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Abstract

We study the axisymmetrc div-curl system on bounded volumes of revolution with

normal and tangential boundary conditions. This vector system of equations arises

in classical field theories. In particular, the electrostatic and magnetostatic axisym-

metric Maxwell equations are axisymmetric div-curl systems. The analysis is based

on orthogonal decompositions of axisymmetric vector fields.

The characterization of the scalar potentials and stream functions in the or-

thogonal decompositions leads to the analysis of axisymmetric Laplacian boundary

value problems. Axisymmetric Laplacian eigenproblems give rise to natural bases for

special gradient and curl subspaces for the orthogonal decompositions, and the eigen-

values appear as best constants in energy estimates for solutions of the axisymmetric

Laplacian boundary value problems and in energy estimates for the axisymmetric

div-curl system.

The results presented are valid for a general class of bounded C2 volumes of

revolution with a nonempty and connected intersection with the axis of symmetry.

We allow the domain to contain toroidal holes.
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Chapter 1

Introduction

Vector systems of equations are common and fundamental models in applications,

e.g., Maxwell’s equations in electromagnetism, Navier-Stokes equations in fluid dy-

namics, the Lamé system in elasticity. The div-curl system is a vector system of

equations arising in classical field theories. For example, the electrostatic and mag-

netostatic Maxwell’s equations have the form of a div-curl system. The primary focus

of this thesis is the analysis of axisymmetric div-curl systems on bounded regions of

revolution.

Axisymmetric vector fields can be represented using scalar potentials and it is im-

portant to carefully describe how these potentials should be chosen for specific fields.

These representations give rise to linear axisymmetric Laplacian boundary value

problems which characterize the scalar potentials and stream functions. Linear ax-

isymmetric laplacian eigenvalue problems provide sharp estimates for some solutions
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of the aforementioned boundary value problems in terms of the interior and bound-

ary sources, as well as bases for special gradient and curl subspaces of axisymmetric

vector fields. Finally, well-posedness results for weak solutions of the axisymmetric

div-curl system with normal or tangential boundary conditions are obtained using

the scalar potentials and stream functions in the decomposition theorems.

Auchmuty and Alexander in [5] study the planar div-curl system with normal,

tangential, and mixed boundary conditions using orthogonal decompositions with

scalar potentials and stream functions, and in [6] carry out similar analysis for fully

3D div-curl systems with normal or tangential boundary conditions; [7] concerns the

case of 3D div-curl systems with mixed boundary conditions. [9] by Bernardi, Dauge,

and Maday is an exhaustive reference for analytic and numerical results on partial

differential equations in axisymmetric domains with polygonal cross-sections. Our

analysis differs by considering domains with multiply-connected boundaries. Ana-

lytic results on axisymmetric Maxwell’s equations on domains with polygonal cross-

sections are described in [1] by Assous, Ciarlet Jr., and Labrunie with a follow up [11]

by Ciarlet Jr. and Labrunie describing some numerical results on the same problem.

In [16] Mercier and Raugel analyze finite element methods for second order elliptic

Dirichlet boundary value problems on axisymmetric domains with simply-connected

cross-sections. Oh in [17] presents a theoretical framework for the analysis of ax-

isymmetric problems using differential forms and exterior calculus. Other references

on mathematical studies of vector systems are [2], [14], [12], [10], and [13] among

others.

Chapter 2 describes the basic geometric setup and types of functions and vector
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fields used in our analysis. The axisymmetric domains considered here are specified

by their cross-sections. We prove some analytic results on the functions and vector

fields used in later chapters.

Chapter 3 is on linear axisymmetric Laplacian eigenproblems. These eigenprob-

lems are used to derive sharp estimates for weak solutions of Laplacian boundary

value problems studied in Chapter 4. The eigenproblems also give rise to natural

bases for special gradient and curl subspaces appearing in the orthogonal decompo-

sitions studied in Chapter 5.

Chapter 4 is on linear axisymmetric Laplacian boundary value problems. These

boundary value problems arise in the characterization of the scalar potentials and

stream functions used in the orthogonal decompositions studied in Chapter 5, and

in the well-posedness results for the div-curl systems studied in Chapter 6.

Chapter 5 in on orthogonal decomposition results for axisymmetric vector fields,

in particular for axisymmetric poloidal fields. The results from Chapters 3 and 4 are

used to exhibit bases for special subspaces appearing in the decompositions, and for

characterizations of the scalar potentials and stream functions. A characterization of

special harmonic fields determined by the topology of the cross-section is presented.

Chapter 6 is on well-posedness results for weak solutions of axisymmetric div-curl

systems with normal or tangential boundary conditions. The decompositions from

Chapter 5 are used to establish existence and uniqueness results. The estimates

from Chapter 4 are used to derive energy estimates for weak solutions of the div-curl

systems.
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Chapter 2

Spaces of Axisymmetric Functions

and Vector Fields

2.1 Geometrical Preliminaries

We use Cartesian coordinates x = (x1, x2, x3) to denote a generic point x ∈ R3.

The axisymmetric domains we consider here are bounded regions of revolution in

R3 whose axis of revolution is the x3-axis and which intersect the axis of revolution.

Let ΩA denote such a volume. Let Ω be the closed cross section of ΩA in the x1x3-

plane. We identify the open cross section Ω as a subset of the right half plane

R2
+ = {(r, z) ∈ R2 : r > 0}. r and z are the cylindrical radius and height from the

cylindrical coordinate system: r =
√
x2

1 + x2
2, z = x3. Let ∂Ω denote the boundary

of Ω in R2
+, and let Γ = {(r, z) ∈ ∂Ω : r > 0}. We assume that Γ consists of a single

component Γ = Γ0 or multiple components Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm. ΩA and Ω are
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constrained to obey the following conditions:

(i) ΩA is a bounded, connected, volume of revolution about the x3-axis in R3 with

C2 boundary ∂ΩA, and ΩA ∩ {(0, 0, x3) : x3 ∈ R} is a connected subset of the

x3-axis.

(ii) Ω contained in the open region interior to Γ0 ∪ {r = 0};

(iii) Γ1, . . . ,Γm are closed C2 loops contained in the region interior to Γ0 ∪{r = 0};

(iv) or Γ1 = · · · = Γm = ∅, in which case Γ = Γ0.

(v) the distance from (r, z) to ∂Ω ∩ {r = 0} is r for all (r, z) ∈ Ω.

Prototypical examples of Ω are shown in Figure 2.1The cross-section Ω of ΩA when

Γ has many components.figure.caption.2 and Figure 2.2The cross-section Ω of the

volume of revolution ΩA when Γ = Γ0.figure.caption.3.

Henceforth, the domain ΩA and the cross-section Ω are always assumed to satisfy

the conditions (i) – (v) above.

The functions and vector fields we study will be essentially determined by their

values in Ω and Γ.

2.2 Axisymmetric Functions

All functions considered here have range in [−∞,∞] unless otherwise noted.
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0 r

z

Γ0

Γ1

Γ2 Γ3

Γ4

Ω

Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm

Figure 2.1: The cross-section Ω of ΩA when Γ has many components.

Definition. Let F be a Lebesgue measurable function on the volume of revolution

ΩA. We say that F is axisymmetric if there is a Lebesgue measurable function f on

Ω such that F (x) = F (x1, x2, x3) = f(
√
x2

1 + x2
2, x3) almost everywhere on ΩA. We

call F an axisymmetric lifting of f .

Let r, θ, z be the cylindrical coordinates in R3 defined by

x1 = r cos(θ)

x2 = r sin(θ)

x3 = z.

(2.1)

If F ∈ L1(ΩA) is axisymmetric with F (x) = f(
√
x2

1 + x2
2, x3) then the change of
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0 r

z

Γ0

Ω

Γ = Γ0

Figure 2.2: The cross-section Ω of the volume of revolution ΩA when Γ = Γ0.

variables theorem for Lebesgue integrals says that∫
ΩA

F (x) dx = 2π

∫
Ω

f(r, z) rdrdz. (2.2)

The function space L2
r(Ω) is defined as all Lebesgue measurable functions f(r, z) on

Ω such that ∫
Ω

|f(r, z)|2 rdrdz <∞. (2.3)

L2
r(Ω) is a Hilbert space with respect to the inner product

〈f, g〉L2
r

=

∫
Ω

fg rdrdz. (2.4)

For f : Ω→ R

∇f :=

(
∂f

∂r
, 0,

∂f

∂z

)
(2.5)
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will denote the gradient of f . Let C∞(Ω) = {f |Ω : f ∈ C∞(R2)}. The Sobolev space

H1
r (Ω) is defined the closure of C∞(Ω) with respect to the norm ‖ · ‖H1

r
defined by

‖f‖2
H1

r
=

∫
Ω

(
|f |2 + |∇f |2

)
rdrdz =

∫
Ω

(
|f |2 +

∣∣∣∣∂f∂r
∣∣∣∣2 +

∣∣∣∣∂f∂z
∣∣∣∣2
)
rdrdz. (2.6)

H1
r (Ω) is a Hilbert space with respect to the inner product

〈f, g〉H1
r

=

∫
Ω

(fg +∇f · ∇g) rdrdz. (2.7)

Item (v) in Section 2.1 implies that H1
r (Ω) coincides with the subspace of functions

in L2
r(Ω) whose weak derivatives with respect to r, z are also functions in L2

r(Ω); see

Remark 7.5 and Proposition 7.6 in [15]. Let C∞z0(Ω) = {f |Ω : f ∈ C∞c (R2
+)} where

R2
+ = {(r, z) ∈ R2 : r > 0} is the right-half plane of R2. C∞z0(Ω) ⊂ C∞(Ω) and

C∞z0(Ω) consists of functions in C∞(Ω) with support away from the z-axis {r = 0}.

The Sobolev space V 1
r (Ω) is defined as the closure of C∞z0(Ω) with respect to the norm

‖ · ‖V 1
r

defined by

‖f‖2
V 1
r

= ‖f‖2
H1

r
+

∫
Ω

|f |2

r
dr dz =

∫
Ω

(
|f |2 + |∇f |2 +

1

r2
|f |2
)
rdrdz (2.8)

V 1
r (Ω) is a Hilbert space with respect to the inner product

〈f, g〉V 1
r

= 〈f, g〉H1
r

+

∫
Ω

fg

r
dr dz =

∫
Ω

(
fg +∇f · ∇g +

fg

r2

)
rdrdz (2.9)

Let C∞Γ0(Ω) be the set of all smooth functions f ∈ C∞(Ω) such that supp(f)∩Γ = ∅,

and let H1
r,0(Ω) denote the closure of C∞Γ0(Ω) with respect to the H1

r -norm. Let

V 1
r,0(Ω) denote the closure of C∞c (Ω) with respect to the V 1

r -norm.

Remark 2.2.1. A standard argument shows that if f ∈ H1
r (Ω) then the axisymmetric

lifting F (x) := f
(√

x2
1 + x2

2, x3

)
belongs to H1

A(ΩA). This is the justification for

8



introducing the weighted space H1
r (Ω). Similarly, if f ∈ H1

r,0(Ω), then a standard

argument shows that F belongs to H1
A(ΩA) ∩H1

0 (ΩA).

The Sobolev space H1
r (Ω) is larger than the more common space H1(Ω) since

L2(Ω) ⊂ L2
r(Ω). Therefore it is not immediately clear that a trace mapping onto Γ

exists for functions in H1
r (Ω). We also want the trace map to be compact and for the

embedding H1
r (Ω) into L2

r(Ω) to be compact. Let L2
A(ΩA), H1

A(ΩA) be the subspaces

of L2(ΩA), H1(ΩA) (resp.) consisting of axisymmetric functions. Note that these are

closed subspaces of L2(ΩA), H1(ΩA) respectively.

Lemma 2.2.2. Let ΩA,Ω satisfy conditions (i) – (v) in Section 2.1. Then the

embeddings Hr(Ω) ↪→ L2
r(Ω), H1

r,0(Ω) ↪→ L2
r(Ω) are compact.

Proof. The embedding of H1
r (Ω) into L2

r(ΩA) is compact if and only if the embedding

H1
A(ΩA) into L2

A(ΩA) is compact, as seen by identifying a function F ∈ L2
A(ΩA) with a

representative f ∈ L2
r(Ω). Our assumptions on ΩA allow the use of Rellich’s theorem

for the embedding H1(ΩA) ↪→ L2(ΩA). Hence compactness of H1
A(ΩA) ↪→ L2

A(ΩA)

follows since a bounded sequence in H1
A(ΩA) is bounded in H1(ΩA), and therefore

contains a subsequence which is Cauchy in L2
A(ΩA). A similar argument shows that

the embedding H1
r,0(Ω) ↪→ L2

r(Ω) is compact since the domain ΩA is bounded and

the embedding H1
0 (ΩA) ↪→ L2(ΩA) is compact.

Definition. Let F : ∂ΩA → R be a measurable function with respect to the two-

dimensional Hausdorff measure on ∂ΩA. We say F is axisymmetric if there is a

9



function f : Γ→ R measurable with respect to the one-dimensional Hausdorff mea-

sure on Γ such that

F (x) = f

(√
x2

1 + x2
2, x3

)
for all x ∈ ∂ΩA. (2.10)

Let L2
A(∂ΩA) denote the subspace of L2(∂ΩA) consisting of axisymmetric func-

tions. We observe that L2
A(∂ΩA) is a closed subspace of L2

A(∂ΩA) just as L2
A(ΩA) is

a closed subspace of L2(ΩA). Let γA : H1(ΩA) → L2(∂ΩA) denote the trace map.

Our conditions on ∂ΩA imply that γA is compact.

Lemma 2.2.3. Let ΩA,Ω satisfy conditions (i) – (v) in Section 2.1. Then γA :

H1
A(ΩA)→ L2

A(∂ΩA) is compact.

Proof. Let F ∈ H1
A(ΩA) and let f ∈ H1

r (Ω) be a representative on Ω. Let fn ∈

C∞(Ω), n ∈ N be a sequence of smooth functions such that fn → f in H1
r (Ω). If

Fn, n ∈ N are axisymmetric liftings to ΩA of the fn, then Fn ∈ C∞(ΩA) and Fn → F

in H1
A(ΩA). Therefore γAFn → γAF in L2(∂ΩA). γAFn = Fn|∂ΩA

∈ L2
A(∂ΩA) and

L2
A(∂ΩA) is closed, so γAF ∈ L2

A(∂ΩA).

The preceding proof shows how to define a natural trace map γ : H1
r (Ω)→ L2

r(Γ)

that is compact. Given f ∈ H1
r (Ω), let fn ∈ C∞(Ω), n ∈ N be a sequence of smooth

functions such that fn → f in H1
r (Ω). For each fn, let Fn denote its axisymmetric

lifting to ΩA. Then Fn → F in H1
A(ΩA) for some F ∈ H1

A(ΩA), and γAFn → γAF in

L2(∂ΩA). γAFn ∈ L2
A(∂ΩA) and L2

A(∂ΩA) is closed so γAF ∈ L2
A(∂ΩA). We define

γf to be the representative of γAF on Γ such that (2.10equation.2.2.10) holds. Then

10



if f ∈ C∞(Ω) and F is an axisymmetric lifting of f to ΩA∫
Γ

|f |2 rds =
1

2π

∫
∂ΩA

|F |2 dσ ≤ C‖F‖2
H1 = C‖f‖2

H1
r

(2.11)

so γ is continuous from H1
r (Ω) to L2

r(Γ).

Corollary 2.2.4. The trace γ : H1
r (Ω)→ L2

r(Γ) is compact.

Proof. Let {fn}n∈N be a bounded sequence in H1
r (Ω) and let Fn denote the axisym-

metric lifting of fn to ΩA. Then {Fn}n∈N is a bounded sequence in H1
A(ΩA) so a

subsequence {γAFnj
}j∈N is Cauchy in L2

A(∂ΩA) by compactness of γA. Therefore

{γfnj
}j∈N is Cauchy in L2

r(Γ) since∫
Γ

|γfn − γfk|2 rds =
1

2π

∫
∂ΩA

|Fn − Fk|2 dσ. (2.12)

It follows that V 1
r,0(Ω) and V 1

r (Ω) are also compactly embedded in L2
r(Ω) and that

the trace mapping γ|V 1
r (Ω) : V 1

r (Ω) ⊂ H1
r (Ω)→ L2

r(Γ) is compact.

2.3 Axisymmetric Vector Fields

Let {e1, e2, e3} be the standard Euclidean frame fields in R3. Let

u(x) = (u1(x), u2(x), u3(x)) = u1(x)e1 + u2(x)e2 + u3(x)e3 (2.13)

11



be a vector field on ΩA. The cylindrical components ur, uθ, uz are defined by

ur(x) =
x1√
x2

1 + x2
2

u1(x) +
x2√
x2

1 + x2
2

u2(x)

uθ(x) = − x2√
x2

1 + x2
2

u1(x) +
x1√
x2

1 + x2
2

u2(x)

uz(x) = u3(x).

(2.14)

We say that u is axisymmetric if the cylindrical components are axisymmetric func-

tions.

An axisymmetric vector field uA on ΩA is thus identified with a vector field

u(r, z) = (ur(r, z), uθ(r, z), uz(r, z)) on Ω by its cylindrical components, and con-

versely a vector field u(r, z) on Ω defines an axisymmetric vector field on ΩA. Let

Rθ be the rotation matrix

Rθ =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 . (2.15)

Then u is axisymmetric if and only if R−1
θ ◦ u ◦Rθ = u on ΩA for all θ ∈ [−π, π).

Let {er, eθ, ez} be the cylindrical frame fields in R3.

Definition. If u = (ur, uθ, uz) = urer + uθeθ + uzez is a vector field on Ω, then we

call the vector field U = (U1, U2, U3) on ΩA with components defined by

U1(x) =
x1√
x2

1 + x2
2

ur

(√
x2

1 + x2
2, x3

)
− x2√

x2
1 + x2

2

uθ

(√
x2

1 + x2
2, x3

)
U2(x) =

x2√
x2

1 + x2
2

ur

(√
x2

1 + x2
2, x3

)
+

x1√
x2

1 + x2
2

uθ

(√
x2

1 + x2
2, x3

)
U3(x) = uz

(√
x2

1 + x2
2, x3

) (2.16)

an axisymmetric lifting of u.
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Hence we restrict our attention to vector fields u = (ur, uθ, uz) on Ω as our means

to study axisymmetric vector fields on ΩA. The space L2
r(Ω;R3) is defined as the

Hilbert space of vector fields u = (ur, uθ, uz) on Ω with ur, uθ, uz ∈ L2
r(Ω). L2

r(Ω;R3)

is a Hilbert space with respect to the inner product

〈u, v〉L2
r

=

∫
Ω

u · v rdrdz =

∫
Ω

urvr + uθvθ + uzvz rdrdz. (2.17)

We will also denote the gradient of a function f on Ω using er, ez by

∇f =
∂f

∂r
er +

∂f

∂z
ez. (2.18)

Remark 2.3.1. If ur, uθ ∈ V 1
r (Ω) and uz ∈ H1

r (Ω), then a standard argument

shows that the axisymmetric lifting U of u defined by (2.16equation.2.3.16) belongs

to H1
A(ΩA;R3). This is the justification for introducing the weighted space V 1

r (Ω).

