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Abstract

We study the axisymmetrc div-curl system on bounded volumes of revolution with
normal and tangential boundary conditions. This vector system of equations arises
in classical field theories. In particular, the electrostatic and magnetostatic axisym-
metric Maxwell equations are axisymmetric div-curl systems. The analysis is based
on orthogonal decompositions of axisymmetric vector fields.

The characterization of the scalar potentials and stream functions in the or-
thogonal decompositions leads to the analysis of axisymmetric Laplacian boundary
value problems. Axisymmetric Laplacian eigenproblems give rise to natural bases for
special gradient and curl subspaces for the orthogonal decompositions, and the eigen-
values appear as best constants in energy estimates for solutions of the axisymmetric
Laplacian boundary value problems and in energy estimates for the axisymmetric
div-curl system.

The results presented are valid for a general class of bounded C? volumes of
revolution with a nonempty and connected intersection with the axis of symmetry.

We allow the domain to contain toroidal holes.
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Chapter 1

Introduction

Vector systems of equations are common and fundamental models in applications,
e.g., Maxwell’s equations in electromagnetism, Navier-Stokes equations in fluid dy-
namics, the Lamé system in elasticity. The div-curl system is a vector system of
equations arising in classical field theories. For example, the electrostatic and mag-
netostatic Maxwell’s equations have the form of a div-curl system. The primary focus
of this thesis is the analysis of axisymmetric div-curl systems on bounded regions of

revolution.

Axisymmetric vector fields can be represented using scalar potentials and it is im-
portant to carefully describe how these potentials should be chosen for specific fields.
These representations give rise to linear axisymmetric Laplacian boundary value
problems which characterize the scalar potentials and stream functions. Linear ax-

isymmetric laplacian eigenvalue problems provide sharp estimates for some solutions



of the aforementioned boundary value problems in terms of the interior and bound-
ary sources, as well as bases for special gradient and curl subspaces of axisymmetric
vector fields. Finally, well-posedness results for weak solutions of the axisymmetric
div-curl system with normal or tangential boundary conditions are obtained using

the scalar potentials and stream functions in the decomposition theorems.

Auchmuty and Alexander in [5] study the planar div-curl system with normal,
tangential, and mixed boundary conditions using orthogonal decompositions with
scalar potentials and stream functions, and in [6] carry out similar analysis for fully
3D div-curl systems with normal or tangential boundary conditions; [7] concerns the
case of 3D div-curl systems with mixed boundary conditions. [9] by Bernardi, Dauge,
and Maday is an exhaustive reference for analytic and numerical results on partial
differential equations in axisymmetric domains with polygonal cross-sections. Our
analysis differs by considering domains with multiply-connected boundaries. Ana-
lytic results on axisymmetric Maxwell’s equations on domains with polygonal cross-
sections are described in [1] by Assous, Ciarlet Jr., and Labrunie with a follow up [11]
by Ciarlet Jr. and Labrunie describing some numerical results on the same problem.
In [16] Mercier and Raugel analyze finite element methods for second order elliptic
Dirichlet boundary value problems on axisymmetric domains with simply-connected
cross-sections. Oh in [17] presents a theoretical framework for the analysis of ax-
isymmetric problems using differential forms and exterior calculus. Other references
on mathematical studies of vector systems are [2], [14], [12], [10], and [13] among

others.

Chapter 2 describes the basic geometric setup and types of functions and vector



fields used in our analysis. The axisymmetric domains considered here are specified
by their cross-sections. We prove some analytic results on the functions and vector

fields used in later chapters.

Chapter 3 is on linear axisymmetric Laplacian eigenproblems. These eigenprob-
lems are used to derive sharp estimates for weak solutions of Laplacian boundary
value problems studied in Chapter 4. The eigenproblems also give rise to natural
bases for special gradient and curl subspaces appearing in the orthogonal decompo-

sitions studied in Chapter 5.

Chapter 4 is on linear axisymmetric Laplacian boundary value problems. These
boundary value problems arise in the characterization of the scalar potentials and
stream functions used in the orthogonal decompositions studied in Chapter 5, and

in the well-posedness results for the div-curl systems studied in Chapter 6.

