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Abstract

The unprecedented big data in modern communication nesydsents us opportunities and
challenges. An efficient analytic method for the sheer vawhdata is of significant importance
for smart grid evolution, intelligent communication netwananagement, efficient medical data
management, personalized business model design and dtyadeeelopment. Meanwhile, the
huge volume of data makes it impractical to collect, stora @mcessing in a centralized fashion.
Moreover, the massive datasets are noisy, incompleterdgeieeous, structured, prone to outliers,
and vulnerable to cyber-attacks. Overall, we are facingollpm in which the classic resources of
computation such as time, space, and energy, are intedwiremplex ways with the massive data
sources, and new computational mathematical models aswelethodologies must be explored.

With the rapid development of the modern communication ngte/‘comes the need of novel
algorithms for large-scale data processing and optingmatin this thesis, we investigate the appli-
cation of big data optimization methods for smart grid sig@nd mobile data traffic management.
Firstly, we review the parallel and distributed optimipatialgorithms based on an alternating di-
rection method of multipliers for solving big data optintioa problems. The mathematical back-
grounds of the algorithms are given, and the implementatamlarge-scale computing facilities
are also illustrated. Next, the applications of big datacpssing techniques for smart grid security
are studied from two perspectives: how to exploit the inhiestructure of the data, and how to
deal with the huge size of the data sets. Explored problemshar sparse optimization approach
for false data injection detection, and the distributechfp@lrapproach for the security-constrained
optimal power flow problem, respectively. Finally, we calesi big data optimization methods for
data traffic management in mobile cloud computing by two ijgegpplication cases: the mobile
data offloading in a software defined network at the netwodegdnd the management of mobile
cloud service request allocation and response routing dhown by numerical results that effec-
tive management and processing of big data have the pdtemsanificantly improve smart grid

security as well as resource utilization and service qualfithe mobile cloud computing.

Vii
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Chapter 1

Introduction and Background

Nowadays, modern communication networks play an impomaletin electric power sys-
tem, mobile cloud computing, smart city evolution and peaddiealth care. The employed novel
telecommunication technologies make data collection neasher for power system operation and
control, enable more efficient data transmission for moaflications, and promise a more in-
telligent sensing and monitoring for metropolitan citgiens. Meanwhile, we are witnessing an
unprecedented rise in volume, variety and velocity of infation in modern communication net-
works. A large volume of data are generated by our digitaipygants such as mobile devices
and computers, smart meters and household appliances|laswerveillance cameras and sensor-
equipped mass rapid transit around the city. The informatirposition of big data in modern
communication networks makes statistical and computatiorethods significantly important for
data analysis, processing, and optimization. The netwpdtaiors or service providers who can
develop and exploit efficient methods to tackle big datalehgks will ensure network security and
resiliency, gain market share, increase revenue withndisie quality of service, as well as achieve
intelligent network operation and management.

This chapter gives introduction and background of big datarozation for modern commu-
nication networks. In particular, big data processing mégpines for smart grid system security and
scalable mobile networks traffic management are considdred rest of this chapter is organized
as follows. The motivation and context are provided in S&¢fi.1. Sectioh 112 describes the thesis
outline and major contributions. The published resultsgaren in Section 1]3. Finally, Sectién 1.4

introduces notational conventions used in this thesis.



1.1 Motivation and Context

1.1.1 Big Data Optimization for Smart Grid Security

The smatrt grid is a modernized power system which enablésbitnal flows of energy as
well as using two-way communication and control capabditio improve efficiency, reliability, eco-
nomics and sustainablility of the production and distridmutof electricity. In the conceptual model
of the smart grid, seven components are introduced as Hedan Tablé 1J1[1], and an illustration
of their interaction is explained in Fig._1.1/[1]. The smaridgs an integration of electrical and
communication infrastructures. The inevitable couplietween information/communication tech-
nologies and physical operations is expected to presequerdhallenges as well as opportunities
for the smart grid.

On one hand, we are observing increasing integration beteyd®er operations and physical
infrastructures for generation, transmission, and distion control in the electric power grid. Yet
security and reliability of the power grid are not always iguieed and some failures can cause
significant problems for the grid. For example, the 2003 hemst power blackout showed that
even a small failure in a part of the grid can have cascadifertsf causing billions of dollars
in economic losses. Nowadays, the consolidation of phlysicd cyber components gives rise to
security threats in power grids, which can result in powegages and even system blackouts [2], or
substantial economical loss due to non-optimal operatdtise power grid.

On the other hand, the anticipated smart grid data delugeerged by sensing and mea-
surement devices and reinforced by communication andnrdton technologies, provides us the
potential to enhance security and reliability of the powestesm. For example, the deployment of
phasor measurement units (PMUSs), which provide real-tissessments of power system health
to system operators, for the future North American powed grill generate 4.15 TB phasor data
per day. It is estimated that 61.8 million smart meters wdlldeployed in the U.S. by the end
of 2013, and the estimated amount of compressed smart negtefal one million users per year

is 27.3TB [3]. Those big data, if effectively managed andsfated into actionable insights, has



Table 1.1 Domains and roles/services in the smart grid quunaémodel.

Domain Roles/Services

Customer The end users of electricity. May also generate, store, aauth |
age the use of energy. Traditionally, three customer typeslia-
cussed, each with its own domain: residential, commeraiadi
industrial.

Markets The operators and participants in electricity markets.

Service Provider

The organizations providing services to electrical cugismand
to utilities

Operations

The managers of the movement of electricity.

Generation

The generators of electricity. May also store energy faerldis-
tribution.

Transmission

The carriers of bulk electricity over long distances. Magoagtore
and generate electricity.

Distribution

The distributors of electricity to and from customers. Mésoq
store and generate electricity.

——
Service
Provider

v

Custdmer

A

X

e Secure Communication Flows

aaaaa Electrical Flows

Domain

' Generation

N’

Figure 1.1 An illustration of the updated NIST smart grichfivork 3.0.



the potential to increase operational efficiency and enguderesiliency of the power system. The
adopted methods should be able to utilize the inherenttstieiof data to extract useful information.
Moreover, big data should be processed in a timely fashibmsTnew computational mathematical
models and methodologies must be explored to effectiveyraip an ever-complicated power grid

and achieve the vision of a smart grid.

1.1.2 Scalable Traffic Management for Mobile Networks

Now wireless has become the primary or even the sole accesmanfor more and more
people. The global mobile data traffic has reached 1.5 egalpdr month by the end of 2013, and
will increase nearly 11-fold between 2013 and 2018, reachi9 exabytes per month by 2018 [4]
as shown in Fig._1]2 [4]. The sheer volume of mobile big daffitr far exceeds the growth in
service revenues as well as in budgets required to address tiew demands. Mobile service
operators need to enhance their infrastructures and serivia timely and cost-effective manner to
carry higher volumes of traffic and support more sophistitatervices.

The traditional static network architecture is ill-suitteddynamic computing and storage re-
guirements of today’s mobile cloud computing environmé®dnventional networks are hierarchi-
cal, built with tiers of network switches arranged in a treecture. With the rise of cloud service
and the increasingly employing mobile personal device,tthditional network architecture can
not address changing traffic patterns and increasing amadmntaffic in the network. The rise of
mega data sets is fueling constant demand for additionalanktcapacity. Meanwhile, operators of
hyper-scale mobile networks face the daunting task ofrsgalie network (to a previously unimag-
inable size), maintaining connectivity, and satisfying tfuality of service requirement. Hence, new
network paradigm and service traffic management mechamsmezessary to accommodate huge
bandwidth needs for big data.

Further, efficient and scalable service management mestharare needed to address big
data traffic and coordinate different entities (data centesrvice hosts, and routers) to provide end

users with qualified services at a reasonable cost in thelendbud computing. The mobile cloud
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Figure 1.2 The global mobile data traffic forecast by region.

computing can improve the performance of mobile applicatiby offloading data processing and
storage from a mobile device to the cloud. By deploying sewion several cloud-enabled data
centers, the service provider can optimally locate seriistances on the cloud to provide qual-
ified services at a reasonable cost. However, a centraligpcbach for both request allocation

and response routing does not scale due to the large numbeslole clients involved in the ser-

vice management problem. Moreover, the random and unpabdicwireless network performance
(such as delays) complicates the problem. Hence, scalallldistributed mechanisms for service

management are needed in the mobile cloud computing.

1.2 Thesis Outline and Contributions

The research dealt with in this thesis contributes to thesldgwment of efficient and scal-
able methods for big data optimization problem in modernmaomication networks. The proposed
methods are based on the alternating direction method dfpiels (ADMM), which are able to
leverage the inherent sparse or low rank structure of datelss enjoy the robustness and scala-
bility. The applications of ADMM for smart grid security arstalable mobile traffic management

are investigated. The contributions of this thesis are ematad as follows



e We reviewed parallel and distributed optimization aldgoris based on ADMM for solving
big data optimization problems. We introduced the develapnof ADMM and describe
several direct extensions and sophisticated modificatbAOMM from 2-block to NV-block
settings. The iterative schemes and convergence propeftthose extensions/modifications

were given, and implementations on large-scale compu#aijties were also illustrated.

e We investigated big data processing techniques for smattsgicurity. In particular, we
studied the sparse optimization for false data injectioeat®mn, which exploited intrinsic
low dimensionality and sparsity of the data set, and theildiged approach for the security
constrained optimal power flow, which scalably solved thigdascale optimization problem.

Numerical simulations were conducted to validate the perémce of the proposed algorithm.

e We considered big data traffic management in mobile netwos proposed a distributed
mechanism for mobile data offloading in software defined ndtvat the network edge, and
designed a decentralized approach for service requesatilo and response routing in mo-

bile cloud computing. Numerical simulations were perfodnie test proposed mechanisms.

The elaborate discussion of these contributions outlinestganization of this thesis. In Chagtér 2,
we review the mathematical background of the ADMM. The dsakat method and the method of
multipliers, two precedents of the ADMM, are introducedtfirBhen we describe the general form
of ADMM and its relationship to the method of multipliers. taf that, we review several state-of-
the-art V-block ADMM algorithms. For each algorithm, the iterativpdate scheme is described
and its convergence property is discussed. The implenensadn large-scale computing facilities
such as high performance computers and cloud computingsinéictures are illustrated. Finally,
we summarize the relationships among reviewed algorithms.

In Chaptef B, the big data processing techniques for smidrsgcurity are investigated. Two
problems, the false data injection attacks detection fieststimation and the security constrained
optimal power flow problem, are considered. The state etitman the electric power grid is

vulnerable to false data injection attacks, and diagnotiege kinds of malicious attacks has sig-



nificant impact on ensuring reliable operations for powesteys. By noticing the intrinsic low
dimensionality of temporal measurements of power gricestads well as the sparse nature of false
data injection attacks, we propose a novel false data dmtatiechanism based on the separation of
nominal power grid states and anomalies. Two methods, ttleaunorm minimization and the low
rank matrix factorization, are presented to solve this lgmb It is shown that proposed methods are
able to identify proper power system operation states alsaseletect malicious attacks, even under
situations in which collected measurements are incomphtenerical simulation results, both on
synthetic and real data, validate the effectiveness ofqeeg mechanisms. The second problem
of security constrained optimal power flow determines thenugd control of power systems un-
der constraints arising from a set of postulated contingsncThis problem is challenging due to
the significantly large problem size, the stringent realetirequirement, and the variety of numer-
ous post-contingency states. The ADMM is utilized to sole tesultant large-scale optimization
problem with manageable complexity. The problem is decaa@anto independent subproblems
corresponding to pre-contingency and post-contingensgsaEach computing node addresses its
local optimization problem, and computing nodes are coatgid through dual (prices) variables.
Numerical tests validate the effectiveness of the propasgatithm.

In Chaptei 4, big data traffic management in mobile networkscansidered. Two cases,
the mobile data offloading in a software defined network, &edservice management in mobile
cloud computing, are studied. The mobile data offloadingtess introduced to alleviate the con-
gestion of cellular networks and improve the quality of sgevfor mobile end users. We present
a distributed mechanism for mobile data offloading in a safemdefined network at the network
edge. The proposed mechanism is based on the proximal dacwohilti-block ADMM. Base sta-
tions and access points perform offloading decision updatesurrently, and are coordinated by the
software defined network controller through dual varialiteseach a consensus on the offloading
decision. Numerical simulations validate the effectiveanef the proposed algorithm. The second
problem relates to the service traffic management in moldedccomputing. The mobile cloud

computing has been introduced to improve the performancratliile applications by offloading



data processing and storage from a mobile device to the clByddeploying service on several
cloud-enabled data centers, the service provider can affyitocate service instances on the cloud
to provide qualified services at a reasonable cost. Howaveantralized approach for both request
allocation and response routing does not scale due to the tarmber of mobile clients involved in
the service management. Moreover, the random and unpabticlvireless network performance
complicates the problem. We present a stochastic distibaptimization framework for mobile
cloud services management, which takes the impact of randogtess network characteristics into
account. Utilizing the ADMM, the optimization problem isaenposed into independent subprob-
lems, which can be solved in a parallel fashion on distridbutemputing nodes. The convergence
issue is addressed, and numerical tests validate theiedieess of the proposed algorithm.

In chaptef b, we investigate the interdisciplinary researichig data optimization methods.
In particular, we study the decentralized approach of thes&&Newton method for nonlinear least
squares on a wide area network, and the compressive senaimgviork for high-throughput hy-
perspectral imaging. Numerical simulations are perfortoadilidate the effectiveness of proposed
methods.

In Chaptef B, we conclude our work and explore possible sites of our proposed big data
optimization frameworks. Three potential applicatiorg distributed state estimation in electric
power system, the efficient air quality monitoring in metlifan city-regions, and the customer

profiles extracting from smart meter reading data are desri

1.3 Published Results

The present Ph.D. work on big data optimization for modemmmainication networks has
resulted in the publication of one book chapter [5] and thweenal papers in the Institute of Elec-
trical and Electronic Engineering (IEEE) Transaction ona®ntGrid [6], System Journal [7] and
European Alliance for Innovation Transactions on Wirel8pgctrum|[8]. The work has also been
disseminated at pertinent conferences, where a total enhsasticles have been accepted for pre-

sentation[[9=15].



1.4 Notational Conventions

In this thesis, matrices are bold capital, vectors are mieetcase and scalars or entries are
not bold. The notatiox = (x/,...,x,) ) is used to represent the column vector form by stacking
vectorsxy, ..., X,. Fora block matrixM, (M), ; is used to denote thg, j) block. The notation
diagM;,...,M,) is a diagonal matrix whos¢" diagonal block isM;, and the® denotes the
Kronecker product. The identity matrix is denotedlasc R™V*Y, whereR denotes the real set.
A N x 1 column vector with all ones is denoted hs. The||x||» represents Euclidean norm of
vectorx and || X||» represents the Frobenius norm of mafx The norm ofx with respective
to a Hermitian positive definite matri& is denoted agx|g. X', X!, omax(X) andomin(X)
denote the transpose, the inverse, the largest singulae vahd the smallest nonzero singular value

of matrix X, respectively.



Chapter 2

Alternating Direction Method of Multipliers

In the era of big data, numerous problems in machine learmiogpressed sensing, social
network analysis, and computational biology formulatdrojatation problems with millions or bil-
lions of variables. Since classical optimization algarithare not designed to scale to problems
of this size, novel optimization algorithms are emergingdtve problems with big data. An in-
comprehensive list of such algorithms includes the bloakrdimate descent methad [J.G-H&]he
stochastic gradient descent methiod [19-21], the dual omtelascent method [22,123], the alter-
nating direction method of multipliers (ADMM) [24, 25], anlde Frank-Wolf method (also known
as the conditional gradient method) [26] 27]. Each type efalyorithm enumerated has its own
strength and weakness. The list is still growing and due tolimited knowledge and the fast
development of this active field of research, many efficidgbrdthms are not mentioned here.

This chapter gives a brief introduction to the alternatingeation method of multipliers
(ADMM) for solving big data optimization problems in modecommunication networks. The
introduction focuses on explaining the algorithm itsetireg with its motivations and basic prop-
erties. We first introduce the background of ADMM in Sectiadl.2We briefly review the dual
ascent method and the method of multipliers, which provskful backgrounds and motivations to
ADMM. The canonical formulation of ADMM is also given. In S&mn[2.2, we focus on several
direct extensions and sophisticated modifications of ADM¥I&rge-scale optimization problems.
The iterative schemes and convergence properties of thxbsesgons/modifications are given, and
implementations on large-scale computing facilities dse dlustrated. Finally, Section 2.3 con-

cludes the chapter.

1 [18] proposes a stochastic block coordinate descent method
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2.1 From Dual Ascent to Alternating Direction Method of Multipliers

In this section, we first have a short overview of two impatrfarecursors of ADMM, the dual

ascent method and the method of multipliers. Then we givedhenical form of ADMM.

2.1.1 Dual Ascent Method
Consider an optimization problem of the form

min f(x) st Ax=c, (2.1)

whereX € R" is a closed convex sefA € R™*", andf : R — R is a closed convex proper
function. The Lagrangian functiofi : R” x R — R associated with the problem (2.1) is defined
as

Lx,A) = f(x)+ AT (Ax —¢), (2.2)
whereX € R™ is the Lagrangian multiplier associated with the equalidgstraintAx = c. In the

dual ascent method, the optimal solutiwhto the problem[(2]1) is obtained by

k+1 _ : k
{ X"t = arg min, £(x, A"), 2.3)

Ak-i—l — Ak +pk(AXk _ C),

wherep® > 0 is the step size at iteratioh. The convergence of the dual ascent method requires
an appropriate step sizeand assumptions of strong convexity as well as finitenedseobbbjective

function f, which limit the spectrum of applications of the dual asaeethod.

2.1.2 Method of Multipliers

The method of multipliers finds the optimaf of the constrained optimization problem (2.1)

by solving a sequence of unconstrained problems. The augoheagrangian function fof (2.1) is
L,(x,A) = () + AT (Ax — ¢) + £} Ax — ], (2.4)

where the ternjf Ax—c||3 is called the augmentation, apd> 0 is the penalty parameter. Therefore,

the method of multipliers is also called the augmented Lagjem methods. In the method of

11



Algorithm 2.1 Method of multipliers.

