb1, . . . , xbA]
⊤ represents offloaded traffic of BSb, wherexba denotes the data

traffic of BSb offloaded through APa. Correspondingly,ya = [ya1, . . . , yaB ]
⊤ represents admitted

traffic of APa, whereyab represents the admitted data traffic from BSb. Generally, a feasible mobile

data offloading decision exists when BSs and APs reach an agreement on the amount of offloading

data, i.e.,xba = yab,∀a and∀b. We assume that mobile data of BSs can be offloaded to all of APs

without loss of generality. Moreover, we assume that the time is slotted and during each time slot

the offloading demand from BSs is fixed. The SDN controller needs to find a feasible offloading

schedule at the beginning of each time slot, and maximize theutility of BSs at a reasonable cost of

APs.

We denote BSb’s utility by Ub(xb), whereUb(·) is designed to be a non-decreasing, non-

negative and concave function inxb,∀b. For example, the function can be logarithmic, and the

concavity is due to the diminishing returns of resources allocated to the offloaded data. Likewise,

we use functionLa(ya) to describe the APa’s cost of helping BSs offload data, whereLa(·) is

a non-decreasing, non-negative and convex function inya,∀a. The cost function can be a linear

cost function, which means total cost of APs will increase asthe amount of admitted mobile data

increases.

55



For the SDN controller, the total revenue for mobile data offloading is expressed as
∑B

b=1 Ub(xb)−
∑A

a=1 La(ya). To maximize the total revenue, the equivalent minimization optimization problem

can be formulated as

min
{x1,...,xB},{y1,...,yA}

A
∑

a=1

La(ya)−
B
∑

b=1

Ub(xb), (4.1)

s.t
B
∑

b=1

yab ≤ Ca, ∀a, and (4.2)

xba = yab, ∀a, b, (4.3)

where (4.2) stands for the capacity constraint at each AP, and (4.3) represents the consensus of BSs

and APs on the amount of mobile data. We propose an algorithm based on ADMM to solve the

convex optimization problem (4.1) in a fully distributed fashion.

4.1.3 A Distributed ADMM Approach

The optimization problem (4.1) can be solved in a fully distributed fashion by the multi-block

Jacobian ADMM. The computing paradigm of the proposed algorithm is shown in Fig. 4.2. During

each iteration, BSs and APs updatex andy concurrently. The updatedx andy are gathered by

the SDN controller, which performs a simple update onλ and scatters dual variables back to BSs

and APs. The iteration goes on until a consensus on the offloading demand and supply is reached.

According to Algorithm 2.7, we fist calculate the partial Lagrangian of (4.1), which introduces the

Lagrange multipliers only for constraint (4.3)

Lρ(x,y,λ) =

A
∑

a=1

La(ya)−
B
∑

b=1

Ub(xb)+

A
∑

a=1

B
∑

b=1

λab(xba − yab)+
ρ

2

A
∑

a=1

B
∑

b=1

‖xba − yab‖22, (4.4)

whereλ ∈ R
AB is the Lagrange multiplier andρ is the penalty parameter. The updates of BSs and

APs can be performed concurrently according to the proximalJacobian multi-block ADMM. We

describe update procedures of BSs, APs, and SDN controller as follows.
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Figure 4.2 Distributed computing paradigm of proposed distributed mobile data offload mechanism.

Base Station Update: At each BSb, the update rule can be expressed as

xk+1
b =argmin

xb

(−Ub(xb)+
ρ

2

A
∑

a=1

‖xba−pkab‖22+
1

2
‖xb−xk

b‖2Pi
), (4.5)

wherePi = 0.1I, andI is the identity matrix. Thepkab = (ykab −
λk
ab

ρ ),∀a is the ‘signal’ from

the SDN controller to BSb. The update (4.5) is a small scale unconstrained convex optimization

problem. At each round of the update, it sendsxb of sizeA to the SDN controller. Note that the

update of each BS is performed independently and can be calculated locally. Oncexb is updated, it

is sent to the SDN controller while the utility functionUb(·) is kept confidential.

Access Point Update: The update rule at each APa can be expressed as

yk+1
a = argmin

yb

(La(ya) +
ρ

2

B
∑

b=1

‖yab − qkba‖22 +
1

2
‖ya − yk

a‖2Pi
), s.t

B
∑

b=1

yab ≤ Ca, (4.6)

wherePi = 0.1I, andqkba = (xkba +
λk
ab

ρ ),∀b. Theqba is the ‘signal’ from the SDN controller to AP

a. The update (4.6) is a small-scale convex optimization problem with linear inequality constraints.

At each round of the update, it sendsya of sizeB to the SDN controller. The update of each AP

is also performed independently. During the update, the information of cost functionLa(·) is kept

private. Theya is sent to the SDN controller once updated.
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Algorithm 4.1 Distributed mobile data offloading.

Initialize: x0,y0 λ0, ρ > 0, γ > 0;

for k = 0, 1, . . . do
{Updatexb andya for b = 1, . . . , B anda = 1, . . . , A, concurrently.}
{Base station update,∀b}
xk+1
b =argminxb

−Ub(xb)+
ρ
2

∑A
a=1 ‖xba−ykab +

λk
ab

ρ ‖22+ 1
2‖xb−xk

b‖2Pi
;

{Access point update,∀a}
yk+1
a = argminyb

La(ya) +
ρ
2

∑B
b=1 ‖xkba − yab +

λk
ab

ρ ‖22 + 1
2‖ya − yk

a‖2Pi
;

{SDN controller update}
λk+1
ab = λk

ab + γρ
∑B

b=1

∑A
a=1(x

k+1
ba − yk+1

ab );
end for

Outputx, y;

SDN Controller Update: At the SDN controller, the update rule can be expressed as

λk+1
ab = λk

ab + γρ
B
∑

b=1

A
∑

a=1

(xk+1
ba − yk+1

ab ). (4.7)

After gatheringx andy from BSs and APs, the SDN controller performs a simple updateon the

dual variableλ by a simple algebra operation. After that, the ‘signal’ variablespba and qba are

scattered back to corresponding BSs and APs, respectively.

Remark that in the Jacobian type update, the iterations of BSs and APs are performed con-

currently. There is no direct communication between BSs andAPs, and the intermediated update

results ofx andy are kept private. The updates at iterationk+1 only depend on previous values at

iterationk, which enables a fully distributed implementation.

At each iteration, the update operations at BSs and APs are quite simple. The updates at each

BS and AP are simple small-scale convex optimization problems, which can be quickly solved by

many off-the-shelf tools like CVX [94]. As for the communication overhead, for each iteration the

message between each BS and the SDN controller is of size2A (size ofxb andpba,∀a). Likewise,

the message between each AP and the SDN controller is of size2B (size ofya andqba,∀b). The

sizes of those messages are quite small compare with the sizeof offloading data. The proposed

distributed algorithm is described in Algorithm 4.1.
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Figure 4.3 Convergence performance of the proposed distributed mobile data offloading algorithm
by objective value when(B = 5, A = 5) and(B = 5, A = 10).

4.1.4 Numerical Results

4.1.4.1 Evaluation Settings

We consider a wireless access network consists ofB = 5 base stations andA = {5, 10}

access points coordinated by the SDN controller. The SDN controller will offload mobile data traffic

of BSs to APs, and the available capacity of each AP for offloading isCa = 10Mbps. The utility

function of BSb isUb(xb) = log(x⊤
b 1+1), where1 is the all one vector. The cost function of APa

is a linear cost expressed asLa(ya) = θa∗y⊤
a 1, whereθa > 0 is the cost coefficient. The value ofθa

is application specific. During numerical tests, we assumeθa is a Gaussian random variable which

has a distributionN (0, 1) for simplicity. We perform numerical tests on the offloadingdecision for

one time slot, and simulation results are presented as follows.

4.1.4.2 Convergence Performance

We investigate the convergence performance of the proposedalgorithm in the sense of op-

timization objective and residual. Two scenarios,(B = 5, A = 5) and (B = 5, A = 10), are

considered here. Since different scenarios have differentoptimal objectives, we use the relative
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Figure 4.4 Convergence performance of the proposed distributed mobile data offloading algorithm
by residual when(B = 5, A = 5) and(B = 5, A = 10).
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Figure 4.5 The offloading gap of the proposed distributed mobile data offloading algorithm.

60



objectiveok/o∗ in our simulations. Theok is the objective value calculated by the proposed dis-

tributed algorithm at iteration k, ando∗ is the optimal objective obtained by the centralized method.

The residual is defined as
∑A

a=1

∑B
b=1 ‖xba − yab‖22. We also normalize the maximal residual to1

for better readability.

The convergence of the proposed distributed algorithm is shown in Fig. 4.3 and Fig. 4.4.

Fig. 4.3 shows that the proposed algorithm converges to the optimal objective in a moderate number

of iterations whenB = 5 andA = 5. It takes a longer time for the proposed algorithm to converge

whenA = 10. It indicates that when these are more APs in the access network, it will take a longer

time for the SDN controller to coordinate BSs and APs for a consensus on the offloading demand

and supply. The normalized residual is shown in Fig. 4.4. It is shown that after several times of

iterations the residual of optimization problem (4.1) reduces to zero for both scenarios.