Similarly, if ur, uz ∈ V 1
r,0(Ω) and uz ∈ H1

r,0(Ω), then a standard argument shows that

U belongs to H1
A(Ω;R3) ∩H1

0 (ΩA;R3).

Definition. Let u = (ur, uθ, uz) be a vector field on Ω. (ur, 0, uz) = urer + uzez is

the poloidal component of u and (0, uθ, 0) = uθeθ is the toroidal component of u. The

poloidal component of u is denoted uP and the toroidal component is denoted uT .

u is called a poloidal vector field if uθ = 0, and u is called a toroidal vector field if

ur = uz = 0.

The classical vector operators div and curl for vector fields u(r, z) on Ω considered

here are given in cylindrical coordinates by

div(u) =
1

r

∂(rur)

∂r
+
∂uz
∂z

curl(u) = −∂uθ
∂z

er +

(
∂ur
∂z
− ∂uz

∂r

)
eθ +

1

r

∂(ruθ)

∂r
ez.

(2.19)
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These definitions continue to hold for vector fields u = (ur, uθ, uz) provided ur, uθ ∈

V 1
r (Ω), uz ∈ H1

r (Ω). We make note of the identities

div(u) = div(uP )

div(uT ) = 0

curl(uP ) = (curl(u))T

curl(uT ) = (curl(u))P

(2.20)

and div(curl(u)) = 0 as usual. The divergence and curl for vector fields in L2
r(Ω;R3)

are defined by duality.

Definition. Let u ∈ L2
r(Ω;R3). div(u) ∈ (H1

r,0(Ω))∗ is defined by

〈div(u), φ〉 = −
∫

Ω

u · ∇φ rdrdz ∀φ ∈ H1
r,0(Ω) (2.21)

and curl(u) ∈ (V 1
r,0(Ω)× V 1

r,0(Ω)×H1
r,0(Ω))∗ is defined by

〈curl(u), (vr, vθ, vz)〉 =

∫
Ω

u · curl(vrer + vθeθ + vzez) rdrdz (2.22)

for all (vr, vθ, vz) ∈ V 1
r,0(Ω)× V 1

r,0(Ω)×H1
r,0(Ω).

The identities in (2.20Axisymmetric Vector Fieldsequation.2.3.20) hold for def-

initions (2.21equation.2.3.21), (2.22equation.2.3.22) as well. Our conditions on Γ

imply that a unit outward normal ν is defined a.e. on Γ. If div(u) ∈ L2
r(Ω) or

curl(u) ∈ L2
r(Ω;R3), then the normal trace u · ν or tangential trace u ∧ ν (resp.) is

also defined by duality. H
1/2
r (Γ) denotes the range of the trace γ : H1

r (Ω) → L2
r(Γ),

and V
1/2
r (Γ) denotes the range of γ restricted to V 1

r (Ω).
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Definition. Let u ∈ L2
r(Ω;R3). If div(u) ∈ L2

r(Ω), then the normal trace u · ν ∈

(H
1/2
r (Γ))∗ is defined by

〈u · ν, γφ〉 =

∫
Ω

u · ∇φ rdrdz +

∫
Ω

φ div(u) rdrdz (2.23)

for all φ ∈ H1
r (Ω). If curl(u) ∈ L2

r(Ω;R3), then the tangential trace u∧ν ∈ (V
1/2
r (Γ)×

V
1/2
r (Γ)×H1/2

r (Γ))∗ is defined by

〈u ∧ ν, (γvr, γvθ, γvz)〉 =

∫
Ω

u · curl(v) rdrdz −
∫

Ω

curl(u) · v rdrdz (2.24)

for all v = (vr, vθ, vz) ∈ V 1
r (Ω)× V 1

r (Ω)×H1
r (Ω).

Observe that the definition of u · ν implies that uT · ν = 0. This coincides with

the geometric result that the unit outward normal of a smooth surface of revolution

is poloidal.

2.4 Poincaré Inequalities

We will use Poincaré inequalities for functions in H1
r (Ω) to prove various coercivity

results. The following two versions hold by taking axisymmetric liftings of functions

in Ω to the volume of revolution ΩA, changing variables in the integrals, and then

applying the Poincaré inequalities for H1
0 (ΩA) and H1(ΩA). Denote

|Ω| = vol(ΩA)

2π
. (2.25)

This is the cross-sectional area of Ω.

Theorem 2.4.1. There is a constant C > 0 such that∫
Ω

|f |2 rdrdz ≤ C

∫
Ω

|∇f |2 rdrdz for all f ∈ H1
r,0(Ω). (2.26)
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Theorem 2.4.2. There is a constant C > 0 such that∫
Ω

|f − 〈f〉|2 rdrdz ≤ C

∫
Ω

|∇f |2 rdrdz for all f ∈ H1
r (Ω) (2.27)

where

〈f〉 =

∫
Ω
f rdrdz

|Ω|
. (2.28)

We will also need the following variant of the Poincaré inequality for functions in

V 1
r (Ω). Recall

curl(ψeθ) = −∂ψ
∂z
er +

1

r

∂(rψ)

∂r
ez (2.29)

for functions ψ ∈ V 1
r (Ω).

Theorem 2.4.3. There is a constant C > 0 such that∫
Ω

|ψ|2 rdrdz ≤ C

∫
Ω

| curl(ψeθ)|2 rdrdz, ∀ψ ∈ V 1
r (Ω). (2.30)

Proof. Our approach is to appeal to an existing estimate for three-dimensional fields

to the axisymmetric lifting of ψeθ for ψ ∈ V 1
r (Ω). Let ΩA denote the C2 volume of

revolution obtained by rotating Ω about the z axis. Then our assumptions on Ω and

∂Ω imply that Theorem 5.1 from [3] is applicable to ΩA. This theorem says that

there is a C > 0 depending only on ΩA such that∫
ΩA

|A|2 dx ≤ C

∫
ΩA

| curl(A)|2dx (2.31)

for all A ∈ H1(ΩA;R3) such that:

1. div(A) = 0 in ΩA;

2. A · ν = 0 on ∂ΩA;

16



3. A ⊥ H1(ΩA)

where

H1(ΩA) =

{h ∈ L2(ΩA;R3) : div(h) = 0 in ΩA, curl(h) = 0 in ΩA, h · ν = 0 on ∂ΩA}.
(2.32)

It suffices to prove the estimate for ψ ∈ C∞z0(Ω) by density, hence suppose ψ ∈ C∞z0(Ω).

Let B denote the axisymmetric lifting of ψeθ, so that

B(x) = − x2√
x2

1 + x2
2

ψ

(√
x2

1 + x2
2, x3

)
e1 +

x1√
x2

1 + x2
2

ψ

(√
x2

1 + x2
2, x3

)
e2 (2.33)

where x = (x1, x2, x3). A direct calculation shows that

3∑
i,j=1

∣∣∣∣∂Bi

∂xj

∣∣∣∣2 =

∣∣∣∣∂ψ∂r
(√

x2
1 + x2

2, x3

)∣∣∣∣2 +

∣∣∣∣∂ψ∂z
(√

x2
1 + x2

2, x3

)∣∣∣∣2
+

1

x2
1 + x2

2

∣∣∣∣ψ(√x2
1 + x2

2, x3

)∣∣∣∣2 .
(2.34)

Then ψ ∈ C∞z0(Ω) ⊂ V 1
r (Ω) implies that∫

ΩA

|B|2 +
3∑

i,j=1

∣∣∣∣∂Bi

∂xj

∣∣∣∣2 dx = 2π

∫
Ω

|ψ|2 + |∇ψ|2 +
|ψ|2

r2
rdrdz <∞, (2.35)

hence B ∈ H1(ΩA;R3) The axisymmetric lifting preserves the divergence and Eu-

clidean dot product so div(ψeθ) = 0 in Ω and ψeθ · ν = 0 on Γ imply div(B) = 0 in

ΩA and B · ν = 0 on ∂ΩA respectively. ψeθ is toroidal, so it suffices to check that

B is orthogonal to every h ∈ H1(ΩA) with zero poloidal component. If h ∈ H1(ΩA)

and h has no poloidal component, then div(h) = 0 means

1

r

∂hθ
∂θ

= 0, (2.36)
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therefore hθ is independent of θ, hence hθeθ is an axisymmetric harmonic toroidal

field. This means hθ ≡ 0 since ΩA contains its axis of revolution. Then 〈B, h〉L2 = 0

trivially. Now we apply Theorem 5.1 to obtain that∫
ΩA

|B|2 dx ≤ C

∫
ΩA

| curl(B)|2 dx,

and upon changing variables back to the cylindrical coordinates we get∫
Ω

|ψ|2 rdrdz ≤ C

∫
Ω

| curl(ψeθ)|2 rdrdz.

This holds for arbitrary ψ ∈ C∞z0(Ω) so we conclude that the estimate holds for all

ψ ∈ V 1
r (Ω).

Definition. We call the estimate (2.30equation.2.4.30) the curl-Poincaré inequality

for V 1
r (Ω).

Corollary 2.4.4. ‖ curl(ψeθ)‖L2
r

defines an equivalent norm on V 1
r (Ω).

Proof. Again, the method of proof is to apply an existing result to the axisymmetric

lifting v of ψeθ for ψ ∈ C∞z0(Ω). If v is such an axisymmetric lifting, then Corollary 1

on p.212 of [12] Ch. IX shows that there is a constant C > 0 independent of v such

that

‖v‖2
H1 ≤ C(‖v‖2

L2 + ‖ curl(v)‖2
L2) (2.37)

due to our conditions on ∂ΩA. Then changing variables back to cylindrical coordi-

nates yields the estimate

‖ψ‖2
V 1
r
≤ C(‖ψ‖2

L2
r

+ ‖ curl(ψeθ)‖2
L2
r
) (2.38)
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since ‖v‖2
H1 = 2π‖ψ‖2

V 1
r

. Then we apply (2.30equation.2.4.30) to see that that there

is C > 0 such that

‖ψ‖2
V 1
r
≤ C(‖ψ‖2

L2
r

+ ‖ curl(ψeθ)‖2
L2
r
) ≤ C‖ curl(ψeθ)‖2

L2
r
. (2.39)

On the other hand, we may apply Young’s inequality to see that

‖ curl(ψeθ)‖2
V 1
r

=

∫
Ω

|∇ψ|2 +
|ψ|2

r2
+

2ψ

r

∂ψ

∂r
rdrdz

≤
∫

Ω

|∇ψ|2 +
|ψ|2

r2
rdrdz + 2

∫
Ω

|ψ|2

r2
rdrdz +

1

2

∫
Ω

∣∣∣∣∂ψ∂r
∣∣∣∣2 rdrdz

≤ C

∫
Ω

|∇ψ|2 +
|ψ|2

r2
rdrdz

≤ C‖ψ‖2
V 1
r

(2.40)

which proves the claim.

Theorem 2.4.5. There is a constant C > 0 such that∫
Ω

|fr|2 + |fz|2 rdrdz ≤ C

∫
Ω

| curl(frer + fzez)|2 rdrdz (2.41)

for all fr ∈ V 1
r (Ω), fz ∈ H1

r (Ω) such that div(frer+fzez) = 0 in Ω, (γfrer+γfzez)·ν =

0 on Γ, and (frer + fzez) ∈ (Hν0(Ω))⊥.

Proof. The argument here again relies on appealing to an existing result for fully

three-dimensional fields in L2(ΩA;R3). Suppose that fr ∈ C∞z0(Ω), fz ∈ C∞(Ω) such

that div(frer+fzez) = 0 in Ω, (frer+fzez)·ν = 0 on Γ, and (frer+fzez) ∈ (Hν0(Ω))⊥.

Let F : ΩA → R3 be the axisymmetric lifting of frer + fzez to all of ΩA. Then

div(F ) = 0 in ΩA and F · ν = 0 on ∂ΩA. Let H1(ΩA) be as in the proof of the curl-

Poincaré inequality for V 1
r (Ω). Now the estimate (2.41equation.2.4.41) is verified if
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F ∈ (H1(Ω))⊥. L2
A(ΩA;R3) is a closed subspace of L2(ΩA;R3) so F ∈ (H1(ΩA))⊥ if

and only if F is orthogonal to L2
A(ΩA;R3)∩H1(Ω). Moreover frer + fzez is poloidal,

so it suffices to check that F is orthogonal to every field in L2
A(ΩA;R3)∩H1(ΩA) with

zero toroidal component. Let h ∈ L2
A(ΩA;R3) ∩ H1(ΩA) with hθ = 0. Then h|Ω is

well-defined since h is actually smooth by Weyl’s lemma. Moreover h|Ω is a poloidal

field since hθ = 0 and h|Ω ∈ Hν0(Ω). Therefore F ⊥ H1(ΩA) by the condition that

(frer + fzez) ⊥ Hν0(Ω). Then Theorem 5.1 from [3] and the density of C∞z0(Ω) in

V 1
r (Ω) and C∞(Ω) imply the estimate (2.41equation.2.4.41).
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Chapter 3

Linear Axisymmetric Laplacian

Eigenproblems

3.1 Introduction

Let ∆ denote the axisymmetric Laplacian in cylindrical coordinates, i.e.

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
. (3.1)

This chapter will study eigenproblems and boundary value problems for the operators

−∆ and −∆ + r−2. If eθ is the azimuthal unit vector in cylindrical coordinates and

ψ is a smooth function then, in cylindrical coordinates

curl(curl(ψeθ)) =

(
−∆ψ +

1

r2
ψ

)
eθ. (3.2)
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3.2 Eigenproblems for −∆

3.2.1 The Dirichlet Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function φ 6= 0 and real

number λ such that 
−∆φ = λφ in Ω,

φ = 0 on Γ.

(3.3)

If such a pair (φ, λ) exists and φ is smooth, then we may integrate by parts to obtain

that ∫
Ω

∇φ · ∇ψ rdrdz = λ

∫
Ω

φψ rdrdz for all ψ ∈ C∞Γ0(Ω). (3.4)

Both sides of (3.4The Dirichlet Eigenvalue Problemequation.3.2.4) are well-defined if

φ, ψ ∈ H1
r,0(Ω), hence we consider the problem of finding nontrivial (φ, λ) ∈ H1

r,0(Ω)×

R such that ∫
Ω

∇φ · ∇ψ rdrdz = λ

∫
Ω

φψ rdrdz for all ψ ∈ H1
r,0(Ω) (3.5)

Definition. If (φ, λ) ∈ H1
r,0(Ω)×R is a nontrivial solution of (3.5The Dirichlet Eigenvalue Problemequation.3.2.5),

then φ is a Dirichlet eigenfunction of −∆ on Ω corresponding to the Laplacian Dirich-

let eigenvalue λ.

Let a : H1
r,0(Ω)×H1

r,0(Ω)→ R be the bilinear form

a(φ, ψ) =

∫
Ω

∇φ · ∇ψ rdrdz, (3.6)

and let A : H1
r,0(Ω)→ R denote the quadratic form associated to a

A(φ) = a(φ, φ) =

∫
Ω

|∇φ|2 rdrdz. (3.7)
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so (3.5The Dirichlet Eigenvalue Problemequation.3.2.5) says

a(φ, ψ) = λ〈φ, ψ〉L2
r

for all ψ ∈ H1
r,0(Ω). (3.8)

Theorem 3.2.1. The smallest Dirichlet eigenvalue λ1 of −∆ is strictly positive and

is characterized by the variational principle

1

λ1

= sup

∫
Ω

|φ|2 rdrdz s.t.

∫
Ω

|∇φ|2 rdrdz = 1, φ ∈ H1
r,0(Ω). (3.9)

Proof. Let C1 = {φ ∈ H1
r,0(Ω) : A(φ) = 1} and consider the problem of finding

β1 = sup
φ∈C1

‖φ‖L2
r
. (3.10)

The Cauchy-Schwarz inequality implies that |a(φ, ψ)| ≤ ‖φ‖H1
r
‖ψ‖H1

r
for all

φ, ψ ∈ H1
r,0(Ω) so a is continuous on H1

r,0(Ω)×H1
r,0(Ω). The Poincaré inequality for

H1
r,0(Ω) implies that there is a C > 0 such that C‖φ‖2

H1
r
≤ A(φ) for all φ ∈ H1

r,0(Ω)

so a is also coercive on H1
r,0(Ω). ‖φ‖L2

r
is a norm on H1

r,0(Ω) ⊂ L2
r(Ω) so ‖φ‖2

L2
r
> 0

for all nonzero φ in H1
r,0(Ω) and ‖φ‖2

L2
r

= 0 only if φ = 0. Moreover the embedding

H1
r (Ω) → L2

r(Ω) is compact. Then we may apply Theorem 3.1 in [4] to conclude

that:

(i) β1 > 0 is finite;

(ii) there are maximizers ±φ̂1 of ‖ · ‖2
L2
r

on C1 where β1 is attained;

(iii) φ̂1 is a Dirichlet eigenfunction of −∆ corresponding to the eigenvalue λ1 :=

1/β1, i.e. ∫
Ω

∇φ̂1 · ∇ψ rdrdz = λ1

∫
Ω

φ̂1ψ rdrdz, ∀ψ ∈ H1
r,0(Ω);
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(iv) λ1 is the smallest eigenvalue and∫
Ω

|φ|2 rdrdz ≤ 1

λ1

∫
Ω

|∇φ|2 rdrdz, ∀φ ∈ H1
r,0(Ω).

The above proof shows that a(·, ·) defines an inner product on H1
r,0(Ω). The

variational principle for λ1 may be iterated to generate a sequence of eigenfunctions

that are orthonormal with respect to the bilinear form a. Let {φ̂1, φ̂2, . . . , φ̂k−1} be

k − 1 eigenfunctions corresponding to the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λk−1.

Theorem 3.2.2. (i) The kth Dirichlet eigenvalue λk of −∆ is characterized by

the variational principle

1

λk
= sup

∫
Ω

|φ|2 rdrdz (3.11)

for all φ ∈ H1
r,0(Ω) such that

∫
Ω
|∇φ|2 r dr dz = 1 and

∫
Ω
∇φ · ∇φ̂j r dr dz = 0

for j = 1, . . . , k − 1. We also have λk ≥ λk−1 and∫
Ω

|φ|2 rdrdz ≤ 1

λk

∫
Ω

|∇φ|2 rdrdz (3.12)

for all φ ∈ H1
r,0(Ω) such that

∫
Ω
∇φ · ∇φ̂j rdrdz = 0 for j = 1, . . . , k − 1.

(ii) λk → ∞ as k → ∞ and the set of eigenfunctions E := {φ̂k : k ∈ N} is

an orthonormal basis of H1
r,0(Ω) with respect to the inner product a(φ, ψ) =∫

Ω
∇φ · ∇ψ rdrdz.