Initialize: x°, A°, p > 0;

fork=0,1,...do
xF+1 = arg miny £,(x, A¥);
Ak-i—l — Ak +p(Axk o C),
end for

multipliers,x and\ are updated iteratively as

k4l . k
{ x" T = argmin, £,(x, A"), (2.5)

Ak’-‘rl — Ak —|—p(AXk _ C),
where the penalty parameter> 0 is fixed during the iteration, which balances the objectiesagnt
and constraint satisfaction. A proper update @an noticeably accelerate the convergence.

The method of multipliers finds wide applications in sparpémoization problems. For ex-

ample, consider the followin norm minimization problem

min ||x|; st Ax=c. (2.6)
x€R™

The iterative scheme of the method of multipliers for (26) i

kel . T _ P —cll?
{x =argmin, | x| + A’ (Ax—c) + §||Ax —c|l3, (2.7)

Ak-l—l — Ak + p(AXk _ C),

where thex-update can be obtained analytically through the softstho&ling. The method of
multipliers returns a pair of primal-dual solutions at thred eof iteration. For convex optimization
problems, any > 0 leads to the convergence. More details about the method lbipfrers can be

found in [28], and the iterative scheme is illustrated in &ithm[2.1.

2.1.3 Alternating Direction Method of Multipliers

The ADMM was proposed i [29] [30] and recently revisited[B%]. The general form of

ADMM is expressed as

i st. A A =c. 2.8
x1€}(lla71x112€X2f1(X1)+f2(X2) 1X1 + AgXy = ¢ (2.8)
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Algorithm 2.2 Two-block ADMM.

Initialize: x°, A%, p > 0:

for k=0,1,...do
xlf'H = arg min,, Ep(xl,xg, )\k);
xET1 = arg min,, .Cp(x]f+1,x2, AFY;
A= X 4 (AT 4+ ApxST — o);
end for

The augmented Lagrangian function fior (2.8) is
,Cp(Xl,XQ, }\) = fl(Xl) + f2(X2) + }\T(Alxl + Agxy — C) + gHAlxl + Agxg — CH%, (29)

whereX € R™ is the Lagrangian multiplier, ang > 0 is the parameter for the quadratic penalty

term. The iterative scheme of ADMM is

xEt = arg min,, Ep(leJrl,XQ, 2F), (2.10)

le+1 = a,rg minxl Ep(X17X]§7 Ak)’
AR = AF  p(Axb T ApxbTT —¢),

where at each step, the augmented Lagrangian function isniméd overx; andx,, respectively.
In 2.10), functionsf, and f, are treated separately, so easier subproblems can be geh€eFais
feature is quite attractive and advantageous for a broactrspe of applications. The convergence
of ADMM for convex optimization problems with two blocks oésiables has been proven In[24],

[25], and the iterative scheme is illustrated in Algorith@.2

2.2 Multi-block Alternating Direction Method of Multiplie rs

In this section, we review several multi-block ADMM algdmihs for solving large-scale op-
timization problems. The direct extensions of ADMM for cervoptimization problems with N
blocks of variables are first introduced. Then we introduoed sophisticated modifications of
ADMM, the variable splitting ADMM [24,, 25, 31], the ADMM witlGaussian back substitution [32]

and the Proximal Jacobian ADMM [33,34]. Specifically, we sioler the following convex opti-
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mization problem with a canonical form as

min_ f(x) = fi(xi) + ... + fi(xn), (2.11)

X1,X2,., XN

sit. Ajx;+...+ Ayxy =c, and (212)

x;,€X;,, i=1,...,N, (2.13)

wherex = (x],...,x\)", & C R"(i = 1,2,..., N) are closed convex seta,; € R™*"(; =
1,2,...,N) are given matrices; € R™ is a given vector, and; : R™ — R (i =1,2,...,N) are

closed convex proper but not necessarily smooth functidhge. non-smooth functions are usually

employed to enforce structured solutions.

2.2.1 Direct Extensions to Multi-block Setting

We can directly extend the ADMM described in algorithml 2.2déve the optimization prob-
lem (2.11). In the following, we present two kinds of diregtemsions, the Gauss-Seidel extension

and the Jacobian extension, for problém (P.11). We firsttigeaugmented Lagrangian function of

problem [(2.111)

N

N N
p
Lo(X1,. . XN, A) = Z_; filxi) + ,\T(; Aix; —c)+ 5H Z;Aixi —c|2. (2.14)

2.2.1.1 The Gauss-Seidel Extension

Intuitively, a natural extension of the classical Gausgl&aype update o-block variables
to N-block variables is straightforward. We can replace the-bhoxk alternating minimization
scheme by a sequential updatexgffor s = 1,2,..., N. In particular, at iteratiork, x; is updated
by

X; = argmin Ep({x;”l}j@, Xi, {xg‘?}j>i, AF), (2.15)

Xi

where{x;},;; denotes the set of variables prioritoThe augmented Lagrangian function is split

and updated alternatingly. The direct Gauss-Seidel tyfneion is illustrated in Algorithrin 2.3.
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Algorithm 2.3 Gauss-Seidel multi-block ADMM.

Initialize: x°, A%, p > 0:

for k=0,1,...do

fori=1,...,Ndo
{x; is updatedsequentially. }

x; = argmin,, £,({x5""}jci, %0, (x5} 50, AF);
end for
A= N 4 p(3, A —c);
end for

Algorithm [2.3 has been utilized in practical problerhs|[3B}-8espite a lack of rigourous
proof for the convergence. Actually, the convergence ofgsdbeidel multi-block ADMM is not
well understood and is ambiguous for a long time: Neitherra#itive convergence proof nor
counter examples for convergence failure are shown in teeature. Recently/ [38] has shown
that the direct extension of Gauss-Seidel mulit-block ADNot necessarily convergent. [n[39],
the convergence of Algorithin 2.3 is proven with a sufficiemia#i step size for Lagrangian mul-
tiplier update and additional assumptions on the probleflij2 It is conjectured in [40] that an
independent uniform random permutation of the update datenlocks in each iteration will re-
sult in a convergent iteration schemne.|[32,41] propose sigletly modified version of Algorithm
[2.3 with provable convergence, competitive iteration diaity, and computing efficiency. We will

illustrate this later in Sectidn 2.2.3.

2.2.1.2 The Jacobian Extension

Another possible iterative scheme for tNeblock ADMM is the Jacobian type update, which
performs the update of; in a parallel fashion foi = 1,..., N. In particular, the update of; is
calculated as

X; = arg min Ep(xi,{xg?}#i,/\k), (2.16)

Xi

where{xf } ;i denotes the set of variables exceptsor Different from the sequential update xof
in Algorithm[2.3, the update in the Jacobian ADMM can be perfed concurrently, i.e., akt; can

be calculated in a parallel fashion. This advantage maledahobian type ADMM preferred for
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Algorithm 2.4 Jacobian multi-block ADMM.

Initialize: x°, A%, p > 0:

for k=0,1,...do

fori=1,...,Ndo
{x; is updatectoncurrently.}

]-H'l = arg min, £ (xl,{x }ng,)\k)
end for
AL = AP 4 p(30, A — o);
end for

parallel implementation, and the direct Jacobian typeresibm is illustrated in Algorithrh 214.
Though Algorithm[2.4 is more computational efficient in trense of parallelization| [42]
shows that Algorithni_2]4 is not necessarily convergent endbneral case, even in the 2 blocks
case. In[[33] it is proven that if matrice&; are mutually near-orthogonal and have full column-
rank, the Algorithni_ 2 converges globally. A proximal Jaiem ADMM is also proposed i [33]

with provable convergence, which we will illustrate laterSec[ 2.2 4

2.2.2 Variable Splitting ADMM

We can apply variable splitting [24,25,/31)43] for the miblitbck variables to solve the op-
timization problem[(2.11). In particular, the optimizatiproblem [[2.111) can be reformulated by

introducing the auxiliary variable

N
min Z fi(x;) + Iz(z) and (2.17)
st AX; 42—, i=1,....N, (2.18)
N
wherez = (z{,...,z})" is partitioned conformably according $g and/z(z) is the indicator

function of the convex seg, i.e.,Iz(z) = 0forz € Z = {z| >N 2, = 0} andIz(z) =

otherwise. The augmented Lagrangian function is

p c
p—ZfoZ—i-Ig +Z>\ (Aix; +2; — ZHAXZ—FZZ—NH%, (2.19)
=1
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Algorithm 2.5 Variable splitting multi-block ADMM.
Initialize: x°, z°, A°, p > 0;

for k=0,1,...do

fori=1,...,Ndo
{xi, z; and\; are update@oncurrently.}

x?’,-i_l = arg minxi ﬁp(xh Z?? Af)'
zF ! = arg min,, Lo(xit 2, AF);
A = A 4 p(Aixi + 25 — )
end for
end for
where we have two groups of variablgs;, ... ,xy} and{zi,...,zx}. Hence, we can apply the

two-block ADMM to update these two groups of variables iterly, i.e., we can first update the
group {x;} and then update the groyg;}. In each groupx; andz; can be updated concurrently

in parallel at each iteration. In particular, the updatesubrx; andz; are

k+1 _ : k k
x; = argmin, Ly(xi,27,A}),

Zl-f—"-1 = arg minzi ﬁﬂ(xlf+1a Zi, )‘f)’ Vi=1,...,N, (2'20)

)

ML= XF 4 p(Ayx; + 2 — £).

The variable splitting ADMM is illustrated in Algorithin 2L Algorithm[2.5 converges to the optimal
solution with the same rate as the 2-block ADMM. However rthmber of variables and constraints
will increase substantially whel is large, which will impact the efficiency and incur signifita

burden for computation.

2.2.3 ADMM with Gaussian Back-Substitution

Many efforts have been made to enable the convergence of tlasscseidel type multi-
block ADMM [32][41]. In this part, we describe the ADMM with @ssian back-substitution [32],
which asserts that if a new update is generated by correttiegutput of Algorithni 2.3 with

a Gaussian back-substitution procedure, then the sequéngedates converge to a solution of

. . -
problem [Z.I1L). We first define vector= (xg,...,x4,A")T, vectorv = (%4 ,..., %3, A )T,
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matrix H = diag(pA; As, ..., pAy Ay, £1,,) andM as

pAg Ay 0 0

pAs Ay pAjA;

pAGAy pANAs ... pALAN 0
0 0 0 2L

Each iteration of the ADMM with Gaussian back substitutiamsists of two procedures, a
prediction procedure and a correction procedure. Wtsagenerated by Algorithin 2.3. In particular,
X; is updated sequentially as

%k = arg~min£p({§(§-”}j<i,xi,{xé‘-”}j%,}\k), (2.22)

Xq

where the prediction procedure is performed in a forwardmean.e., from the first to the last block
and to the Lagrangian multiplier. Note that the newly-gatestx; is used in the update of the next
block in accordance with the Gauss-Seidel update fashiofter Ahe update of the Lagrangian

multiplier, the correction procedure is performed to updatising
H M (vF —vb) = o(3% = vF), (2.23)

whereH-'MT is a upper-triangular block matrix according to definitiowfsH and M. This
implies that the update of the correction procedure is inckward fashion, i.e., first update the
Lagrangian multiplier, and then update from the last block to the first block sequentially. Note
that an additional assumption regardidg A;(i = 1,2, ..., N) being nonsingular is made here,
serves as an intermediate variable and is unchanged duergptrection procedure. The algorithm

is illustrated in Algorithni 2.6, and its global convergens@roven in[[32].

2.2.4 Proximal Jacobian ADMM

The other type of modification on the ADMM for multiple blockévariables is based on the

Jacobian iteration scheme [33]34[42, 44]. Since the GBagkel update is performed sequentially
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Algorithm 2.6 The ADMM with Gaussian back-substitution.

Initialize: x°, %%, A°, A”, p > 0, a € (0, 1);
for k=0,1,...do

fori=1,...,Ndo

{x; is updatedsequentially.}

fcf = arg ming, ﬁp({if}jg,xi, {x;?}j>,-, /\k);
gr}ldlfor
N =N p(ON AR o)

{Gaussian back substitution correction tep
H—lMT(Vk-l-l _ Vk’) — Oé({/k _ Vk:);
X = x7;

end for

and is not amenable for parallelization, Jacobian typatitem is preferred by distributed and paral-
lel optimization methods. In this part we describe the pr@di Jacobian ADMMI[[3B], in which a

proximal term [45] is added to the update to improve converge In particular, the update ®f is

. 1
xF! = arg min Ly(x, {x?}#i, Ak)—i- 3 || x; —xf H%Z_, (2.24)
Xi

)

where||x; |3, = x; P;x; for symmetric and positive semi-definite matk >~ 0. The involvement
of the proximal term can make the subproblenxgstrictly or strongly convex, and thus make the
problem more stable. Moreover, multiple choicedsfcan make the subproblems easier to solve.

The update of the Lagrangian multiplier is

N
A= A 4 yp(Y " AxtT — o), (2.25)
=1
wherevy > 0 is the damping parameter. The algorithm is illustrated igokithm[2.T. The global

convergence of the proximal Jacobian ADMM is proveri in [38preover, it enjoys a convergence

rate ofo(1/k) under conditions o?; and~. More details can be found in [33].

2.2.5 Implementations

The recent developments in high performance computing jrREcloud computing provide

flexible and efficient solutions for implementing largeiscaptimization algorithms. In this part,
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Algorithm 2.7 Proximal Jacobian ADMM.
Initialize: x°, A%, p > 0,y > 0;

for k=0,1,...do

fori=1,...,Ndo
{x; is updatectoncurrently.}

x; ! =argmin,, £,(x;, {x5}j, A+ 3 [xi —xF |3 ;
end for
3’?1 = A (T, AT —c);
end for

we describe possible implementation approaches of thadgbdited and parallel algorithms on
current mainstream, large-scale computing facilities.

One possible implementation utilizes available compuinwgntive techniques and tools like
MPI, OpenMP, and OpenCL. The MPI is a language-independeatbgnl used for inter-process
communications on distributed memory computing platfoltris widely used for high-performance
parallel computing today. The (multi-block) ADMM using Mihks been implemented ih_[25]
and [46]. Besides, the OpenMP, which is a shared memory pnodtssing parallel computing
paradigm, and the OpenCL, which is a heterogenous distdesihared memory parallel computing
paradigm incorporating CPUs and GPUs, can also implemshihiited and parallel optimization
algorithms. It is expected that supercomputers will reach exaFLOPS10'® FLOPS) and even
one zettaFLOPSI(?' FLOPS) in the near feature, which will largely enhance thepeting ca-
pacity and significantly expedite the program execution.

Another possible approach exploits the ease-of-use clondpating engine like Hadoop
MapReduce and Apache Spark. The cloud computing infrastrei@vailable for Hadoop MapRe-
duce makes it convenient to use for large-scale problenmgth it is awkward to implement
ADMM using MapReduce since it is not designed for iteratigsks. The in-memory comput-
ing feature of Apache Spark enables it to run iterative caatpans much faster. It is now prevalent
for large-scale machine learning and optimization taskcamputer clusterd [47]. This imple-
mentation approach is much simpler than previous compuniogntive techniques and tools. The
advance in the cloud/cluster computing engine providesnplsi method to implement the large-

scale data processing. Recently Google, Baidu and Alibeideveloping and deploying massive
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setting convergence rate o(1/k)

Figure 2.1 An illustration of the relationships between aéithms2.1 -[2.7

cloud computing engines to perform the large-scale digtith and parallel computation.

2.3 Conclusion

In this chapter, we have given an introduction of ADMM for kigta optimization prob-
lems. We have described precursors of ADMM and their backgio After that, several direct
extensions and sophisticated modifications of ADMM havenbieéroduced for large-scale op-
timization problems. We have explained iterative schenmesanvergence properties for those
extensions/modifications, and have illustrated implemgms on large-scale computing facilities.

The relationships among algorithms introduced in this tdrapan be summarized in F[g. 2.1.
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Chapter 3

Ensuring Power Grids Security Using Big Data

The development of the smart grid, impelled by the increpasiemand from industrial and
residential customers together with the aging power itrinature, has become an urgent global pri-
ority due to its potential economic, environmental, andetatbenefits. The smart grid refers to the
next generation electric power system which aims to proxédiable, efficient, secure, and quality
energy generation/distribution/consumption using modiormation, communications, and elec-
tronics technologies. A distributed and user centric systéll be introduced in the smart grid,
which will incorporate end-consumers into its decisiongasses to provide a cost-effective and
reliable energy supply. In the smart grid, the modern comoation infrastructure [48] will play a
vital role in managing, controlling, and optimizing diféet devices and systems. Information and
communication technologies will offer the power grid wittetcapability of supporting two-way en-
ergy and information flows, quick isolating and restoringvpo outages, facilitating the integration
of renewable energy sources into the grid and empoweringaghsumer with tools for optimizing
their energy consumption.

In this chapter, the applications of big data processingrtiegies for the smart grid security
are investigated from two perspectives: how to exploit theerent structure of the data, and how to
deal with the huge size of the data sets. Two specific apjgitatare included in this chapter: the
sparse optimization for false data injection detectiory tme distributed parallel approach for the
security constrained optimal power flow (SCOPF) problene fidst of this chapter is organized as
follows. The sparse optimization for false data injecti@tedtion is described in Sectibn8.1. The
distributed parallel approach for the security constrioptimal power flow problem is developed

in Sectior{ 3.P. Finally, some conclusions are drawn in 8a@&iL3.
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3.1 Sparse Optimization for False Data Injection Detection

In this section, we first introduce the state estimation atgbfdata injection attacks in power
systems. Then we describe two detection methods, the mumea minimization and the low rank
matrix factorization, which exploit inherent structure sthte estimation data to detect false data

injection attacks. Finally we present numerical simulatiesults of proposed methods.

3.1.1 State Estimation and False Data Injection Attacks

3.1.1.1 State Estimation in Power systems

State estimatior [49], which estimates the power systematipg state based on a real-time
electric network model, is a key function of the Energy Masragnt System (EMS). A linearized
measurement model is often used to estimate states in pgatenss based on measurements from
remote meters on buses or transmission lines. Specifiealdry several seconds or minutes, the
Energy Control Center (ECC) collects active/reactive pdiasvs and injections from transmission
lines and buses across the power grid as measurement dadtee\Bapervisory Control and Data
Acquisition (SCADA) system. The state estimation resudtiect the real-time power grid operation
state and are essential for operators to make decisionslén tr maintain security and stability of
the system.