4.1.4.3 Offloading Performance

We study the performance of mobile data offloading by considering the offloading gap be-

tween BSs demand and APs supply. Here we only consider the scenario (B = 5, A = 5).

Note that a feasible offloading exists whenxba = yab,∀a and ∀b. Thus the total market gap,

∑A
a=1

∑B
b=1(xba − yab), is calculated here. To understand the efficiency of the proposed algorithm

for each base station, we zoom in gaps between BS 1& AP 1 (y11 − x11), and BS 1& AP 2

(y12 − x21), respectively. Due to different scales of those gaps, we normalized their maximum to 1.

The numerical results are shown in Fig. 4.5. It is shown that after several times of iterations,

the total market gap reduces to zero, which means that BSs andAPs have reached on a consensus on

mobile data offloading demand and supply. The offloading gapsbetween BS 1& AP 1 (y11 − x11),

and BS 1& AP 2 (y12 − x21) also gradually converge to zero. Note that the convergenceof those

gaps are not necessary synchronized. When those gaps all converge to zero, the decision of mobile

data offloading is made and the maximal total revenue is achieved.
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Figure 4.6 An illustration of mobile cloud computing infrastructure.

4.2 Scalable Service Management in Mobile Cloud Computing

In this section, we first give a brief introduction to mobile cloud computing (MCC). Then,

the proposed algorithm for mobile cloud service managementis described. Finally, we presented

numerical results of the proposed algorithm.

4.2.1 An Introduction to Mobile Cloud Computing

4.2.1.1 Background

In mobile cloud computing, mobile end users can offload localworkload [95] and back up

personal data to clouds without explicitly noticed where the service is actually hosted. The service

provider needs to dynamically acquire computing resourcesfor service provisioning, and delicately

manage online services to optimize the end-to-end performance experienced by their customers. It

is known that even a small increase in latency will result in asignificant revenue loss for service

providers. Thus, mobile service providers usually deploy their services on several cloud-enabled
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data centers, and perform service management tasks to optimally locate mobile service instances.

An illustration of the mobile cloud computing infrastructure is shown in Fig. 4.6.

To efficiently manage mobile cloud services, a mobile service provider should appropriately

locate client requests to a data center (request allocation), and select an upstream Internet service

provider (ISP) link of data center to carry on the traffic backto the client (response routing). Those

two tasks are crucial to the success of mobile cloud service,and should be managed adaptively to

variations in MCC, such as end user demands, link latency, computation costs, as well as electricity

and bandwidth price. Nowadays, the decision of request allocation and response mapping is handled

separately, which results in poor service performance and high cost. For example, too many client

requests may be allocated to the same data center with limited upstream link bandwidth, or a data

center may response to client requests through an expensiveISP link. The management tasks are

also computationally intensive due to the large number of mobile devices and the stringent response-

time requirement of mobile services. Furthermore, the uncertainty in the wireless link latency of

mobile network complicates the problem.

4.2.1.2 Related Work

The service management faced by the mobile service providercan be seen as a network utility

maximization (NUM) problem [93], which described a unifying framework for understanding and

designing distributed control and resource allocation in communication networks.

Our work is closely related to the mobile service allocationand the traffic engineering in

MCC. The framework for offloading mobile computation workload to clouds was proposed in [89],

which managed to enhance the energy resource utilization and reduced the computation time of

mobile devices. In [96], a mobile service management technology was presented to support novel

MCC applications. The network services were reactively relocated to guarantee adequate perfor-

mance for the client-sever communication. A decentralizeddesign for service request allocation

was described in [97], which directed client requests to appropriate server replicas to offer better

performance. The problem of optimizing the performance of carrying traffic for an online service
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provider was studied in [98]. The multi-homed traffic engineering for autonomous systems to opti-

mize cost and performance was investigated in [99], and the effect of temperature on cloud service

workload management for geo-distributed data centers was analyzed in [100].

The cooperative server selection and traffic engineering between network and content providers

who have conflict objectives was proposed in [101], the concept of Nash bargaining solution was

utilized to enhance the cooperation between ISPs and content providers. [102] extended the opti-

mality result by incorporating practical considerations such as DC-level load balancing and capacity

constraints. Recent work [103] considered a coordination of request mapping and response routing

for geo-distributed cloud services, and developed a distributed algorithm to solve the large-scale

optimization problem. Our work explores and analyzes the effect of random wireless nature on the

service management problem, and proposes a distributed stochastic optimization framework with

proved convergence property for service management.

In this work, we present a scalable distributed management framework for mobile cloud ser-

vices, which takes the the impact of wireless network characteristics into account. The tasks of

clients request allocation and data center response routing are jointly considered, and the manage-

ment tasks are formulated as a service revenue maximizationproblem. In particular, the mobile

service provider optimally locates client requests to provide qualified service at a reasonable cost

under the stochastic wireless link latency. Our major contributions are as follows.

1. A stochastic optimization framework for mobile cloud service management is formulated.

The clients request allocation and data center response routing are jointly optimized, and the

impact of wireless network characteristics on service performance is considered.

2. A distributed approach to solve the large-scale stochastic optimization problem based on

ADMM is proposed. The update steps are modified according to the stochastic setting, which

can be solved in a parallel fashion on distributed agents andcoordinated through dual vari-

ables.

3. We prove the convergence of the proposed stochastic distributed optimization algorithm. We
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Table 4.1 Summary of key notations.

I Set of agents, indexed byi ∈ {1, . . . , N}.

J Set of data centers, indexed byj ∈ {1, . . . , J}.

Kj Set of ISP links of data centerj.

Ri Bandwidth capacity of mobile service agenti.

ai,j Application request of clienti severed by data centerj.

bj,i Traffic routed from data centerj to agenti.

Lj,i Average delay from data centerj to agenti.

ξi Latency variation of wireless link for agenti.

Fi(·) Utility function of agenti.

Gj(·) Performance metric function of data centerj.

pj,i Price of routing traffic from data centerj to agenti.

Qj Capacity of ISP links at data centerj.

Cj Capacity of data centerj.

evaluate the effectiveness of the proposed algorithm through numerical simulations from both

computation perspective and service management perspective.

4.2.2 System Model and Problem Formulation

We first present the mobile cloud infrastructure, and then describe the mobile cloud service

management problem. The summary of key notations are listedin Table 4.1.

4.2.2.1 Mobile Cloud Infrastructure

We consider a setI of agents in mobile cloud service. An agenti ∈ {1, . . . , N} is defined

as an access point (AP) of wireless access networks, and the bandwidth capacity of mobile service

agenti isRi. A setJ of data centers are indexed byj ∈ {1, . . . , J}. Data centers are interconnected

over a backbone network and each data center is multi-homed to K ISP links. The set of ISP links

of data centerj is denoted byKj . We assume that all data centers have the same number of ISP links
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for simplicity. The capacity of ISP links at data centerj is denoted byQj = [Qj,1, . . . , Qj,K ]⊤. The

service provider observes a propagation delayLj,i = [Lj,i,1, . . . , Lj,i,K ]⊤ over wired connection,

whereLj,i,k is the average delay between agenti and data centerj on thekth ISP link. The wireless

link latency between agenti and mobile devices isξi.

The requests from mobile devices are first handled by the mobile service agent. After that,

one data center at a specific location is assigned to process the request. We useai,j as agenti’s

application requests processed by data centerj. The request allocation decision variables of mobile

service agenti are denoted asai = [ai,1, . . . , ai,J ]
⊤. In practices, a mobile service agent can be

a cloudlet [104] or be implemented on servers that provide mobile network services. Additionally,

in this work we assume that an agent has the fine-grained control of the network traffic, which is a

reasonable assumption in nowadays commercial products [97] and techniques like OpenFlow [85].

Once data centerj has finished the job, the response traffic will be routed back through ISP links.

We use vectorbj,i = [bj,i,1, . . . , bj,i,K)]⊤ to denote the traffic routed from the data centerj to agent

i throughK different ISP links, and the matrixBj = [bj,1, . . . ,bj,N ]⊤ denote response routing

decisions of data centerj.

4.2.2.2 Mobile Cloud Service Management

In mobile cloud service management, the application requests are allocated to appropriate data

centers in order to achieve maximal utility and minimize thecost. The utility and cost functions in

the service management can be elaborated as follows.

1) Utility of mobile service agents: The performance objective of agenti is characterized

by a utility functionFi(·), which depends on total transmission rate and wireless access network

latency. The utility functions can be different among mobile service agents. In this work,Fi(·) is

designed to be a non-decreasing, non-negative and concave function in
∑

j∈J ai,j. For example,

Fi(ai, ξi) =
1
ξi
log2(

∑

j∈J ai,j + 1), or can be a more general class of functions that represent the

elasticity of service request and/or determine the fairness of resource allocation. Such functions are

typically used for the TCP congestion control [105,106].
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2) Cost of data centers: The cost of data centerj is characterized by functionGj as

Gj(·) = βj,1γj,1(·) + βj,2γj,2(·)− βj,3γj,3(·), (4.8)

which has three parts and parameterized by positive coefficientsβj,1, βj,2 andβj,3, respectively, to

incorporate different degrees of sensitivity to operationcost, link price and user perceived latency.