(iii) The normalized eigenfunctions Ẽ := {φ̃k := λ
−1/2
k φ̂k : k ∈ N} form an orthonor-

mal basis of L2
r(Ω) with respect to the standard inner product.
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Proof. The bilinear form a is continuous and coercive, the inner product 〈φ, ψ〉L2
r

is continuous, and ‖φ‖2
L2
r
> 0 for all φ ∈ H1

r,0(Ω) so we may apply Theorem 4.2 of

[4] to obtain the aforementioned variational characterization of λk. The embedding

H1
r,0(Ω) ↪→ L2

r(Ω) is compact with dense range since Ω is bounded, therefore Theorem

4.3 and Theorem 4.6 of [4], respectively, imply that E is an orthonormal basis of

H1
r,0(Ω) with respect to the inner product a and that Ẽ is an orthonormal basis of

L2
r(Ω) with respect to the standard inner product.

Example. Let ΩA = BR(0) = {x ∈ R3 : |x| < R} be the ball of radius R centered

at the origin. Then Ω = {(r, z) ∈ R2
+ : r2 + z2 < R}. The Dirichlet eigenfunctions of

−∆ on Ω are

φ`,n(r, z) =

(
R

j̃`,n
√
r2 + z2

)
J`+1/2

(
j̃`,n
√
r2 + z2

R

)
P`

(
r√

r2 + z2

)
,

for ` = 0, 1, 2, . . . and n = 1, 2, 3, . . .

(3.13)

where J`+1/2 is the half-integer Bessel function of the first kind, j̃`,n is the nth pos-

itive root of J`+1/2, and P` is the Legendre polynomial of degree `. The Dirichlet

eigenvalues are (
j̃`,n
R

)2

for ` = 0, 1, 2, . . . and n = 1, 2, 3, . . . . (3.14)

3.2.2 The Neumann Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function φ 6= 0 and real

number λ such that 
−∆φ = λφ in Ω,

Dνφ = 0 on Γ.

(3.15)

25



Here Dνφ = ∇φ · ν is the normal derivative of φ. If such a pair (φ, λ) exists and φ is

smooth, then we may integrate by parts to obtain that∫
Ω

∇φ · ∇ψ rdrdz = λ

∫
Ω

φψ rdrdz for all ψ ∈ C∞(Ω). (3.16)

Both sides of (3.16The Neumann Eigenvalue Problemequation.3.2.16) are well-defined

if φ, ψ ∈ H1
r (Ω), hence we consider the problem of finding nontrivial (φ, λ) ∈

H1
r (Ω)× R such that∫

Ω

∇φ · ∇ψ rdrdz = λ

∫
Ω

φψ rdrdz for all ψ ∈ H1
r (Ω) (3.17)

Definition. If (φ, λ) ∈ H1
r (Ω)×R is a nontrivial (3.17The Neumann Eigenvalue Problemequation.3.2.17),

then φ is a Neumann eigenfunction of −∆ on Ω corresponding to the Laplacian Neu-

mann eigenvalue λ.

We observe that φ
(N)
0 ≡ 1 is a Neumann eigenfunction of −∆ corresponding to

the Neumann eigenvalue λ0 = 0. Let H1
r,m(Ω) be the subspace of H1

r (Ω) consisting

of functions f such that
∫

Ω
f r dr dz = 0. The existence of Neumann eigenfunctions

E (N) := {φ̂(N)
k : k ∈ N} and a nondecreasing sequence of strictly positive Neumann

eigenvalues {λ(N)
k : k ∈ N} such that E (N) is a orthonormal basis of H1

r,m(Ω) with

respect to the inner product a(φ, ψ), and the normalized eigenfunctions Ẽ (N) :=

{φ̃(N)
k := (λ

(N)
k )−1/2φ̂

(N)
k : k ∈ N} form an orthonormal basis of L2

r(Ω) with respect

to the standard inner product is proved very similarly as the case for the Dirichlet

eigenproblem.

Theorem 3.2.3. The smallest nonzero eigenvalue λ
(N)
1 of (3.17The Neumann Eigenvalue Problemequation.3.2.17)

is strictly positive and is characterized by the variational principle

1

λ
(N)
1

= sup

∫
Ω

|φ|2 rdrdz s.t.

∫
Ω

|∇φ|2 rdrdz = 1, φ ∈ H1
r,m(Ω). (3.18)
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Proof. Let C
(N)
1 = {φ ∈ H1

r,m(Ω) : A(φ) = 1} and consider the problem of finding

β
(N)
1 = sup

φ∈C(N)
1

‖φ‖L2
r
. (3.19)

The Cauchy-Schwarz inequality implies that |a(φ, ψ)| ≤ ‖φ‖H1
r
‖ψ‖H1

r
for all

φ, ψ ∈ H1
r,m(Ω) so a is continuous on H1

r,m(Ω)×H1
r,m(Ω). The Poincaré inequality for

H1
r (Ω) implies that there is a C > 0 such that C‖φ‖2

H1
r
≤ A(φ) for all φ ∈ H1

r,m(Ω) so

a is also coercive on H1
r,m(Ω). ‖φ‖L2

r
is a norm on H1

r,m(Ω) ⊂ L2
r(Ω) so ‖φ‖2

L2
r
> 0 for

all nonzero φ in H1
r,m(Ω) and ‖φ‖2

L2
r

= 0 only if φ = 0. Then we may apply Theorem

3.1 in [4] to conclude that:

(i) β
(N)
1 > 0 is finite;

(ii) there are maximizers ±φ̂(N)
1 of ‖ · ‖2

L2
r

on C
(N)
1 where β

(N)
1 is attained;

(iii) φ̂
(N)
1 is a Neumann eigenfunction of −∆ corresponding to the eigenvalue λ

(N)
1 :=

1/β
(N)
1 , i.e.∫

Ω

∇φ̂(N)
1 · ∇ψ rdrdz = λ1

∫
Ω

φ̂
(N)
1 ψ rdrdz, ∀ψ ∈ H1

r,m(Ω);

(iv) λ
(N)
1 is the smallest nonzero Neumann eigenvalue of −∆ and∫

Ω

|φ|2 rdrdz ≤ 1

λ
(N)
1

∫
Ω

|∇φ|2 rdrdz, ∀φ ∈ H1
r,m(Ω).

Theorem 3.2.4. (i) The kth eigenvalue λ
(N)
k of (3.17The Neumann Eigenvalue Problemequation.3.2.17)

is characterized by the variational principle

1

λ
(N)
k

= sup

∫
Ω

|φ|2 rdrdz (3.20)
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for all φ ∈ H1
r,m(Ω) such that

∫
Ω
|∇φ|2 rdrdz = 1 and

∫
Ω
∇φ ·∇φ̂(N)

j rdrdz = 0

for j = 1, . . . , k − 1. We also have λ
(N)
k ≥ λ

(N)
k−1 and∫

Ω

|φ|2 rdrdz ≤ 1

λ
(N)
k

∫
Ω

|∇φ|2 rdrdz (3.21)

for all φ ∈ H1
r,m(Ω) such that

∫
Ω
∇φ · ∇φ̂(N)

j rdrdz = 0 for j = 1, . . . , k − 1.

(ii) λ
(N)
k → ∞ as k → ∞ and the set of eigenfunctions E (N) = {φ̂(N)

k : k ∈ N} is

an orthonormal basis of H1
r,m(Ω) with respect to the inner product a(φ, ψ) =∫

Ω
∇φ · ∇ψ rdrdz.

(iii) The normalized eigenfunctions Ẽ (N) := {φ̃(N)
k := (λ

(N)
k )−1/2φ̂

(N)
k : k ∈ N} form

an orthonormal basis of L2
r(Ω) with respect to the standard inner product.

3.2.3 The Harmonic Steklov Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function φ 6= 0 and real

number δ such that 
∆φ = 0 in Ω,

Dνφ = δφ on Γ.

(3.22)

If such a pair (φ, δ) exists and φ is smooth on Ω∪Γ, then we may integrate by parts

to obtain that ∫
Ω

∇φ · ∇ψ rdrdz = δ

∫
Γ

φψ rds for all ψ ∈ C∞(Ω). (3.23)

Both sides of (3.23The Harmonic Steklov Eigenvalue Problemequation.3.2.23) are

well-defined if φ, ψ ∈ H1
r (Ω), hence we consider the problem of finding nontrivial
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(φ, δ) ∈ H1
r (Ω)× R such that∫

Ω

∇φ · ∇ψ rdrdz = δ

∫
Γ

φψ rds for all ψ ∈ H1
r (Ω) (3.24)

Definition. If (φ, δ) ∈ H1
r (Ω)×R is a nontrivial solution of (3.24The Harmonic Steklov Eigenvalue Problemequation.3.2.24),

then φ is a harmonic Steklov eigenfunction on Ω corresponding to the harmonic

Steklov eigenvalue δ.

We see that φ0 ≡ const. is a harmonic Steklov eigenfunction corresponding to the

harmonic Steklov eigenvalue δ0 = 0. The remaining harmonic Steklov eigenvalues

are characterized by variational principles over H1
r,m(Ω).

Theorem 3.2.5. The smallest strictly positive harmonic Steklov eigenvalue δ1 is

characterized by the variational principle

1

δ1

= sup

∫
Γ

|φ|2 rds s.t.

∫
Ω

|∇φ|2 rdrdz = 1, φ ∈ H1
r,m(Ω). (3.25)

Proof. Let C
(N)
1 = {φ ∈ H1

r,m(Ω) : A(φ) = 1} as before and consider the problem of

finding

ε1 = sup
φ∈C(N)

1

‖φ‖2
L2
r(Γ). (3.26)

a is continuous on H1
r,m(Ω)×H1

r,m(Ω) and coercive on H1
r,m(Ω). ‖φ‖L2

r(Γ) is strictly

positive for some ψ ∈ H1
r,m(Ω) since Hr,m(Ω) 6= H1

r,0(Ω). Moreover, the trace γ :

H1
r (Ω) → L2

r(Γ) is compact. Then we may apply Theorem 3.1 in [4] to conclude

that:

(i) ε1 > 0 is finite;
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(ii) there are maximizers ±χ̂1 of ‖ · ‖2
L2
r

on C
(N)
1 where ε1 is attained;

(iii) χ̂1 is a harmonic Steklov eigenfunction corresponding to the eigenvalue δ1 :=

1/ε1, i.e. ∫
Ω

∇χ̂1 · ∇ψ rdrdz = δ1

∫
Γ

χ̂1ψ rdrdz, ∀ψ ∈ H1
r,m(Ω);

(iv) δ1 is the smallest nonzero harmonic Steklov eigenvalue and∫
Γ

|φ|2 rds ≤ 1

δ1

∫
Ω

|∇φ|2 rdrdz, ∀φ ∈ H1
r,m(Ω).

The bilinear form a satisfies the conditions necessary to apply Theorem 4.2 of [4]

to obtain the following result.

Theorem 3.2.6. (i) The `th eigenvalue δ` of (3.24The Harmonic Steklov Eigenvalue Problemequation.3.2.24)

is characterized by the variational principle

1

δ`
= sup

∫
Γ

|φ|2 rds (3.27)

for all φ ∈ H1
r,m(Ω) such that

∫
Ω
|∇φ|2 r dr dz = 1 and

∫
Ω
∇φ · ∇χ̂j r dr dz = 0

for j = 1, . . . , k − 1. We also have δ` ≥ δ`−1 and∫
Γ

|φ|2 rds ≤ 1

δ`

∫
Ω

|∇φ|2 rdrdz (3.28)

for all φ ∈ H1
r,m(Ω) such that

∫
Ω
∇φ · ∇χ̂j rdrdz = 0 for j = 1, . . . , `− 1.
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3.3 Eigenproblems for −∆ + 1
r2

3.3.1 The Dirichlet Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function φ 6= 0 and real

number λ̃ such that 
−∆ψ +

1

r2
ψ = λ̃ψ in Ω,

ψ = 0 on Γ.

(3.29)

The weak formulation is obtained using the usual approach. The weak form of

(3.29The Dirichlet Eigenvalue Problemequation.3.3.29) is to find nontrivial (ψ, λ̃) ∈

V 1
r,0(Ω)× R satisfying∫

Ω

curl(ψeθ) · curl(χeθ) rdrdz = λ̃

∫
Ω

ψχ rdrdz for all χ ∈ V 1
r,0(Ω). (3.30)

Definition. If (ψ, λ̃) ∈ V 1
r,0(Ω)×R is a nontrivial solution of (3.30The Dirichlet Eigenvalue Problemequation.3.3.30),

then ψ is a Dirichlet eigenfunction of −∆ + r−2 on Ω corresponding to the Dirichlet

eigenvalue λ̃.

Let b : V 1
r (Ω)× V 1

r (Ω)→ R be the bilinear form

b(ψ, χ) =

∫
Ω

curl(ψeθ) · curl(χeθ) rdrdz, (3.31)

and let B : V 1
r (Ω)→ R denote the quadratic form associated to b

B(ψ) = b(ψ, ψ) =

∫
Ω

| curl(ψeθ)|2 rdrdz. (3.32)

so (3.30The Dirichlet Eigenvalue Problemequation.3.3.30) says

b(ψ, χ) = λ̃〈ψ, χ〉L2
r

for all χ ∈ V 1
r (Ω). (3.33)

31



Theorem 3.3.1. The smallest eigenvalue λ̃1 of (3.30The Dirichlet Eigenvalue Problemequation.3.3.30)

is strictly positive and is characterized by the variational principle

1

λ̃1

= sup

∫
Ω

|ψ|2 rdrdz s.t.

∫
Ω

| curl(ψeθ)|2 rdrdz = 1, ψ ∈ V 1
r,0(Ω). (3.34)

Proof. Denote S1 = {ψ ∈ V 1
r,0(Ω) : B(ψ) = 1} and consider the problem of finding

β̃1 = sup
ψ∈S1

‖ψ‖2
L2
r

= sup
ψ∈S1

∫
Ω

|ψ|2 rdrdz. (3.35)

If ψ, χ ∈ V 1
r,0(Ω), then

b(ψ, χ) =

∫
Ω

curl(ψeθ) · curl(χeθ) rdrdz

=

∫
Ω

(
∇ψ · ∇χ+

ψχ

r2

)
rdrdz

≤ ‖∇ψ‖L2
r
‖∇χ‖L2

r
+ ‖ψ‖L2

−1
‖χ‖L2

−1

≤ ‖ψ‖V 1
r
‖χ‖V 1

r

(3.36)

so b is a continuous bilinear form on V 1
r,0(Ω)× V 1

r,0(Ω). The Poincaré-curl inequality

for V 1
r,0(Ω) asserts that B is coercive on V 1

r,0(Ω). ‖ · ‖L2
r

is a norm on V 1
r,0(Ω) ⊂ L2

r(Ω)

so ‖ψ‖L2
r
> 0 for all nonzero ψ ∈ V 1

r,0(Ω) and ‖ψ‖L2
r

= 0 if and only if ψ = 0. An

application of Theorem 3.1 in [4] shows that

(i) β̃1 > 0 is finite;

(ii) there are maximizers ±ψ̂1 of ‖ · ‖2
L2
r

on S1 where β̃1 is attained;

(iii) ψ̂1 is an eigenfunction corresponding to the eigenvalue λ̃1 := 1/β̃1, i.e.∫
Ω

curl(ψ̂1eθ) · curl(χeθ) rdrdz = λ̃1

∫
Ω

ψ̂1χ rdrdz, ∀χ ∈ V 1
r,0(Ω);
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(iv) λ̃1 is the smallest eigenvalue and∫
Ω

|ψ|2 rdrdz ≤ 1

λ̃1

∫
Ω

| curl(ψeθ)|2 rdrdz, ∀ψ ∈ V 1
r,0(Ω).

This variational principle may be iterated to generate a sequence of eigenfunctions

that are orthonormal with respect to the bilinear form b. Let {ψ̂1, ψ̂2, . . . , ψ̂k−1} be

k − 1 eigenfunctions corresponding to the eigenvalues λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃k−1.

Theorem 3.3.2. (i) The kth eigenvalue of (3.30The Dirichlet Eigenvalue Problemequation.3.3.30)

is characterized by the variational principle

1

λ̃k
= sup

∫
Ω

|ψ|2 rdrdz (3.37)

for all ψ ∈ V 1
r,0(Ω) such that

∫
Ω
| curl(ψeθ)|2 r dr dz = 1 and

∫
Ω

curl(ψeθ) ·

curl(ψ̂jeθ) rdrdz = 0 for j = 1, . . . , k − 1. We also have λ̃k ≥ λ̃k−1 and∫
Ω

|ψ|2 rdrdz ≤ 1

λ̃k

∫
Ω

| curl(ψeθ)|2 rdrdz (3.38)

for all ψ ∈ V 1
r,0(Ω) such that

∫
Ω

curl(ψeθ) · curl(ψ̂jeθ) r dr dz = 0 for j =

1, . . . , k − 1.

(ii) λ̃k → ∞ as k → ∞ and the set of eigenfunctions F := {ψ̂k : k ∈ N} is

an orthonormal basis of V 1
r,0(Ω) with respect to the inner product b(ψ, χ) =∫

Ω
curl(ψeθ) · curl(χeθ) rdrdz.

(iii) The normalized eigenfunctions F̃ := {ψ̃k := λ̃
−1/2
k ψ̂k : k ∈ N} form an or-

thonormal basis of L2
r(Ω) with respect to the standard inner product.
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Proof. This is proved very similarly to the case of the Dirichlet eigenproblem for

−∆, so we omit the details of this proof.

3.3.2 A Conormal Neumann Eigenvalue Problem

Consider the conormal Neumann eigenvalue problem of finding a nonzero function

ψ and λ ∈ R such that 
−∆ψ +

1

r2
ψ = λψ in Ω,

curl(ψeθ) ∧ ν = 0 on Γ.

(3.39)

We call this a conormal Neumann eigenvalue problem since formally

curl(ψeθ) ∧ ν =
1

r
∇(rψ) · ν (3.40)

so the boundary condition curl(ψeθ)∧ν = 0 is equivalent to ∇(rψ) ·ν = 0. The weak

form of this eigenvalue problem is to find nontrivial ψ ∈ V 1
r (Ω) and λ ∈ R such that∫

Ω

curl(ψeθ) · curl(χeθ) rdrdz = λ

∫
Ω

ψχ rdrdz for all χ ∈ V 1
r (Ω). (3.41)

The existence of eigenfunctions F (N) := {ψ̂(N)
k : k ∈ N} and a nondecreasing

sequence of strictly positive eigenvalues {λ̃(N)
k : k ∈ N} such that F (N) is a orthonor-

mal basis of V 1
r (Ω) with respect to the inner product b(ψ, χ), and the normalized

eigenfunctions F̃ (N) := {ψ̃(N)
k := (λ̃

(N)
k )−1/2ψ̂

(N)
k : k ∈ N} form an orthonormal basis

of L2
r(Ω) with respect to the standard inner product is proved very similarly as the

case for the Dirichlet eigenproblem for −∆+r−2. We state the results for clarity, but

omit the proofs as they are very similar. Interestingly, this Neumann eigenproblem

has no zero eigenvalue.
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Theorem 3.3.3. The smallest eigenvalue λ̃
(N)
1 of (3.41A Conormal Neumann Eigenvalue Problemequation.3.3.41)

is strictly positive and is characterized by the variational principle

1

λ̃
(N)
1

= sup

∫
Ω

|ψ|2 rdrdz s.t.