In an electric power grid, the control center needs to motite voltage phase angles of all
buses to make real-time decisions on operations. Howensrinpractical to directly measure all
bus voltage phase angles. In this regard, the control ceotlercts readings from remote electric
meters to estimate the system operation state. Specificune@asnt data include branch active
power flows and bus active power injections, which can be tsedtimate bus voltage angles in
the system. Le® = (601,09, ... ,Qn)T denotes the power system state variables, whgrg the
phase angle on bus The measurement at the control center is expressed-aéz1, zo, .. ., 2y )
and is related t@ by

z=h(0) + e, (3.1)
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whereh(8) = (h1(0),h2(0),. .., hn(0))T, andh;(0) is a nonlinear function relating thé€ mea-
surement to the state vecidr The vectore denotes independent Gaussian measurement errors with
zero mean and known covarianBe

To analyze the efficiency of various state estimation methmmhsidering the measurement
configuration in a power system, a simplified DC approximratioodel is utilized. Assuming that
bus voltage magnitudes are already known and normalizetineglecting all shunt elements and
branch resistances, the active power flow from bios bus; can be approximathSO] by the

first-order Taylor expansion as
4, (3.2)

where X;; is the reactance of the transmission line between;laugl busj, andw is the measure-

ment error. Similarly, the power injection measurementuat:lcan be expressed as

J

wherev is the measurement error.

The DC model for real power measurements can be written imeadimatrix form as
z =HO + e, (3.4)

wherez is the measurement vector including active power flows ajatiion measurements, and
H € R™*" is the Jacobian matrix of the power system, which is assumdzktknown to the
independent system operator (1ISO).
Suppose that measurement err@is (3.4) are not correlated, and thus the covariance matrix
R is a diagonal matrix. The weighted least squares estimétbedinearized state vectéris
6=MHR'H) 'H R 'z (3.5)

LetK = (H'R™'H)"'H'R !, and then measurement residuals can be expressed as

r=z—-HO=1-K)(HO+e)=(I-K)e, (3.6)

In general, one can approximate the impedance of a trarismiise with its reactance due to the high reactance
over resistanceX/R) ratio.
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wherel is the identity matrix and the matrid — K) is called the residual sensitivity matrix.

The detection and identification of bad data in measurenmarishe accomplished by pro-
cessing of the measurement residuals. Specifically,yth&est can be applied on measurement
residuals to detect bad data. Regarding the detection ofi&@g two kinds of methods, the largest
normalized residual test and the hypothesis testing ifileation method, can be used to identify the

specific measurement that actually contains bad daia [49].

3.1.1.2 False Data Injection Attacks

The accuracy of state estimation can be affected by bad megaeuts in the grid. Bad data
could be due to topology errors in the grid, measurement rateldies caused by meter failures,
or malicious attacks. To detect and identify bad measuré&sriarthe power grid state, techniques
based on the statistical testing of measurement residd@]shpve been developed and are widely
used. However|[51] reveals the fact that false data imgactittacks are able to circumvent tra-
ditional detection methods based on residual testing. Byoéing the configuration of a power
system, synchronized data injection attacks on meters edaunched to tamper with their mea-
surements. Moreover, attack vectors can be systemataradlefficiently constructed even when the
attacker is limited in resources required to compromiseemseivhich will mislead the state estima-
tion process, and thus affect power grid control algorithidence, attention should be given over
the vulnerability of state estimation to false data injctattacks, which may cause catastrophic
consequences in the power grid.

Malicious attack vectors are able to circumvent existirgistical tests for bad data detection
if they leave measurement residuals unchanged. One suniptxe the false data injection attack,

which is defined as follows:

Definition 3.1. (False data injection attack) [51] The malicious attack i@ = (a1, as, ..., am,) "
is called a false data injection attack af can be expressed as a linear combination of columns of

H;i.e.,a = Hc for some vectot.

If a false data injection attack is applied to the power systine collected measurements at
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the ISO can be expressed as

Za=20+a=H(6+c)+e (3.7)
Suppose the state estimate using the malicious measurenént,, the norm of measurement

residuals|z, — H6,||- in this case is
l|za — HO4||2 = ||z0 + a — H(O + c)||2 = ||z0 — HO|2, (3.8)

which means that measurement residuals are unaffectedelipjdction attack vectoa, and the
attacker successfully tricks the system into believing tha true state i, = 6 + c instead of9.
Note thata is the attack vector, which is under the control of attacketsle c reflects error induced
by a.

Unveiling false data injection attacks is crucial to setyuand reliability of power systems.
This task is challenging, since attackers may be able taearialse data attack vectors against the
protection scheme, and inject attack vectors into the pogwedithat can bypass traditional methods
for bad measurement detection. Furthermore, the incomphetasurement data due to intended
attacks or meter failures complicates the task of malicattesck detection, and thus makes state
estimation even more difficult.

The effects of false data injection attacks have been studi§61-+-53]. False data injection
attacks against state estimation in electric power gricevggesented in_[51]. By capitalizing on
the configuration of the power system, malicious attacksbeglaunched to bypass the existing bad
measurement detection techniques and manipulate refgtet® estimation [52, 53] demonstrated
that false data injection attacks were able to circumvedtdada identification techniques equipped
in the EMS, and could lead to congestion of transmissiorslaewell as profitable financial mis-
conduct in the power market.

On the other hand, schemes to protect against false datdiameattacks are investigated
in [13,/54+59]. [54] proposed an efficient method for compgitthe security index with sparse
attack vectors, and described a protection scheme to giemgystem security by placing encrypted
devices in the electric power grid appropriately.|[55] mledeand analyzed this situation as a zero-

sum game between attackers and defenders. [56] charactavip kinds of malicious attacks on
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electric power grids: the strong attack regime, in whiclsdadlata injection attacks exist, and the
weak attack regime, in which the generalized likelihoodor&tst can be used to detect attacks.
[13] formulated the bad data detection problem as a low-raakrix recovery problem, which is
solved by a convex optimization method that minimizes a doatlon of the nuclear norm and
thell norm. In [57], a low-complexity attacking strategy was desid to construct sparse false
data injection attack vectors, and strategic protectitreses were also proposed based on greedy
approaches! [58] provided a survey of existing detectiothous for false data injection attacks,
and [59] studied the fundamental limits of cyber-physi@iwity in presence of false data injection

attacks in the system.

3.1.1.3 Sparse Optimization Problem Formulation

Denote the measurement of the electric power system olukbgvéhe ISO at timeé: asz.
In presence of false data injection attacks, the measuitezpés contaminated by the attack vector
ay. DenoteZg = [z1, 22, . ..,2¢] € R™*! as the measurement of the power state for a time period
of t, andA = [aj,az,...,a;] € R™*! as the false data attack matrix. The obtained temporal
observation&, can be expressed as

Zo = Zo+ A. (3.9)

Note that gradually changing power system state variabile/pically lead to a low-rank measure-
ment matrixZg. In addition, due to the capability limitation of attackeifsey are either constrained

to some specific measurement meters or unable to comprongasurement meters persistently.
Hence, only a small fraction of observations can be anonsaba given time instant. This implies
that the false data injection matri is sparse across both rows and columns. With a slight abuse of
notation, we use Ratiig) to denote the rank of the matri%g, and|| A ||, to represent the number

of nonzero entries of the matriA. Noticing intrinsic structures oy and A, the detection and

identification of false data injection attacks can be camekto a matrix separation problem as

éﬂlg RanKZO) + ||A||0, st. Za=7Zp+ A. (3.10)
0,
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Solving [3.10) extracts the power state measurement niégrand the sparse attack matexfrom
their sumZ,. Considering missing measurements due to meter failurepmmunication link

outages in practical applicationk, (3.10) can be formdlate

win RankZo) + [Allo, 5. Pa(Za) = Pa(Zo + A), (3.11)
0,

whereQ is an index subset, anBlq(-) is the projection operator. Specificalln (M) is the

projection of a matriXM onto the subspace of matrices whose non-zeros entriessariete] to2
[Pa(M)];; =0, V(i,j) ¢ . (3.12)

In the following, we propose two methods to solve this proble

3.1.2 Nuclear Norm Minimization

The optimization problem i (3.10) captures the low rankperty of the power state mea-
surement matrixZo as well as the sparseness of the malicious attack matrixHowever, it is
known to be impractical to directly solve (3110). One polesigpproach is to replace Raidy)
and||A||o with their convex relaxationg|Zo||. and||A||1, respectively. Herd|Zy||.. is the nuclear
norm of Zg, which is the sum of its singular values, afpd ||; is thel; norm of A, which is the
sum of absolute values of its entries. Hen€e, (3.10) can foemelated as the following convex

optimization problem

min || Zols + M|All1, st Za = Zo+ A, (3.13)
Zo,A

where) is a regularization parameter. Correspondindly, (3.1h)mmareformulated as

min |Zoll + A|Al, st Pa(Za) =Pa(Zo + A). (3.14)
0,

The optimization problem in(3.14) has been extensivelylistliin fields of compressive
sensing([60] and matrix completion [61/62], and can be sblyemany off-the-shelf convex opti-

mization algorithms. Motivated by [63], the method of mpiiers is utilized here to detect the false
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data matrixA as well as to recover the measurement mafigx According to Algorithm{ 2.1, the
optimization problem in[(3.14) can be solved iterativelg the method of multipliers [64], where

the augmented Lagrangian for (3.14) is given by

L(Zo, A Y, 1) = | Zoll- + N|All1+ (Y, Pa(Za — Zo — A))+5]Pa(Za — Zo — A3 (3.15)

The value of) is set toﬁ, wherem andt are dimensions of the measurement ma#ijx
max(m,
With k = 1,2,..., indexing iterations, optimaly and A are found according to
AR = arg mjin L(Zo*, A, v*, Y*) and (3.16)
Zo' ! = arg n%inL(Zo, AF Wk YR, (3.17)
0

where [3.16) can be explicitly computed from the soft-gkaie formula, and (3.17) can be solved
via the singular value shrinkage operator![65]. Specifjcalle define this operator a.{z} =
sgnz) max(|z| — 7,0) for a real variabler, where sgn is the sign function. This operator can be
extended to vectors and matrices by applying it elemengwidsing this operator[ (3.1.6) can be

solved iteratively via

A =85, {Z.-Z k+Y—k} (3.18)

To solve [3.1F), a singular value decomposition (SVD) isliagpto the matrix Z,—A**! + Z—:):

Yk
(Za—AFFL 4 )= Usv'’, (3.19)

whereU € R™™ andV ¢ R are unitary matrices, anfl € R™*! is a diagonal matrix

containing the singular values (ﬁa—A’f“Jr%). The singular values are arranged in a decreasing
order, andZg is updated via

Zo*t' = US, {S}V'. (3.20)

During each iteration of the optimization, both Lagrangdtipliers Y andy are updated,
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Algorithm 3.1 Nuclear norm minimization approach.
Input: Z, € R™*; N = ——L_—;

max(m,t)’
Initialize: Y g = 0; Zojo) = 0; Afg) = 0; ppo) > 0; > 0; k = 0;
while not convergedo
Zok—i-l — Zok; AR+ — Ak, j=0;
YR = YR 4 b (Zy — ZoFt! — AFTL);
[ = b

k=k+1;

end while
return ZoF; A*;
OutputZo”; A*;

which improves the performance of the algorithm

YR — vk 4 uk(za _ Zok+1 _ Ak‘f'l) and (3.21)

Pt = ap®, (3.22)

wherea is a positive constant. The algorithm is outlined as Aldomit3.1.

3.1.3 Low Rank Matrix Factorization

The speed and scalability of the nuclear norm minimizatigpreach are limited by the com-
putational complexity of singular value decomposition. &vhmatrix size and rank increase, com-
putational operations for singular value decompositiol bécome quite expensive. To improve
the scalability of solving large-scale problems of malii@ttack detection in power systems, a low
rank matrix factorization approach is proposed here.

Given observationZ,, the measuremen®;, and the false data injection attack matixcan

be separated by the minimization problem

Juin [|Za —Zolh, st UV -Zo=0, (3.23)

» V., 40

where the low rank matri¥g is expressed as a product ©f € R™*" andV € R"*" for some

adjustable rank estimate Correspondingly/[(3.14) can be rewritten as

i Za—Zo)1, st. UV —Z¢=0. 3.24
Juin [Pa(Za~ Zo)1, st UV —-Zo=0 (324)
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Note that a low-rank matrix factorization is explicitly digag to Z¢ instead of minimizing its nu-
clear norm as in[(3.14), which avoids the singular value dgmsition completely. To solve the

minimization problem in[(3.24), the augmented Lagrangiam loe expressed as
L(U.V,Z0.Y 1) = [Pa(Za — Zo)lh + (Y, UV ~ Zo) + 5[UV ~ Zo[3,  (3.25)

wherep is a penalty parameter arid is the vector of Lagrange multipliers corresponding to the
constraintUV — Zy = 0. Motivated by the idea in the alternating direction method donvex
optimization, the augmented Lagrangian can be minimizet wespect to block variableg, V,

andZg individually via the following framework at each iteratian66]

Uk+1 = arg m[}_nL(U,Vk, Zok,Yk,/Lk)7 (326)

Vi = arg min L(UMY vV, Zo* Y* 1F), and (3.27)

Zo" ! = arg HzlinL(Uk+17Vk+17 Zo, Y, 1ib), (3.28)
0

where [(3.26) and (3.27) are least squares problems

k
UM = (Zg — Y—k)VT(VVT)‘l and (3.29)
u
k1 Ter-1y7T Y*

Vi — (UTU) U T (Zg — —)- (3.30)

and [3.28) can be solved by the shrinkage formula

Yk

Pa(Zo" 1) = PQ(S%{U’““V"C“ ~Za+ 1)) (3.31)

The Lagrangian multipliery¥ andyu are updated during each iteration as follows
Yk—‘rl — Yk + uk(Uk-i-le-‘rl _ Z0k+1) and (332)

p = apt, (3.33)

where« is a positive constant. At the end of each iteration, a ratkneson strategy[[67] is
applied to update to ensure the success of the algorithm. The proposed digoiit illustrated in

Algorithm[3.2.
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Algorithm 3.2 Low rank matrix factorization.

Input: Z, € R™?; Initial rank estimate-.
Initialize: U € R™*"; V € R™*; Zojo)=UxV; Y =0; pg >0;,a>0; k=0.
while not convergedo

Uk—l—l — (ZO _ Z—:)VT(VVT)_I;

Vk—l—l — (UTU)—IUT(ZO o Z_:%

k

ZOk-l-l — Sﬁ {Uk—l-lvk—i-l o Za + % :

Yk+l — vk + uk(Uk+1Vk+1 _ Zok—l-l);

[ = b

k=Fk+1;

Checkr, possibly re-estimate and adjust sizes of the iterates;
end while
return Zo":

OutputZo®; Za — Zo":

3.1.4 Numerical Results

Numerical simulations are presented here to evaluate tfierpence of proposed algorithms.
Power flow data for IEEE 57 bus, IEEE 118 bus test cases, amshPyistem[[68] during winter the

peak conditions in 2007-2008 are used to evaluate the pedpalgorithms.

3.1.4.1 Receiver Operating Characteristic Analysis

Assume loads on each bus in the power system are uniforntiybdied betweers0% and
150% of its base load. When state estimation measurements deetedl, a small portior of
measurement data are compromised by malicious attackénsawiarbitrary amount of injection
data, ance is defined as the attack ratio in this context. Methods fasefalata injection attack
construction can be found in [56,/57]. Here, we focus on tlmeegation scheme and suppose that
the locations of attacks are chosen randomly and are ofidurAﬁH. Totally a number ofl" time
instance measurements are obtained for analysis. The/eeagierating characteristic analysis of
proposed algorithms is first given, and then we compare thfermpeance of proposed algorithms

with that of the principal component analysis (Pgﬁm this analysis, the attack ratio is fixed at

INote that the attack vectors used in this chapter are morergecompared to those described[in|[56, 57] and will
not affect the efficiency of proposed algorithms.

K .
2For PCA, we retain the largesf singular values of the matrix such thgg—% > 95%.

1 S
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Figure 3.1 The ROC performance for the IEEE 57 bus system. SHBUB.

e = 0.1 and SNR = 10dB.

The ROC curves for IEEET bus and IEEH 18 bus cases are shown in Hig.13.1 and Figl 3.2,
respectively. From those figures, it is apparent that pregp@gorithms can detect the false data
accurately at a low false alarm rate. For example, in the IEEBuUs system, the true positive rate
of nuclear norm minimization i193%; and it is95% with low rank matrix factorization when the
false alarm rat@; = 10%. Moreover, the low rank matrix factorization approach perfs slightly
better than the nuclear norm minimization method. In thisecdhe sparse attack matrix is not
the dominant part in measurements, which makes the low ratkxriactorization approach more
suitable. Fig[ 31 and Fi§. 3.2 show that proposed algostbotperform the PCA-based approach
significantly. The PCA method neglects the corruptions oficitaus attacks. Even though the
matrix Zg is of low rank, the sum oy and A will not be of low rank any more. Thus, directly
applying the PCA method will result in a poor performancewdaer, proposed algorithms exploit

the low rank structure of the anomaly-free measurementixpaind the fact that malicious attacks
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Figure 3.2 The ROC performance for the IEEE 118 bus systenR SR0dB.
are quite sparse, which render better performance.

3.1.4.2 Performance vs. Measurement Missing Ratio

Next, we investigate the performance of proposed algosthimder different measurement
missing ratios. In particular, we assume that a portion adisneements collected at the control cen-
ter are missing due to meter failures or communication lintages, and evaluate the performance
of proposed algorithms under different measurement ngssitios up tol0% on the IEEEL18 bus
system. The attack ratio is fixedat 0.1 with SNR = 10dB.