The determination of the values of coefficients is service specific, and the mobile service provider

is responsible for choosing the values of parameters based on its service types, data centers it used,

and its profit model.

In the first part ofGj(·), γj,1(·), accounts for the operation cost of data centerj. Here,γj,1(·)

is designed to be a non-decreasing, non-negative and convexfunction in
∑

i∈I b
⊤
j,i1, where1 ∈ R

K

is an all-one vector. The design of operation cost can incorporate the price of computing resource

rental, maintenance cost, and electricity bills [100, 107,108]. For example, to represent electricity

bills [109] at data centerj, γj,1(·) can be

γj,1(Bj) = Prj × Pe × [Pidle + (Ppeak − Pidle)
∑

i∈I
b⊤
j,i1], (4.9)

wherePrj is the spot electricity price at data centerj, andPe is the power usage efficiency.Ppeak

andPidle are server peak power and server idle power, respectively.

In the second part ofGj(·), γj,2(·), stands for the cost of routing traffic from data centerj to

mobile service agents through ISP links. A linear cost modelfor ISP links can be adopted

γj,2(Bj) =
∑

i∈I
b⊤
j,ipj,i, (4.10)

wherepj,i = (pj,i,1, . . . , pj,i,K)⊤ is the price vector for ISP links at data centerj. We assume that

the cost of routing traffic on thekth ISP’s link from data centerj to agenti, which is denoted by

pj,i,k, is known and fixed. Note that nowadays ISPs are adopting sophisticated charging policy, e.g.,

the 95-percentile charging scheme. It is shown that a linearcost optimization in charging intervals

can reduce the 95-percentile cost [98].
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In the last part ofGj(·), γj,3(·), captures the user-perceived latency in the response routing

from data centerj to mobile service agents.γj,3(·) can be a non-decreasing, non-negative and

concave function inBj

γj,3(Bj) =
∑

i∈I
b⊤
j,i(Lmax − Lj,i), (4.11)

whereLmax is the maximum tolerable latency. The ISP link delayLj,i is known and can be obtained

through active measurements [110]. We consider the latencybetween data centerj and mobile

service agents as a performance metric since user-perceived latency is one of the most important

metrics for mobile cloud computing service. Even a small increment can result in a significant

revenue loss.

3) Total revenue: The goals of maximizing mobile service utility and minimizing data cen-

ters’ cost usually contradict each other. Allocating users’ requests to data centers that offer lower

latencies usually incurs higher costs, and over-utilizingthe low-cost link for response routing will

degrade system performance due to the increased congestion. By jointly considering utilities of mo-

bile service agents and cost of data centers, the total revenue for mobile cloud service management

can be formulated as

Revenue= α
∑

i∈I
Eξi{Fi(ai, ξi)} −

∑

j∈J
Gj(Bj), (4.12)

where the parameterα is introduced to find a balance between service utility and cost. The mobile

service provider needs to customize the cost-performance tradeoff to obtain the best revenue.

4.2.2.3 Maximizing Total Revenue

The mobile service provider performs a revenue maximization to improve resource utilization

in MCC. The objective of the optimization problem consists of two terms: (i) the service utility

from all agents by fulfilling mobile client requests, and (ii) the data center cost for serving service

requests. The resulting stochastic optimization problem is presented in its equivalent minimization
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form as

minimize
{ai}Ni=1

,{Bj}Jj=1

∑

j∈J
Gj(Bj)− α

∑

i∈I
Eξi{Fi(ai, ξi)} (4.13)

subject to
∑

j∈J
ai,j ≤ Ri, ∀i, (4.14)

∑

i∈I
ai,j ≤ Cj , ∀j, (4.15)

∑

i∈I
bj,i � Qj, ∀j, (4.16)

ai,j = b⊤
j,i1, ∀i, j, and (4.17)

ai,j ≥ 0, bj,i � 0, ∀i, j, (4.18)

where (4.14) is the bandwidth capacity constraint for each mobile service agent. (4.15) and (4.16)

are data center capacity constraint and link capacity constraint, respectively. (4.17) is the workload

conservation constraint between each pair of agent and datacenter.

The solution to the above stochastic optimization problem ensures the optimal allocation of

mobile application requests, while achieving the maximum revenue. Traditionally, this problem is

solved in a centralized manner to find the optimal solution. However, the major challenge of the

centralized service revenue maximization is the problem size, especially for large systems with an

enormous number of agents, communication links and data centers. Additionally, the randomness

of the wireless link latency makes the problem more complicated. To achieve efficient and scalable

management of the mobile cloud service, a distributed optimization framework is proposed.

4.2.3 Distributed Stochastic ADMM for Service Management

In this section, we first introduce the background of stochastic ADMM and analyze its con-

vergence property. Then we present the proposed method for mobile cloud service management.
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4.2.3.1 Stochastic ADMM Background

The general form of stochastic ADMM can be expressed as

minimize
x∈X ,z∈Z

Eξ{f(x, ξ)}+ g(z)

subject to Ax+Bz = c, (4.19)

whereξ is a random variable with unknown distribution. Note that the first function in (4.19) is an

expectation function overξ instead of a deterministic function in (2.8). The Lagrangian function

associated with (4.19) is

Lρ(x, z,λ) = Eξ{f(x, ξ)}+ g(z) + 〈λ,Ax+Bz− c〉+ ρ

2
‖Ax+Bz− c‖22, (4.20)

and update rules forx, z andλ are

xt+1 = argmin
x

f(xt) + 〈∇f(xt, ξt),x〉 + ‖x− xt‖22
2ηt

+〈λt,Ax+Bzt−c〉+ ρ

2
‖Ax+Bzt−c‖22,

(4.21)

zt+1 = argmin
z

g(z) + 〈λt,Axt+1 +Bz− c〉+ ρ

2
‖Axt+1 +Bz− c‖22, and (4.22)

λt+1 = λt + ρ(Axt+1 +Bzt+1 − c), (4.23)

whereηt is the penalty parameter and is essential for the algorithm convergence. The update rule of

x has the same flavor of the stochastic mirror descent method [111,112]. The convergence property

of stochastic ADMM can be analyzed using the variational inequality (VI) base on the Lagrangian

(4.20) similar to the deterministic case [113,114]. Beforeintroducing the proof of convergence, we

describe following lemmas which will be useful for the proof.

Lemma 4.1. [115] If y∗ = argminy∈Y{J1(y) + J2(y)}, whereJ1 : Rn 7→ R andJ2 : Rn 7→ R

are convex functions,Y is a polyhedral subset ofRn, andJ2 is continuously differentiable, then

y∗ = argmin
y∈Y

{J1(y) +∇J2(y
∗)⊤y}. (4.24)

Proof. They∗ = argminy∈Y{J1(y) + J2(y)} is equivalent to

(y∗,y∗) = argmin
y∈Y ,z∈Rn,y=z

{J1(y) + J2(z)}. (4.25)
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By the Lagrange multiplier theorem [115], there existsλ ∈ R
n such that

y∗ = argmin
y∈Y

{J1(y) + λ⊤y} and (4.26)

y∗ = argmin
z∈Rn

{J2(z)− λ⊤z}. (4.27)

From (4.27) we obtainλ = ∇J2(y
∗). Substituteλ back to (4.26) proves the result.

Lemma 4.2. For t ≥ 0, we have that the following inequality holds:

g(zt+1)− g(z) + 〈zt+1 − z,B⊤λt+1〉 ≤ 0. (4.28)

Proof. By applying Lemma 4.1 with identificationsJ1(z) = g(z) andJ2(z) = 〈λt,Axt+1+Bz−

c〉+ ρ
2‖Axt+1 +Bz− c‖22 in (4.22) we have

g(z) − g(zt+1) + 〈z− zt+1,B⊤[λt + ρ(Axt+1 +Bzt+1 − c)]〉 ≥ 0. (4.29)

Substitutingλt+1 = λt + ρ(Axt+1 +Bzt+1 − c) in to (4.29), we get

g(zt+1)− g(z) + 〈zt+1 − z,B⊤λt+1〉 ≤ 0, (4.30)

which proves the result.

Lemma 4.3. For t ≥ 0, we have that the following inequality holds

〈xt+1 − x,A⊤λt+1〉 ≤ 〈∇f(xt, ξt),x− xt+1〉+ 〈x− xt+1, ρA⊤(Bzt −Bzt+1)〉

+
1

2ηt
(‖x− xt‖22 − ‖x− xt+1‖22 − ‖xt − xt+1‖22).