Chapter 5 in on orthogonal decomposition results for axisymmetric vector fields,
in particular for axisymmetric poloidal fields. The results from Chapters 3 and 4 are
used to exhibit bases for special subspaces appearing in the decompositions, and for
characterizations of the scalar potentials and stream functions. A characterization of

special harmonic fields determined by the topology of the cross-section is presented.

Chapter 6 is on well-posedness results for weak solutions of axisymmetric div-curl
systems with normal or tangential boundary conditions. The decompositions from
Chapter 5 are used to establish existence and uniqueness results. The estimates
from Chapter 4 are used to derive energy estimates for weak solutions of the div-curl

systems.



Chapter 2

Spaces of Axisymmetric Functions

and Vector Fields

2.1 Geometrical Preliminaries

We use Cartesian coordinates = = (x1,x2,23) to denote a generic point = € R3.
The axisymmetric domains we consider here are bounded regions of revolution in
R? whose axis of revolution is the zs-axis and which intersect the axis of revolution.
Let Q4 denote such a volume. Let © be the closed cross section of Q4 in the z;xs-
plane. We identify the open cross section € as a subset of the right half plane
R3 = {(r,z) € R? : r > 0}. r and z are the cylindrical radius and height from the
cylindrical coordinate system: r = m, z = x3. Let 0f) denote the boundary
of Qin RZ, and let ' = {(r,2) € 0 : r > 0}. We assume that T' consists of a single

component I' = I'y or multiple components I' =Ty Ul U---UT,,. Q24 and ) are



constrained to obey the following conditions:

(i) Q4 is a bounded, connected, volume of revolution about the xs-axis in R* with
C? boundary 9Q4, and Q4 N {(0,0,z3) : z3 € R} is a connected subset of the

T3-axis.
(ii) €2 contained in the open region interior to I'g U {r = 0};
(iii) T'y,...,T,, are closed C? loops contained in the region interior to I'o U {r = 0};
(iv) or I'y =--- =T, = 0, in which case I' = I'y.
(v) the distance from (r,z) to 92N {r = 0} is r for all (r, z) € Q.
Prototypical examples of €2 are shown in Figure 2.1The cross-section €2 of {24 when

I' has many components.figure.caption.2 and Figure 2.2The cross-section {2 of the

volume of revolution (24 when I' = I'y.figure.caption.3.

Henceforth, the domain 24 and the cross-section €2 are always assumed to satisfy

the conditions (i) — (v) above.

The functions and vector fields we study will be essentially determined by their

values in 2 and T'.

2.2 Axisymmetric Functions

All functions considered here have range in [—o0, oo] unless otherwise noted.



Figure 2.1: The cross-section €2 of 24 when I' has many components.

Definition. Let F' be a Lebesgue measurable function on the volume of revolution

Q4. We say that F'is axisymmetric if there is a Lebesgue measurable function f on
Q such that F(x) = F(x1, 29, 23) = f(y/2} + 23, 23) almost everywhere on 4. We

call F' an axisymmetric lifting of f.

Let r,0, z be the cylindrical coordinates in R? defined by

x1 = rcos(f)
xy = rsin(f) (2.1)

r3 = Z.

If € LY(Q) is axisymmetric with F(x) = f(y\/2? + 22, 23) then the change of



Figure 2.2: The cross-section €2 of the volume of revolution 24 when I' = T.

variables theorem for Lebesgue integrals says that

/ F(z) dx = 27r/ f(r,2) rdrdz. (2.2)
Q4 Q
The function space L2(2) is defined as all Lebesgue measurable functions f(r,z) on
2 such that
/ |f(r,2)]? rdrdz < oo. (2.3)
Q
L%(Q) is a Hilbert space with respect to the inner product
() = [ fgvard (24
Q
For f:Q —R
af . of
= =,0, = 2.



will denote the gradient of f. Let C=(Q) = {f|g : f € C*(R?)}. The Sobolev space

H}() is defined the closure of C*(€2) with respect to the norm || - || defined by

Hm@=A@W+Wmem=/(m2\f

H}(Q) is a Hilbert space with respect to the inner product

2

+‘a—

) rdrdz. (2.6)

(f,9)m =[l(fg+Vf-vg) rdrdz. (2.7)