The ROC curves for the IEEE 118 bus case are depicted il Bg. Brom the figure we
see that withl0% missing measurements, proposed algorithms are still aldetect the malicious
attacks at acceptable true positive rates, and the low raatkixrfactorization method performs
slightly better. By comparing with Fi§. 3.2, we see that thiesimg measurements deteriorate the

performance of proposed algorithms as we would expect.eSimePCA-based method is unable to
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Figure 3.3 The ROC curves of the proposed algorithms for BieE 118 bus systeml10% mea-
surements are missing and SNR = 10dB.

detect anomalies in this case, we omitted its simulationlt®sNote that the existence of missing

entries will result in an incorrect estimation of the lowrginsional subspace of matf#g, which

leads to the failure of PCA.

To investigate the performance under different measuremessing ratios, the percentage of
missing measurements is varied fr@¥ (no missing) tol0%, and results are shown in Fig. B.4.
The true positive rates are calculated for both algorithrhemthe false alarm rate equdlg%.

It is shown that the performance is improved monotonicaflyreore and more measurements are
collected. In the worst case whef% of measurements are missing, proposed algorithms can still
achieve true positive rates 86% and90% for the nuclear norm minimization and the low rank
matrix factorization methods, respectively.

A more detailed demonstration for recoverability of pragalgorithms for power system
states is shown in Fi§. 3.5. Here, we assurf# of the measurements are missing with SNR =

10dB, and cumulative distribution functions of relativeaastruction errors dt= 50 and¢ = 100
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Figure 3.4 Performance of the proposed algorithms undfardiit missing ratios for the IEEE 118
bus system. The false alarm rate ¥ and SNR = 10dB.

are calculated. The relative reconstruction error is ddfase
e=(6-6)/6, (3.34)

where./ denotes componentwise division, aiéd denotes the element-wise absolute value of the
vector @ . The vector@ (in radian units) is obtained from the recovergg, and the vectoe
represents the relative error of each component in the setior 8. We calculate the relative
error for each bus in the system, and plot the correspondinwitative distribution functions. From
Fig.[3.5 we see that proposed algorithms are able to recmhgtower system states quite accurately.
At t = 50, the majority of relative errors concentrate between vaef—0.1,0.1], and similar
results are shown at= 100. These imply that proposed algorithms are able to precdetgct
the malicious attacks as well as accurately estimate poysters states, even under some severe

situations of missing partial measurements.
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Figure 3.5 Power state reconstruction performance of topgsed algorithms at specific time in-
stancet = 50 andt = 100. 10% of the measurements are missing and SNR = 10dB.
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Figure 3.6 Performance of the proposed algorithms undésrdiit attack ratios for the IEEE 118
bus system. The false alarm rate ¥, and SNR = 10dB.
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3.1.4.3 Performance vs. Attack Ratio

Thirdly, we investigate the performance of proposed athors under different attack ratios
for the IEEE 118 bus system. In particulais varied from5% to 15%, and SNR = 10dB.

From Fig.[3.6, the true positive rate is quite high at low sjarratios for both proposed
algorithms. Particularly, when the sparsity ratid i, true positive rates ar@3.6% and94.3% at
fa = 10% for the nuclear norm minimization method and the low rankrird&ctorization method,
respectively. Compared with the PCA-based method, theopeence of proposed algorithms is
quite stable as the attack ratio increases. When the atitickreached5%, true positive rates for
both algorithms are still arour@)%. The true positive rates of proposed algorithms will deseea
dramatically when attackers attack the power system nelgsivThis is because, when the attack
matrix is not sparse enough, the mixed-norm minimizationas able to separate the low rank

anomaly-free matrix from the attack matrix.

3.1.4.4 Performance on Large-Scale Systems

Finally, we analyze the scalability and computational &fficy of proposed algorithms on
power flow data for the Polish system during winter peak dimmai in 2007-2008. The attack ratio
is fixed ate = 0.1 with SNR = 10dB.

The ROC curve is shown in Fig.3.7. It is shown that the perforae of proposed algorithms
is quite stable on the large scale system compared to the HE7Hftis and the IEEE 118 bus. A
comparison of the computational efficiency of two proposkgrithms is shown in Fid._318. The
data matrix row dimensiom: is varied from100 to 3400. The proposed algorithms are applied to a
subset of the measurement matrix each time, and the CPU c¢atigoutime is logged. Itis shown in
Fig.[3.8 that as the dimension of the measurement matrieases, the CPU time for computation
will increase, and the low rank matrix factorization apmo@erforms better than the nuclear norm
minimization method, which demonstrates a better scathalbd large problems, as expected.

The numerical results validate the effectiveness of pregadgorithms. According to sim-

ulation results, both low rank matrix factorization and leac norm minimization techniques can
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Figure 3.7 Performance on power flow data for the Polish aystaring winter peak conditions,
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solve the matrix separation problem, and the performandbeofow rank matrix factorization is
slightly better than that of the nuclear norm minimizatiechnique. From the perspective of re-
coverability, since the false data attack matfixis not the dominant part compared wity in
this setting, the performance of the low rank matrix facation technique is better. From the per-
spective of computation time, the low rank matrix factdti@ma technique is much faster than the
nuclear-norm minimization technique due to its SVD-freatfiee. A detailed comparison of the
complexity of two algorithms is beyond the scope of this ¢bgpand useful discussions can be

found in reference [66].

3.2 Distributed Parallel Approach for Security Constrained Optimal

Power Flow

In this section, we first introduce the background of the ggcaonstrained optimal power
flow (SCOPF) problem. Then we propose a distributed parajpproach to address it. Finally,

numerical simulations are given to validate the effectassnof the proposed algorithm.

3.2.1 Security Constrained Optimal Power Flow

The deregulation of electric power grids offers the oppatjufor electricity market partici-
pants to exercise least-cost or profit-based operatior]s [spite the market-driven tendency of
the electric power business, security remains a significantern of sustainable power system op-
erations, which cannot be compromised. Security-comsdaoptimal power flow [70, 71] aims at
minimizing the cost of system operation while satisfyingbaf postulated contingency constraints.
It is an important management task allowing optimal contfggower systems securely.

The SCOPF is an extension of the conventional optimal poveer {OPF) problem[[72],
whose obijective is to determine a generation schedule thdtmizes the system operating cost
while satisfying the system operation constraints suchoaslyrload demand, fuel limitations, en-
vironmental constraints and network security requiresett has been recognized [73] that the

optimal control of the normal state may violate system dji@naconstraints after the occurrence of
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some disturbance events, and thus jeopardize the sectipgne@r systems. To address this prob-
lem, SCOPF is performed by considering both pre-continganc post-contingency constraints to
guarantee sustainable operations of the electric grid.syhem security level is improved by tak-
ing into account a number of contingencies in a selectedragancy list. The solution to SCOPF
should satisfy the so callet¥ — 1 criterion, which requires that operational limits of thewmsp
system should not be violated in case of a single contingémtiye and/or generator outage).

The SCOPF can be broadly classified as preventive, whereoteatiables are restricted to
their pre-contingency condition settings, and corregtiveose control variables are allowed to be
rescheduled [74]. We will focus on the corrective model iis txample. The seminal papér [73]
proposed the generalized Benders decomposition methamve the corrective SCOPF problem.
Since then, an extensive literature for SCOPF in power Bystxists both for traditional operations
and under market environments [71,75-78]. The nested Beddeomposition method was utilized
in [[75] to solve the SCOPF problem for determining the optideily generation scheduling in a
pool-organized electricity market, and was tested in anche&xample of the Spanish power system.
[76] embedded SCOPF into the security-constrained uningibment (SCUC) model, and designed
an effective corrective contingency dispatch ové@rlehour period, which balanced the economics
and security in the restructured markets. An iterative @@gh was proposed in [[77] to obtain the
solution of SCOPF, which aims to efficiently identify a sugegrof binding contingencies to achieve
the SCOPF optimuml[_[78] applied the Benders decompositiaietompose the traditional SCOPF
problem, and the underlying computational complexity waalyzed in this approacH. [71] solved
the SCOPF problem by a non-decomposed method based on tipeession of post-contingency
networks, which can reduce the size of security constraintsrelieve the computational burden in
the problem.

Before presenting the distributed parallel approach f@r finoblem, it is useful to recall a
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general formulation of the conventional SCOPF problem caxtip described as follows:

o . . 0 0 0
xo,{.n,ilél;%l,%?,uc f(x",u”) (3.35)

subjectto g°(x% u’) =0, (3.36)
h’(x% u’) <o, (3.37)
g°(xu’) =0, (3.38)
h¢(x“,u“) <0, and (3.39)
W’ —u| <A, c=1,...,C, (3.40)

wheref? is the objective function, which (3.B5) aims to maximize thial social welfare or equiv-
alently minimize offer-based energy and production cr$is the vector of state variables, which
includes voltage magnitudes and angles at all busesyaigthe vector of control variables, which
can be generator real powers or terminal voltages. The stijgrc = 0 corresponds to the pre-
contingency configuration, and= 1,...,C correspond to different post-contingency configura-
tions. In addition,A . is the maximum allowed adjustment between the normal antdngency

states for contingency.

In the conventional SCOPF problem, the equality conss&m@8 ong,c = 0,...,C, rep-
resent the system nodal power flow balance over the entide gynd the inequality constrairits 3139
onh®c = 0,...,C, represent the physical limits on the equipment, such aspleeational lim-
its on the branch currents and bounds on the generator paweunts. Constraintd (3.86)-(3137)
capture the economic dispatch and enforce the feasibilitieopre-contingency state. Constraints
(3.38)-[3.39) incorporate the security-constrained atisip and enforce the feasibility of the post-
contingency state. Constraint (3/40) introduces the #getwnstrained dispatch with rescheduling,
which couples control variables of pre-contingency and-posatingency states and prevents un-
realistic post-contingency corrective actions. Note thate are some variations on the objective
function and constraints of the SCOPF problem, and we foaut® above conventional formula-

tion in this chapter.

Following the standard approach to formulating the SCORBIpm, the objective here is to
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minimize the cost of generation while safeguarding the pasystem sustainability. For the sake
of simplicity and computational tractability, constrani3.36)4(3.3P) are modeled with the linear
DC load flow, and we assume that the list of contingenciesvisrgi Thus, assuming a DC power
network modeling and neglecting all shunt elements, thedstal SCOPF problem can be simplified

to the following optimization problem

0(),...3(0113%%1,?..6,1)%0 ZE; f"g(P?O) (3.41)
subjectto BY,.0° + P40 — A9OP90 — (3.42)

fus0° + P — ATPIC =0, (3.43)

IB$6°| — Far <0, (3.44)

IB56°| — Fae < 0, (3.45)

P90 < P90 < Pal, (3.46)

PI9° < PI9° < P9, (3.47)

P90 — P9¢| < A, and (3.48)

ieG, c=1,...,C, (3.49)

where the notation is given in Takle B.1.

The solution to[(3.41) ensures economical dispatch whigganteing power system security,
by taking into account a set of postulated contingencieg. rmifjor challenge of SCOPF is the prob-
lem size, especially for large systems with numerous cgatiny cases to be considered. Directly
solving the SCOPF problem by simultaneously imposing atfontingency constraints will result
in prohibitive memory requirements and a substantial CPlddiu To achieve efficient and secure

operations of the entire electrical grid, a distributedrapph is proposed in next sections.

3.2.2 Distributed and Parallel Approach for SCOPF

The proposed distributed optimization method is based erAbMM. The use of ADMM

for optimization in power systems has been considered ihdrifl [80]. However, the optimiza-
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Table 3.1 Notation definitions.

g Set of generators

N Set of buses

B Set of branches

6° € RWVI Vector of voltage angles

P9¢ e RIYI Vector of real power flows

Vi Generation cost function

Pf’o Displaceable real power of each individual generation unit

for the pre-contingency configuration
Bj,, € RWIXIVI | power network system admittance matrix
BS € RISV | Branch admittance matrix

Pdc ¢ RWVI Real power demand

A9c ¢ RWVIXI9l | Sparse generator connection matrix, whésg)-th element
is 1 if generator; is located at bus and 0 otherwise

F oz Vector for the maximum power flow

Poc Upper bound on real power generation

P9c Lower bound on real power generation

A, Pre-defined maximum allowed variation of power outputs

tion problem[(3.411) cannot be readily solved using ADMMcsithe constrainf (3.48) couples the
pre-contingency and post-contingency variables, andrbguialities make the problem even more
complicated. To address these challenges, the optimizptablem [(3.411) can then be reformulated

by introducing a slack variabip® € RI9!

minimize (3.41) (3.50)
subject to Constraint§ (3.4 2)-(3]47 (3.51)
P9 — P9° 4 p¢ = A, and (3.52)
0<p°<2A., c=1,...,C. (3.53)

The above optimization problem can be solved distribwgiveding ADMM. The scaled aug-
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mented Lagrangian can be calculated as

C C
,0 4 , ,
L,({P Y {p I {nFly) = > AP+ EIIPQO—P“erC—AﬁuCH%- (3.54)
i€g c=1

The optimization variable®9 ", P9, and p¢ are arranged into two groupgP9°} and
{P9¢, p°}, and updated iteratively. The variables in each group atengged in parallel on dis-
tributed computing nodes, and coordinated by the dual marigectoru© during each iteration.

At the k" iteration, theP¢-update solves the base scenario with squared regularzati

terms enforced by the coupling constraints and expressed as

C C
POk + 1] = argminz FPPY) + Z 2P0 — Poelk] + pelk] — A + pl[H]|3,
P90 Gcg = 2

subjectto Constrain(8.42]), (3.44]), and (3.44)). (3.55)

The PY%¢-updating solves a number of independent optimization mlidms correspond to post-

contingency scenarios and can be calculated distribytaethec!” computing nodes via

P9C[k + 1] = arg min %HP%O[k +1] = P9+ p° — A, + k] |12,
Pg,c’pc

subject to  Constrain8.43)), (8.45)), (3.47), and (3.53)), (3.56)

where the scaled dual variable vector is also updated joatithec!” computing utility as
pllk 4 1] = pflk] + P9k 4+ 1] — P9°[k + 1] + p°lk + 1] — A.. (3.57)

At the k" iteration, the original problem is divided int6' + 1 subproblems of approxi-
mately the same size. The computing node handif§ needs to communicate with all computing
nodes solving[(3.36) during the iterations. The resultshefRd-C-update, {P9°}, will be dis-
tributed among the computing nodes for tRé<-update. After theP9¢-update, the computed
{P9¢ p°, uc} will be collected to calculate the pre-contingency contaiables. The subproblem
data are iteratively updated such the block-coupling camgs [3.52) are satisfied at the end. Note
that since each of the subproblems is a smaller-scale OPfepnpexisting techniques for OPF can

be applied with minor modifications.The proposed algorithntiustrated in Algorithni 3.8.
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Algorithm 3.3 Distributed SCOPF.

Input: B, B}, A9, P%e, P, P9C, A;
Initialize: 8¢, P9¢, p¢, u¢, p¢, k = 0;

while not convergedo
P9.0-update:
P90k + 1] = arg minpg.o > ;cq Fo(P90)
+ 30, 2P0 — P[k] + pUlk] — A + (k)3
subject to Constraints (3.42),(3144), ahd (8.46).

P9¢-update, distributively at each computing node:
P9k + 1] = arg minpg.c ,c 5 2| P90k + 1] — P9€ + p¢ — A, + p[k]|3
subject to COnstramtE(:sjﬁ@:(BME):@ 47), 4nd(8.53),

plk + 1] = p¢k] + P90k + 1] — P9k + 1] + p°[k + 1] — A..
deu:t fipalty parametesr® is necessary;

end while
return ¢, P9<;

Outputé©, P9¢;

The ADMM approach is a primal-dual algorithm in which eachmputing nodec solves
its own subproblem_(3.56), and variations to constraifidBare systematically penalized at cer-
tain prices through the scaled dual variable to each indaligdubproblem. Note that in ADMM
frameworks for distributed computing, the dual variabtasprices, are not uniformly set up for all
nodes, which will require costly synchronization. For caxwptimization problems, the ADMM
converges to the optimum geometrically [81], and the cagerece rate can be improved by warm

start techniques [82].

3.2.3 Numerical Results

In this section, numerical studies are examined to evalihat@erformance of the proposed
algorithm. Three classical test systems are used: the IFHi#IS, the IEEE 118 bus, and the IEEE
300 bus|[68], whose structures and characteristics are suized in Tablé 3)2.

Two kinds of contingencies are considered in the numergsast branch outages and genera-

tor failures. The contingencies are artificially generated the number of contingencies considered
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Table 3.2 Characteristics of test cases.

Case IN| | 1G] | |B| | Number of contingency cases
IEEE57bus| 57 | 7 | 80 50
IEEE 118 bus| 118 | 54 | 186 100
IEEE 300 bus| 300 | 69 | 411 100

1.2

— |EEE case57
1 -==|EEE casell8 7
- = |EEE case300

Relative Error

0 10 20 30 40 50
Number of Iterations

Figure 3.9 Convergence performance of the proposed digtdbalgorithm on test systems.

are listed in Tabl€_3]2. We follow physical limits on equipmtgof test systems. The numerical
tests are implemented via MATLAB.10 on a PC with an Intel Q8200 2.33GHz processor and
8GB memory. The basic OPF problem solver is the same forglstestems. The performance of
convergence and computing time of the proposed algoritlerinaestigated in the following. The

results are averaged over a total of 500 Monte Carlo impl¢atiens.
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Table 3.3 Computing time performance of the proposed alguaron different test systems.

Cases Centralized Distributed ADMM

Cost | Time Cost | Time | Cost (e =1%) Time

IEEE 57 bus | 487.53 | 5.22 487.53 | 3.55 | 492.40 1.18
IEEE 118 bus| 1606.73| 36.03 | 1606.73| 18.92 | 1622.79 7.93
IEEE 300 bus| 9567.12| 221.67| 9567.12| 95.74 | 9662.80 52.87

3.2.3.1 Convergence Performance

We first consider the convergence issue of the proposedithigor Since the number of
contingencies and the optimal value for each test systefarglifthe relative error is used here to

present results. Supposé| is the resulting value of the objective function at t#fé iteration,

rlk]—r*
r[0]—r*

andr* is the optimal solution. The relative erreris defined ag =

. The convergence

performance is shown in Fig._3.9. It can be seen that after demate number of iterations, the
proposed algorithm converges to optimal values in casesidered. From Fid. 319, we see that the
IEEE 57 system gives the fastest convergence rate. A lagierayteads to a large scale optimization
problem, and a large number of contingencies considerddnaite the problem scale even larger.
Note that, after very few iterations, the algorithm getsnaose to the optimal value, which means
that the proposed algorithm is able to yield a good approttanao the optimal value in a short

time.