Proof. By applying Lemma 4.1 with identificationsJ1(x) = f(xt)+ 〈∇f(xt, ξt),x〉 andJ2(x) =

〈λtAx+Bzt − c〉+ ρ
2‖Ax+Bzt − c‖22 +

‖x−xt‖2
2

2ηt in (4.21), we obtain

J1(x)−J1(x
t+1)+〈x−xt+1,A⊤[λt+ρ(Axt+1+Bzt−c)]〉 + 1

ηt
〈x− xt+1,xt+1 − xt〉 ≥ 0.

(4.31)

We analyze each of three terms on the left hand side (LHS) of (4.31). The first term

J1(x)− J1(x
t+1) = 〈∇f(xt, ξt),x− xt+1〉, (4.32)
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and the second term

〈x−xt+1,A⊤[λt+ρ(Axt+1+Bzt−c)]〉 = 〈x−xt+1,A⊤λt+1〉+〈x−xt+1, ρA⊤(Bzt−Bzt+1)〉,

(4.33)

which holds sinceλt+1 = λt + ρ(Axt+1 +Bzt+1 − c). The last term is

1

ηt
〈x− xt+1,xt+1 − xt〉 = 1

2ηt
(‖x− xt‖22 − ‖x− xt+1‖22 − ‖xt − xt+1‖22). (4.34)

Substitute (4.32), (4.33) and (4.34) back to (4.31) proves the result.

Theorem 4.4.AssumeE‖∇f(x, ξ)‖22 ≤ G2,∀ξ. max[ρ2‖Ax+Bz0−c‖22+ 1
2ρ‖λ−λ0‖22] = L and

max ‖xt − x‖22 ≤ Dx, ∀x ∈ X ,λ ∈ R
p. Defineωt = (xt; zt;λt), h(ω) = E{f(x, ξ)}+ g(z) and

F (ω) = (A⊤λ;B⊤λ;−(Ax+Bz− c)). Let {ωt} be the sequence generated by (4.21)-(4.23)

and ηt = ǫ√
t
, whereǫ ≥ 0, and ω̄ = 1

T+1

∑T
t=0 ω

t. Then for any integer numbert > 0 and

ω ∈ X × Z × R
p,

E{h(ω̄t)− h(ω) + 〈ω̄t − ω, F (ω̄t)〉} ≤ O(
1√
t
). (4.35)

Proof. By Lemma 4.3 and the convexity of functionf , we obtain (4.36).

Eξ{f(xt+1, ξ)} − Eξ{f(x, ξ)}+ 〈xt+1 − x,A⊤λt+1〉

≤ 〈∇f(xt, ξt),x− xt+1〉 − 〈Eξ{∇f(xt+1, ξ)},x − xt+1〉+ 〈x− xt+1, ρA⊤(Bzt −Bzt+1)〉

+
1

2ηt
(‖x− xt‖22 − ‖x− xt+1‖22 − ‖xt − xt+1‖22)

= 〈∇f(xt, ξt)−∇f(xt+1),x− xt〉+ 〈∇f(xt, ξt)−∇f(xt+1),xt − xt+1〉

+ 〈x− xt+1, ρA⊤(Bzt −Bzt+1)〉+ 1

2ηt
(‖x− xt‖22 − ‖x− xt+1‖22 − ‖xt − xt+1‖22)

≤ 〈∇f(xt, ξt)−∇f(xt+1),x− xt〉+ 〈x− xt+1, ρA⊤(Bzt −Bzt+1)〉

+
ηt

2
‖∇f(xt, ξt)−∇f(xt+1)‖22 +

1

2ηt
(‖x− xt‖22 − ‖x− xt+1‖22). (4.36)
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Using definitions ofωt, h(ω) andF (ω), adding (4.36) and (4.28) results in (4.37).

h(wt+1)− h(w) + 〈wt+1 −w, F (wt+1)〉

≤ 〈x− xt+1, ρA⊤(Bzt −Bzt+1)〉+ 1

ρ
〈λ− λt+1,λt+1 − λt〉

+ 〈∇f(xt, ξt)−∇f(xt+1),x− xt〉+ ηt

2
‖∇f(xt, ξt)−∇f(xt+1)‖22

+
1

2ηt
(‖x− xt‖22 − ‖x− xt+1‖22). (4.37)

For the first term on the right hand side (RHS) of (4.37), we have

〈x− xt+1, ρA⊤(Bzt −Bzt+1)〉

=
ρ

2
[‖Ax+Bzt − c‖22 − ‖Ax+Bzt+1 − c‖22

+ ‖Axt+1 +Bzt+1 − c‖22 − ‖Axt+1 +Bzt − c‖22]

≤ ρ

2
[‖Ax+Bzt − c‖22 − ‖Ax+Bzt+1 − c‖22 +

1

ρ2
‖λk+1 − λk‖22], (4.38)

and the second term is

1

ρ
〈λ− λt+1,λt+1 − λt〉 = 1

2ρ
(‖λ− λt‖22 − ‖λ− λt+1‖22 − ‖λt − λt+1‖22). (4.39)

Let ω̄ = 1
T+1

∑T
t=0 ω

t. Sinceh(w̄) is a convex function of̄ω andF is a monotonic operator, using

(4.38) and (4.39) to rewrite (4.37) we have the relationshipin (4.40).

h(w̄t+1)− h(w̄) + 〈w̄t+1 −w, F (w̄t+1)〉

≤ 1

T + 1

T
∑

t=0

[h(wt+1)− h(w) + 〈wt+1 −w, F (wt+1)〉]

≤ 1

T + 1

T
∑

t=0

〈∇f(xt, ξt)−∇f(xt+1),x− xt〉+ 1

T + 1

T
∑

t=0

1

2ηt
(‖x − xt‖22 − ‖x− xt+1‖22)

+
1

T + 1

T
∑

t=0

ηt

2
‖∇f(xt, ξt)−∇f(xt+1)‖22 +

1

T + 1
(
ρ

2
‖Ax+By0 − c‖22 +

1

2ρ
‖λ− λ0‖22),

(4.40)
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Figure 4.7 The original service revenue maximization problem is decoupled into two parts, response
routing update and request allocation update. Two parts arecoordinated through dual
variables.

By assumptions thatE‖∇f(x, ξ)‖22 ≤ G2, max[ρ2‖Ax + Bz0 − c‖22 + 1
2ρ‖λ − λ0‖22] = L, and

max ‖xt − x‖22 ≤ Dx for all x ∈ X ,λ ∈ R
p. Summing over t, we have

E{h(w̄t+1)− h(w̄) + 〈w̄t+1 −w, F (w̄t+1)〉}

≤ L

T + 1
+

1

T + 1

T
∑

0

ηt

2
G2 +

1

T + 1

√
T + 1

2ǫ
Dx ≤ O(

1√
t
), (4.41)

where the last step holds sincex andξt are independent and due to the fact thatηt = ǫ√
t
.

4.2.3.2 Distributed Scalable Design

We propose a distributed design to solve the optimization problem (4.13). Specifically, the

decision variablesai andBj are arranged into two groups, which correspond to the mobileservice

agents request allocation and the data center response routing, respectively. During the optimization,

the variables of each group are optimized in a distributed and parallel fashion. In particular, each

mobile service agenti solvesai and each data centerj obtainsBj , and those two groups of decision
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variables are coordinated through dual variables. The architecture of the proposed mechanism is

illustrated in Fig. 4.7.

The problem (4.13) is not readily solved in a distributed fashion due to the coupling of deci-

sion variablesai,j across all mobile service agents in constraint (4.15) and the coupling ofai,j and

bi,j in constraint (4.17). To design a distributed approach for (4.13), we first rewrite the constraint

(4.15) as
∑

i∈I
b⊤
j,i1 ≤ Cj, ∀j, (4.42)

which is separable among data centers. We define setsAi = {ai|
∑

j∈J ai,j ≤ Ri, ai,j ≥ 0,∀j ∈

J } andBj = {Bj |
∑

i∈I b
⊤
j,i1 ≤ Cj,

∑

i∈I bj,i � Qj,bj,i � 0,∀i ∈ I} for compactness.

Accordingly, A = {⋃Ai}Ii=1 andB = {⋃Bj}Jj=1. Then the stochastic optimization problem

(4.13) can be solved distributively in parallel using ADMM.

By applying the stochastic ADMM to solve the optimization problem (4.13), we first calcu-

late the partial Lagrangian function, which introduces theLagrange multipliers only for constraint

(4.17):

Lρ({ai}Ni=1, {Bj}Jj=1, {µi,j}N,J
i=1,j=1) =

∑

j∈J
Gj(Bj)− α

∑

i∈I
Eξi{Fi(ai, ξi)}

+
∑

i∈I

∑

j∈J
〈µi,j, ai,j − b⊤

j,i1〉+
ρ

2

∑

i∈I

∑

j∈J
‖ai,j − b⊤

j,i1‖22, (4.43)

whereµi,j is the Lagrange multiplier. The decision variablesai andBj are arranged into two groups

and updated iteratively. The update procedure has two majorparts: the request allocation update

and the response routing update, which are illustrated below.