∫
Ω

| curl(ψeθ)|2 rdrdz = 1, ψ ∈ V 1
r (Ω). (3.42)

Theorem 3.3.4. (i) The kth eigenvalue of (3.41A Conormal Neumann Eigenvalue Problemequation.3.3.41)

is characterized by the variational principle

1

λ̃
(N)
k

= sup

∫
Ω

|ψ|2 rdrdz (3.43)

for all ψ ∈ V 1
r (Ω) such that

∫
Ω
| curl(ψeθ)|2 r dr dz = 1 and

∫
Ω

curl(ψeθ) ·

curl(ψ̂
(N)
j eθ) rdrdz = 0 for j = 1, . . . , k − 1. We also have λ̃

(N)
k ≥ λ̃

(N)
k−1 and∫

Ω

|ψ|2 rdrdz ≤ 1

λ̃
(N)
k

∫
Ω

| curl(ψeθ)|2 rdrdz (3.44)

for all ψ ∈ V 1
r (Ω) such that

∫
Ω

curl(ψeθ) · curl(ψ̂
(N)
j eθ) r dr dz = 0 for j =

1, . . . , k − 1.

(ii) λ̃
(N)
k → ∞ as k → ∞ and the set of eigenfunctions F (N) := {ψ̂(N)

k : k ∈ N}

is an orthonormal basis of V 1
r (Ω) with respect to the inner product b(ψ, χ) =∫

Ω
curl(ψeθ) · curl(χeθ) rdrdz.

(iii) The normalized eigenfunctions F̃ (N) := {ψ̃(N)
k := (λ̃

(N)
k )−1/2ψ̂

(N)
k : k ∈ N} form

an orthonormal basis of L2
r(Ω) with respect to the standard inner product.
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3.3.3 The Curl-Harmonic Steklov Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function ψ 6= 0 and real

number δ̃ such that 
−∆ψ +

1

r2
ψ = 0 in Ω,

1

r

∂(rψ)

∂r
νr +

∂ψ

∂z
νz = δ̃ψ on Γ.

(3.45)

If such a pair (ψ, δ̃) exists and ψ is smooth, then we may integrate by parts to obtain

that ∫
Ω

curl(ψeθ) · curl(χeθ) rdrdz = δ̃

∫
Γ

ψχ rds for all χ ∈ C∞z0(Ω). (3.46)

Both sides of (3.46The Curl-Harmonic Steklov Eigenvalue Problemequation.3.3.46)

are well-defined if ψ, χ ∈ V 1
r (Ω), hence we consider the problem of finding nontrivial

(ψ, δ̃) ∈ V 1
r (Ω)× R such that∫

Ω

curl(ψeθ) · curl(χeθ) rdrdz = δ̃

∫
Γ

ψχ rds for all χ ∈ V 1
r (Ω). (3.47)

Definition. If (ψ, δ̃) ∈ V 1
r (Ω)×R is a nontrivial solution of (3.47The Curl-Harmonic Steklov Eigenvalue Problemequation.3.3.47),

then ψ is a curl-harmonic Steklov eigenfunction on Ω corresponding to the curl-

harmonic Steklov eigenvalue δ̃.

Since
√∫

Ω
| curl(ψeθ)|2 rdrdz defines a norm on V 1

r (Ω), we see that all curl-

harmonic Steklov eigenvalues are strictly positive. The first curl-harmonic Steklov

eigenvalue is characterized by a variational principle over V 1
r (Ω).

Theorem 3.3.5. The smallest positive curl-harmonic Steklov eigenvalue δ̃1 is char-

acterized by the variational principle

1

δ̃1

= sup

∫
Γ

|ψ|2 rds s.t.

∫
Ω

| curl(ψeθ)|2 rdrdz = 1, ψ ∈ V 1
r (Ω). (3.48)
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Proof. Let S
(C)
1 = {ψ ∈ V 1

r (Ω) : B(φ) = 1} where B is the quadratic form B(ψ) =

b(ψ, ψ) as before and consider the problem of finding

ε̃1 = sup
φ∈S(N)

1

‖ψ‖2
L2
r(Γ). (3.49)

b is continuous on V 1
r (Ω) × V 1

r (Ω) and coercive on V 1
r (Ω) as

√
B(ψ) defines a

norm on V 1
r (Ω). ‖φ‖L2

r(Γ) is strictly positive for some ψ ∈ V 1
r (Ω) since V 1

r,0(Ω) is a

strict subset of V 1
r (Ω). Moreover, the trace γ : V 1

r (Ω)→ L2
r(Γ) is compact. Then we

may apply Theorem 3.1 in [4] to conclude that:

(i) ε̃1 > 0 is finite;

(ii) there are maximizers ±χ̂(C)
1 of ‖ · ‖2

L2
r

on S
(C)
1 where ε̃1 is attained;

(iii) χ̂
(C)
1 is a curl-harmonic Steklov eigenfunction corresponding to the eigenvalue

δ̃1 := 1/ε̃1, i.e.∫
Ω

curl(χ̂
(C)
1 eθ) · curl(ψeθ) rdrdz = δ̃1

∫
Γ

χ̂
(C)
1 ψ rdrdz, ∀ψ ∈ V 1

r (Ω);

(iv) δ̃1 is the smallest nonzero curl-harmonic Steklov eigenvalue and∫
Γ

|ψ|2 rds ≤ 1

δ̃1

∫
Ω

| curl(ψeθ)|2 rdrdz, ∀ψ ∈ V 1
r (Ω).

As before, we may again apply Theorem 4.2 of [4] to obtain the following.

Theorem 3.3.6. (i) The `th eigenvalue δ̃` of (3.47The Curl-Harmonic Steklov Eigenvalue Problemequation.3.3.47)

is characterized by the variational principle

1

δ̃`
= sup

∫
Γ

|ψ|2 rds (3.50)
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for all ψ ∈ V 1
r (Ω) such that

∫
Ω
| curl(ψeθ)|2 r dr dz = 1 and

∫
Ω

curl(ψeθ) ·

curl(χ̂
(C)
j eθ) rdrdz = 0 for j = 1, . . . , k − 1. We also have δ̃` ≥ δ̃`−1 and∫

Γ

|ψ|2 rds ≤ 1

δ̃`

∫
Ω

| curl(ψeθ)|2 rdrdz (3.51)

for all ψ ∈ V 1
r (Ω) such that

∫
Ω

curl(ψeθ) · curl(χ̂
(C)
j ) r dr dz = 0 for j =

1, . . . , `− 1.
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Chapter 4

Linear Axisymmetric Laplacian

Boundary Value Problems

4.1 Introduction

This chapter is on boundary value problems for −∆ and −∆ + r−2 where ∆ is the

Laplacian in cylindrical coordinates

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
. (4.1)

These boundary value problems play a role in the characterization of the scalar

potential and stream function in the orthogonal decompositions in Chapter 5.
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4.2 Boundary Value Problems for −∆

4.2.1 The Dirichlet Problem for −∆

Homogenenous Boundary Data

Given a function f on Ω, consider the problem of finding a function φ : Ω → R

satisfying 
−∆φ = f in Ω,

φ = 0 on Γ.

(4.2)

Let f ∈ (H1
r,0(Ω))∗. The weak form of (4.2Homogenenous Boundary Dataequation.4.2.2)

is to find a function φ ∈ H1
r,0(Ω) satisfying∫

Ω

(∇φ · ∇ψ) rdrdz = 〈f, ψ〉 ∀ψ ∈ H1
r,0(Ω). (4.3)

Theorem 4.2.1. There is a unique φ ∈ H1
r,0(Ω) satisfying (4.3Homogenenous Boundary Dataequation.4.2.3).

Proof. The bilinear form a(φ, ψ) :=
∫

Ω
(∇φ · ∇ψ) r dr dz is clearly continuous over

H1
r,0(Ω) and the Poincaré inequality forH1

r,0(Ω) implies that a is coercive overH1
r,0(Ω).

Therefore there is a unique φ ∈ H1
r,0(Ω) satisfying (4.3Homogenenous Boundary Dataequation.4.2.3)

by the Lax-Milgram theorem.

Corollary 4.2.2. Let f ∈ (H1
r,0(Ω))∗ and φ ∈ H1

r,0(Ω) satisfy (4.3Homogenenous Boundary Dataequation.4.2.3).

Then

‖∇φ‖L2
r
≤
(
1 + λ−1

1

)1/2 ‖f‖H1
r,0(Ω)∗ . (4.4)

where λ1 is the smallest Dirichlet eigenvalue of −∆.
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Proof. Let φ ∈ H1
r,0(Ω) satisfy (4.3Homogenenous Boundary Dataequation.4.2.3).

We apply item (iv) from the proof of Theorem 3.2.1 to get∫
Ω

|∇φ|2 rdrdz = 〈f, φ〉

≤ ‖f‖H1
r,0(Ω)∗‖φ‖H1

r,0(Ω)

= ‖f‖H1
r,0(Ω)∗

(
‖φ‖2

L2
r

+ ‖∇φ‖2
L2
r

)1/2

≤ ‖f‖H1
r,0(Ω)∗

(
1 + λ−1

1

)1/2 ‖∇φ‖L2
r

(4.5)

which proves the claim.

Inhomogenenous boundary data

Given a function f on Ω and a function g on Γ, consider the problem of finding a

function φ : Ω→ R satisfying 
−∆φ = f in Ω,

φ = g on Γ.

(4.6)

Let f ∈ (H1
r,0(Ω))∗ and g ∈ γ(H1

r (Ω)) = H
1/2
r (Γ). We transform the inhomogenous

problem to a homogenenous one by finding φg ∈ H1
r (Ω) such that γφ = g in L2

r(Γ),

and then consider finding φ̃ ∈ H1
r,0(Ω) satisfying∫

Ω

(∇φ̃ · ∇ψ) rdrdz = 〈f, ψ〉 −
∫

Ω

(∇φg · ∇ψ) rdrdz ∀ψ ∈ H1
r,0(Ω). (4.7)

Theorem 4.2.3. Let f ∈ (H1
r,0(Ω))∗ and g ∈ H

1/2
r (Γ). Let φg ∈ H1

r (Ω) such that

γφg = g in L2
r(Γ). Then there is a unique φ̃ ∈ H1

r,0(Ω) satisfying (4.7Inhomogenenous boundary dataequation.4.2.7).
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Proof. For ψ ∈ H1
r,0(Ω), there is a C > 0 independent of ψ such that∣∣∣∣∫

Ω

(∇φg · ∇ψ) rdrdz

∣∣∣∣ ≤ ‖∇φg‖L2
r
‖∇ψ‖L2

r

≤ C‖∇φg‖L2
r
‖ψ‖H1

r

(4.8)

so the right-hand side of (4.7Inhomogenenous boundary dataequation.4.2.7) defines

a continuous linear functional in (H1
r,0(Ω))∗. Then we may apply the Lax-Milgram

theorem to obtain the conclusion.

Corollary 4.2.4. Let f, g, φg, φ̃ be as in the previous theorem. Set φ = φ̃+φg. Then

γφ = g in L2
r(Γ) and −∆φ = f in (Hr,0(Ω))∗, that is,∫

Ω

(∇φ · ∇ψ) rdrdz = 〈f, ψ〉 ∀ψ ∈ H1
r,0(Ω). (4.9)

Proof. If φ = φ̃+ φg then γφ = γφ̃+ γφg = g in L2
r(Γ) since γφ̃ = 0 as φ ∈ H1

r,0(Ω).

(4.9equation.4.2.9) holds upon rearranging (4.7Inhomogenenous boundary dataequation.4.2.7).

4.2.2 The Neumann Problem for −∆

Homogeneous Boundary Data

Given a function f on Ω, consider the problem of finding a function φ : Ω → R

satisfying 
−∆φ = f in Ω,

Dνφ = 0 on Γ.

(4.10)
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Let f ∈ L2
r(Ω) such that

∫
Ω
f rdrdz = 0. The weak form of (4.10Homogeneous Boundary Dataequation.4.2.10)

is to find a function φ ∈ H1
r (Ω) satisfying∫

Ω

(∇φ · ∇ψ) rdrdz =

∫
Ω

fψ rdrdz ∀ψ ∈ H1
r (Ω). (4.11)

Let H1
r,m(Ω) =

{
φ ∈ H1

r (Ω) :
∫

Ω
φ rdrdz = 0

}
.

Theorem 4.2.5. Let f ∈ L2
r(Ω) such that

∫
Ω
f rdrdz = 0.

There is a unique φ ∈ H1
r,m(Ω) satisfying (4.11Homogeneous Boundary Dataequation.4.2.11).

Proof. It is clear to see that
∫

Ω
fψ r dr dz defines a continuous linear functional in

(H1
r,m(Ω))∗ and that a(φ, ψ) =

∫
Ω

(∇φ · ∇ψ) r dr dz is a continuous bilinear form on

H1
r,m(Ω). The Poincaré inequality for H1

r (Ω) implies that a is coercive over H1
r,m(Ω),

so the Lax-Milgram theorem implies that there is a unique φ ∈ H1
r,m(Ω) satisfying∫

Ω

(∇φ · ∇ψ) rdrdz =

∫
Ω

fψ rdrdz ∀ψ ∈ H1
r,m(Ω). (4.12)

More generally, if ψ ∈ H1
r (Ω), then we may write ψ = ψ0 + 〈ψ〉 where

〈ψ〉 =

∫
Ω
ψ rdrdz∫

Ω
1 rdrdz

(4.13)

43



and ψ0 = ψ − 〈ψ〉. Then if ψ ∈ H1
r (Ω),∫

Ω

(∇φ · ∇ψ) rdrdz =

∫
Ω

(∇φ · ∇(ψ0 + 〈ψ〉)) rdrdz

=

∫
Ω

(∇φ · ∇ψ0) rdrdz

=

∫
Ω

fψ0 rdrdz

=

∫
Ω

f(ψ − 〈ψ〉) rdrdz

=

∫
Ω

fψ rdrdz − 〈ψ〉
∫

Ω

f rdrdz

=

∫
Ω

fψ rdrdz.

(4.14)

Corollary 4.2.6. Let f ∈ L2
r(Ω) such that

∫
Ω
f r dr dz = 0 and let φ ∈ H1

r,m(Ω)

be the unique function satisfying (4.11Homogeneous Boundary Dataequation.4.2.11).

Then

‖∇φ‖L2
r
≤ λ

(N)
1

−1/2
‖f‖L2

r
(4.15)

where λ
(N)
1 is the smallest strictly positive Neumann eigenvalue of −∆ on H1

r (Ω).

Proof. Let f, φ be as prescribed. Then we may apply item (iv) in the proof of

Theorem 3.2.3 to get ∫
Ω

|∇φ|2 rdrdz =

∫
Ω

fφ rdrdz

≤ ‖f‖L2
r
‖φ‖L2

r

≤ λ
(N)
1

−1/2
‖f‖L2

r
.

(4.16)
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Inhomogeneous Boundary Data

Given a function f on Ω and g on Γ, consider the problem of finding a function

φ : Ω→ R satisfying 
−∆φ = f in Ω,

Dνφ = g on Γ.

(4.17)

Let f ∈ L2
r(Ω), g ∈ L2

r(Γ) such that
∫

Ω
f r dr dz = −

∫
Γ
g r ds. The weak form of

(4.17Inhomogeneous Boundary Dataequation.4.2.17) is to find a function φ ∈ H1
r (Ω)

satisfying∫
Ω

(∇φ · ∇ψ) rdrdz =

∫
Γ

gγψ rds+

∫
Ω

fψ rdrdz ∀ψ ∈ H1
r (Ω). (4.18)

Theorem 4.2.7. Let f ∈ L2
r(Ω), g ∈ L2

r(Γ) such that
∫

Ω
f r dr dz = −

∫
Γ
g r ds.

There is a unique φ ∈ H1
r,m(Ω) satisfying (4.18Inhomogeneous Boundary Dataequation.4.2.18).

Proof. If g ∈ L2
r(Γ) and ψ ∈ H1

r (Ω), then the continuity of the trace γ : H1
r (Ω) →

L2
r(Γ) implies that there is C > 0 such that∣∣∣∣∫

Γ

gγψ rds

∣∣∣∣ ≤ ‖g‖L2
r(Γ)‖γψ‖L2

r(Γ)

≤ C‖g‖L2
r(Γ)‖ψ‖H1

r (Ω),

(4.19)

therefore the right hand side of (4.18Inhomogeneous Boundary Dataequation.4.2.18)

defines a continuous linear functional on H1
r,m(Ω). a(φ, ψ) =

∫
Ω

(∇φ · ∇ψ) r dr dz

is a continuous and coercive bilinear form on H1
r,m(Ω), so the Lax-Milgram theorem

implies that there is a unique φ ∈ H1
r,m(Ω) satisfying∫

Ω

(∇φ · ∇ψ) rdrdz =

∫
Γ

gγψ rds+

∫
Ω

fψ rdrdz ∀ψ ∈ H1
r,m(Ω). (4.20)
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For ψ ∈ H1
r (Ω), then write ψ = ψ0 + 〈ψ〉 as before. Then if ψ ∈ H1

r (Ω),∫
Ω

(∇φ · ∇ψ) rdrdz =

∫
Ω

(∇φ · ∇(ψ0 + 〈ψ〉)) rdrdz

=

∫
Ω

(∇φ · ∇ψ0) rdrdz

=

∫
Γ

gγψ0 rds+

∫
Ω

fψ0 rdrdz

=

∫
Γ

gγ(ψ − 〈ψ〉) rds+

∫
Ω

f(ψ − 〈ψ〉) rdrdz

=

∫
Γ

gγψ rds+

∫
Ω

fψ rdrdz − 〈ψ〉
(∫

Γ

g rds+

∫
Ω

f rdrdz

)
=

∫
Γ

gγψ rds+

∫
Ω

fψ rdrdz.

(4.21)

Corollary 4.2.8. Let f ∈ L2
r(Ω), g ∈ L2

r(Γ), and suppose that φ is the unique

function in H1
r,m(Ω) satisfying (4.18Inhomogeneous Boundary Dataequation.4.2.18).

Then

‖∇φ‖L2
r
≤ δ

−1/2
1 ‖g‖L2

r(Γ) + λ
(N)
1

−1/2
‖f‖L2

r(Ω) (4.22)

where δ1 is the smallest strictly positive harmonic Steklov eigenvalue on H1
r,m(Ω) and

λ
(N)
1 is the smallest strictly positive Neumann eigenvalue for −∆ on H1

r,m(Ω).

Proof. Let f, g, φ be as prescribed. We apply item (iv) of Theorem 3.2.3 and item

(iv) of Theorem 3.2.5 to obtain∫
Ω

|∇φ|2 rdrdz =

∫
Γ

gγφ rds+

∫
Ω

fφ rdrdz

≤ ‖g‖L2
r(Γ)‖γφ‖L2

r(Γ) + ‖f‖L2
r(Ω)‖φ‖L2

r(Ω)

≤
(
δ
−1/2
1 ‖g‖L2

r(Γ) + λ
(N)
1

−1/2
‖f‖L2

r(Ω)

)
‖∇φ‖L2

r
.