3.2.3.2 Computing Time Performance

The computing time for test systems with different numbédrsomtingency cases is investi-
gated and results are given in Hig. 3.10, Fig. B.11, and[Ei@.3The number of contingencies is
increased by0% each time and the computing time is recorded. It can be seemtfiese figures
that with an increase in the number of contingency caseh®SICOPF problem, the computing
time of the centralized algorithm increases much faster that of the proposed algorithm. Thus,

the proposed distributed algorithm is more scalable arilesthan the centralized approach.

48



10 ‘ ‘
— Centralized Algorithm

-==Proposed Algortihm

Computation Time

1h 20 30 40 50
Numer of Contingencies

Figure 3.10 Computing time for the IEEE 57 bus system witfediint numbers of contingencies.
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Figure 3.11 Computing time for the IEEE 118 bus system witfedint numbers of contingencies.
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Figure 3.12 Computing time for the IEEE 300 bus system wiffedint numbers of contingencies.

The computing time to achieve an approximate solution witklative error ofe = 1% is
also considered for the distributed case. To better ibtistthe numerical results, a speedup factor
is defined asS, = T,/T,, whereT. is the computing time of the centralized approach, @pds
the computing time of the distributed approach. The resaflthe computing time performance
are presented in Table 8.3. It is shown in Tdblé 3.3 that thpqmed distributed approach obtains
the same optimum as the centralized approach, and can achigyeedup factds, of 1.4 ~ 2.4,
Note that if only an approximate result is needed, the spgeéatttor can even be improved &)
of 4.4 ~ 4.8 by using the proposed distributed algorithm. The speedcfoiféor the smallest test
system, IEEE 57 bus, is the smallest, due to the relativelersignificant communication overhead
between different computing nodes during the simulatioarger S, can be achieved on a large-
scale test system since the communication overhead igit#glcompared with the computing time

of the optimization subproblem handled by each computirdgno
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3.3 Conclusion

In this chapter, we have investigated the applications gfdaita processing techniques for
enhancing security in the smart grid. We have introduceds®aurity concerns, the false data in-
jection attacks against state estimation and the secuwitgtrained optimal power flow in power
systems. We have explored possibilities of exploiting titeerent structure of data sets and effec-
tively processing large data sets to enhance power systamtye We have designed a sparse opti-
mization approach for the false data injection detectiablem, and a distributed parallel approach
for the security constrained optimal power flow problem. Vagehperformed numerical studies to
validate the effectiveness of proposed approaches. Wedfenwen that effective management and

processing of big data has the potential to significantlyrowe smart grid security.
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Chapter 4

Scaling into Clouds with Big Data

The mobile cloud computing has become a part of people'y diméds and is expected to
play a significant role in the future cloud computing indysiMowadays, people are used to access
various mobile applications such as search engine, em&i§ @avigation, streaming video and
social networks from their mobile terminals through wisdeaccess networks. Meanwhile, small
and medium enterprises seize the opportunity to utilizectbed computing paradigm as a flexible
and economically efficient solution for service provisimni It has great potential for mobile service
providers to generate huge revenues without investing noapital for building and maintaining
their own infrastructures. The rapid development of claufdaistructures, mobile computing and
wireless networks poses a complicated mobile cloud comguystem, and numerous applications
produce a huge amount of data traffic with diverse perforrafgectives.

The remaining of this chapter is organized as follows. $aéfi.1 describes a distributed ap-
proach for mobile data offloading in a software defined netw®he scalable service management

in mobile cloud computing is developed in Section 4.2. $&¢4.3 concludes this chapter.

4.1 Distributed Mobile Data Offloading in Software Defined Néwork

This section presents a distributed mechanism for mobikeaffloading in a software defined
network (SDN) at the network edge. We first give an introdarctio mobile data offloading in the
SDN-at-the-edge. Then, the proposed distributed mobile dfloading is described. Finally, we

present numerical results of the proposed algorithm.

4.1.1 The Mobile Data Offloading in SDN

The mobile data offloading [83], which refers to offloadingffic from cellular networks
to alternate wireless technologies like WiFi or small catworks, is able to address tremendous

growth in mobile data and rapidly evolving mobile servicdhe mobile data offloading can be
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Figure 4.1 An illustration of the network model. The mobikgal offloading can be enabled by the
SDN at the network edge to dynamically route the data traffi mobile network.
enabled by a software defined network (SDN)| [84] at the eddrchwecan dynamically route the
traffic in a mobile network. An illustration of mobile dataflefading via SDN is shown in Fig. 4.1.
In this model, the access network discovery and selectinatiion (ANDSF) can discover wireless
networks close to mobile users and perform mobile data afithga The ANDSF interacts with the
virtual SDN centralized controller for offloading managermaevhich can be implemented by stan-
dardized interfaces such as OpenFlowl [85]. The mobile seroperators have already deployed
their own WiFi access points or initiated collaborationhwxisting WiFi networks to enable mo-
bile data offloading, and the SDN-at-the-edge can signifigatleviate both cost and operational
difficulties incurred by the simultaneous operation of asceetworks with multiple wireless tech-
nologies.
The benefits of mobile data offloading have been quantitgtstedied in [83, 86, 87], which

indicate that WiFi or small cell network can largely boodtuar network capacity, offload cellular

data traffic, and save a huge amount of battery power for malsiers.[[88] proposed an incentive
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framework to motivate mobile users to leverage their detdgrance for cellular data traffic of-
floading. It could opportunistically offload cellular dataftic to WiFi networks or small cells, and
relieved the cellular traffic overload. A dynamic resourtiecation and parallel execution frame-
work for mobile code offloading was presented(in [89], whighleited the concept of smartphone
virtualization in cloud computing and provided methoddiegomputation offloading! [90] utilized
opportunistic communications to facilitate informatiassemination and data offloading in mobile
social networks, which can significantly reduce the amofimhabile data traffic.[[91] considered
a market-based mobile data offloading solution, whichagdithe non-cooperative game theory to
decide how much traffic should each access point (AP) offloaddch base station (BS) and what is
the corresponding paymerit. [92] extended [91] by formatathe offloading problem based on the
network utility maximization[[93] framework, and proposaud iterative double auction mechanism
to solve it.

In this work, we propose a distributed mechanism for mobdtadffloading in SDN at the
netowrk edge. The SDN controller dynamically routes defitrin a mobile network to decide
how much data should APs offload for BSs. A total revenue meetion problem is formulated
by jointly considering the offloading utility of BSs and thest of APs. The optimization problem
is solved in a distributed fashion based on the proximall@iacomulti-block alternating direction
method of multipliers (ADMM). The BSs and APs perform the @ditling decision update concur-
rently, and are coordinated by the SDN controller throughl diariables to reach a consensus on

offloading demand and supply. The proposed mechanism Hawiiofy characteristics.

1. Simple computation at the SDN controller: To alleviate tomputation burden of mobile
data offloading at the SDN controller, the operations at thél ontroller is designed to be

simple one-time algebraic calculation instead of solvingptimization in related work [92].

2. Privacy preserving: During the process of the optimizafor offloading decision, the utility

functions at BSs and cost functions at APs are only knowndm#elves.

3. Concurrent update at BSs and APs: The updating procesSsaBd APs are performed
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concurrently.

4.1.2 System Model and Problem Formulation

We consider a mobile network which consistsibtellular base stations (BSs) addaccess
points (APs). ABS € {1,..., B} serves a group of mobile users and has the demand to offload
its traffic to APs. An APa € {1,..., A} is a WiFi or femtocell AP which operates in a different
frequency band and supplies its bandwidth for data offlgadiitne maximum available capacity for
data offloading of each AR is denoted byC,,. The SDN controller manages BSs and APs through
the ANDSF, and makes mobile data offloading decisions agupttd various trigger criteria. Such
criteria can be the number of mobile users per BS, availabtellwidth/IP address of each BS, or
aggregate number of flows on a specific port at a BS.

Let x, = [xp1,. .- ,be]T represents offloaded traffic of Bl wherex,, denotes the data
traffic of BSb offloaded through AR. Correspondinglyy, = [ya1,-..,%.5]" represents admitted
traffic of AP a, wherey,,;, represents the admitted data traffic fromB&enerally, a feasible mobile
data offloading decision exists when BSs and APs reach aeragrd on the amount of offloading
data, i.e.;rp, = yap, Va andvb. We assume that mobile data of BSs can be offloaded to all of APs
without loss of generality. Moreover, we assume that the tisnslotted and during each time slot
the offloading demand from BSs is fixed. The SDN controllerdsde find a feasible offloading
schedule at the beginning of each time slot, and maximizetility of BSs at a reasonable cost of
APs.

We denote BS’s utility by Uy (x;), whereUs(-) is designed to be a non-decreasing, non-
negative and concave function 3, Vb. For example, the function can be logarithmic, and the
concavity is due to the diminishing returns of resourcescalled to the offloaded data. Likewise,
we use functionZ,(y,) to describe the AR:’s cost of helping BSs offload data, whefg(-) is
a non-decreasing, non-negative and convex function,irva. The cost function can be a linear
cost function, which means total cost of APs will increaseh@samount of admitted mobile data

increases.
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For the SDN controller, the total revenue for mobile dataeffling is expressed @{,3:1 Up(xp)—

Zle L.(y,). To maximize the total revenue, the equivalent minimizatiptimization problem

can be formulated as

A B
min Lo(y,) — Up(xp), 4.1
[t X b Y1y a) Z::l a) b; V0a) @4
B
s.t ZyabSCa, Va, and (4.2)
b=1
Tva = Yab, Va, b> (43)

where [4.2) stands for the capacity constraint at each AP{&8) represents the consensus of BSs
and APs on the amount of mobile data. We propose an algoriisecdoon ADMM to solve the

convex optimization probleni (4.1) in a fully distributedsfaon.

4.1.3 A Distributed ADMM Approach

The optimization probleni (4.1) can be solved in a fully distted fashion by the multi-block
Jacobian ADMM. The computing paradigm of the proposed élyoris shown in Figl_4.J2. During
each iteration, BSs and APs updatendy concurrently. The updatexl andy are gathered by
the SDN controller, which performs a simple updatedoand scatters dual variables back to BSs
and APs. The iteration goes on until a consensus on the affipal&mand and supply is reached.
According to Algorithn 2.7, we fist calculate the partial kaggian of[(4.1l), which introduces the

Lagrange multipliers only for constrairit (#.3)

B A B
ﬁp(x7y7 A) = ZL (ya) Z xb +Z Z )\ab(xba - yab

a=1 = a=1 b=1

l\le

A B
ZZ ‘wba _yab”%7 (44)
a=1 b=1

whereX € R45 is the Lagrange multiplier angis the penalty parameter. The updates of BSs and
APs can be performed concurrently according to the proxitaabbian multi-block ADMM. We

describe update procedures of BSs, APs, and SDN contrallieilaws.
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Figure 4.2 Distributed computing paradigm of proposeditisted mobile data offload mechanism.

Base Station Update At each BS), the update rule can be expressed as

A

. P 1

xy ! =arg min(Uy () + 5 Y llasa—ply 3+ 5 % x5 3,). (45)
Xp

a=1
whereP; = 0.1I, andI is the identity matrix. The?’, = (y*, — AT;I’),VCL is the ‘signal’ from
the SDN controller to B®. The update[(4]5) is a small scale unconstrained converigatiion
problem. At each round of the update, it sergf size A to the SDN controller. Note that the
update of each BS is performed independently and can belamduocally. Oncex, is updated, it
is sent to the SDN controller while the utility functidn,(-) is kept confidential.

Access Point Update The update rule at each APcan be expressed as

B

p 1

yo' !l =argmin(La(y,) + 5 Y lva — aall3 + Sllya — valb,): Zyab < Ca, (4.6)
Yo b=1 b=1

whereP; = 0.11, andq}, = (zf, + AT;E’),Vb. Thegy, is the ‘signal’ from the SDN controller to AP
a. The update[(4]6) is a small-scale convex optimization lpratwith linear inequality constraints.
At each round of the update, it sengs of size B to the SDN controller. The update of each AP
is also performed independently. During the update, therinétion of cost functiorl,(-) is kept

private. They,, is sent to the SDN controller once updated.
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Algorithm 4.1 Distributed mobile data offloading.

Initialize: x°,y° A%, p > 0,7 > 0;

for k=0,1,...do
{Updatex; andy, forb =1,...,Banda = 1,..., A, concurrently.}
{Base station updateyb}

k . A Ay
b+1_argm1nxb_Ub(Xb)+§Za:1 bea_yab bH2+ be XbHP’

{Access point updateya}
. B Ak .
yEH = argming, La(y,) + § 0, ok, — v + 2213+ Llly, — v5II3 ;
{SDN controller update}
k+1 _ vk B N~A kL k41
A = A TP bm1 2ot (Thy — Yoy )5
end for

Outputx, vy;

SDN Controller Update: At the SDN controller, the update rule can be expressed as

B A
MU= N+ ap > 0> (gt =y, (4.7)
b=1 a=1

After gatheringx andy from BSs and APs, the SDN controller performs a simple updatéhe
dual variableX by a simple algebra operation. After that, the ‘signal’ sbtésp,, and ¢, are
scattered back to corresponding BSs and APs, respectively.

Remark that in the Jacobian type update, the iterations of BSs arslak® performed con-
currently. There is no direct communication between BSsAdRg, and the intermediated update
results ofx andy are kept private. The updates at iteratios 1 only depend on previous values at
iterationk, which enables a fully distributed implementation.

At each iteration, the update operations at BSs and APs @&eegjmple. The updates at each
BS and AP are simple small-scale convex optimization prablevhich can be quickly solved by
many off-the-shelf tools like CVX [94]. As for the communtin overhead, for each iteration the
message between each BS and the SDN controller is oRgiAsize ofx; andp,, Va). Likewise,
the message between each AP and the SDN controller is oR8iZsize ofy, andq,, Vb). The
sizes of those messages are quite small compare with thefsafloading data. The proposed

distributed algorithm is described in AlgoritHm 4.1.
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Figure 4.3 Convergence performance of the proposed distdbmobile data offloading algorithm
by objective value whefiB = 5, A = 5) and(B = 5, A = 10).

4.1.4 Numerical Results

4.1.4.1 Evaluation Settings

We consider a wireless access network consist® 6E 5 base stations and = {5,10}
access points coordinated by the SDN controller. The SDalter will offload mobile data traffic
of BSs to APs, and the available capacity of each AP for offlaais C, = 10Mbps. The utility
function of BSb is U, (x;) = log(x; 1+1), wherel is the all one vector. The cost function of AP
is a linear cost expressed Bg(y,) = f.*y. 1, wheref, > 0 is the cost coefficient. The value @f
is application specific. During numerical tests, we asségie a Gaussian random variable which
has a distributionV (0, 1) for simplicity. We perform numerical tests on the offloadategision for

one time slot, and simulation results are presented asvsllo

4.1.4.2 Convergence Performance

We investigate the convergence performance of the propalgedithm in the sense of op-
timization objective and residual. Two scenari¢® = 5,4 = 5) and(B = 5,A = 10), are

considered here. Since different scenarios have diffesptitnal objectives, we use the relative
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Figure 4.4 Convergence performance of the proposed distdomobile data offloading algorithm
by residual whertB = 5, A = 5) and(B = 5, A = 10).
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Figure 4.5 The offloading gap of the proposed distributedilratata offloading algorithm.
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objectiveo® /o* in our simulations. The* is the objective value calculated by the proposed dis-
tributed algorithm at iteration k, and is the optimal objective obtained by the centralized method
The residual is defined @;“:1 S8 N1Zba — vasl|3. We also normalize the maximal residualito
for better readability.

The convergence of the proposed distributed algorithm d@svehin Fig.[4.3 and Fig._4l4.
Fig.[4.3 shows that the proposed algorithm converges togtimal objective in a moderate number
of iterations whenB = 5 and A = 5. It takes a longer time for the proposed algorithm to coreerg
whenA = 10. It indicates that when these are more APs in the access rietivavill take a longer
time for the SDN controller to coordinate BSs and APs for asemsus on the offloading demand
and supply. The normalized residual is shown in 4.4s BHown that after several times of

iterations the residual of optimization problelm (4.1) reelito zero for both scenarios.

4.1.4.3 Offloading Performance

We study the performance of mobile data offloading by comsigethe offloading gap be-
tween BSs demand and APs supply. Here we only consider thrasoéB = 5, A = 5).
Note that a feasible offloading exists whep, = y.,Va andVvb. Thus the total market gap,
22‘:1 Ele(:nba — yap), IS calculated here. To understand the efficiency of theqgseg algorithm
for each base station, we zoom in gaps between BSAP 1 (y;1 — x11), and BS 1& AP 2
(y12 — x21), respectively. Due to different scales of those gaps, wmalized their maximum to 1.

The numerical results are shown in Hig.14.5. It is shown tftat aeveral times of iterations,
the total market gap reduces to zero, which means that BS&Rsitiave reached on a consensus on
mobile data offloading demand and supply. The offloading bepseen BS X: AP 1 (y11 — z11),
and BS 1& AP 2 (y12 — z21) also gradually converge to zero. Note that the convergehtigose
gaps are not necessary synchronized. When those gaps\argerio zero, the decision of mobile

data offloading is made and the maximal total revenue is aetlie
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4.2 Scalable Service Management in Mobile Cloud Computing

In this section, we first give a brief introduction to mobillewd computing (MCC). Then,
the proposed algorithm for mobile cloud service managerigedéscribed. Finally, we presented

numerical results of the proposed algorithm.

4.2.1 An Introduction to Mobile Cloud Computing

4.2.1.1 Background

In mobile cloud computing, mobile end users can offload legadkload [95] and back up
personal data to clouds without explicitly noticed where slervice is actually hosted. The service
provider needs to dynamically acquire computing resoui@eservice provisioning, and delicately
manage online services to optimize the end-to-end perfaceaxperienced by their customers. It
is known that even a small increase in latency will result sigmificant revenue loss for service

providers. Thus, mobile service providers usually deplmirtservices on several cloud-enabled
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data centers, and perform service management tasks toadigtimcate mobile service instances.
An illustration of the mobile cloud computing infrastructus shown in Fig. 416.