Request allocation updates at mobile service agents: The request allocation updates at mo-

bile service agents are performed by minimizing (4.43) withrespect to{ai}Ni=1 ∈ A. Specifically,

at thetth iteration,ai is updated by

{at+1
i }Ni=1 = argmin

{ai}Ni=1
∈A

−α
∑

i∈I
Eξi{Fi(ai, ξi)}+

∑

i∈I

∑

j∈J
〈µt

i,j, ai,j−1⊤bt
j,i〉

+
ρ

2

∑

i∈I

∑

j∈J
‖ai,j−1⊤bt

j,i‖22. (4.44)
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In (4.44) the optimization is performed to maximize the utility at mobile service agents with reg-

ularization terms. The optimization problem (4.44) can be decomposed intoN subproblems, and

each subproblem is handled at a local computing unit. A computing unit can be a computing node

in computer clusters, a CPU in a computing node, or even a coreof a CPU. Each computing uniti

solves a stochastic optimization problem as

at+1
i = argmin

ai∈Ai

−αEξi{Fi(ai, ξi)}+
∑

j∈J
〈µt

i,j, ai,j − 1⊤bt
j,i〉+

ρ

2

∑

j∈J
‖ai,j − 1⊤bt

j,i‖22. (4.45)

The optimization problem (4.45) can be solved by the following proposition.

Proposition 4.5. Theai-update can be solved by the stochastic approximation (SA) approach as:

at+1
i = argmin

ai∈Ai

∑

j∈J
〈µt

i,j, ai,j − 1⊤bt
j,i〉+

ρ

2

∑

j∈J
‖ai,j − 1⊤bt

j,i‖22

− α

(

Fi(a
t
i) + 〈∇Fi(a

t
i, ξ

t
i),ai〉+

‖ai − ati, ‖22
2ηt

)

(4.46)

whereηt = ǫ√
t+1

, andǫ ≥ 0 is the penalty parameter.

Remark: In (4.46), the stochastic optimization (4.45) is solved byan SA approach, where a

quadratic approximation of functionF (ai, ξi) at ati is utilized. The computing unit corresponding

to each mobile service agent will calculate its own request allocation decisionai independently, by

taking the stochastic wireless link latency into account.

Response routing update at data center: At the tth iteration, the request allocation updates

are performed by minimizing (4.43) with respect to{Bj}Jj=1 ∈ B as

{Bt+1
j }Jj=1 = argmin

{Bj}Jj=1
∈B

∑

j∈J
Gj(Bj) +

∑

i∈I

∑

j∈J
〈µt

i,j , a
t+1
i,j −b⊤

j,i1〉+
ρ

2

∑

i∈I

∑

j∈J
‖at+1

i,j −b⊤
j,i1‖22.

(4.47)

Problem (4.47) aims at minimizing the total cost of all data centers, which can be readily solved

at each data center in parallel. Each data centerj will determine response routing variablesbj,i

independently by solving the following optimization problem

Bt+1
j = argmin

Bj∈Bj

Gj(Bj) +
∑

i∈I
〈µt

i,j , a
t+1
i,j − b⊤

j,i1〉+
ρ

2

∑

i∈I
‖at+1

i,j − b⊤
j,i1‖22. (4.48)
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Finally, the dual variables are updated as

µt+1
i,j = µt

i,j + ρ(at+1
i,j − 1⊤bt+1

j,i ). (4.49)

Remark: In the response routing update, each data centerj performs the optimization of

(4.48) to find theBj , which minimizes the cost at each data center. After that, the dual variables

{µi,j}Ni=1 for data centerj are updated together at the computing unit corresponding todata center

j. Each elementµi,j can be interpreted as the ‘price’ of placing mobile agenti’s service at data

centerj.

The large-scale stochastic optimization problem (4.13) for the service management can be

done periodically on a designed cluster. At the beginning ofeach scheduling period, computing

units corresponding to mobile agents perform request allocation updates to obtainai. Thenai is

sent to computing units corresponding to data centers through internal network in the cluster. After

the response routing update performed by data centers,Bj andµt+1
i,j are transmitted back to mobile

agent computing units. The iterations are terminated once the revenue maximization problem is

solved. The outputs are sent back to mobile agents and data centers for service allocation and

response routing.

4.2.4 Numerical Results

The proposed algorithms are evaluated by numerical simulations from perspectives of com-

putation performance and service management performance.The evaluation setup is introduced

briefly, and then numerical results are presented.

4.2.4.1 Evaluation Settings

We consider a mobile cloud service which provides applications forN mobile service agents,

N ∈ {100, 200, . . . , 1000}. The service is deployed on 10 cloud enabled geographicallydistributed

data centers, and each data center is multi-homed to 3 ISP links to deliver services to mobile clients.

The capacity of each mobile agent is generated from a uniformdistributionU(8000, 10000), with a

mean of9000 data units. The capacity of each data center is generated in asimilar fashion such that
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Figure 4.8 Convergence performance for 100 agents.

the total capacity of data centers is1.5 times of mobile service agents total capacity. For simplicity,

the latency of ISP links is randomly generated fromU(25, 300) with a unit of milliseconds, and the

stochastic wireless latencyξi is generated from an exponential distribution with a mean of5 ms.

To describe the service cost at data centers, the 2011 annualaverage day-ahead on peak prices

at 10 different local markets are used for data centers [103]. The server peak power and server idle

power are set to200W and100W , respectively. The power usage efficiently is1.5. The prices of

ISP links are chosen randomly from a finite set of{0.005, 0.01, 0.015} monetary units per data unit.

4.2.4.2 Convergence Performance

The convergence performance of the proposed algorithm is shown in Fig. 4.8-Fig. 4.10. We

compare the proposed algorithm with sampling approximation approach and certainty-equivalent

approach. They are two state-of-the-art approaches for stochastic optimization. For the sampling

approximation approach, theEξi{Fi(ai, ξi)} is approximated by1
Ns

∑Ns
n=1{Fi(ai, ξ

n
i )}, whereNs

is the number of samples ofξi from its distribution. The expectation ofξi, E{ξi}, is used for
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Figure 4.9 Convergence performance for 500 agents.

certainty-equivalent approach. Here, the scaled relativeerror is used to demonstrate results. Suppose

thatrt is the value of the objective function at thetth iteration, andr∗ is the optimal solution of the

certainty-equivalent approach. The scaled relative errore is defined ase = | rt−r∗

r0−r∗ |.

It is shown in Fig. 4.8-Fig 4.10 that the proposed algorithm converges for different number of

mobile service agents. In Fig 4.8, when the number of mobile service agents is 100, the proposed

algorithm takes a moderate number of iterations to converge. Furthermore, after very few itera-

tions, the proposed algorithm yields close objective valueto the sampling approximation approach,

which demonstrates the effectiveness of proposed algorithm for solving the stochastic optimization

problem. Similar performance can be found in Fig. 4.9 and Fig. 4.10, when the numbers of mobile

service agents are 500 and 1000, respectively. As the numberof mobile service agents increases,

the proposed algorithm converges with only a small increment of iterations, which demonstrates the

scalability of the proposed algorithm. Remark that the proposed method only utilize one realization

of ξ at each iteration to solve the stochastic optimization problem. In the SAA method,Ns samples

are used to approximateEξi{Fi(ai, ξi)} at each iteration. Hence the proposed method significantly
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Figure 4.10 Convergence performance for 1000 agents.

reduce the computational time.

In Fig. 4.11, we show the relative error of the proposed algorithm for different values of

penalty parameterρ. It is observed that the proposed algorithm converges in a moderate number of

iterations for all values ofρ between0.01 and1. We chooseρ = 0.1 in numerical simulations. An

inappropriate choice ofρ will result in oscillating objective value and slow convergence rate.

4.2.4.3 Service Management Performance

In the following we show the effectiveness of the proposed algorithm on service management.

We compare the proposed algorithm with two service management approaches. One the ‘cheapest

selection’ which aims at minimizing the data center cost solely, and the other is the ‘minimum

latency selection’ which aims at minimizing the ISP link latency solely. We specify the number of

mobile service agents to 100, and the performance comparisons are shown in Fig. 4.12 and Fig. 4.13.

The cumulative density function (CDF) of the request latency for three mechanisms is shown

in Fig. 4.12. It is observed that90% of requests are served with latency less than100ms for the pro-
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Figure 4.11 Rate of convergence of proposed algorithm for different values of penalty parameterρ.
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Figure 4.12 The CDF of the latency for three service management approaches.
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Figure 4.13 Comparisons of average latency, revenue, utility and cost for three service management
approaches.

posed algorithm, and the latency performance of the proposed algorithm is close to the ‘minimum

latency selection’ approach. The ‘cheapest selection’ dose not take the latency performance into

consideration explicitly, and thus has the worst performance. For completeness, the comparisons

of average latency, revenue, utility, and cost for three service management approaches are shown in

Fig. 4.13. It is shown in Fig. 4.13(a) that the proposed algorithm outperforms other two from per-

spectives of both average revenue and latency. A detail analysis of the average revenue is shown in

Fig. 4.13(b). It is shown that the proposed algorithm chooses the data center neither conservatively

to reduce the cost, like the ‘cheapest selection’ approach,nor aggressively to grasp the utility, like

the ‘minimum latency selection’. It manages the mobile cloud service strategically to balance utility

and cost.