(4.23)
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4.3 Boundary Value Problems for −∆ + r−2

4.3.1 The Dirichlet Problem for −∆ + r−2

Homogeneous Boundary Data

Given a function f on Ω, consider the problem of finding a function ψ : Ω → R

satisfying 
−∆ψ +

1

r2
ψ = f in Ω,

ψ = 0 on Γ.

(4.24)

Let f ∈ (V 1
r,0(Ω))∗. The weak form of (4.24Homogeneous Boundary Dataequation.4.3.24)

is to find a function ψ ∈ V 1
r,0(Ω) satisfying∫

Ω

(curl(ψeθ) · curl(χeθ)) rdrdz = 〈f, χ〉 ∀χ ∈ V 1
r,0(Ω). (4.25)

Theorem 4.3.1. Let f ∈ (V 1
r,0(Ω))∗. There is a unique ψ ∈ V 1

r,0(Ω) satisfying

(4.25Homogeneous Boundary Dataequation.4.3.25).

Proof. The bilinear form b(ψ, χ) =
∫

Ω
(curl(ψeθ) · curl(χeθ)) r dr dz is continuous

over V 1
r,0(Ω), and the curl-Poincaré inequality implies that b is coercive over V 1

r,0(Ω).

Therefore there is a unique ψ ∈ V 1
r,0(Ω) satisfying (4.25Homogeneous Boundary Dataequation.4.3.25)

by the Lax-Milgram theorem.

Corollary 4.3.2. Let f ∈ (V 1
r,0(Ω))∗ and ψ ∈ V 1

r,0(Ω) satisfy (4.25Homogeneous Boundary Dataequation.4.3.25).

Then there is constant C > 0 such that

‖ curl(ψeθ)‖L2
r
≤ C

(
1 + λ̃−1

1

)1/2

‖f‖V 1
r,0(Ω)∗ (4.26)
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where λ̃1 is the smallest Dirichlet eigenvalue of −∆ + r−2 on V 1
r,0(Ω).

Proof. Let ψ ∈ V 1
r,0(Ω) satisfy (4.25Homogeneous Boundary Dataequation.4.3.25).

(‖ψ‖2
L2
r

+ ‖ curl(ψeθ)‖2
L2
r
)1/2 is an equivalent norm on V 1

r,0(Ω) according to Corollary

2.4.4, so we apply item (iv) from the proof of Theorem 3.3.1 to get∫
Ω

| curl(ψeθ)|2 rdrdz = 〈f, ψ〉

≤ ‖f‖V 1
r,0(Ω)∗‖ψ‖V 1

r

≤ C‖f‖V 1
r,0(Ω)∗

(
‖ψ‖2

L2
r

+ ‖ curl(ψeθ)‖2
L2
r

)1/2

≤ C‖f‖V 1
r,0(Ω)∗

(
1 + λ̃−1

1

)1/2

‖ curl(ψeθ)‖L2
r

(4.27)

which proves the claim.

Inhomogenenous Boundary Data

Given a function f on Ω and a function g on Γ, consider the problem of finding a

function ψ : Ω→ R satisfying
−∆ψ +

1

r2
ψ = f in Ω,

ψ = g on Γ.

(4.28)

Let f ∈ (V 1
r,0(Ω))∗ and g ∈ γ(V 1

r (Ω)) = V
1/2
r (Γ). We transform the inhomogenenous

problem to a homogeneous problem by finding ψg ∈ V 1
r (Ω) such that γψg = g in

L2
r(Γ), and then consider finding ψ ∈ V 1

r,0(Ω) satisfying∫
Ω

(curl(ψeθ) · curl(χeθ)) rdrdz = 〈f, χ〉 −
∫

Ω

(curl(ψgeθ) · curl(χeθ)) rdrdz (4.29)

for all χ ∈ V 1
r,0(Ω). This is the weak form of (4.28Inhomogenenous Boundary Dataequation.4.3.28).
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Theorem 4.3.3. Let f ∈ (V 1
r,0(Ω))∗ and g ∈ V

1/2
r (Γ). Let ψg ∈ V 1

r (Ω) such that

γψg = g in L2
r(Γ). Then there is a unique ψ̃ ∈ V 1

r,0(Ω) satisfying (4.29Inhomogenenous Boundary Dataequation.4.3.29)

for all χ ∈ V 1
r,0(Ω).

Proof. For χ ∈ V 1
r,0(Ω), the curl-Poincaré inequality for V 1

r (Ω) implies that there is

a constant C > 0 independent of χ such that∣∣∣∣∫
Ω

(curl(ψgeθ) · curl(χeθ)) rdrdz

∣∣∣∣ ≤ ‖ curl(ψgeθ)‖L2
r
‖ curl(χeθ)‖L2

r

≤ C‖ curl(ψgeθ)‖L2
r
‖χ‖V 1

r

(4.30)

so the right-hand side of (4.29Inhomogenenous Boundary Dataequation.4.3.29) de-

fines a continuous linear functional in (V 1
r,0(Ω))∗. Then we may apply the Lax-

Milgram theorem to obtain the conclusion.

Corollary 4.3.4. Let f ∈ (V 1
r,0(Ω))∗, g ∈ V 1/2

r (Γ), ψg ∈ V 1
r (Ω) such that γψg = g in

L2
r(Γ), and let ψ̃ be the unique function in V 1

r,0(Ω) satisfying (4.29Inhomogenenous Boundary Dataequation.4.3.29).

Set ψ = ψ̃ + ψg. Then γψ = g in L2
r(Γ) and (−∆ + r−2)ψ = f in (V 1

r,0(Ω))∗, that is,∫
Ω

(curl(ψeθ) · curl(χeθ)) rdrdz = 〈f, χ〉 ∀χ ∈ V 1
r,0(Ω). (4.31)

Proof. If ψ = ψ̃+ψg then γψ = γψ̃+ γψg = g in L2
r(Γ) since γψ̃ = 0 as ψ̃ ∈ V 1

r,0(Ω).

(4.31equation.4.3.31) holds upon rearranging (4.29Inhomogenenous Boundary Dataequation.4.3.29).
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4.3.2 A Conormal Neumann Problem for −∆ + r−2

Homogenenous Boundary Data

Given a function f on Ω, consider the problem of finding a function ψ : Ω → R

satisfying 
−∆ψ +

1

r2
ψ = f in Ω,

curl(ψeθ) ∧ ν = 0 on Γ.

(4.32)

We call this a conormal Neumann problem since we may formally express

curl(ψeθ) ∧ ν =
1

r
(∇(rψ) · ν) eθ on Γ. (4.33)

Let f ∈ (V 1
r (Ω))∗. The weak form of (4.32Homogenenous Boundary Dataequation.4.3.32)

is to find a function ψ ∈ V 1
r (Ω) satisfying∫

Ω

(curl(ψeθ) · curl(χeθ)) rdrdz = 〈f, χ〉 (4.34)

for all χ ∈ V 1
r (Ω). Note that unlike the homogenenous Neumann problem for −∆,

this conormal Neumann problem has no compatibility condition relating the source

function f and the homogenenous boundary data. Moreover, the source f may be a

linear functional and not necessarily a measurable function.

Theorem 4.3.5. Let f ∈ (V 1
r (Ω))∗. There is a unique ψ ∈ V 1

r (Ω) satisfying

(4.34Homogenenous Boundary Dataequation.4.3.34) for all χ ∈ V 1
r (Ω).

Proof. The bilinear form b(ψ, χ) =
∫

Ω
(curl(ψeθ) ·curl(χeθ)) rdrdz is continuous over

V 1
r (Ω) and the curl-Poincaré inequality for V 1

r (Ω) implies that b is also coercive over

V 1
r (Ω). Then the Lax-Milgram theorem implies that there is a unique ψ ∈ V 1

r (Ω)
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satisfying (4.34Homogenenous Boundary Dataequation.4.3.34) for all χ ∈ V 1
r (Ω).

Corollary 4.3.6. Let f ∈ L2
r(Ω) and ψ ∈ V 1

r (Ω) be the unique function satisfying

(4.34Homogenenous Boundary Dataequation.4.3.34) for all χ ∈ V 1
r (Ω). Then

‖ curl(ψeθ)‖L2
r
≤
‖f‖L2

r√
λ̃

(N)
1

(4.35)

where λ̃
(N)
1 is the smallest positive conormal Neumann eigenvalue of −∆ + r−2 over

V 1
r (Ω).

Proof. Let f, ψ be as prescribed. Then we may apply Theorem 3.3.3 to get∫
Ω

| curl(ψeθ)|2 rdrdz =

∫
Ω

fψ rdrdz

≤ ‖f‖L2
r
‖ψ‖L2

r

≤
‖f‖L2

r√
λ̃

(N)
1

‖ curl(ψeθ)‖L2
r

(4.36)

which proves the claim.

Inhomogenenous Boundary Data

Given a function f on Ω and g on Γ, consider the problem of finding a function

ψ : Ω→ R satisfying 
−∆ψ +

1

r2
ψ = f in Ω,

curl(ψeθ) ∧ ν = geθ on Γ.

(4.37)
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Note that the boundary condition is just an equivalence of toroidal fields, so it reduces

to one scalar equation which may be formally stated as

1

r
(∇(rψ)) · ν = g on Γ. (4.38)

Let f ∈ (V 1
r (Ω))∗, g ∈ L2

r(Γ). The weak form of (4.37Inhomogenenous Boundary Dataequation.4.3.37)

is to find a function ψ ∈ V 1
r (Ω) satisfying∫

Ω

(curl(ψeθ) · curl(χeθ)) rdrdz =

∫
Γ

gγχ rds+ 〈f, χ〉 (4.39)

for all χ ∈ V 1
r (Ω).

Theorem 4.3.7. Let f ∈ (V 1
r (Ω))∗, g ∈ L2

r(Γ). There is a unique ψ ∈ V 1
r (Ω)

satisfying (4.39Inhomogenenous Boundary Dataequation.4.3.39) for all χ ∈ V 1
r (Ω).

Proof. Let f ∈ (V 1
r (Ω))∗, g ∈ L2

r(Γ), χ ∈ V 1
r (Ω). We may apply the continuity of the

trace γ : V 1
r (Ω)→ L2

r(Γ) to get∣∣∣∣∫
Γ

gγχ rds+ 〈f, χ〉
∣∣∣∣ ≤ ‖g‖L2

r(Γ)‖γχ‖L2
r(Γ) + ‖f‖V 1

r (Ω)∗‖χ‖V 1
r (Ω)

≤ C
(
‖g‖L2

r(Γ) + ‖f‖V 1
r (Ω)∗

)
‖χ‖V 1

r (Ω)

(4.40)

for some constant C > 0 independent of χ. Therefore the right-hand side of

(4.39Inhomogenenous Boundary Dataequation.4.3.39) defines a continuous linear func-

tional in (V 1
r (Ω))∗, and we may conclude, just as in the homogenenous case using the

Lax-Milgram theorem, that there is a unique ψ ∈ V 1
r (Ω) satisfying (4.39Inhomogenenous Boundary Dataequation.4.3.39)

for all χ ∈ V 1
r (Ω).

Corollary 4.3.8. Let f ∈ L2
r(Γ), g ∈ L2

r(Γ), and ψ ∈ V 1
r (Ω) be the unique function

satisfying (4.39Inhomogenenous Boundary Dataequation.4.3.39) for all χ ∈ V 1
r (Ω).
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Then

‖ curl(ψeθ)‖L2
r
≤
‖g‖L2

r(Γ)√
δ̃1

+
‖f‖L2

r(Ω)√
λ̃

(N)
1

(4.41)

where δ̃1 is the smallest positive curl-harmonic Steklov eigenvalue of −∆ + r−2 over

V 1
r (Ω) and λ̃

(N)
1 is the smallest positive conormal Neumann eigenvalue of −∆ + r−2

over V 1
r (Ω).

Proof. Let f, g, ψ be as prescribed. Then we may apply Theorem 3.3.3 and Theorem

3.3.5 to get∫
Ω

| curl(ψeθ)|2 rdrdz =

∫
Γ

gγψ rds+

∫
Ω

fψ rdrdz

≤ ‖g‖L2
r(Γ)‖γψ‖L2

r(Γ) + ‖f‖L2
r(Ω)‖ψ‖L2

r(Ω)

≤

‖g‖L2
r(Γ)√
δ̃1

+
‖f‖L2

r(Ω)√
λ̃

(N)
1

 ‖ curl(ψeθ)‖L2
r

(4.42)

which proves the claim.
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Chapter 5

Orthogonal Decompositions for

Axisymmetric Vector Fields

5.1 Orthogonal Decompositions for Poloidal Fields

This chapter studies orthogonal decompositions for axisymmetric vector fields in

L2
r(Ω;R3). Classical results of this type for divergence-free fields are presented in [8].

The first step is a decomposition into poloidal and toroidal components. Poloidal

and toroidal vector fields are pointwise orthogonal in Ω so they are also mutually

orthogonal in L2
r(Ω;R3):

L2
r(Ω;R3) = Pol(Ω)⊕ Tor(Ω) (5.1)
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where Pol(Ω) is the subspace of axisymmetric poloidal fields and Tor(Ω) is the sub-

space of axisymmetric toroidal fields with components in L2
r(Ω). The gradient sub-

spaces Grad0(Ω),Grad(Ω) of Pol(Ω) are defined by

Grad0(Ω) =

{
∇φ =

∂φ

∂r
er +

∂φ

∂z
ez : φ ∈ H1

r,0(Ω)

}
Grad(Ω) =

{
∇φ =

∂φ

∂r
er +

∂φ

∂z
ez : φ ∈ H1

r (Ω)

}
,

(5.2)

and the curl subspace Curl0(Ω),Curl(Ω) are defined by

Curl0(Ω) =

{
curl(ψeθ) = −∂ψ

∂z
er +

1

r

∂(rψ)

∂r
ez : ψ ∈ V 1

r,0(Ω)

}
Curl(Ω) =

{
curl(ψeθ) = −∂ψ

∂z
er +

1

r

∂(rψ)

∂r
ez : ψ ∈ V 1

r (Ω)

} (5.3)

Theorem 5.1.1. Let u ∈ Pol(Ω). Then

1. u ⊥ Grad0(Ω) if and only if div(u) = 0

2. u ⊥ Grad(Ω) if and only if div(u) = 0 and u · ν = 0

3. u ⊥ Curl0(Ω) if and only if curl(u) = 0

4. u ⊥ Curl(Ω) if and only if curl(u) = 0 and u ∧ ν = 0

Proof. Let u ∈ Pol(Ω)

1.

u ⊥ Grad0(Ω)⇔
∫

Ω

u · ∇φ rdrdz ∀φ ∈ H1
r,0(Ω)⇔ div(u) = 0. (5.4)

2. u ⊥ Grad(Ω) implies u ⊥ Grad0(Ω) so div(u) = 0. Then

〈u · ν, γφ〉 =

∫
Ω

u · ∇φ rdrdz = 0∀φ ∈ H1
r (Ω) (5.5)
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so u · ν = 0. Conversely, if div(u) = 0 and u · ν = 0, then we may substitute into

(2.23equation.2.3.23) to see that u ⊥ Grad(Ω).

3.

u ⊥ Curl0(Ω)⇔
∫

Ω

u · curl(ψeθ) rdrdz = 0∀ψ ∈ V 1
r,0(Ω)⇔ curl(u) = 0. (5.6)

4. u ⊥ Curl(Ω) implies u ⊥ Curl0(Ω) so curl(u) = 0. Then

〈u ∧ ν, γψeθ〉 =

∫
Ω

u · curl(ψeθ) rdrdz = 0∀ψ ∈ V 1
r (Ω) (5.7)

so u ∧ ν = 0. Conversely, if curl(u) = 0 and u ∧ ν = 0, then we may substitute into

(2.24equation.2.3.24) to see that u ⊥ Curl(Ω).

Let N(div) and N(curl) denote the subspaces of Pol(Ω) consisting of poloidal

fields with zero divergence and zero curl respectively.

Theorem 5.1.2. Curl(Ω) ⊂ N(div) and Grad(Ω) ⊂ N(curl).

Proof. 1. Let curl(ψeθ) ∈ Curl(Ω). Then if φ ∈ C∞Γ0(Ω) we may integrate by parts

to get ∫
Ω

curl(ψeθ) · ∇φ rdrdz =

∫
Ω

ψeθ · curl(∇φ) rdrdz = 0 (5.8)

since clearly curl(∇φ) = 0 for smooth φ. By density, we see that
∫

Ω
curl(ψeθ) ·

∇φ rdrdz = 0 for all φ ∈ H1
r,0(Ω), therefore div(curl(ψeθ)) = 0.

2. Let ∇φ ∈ Grad(Ω). Then if ψ ∈ C∞c (Ω) we may integrate by parts to get∫
Ω

∇φ · curl(ψeθ) rdrdz =

∫
Ω

φ div(curl(ψeθ)) rdrdz = 0 (5.9)
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since clearly div(curl(ψeθ)) = 0 for smooth ψ. By density we see that
∫

Ω
∇φ ·

curl(ψeθ) rdrdz = 0 for all ψ ∈ V 1
r,0(Ω), therefore curl(∇φ) = 0.

Next we show that the gradient and curl subspaces are in fact closed subspaces

of Pol(Ω) and exhibit bases for these subspaces.

Theorem 5.1.3. Grad0(Ω) and Grad(Ω) are closed subspaces of Pol(Ω).

Proof. Fix v ∈ Pol(Ω) and consider finding the orthogonal projection of v onto

Grad0(Ω). Let Gv : H1
r (Ω)→ R be the functional

Gv(φ) =

∫
Ω

|∇φ|2 rdrdz − 2

∫
Ω

∇φ · v rdrdz. (5.10)

Riesz’s theorem says that a minimizer of Gv defines the projection of v onto Grad(Ω).

First observe that Gv is bounded below since

Gv(φ) = ‖v −∇φ‖2
L2
r
− ‖v‖2

L2
r
≥ −‖v‖2

L2
r
. (5.11)

The Poincaré inequality for H1
r,0(Ω) implies that there is a constant C independent

of φ ∈ H1
r,0(Ω) such that

Gv(φ) =
1

2

∫
Ω

|∇φ|2 rdrdz +
1

2

∫
Ω

|∇φ|2 rdrdz − 2

∫
Ω

∇φ · v rdrdz

≥ C

2

∫
Ω

|φ|2 rdrdz +
1

2

∫
Ω

|∇φ|2 rdrdz − 2‖v‖L2
r
‖∇φ‖L2

r

≥ min(1, C)

2
‖φ‖2

H1
r
− 2‖v‖L2

r
‖φ‖H1

r
,

(5.12)

therefore Gv is coercive on H1
r,0(Ω). Gv is strictly convex and continuous on H1

r (Ω),

so Gv is w.l.s.c. on H1
r,0(Ω) and therefore Gv has a unique minimizer on H1

r,0(Ω). This

holds for all v ∈ Pol(Ω), so the projectional functional ‖v −∇φ‖2
L2
r

= Gv(φ) + ‖v‖2
L2
r
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is minimized by a unique gradient in Grad0(Ω) given any v ∈ Pol(Ω), and we may

conclude that Grad0(Ω) is closed. The proof that Grad(Ω) is closed follows from a

similar argument by replacingH1
r,0(Ω) withH1

r,m(Ω), applying the Poincaré inequality

for H1
r,m(Ω), and then noting that a gradient in Grad(Ω) has a unique representative

given by a function in H1
r,m(Ω).