To efficiently manage mobile cloud services, a mobile serpiovider should appropriately
locate client requests to a data center (request allogationl select an upstream Internet service
provider (ISP) link of data center to carry on the traffic béxkhe client (response routing). Those
two tasks are crucial to the success of mobile cloud sergiod,should be managed adaptively to
variations in MCC, such as end user demands, link latencypatation costs, as well as electricity
and bandwidth price. Nowadays, the decision of requestatilon and response mapping is handled
separately, which results in poor service performance aytddost. For example, too many client
requests may be allocated to the same data center with dimfistream link bandwidth, or a data
center may response to client requests through an expdsivink. The management tasks are
also computationally intensive due to the large number diita@evices and the stringent response-
time requirement of mobile services. Furthermore, the tairdy in the wireless link latency of

mobile network complicates the problem.

4.2.1.2 Related Work

The service management faced by the mobile service provadebe seen as a network utility
maximization (NUM) problem[[93], which described a unifgiframework for understanding and
designing distributed control and resource allocationoimmunication networks.

Our work is closely related to the mobile service allocatand the traffic engineering in
MCC. The framework for offloading mobile computation workibto clouds was proposed in [89],
which managed to enhance the energy resource utilizatidrrestiuced the computation time of
mobile devices. IN[96], a mobile service management teoigyowas presented to support novel
MCC applications. The network services were reactivelpaaled to guarantee adequate perfor-
mance for the client-sever communication. A decentralidesign for service request allocation
was described if [97], which directed client requests ta@myate server replicas to offer better

performance. The problem of optimizing the performanceanfying traffic for an online service
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provider was studied in [98]. The multi-homed traffic enginieg for autonomous systems to opti-
mize cost and performance was investigated in [99], andffeetef temperature on cloud service
workload management for geo-distributed data centers nalgzed in[100].

The cooperative server selection and traffic engineerihgd®n network and content providers
who have conflict objectives was proposed(in [|101], the cpho&Nash bargaining solution was
utilized to enhance the cooperation between ISPs and domteviders. [102] extended the opti-
mality result by incorporating practical considerationsisas DC-level load balancing and capacity
constraints. Recent work [103] considered a coordinatfaequest mapping and response routing
for geo-distributed cloud services, and developed a Higed algorithm to solve the large-scale
optimization problem. Our work explores and analyzes tifecebf random wireless nature on the
service management problem, and proposes a distributetastiic optimization framework with
proved convergence property for service management.

In this work, we present a scalable distributed managemamtdwork for mobile cloud ser-
vices, which takes the the impact of wireless network charestics into account. The tasks of
clients request allocation and data center response goatmjointly considered, and the manage-
ment tasks are formulated as a service revenue maximizptisiem. In particular, the mobile
service provider optimally locates client requests to mtewqualified service at a reasonable cost

under the stochastic wireless link latency. Our major ¢butions are as follows.

1. A stochastic optimization framework for mobile cloud\dee management is formulated.
The clients request allocation and data center responsi@gare jointly optimized, and the

impact of wireless network characteristics on servicegrar@nce is considered.

2. A distributed approach to solve the large-scale stohagitimization problem based on
ADMM is proposed. The update steps are modified accordingetstiochastic setting, which
can be solved in a parallel fashion on distributed agentscanddinated through dual vari-

ables.

3. We prove the convergence of the proposed stochastidhdigtd optimization algorithm. We
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Table 4.1 Summary of key notations.

Set of agents, indexed by {1,..., N}.

Set of data centers, indexed py¥ {1,...,J}.

=9 W

J Set of ISP links of data centgr

R; Bandwidth capacity of mobile service agent

a; Application request of client severed by data centgr

b;; | Traffic routed from data centgrto agent.

L;, Average delay from data centgto agent.

& Latency variation of wireless link for agent

F;(-) | Utility function of agenti.

G,(-) | Performance metric function of data cenjer

Pji Price of routing traffic from data centgrto agent;.

Q; Capacity of ISP links at data centgr

C; Capacity of data center.

evaluate the effectiveness of the proposed algorithm girowmerical simulations from both

computation perspective and service management penrgpecti

4.2.2 System Model and Problem Formulation

We first present the mobile cloud infrastructure, and thestilee the mobile cloud service

management problem. The summary of key notations are list€able[4.1.

4.2.2.1 Mobile Cloud Infrastructure

We consider a sef of agents in mobile cloud service. An agent {1,..., N} is defined
as an access point (AP) of wireless access networks, anatitsMidth capacity of mobile service
agent is R;. A set7 of data centers are indexed p¥ {1, ..., J}. Data centers are interconnected
over a backbone network and each data center is multi-hom&dISP links. The set of ISP links

of data centey is denoted byC;. We assume that all data centers have the same number ohkSP |i

65



for simplicity. The capacity of ISP links at data cenjés denoted byQ; = [Qj 1, - - -, Qj,K]T. The
service provider observes a propagation ddlay = [L;;1,...,L;; k] over wired connection,
whereL; ; ;. is the average delay between ageand data centeion thekt” ISP link. The wireless
link latency between agentand mobile devices i§,.

The requests from mobile devices are first handled by the lmsbrvice agent. After that,
one data center at a specific location is assigned to procesquest. We usg; ; as agent’s
application requests processed by data cent€he request allocation decision variables of mobile
service agent are denoted as; = [a; 1, ... ,am]T. In practices, a mobile service agent can be
a cloudlet[104] or be implemented on servers that providbilametwork services. Additionally,
in this work we assume that an agent has the fine-grainedataitthe network traffic, which is a
reasonable assumption in nowadays commercial produdksif@irtechniques like OpenFlow [85].
Once data center has finished the job, the response traffic will be routed bamkugh ISP links.
We use vectob; ; = [bj;1,...,b;:x)]" to denote the traffic routed from the data centes agent
i through K different ISP links, and the matriB; = [b;1,...,b; n]' denote response routing

decisions of data centgr

4.2.2.2 Mobile Cloud Service Management

In mobile cloud service management, the application regue allocated to appropriate data
centers in order to achieve maximal utility and minimize ¢ost. The utility and cost functions in
the service management can be elaborated as follows.

1) Utility of mobile service agents The performance objective of agenis characterized
by a utility function F;(-), which depends on total transmission rate and wirelesssaauetwork
latency. The utility functions can be different among melsiervice agents. In this work;(-) is

designed to be a non-decreasing, non-negative and congagtoh in Zjej a; ;. For example,

Fi(a;, &) = élogQ(Zjej a;j + 1), or can be a more general class of functions that represent th
elasticity of service request and/or determine the fagrésesource allocation. Such functions are

typically used for the TCP congestion contiol [1/05,/106].
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2) Cost of data centers The cost of data centgris characterized by functiof; as

G;() = Bj17j.1() + Bj2vi2(-) — Bj375,3(), (4.8)

which has three parts and parameterized by positive camftsb; 1, 5,2 andj; 3, respectively, to
incorporate different degrees of sensitivity to operatiost, link price and user perceived latency.
The determination of the values of coefficients is servicege, and the mobile service provider
is responsible for choosing the values of parameters baséd service types, data centers it used,
and its profit model.

In the first part ofG;(-), v;,1(-), accounts for the operation cost of data cepjitéfere,y; 1 (-)

is designed to be a non-decreasing, non-negative and céunvetion in T.1, wherel € RX

iz Pji
is an all-one vector. The design of operation cost can iraratp the price of computing resource
rental, maintenance cost, and electricity bills [1.00, I@E]. For example, to represent electricity
bills [109] at data centef, v;,1(-) can be

’Yj,l(Bj) = Prj X Pe X [Pidle + ( peak — zdle ij 21 (49)
i€l

wherePr; is the spot electricity price at data cenjeand P, is the power usage efficiency,cqx
and P,y are server peak power and server idle power, respectively.

In the second part of;(-), v;,2(-), stands for the cost of routing traffic from data centéo
mobile service agents through ISP links. A linear cost méaielSP links can be adopted

/VJ 2 Z b] zp] I (410)
1€T

wherep;; = (pji1,--- ,pj7z-7K)T is the price vector for ISP links at data cenfeMWe assume that
the cost of routing traffic on thg*" ISP’s link from data centej to agenti, which is denoted by
Pj.i.k» 1S known and fixed. Note that nowadays ISPs are adoptingstaatied charging policy, e.g.,
the 95-percentile charging scheme. It is shown that a linest optimization in charging intervals

can reduce the 95-percentile cost![98].
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In the last part oiG;(-), v;.3(-), captures the user-perceived latency in the responsengouti
from data centej to mobile service agentsy;s(-) can be a non-decreasing, non-negative and

concave function iB

%3(B;) = > b/ (Lmas — Lj), (4.11)
i€l

whereL,,,q, is the maximum tolerable latency. The ISP link delay; is known and can be obtained
through active measurements [110]. We consider the latbebyeen data center and mobile
service agents as a performance metric since user-pedciitency is one of the most important
metrics for mobile cloud computing service. Even a smaltentent can result in a significant
revenue loss.

3) Total revenue The goals of maximizing mobile service utility and mininmg data cen-
ters’ cost usually contradict each other. Allocating userguests to data centers that offer lower
latencies usually incurs higher costs, and over-utilizimg low-cost link for response routing will
degrade system performance due to the increased conge3yigmintly considering utilities of mo-
bile service agents and cost of data centers, the total wevien mobile cloud service management
can be formulated as

Revenue= o E¢{F(a;, &)} — Y G;(By), (4.12)
€T JjeJ
where the parameter is introduced to find a balance between service utility argl.cbhe mobile

service provider needs to customize the cost-performaadeaff to obtain the best revenue.

4.2.2.3 Maximizing Total Revenue

The mobile service provider performs a revenue maximinatiamprove resource utilization
in MCC. The objective of the optimization problem consistdwio terms: (i) the service utility
from all agents by fulfilling mobile client requests, and {he data center cost for serving service

requests. The resulting stochastic optimization probkeprésented in its equivalent minimization
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form as

minimize Z Gj(Bj) —« Z Ee, {Fi(ai, &)} (4.13)
i Bl je7 i€l
subjectto Y a;; < R, Vi, (4.14)
jeg
> ai; <Cy, Vi, (4.15)
i€T
> bi=Q; Vi (4.16)
i€T
aij =b)1, Vij, and (4.17)
aivj 2 07 b],l i 07 V’L.,j, (418)

where [4.14) is the bandwidth capacity constraint for eaobila service agent[ (4.115) arid (4.16)
are data center capacity constraint and link capacity cainstrespectively.[(4.17) is the workload
conservation constraint between each pair of agent anccdatar.

The solution to the above stochastic optimization problesuess the optimal allocation of
mobile application requests, while achieving the maximerenue. Traditionally, this problem is
solved in a centralized manner to find the optimal solutiomwElver, the major challenge of the
centralized service revenue maximization is the problere, gspecially for large systems with an
enormous number of agents, communication links and datersenAdditionally, the randomness
of the wireless link latency makes the problem more comjataTo achieve efficient and scalable

management of the mobile cloud service, a distributed dpéition framework is proposed.

4.2.3 Distributed Stochastic ADMM for Service Management

In this section, we first introduce the background of stottba@&DMM and analyze its con-

vergence property. Then we present the proposed methoddoitercloud service management.
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4.2.3.1 Stochastic ADMM Background

The general form of stochastic ADMM can be expressed as

NP
minimize - E¢{f(x,£)} +9(2)
subjectto Ax + Bz = c, (4.19)

where¢ is a random variable with unknown distribution. Note that finst function in[(4.10) is an
expectation function oveg instead of a deterministic function in(2.8). The Lagrangianction

associated witH (4.19) is
Ly(x,2,A) = Ee{f(x,)} +9(2) + (\ Ax+ Bz — ) + £|Ax+ Bz —c[},  (4.20)

and update rules fat, z and\ are

b2

X1 = argain f(x) + (70,3 + 2 (N AxBa' o)+ flax+Ba' —clf,
(4.21)

2! = argmin g(z) + (A', Ax'"! + Bz —¢) + gHAxtJr1 + Bz —c|3, and (4.22)

AL Z Af 4 p(AxET 4 B2t ¢, (4.23)

wheren! is the penalty parameter and is essential for the algorithmergence. The update rule of
x has the same flavor of the stochastic mirror descent metddi{112]. The convergence property
of stochastic ADMM can be analyzed using the variationafjiradity (V1) base on the Lagrangian
(4.20) similar to the deterministic case [113,114]. Befateoducing the proof of convergence, we

describe following lemmas which will be useful for the proof

Lemma 4.1. [115] If y* = argminycy{J1(y) + J2(y)}, whereJ; : R" — Rand J; : R" — R

are convex functionsgy is a polyhedral subset &", and.J; is continuously differentiable, then

y* = arg @in{h () + Va(y") Ty} (4.24)
ye

Proof. They* = argming.y{J1(y) + J2(y)} is equivalent to

(v, y*)= argmin {Ji(y)+ J2(2)}. (4.25)
yeY,zeR" y=2
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By the Lagrange multiplier theorern [115], there exikts R"™ such that

y* = argmin{J;(y) + ATy} and (4.26)
yey
y* = argmin{Js(z) — ATz} (4.27)
zeR”
From (4.2T) we obtait\ = V.J5(y*). Substituteh back to [4.26) proves the result. O

Lemma 4.2. For ¢ > 0, we have that the following inequality holds:

gz — g(z) + (2" — 2, BT A <0, (4.28)
Proof. By applying Lemm&a4]1 with identification (z) = g(z) and.Jz(z) = (\!, Ax'™! + Bz —
c) + 5||Ax"™! + Bz — c[|} in (.22) we have

9(z) — g2 + (z — 2T BT X! + p(Ax"™ + Bz — ¢)]) > 0. (4.29)

SubstitutingA* = X! + p(Ax!*! + Bzt — ¢) into (@.29), we get

g(th) —g(z) + <zt+1 — z,BT)\tH) <0, (4.30)
which proves the result. O
Lemma 4.3. For ¢ > 0, we have that the following inequality holds

(X =, ATAR) < V(! 60, x = x ) o (x— xIH, pAT (Ba! — Bzt ))

1
+orlx - x[3 = flx = x"F3 — [lx" = x"713).

Proof. By applying Lemm&4]1 with identification® (x) = f(x!) + (Vf(x!, £"),x) and Jo(x) =

“13

(X'Ax + Bz’ — c) + §||Ax + Bz' — c[§ + 222 in @23), we obtain

1
Ji (%)= Ji (X)) + (x—xt AT 4 p(Ax T+ Bz —¢)]) + 77_<X —xIT Xt _xhy > 0.

We analyze each of three terms on the left hand side (LHS).81J4 The first term

Ji(x) — Ji(x"T) = (Vf(x', &), x — x"TT), (4.32)
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and the second term

(x—x"TL AT A 4 p(Ax"T 4Bzl —¢))) = (x—xT1 ATAFD 4 (x—x!*t! pAT (Bz! —Bz! 1)),

(4.33)
which holds since\'™ = X! + p(Ax'"! + Bz!™! —¢). The last term is
1 1
E<X —x M —xl) = 2—77t(HX = x'[[3 = [l — x5 — [Ix" — x"*3). (4.34)
Substitute[(4.32)[(4.33) and (4134) backlfo (4.31) prokiesésult. O

Theorem 4.4. AssuméE||V f(x, €)||3 < G2, V€. max[g||Ax—|—Bz0—cH%—|—2—1p||)\—)\0\|§] = Land
max ||x! —x||3 < D,,Vx € X, X € RP. Definew! = (x!;z'; \'), h(w) = E{f(x, &)} + g(z) and
F(w) = (ATA;BTX; —(Ax + Bz — c)). Let{w'} be the sequence generated by (%.21)-(4.23)
andn! = % wheree > 0, and@ = 7%1 Zfzo w!. Then for any integer number > 0 and
weX x ZxRP,

E{h(@") — h(w) + (@' — w, F(&"))} < O(%). (4.35)

Proof. By Lemmd 4.8 and the convexity of functigh we obtain[(4.36).
Ee{f(x",€)} —Ee{f(x,8)} + (x"" —x, ATA)
<(VF(', €0, x = x"T) — (Be{ V(" €)} x —x!) + (x = x"!, pAT (B2 — Bz"1))

t+1 t _Xt—l—lH%)

1
+ 5 (e = x5 = flx = x5 — |1

2nt
= (Vf(x', &) = VT, x —x") + (Vf(x', &) - VfT"),x" —x"T)

1
+(x —x"1 pAT(Bz' — Bz'")) + 2—77t(||X = x5 = Il = x"HJE — [Ix" = x"3)
< (VF(x! € — VT, x —x) + (x — x'TL pAT(Bz! — Bz!'t))
¢
n 1
+ IV €) = VA5 + 2—77t(HX = x5 = [l = x"3). (4.36)
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Using definitions ofv?, h(w) and F(w), adding [4.36) and (4.28) results [n (4.37).

h(w't) — h(w) + (W't — w, F(wit]))

1
< <X — Xt+1,pA_T(BZt _ th+1)> + ;<A . At+l,At+1 o At>

t
(VI €)= V), x = x) + VI €)= V()3

1
+2—nt(llx—xt\|§ =[x = x"H3). (4.37)

For the first term on the right hand side (RHS)[of (4.37), weehav

<X _ Xt+17 pAT(BZt _ th+1)>

[lAx + Bz — c||3 — |Ax + Bz""" — |3

NI

+ | Ax™! + Ba™ —cff — [|Ax"T + Bz — c|3]

<

NI

1
[|Ax + Bz’ —clf — |Ax + Bz — ¢|| + FHVH =23, (4.38)

and the second term is

l<A_ At-‘rl’At-i-l . At> —

1
P %(H/\—VH% = A= X — AT = AT ). (4.39)

I | T t . _\ . . . .
Letw = T+ Zt:(] w". SInCeh(W) is a convex function ofo and F' is a monotonic operator, using

(4.38) and[(4.309) to rewrit¢ (4.87) we have the relationshi@l.40).
h(v—vt+1) _ h(V_V) + <v—vt+1 _ W,F(Wt+1)>

[A(w'™h) = h(w) + (W™ = w, F(w'™)]

IA
"
—
N

+1t:0
1 <& 1
t t t+1 t t12 t+1112
S—TH;W(X,&)—W(X >,x—x>+T—+1;2—7ﬁ<nx—xHQ—ux—x 13)
T
s S st e) - Vi 4 (Ll Ax 4+ By® — el + o A~ AYR)
T+14~2 ’ T+1'2 2p ’

-+
i
o

(4.40)
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Request allocation updates

Figure 4.7 The original service revenue maximization peobis decoupled into two parts, response
routing update and request allocation update. Two parte@wedinated through dual
variables.