Next we compare the revenue of the proposed service management algorithm with the mecha-

nism without the consideration of wireless latency, i.e., without the consideration ofξi in (4.13). The

number of agents is varied from100 to 1000, and the comparison of revenue is shown in Fig. 4.14.

The evaluations are performed50 times at each number of agents. The box plot of the revenue gain

at different number of agents and the plot of the mean of revenue gain are shown in Fig. 4.14. The

box plot depicts groups of numerical data through their quartiles. It is shown in Fig. 4.14 that when
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Figure 4.14 Comparisons of revenue for service management with/without consideration of wireless
latency at different number of agents.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference from the mean mobile request traffic

C
D

F
 o

ve
r 

m
ob

ile
 a

ge
nt

s

 

 

With consideration of random wireless latency
Without consideration of random wireless latency

Figure 4.15 The CDF of traffic variations among all mobile service agents with/without considera-
tion of wireless latency.
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taking the random wireless latency into consideration, theproposed service management algorithm

achieves a revenue gain of46% at different numbers of mobile service agents, compared with that

without the consideration of wireless latency. Moreover, such kind of improvement is relatively

stable across different numbers of mobile agents.

To further understand the effect of wireless latency on mobile service management, we inves-

tigate traffic variations among all mobile service agents. It is shown in Fig. 4.15 that the CDF with

consideration of random wireless nature is more skewed, implying that the request traffic varies

significantly across mobile clients. By taking wireless latency into consideration, mobile service

agents can adaptively admit request traffic according to thewireless link condition.

4.3 Conclusion

In this chapter, we have investigated distributed approaches for the mobile data offloading

in a SDN and the service management for mobile cloud computing. We have shown that efficient

and scalable management of big data services and data trafficcan improve resource utilization and

service quality of the could computing.
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Chapter 5

Interdisciplinary Studies

This chapter presents interdisciplinary studies of big data optimization methods. We first

described a decentralized approach of the Gauss-Newton (GN) method for nonlinear least squares

(NLLS) on a wide area network (WAN). In a multi-agent system,a centralized GN for NLLS re-

quires the global GN Hessian matrix available at a central computing unit, which may incur large

communication overhead. In the proposed decentralized alternative, each agent only needs local GN

Hessian matrix to update iterates with the cooperation of neighbors. For the hyperspectral imaging,

we proposed a novel imaging method to identify substances inthe scene of interest. In particu-

lar, instead of point-by-point scanning of the whole scene,a part of the scene is acquired through

coded measurements of spatial and spectral information. Given spectral signatures of substances,

the original data cube containing spatial and spectral information can be correctly reconstructed by

the l1 optimization method. The total variation is then performedto recovered the whole scene.

Numerical results are provided to validate the performanceof proposed methods.

The remaining of this chapter is organized as follows. Section 5.1 describes the decentralized

nonlinear least squares on wide area networks. The compressive hyperspectral imaging is illustrated

in Section 5.2.2. Finally, Section 5.3 gives a short conclusion.

5.1 Decentralized Nonlinear Least Squares

The significant importance of nonlinear least squares (NLLS) in applications of state esti-

mation in power system [116], signal detection in wireless networks [117], and target tracking in

mobile networks [118] have been appreciated for decades. The Gauss-Newton (GN) method, which

can be seen as a modification of the Newton’s method, is widelyused to solve the NLLS [28].

The GN method finds the minimizer of the NLLS in an iterative fashion, and obtains the solution

with provable local optimality and convergence rate. In this work, a decentralized GN method for

NLLS on a WAN is presented. In particular, only local GN Hessian matrix is used and limited
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communication is performed between neighboring agents. The decentralized optimization enjoys

the advantage of scalability to network size, robustness todynamic topologies, and privacy preser-

vation in data-sensitive applications [115, 119–121]. A detailed formulation of the decentralized

optimization problem for NLLS on a WAN is provided, and the updating rule at each agent is ex-

plicitly given. We also investigate the convergence property of the proposed algorithm, which turns

out the convergence rate is related to the number of agents aswell as the minimum node degree in

the network. Numerical tests validate the performance of the proposed algorithm.

The contributions of this work are threefold. Firstly, we donot assume any specific structure

for the global Hessian matrix, and proposed a decentralizedGN method for NLLS use only local

Hessian matrix. Whereas the localization application in [118] has a block-wise Jacobian matrix

which is convenient to decompose, and needs the global Hessian matrix for network-wide consen-

sus. [116] proposes a generalized gossip-based GN method, which still requires the global Hessian

matrix through Gossip exchange. Secondly, we proved the local superlinearly convergence property

of the proposed algorithm. Finally, we validated the proposed method through numerical simula-

tions.

5.1.1 The Nonlinear Least Squares Problem

Consider an unknown variablẽx ∈ R
n in a network, andm observations are obtained through

a vector-valued functionh(x̃) = (h1(x̃), . . . , hm(x̃)) : Rn → R
m. Each entry in functionh(x̃)

is a real value function and not necessarily convex. Letz ∈ R
m denotes the observations asz =

h(x̃)+e, wheree stands for measurement errors. The covariance ofe isR ∈ R
m×m. The unknown

variablex̃ ∈ R
n can be estimated by the NLLS as

minimize
x̃

(z− h(x̃))⊤R−1(z− h(x̃)). (5.1)

The GN method can be adopted to solve (5.1) given that all observations and functions are available

at a central computing node. Specifically, definer(x̃) = R−1/2(z−h(x̃)) and its JacobianJ(x̃) =

∂r(x̃)/∂x̃. Let F (x̃) = ‖r(x̃)‖2. Problem (5.1) can be solved iteratively asx̃k+1 = x̃k + αkdk,
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where the descent directiondk at each iteration can be obtained by solving

J⊤(x̃k)J(x̃k)d = J⊤(x̃k)r(x̃k). (5.2)

The GN method can solve the problem (5.1) at a superlinear convergence rate with order at least

two under Assumption 1. Note that majority of NLLS problems are non-convex, and in this section

we only consider the local convergence property of the algorithm. We assume Assumption 1 holds

throughout this section.

Assumption 1. Consider a functionF (x̃), suppose following assumptions hold.

1. The functionF (x̃) is continuous, differentiable and bounded below.

2. There exists a vector̃x∗ such that the greatest lower bound can be achieved.

3. For δ > 0, let Sδ denote the sphere{x̃|‖x̃ − x̃∗‖2 ≤ δ}. The Hessian matrixJ⊤(x̃)J(x̃) is

invertible in the sphereSδ. For someL > 0, M > 0, δ > 0, and for all x̃ and ỹ in Sδ, we

have‖J⊤(x̃)J(x̃)− J⊤(ỹ)J(ỹ)‖ ≤ L‖x̃− ỹ‖ andσmin(J
⊤(x̃)J(x̃)) ≥ 1

M ≥ 0.

In a multi-agent system consisted ofN networked agents, each agent is engaged in its own

monitoring and controlling task in the network. At the same time, each agent is cooperating with

other agents in the context of estimating global system statesx̃. Suppose theseN agents are loosely

coupled; there is very little, if any, central coordinationand control among those agents, and each

agent is able to exchange information with its neighbors. The system states̃x can be obtained by

solving the following optimization problem

minimize
xi...xN

f(x) =
N
∑

i=1

(zi − hi(xi))
⊤R−1

i (zi − hi(xi)),

subject to xi = . . . = xN , (5.3)

wherezi is the local observation which is a subset ofz, i.e.,z = (z1; . . . ; zN ), andhi is the local

observation function which is a subset ofh, i.e.,h = (h1; . . . ;hN ). R−1
i is the covariance matrix

of local noise vectorei. xi ∈ R
n is the local duplicate of̃x, andx = (x1; . . . ;xN ) ∈ R

Nn.
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5.1.2 Decentralized Nonlinear Least Squares on Wide Area Network

For concreteness, the network model of agents is first described. Specifically, consider a

graphG = (V, E). V represents the set of agents, andE represents the set of communication links

between each pair of agents. An arce is associated with an order pair(i, j) ase ∼ (i, j), which

means the information is transmitted from agenti to agentj. Assume the graph formed by the agents

is connected. By introducing auxiliary variableswij ∈ R
n associated with each arce ∼ (i, j) ∈ E ,

problem (5.3) can be reformulated as

minimize
{x1,...,xN}

N
∑

i=1

(zi − hi(xi))
⊤R−1

i (zi − hi(xi)) and (5.4)

subject to xi = wij, xj = wij, ∀(i, j) ∈ E , (5.5)

wherewij is used to enforce the equality of variablesxi andxj for agentsi and j connected

by arc (i, j). We use compact notations in the following for the sake of discussion simplicity.