Item (v) in Section 2.1 implies that H!(€2) coincides with the subspace of functions
in L2() whose weak derivatives with respect to r, z are also functions in L2(£2); see
Remark 7.5 and Proposition 7.6 in [15]. Let C5(Q2) = {f|g : f € C(R2)} where
R% = {(r,z) € R? : r > 0} is the right-half plane of R% C%(Q) C C*(Q) and
C%(Q) consists of functions in C*°(Q) with support away from the z-axis {r = 0}.
The Sobolev space V,1(9) is defined as the closure of CS5(9) with respect to the norm

| - |lv: defined by

2 1
118 =151 + [ LD dras = [ (152 972+ S10) ravas 29

V1) is a Hilbert space with respect to the inner product

T

<f,9>vrl:<f,9>H}+/Q%drdz:/Q(fg+Vf Vg+f ) rdrdz (2.9)

Let C23(Q2) be the set of all smooth functions f € C*°(Q) such that supp(f) NI = 0,
and let H} () denote the closure of CR5(€2) with respect to the Hl-norm. Let

V,}5(€2) denote the closure of C2°(€2) with respect to the V,'-norm.

Remark 2.2.1. A standard argument shows that if f € H}(Q) then the azisymmetric
lifting F(x) :== f (\/a:% + x%,:c;;) belongs to HY(Q4). This is the justification for

8



introducing the weighted space H(Y). Similarly, if f € H}(Q), then a standard

argument shows that F belongs to HY(Q4) N H(Qa).

The Sobolev space H}(f2) is larger than the more common space H'() since
L*(Q)) C LA(Q2). Therefore it is not immediately clear that a trace mapping onto T’
exists for functions in H!(€2). We also want the trace map to be compact and for the
embedding H'(Q2) into L?(€) to be compact. Let L%(Q4), H}(24) be the subspaces
of L*(Q4), H(Q24) (resp.) consisting of axisymmetric functions. Note that these are

closed subspaces of L2(24), H'(£24) respectively.

Lemma 2.2.2. Let Q4,8 satisfy conditions (i) — (v) in Section 2.1. Then the

embeddings H,(Q) — LX(Q), H! ,(Q) — L2(Q) are compact.

Proof. The embedding of H!(Q) into L?(Q4) is compact if and only if the embedding
H(Q4) into L% (24) is compact, as seen by identifying a function F' € L4 (24) with a
representative f € L2(2). Our assumptions on 4 allow the use of Rellich’s theorem
for the embedding H'(24) < L?(Q4). Hence compactness of H}(24) < L%(24)
follows since a bounded sequence in H}(£24) is bounded in H*(€24), and therefore
contains a subsequence which is Cauchy in L% (£24). A similar argument shows that
the embedding H,((Q) < L?(Q) is compact since the domain €4 is bounded and

the embedding H}(24) < L?(24) is compact. O

Definition. Let F' : 024 — R be a measurable function with respect to the two-

dimensional Hausdorff measure on 024. We say F' is azxisymmetric if there is a



function f : I' — R measurable with respect to the one-dimensional Hausdorff mea-

sure on I' such that

F(x)=f (\/[E% + x%,a:g) for all x € Q4. (2.10)

Let L%(0Q4) denote the subspace of L?(9Q4) consisting of axisymmetric func-
tions. We observe that L% (94) is a closed subspace of L% (9Q4) just as L% (Q4) is
a closed subspace of L*(Q4). Let va : H'(Q4) — L*(0924) denote the trace map.

Our conditions on 9€)4 imply that v, is compact.

Lemma 2.2.3. Let Qy4,Q satisfy conditions (i) — (v) in Section 2.1. Then v4 :

HY(Q4) — L4(0024) is compact.

Proof. Let F € H4(Q4) and let f € H!'(Q) be a representative on Q. Let f, €
C>(Q),n € N be a sequence of smooth functions such that f, — f in H}(Q). If
F,,n € N are axisymmetric liftings to {24 of the f,,, then F,, € C* (Q_A) and F,, > F
in H}(24). Therefore y4F,, — vaF in L*(0Q4). vaF, = F,loa, € L4(0Q4) and

L% (0924) is closed, so vaF € L4(0Q4). O

The preceding proof shows how to define a natural trace map ~ : H} () — L3(T)
that is compact. Given f € HX(Q), let f, € C>®(Q),n € N be a sequence of smooth
functions such that f, — f in H}(2). For each f,, let F,, denote its axisymmetric
lifting to Q4. Then F,, — F in H4(Q4) for some F' € H4(Q4), and y4F,, = vaF in
L2(0Q4). yaF, € L4(0Q4) and L% (024) is closed so y4F € L%(0924). We define

v f to be the representative of y4F on I' such that (2.10equation.2.2.10) holds. Then

10



if f € C>®(Q) and F is an axisymmetric lifting of f to Q4
1
Jirds= oo [ PP do < PN = Ol (211)
r T Joaa
so 7 is continuous from H}(Q2) to L*(T).