By assumptions tha||V f (x, £)[|3 < G?, max[§[|Ax + Bz" — c|3 + ;[|A = A°|[3] = L, and
max ||x! — x||3 < D, forall x € X, A € RP. Summing over t, we have

E{h(%'"1) — h(W) + (W1 —w, F(w'1))}

T
L 1 nt o 1 T+1 1
< — 4+ — —G*+ —— D, <O(—), 4.41
_T+1+T+1§0:2 TTET 2 - (\/%) (4-41)
where the last step holds singend¢! are independent and due to the fact thfat ﬁ O

4.2.3.2 Distributed Scalable Design

We propose a distributed design to solve the optimizatiablem [4.138). Specifically, the
decision variables; andB; are arranged into two groups, which correspond to the mehiteice
agents request allocation and the data center responsag,aespectively. During the optimization,
the variables of each group are optimized in a distributedtl @arallel fashion. In particular, each

mobile service agerntsolvesa; and each data centgobtainsB ;, and those two groups of decision
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variables are coordinated through dual variables. Theitaatbre of the proposed mechanism is
illustrated in Fig[4.]7.

The problem[(4.13) is not readily solved in a distributechfas due to the coupling of deci-
sion variables:; ; across all mobile service agents in constrdint (4.15) aedtupling ofa; ; and
b; ; in constraint[(4.1l7). To design a distributed approachi4atd), we first rewrite the constraint
@.15)as

> bji1<Cy V), (4.42)
€L

which is separable among data centers. We define4ets {a;| Zjej a;; < Ri,a;; > 0,Vj €
j} andBj = {B]|Zz€Ib;ljzl < Cj?ZiGZbJﬂ = Qjabj,i = 0,Vi € I} for compactness.
Accordingly, A = {UA;}/_, andB = {{JB;}/_;. Then the stochastic optimization problem
(4.13) can be solved distributively in parallel using ADMM.

By applying the stochastic ADMM to solve the optimizatioroplem [4.18), we first calcu-

late the partial Lagrangian function, which introduces lthgrange multipliers only for constraint

@17):
Lo({aity By i tiel i) =Y Gi(B)) — ) Ee {Fi(a;, &)}

JjET €T
T P T
+ 3 pijiai; —bj 1) + 3 > llaiy — b3, (4.43)
i€l jeJ i€l jeJ

wherey; ; is the Lagrange multiplier. The decision variabdesindB; are arranged into two groups
and updated iteratively. The update procedure has two rpajas: the request allocation update
and the response routing update, which are illustratedabelo

Request allocation updates at mobile service agent$he request allocation updates at mo-
bile service agents are performed by minimizihg (#.43) wétspect to{a; } Y, € A. Specifically,

at thet!” iteration, a; is updated by

{1, = argmin —a Y Ee {Fi(ai,&)}+Y > (phj a:;—17bl,)

{a;} eA €T icT jeJ

p
+§ Z Z ”aivj_lTbiz”% (4.44)

i€l jeJ
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In (4.44) the optimization is performed to maximize theitytiat mobile service agents with reg-
ularization terms. The optimization problem _(4.44) can beainposed intdV subproblems, and
each subproblem is handled at a local computing unit. A caimgunit can be a computing node
in computer clusters, a CPU in a computing node, or even aaf@ae_PU. Each computing unit

solves a stochastic optimization problem as

: p
aﬁ“ = argmin —aF¢, {F;(a;, &)} + Z(,u;j, aj — 1Tb§-7i> + B Z llai; — 1Tb§-7iH%. (4.45)
a;eA; jeT jeT

The optimization probleni(45) can be solved by the following proposition.

Proposition 4.5. Thea;-update can be solved by the stochastic approximation (Sgfpach as:

afﬂ = arg min g (u”, lTbt g g llai; — 1Tb§»’i|]§
ai€Ai ey jeJ
F t VF t ¢t ) ||aZ - a§7 ||% 4.46
—Q Z(ai)+< Z(ai>£i)7a2>+ 27715 ( . )

wheren! = ande > 0 is the penalty parameter.

\/t+1’

Remark: In (4.48), the stochastic optimization (4145) is solvedanySA approach, where a
quadratic approximation of functiofi(a;, ;) ata’ is utilized. The computing unit corresponding
to each mobile service agent will calculate its own requidstation decisiorn; independently, by
taking the stochastic wireless link latency into account.

Response routing update at data centerAt the t*” iteration, the request allocation updates

are performed by minimizingd (4.43) with respect{tBj} _, €Bas

{B"'}_ ) = argmin > Gi(By)+ Y Y (ukjalf —b pZZHat“ b 1]3-

{Bj}j_1€B jeg i€l jeT i€l jeT
(4.47)
Problem [(4.4]7) aims at minimizing the total cost of all dagaters, which can be readily solved
at each data center in parallel. Each data centeill determine response routing variables;

independently by solving the following optimization prebi

P
Bt'|r1 = argmin G;(B;) + Z [ i, a altl — Z ||at'|r1 ;I:Z1||% (4.48)

i.J
B;€B; i€l zeI
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Finally, the dual variables are updated as

pitt = b+ plaltt — 1B, (4.49)

Remark: In the response routing update, each data cenfeerforms the optimization of
(4.48) to find theB;, which minimizes the cost at each data center. After thatdiml variables
{1V, for data centeyj are updated together at the computing unit correspondinigte center
j. Each element; ; can be interpreted as the ‘price’ of placing mobile agéservice at data
centery.

The large-scale stochastic optimization problém (4.18)tlie service management can be
done periodically on a designed cluster. At the beginningaxth scheduling period, computing
units corresponding to mobile agents perform request atilme updates to obtain;. Thena; is
sent to computing units corresponding to data centers gtrouernal network in the cluster. After
the response routing update performed by data cermrandpfjl are transmitted back to mobile
agent computing units. The iterations are terminated oheedvenue maximization problem is
solved. The outputs are sent back to mobile agents and datargdor service allocation and

response routing.

4.2.4 Numerical Results

The proposed algorithms are evaluated by numerical simokfrom perspectives of com-
putation performance and service management performafice.evaluation setup is introduced

briefly, and then numerical results are presented.

4.2.4.1 Evaluation Settings

We consider a mobile cloud service which provides apphbeetifor V mobile service agents,
N € {100,200, ...,1000}. The service is deployed on 10 cloud enabled geographidatgibuted
data centers, and each data center is multi-homed to 3 IEftbrdeliver services to mobile clients.
The capacity of each mobile agent is generated from a uniébsiributionZ/ (8000, 10000), with a

mean 0fd000 data units. The capacity of each data center is generatesitnilar fashion such that
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Figure 4.8 Convergence performance for 100 agents.

the total capacity of data centersli$ times of mobile service agents total capacity. For similici
the latency of ISP links is randomly generated fraif25, 300) with a unit of milliseconds, and the
stochastic wireless latengy is generated from an exponential distribution with a meah ros.

To describe the service cost at data centers, the 2011 asvaralge day-ahead on peak prices
at 10 different local markets are used for data centers [ID3 server peak power and server idle
power are set ta00W and100W, respectively. The power usage efficientlylis. The prices of

ISP links are chosen randomly from a finite se{©1005, 0.01,0.015} monetary units per data unit.

4.2.4.2 Convergence Performance

The convergence performance of the proposed algorithmoisrsim Fig.[4.8-Fig[ 4.10. We
compare the proposed algorithm with sampling approximasipproach and certainty-equivalent
approach. They are two state-of-the-art approaches fohastic optimization. For the sampling
approximation approach, tfi, { F(a;, &)} is approximated by SIS {Fi(a;, 7)), whereN's

is the number of samples @f from its distribution. The expectation @f, E{¢;}, is used for
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Figure 4.9 Convergence performance for 500 agents.

certainty-equivalent approach. Here, the scaled relatigr is used to demonstrate results. Suppose
thatr? is the value of the objective function at tHé& iteration, and-* is the optimal solution of the

certainty-equivalent approach. The scaled relative erredefined ag = ]’”t"“*

r0_—p*

It is shown in Fig[4.B-Fig 4.10 that the proposed algorittanverges for different number of
mobile service agents. In Fig 4.8, when the number of moleiteise agents is 100, the proposed
algorithm takes a moderate number of iterations to convefgethermore, after very few itera-
tions, the proposed algorithm yields close objective vatuiae sampling approximation approach,
which demonstrates the effectiveness of proposed algoffitin solving the stochastic optimization
problem. Similar performance can be found in [Eigl 4.9 and#f0, when the numbers of mobile
service agents are 500 and 1000, respectively. As the nuaflmaobile service agents increases,
the proposed algorithm converges with only a small incrdroéiterations, which demonstrates the
scalability of the proposed algorithm. Remark that the psgal method only utilize one realization
of £ at each iteration to solve the stochastic optimization lgrob In the SAA methodN s samples

are used to approximaie:, { Fi(a;,&;)} at each iteration. Hence the proposed method significantly
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Figure 4.10 Convergence performance for 1000 agents.

reduce the computational time.

In Fig.[4.11, we show the relative error of the proposed algar for different values of
penalty parametes. It is observed that the proposed algorithm converges in@enabe number of
iterations for all values of betweer).01 and1. We choose = 0.1 in numerical simulations. An

inappropriate choice gf will result in oscillating objective value and slow converge rate.

4.2.4.3 Service Management Performance

In the following we show the effectiveness of the proposegaiithm on service management.
We compare the proposed algorithm with two service manageapproaches. One the ‘cheapest
selection’ which aims at minimizing the data center coselgpland the other is the ‘minimum
latency selection’ which aims at minimizing the ISP linkdiaty solely. We specify the number of
mobile service agents to 100, and the performance comparae shown in Fi§. 4.12 and Fig. 4.13.

The cumulative density function (CDF) of the request layeioc three mechanisms is shown

in Fig.[4.12. It is observed thab% of requests are served with latency less thaéms for the pro-
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Figure 4.12 The CDF of the latency for three service managéeagproaches.
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Figure 4.13 Comparisons of average latency, revenueyuitid cost for three service management
approaches.
posed algorithm, and the latency performance of the prapakgorithm is close to the ‘minimum
latency selection’ approach. The ‘cheapest selectioné das take the latency performance into
consideration explicitly, and thus has the worst perforceanFor completeness, the comparisons
of average latency, revenue, utility, and cost for thregisermanagement approaches are shown in
Fig.[4.13. Itis shown in Fid. 4.13(a) that the proposed allgor outperforms other two from per-
spectives of both average revenue and latency. A detaiysisaif the average revenue is shown in
Fig.[4.13(D). It is shown that the proposed algorithm chedbe data center neither conservatively
to reduce the cost, like the ‘cheapest selection’ appraamhaggressively to grasp the utility, like
the ‘minimum latency selection’. It manages the mobile disarvice strategically to balance utility
and cost.

Next we compare the revenue of the proposed service managalgerithm with the mecha-
nism without the consideration of wireless latency, i.dthaut the consideration &f in (4.13). The
number of agents is varied froi®0 to 1000, and the comparison of revenue is shown in Eig.4.14.
The evaluations are performéd times at each number of agents. The box plot of the revenue gai
at different number of agents and the plot of the mean of nre¥@ain are shown in Fig. 4114. The

box plot depicts groups of numerical data through their tijear It is shown in Fig. 4.4 that when
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Figure 4.14 Comparisons of revenue for service managem#mitwthout consideration of wireless
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taking the random wireless latency into consideration ptioposed service management algorithm
achieves a revenue gain 46% at different numbers of mobile service agents, comparel thit
without the consideration of wireless latency. Moreovegtskind of improvement is relatively
stable across different numbers of mobile agents.

To further understand the effect of wireless latency on heat#rvice management, we inves-
tigate traffic variations among all mobile service agentss shown in Fig[ 4.5 that the CDF with
consideration of random wireless nature is more skewedlyimpthat the request traffic varies
significantly across mobile clients. By taking wirelessfaty into consideration, mobile service

agents can adaptively admit request traffic according tevireless link condition.

4.3 Conclusion

In this chapter, we have investigated distributed appresdbr the mobile data offloading
in a SDN and the service management for mobile cloud comgutiie have shown that efficient
and scalable management of big data services and data trafficnprove resource utilization and

service quality of the could computing.
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Chapter 5

Interdisciplinary Studies

This chapter presents interdisciplinary studies of bigadgttimization methods. We first
described a decentralized approach of the Gauss-Newtoh rf@@khod for nonlinear least squares
(NLLS) on a wide area network (WAN). In a multi-agent systententralized GN for NLLS re-
quires the global GN Hessian matrix available at a centralmding unit, which may incur large
communication overhead. In the proposed decentralizechaltive, each agent only needs local GN
Hessian matrix to update iterates with the cooperation iglhtmrs. For the hyperspectral imaging,
we proposed a novel imaging method to identify substancekerscene of interest. In particu-
lar, instead of point-by-point scanning of the whole scenpart of the scene is acquired through
coded measurements of spatial and spectral informatiomenGpectral signatures of substances,
the original data cube containing spatial and spectratin&ion can be correctly reconstructed by
the [; optimization method. The total variation is then perforntedecovered the whole scene.
Numerical results are provided to validate the performariggoposed methods.

The remaining of this chapter is organized as follows. 8affi] describes the decentralized
nonlinear least squares on wide area networks. The connedsgperspectral imaging is illustrated

in Sectio{ 5.2.R. Finally, Sectién %.3 gives a short conctus

5.1 Decentralized Nonlinear Least Squares

The significant importance of nonlinear least squares (NLibSapplications of state esti-
mation in power system [116], signal detection in wirelestnvorks [117], and target tracking in
mobile networks[[118] have been appreciated for decades GHuss-Newton (GN) method, which
can be seen as a modification of the Newton’s method, is widsdd to solve the NLLS [28].
The GN method finds the minimizer of the NLLS in an iterativehimn, and obtains the solution
with provable local optimality and convergence rate. Irs thork, a decentralized GN method for

NLLS on a WAN is presented. In particular, only local GN Hassmatrix is used and limited
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communication is performed between neighboring agent& detentralized optimization enjoys
the advantage of scalability to network size, robustneslytamic topologies, and privacy preser-
vation in data-sensitive applicatiors [115, 1119-1121]. Aaded formulation of the decentralized
optimization problem for NLLS on a WAN is provided, and thedaging rule at each agent is ex-
plicitly given. We also investigate the convergence prgpef the proposed algorithm, which turns
out the convergence rate is related to the number of agemtglbas the minimum node degree in
the network. Numerical tests validate the performance @ptioposed algorithm.

The contributions of this work are threefold. Firstly, wemtat assume any specific structure
for the global Hessian matrix, and proposed a decentralizddnethod for NLLS use only local
Hessian matrix. Whereas the localization application_ib8]lhas a block-wise Jacobian matrix
which is convenient to decompose, and needs the global &essatrix for network-wide consen-
sus. [116] proposes a generalized gossip-based GN metinich still requires the global Hessian
matrix through Gossip exchange. Secondly, we proved tta saperlinearly convergence property
of the proposed algorithm. Finally, we validated the pregmbmethod through numerical simula-

tions.

5.1.1 The Nonlinear Least Squares Problem

Consider an unknown variablec R" in a network, andn observations are obtained through
a vector-valued functiol(x) = (h1(X),...,hn(X)) : R® — R™. Each entry in functiorh(x)
is a real value function and not necessarily convex. 4.et R” denotes the observations as=
h(x)+e, wheree stands for measurement errors. The covarianed®R € R"*". The unknown

variablex € R" can be estimated by the NLLS as

minimize (z — h(%))'R™}(z — h(X)). (5.1)

X

The GN method can be adopted to solve](5.1) given that allresens and functions are available
at a central computing node. Specifically, defii®) = R~'/2(z — h(%)) and its Jacobiad (X) =

or(%)/0%. Let F(X) = ||r(X)?>. Problem[(51l) can be solved iteratively st = ¥ + o*d¥,
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where the descent directialf at each iteration can be obtained by solving
JT(EMIEMd =TT (&)rEb). (5.2)

The GN method can solve the problelm {5.1) at a superlinearecgence rate with order at least
two under Assumptiohnl 1. Note that majority of NLLS problems maon-convex, and in this section
we only consider the local convergence property of the @lyor We assume Assumptiéh 1 holds

throughout this section.

Assumption 1. Consider a functiorf'(x), suppose following assumptions hold.

1. The function¥'(x) is continuous, differentiable and bounded below.

2. There exists a vectar* such that the greatest lower bound can be achieved.

3. Ford > 0, let S5 denote the sphergx||x — %*||> < 6}. The Hessian matrid " (%)J (%) is
invertible in the spheres. For someL > 0, M > 0, 6 > 0, and for allx andy in S5, we
have|JT(%)J(%) - 37 (3)I(F)] < LIE — F]| andowin(T (X)I (X)) > 4 > 0.