The poloidal gradient subspaces Grad0(Ω),Grad(Ω) are spanned by gradients of

eigenfunctions of −∆. Let Ẽ = {φ̃` := λ−1/2φ̂` : ` ∈ N} be a maximal sequence

of normalized Dirichlet eigenfunctions of −∆ in H1
r,0(Ω) and let Ẽ (N) = {φ̃(N)

` :=

(λ
(N)
` )−1/2φ̂

(N)
` } be a maximal sequence of normalized nonconstant Neumann eigen-

functions as in Theorem 3.2.2.

Corollary 5.1.4. The gradients of the normalized Dirichlet eigenfunctions GẼ :=

{∇φ̃` : ` ∈ N} form an orthonormal basis of Grad0(Ω) in L2
r(Ω;R3), and the gradients

of the normalized nonconstant Neumann eigenfunctions GẼ (N) := {∇φ̃(N)
` : ` ∈ N}

form an orthonormal basis of Grad(Ω) in L2
r(Ω;R3).

Proof. We will show that GẼ is an orthonormal basis of Grad0(Ω). The proof that

GẼ (N) is an orthonormal basis of Grad(Ω) is a very similar argument. We have∫
Ω

|∇φ̃k|2 rdrdz = λ−1
k

(
λk

∫
Ω

|φ̂k|2 rdrdz
)

= 1 (5.13)

as φ̂k ∈ Ck, and the ∇φ̃k are orthogonal in L2
r(Ω;R3) by construction. Let ψ ∈

H1
r,0(Ω) and suppose that

∫
Ω
∇ψ · ∇φ̃k rdrdz = 0 for all k ∈ N. Then

λk

∫
Ω

ψφ̃k rdrdz =

∫
Ω

∇ψ · ∇φ̃k rdrdz = 0 (5.14)
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for all k ∈ N since the φ̃k are eigenfunctions. λk > 0 for all k so we must have∫
Ω
ψφ̃k rdrdz = 0 for all k. {φ̃k}k∈N is an orthonormal basis of L2

r(Ω) which implies

ψ = 0 and therefore ∇ψ = 0.

Theorem 5.1.5. Curl0(Ω) and Curl(Ω) are closed subspaces of Pol(Ω).

Proof. Fix v ∈ Pol(Ω) and consider finding the orthogonal projection of v onto

Curl0(Ω). Let Cv : V 1
r (Ω)→ R be the functional

Cv(ψ) =

∫
Ω

| curl(ψeθ)|2 rdrdz − 2

∫
Ω

curl(ψeθ) · v rdrdz. (5.15)

Cv is bounded below on V 1
r (Ω) since

Cv(ψ) = ‖v − curl(ψeθ)‖2
L2
r
− ‖v‖2

L2
r
≥ −‖v‖2

L2
r
. (5.16)

The curl-Poincaré inequality implies that there is a constant C > 0 independent of

ψ ∈ V 1
r (Ω) such that

Cv(ψ) =
1

2

∫
Ω

| curl(ψeθ)|2 rdrdz +
1

2

∫
Ω

| curl(ψeθ)|2 rdrdz − 2

∫
Ω

curl(ψeθ) · v rdrdz

≥ C

2

∫
Ω

|ψ|2 rdrdz +
1

2

∫
Ω

| curl(ψeθ)|2 rdrdz − 2‖v‖L2
r
‖ curl(ψeθ)‖L2

r

≥ min(1, C)

2
(‖ψ‖2

L2
r

+ ‖ curl(ψeθ)‖2
L2
r
)− 2‖v‖L2

r
‖ curl(ψeθ)‖L2

r
.

(5.17)

The above estimate together with (2.39Poincaré Inequalitiesequation.2.4.39) imply

that Cv is coercive on V 1
r (Ω). Cv is strictly convex and continuous on V 1

r (Ω), so Cv is

w.l.s.c. on V 1
r (Ω) and therefore Cv has a unique minimizer on V 1

r (Ω). This holds for

all v ∈ Pol(Ω), so the projectional functional ‖v − curl(ψeθ)‖2
L2
r

= Cv(φ) + ‖v‖2
L2
r

is

minimized by a unique curl in Curl(Ω) given any v ∈ Pol(Ω), and we may conclude
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that Curl(Ω) is closed. We may apply the same argument to the functional Cv

restricted to V 1
r,0(Ω) to show that Curl0(Ω) is closed.

Let F̃ := {ψ̃k := λ̃
−1/2
k ψ̂k : k ∈ N} be a maximal sequence of normalized Dirichlet

eigenfunctions of −∆ + r−2 in V 1
r,0(Ω), and let F̃ (N) := {ψ̃(N)

k := (λ̃
(N)
k )−1/2ψ̂

(N)
k :

k ∈ N} be a maximal sequence of normalized conormal Neumann eigenfunctions of

−∆ + r−2 in V 1
r (Ω).

Corollary 5.1.6. CF̃ := {curl(ψ̃`eθ) : ` ∈ N} is an orthonormal basis of Curl0(Ω) in

L2
r(Ω;R3), and CF̃ (N) := {curl(ψ̃

(N)
` eθ) : ` ∈ N} is an orthonormal basis of Curl(Ω)

in L2
r(Ω;R3).

Proof. We will show that CF̃ := {curl(ψ̃`eθ) : ` ∈ N} is an orthonormal basis of

Curl0(Ω). The proof that CF̃ (N) := {curl(ψ̃
(N)
` eθ) : ` ∈ N} is an orthonormal basis

of Curl(Ω) is a very similar argument. We have∫
Ω

| curl(ψ̃keθ)|2 rdrdz = λ̃−1
k

(
λ̃k

∫
Ω

|ψ̂k|2 rdrdz
)

= 1 (5.18)

as ψ̂k ∈ Ck, and the curl(ψ̃keθ) are orthogonal in L2
r(Ω;R3) by construction. Let

χ ∈ V 1
r,0(Ω) and suppose that

∫
Ω

curl(χeθ) · curl(ψ̃keθ) rdrdz = 0 for all k ∈ N. Then

λ̃k

∫
Ω

χψ̃k rdrdz =

∫
Ω

curl(χeθ) · curl(ψ̃keθ) rdrdz = 0 (5.19)

for all k ∈ N since the ψ̃k are eigenfunctions. λ̃k > 0 for all k so we must have∫
Ω
χψ̃k rdrdz = 0 for all k. {ψ̃k}k∈N is an orthonormal basis of L2

r(Ω) which implies

χ = 0 and therefore curl(χeθ) = 0.
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Definition. Let

Nν0(div) = {u ∈ N(div) : u · ν = 0}

Nτ0(curl) = {u ∈ N(curl) : u ∧ ν = 0}.
(5.20)

Corollary 5.1.7. Pol(Ω) has the following orthogonal decompositions:

Pol(Ω) = Grad0(Ω)⊕N(div)

= Grad(Ω)⊕Nν0(div)

= Curl0(Ω)⊕N(curl)

= Curl(Ω)⊕Nτ0(curl).

(5.21)

Proof. Theorem 4.1.1. shows that Pol(Ω) = Grad0(Ω)⊕N(div) and Theorem 4.1.4.

shows that Grad0(Ω) = Grad0(Ω). The other decomposition follow similarly.

Theorem 4.1.2. let’s us refine these decompositions since Grad(Ω) ⊂ N(curl) and

Curl(Ω) ⊂ N(div).

Definition. Let Hν0(Ω) be the orthogonal complement of Grad(Ω) ⊕ Curl0(Ω) in

Pol(Ω), and let Hτ0(Ω) denote the orthogonal complement of Grad0(Ω)⊕Curl(Ω) in

Pol(Ω).

Corollary 5.1.8. Pol(Ω) has the following orthogonal decompositions:

Pol(Ω) = Grad0(Ω)⊕ Curl(Ω)⊕Hτ0(Ω)

= Grad(Ω)⊕ Curl0(Ω)⊕Hν0(Ω).

(5.22)

Definition. A vector field u = (ur, uθ, uz) on Ω is called harmonic if div(u) = 0 and

curl(u) = 0.
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In particular, Hν0(Ω) and Hτ0(Ω) are spaces of harmonic poloidal fields. We will

show that these are special finite dimensional subspaces of harmonic fields determined

by the topology of the cross section Ω. The description of these special harmonic

fields begins with showing that gradients of axisymmetric scalar potentials and curls

of axisymmetric stream functions are sufficient to characterize every poloidal field in

L2
r(Ω;R3).

Theorem 5.1.9. Let u ∈ Pol(Ω). If u ⊥ Grad(Ω), then u ∈ Curl(Ω). If u ⊥

Curl(Ω), then u ∈ Grad(Ω).

Proof. Let u ∈ Pol(Ω) and suppose that u ⊥ Grad(Ω). Let ũ be the zero extension

of u to all of R2
+, i.e.

ũ =


u in Ω,

0 in R2
+ \ Ω.

(5.23)

If φ ∈ C∞(R2) then ∫
R2
+

ũ · ∇φ rdrdz =

∫
Ω

u · ∇φ rdrdz = 0 (5.24)

since∇φ|Ω ∈ Grad(Ω) and u ⊥ Grad(Ω). Let Ũ be an axisymmetric lifting of ũ to the

whole space R3. Then (5.24Orthogonal Decompositions for Poloidal Fieldsequation.5.1.24)

implies div(Ũ) = 0 in R3, where div(Ũ) is meant in the weak sense. Theorem 3.4 and

Remark 3.7 in [14] show that there is a vector potential A ∈ H1(R3;R3) such that

div(A) = 0 and Ũ = curl(A). The equation curl(A) = Ũ reads in Fourier transform

FŨ(ξ) = 2iπ(ξ2FA3 − ξ3FA2, ξ3FA1 − ξ1FA3, ξ1FA2,−ξ2FA1). (5.25)

div(A) = 0 means that A is determined by the equation

(4iπ|ξ|2)FA = F(curl(Ũ)). (5.26)
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Ũ is poloidal so curl(Ũ) is toroidal, in particular, (curl(Ũ))3 = 0. Then (5.26Orthogonal Decompositions for Poloidal Fieldsequation.5.1.26)

implies that (FA)3 = 0 so A3 = 0. When A3 = 0 there is a unique solution of

(5.25Orthogonal Decompositions for Poloidal Fieldsequation.5.1.25) given by

FA1 =
FŨ2

2iπξ3

, FA2 = − FŨ1

2iπξ3

. (5.27)

Ũ is poloidal, so the condition Ũθ = 0 means.

−x2Ũ1 + x1Ũ2 = 0. (5.28)

If we apply the Fourier transform to (5.28Orthogonal Decompositions for Poloidal Fieldsequation.5.1.28)

we get

−∂(FŨ1)

∂ξ2

+
∂(FŨ2)

∂ξ1

= 0. (5.29)

Ũ has compact support so FŨ is smooth and we may differentiate FA1,FA2 in

(5.27Orthogonal Decompositions for Poloidal Fieldsequation.5.1.27) to get

∂(FA1)

∂ξ1

+
∂(FA2)

∂ξ2

=

(
1

2iπξ3

)(
∂(FŨ2)

∂ξ1

− ∂(FŨ1)

∂ξ2

)
. (5.30)

Then (5.29Orthogonal Decompositions for Poloidal Fieldsequation.5.1.29) implies that

∂(FA1)

∂ξ1

+
∂(FA2)

∂ξ2

= 0. (5.31)

Now apply the inverse Fourier transform to (5.31Orthogonal Decompositions for Poloidal Fieldsequation.5.1.31)

to get x1A1 +x2A2 = 0 which implies Ar = 0. Thus the vector potential A is toroidal

so we may write A = Aθeθ. Now apply the condition div(A) = 0 in cylindrical coor-

dinates to get

div(A) =
1

r

∂Aθ
∂θ

= 0 (5.32)
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therefore Aθ is independent of θ, so A ∈ H1(R3;R3) is an axisymmetric toroidal

vector field. Hence there is a stream function ψ on Ω such that

A(x) = ψ

(√
x2

1 + x2
2, x3

)
eθ x ∈ ΩA. (5.33)

Our conditions on ∂ΩA guarantee that the restriction A|ΩA
is an H1 vector field on

ΩA, therefore the stream function is in V 1
r (Ω) according to (2.35Poincaré Inequalitiesequation.2.4.35).

Then taking the restriction to Ω shows that u = curl(ψeθ) as desired. The case that

u ⊥ Curl(Ω) is proved similarly by extending u to an axisymmetric vector field on

all of R3 and using Fourier transform to construct the scalar potential φ ∈ H1
r (Ω)

such that u = ∇φ.

5.2 Characterization of Hτ0(Ω)

Let h ∈ Hτ0(Ω). Then Theorem 4.1.7. shows that h = ∇φ for some φ ∈ H1
r (Ω). The

conditions div(h) = 0 and h ∧ ν = 0 yield the boundary problem
∆φ = 0 in Ω,

∇φ · τ = 0 on Γ

(5.34)

where τ = (−νz, 0, νr). Let Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm where Γ0,Γ1, . . . ,Γm are the

connected components of Γ such that Ω contained in the region interior to Γ0 ∪{r =

0}, Γj ∩ Γk 6= ∅ ⇔ j = k, and the Γ1, . . . ,Γm are closed C2 loops. For j = 1, . . . ,m,

let fj ∈ H1
r (Ω) be a function whose trace on Γ is

fj =


0 on Γ0,

δj` on Γ`, for ` = 1, . . . ,m.

(5.35)
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Let Gj = {φ0 + fj : φ0 ∈ H1
r,0(Ω)} for j = 1, . . . ,m. If Γ = Γ0 then we set f0 to some

H1
r,0(Ω) function and G0 = H1

r,0(Ω).

Let D : H1
r (Ω)→ R be the Dirichlet energy

D(φ) =

∫
Ω

|∇φ|2 rdrdz. (5.36)

If Γ = Γ0, then φ ≡ 0 is the unique minimizer of D over G0 = H1
r,0(Ω). Consider the

problem of minimizing D over Gj for j ≥ 1.

Theorem 5.2.1. D has a unique minimizer φ̂ on Gj for j = 1, . . . ,m. φ̂ is the

unique weak solution in H1
r (Ω) of

∆φ = 0 in Ω,

φ = fj on Γ.

(5.37)

Proof. Gj may be expressed as Gj = fj + H1
r,0(Ω) = {fj + φ : φ ∈ H1

r,0(Ω)}. Then

minimizing (5.36Characterization of Hτ0(Ω)equation.5.2.36) over Gj is equivalent to

minimizing Dj : H1
r,0(Ω)→ R defined by

Dj(φ) =

∫
Ω

|∇φ+∇fj|2 rdrdz. (5.38)

Clearly, Dj is continuous, strictly convex, and the Poincaré inequality for H1
r,0(Ω)

implies that Dj is coercive on H1
r,0(Ω). Therefore D has a unique minimizer φ̂j

on Gj. The functional Dj is Gateaux differentiable on H1
r,0(Ω) and the first order

condition for a minimizer reads∫
Ω

∇(φ+ fj) · ∇ψ rdrdz = 0 for all ψ ∈ H1
r,0(Ω). (5.39)

Plugging in φ̂j into this condition shows that φ̂j is the unique weak solution in H1
r (Ω)

of the harmonic boundary value problem (5.37equation.5.2.37).
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For j = 1, . . . ,m, let hj = ∇φ̂j where φ̂j is the unique minimizer in Gj of D.

Theorem 5.2.2. If Γ = Γ0, then Hτ0(Ω) = {0}. Otherwise if m ≥ 1, then {hj : j =

1, . . . ,m} is a basis of Hτ0(Ω).

Proof. Let h ∈ Hτ0(Ω). As mentioned earlier, there is a scalar potential φ ∈ H1
r (Ω)

such that h = ∇φ where φ is a solution of the harmonic boundary value problem

(5.34Characterization of Hτ0(Ω)equation.5.2.34). The boundary condition ∇φ · τ =

0 and the regularity of Γ imply that φ is constant on each component of Γ. If

Γ = Γ0, then the only solution of (5.34Characterization of Hτ0(Ω)equation.5.2.34)

is φ = const. and then h = ∇φ = 0, so Hτ0(Ω) = {0} is a trivial subspace. Now

consider the case that m ≥ 1 and suppose that cj, j = 0, 1, . . . ,m are constants such

that φ = cj on Γj, j = 0, 1, . . . ,m. The function

ψ = φ− c0 −
m∑
j=1

(cj − c0)φ̂j (5.40)

satisfies ∆ψ = 0 in Ω and ψ = 0 on Γ, which means ψ ≡ 0. Therefore

φ = c0 +
m∑
j=1

(cj − c0)φ̂j. (5.41)

Now take the gradient to get

∇φ =
m∑
j=1

(cj − c0)∇φ̂j =
m∑
j=1

(cj − c0)hj (5.42)

so {h1, . . . , hm} spans Hτ0(Ω). Suppose that there are constants a1, . . . , am, not all

zero, such that
m∑
j=1

ajhj = 0. (5.43)
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This says that

∇

(
m∑
j=1

ajφ̂j

)
= 0 in Ω. (5.44)

Γ is connected so we must have that
∑m

j=1 ajφ̂j is constant on Ω. Taking traces onto

Γ implies

m∑
j=1

ajφ̂j =


a` on Γ`,

0 on Γ0.

(5.45)

As
∑m

j=1 ajφ̂j is constant, we must have that aj = 0 for all j, a contradiction.

Therefore {h1, . . . , hm} is a maximal spanning set for Hτ0(Ω).

This result implies that the dimension ofHτ0(Ω) is equal to the number of internal

loops comprising Γ \ Γ0. These loops correspond to toroidal holes in the volume of

revolution ΩA. We may also characterize the projection of a poloidal field u using

the gradient basis for Hτ0(Ω). Let u ∈ Pol(Ω) and let ud0 be the projection of u onto

N(div). We may write u0 = u−∇φ where ∇φ is the projection of u onto Grad0(Ω).

Then if φ̂j is as above and using the definition of the linear functional ud0 · ν we get∫
Ω

u · ∇φ̂j rdrdz =

∫
Ω

∇φ · ∇φ̂j rdrdz +

∫
Ω

ud0 · ∇φ̂j rdrdz

= 0 + 〈ud0 · ν, φj〉

=: 〈ud0 · ν, 1〉Γj
.

(5.46)

If ud0 is regular enough, then 〈ud0 · ν, 1〉Γj
may be written as∫

Γj

ud0 · ν rds. (5.47)

This says that that the projection of u onto the harmonic subspaceHτ0(Ω) is uniquely

determined by the flux of the divergence-free component ud0 through each interior

Γj for j = 1, . . . ,m.
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5.3 Characterization of Hν0(Ω)

We may describe the fields in Hν0(Ω) in a similar manner to those in Hτ0(Ω). If

k ∈ Hν0(Ω), then there is a stream function ψ ∈ V 1
r (Ω) such that k = curl(ψeθ)

according to Theorem 4.1.7. Then the conditions curl(k) = 0 and k · ν = 0 yield the

boundary value problem 
−∆ψ +

1

r2
ψ = 0 in Ω,

∇(rψ) · τ = 0 on Γ.