Concatenatingwij in vectorw, problem (5.4) can be reformulated as

minimize
x,w

f(x), subject to Asx−w = 0, Adx−w = 0, (5.6)

whereAs andAd are extended arc source matrix and extended arc destinationmatrix for the net-

work graphG, respectively. StackingAs andAd to form A = [As;Ad] ∈ R
2Mn×Nn. The

optimization problem (5.6) reduces to

minimize
x,w

f(x), subject to Ax+Bw = 0, (5.7)

whereB = [−IMn;−IMn] ∈ R
2Mn×Mn. The GN method is utilized to solve the optimization

problem (5.7), where updates ofx are implemented in a decentralized fashion. The local update

rule at each agent is given in the following proposition.

Proposition 5.1. Consider iteratesxk andzk with the initializationEux
0 = 2w0, the iteratesxk

i

at each agenti can be iteratively generated by following recursions fork > 0:

xk+1
i = xk

i + αk
i d

k
i , (5.8)
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whereαk
i is a positive constant, anddk

i is the descent direction which can be determined as

(J⊤
i (x

k
i )Ji(x

k
i ) + ρνiIn)d

k
i = J⊤

i (x
k
i )ri(x

k
i ) + ρ[νixi −

1

2

∑

j∈Ni

(xk−1
i + xk−1

j )],

whereri(xi) = R
−1/2
i (zi − hi(xi)) andJi(xi) is its JacobianJi(xi) = ∂ri(xi)/∂xi. νi is the

degree of agenti in the network, andNi denotes the neighbors of agenti.

The local convergence property and convergence rate of the proposed decentralized approach

are given by the following theorem.

Theorem 5.2. Suppose the Assumption 1 holds, and the start point of each agentx0
i is in Sδ. The

sequence{xk} generated by the update rule given in Proposition 5.1 is defined, and converges to

x∗ = {x̃∗; . . . ; x̃∗}. Furthermore, we have

‖xk+1 − x∗‖ ≤ ML
√
N

2(1 +Mρmax(νi))
‖xk − x∗‖2, (5.9)

whereN is the number of agents andmax(νi) is the maximum node degree in the network.

Remark that Theorem. 5.2 illustrates the local convergenceproperty of the proposed decen-

tralized approach, which converges to the optimal solutionsuperlinearly. The convergence rate is

related to the number of agents as well as the minimum node degree in the network.

5.1.3 Numerical Results

A bidirectionally connected ring network composed ofN = 100 agents is considered here,

in which each agent connects to exactly two agents. The unknown system states in the network is

x̃ ∈ R
3. The observation functionhi(xi) at each agenti is defined as

hi(xi) = ai(xi(1)
2 + xi(2)

2) + bixi(2) sin(xi(2)− xi(3)) + cixi(1)xi(2), (5.10)

whereai, bi, andci are i.i.d. random variables follow the standard normal distribution. It is seen

that the observation functionhi(xi) is a nonlinear function with a quadratic term, a trigonometric

term and a cross product term. The agents in the network work cooperatively to estimate unknown

system states̃x in a decentralized fashion. The convergence result is depicted in Fig. 5.1. It is
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Figure 5.1 Convergence performance of the proposed algorithm.
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Figure 5.2 RMSE performance of the proposed algorithm.
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shown that the proposed algorithm is effective in the sense that after a moderate number of itera-

tions, the iterates converge to the optimal value. To investigate the performance of the proposed

decentralized approach at each agent, the root-mean-square error (RMSE) of the estimate at each

agent is calculated. The best RMSE (agent 2), the worst RMSE(agent 52) and the average RMSE

are described in Fig. 5.2. It can be seen that at each agent, the RMSE decreases as the iteration

increases. Furthermore, the convergence rates at each agent are different.

5.2 Compressive Hyperspectral Imaging

5.2.1 Optical Imaging Model

The proposed imaging system is comprised of a telescopic system for scene, and a dispersive

system commonly used as a traditional dispersive spectroscope. A spatial light modulator occupies

the plane between these two systems, which modulates the spatial information over all wavelengthes

with the programmed pattern. The spectral intensity is captured by the focal plane array after dis-

persion. A schematic of the proposed imaging system is shownin Fig. 5.3.

The thermal emission from the region of interest,fs(x, y;λ), is first demagnified and imaged

to the object plane of the telescopic system,f0(x, y;λ). (x, y) is the spatial coordinate andλ

represents the wavelength. After passing through the spatial light modulator, the resulting field is

expressed asT (x, y)f0(x, y;λ). f0(x, y;λ) is the spectral density of the scene, andT (x, y) is the

binary or gray-scale reflection function

T (x, y) =
∑

m′,n′

αm′,n′rect(
x

β∆
−m′,

y

β∆
− n′), (5.11)

whereαm′,n′ is 0/1 according to the configuration of the modulator at(m′, n′) and∆ is the size of

detector pixel. The feature size of the spatial light modulator can be an integer multipleβ of ∆. The

choice of spatial light modulator here is a digital micro-mirrors device(DMD). Each mirror rotates

about a hinge and can be positioned in one of two orientations, +12 degrees and−12 degrees

from horizontal. The light falling on the DMD can be reflectedin two directions depending on

91



Figure 5.3 The schematic of imaging system.

orientations of mirrors, which correspond to 0 and 1, respectively.

The resulting field,T (x, y)f0(x, y;λ), is then imaged by the dispersive system with a grating

placed at its Fourier plane. The field at the detector plane can be written as the convolution of the

point spread function of the spectrograph andT (x, y)f0(x, y;λ)

f(x, y;λ) =

¨

δ(x′ − (x+ γ(λ− λc)))δ(y
′ − y) (5.12)

× T (x′, y′)f0(x
′, y′;λ) dx′dy′

= f0(x+ γ(λ− λc), y;λ)T (x+ γ(λ− λc), y),

whereγ is the linear dispersion of the dispersive element, andλc is the center wavelength of interest.

The field received at the detector array contains a modulatedmixture of spatial and spectral infor-

mation about the scene, and the spatial shift of every spectral band happens only in the dispersion

direction. Since the detector array’s sensitivity covers the wavelength range of7− 14µm, the field
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received can be expressed as a integration over the entire wavelength

g(x, y) =

ˆ

f(x, y;λ) dλ. (5.13)

Equation (5.13) serves as the general imaging model in the continuous spatial domain. Recognizing

that both mask and detector arrays are in fact pixilated g(x,y)

gmn =

¨

g(x, y)rect(
x

∆
−m,

y

∆
− n) dxdy + wmn

=

˚

f(x, y;λ)rect(
x

∆
−m,

y

∆
− n) dxdydλ+ wmn

=
∑

m′,n′

αm′,n′

˚

f0(x+ γ(λ− λc), y;λ)× rect(
x+ γ(λ− λc)

β∆
−m′,

y

β∆
− n′)

× rect(
x

∆
−m,

y

∆
− n) dxdydλ+ wmn. (5.14)

Remark that both the spatial light modulator and the detector array are in fact pixilated, we

can discretize the modulated data as a three dimension data cube (N × M × K). M and N are

numbers of spatial channels, and K is the number of spectral channels of the thermal emission.

The sampling measurements g on the detector can be represented as aN × (M +K − 1) matrix.

Spectral channels of original image’s adjacent columns hasa column of pixels displacement due to

the dispersive system.

5.2.2 Compressive Hyperspectral Imaging Methods

The three dimension data cube representing the scene,f0(x, y;λ), can be expressed as

f0(x, y;λ) =
∑

x,y

Φv(x, y), (5.15)

whereΦ = (φ1,φ2, ...,φJ) is the emissivity spectrum ofJ different substances.v(x, y) is J × 1

vector from the setV = {(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1)}. Note thatv(x, y) is highly

sparse in the sense that at most one component is non-zero. Itmeans that for each pixel location, its

emissivity spectrum can be uniquely determined by selecting the appropriate spectrum inΦ.
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We can write the resulting field passed the spatial light modulator in a similar way

f(x, y;λ) =
∑

(x,y)∈S
Φv(x, y), (5.16)

where(x, y) ∈ S = {(x, y) : T (x, y) 6= 0}. We reformulate equation (5.16) into a matrix form by

stackingv(x, y) into a vectoru as

g = HΦu+w, (5.17)

whereu is a(M ×N × J)× 1 vector and g is a(K +M − 1)×N × 1 vector.HΦ is a matrix of

size((K +M − 1) ×N) × (M ×N × J), where H is a linear operator that represents the effect

of the imaging system.

By exploiting the sparsity ofu, the recovery ofg in problem (5.17) can be formulated as

minimize
u

||g −HΦu||22 + λ||u||1, (5.18)

whereλ is a parameter balancing the data fidelity term and the regularization term. (5.18) is a

convex problem and can be solved by existing polynomial timealgorithms. What’s more, we can

deal with a nonnegativel1 minimization problem that will enhance sparsity. Note thatthe recovered

u is the partial image here. The whole image can be recovered bythe total variation imprinting

optimization as

minimize
v̂

‖v̂‖TV , subject to v̂|S = v|S, (5.19)

wherev|S denotes values ofv on setS.