In a multi-agent system consisted &8f networked agents, each agent is engaged in its own
monitoring and controlling task in the network. At the sanmeet each agent is cooperating with
other agents in the context of estimating global systeneskatSuppose thesd agents are loosely
coupled; there is very little, if any, central coordinatiand control among those agents, and each
agent is able to exchange information with its neighborse 3ystem statef can be obtained by

solving the following optimization problem

N
minimize  f(x) = > (zi — hi(xi)) "Ry (zi — hi(xi)),
—
subjectto x; =...=xy, (5.3)
wherez; is the local observation which is a subsetzof.e.,z = (z1;...;zy), andh; is the local
observation function which is a subsetlgfi.e.,h = (hy;...;hy). R; ! is the covariance matrix
of local noise vectoe;. x; € R is the local duplicate ok, andx = (xy;...;xy) € RV",
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5.1.2 Decentralized Nonlinear Least Squares on Wide Area N&ork

For concreteness, the network model of agents is first dmstri Specifically, consider a
graphg = (V, ). V represents the set of agents, @htepresents the set of communication links
between each pair of agents. An arcs associated with an order pdir, j) ase ~ (i,7), which
means the information is transmitted from agaiatagent;. Assume the graph formed by the agents
is connected. By introducing auxiliary variables; € R™ associated with each atc~ (7, j) € &,

problem [5.8) can be reformulated as

N
I{ninimiz$ Z(Zl —h;(x;)) "R; !(z; — h;(x;)) and (5.4)
XKoo XNS Gy
subjectto x; = Wij, Xj = Wy, V(Z,j) €&, (5.5)

wherew;; is used to enforce the equality of variables and x; for agents: and j connected
by arc (i,j). We use compact notations in the following for the sake otwlsion simplicity.
Concatenatingv;; in vectorw, problem [(5.4) can be reformulated as

minimize f(x), subjectto Agx—w =0, Agzx—w =0, (5.6)

X, W

whereA ; and A, are extended arc source matrix and extended arc destimattnix for the net-
work graphg, respectively. Stacking\, and Ay to form A = [A,;Ay] € R2MnxNn The

optimization problem[(516) reduces to

minimize f(x), subjectto Ax+ Bw =0, (5.7)
X, W
whereB = [~Ips,; —In,] € R2M»Mn - The GN method is utilized to solve the optimization

problem [5.¥), where updates sfare implemented in a decentralized fashion. The local @pdat

rule at each agent is given in the following proposition.

Proposition 5.1. Consider iterates<* and z* with the initializationE,x° = 2w?, the iteratesx?

at each agent can be iteratively generated by following recursions &as 0:

xFh = <k okal, (5.8)
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wherea? is a positive constant, and’ is the descent direction which can be determined as

1
I DT (xF) + priln)df = 3] (xF)ri(xF) + plvix; — 3 DT ),
JEN;

Whereri(xi) = Rl_l/z(zi — hz(xz)) and Jz(xz) is its Jacobian.]i(xi) = arl(xl)/ﬁxl v; is the

7

degree of agentin the network, andV; denotes the neighbors of agent

The local convergence property and convergence rate ofrtip@ped decentralized approach

are given by the following theorem.

Theorem 5.2. Suppose the Assumptioh 1 holds, and the start point of eaaft &fis in S;. The

sequencex”} generated by the update rule given in Proposifiod 5.1 is defimnd converges to

x* = {x*;...;%*}. Furthermore, we have

k41 MLVN [ k

_ <"l < o *]I2 5.9

whereN is the number of agents andax(v;) is the maximum node degree in the network.

Remark that Theoren._5.2 illustrates the local converg@noperty of the proposed decen-
tralized approach, which converges to the optimal solusigperlinearly. The convergence rate is

related to the number of agents as well as the minimum nodeeégthe network.

5.1.3 Numerical Results

A bidirectionally connected ring network composedNf= 100 agents is considered here,
in which each agent connects to exactly two agents. The unkisgstem states in the network is

% € R3. The observation functioh;(x;) at each agentis defined as

hz(xz) = ai(xi(1)2 + Xi(2)2) + bzxz(2) SiH(Xi(2) — XZ(3)) + CZ'XZ'(I)XZ'(2), (510)

whereaq;, b;, andc; are i.i.d. random variables follow the standard normalritistion. It is seen
that the observation functioh;(x;) is a nonlinear function with a quadratic term, a trigonomeetr
term and a cross product term. The agents in the network wamgeratively to estimate unknown

system stateg in a decentralized fashion. The convergence result is tipin Fig.[5.1. It is
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Figure 5.2 RMSE performance of the proposed algorithm.
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shown that the proposed algorithm is effective in the sehaedfter a moderate number of itera-
tions, the iterates converge to the optimal value. To ingaett the performance of the proposed
decentralized approach at each agent, the root-meanesquar (RMSE) of the estimate at each
agent is calculated. The best RMSE (agent 2), the worst Rgt 52) and the average RMSE
are described in Fig. 5.2. It can be seen that at each agenRMSE decreases as the iteration

increases. Furthermore, the convergence rates at eacheagetlifferent.

5.2 Compressive Hyperspectral Imaging

5.2.1 Optical Imaging Model

The proposed imaging system is comprised of a telescopiersyf®r scene, and a dispersive
system commonly used as a traditional dispersive specipes@ spatial light modulator occupies
the plane between these two systems, which modulates thial spformation over all wavelengthes
with the programmed pattern. The spectral intensity isuwaplt by the focal plane array after dis-
persion. A schematic of the proposed imaging system is shoWwig.[5.3.

The thermal emission from the region of intere&tz, y; \), is first demagnified and imaged
to the object plane of the telescopic systefp(x,y; ). (x,y) is the spatial coordinate ankl
represents the wavelength. After passing through theadpafint modulator, the resulting field is
expressed a%'(x,y) fo(z,y; A). fo(z,y; ) is the spectral density of the scene, &, y) is the

binary or gray-scale reflection function

T(ry) =Y. an~u,nfrec11<5iA 2k =), (5.11)

wherea,,, ,,» is 0/1 according to the configuration of the modulatofat, »") andA is the size of
detector pixel. The feature size of the spatial light motiwlaan be an integer multiple of A. The
choice of spatial light modulator here is a digital microamis device(DMD). Each mirror rotates
about a hinge and can be positioned in one of two orientatierl® degrees and-12 degrees

from horizontal. The light falling on the DMD can be reflectiedtwo directions depending on
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Figure 5.3 The schematic of imaging system.

orientations of mirrors, which correspond to 0 and 1, rebpelg.
The resulting field7'(z, y) fo(x, y; A), is then imaged by the dispersive system with a grating
placed at its Fourier plane. The field at the detector planebeawritten as the convolution of the

point spread function of the spectrograph &nd:, v) fo(z,y; \)
faawi) = [ 8 = (440~ A)a’ ~v) (5.12)
x T(@",y) fo(2',y's A) da'dy’
= fo(@ +7(A = Ao), s VT (2 + v(A = Ac), ),

wherey is the linear dispersion of the dispersive element, anid the center wavelength of interest.
The field received at the detector array contains a modulaigtlire of spatial and spectral infor-
mation about the scene, and the spatial shift of every spdzdnd happens only in the dispersion

direction. Since the detector array’s sensitivity covesswavelength range af— 14.m, the field
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received can be expressed as a integration over the entiedength

o(y) = / Fl,y; A) dA. (5.13)

Equation[(5.1B) serves as the general imaging model in thignemus spatial domain. Recognizing

that both mask and detector arrays are in fact pixilated/y(x,

Imn = //Q(Ucay)rem(% - m, % - n) dl’dy + Wmn
= f(x,y; A)rec £—m,g—n drdyd\ + W
A A

A— Ao , ,
= mlzn, Q! ! // folx +v(A = Xo),y3 A) x recm% — 5% _

X recl(% —m, % —n) drdyd\ + Wy, . (5.14)

Remark that both the spatial light modulator and the deteat@y are in fact pixilated, we
can discretize the modulated data as a three dimension dagg & x M x K). M and N are
numbers of spatial channels, and K is the number of spedtieireels of the thermal emission.
The sampling measurements g on the detector can be remeésendNV x (M + K — 1) matrix.
Spectral channels of original image’s adjacent columnsat@dumn of pixels displacement due to

the dispersive system.

5.2.2 Compressive Hyperspectral Imaging Methods

The three dimension data cube representing the s¢ggfe,y; \), can be expressed as

fol@,y;2) = @v(x,y), (5.15)
z,y

where® = (¢, ¢, ..., ¢ ;) is the emissivity spectrum of different substances:(x,y) is J x 1
vector from the se¥ = {(1,0,...,0),(0,1,...,0),...,(0,0,...,1)}. Note thatv(z,y) is highly
sparse in the sense that at most one component is non-zereatis that for each pixel location, its

emissivity spectrum can be uniquely determined by selgdhie appropriate spectrum .
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We can write the resulting field passed the spatial light nfedduin a similar way

fl@yN) = > @®v(z,y), (5.16)

(z,y)ES

where(z,y) € S = {(x,y) : T(x,y) # 0}. We reformulate equatiof (5]16) into a matrix form by
stackingv(x, y) into a vectoru as

g=HPu+w, (5.17)

whereuisa(M x N x J) x 1 vectorand gis &K + M — 1) x N x 1 vector. H® is a matrix of
size((K+ M —1) x N) x (M x N x J), where H is a linear operator that represents the effect
of the imaging system.

By exploiting the sparsity ofi, the recovery of; in problem [5.1F) can be formulated as

minimize ||g — H®u|[3 + \||ul|1, (5.18)

where )\ is a parameter balancing the data fidelity term and the regaten term. [(5.1B) is a
convex problem and can be solved by existing polynomial tgerithms. What's more, we can
deal with a nonnegative minimization problem that will enhance sparsity. Note tiw&trecovered

u is the partial image here. The whole image can be recoverdfiebtotal variation imprinting

optimization as

minimize ||v||ry, subjectto v|S =v|S, (5.19)
v

wherev|S denotes values of on setS.

5.2.3 Numerical Results

The experiment results are given in this section. The scéimdarested is demonstrated in
Fig.[5.4, and emissivity signatures are shown in [Eig. 5.5ekiee consider two kinds of substances
and the scene background. The performance of the proposeingimethod is compared with the
point-by-point sampling method, and experiment resukssiiown below.

The signal-to-noise ratio (SNR) of the imaging system isechfrom 10dB to 30dB, and

recovered scenes by the point-to-point sampling methodtlamgroposed method are shown in
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Figure 5.4 Original scene.

Table 5.1 The accuracy of two methods at different SNRs.

SNR(dB) | Point to point method Proposed method

10 0.9305 0.9209
20 0.9310 0.9224
30 0.9308 0.9241

Fig.[5.6 and Figl 517, respectively. The accuracy of two meshat different SNRs are listed in
Table[5.1. The reconstruction results by the point-to-poéicovery method is shown in Fig. 5.6.
Here, 14000 times of sampling are taken, afd% pixels are recovered correctly in this case. For
the proposed imaging methotl}; of pixels are sampled each time, &, of pixels are collected
for imaging recovery, i.e., totall0 times of sampling are taken in our numerical simulations.
By comparison, the proposed imaging method outperformpdirg-to-point sampling method in

sampling efficiency of700 times speed up with comparable recovery correctness.
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Figure 5.5 The schematic of imaging system.

5.3 Conclusion

In this chapter, we have presented applications of big datien@ation methods for the non-
linear least squares on a wide area network and the comyrdsgierspectral imaging. The effec-

tiveness of proposed methods are validated by numericallaiions.

96



Point to point recovery Poirt to point recovery Point to paint recovery

() SNR = 10dB (b) SNR = 20dB (c) SNR = 30dB

Figure 5.6 Recovered scene by point-to-point method.
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Figure 5.7 Recovered scene by proposed method.
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Chapter 6

Conclusions and Future Work

This dissertation dealt with big data optimization for medeommunication networks. In

this final chapter, we conclude our work and suggest dimastfor future research.

6.1 Conclusion Remarks

This thesis explored applications of big data optimizatiermodern communication net-

works. The technigques and methods which have been developad thesis are listed as follows:

¢ We have reviewed several distributed and parallel optittimanethods based on the ADMM
for big data optimization problems. We have introduced thekground of ADMM from
its two precedents: the dual ascent method and the methodulbplers. We have also
described several direct extensions and sophisticatedficaitns of ADMM from 2-block
to N-block settings. We have explained iterative schemes andecgence properties for
those extensions/modifications. The implementationswoéwed algorithms on large-scale

computing facilities are also illustrated.

¢ We have investigated big data processing techniques fort gmd security. For the security

of system state estimation, we have exploited the temparaklation of time-series state
measurements and the sparse nature of malicious attackstdot dhe false data injection
in the power grid. We have formulated the false data detegifoblem as a matrix separa-
tion problem. Two methods, the nuclear norm minimizatiorthod and the low rank matrix

factorization method, are proposed to recover electricqpastates and to detect malicious
attacks on the power grid. The proposed methods can alsavitbahissing measurements.
Numerical simulations have been performed to evaluategsexp algorithms. For the se-
curity of economical dispatch, we have proposed a diseibutarallel approach based on

the ADMM to deal with the resulting large-scale optimizatiproblem with manageable
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complexity. Specifically, we have decoupled and divided $@&OPF problem into inde-
pendent subproblems of approximately the same size comdsp to pre-contingency and
post-contingency cases. Subproblems have been optinmizegdarallel fashion on distributed
nodes, and dual (price) variables have been designed @d}i¢ar coordination. Numerical

tests on IEEE buses have validated the effectiveness oftippged algorithm.

e We have proposed scalable mechanisms for big data traffiageament in mobile networks.
For mobile data offloading, We have formulated a total reeemaximization problem by
jointly considering offloading utilities of BSs and cost oPA. We have applied the prox-
imal Jacobian multi-block ADMM to solve the optimizationgliem in a fully distributed
fashion. We have evaluated the proposed algorithm by nealesimulations. For the ser-
vice management mechanism in mobile cloud computing, we f@xtly considered tasks
of clients request allocation and data center responsingouand taken the effect of wire-
less link latency into account. We have formulated a semggenue maximization problem,
in which the mobile service provider optimally locates ot requests to provide qualified
service at a reasonable cost. We have used the ADMM to sob/éathe-scale stochastic
optimization problem with manageable complexity, and ya&d the convergence property
under the stochastic setting. Our algorithm can decompgusejtimization problem into a
set of independent subproblems. These subproblems canvieel $o a parallel fashion on
distributed nodes and coordinated through dual varial@des.numerical tests have validated

the effectiveness of the proposed algorithm.

6.2 Future Work

6.2.1 Decentralized State Estimation in Smart Grid

Previous work on smart grid security presented in Chaptese8l direct current (DC) power
flow approximation for system state estimation and optinoaVgr flow dispatch. The DC approx-

imation model can provide quick operation instructionstfee system. For precise system status
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monitoring and operation, alternating current (AC) powewfequations are needed

N

Py =" |Vil|Vil(Gix cos iy + Biy sin 0,) and (6.1)
k=1
N

Qi =Y [Vil[Vil(Gix sin 6, — By cos b, (6.2)
k=1

whereP; and(@); are real power flow and inactive power flow at busespectivelylV; is the voltage
magnitude at bus. G;;, and B;;, are the real and imaginary part of thiek)*" element of the bus
admittance matrixd;; is the voltage phase angle difference betweenilarsl bus;j. The problem
of state estimation is how to find voltage magnitudes andghagles given nonlinear equations of
real and inactive power flows in the system. To estimate thtegy state in a decentralized fashion,

we propose to investigate the following:

¢ In order to deal with non-convex and non-linearity in AC podlew equations, we can study
and design a second-order method such as the Gauss-Newttoodi@find the solution. We

can also consider proper relaxations to make it a convexnagation problem.

e The topology of the electric grid is quite sparse. An optipaittition of the electric grid can
simplify the optimization problem by reducing coupling geoments, facilitating the decen-

tralized computing, and mitigating communication ovechefthe algorithm.

e The proposed algorithm can be mapped to high performanceuimy facilities like high

performance computer clusters, which enable real-timeitorimy of system states.

6.2.2 Smart Meter Reading Data Clustering

The advanced metering infrastructure (AMI) enables twg-a@mmunications with the me-
ter. The smart meters are able to record the consumptiorectriel energy of each household and
send readings to data centers of utility companies fomigilknd customer service. This provides
real time information about electric energy consumptiod baehaviors of consumers, which can

be used for data mining. The smart meters record electriggrm®nsumption of consumers every
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fifteen minutes, which means that a substantial amount of @& generated daily in the U.S.. By
investigating those data, we can better understand prafflesnsumers to ensure the quality of
service, develop targeted electric energy plans, and attyrpredict energy consumption of the

power system. We propose to investigate the following foasmmeter data clustering:

e In order to reduce the dimension of collected smart metex fiatclustering, we can study
efficient distributed and parallel methods to perform thiagiple component analysis. A
non-parametric clustering method can be developed toitjlasssumers into different types

even though the number of clusters is unknown before ciagter

e The large amount of smart meter data will incur a huge contiput@ burden for clustering.
Even though the computation can be performed in a paralgida, the strict time require-
ment may still be difficult to meet. To further accelerate ¢toenputation, we can develop a

sub-linear algorithm for clustering.

e We can formulate a dynamic optimization problem to decigedbonomical dispatch of the
power system given the current supply of the electric gritj design a dynamic pricing

mechanism based on clustering results and consumers’gxofil

6.2.3 Efficient Air Quality Monitoring

The air pollution has been an utmost concern for public headtvadays. In 2012, around
seven million people dead worldwide due to the air pollutigtiowever, the existing air-quality
monitoring network has very low spatial and temporal cogeravhich severely limits its ability to
predict air quality and to analyze its impact on environmelitnate, and public health. Fortunately,
there exists a large amount of diverse data, such as satelitote sensing data, meteorological data
(temperature, wind, pressure, humidity, etc.), and traféita (volume, speed, congestion) which
can be utilized. Instead of solely relying on the traditiomeonitoring network to provide us the
air quality data, many heterogeneous big data sources cardikto develop innovative big data

processing methods in air quality research. We proposertdum efficient air quality monitoring
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research by investigating the following:

e The various data from traditional, emerging, and new sauced be collected and integrated
to predict highly temporal and spatial resolved air quadiya. The heterogeneous static and
dynamic data of different spatiotemporal scales will bdemtéd, integrated, and fed into

spatiotemporal models for pollution mapping and sourceemmment.

e Computationally tractable models can be trained from wariseterogeneous spatiotemporal
big data to predict air pollutant concentrations at times @aces, where direct readings are
not available. A multi-view learning framework which inparates multiple different tempo-
ral and spatial models can be exploited. This model can digatle huge data size, different
types of data taken at different times and locations witfed#ht sampling frequencies, and

the lack of labeled data.

e To identify and pinpoint major emission sources of air plhis, we can apply compressed
sensing techniques to solve this inverse problem. The séigueompressed sensing and
online numerical methods can be developed to deal with tidinear process of pollutant

formation and its online nature, respectively.
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