(5.48)

For j = 1, . . . ,m let gj ∈ V 1
r (Ω) be a function whose trace on Γ is

gj =


0 on Γ0,

δj`
r

on Γ`, ` = 1, . . . ,m.

(5.49)

Let Kj = {ψ0 + gj : ψ0 ∈ V 1
r (Ω)} for j = 1, . . . ,m. If Γ = Γ0, we set g0 to some

V 1
r,0(Ω) function and K0 = V 1

r,0(Ω). Let B : V 1
r (Ω)→ R be the functional

B(ψ) =

∫
Ω

| curl(ψeθ)|2 rdrdz. (5.50)

If Γ = Γ0, then ψ ≡ 0 is the unique minimizer of B over K0 = V 1
r,0(Ω) since√

B(ψ) defines a norm on V 1
r (Ω).

Theorem 5.3.1. B has a unique minimizer ψ̂ on Kj for j = 1, . . . ,m. ψ̂ is the

unique weak solution in V 1
r (Ω) of

−∆ψ +
1

r2
ψ = 0 in Ω,

ψ = gj on Γ.

(5.51)
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Proof. Kj = {ψ = ψ0 + gj : ψ0 ∈ V 1
r,0(Ω)} for j = 1, . . . ,m, so minimizing B over Gj

is equivalent to minimizing Bj : V 1
r,0(Ω)→ R over where

Bj(ψ) =

∫
Ω

| curl(ψeθ) + curl(gjeθ)|2 rdrdz. (5.52)

Clearly Bj is continuous, strictly convex, and the curl-Poincaré inequality for V 1
r (Ω)

implies that Bj is coercive on V 1
r,0(Ω). Therefore B has a unique minimizer ψ̂ on

Kj. The functional Bj is Gateaux differentiable and the first order condition for a

minimizer reads∫
Ω

curl((ψ + gj)eθ) · curl(χeθ) rdrdz = 0 for all χ ∈ V 1
r,0(Ω). (5.53)

Plugging ψ̂j into this condition shows that ψ̂j is the unique weak solution in V 1
r (Ω)

of the boundary value problem (5.51equation.5.3.51).

For j = 1, . . . ,m, let kj = curl(ψ̂jeθ) where ψ̂j is the unique minimizer in Kj of

B.

Theorem 5.3.2. If Γ = Γ0, then Hν0(Ω) = {0}. Otherwise, if m ≥ 1, then {kj :

j = 1, . . . ,m} is a basis of Hν0(Ω).

Proof. Let k ∈ Hν0(Ω). Then there is a stream function ψ ∈ V 1
r (Ω) such that k =

curl(ψeθ) where ψ is a solution of the boundary value problem (5.48Characterization of Hν0(Ω)equation.5.3.48).

The boundary condition ∇(rψ) · τ and the regularity of Γ imply that rψ is constant

on each component of Γ. If Γ = Γ0 and ψ = const./r on Γ, then the trace of ψ on Γ is

in L2
r(Γ) if and only if const. = 0. Therefore ψ = 0 on Γ and the only weak solution

in V 1
r (Ω) of ∆ψ + r−2ψ = 0 with the boundary condition ψ = 0 is ψ ≡ 0. Hence
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in this case we have Hν0(Ω) = {0}. Now consider the case that m ≥ 1 and suppose

that cj, j = 1, . . . ,m are constants such that ψ = cj/r on Γj for j = 1, . . . ,m; we

already saw that ψ = 0 on Γ0. Consider the function

χ = ψ −
m∑
j=1

cjψ̂j. (5.54)

Then χ obeys −∆χ+ r−2χ = 0 and χ|Γ = 0, so we must have χ = 0. Therefore

ψ =
m∑
j=1

cjψ̂j. (5.55)

Taking curls in the equation above we get

curl(ψeθ) =
m∑
j=1

cj curl(ψ̂jeθ) =
m∑
j=1

cjkj (5.56)

so {k1, . . . , km} spans Hν0(Ω). Suppose that there are constants a1, . . . , am, not all

zero, such that
m∑
j=1

ajkj = 0. (5.57)

This says that

curl

(
m∑
j=1

ajψ̂j

)
= 0 in Ω (5.58)

or equivalently,

∇

(
m∑
j=1

aj(rψ̂j)

)
= 0. (5.59)

Ω is connected so
∑m

j=1 aj(rψ̂j) is constant on Ω. Then taking traces on Γ0,Γ1, . . . ,Γm

we get

m∑
j=1

aj(rψ̂j) =


a` on Γ`, ` = 1, . . . ,m

0 on Γ0.

(5.60)

Then we must have aj = 0 for all j = 0, 1, . . . ,m, a contradiction. Hence the kj’s

are a maximal spanning set for Hν0(Ω).
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This characterization of Hν0(Ω) and Hτ0(Ω) have the same dimension: the num-

ber of internal loops in the cross-section Ω which is equal to the number of toroidal

holes in the cross-section ΩA. The projection of a poloidal field onto Hν0(Ω) has

an interpretation using circulations, just as the projection onto Hτ0(Ω) has an in-

terpretation using fluxes. Let u be a poloidal field and let uc0 the projection onto

N(curl). We may write uc0 = u − curl(ψeθ) where curl(ψeθ) is the projection of u

onto Curl0(Ω). Then if ψ̂j is as above and using the definition of the linear functional

uc0 ∧ ν, we get∫
Ω

u · curl(ψ̂jeθ) rdrdz =

∫
Ω

curl(ψeθ) · curl(ψ̂jeθ) rdrdz +

∫
Ω

uc0 · curl(ψ̂eθ) rdrdz

= 0 + 〈uc0 ∧ ν, ψ̂jeθ〉

=:

〈
uc0 ∧ ν,

1

r
eθ

〉
Γj

.

(5.61)

When uc0 is smooth enough, 〈uc0 ∧ ν, eθ/r〉Γj
may be expressed as∫

Γj

uc0 · τ ds. (5.62)

This says that that the projection of u onto the harmonic subspaceHν0(Ω) is uniquely

determined by the circulation of the curl-free component uc0 around each interior Γj

for j = 1, . . . ,m.
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Chapter 6

Axisymmetric Div-curl systems

This chapter will describe well-posedness results on axisymmetric div-curl systems

with normal or tangantial boundary conditions. The axisymmetric div-curl systems

arise in classical field theories when the domain has rotational symmetry and the

data is axisymmetric. In particular, the results of this chapter may be applied to

some forms of the quasi-static Maxwell equations on domains such as those described

in Section 2.1 with axisymmetric data as in Sections 2.2 and 2.3.
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6.1 The Normal Div-curl System

This section studies the well-posedness of the normal div-curl system
div(u) = ρ in Ω,

curl(u) = ω in Ω,

u · ν = µ on Γ.

(6.1)

Here ρ is a function on Ω, ω is a vector field on Ω, and µ is a function on Γ. The

boundary condition u · ν = µ is a single scalar equation. We decompose the analysis

of this problem into poloidal and toroidal parts. The poloidal-normal div-curl system

is 
div(uP ) = ρ in Ω,

curl(uP ) = ωT in Ω,

uP · ν = µ on Γ.

(6.2)

The toroidal-normal div-curl system is
div(uT ) = 0 in Ω,

curl(uT ) = ωP in Ω,

uT · ν = 0 on Γ.

(6.3)

The following conditions are imposed on the data ρ, ω, µ for (6.1The Normal Div-curl Systemequation.6.1.1):

(N1) ρ ∈ L2
r(Ω);

(N2) ω ∈ L2
r(Ω;R3);

(N3) div(ωP ) = 0;
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(N4) µ ∈ L2
r(Γ);

(N5)
∫

Ω
ρ rdrdz =

∫
Γ
µ rds;

(N6) ωP ⊥ Hτ0(Ω).

Definition. Let ρ, ω, µ be given such that conditions (N1) through (N6) are satisfied.

A vector field u ∈ L2
r(Ω;R3) is a weak solution of (6.1The Normal Div-curl Systemequation.6.1.1)

provided it satisfies∫
Ω

u · ∇φ rdrdz = −
∫

Ω

ρφ rdrdz +

∫
Γ

µγφ for all φ ∈ H1
1 (Ω) (6.4)

and∫
Ω

u·curl(F ) rdrdz =

∫
Ω

ω ·F rdrdz for all F ∈ V 1
r,0(Ω)×V 1

r,0(Ω)×H1
r,0(Ω). (6.5)

By linearity, u ∈ L2
r(Ω;R3) is a weak solution of (6.1The Normal Div-curl Systemequation.6.1.1)

if and only if the poloidal and toroidal components uP , uT are weak solutions of

(6.2The Normal Div-curl Systemequation.6.1.2) and (6.3The Normal Div-curl Systemequation.6.1.3)

respectively. The conditions (N5) and (N6) are actually compatibility conditions that

must hold.

Theorem 6.1.1. Let ρ, ω, µ be given such that (N1) through (N4) are satisfied and

suppose that u ∈ L2
r(Ω;R3) is a weak solution of (6.1The Normal Div-curl Systemequation.6.1.1).

Then ρ, ω, µ satisfy (N5) and (N6).

Proof. Let u ∈ L2
r(Ω;R3) solve (6.1The Normal Div-curl Systemequation.6.1.1). If
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φ ≡ 1 ∈ H1
r (Ω), then γφ ≡ 1 on Γ so

〈µ, 1〉 = 〈u · ν, 1〉

=

∫
Ω

u · ∇(1) rdrdz +

∫
Ω

div(u)(1) rdrdz

=

∫
Ω

div(u) rdrdz

=

∫
Ω

ρ rdrdz.

(6.6)

If u solves (6.1The Normal Div-curl Systemequation.6.1.1) then, in particular, curl(uT ) =

ωP ∈ Pol(Ω). This says that ωP ∈ Curl(Ω) which implies ωP ⊥ (Grad0(Ω) ⊕

Hτ0(Ω)).

Now we want to show that when (N1) through (N6) are satisfied, then the system

(6.1The Normal Div-curl Systemequation.6.1.1) has a solution u ∈ L2
r(Ω;R3). To

this end, we construct a solution uP of the poloidal-normal div-curl system using the

decompositions from the previous chapter. Consider uP = −∇φ + curl(ψeθ) with

φ ∈ H1
r (Ω) a weak solution of 

−∆φ = ρ in Ω,

Dνφ = −µ on Γ.

(6.7)

and ψ ∈ V 1
r,0(Ω) a weak solution of

−∆ψ +
1

r2
ψ = ωθ in Ω,

ψ = 0 on Γ.

(6.8)

A weak solution of (6.7The Normal Div-curl Systemequation.6.1.7) exists when the

conditions (N1), (N4), and (N5) are satisfied according to Theorem 4.2.3; a weak
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solution of (6.8The Normal Div-curl Systemequation.6.1.8) exists when ω satisfies

(N2) according to Theorem 4.3.1.

Lemma 6.1.2. Suppose that ρ, ω, µ are given such that conditions (N1) through (N6)

are satisfied. Let φ ∈ H1
r (Ω) be a weak solution of (6.7The Normal Div-curl Systemequation.6.1.7)

and ψ ∈ V 1
r,0(Ω) be a weak solution of (6.8The Normal Div-curl Systemequation.6.1.8).

Then up = −∇φ+curl(ψeθ) is a weak solution of the poloidal-normal div-curl system.

Proof. Let χ ∈ H1
r (Ω). Then∫

Ω

uP · ∇χ rdrdz =

∫
Ω

(−∇φ+ curl(ψeθ)) · ∇χ rdrdz

= −
∫

Ω

∇φ · ∇χ rdrdz +

∫
Ω

curl(ψeθ) · ∇χ rdrdz

= −
∫

Ω

∇φ · ∇χ rdrdz

(6.9)

since curl(ψeθ) and ∇χ are orthogonal in L2
r(Ω;R3). A weak solution φ ∈ H1

r (Ω) of

(6.7The Normal Div-curl Systemequation.6.1.7) satisfies∫
Ω

∇φ · ∇χ rdrdz =

∫
Ω

ρχ rdrdz −
∫

Γ

µγχ rds (6.10)

so ∫
Ω

uP · ∇χ rdrdz = −
∫

Ω

∇φ · ∇χ rdrdz

= −
∫

Ω

ρχ rdrdz +

∫
Γ

µγχ rds.

(6.11)

Now if χ ∈ V 1
r,0(Ω) and ψ is a weak solution of (6.8The Normal Div-curl Systemequation.6.1.8),

then ∫
Ω

curl(ψeθ) · curl(χeθ) rdrdz =

∫
Ω

ωθχ rdrdz, (6.12)

therefore we may argue similarly as before to show that∫
Ω

uP · curl(χeθ) rdrdz =

∫
Ω

ωθχ rdrdz. (6.13)
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Hence uP is a weak solution of the poloidal-normal div-curl system (6.2The Normal Div-curl Systemequation.6.1.2).

The existence of a solution to the toroidal-normal div-curl problem (6.3The Normal Div-curl Systemequation.6.1.3)

is proved using the decomposition

Pol(Ω) = Grad0(Ω)⊕ Curl(Ω)⊕Hτ0(Ω). (6.14)

Lemma 6.1.3. Suppose that condition (N1) through (N6) are satisfied. Then there

is a weak solution uT ∈ L2
r(Ω;R3) of the toroidal-normal div-curl system.

Proof. The conditions (N3) and (N6) say that the poloidal field ωP ∈ L2
r(Ω;R3)

satisfies div(ωP ) = 0 and ωP ⊥ Hτ0(Ω). If div(ωP ) = 0 then ωP ⊥ Grad0(Ω), so

ωP ∈ (Grad0(Ω)⊕Hτ0(Ω))⊥ = Curl(Ω). Then there is a unique χ ∈ V 1
r (Ω) such that

ωP = curl(χeθ). Set uT = χeθ. Then∫
Ω

uT · ∇η rdrdz = 0 (6.15)

for all η ∈ H1
r (Ω) since uT is toroidal and ∇χ is poloidal. Let Fr ∈ V 1

r,0(Ω), Fz ∈

H1
r (Ω). Then the definition of ωP = curl(χeθ) implies that∫

Ω

uT · curl(Frer + Fzez) rdrdz =

∫
Ω

χeθ · curl(Frer + Fzez) rdrdz

=

∫
Ω

ωP · (Frer + Fzez) rdrdz.

(6.16)

Hence uT is a weak solution of the toroidal-normal div-curl system.

Corollary 6.1.4. Let ρ, ω, µ be given such that conditions (N1) through (N6) are sat-

isfied. Then the normal div-curl system (6.1The Normal Div-curl Systemequation.6.1.1)

has a weak solution.
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Proof. Let u = −∇φ + curl(ψeθ) + χeθ with φ, ψ as in Lemma 5.1.2 and χ as in

the proof of Lemma 5.1.3. Then uP = −∇φ + curl(ψeθ) solves the poloidal-normal

div-curl system, uT = χeθ solves the toroidal-normal div-curl system, so u = uP +uT

solves the complete normal div-curl system.

This resolves the existence problem for the normal div-curl system. We now

address the problem of uniqueness. The orthogonal decompositions in Chapter 4

suggest that the uniqueness problem for the poloidal part depends on the topology

of Ω, since the space of harmonic fieldsHν0(Ω) are in the null-space of the divergence,

curl, and normal trace operators. On the other hand, the toroidal part of the problem

has uniqueness guaranteed since there are no nontrivial harmonic toroidal fields in

L2
r(Ω;R3).

Theorem 6.1.5. Let ρ, ω, µ be given such that conditions (N1) through (N6) are

satisfied. If Γ has a single component Γ = Γ0, then there is a unique weak solution in

L2
r(Ω;R3) to the normal div-curl system. If Γ has multiple components Γ = Γ0∪Γ1∪

· · · ∪ Γm, then the set of weak solutions in L2
r(Ω;R3) of the normal div-curl system

is an m-dimensional affine subspace.

Proof. Let u, v be two weak solutions of the normal div-curl system and let w = u−v

be their difference. The toroidal part wT is therefore a harmonic toroidal field so it

must have the form wT = (C/r)eθ for some constant C. If wT ∈ L2
r(Ω;R3) then∫

Ω

C2

r2
rdrdz =

∫
Ω

C2

r
dr dz <∞ (6.17)

if and only if C = 0 since Ω has nontrivial intersection with the z-axis. Therefore

wT = 0, so uT = vT . The poloidal component wP is a harmonic poloidal field in
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L2
r(Ω;R3) with zero normal trace, i.e. wP ∈ Hν0(Ω). If Γ = Γ0, then Theorem 4.3.2

asserts that wP = 0, so uP = vP and consequently u = v. If Γ = Γ0∪Γ1∪· · ·∪Γm with

Γ1, . . . ,Γm all nonempty, then Theorem 4.3.2 asserts that Hν0(Ω) is a m-dimensional

subspace of Pol(Ω). Therefore u = v+
∑m

j=1 cj curl(ψ̂jeθ), with curl(ψ̂jeθ) = kj as in

Theorem 4.3.2, for some constants c1, . . . , cm.

A unique weak solution of the normal div-curl system in the case that Γ has

multiple components Γ0,Γ1, . . . ,Γm may be obtained by prescribing extra condi-

tions. Namely, the projection of the solution onto the one-dimensional subspaces

{a curl(ψ̂jeθ) : a ∈ R}, j = 1, . . . ,m uniquely determines a weak solution.

Corollary 6.1.6. Let ρ, ω, µ be given such that conditions (N1) through (N6) are

satisfied and let Γ0,Γ1, . . . ,Γm be the connected components of Γ as before with

Γ1, . . . ,Γm all nonempty. Let {curl(ψ̂jeθ : j = 1, . . . ,m} be a basis for Hν0(Ω)

as in Theorem 4.3.2. Then the normal div-curl system has a unique weak solution if

the m functionals ∫
Ω

u · curl(ψ̂jeθ) rdrdz, j = 1, . . . ,m (6.18)

are also prescribed in addition to ρ, ω, µ satisfying conditions (N1) through (N6).

Proof. If ρ, σ, µ are given such that conditions (N1) through (N6) satisfied, then there

is an m-dimensional affine subspace of solutions u +Hν0(Ω) where u is a particular

solution. The m functionals (6.18equation.6.1.18) uniquely determine the projection

of a solution onto the subspace Hν0(Ω), hence there is a unique solution when the m

functionals in (6.18equation.6.1.18) are prescribed.
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The prescription of the functionals in (6.18equation.6.1.18) may be interpreted

as prescribing m circulations of the curl-free part of the desired vector field. Lastly

we present an energy estimate demonstrating the dependence of a solution on the

data ρ, ω, µ.