5.2.3 Numerical Results

The experiment results are given in this section. The scene of interested is demonstrated in

Fig. 5.4, and emissivity signatures are shown in Fig. 5.5. Here we consider two kinds of substances

and the scene background. The performance of the proposed imaging method is compared with the

point-by-point sampling method, and experiment results are shown below.

The signal-to-noise ratio (SNR) of the imaging system is varied from 10dB to 30dB, and

recovered scenes by the point-to-point sampling method andthe proposed method are shown in
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Figure 5.4 Original scene.

Table 5.1 The accuracy of two methods at different SNRs.

SNR(dB) Point to point method Proposed method

10 0.9305 0.9209

20 0.9310 0.9224

30 0.9308 0.9241

Fig. 5.6 and Fig. 5.7, respectively. The accuracy of two methods at different SNRs are listed in

Table 5.1. The reconstruction results by the point-to-point recovery method is shown in Fig. 5.6.

Here,14000 times of sampling are taken, and93% pixels are recovered correctly in this case. For

the proposed imaging method,4% of pixels are sampled each time, and80% of pixels are collected

for imaging recovery, i.e., totally20 times of sampling are taken in our numerical simulations.

By comparison, the proposed imaging method outperforms thepoint-to-point sampling method in

sampling efficiency of700 times speed up with comparable recovery correctness.
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Figure 5.5 The schematic of imaging system.

5.3 Conclusion

In this chapter, we have presented applications of big data optimization methods for the non-

linear least squares on a wide area network and the compressive hyperspectral imaging. The effec-

tiveness of proposed methods are validated by numerical simulations.
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(a) SNR = 10dB (b) SNR = 20dB (c) SNR = 30dB

Figure 5.6 Recovered scene by point-to-point method.

(a) SNR = 10dB (b) SNR = 20dB (c) SNR = 30dB

Figure 5.7 Recovered scene by proposed method.
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Chapter 6

Conclusions and Future Work

This dissertation dealt with big data optimization for modern communication networks. In

this final chapter, we conclude our work and suggest directions for future research.

6.1 Conclusion Remarks

This thesis explored applications of big data optimizationin modern communication net-

works. The techniques and methods which have been developedin this thesis are listed as follows:

• We have reviewed several distributed and parallel optimization methods based on the ADMM

for big data optimization problems. We have introduced the background of ADMM from

its two precedents: the dual ascent method and the method of multipliers. We have also

described several direct extensions and sophisticated modifications of ADMM from 2-block

to N -block settings. We have explained iterative schemes and convergence properties for

those extensions/modifications. The implementations of reviewed algorithms on large-scale

computing facilities are also illustrated.

• We have investigated big data processing techniques for smart grid security. For the security

of system state estimation, we have exploited the temporal correlation of time-series state

measurements and the sparse nature of malicious attacks to detect the false data injection

in the power grid. We have formulated the false data detection problem as a matrix separa-

tion problem. Two methods, the nuclear norm minimization method and the low rank matrix

factorization method, are proposed to recover electric power states and to detect malicious

attacks on the power grid. The proposed methods can also dealwith missing measurements.

Numerical simulations have been performed to evaluate proposed algorithms. For the se-

curity of economical dispatch, we have proposed a distributed parallel approach based on

the ADMM to deal with the resulting large-scale optimization problem with manageable
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complexity. Specifically, we have decoupled and divided theSCOPF problem into inde-

pendent subproblems of approximately the same size corresponding to pre-contingency and

post-contingency cases. Subproblems have been optimized in a parallel fashion on distributed

nodes, and dual (price) variables have been designed delicately for coordination. Numerical

tests on IEEE buses have validated the effectiveness of the proposed algorithm.

• We have proposed scalable mechanisms for big data traffic management in mobile networks.

For mobile data offloading, We have formulated a total revenue maximization problem by

jointly considering offloading utilities of BSs and cost of APs. We have applied the prox-

imal Jacobian multi-block ADMM to solve the optimization problem in a fully distributed

fashion. We have evaluated the proposed algorithm by numerical simulations. For the ser-

vice management mechanism in mobile cloud computing, we have jointly considered tasks

of clients request allocation and data center response routing, and taken the effect of wire-

less link latency into account. We have formulated a servicerevenue maximization problem,

in which the mobile service provider optimally locates clients requests to provide qualified

service at a reasonable cost. We have used the ADMM to solve the large-scale stochastic

optimization problem with manageable complexity, and analyzed the convergence property

under the stochastic setting. Our algorithm can decompose the optimization problem into a

set of independent subproblems. These subproblems can be solved in a parallel fashion on

distributed nodes and coordinated through dual variables.Our numerical tests have validated

the effectiveness of the proposed algorithm.

6.2 Future Work

6.2.1 Decentralized State Estimation in Smart Grid

Previous work on smart grid security presented in Chapter 3 used direct current (DC) power

flow approximation for system state estimation and optimal power flow dispatch. The DC approx-

imation model can provide quick operation instructions forthe system. For precise system status
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monitoring and operation, alternating current (AC) power flow equations are needed

Pi =
N
∑

k=1

|Vi||Vk|(Gik cos θik +Bik sin θik) and (6.1)

Qi =
N
∑

k=1

|Vi||Vk|(Gik sin θik −Bik cos θik), (6.2)

wherePi andQi are real power flow and inactive power flow at busi, respectively.Vi is the voltage

magnitude at busi. Gik andBik are the real and imaginary part of the(i, k)th element of the bus

admittance matrix.θik is the voltage phase angle difference between busi and busj. The problem

of state estimation is how to find voltage magnitudes and phase angles given nonlinear equations of

real and inactive power flows in the system. To estimate the system state in a decentralized fashion,

we propose to investigate the following:

• In order to deal with non-convex and non-linearity in AC power flow equations, we can study

and design a second-order method such as the Gauss-Newton method to find the solution. We

can also consider proper relaxations to make it a convex optimization problem.

• The topology of the electric grid is quite sparse. An optimalpartition of the electric grid can

simplify the optimization problem by reducing coupling components, facilitating the decen-

tralized computing, and mitigating communication overhead of the algorithm.

• The proposed algorithm can be mapped to high performance computing facilities like high

performance computer clusters, which enable real-time monitoring of system states.

6.2.2 Smart Meter Reading Data Clustering

The advanced metering infrastructure (AMI) enables two-way communications with the me-

ter. The smart meters are able to record the consumption of electric energy of each household and

send readings to data centers of utility companies for billing and customer service. This provides

real time information about electric energy consumption and behaviors of consumers, which can

be used for data mining. The smart meters record electric energy consumption of consumers every
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fifteen minutes, which means that a substantial amount of data are generated daily in the U.S.. By

investigating those data, we can better understand profilesof consumers to ensure the quality of

service, develop targeted electric energy plans, and accurately predict energy consumption of the

power system. We propose to investigate the following for smart meter data clustering:

• In order to reduce the dimension of collected smart meter data for clustering, we can study

efficient distributed and parallel methods to perform the principle component analysis. A

non-parametric clustering method can be developed to classify consumers into different types

even though the number of clusters is unknown before clustering.

• The large amount of smart meter data will incur a huge computational burden for clustering.

Even though the computation can be performed in a parallel fashion, the strict time require-

ment may still be difficult to meet. To further accelerate thecomputation, we can develop a

sub-linear algorithm for clustering.

• We can formulate a dynamic optimization problem to decide the economical dispatch of the

power system given the current supply of the electric grid, and design a dynamic pricing

mechanism based on clustering results and consumers’ profiles.

6.2.3 Efficient Air Quality Monitoring

The air pollution has been an utmost concern for public health nowadays. In 2012, around

seven million people dead worldwide due to the air pollution. However, the existing air-quality

monitoring network has very low spatial and temporal coverage, which severely limits its ability to

predict air quality and to analyze its impact on environment, climate, and public health. Fortunately,

there exists a large amount of diverse data, such as satellite remote sensing data, meteorological data

(temperature, wind, pressure, humidity, etc.), and trafficdata (volume, speed, congestion) which

can be utilized. Instead of solely relying on the traditional monitoring network to provide us the

air quality data, many heterogeneous big data sources can beused to develop innovative big data

processing methods in air quality research. We propose to conduct efficient air quality monitoring
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research by investigating the following:

• The various data from traditional, emerging, and new sources can be collected and integrated

to predict highly temporal and spatial resolved air qualitydata. The heterogeneous static and

dynamic data of different spatiotemporal scales will be collected, integrated, and fed into

spatiotemporal models for pollution mapping and source apportionment.

• Computationally tractable models can be trained from various heterogeneous spatiotemporal

big data to predict air pollutant concentrations at times and places, where direct readings are

not available. A multi-view learning framework which incorporates multiple different tempo-

ral and spatial models can be exploited. This model can deal with the huge data size, different

types of data taken at different times and locations with different sampling frequencies, and

the lack of labeled data.

• To identify and pinpoint major emission sources of air pollutants, we can apply compressed

sensing techniques to solve this inverse problem. The sequential compressed sensing and

online numerical methods can be developed to deal with the nonlinear process of pollutant

formation and its online nature, respectively.
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