Corollary 6.1.7. Let ρ, ω, µ be given satisfying conditions (N1) - (N6). Suppose

that Γ has multiple components Γ0,Γ1, . . . ,Γm with Γ1, . . . ,Γm all nonempty. Let

{curl(ψ̂jeθ) : j = 1, . . . ,m} be a basis for Hν0(Ω). Let u ∈ L2
r(Ω;R3) be a solution of

the normal div-curl system with κj, j = 1, . . . ,m the values of the m functionals

κj =

∫
Ω

u · curl(ψ̂jeθ) rdrdz, j = 1, . . . ,m (6.19)

and denote κ = (κ1, . . . , κm). Then there is a constant C > 0 such that∫
Ω

|u|2 rdrdz ≤ C

(∫
Γ

|µ|2 rds+

∫
Ω

|ρ|2 rdrdz +

∫
Ω

|ω|2 rdrdz + |κ|
)
. (6.20)

Proof. Let uP be the poloidal part of u and write uP = −∇φ+ curl(ψeθ) + k where

∇φ is the projection onto Grad(Ω), curl(ψeθ) is the projection onto Curl0(Ω), and

k is the projection onto Hν0(Ω). The characterizations of φ, ψ as weak solutions of

boundary value problems let us apply Corollary 4.2.8 and Corollary 4.3.2 to derive

a constant C > 0 such that∫
Ω

|uP |2 rdrdz ≤ C

(∫
Γ

|µ|2 rds+

∫
Ω

|ρ|2 rdrdz +

∫
Ω

|ωT |2 rdrdz + |κ|
)
. (6.21)

ωP ∈ Curl(Ω) with ωP = curl(uθeθ) and uθ ∈ V 1
r (Ω) by conditions (N2), (N3), and

(N6), so we may apply the curl-Poincaré inequality for V 1
r (Ω) to obtain∫

Ω

|uθeθ|2 rdrdz ≤ C

∫
Ω

| curl(uθeθ)|2 rdrdz = C

∫
Ω

|ωP |2 rdrdz (6.22)
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for some constant C > 0. Combining (6.21The Normal Div-curl Systemequation.6.1.21)

and (6.22The Normal Div-curl Systemequation.6.1.22) yields (6.20equation.6.1.20).

6.2 The Tangential Div-curl System

This section studies the well-posedness of the tangential div-curl system
div(u) = ρ in Ω,

curl(u) = ω in Ω,

u ∧ ν = σ on Γ.

(6.23)

where ρ, ω are as in Section 6.1, and σ is a vector field on Γ. The boundary condi-

tion for the tangential div-curl system consists of three scalar equations. We again

decompose the analysis of this problem into poloidal and toroidal parts. The poloidal-

tangential div-curl system is 
div(uP ) = ρ in Ω,

curl(uP ) = ωT in Ω,

uP ∧ ν = σT on Γ.

(6.24)

The toroidal-normal div-curl system is
div(uT ) = 0 in Ω,

curl(uT ) = ωP in Ω,

uT ∧ ν = σP on Γ.

(6.25)

The following conditions are imposed on the data ρ, ω, σ for (6.23The Tangential Div-curl Systemequation.6.2.23).
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(N1) ρ ∈ L2
r(Ω)

(N2) ω ∈ L2
r(Ω;R3)

(N3) div(ωP ) = 0

(N6) ωP ⊥ Hτ0(Ω)

(N7) σ ∈ L2
r(Γ;R3)

(N8) ∫
Ω

ωP · vP rdrdz = −
∫

Γ

σP · γvP rds

for all vP = vrer + vzez with vr ∈ V 1
r (Ω), vz ∈ H1

r (Ω), curl(vP ) = 0.

Definition. Let ρ, ω, σ be given such that conditions (N1) – (N3), (N6) – (N8) are

satisfied. A vector field u ∈ L2
r(Ω;R3) is a weak solution of (6.23The Tangential Div-curl Systemequation.6.2.23)

provided it satisfies∫
Ω

u · ∇φ rdrdz = −
∫

Ω

ρφ rdrdz for all φ ∈ H1
r,0(Ω) (6.26)

and ∫
Ω

u · curl(v) rdrdz =

∫
Γ

σ · γv rds+

∫
Ω

ω · v rdrdz (6.27)

for all v = (vr, vθ, vz) with vr, vθ ∈ V 1
r (Ω) and vz ∈ H1

r (Ω).

Just like the normal div-curl system, u ∈ L2
r(Ω;R3) is a weak solution of (6.23The Tangential Div-curl Systemequation.6.2.23)

if and only if the poloidal and toroidal components uP , uT are weak solutions of

(6.24The Tangential Div-curl Systemequation.6.2.24) and (6.25The Tangential Div-curl Systemequation.6.2.25)

respectively.
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We construct solutions of the poloidal-tangential div-curl system by formulating

boundary value problems for the scalar potential and stream function. Consider

uP = −∇φ+ curl(ψeθ) where φ ∈ H1
r,0(Ω) is a weak solution of
−∆φ = ρ in Ω,

φ = 0 on Γ,

(6.28)

and ψ ∈ V 1
r (Ω) is a weak solution of

−∆ψ +
1

r2
ψ = ωθ in Ω,

curl(ψeθ) ∧ ν = σT on Γ.

(6.29)

A weak solution of (6.28The Tangential Div-curl Systemequation.6.2.28) exists when

(N1) is satisfied and a weak solution of (6.29The Tangential Div-curl Systemequation.6.2.29)

exists when (N2) and (N7) are satisfied.

Lemma 6.2.1. Suppose that ρ, ω, σ are given such that (N1) – (N3), (N6) – (N8) are

satisfied. Let φ ∈ H1
r,0(Ω) be a weak solution of (6.28The Tangential Div-curl Systemequation.6.2.28)

and ψ ∈ V 1
r (Ω) be a weak solution of (6.29The Tangential Div-curl Systemequation.6.2.29).

Then uP = −∇φ + curl(ψeθ) is a weak solution of the poloidal-tangential div-curl

system.

Proof. Let χ ∈ H1
r,0(Ω) and uP = −∇φ+ curl(ψeθ) where φ, ψ are weak solutions of

(6.28The Tangential Div-curl Systemequation.6.2.28), (6.29The Tangential Div-curl Systemequation.6.2.29)

respectively. Then∫
Ω

uP · ∇χ rdrdz =

∫
Ω

(−∇φ+ curl(ψeθ)) rdrdz

= −
∫

Ω

∇φ · ∇χ rdrdz −
∫

Ω

curl(ψeθ) · ∇χ rdrdz

= −
∫

Ω

ρχ rdrdz

(6.30)
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since curl(ψeθ) and ∇χ are orthogonal in L2
r(Ω;R3). Now if χ ∈ V 1

r (Ω) we have∫
Ω

uP · curl(χeθ) rdrdz =

∫
Ω

(−∇φ+ curl(ψeθ)) · curl(χeθ) rdrdz

=

∫
Ω

curl(ψeθ) · curl(χeθ) rdrdz

=

∫
Γ

σθγχ rds+

∫
Ω

ωθχ rdrdz

(6.31)

since ∇φ and curl(χeθ) are orthogonal in L2
r(Ω;R3). Therefore uP is a weak solution

of the poloidal-tangential div-curl system.

The problem of existence of a solution to the toroidal-tangential div-curl system is

more subtle. Unlike the normal div-curl system, the boundary condition uT ∧ν = σP

is not immediately satisfied by virtue of uT being toroidal. We consider instead

writing uT = curl(vP ) for some poloidal field vp = (vr, 0, vz) with vr ∈ V 1
r (Ω), vz ∈

H1
r (Ω). Let XP (Ω) = {vp ∈ Pol(Ω) : vr ∈ V 1

r (Ω), vz ∈ H1
r (Ω), div(vP ) = 0 in Ω, vP ·

ν = 0 on Γ} and define the norm on XP (Ω) to be ‖vP‖XP
:=
(
‖vr‖2

V 1
r

+ ‖vz‖2
H1

r

)1/2

.

Now consider the variational problem of finding vp ∈ Xp(Ω) such that∫
Ω

curl(vP ) · curl(wP ) rdrdz =

∫
Γ

σP · γwP rds+

∫
Ω

ωP · wP rdrdz (6.32)

for all wP = (wr, 0, wz) with wr ∈ V 1
r (Ω), wz ∈ H1

r (Ω).

Lemma 6.2.2. Let ω ∈ L2
r(Ω;R3), σ ∈ L2

r(Γ;R3). Then there is a unique vP ∈

XP (Ω)∩Hν0(Ω)⊥ satisfying (6.32The Tangential Div-curl Systemequation.6.2.32) for

all wP ∈ XP (Ω) ∩Hν0(Ω)⊥.

Proof. Clearly the right-hand side of (6.32The Tangential Div-curl Systemequation.6.2.32)

defines a continuous linear functional on XP (Ω)∩Hν0(Ω)⊥. B(vP , wP ) =
∫

Ω
curl(vP )·
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curl(wP ) r dr dz is a continuous bilinear form on XP (Ω), and Theorem 2.4.5 implies

that B is coercive on XP (Ω)∩Hν0(Ω)⊥. Then we may apply the Lax-Milgram theo-

rem to conclude that there is a unique vP ∈ XP (Ω)∩Hν0(Ω)⊥ satisfying (6.32The Tangential Div-curl Systemequation.6.2.32)

for all wP ∈ XP (Ω) ∩Hν0(Ω)⊥.

Theorem 6.2.3. Let ω ∈ L2
r(Ω;R3), σ ∈ L2

r(Γ;R3) such that conditions (N2),

(N3), (N6) - (N8) are satisfied. Suppose that vP ∈ Xp(Ω) ∩ Hν0(Ω)⊥ satisfies

(6.32The Tangential Div-curl Systemequation.6.2.32) for all wP ∈ XP (Ω)∩Hν0(Ω)⊥.

Then vP also satisfies (6.32The Tangential Div-curl Systemequation.6.2.32) for all

wP ∈ Pol(Ω) with wr ∈ V 1
r (Ω), wz ∈ H1

r (Ω).

Proof. Let wP ∈ Pol(Ω) with wr ∈ V 1
r (Ω), wz ∈ H1

r (Ω), and write wP = ∇φ +

curl(ψeθ) + k where

∇φ ∈ Grad(Ω),

curl(ψeθ) ∈ Curl0(Ω),

k ∈ Hν0(Ω).

(6.33)

Then curl(wP ) = curl(curl(ψeθ)) and curl(ψeθ) ∈ Hν0(Ω)⊥. We need to check that

curl(ψeθ)r ∈ V 1
r (Ω) and curl(ψeθ)z ∈ H1

r (Ω). To do this, note that ψ is characterized

as the unique weak solution in V 1
r,0(Ω) of

−∆ψ +
1

r2
ψ = curl(wP )θ in Ω,

ψ = 0 on Γ.

(6.34)

curl(wP )θ ∈ L2
r(Ω) as wr ∈ V 1

r (Ω), wz ∈ H1
r (Ω) imply

curl(wP ) =

(
∂wr
∂z
− ∂wz

∂r

)
eθ. (6.35)
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Therefore

curl(curl(ψeθ)) =

(
−∆ψ +

1

r2
ψ

)
eθ = curl(wP ) ∈ L2

r(Ω;R3). (6.36)

Now we reinterpret (6.34The Tangential Div-curl Systemequation.6.2.34) in the Carte-

sian setting using an axisymmetric lifting Ψ of ψ where

Ψ(x) = −x2

r
ψ(r, x3)e1 +

x1

r
ψ(r, x3)e2 (6.37)

with r =
√
x2

1 + x2
2. The axisymmetric lifting preserves divergence-free fields so

div(Ψ) = div(ψeθ) = 0. Hence curl(curl(Ψ)) = −∆3Ψ where ∆3 is the Laplacian in

Cartesian coordinates in R3, and (6.36The Tangential Div-curl Systemequation.6.2.36)

then implies

−∆3Ψ = curl(WP ) (6.38)

where WP is the axisymmetric lifing of wP . We have Ψ ∈ H1
A(ΩA;R3) ∩H1

0 (ΩA;R3)

according to Remark 2.3.1. ∆3Ψ coincides with (∆3Ψ1,∆3Ψ2,∆3Ψ3) in Cartesian

coordinates so each Cartesian component Ψj ∈ H1
0 (ΩA) is the unique weak solution

of the system 
∆3Ψj = curl(WP )j in ΩA,

Ψj = 0 on ∂ΩA.

(6.39)

Then standard elliptic regularity theory asserts that Ψ ∈ H2(ΩA;R3) as curl(WP ) ∈

L2(ΩA;R3). In particular curl(Ψ) ∈ H1(ΩA;R3). This implies that curl(ψeθ)r ∈

V 1
r (Ω), curl(ψeθ)z ∈ H1

r (Ω) upon changing back to cylindrical coordinates. Then∫
Ω

curl(vP ) · curl(wP ) rdrdz =

∫
Ω

curl(vP ) · curl(curl(ψeθ)) rdrdz

=

∫
Γ

σP · γ(curl(ψeθ)) rds+

∫
Ω

ωP · curl(ψeθ) rdrdz

(6.40)
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since curl(ψeθ) ∈ XP (Ω) ∩ Hν0(Ω)⊥. For ∇φ, k, a similar argument appealing to

elliptic regularity in the Cartesian case will show that their r, z components are in

V 1
r (Ω), H1

r (Ω) respectively. Since curl(∇φ) = curl(k) = 0, we now apply condition

(N8) to obtain ∫
Γ

σP · γ(∇φ+ k) rds+

∫
Ω

ωP · (∇φ+ k) rdrdz = 0. (6.41)

Therefore we may combine (6.40The Tangential Div-curl Systemequation.6.2.40) and

(6.41The Tangential Div-curl Systemequation.6.2.41) to get∫
Ω

curl(vP ) · curl(wP ) rdrdz =

∫
Γ

σP · γwP rds+

∫
Ω

ωP · wP rdrdz (6.42)

which proves the claim.

Corollary 6.2.4. Let ω, σ be given such that conditions (N2) – (N3), (N6) – (N8)

are satisfied. Then the toroidal-tangential div-curl system has a weak solution in

L2
r(Ω;R3).

Proof. Take vP as in the conclusion of Lemma 6.2.2 and note that curl(vP ) is a

toroidal field in L2
r(Ω;R3). Then Theorem 6.2.3 asserts that curl(vP ) is a weak

solution of the toroidal-tangential div-curl system.

Lemma 6.2.1 and Corollary 6.2.4 together show that the tangential div-curl sys-

tem has a solution when ρ, ω, σ are given satisfying conditions (N1) – (N3), (N6) –

(N8). Just as the normal div-curl system, the nullspace of the tangential div-curl

system depends on the topology of the cross-section Ω. In this case, the nullspace is

Hτ0(Ω).
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Theorem 6.2.5. Let ρ, ω, σ be given such that conditions (N1) – (N3), (N6) – (N8)

are satisfied. If Γ has a single component Γ = Γ0 then there is a unique weak

solution in L2
r(Ω;R3) of the tangential div-curl system. If Γ has multiple components

Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm, then the set of weak solutions in L2
r(Ω;R3) of the tangential

div-curl system is an m-dimensional affine subspace.

Proof. This is proved very similarly to the case of the normal div-curl system. A weak

solution of the toroidal-tangential div-curl system is unique since the difference of

any two weak solutions must be a harmonic toroidal field in L2
r(Ω;R3), but such field

must be zero. The difference of any two weak solutions of the poloidal-tangential

div-curl system is a field in Hτ0(Ω). Theorem 5.2.2 asserts that Hτ0(Ω) = {0} if

Γ = Γ0, so a weak solution of the poloidal-tangential div-curl system is unique. If

Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm, then Theorem 5.2.2 asserts that dim(Hτ0(Ω) = m, in which

case the set of weak solutions is an m-dimensional affine subspace.

Corollary 6.2.6. Let ρ, ω, σ be given satisfying conditions (N1) – (N3), (N6) –

(N8), and let Γ0,Γ1, . . . ,Γm be the connected components of Γ with Γ1, · · · ,Γm all

nonempty. Let {∇φ̂j : j = 1, . . . ,m} be a basis for Hν0(Ω). Then the tangential

div-curl system has a unique weak solution if the m functionals∫
Ω

u · ∇φ̂j rdrdz, j = 1, . . . ,m (6.43)

are also prescribed in addition to ρ, ωσ satisfying conditions (N1) – (N3), (N6) –

(N8).

Proof. The set of solutions of the tangential div-curl form an m-dimensional affine
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subspaces isomorphic toHν0(Ω), and the prescription of them functionals in (6.43equation.6.2.43)

uniquely determines the projection of a solution onto Hν0(Ω).

The prescription of the functionals in (6.43equation.6.2.43) may be interpreted

as prescribing m fluxes through each Γj of the divergence-free part of the desired

vector field. We may derive a similar energy estimate as in the case of the normal

div-curl system.

Corollary 6.2.7. Let ρ, ω, σ be given satisfying conditions (N1) – (N3), (N6) – (N8).

Suppose that Γ has multiple components Γ0,Γ1, . . . ,Γm with Γ1, . . . ,Γm all nonempty.

Let {∇φ̂j : j = 1, . . . ,m} be a basis for Hτ0(Ω). Let u ∈ L2
r(Ω;R3) be a solution of

the normal div-curl system with ηj, j = 1, . . . ,m the values of the m functionals

ηj =

∫
Ω

u · ∇φ̂j rdrdz, j = 1, . . . ,m (6.44)

and denote η = (η1, . . . , ηm). Then there is a constant C > 0 such that∫
Ω

|u|2 rdrdz ≤ C

(∫
Γ

|σT |2 rds+

∫
Ω

|ρ|2 rdrdz +

∫
Ω

|ω|2 rdrdz + |η|
)
. (6.45)

Proof. Let uP be the poloidal part of u and write uP = −∇φ+ curl(ψeθ) + h where

∇φ is the projection onto Grad0(Ω), curl(ψeθ) is the projection onto Curl(Ω), and

h is the projection onto Hτ0(Ω). The characterizations of φ, ψ as weak solutions of

boundary value problems let us apply Corollary 4.2.2 and Corollary 4.3.8 to derive

a constant C > 0 such that∫
Ω

|uP |2 rdrdz ≤ C

(∫
Γ

|σT |2 rds+

∫
Ω

|ρ|2 rdrdz +

∫
Ω

|ωT |2 rdrdz + |η|
)
. (6.46)
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ωP ∈ Curl(Ω) with ωP = curl(uθeθ) and uθ ∈ V 1
r (Ω) by conditions (N2), (N3), and

(N6), so we may apply the curl-Poincaré inequality for V 1
r (Ω) to obtain∫

Ω

|uθeθ|2 rdrdz ≤ C

∫
Ω

| curl(uθeθ)|2 rdrdz = C

∫
Ω

|ωP |2 rdrdz (6.47)

for some constant C > 0. Combining (6.46The Tangential Div-curl Systemequation.6.2.46)

and (6.47The Tangential Div-curl Systemequation.6.2.47) yields (6.45equation.6.2.45).

The interesting part of (6.45equation.6.2.45) is that the right-hand side is inde-

pendent of σP . Thus the energy of the solution in Ω may be controlled independent

of the energy of σP on Γ. The reason is that the energy of uT is completely controlled

by the prescribed curl ωP via the curl-Poincaré inequality.
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