Corollary 2.2.4. The trace v : H(Q) — L*(T') is compact.

Proof. Let {f,}nen be a bounded sequence in H!(€2) and let F,, denote the axisym-
metric lifting of f,, to Q4. Then {F,}.en is a bounded sequence in H%(24) so a
subsequence {y4Fy,}jen is Cauchy in L%(0€4) by compactness of v4. Therefore

{7 fn,}jen is Cauchy in L(T") since

1
/ Vo =Sl rds = — |F, — Fy,|? do. (2.12)
T 27T 8QA

]

It follows that V,!;(Q) and V;'(Q) are also compactly embedded in LZ(€2) and that

the trace mapping v|v1(o) : V,H(Q) € H(Q) — L(T') is compact.

2.3 Axisymmetric Vector Fields

Let {e1, ez, e3} be the standard Euclidean frame fields in R3. Let

u(z) = (ur(x), ug(x), us(x)) = ur(x)er + uz(x)ex + ug(x)es (2.13)

11



be a vector field on £24. The cylindrical components wu,., ug, u, are defined by

(1) = — ey (2) + — s ()
Up(T) = ————u () + ——us(x
V3 + x5 ! V3 + x5 ?
X2 T
Ug(T) = ——F————=uU1(T) + —=us(x (2'14)
o(@) 22+ a2 1(@) 2+ 72 2(2)

u,(z) = ug(x).
We say that u is axisymmetric if the cylindrical components are axisymmetric func-

tions.

An axisymmetric vector field uy on 24 is thus identified with a vector field
u(r,z) = (u(r,2),ug(r, 2),u,(r,z)) on Q by its cylindrical components, and con-
versely a vector field u(r, z) on € defines an axisymmetric vector field on Q4. Let
Ry be the rotation matrix

cos(f) sin(f) 0
Ry = | —sin(f) cos(d) 0] - (2.15)
0 0 1

Then u is axisymmetric if and only if R;' ouo Ry = u on Q4 for all § € [—m, 7).
Let {e,, ep, €.} be the cylindrical frame fields in R3.

Definition. If u = (u,, ug, u,) = u,e, + ugeg + u e, is a vector field on €, then we

call the vector field U = (Uy, Uz, Us) on €24 with components defined by

Uy(z) = L S Uy (\/x% + x%,xg) T Ug (\/x% + x%,xg)
Va2 + 23 Va2 + 23
x x
Us(z) = ﬁur (\/x% + I%,l‘g) + —12u9 (\/x% + x%,x;),) (2.16)

2
r] + 25

an axisymmetric lifting of u.

12



Hence we restrict our attention to vector fields u = (u,., ug, u,) on  as our means
to study axisymmetric vector fields on Q4. The space L?(Q;R?) is defined as the
Hilbert space of vector fields u = (u,, ug, u,) on Q with u,, ug, u, € L*(Q). L3(2;R3)

is a Hilbert space with respect to the inner product
(u,v)2 = / w-vrdrdz = / UpUy + Uy + U0, Tdrdz. (2.17)
Q Q

We will also denote the gradient of a function f on (2 using e,, e, by

_of of
Vi= ar " + 92

(2.18)
Remark 2.3.1. If u,,up € VXQ) and u, € H!(Q), then a standard argument
shows that the axisymmetric lifting U of u defined by (2.16equation.2.3.16) belongs
to HY(Qa;R3). This is the justification for introducing the weighted space V}(€2).
Similarly, if u,,u, € V,'4(Q) and u, € H}((Q), then a standard argument shows that

U belongs to HY(Q;R3) N HY (Q4; R3).

Definition. Let u = (u,,ug,u,) be a vector field on Q. (u,,0,u,) = u,e, + u e, is
the poloidal component of u and (0, ug, 0) = ugey is the toroidal component of u. The
poloidal component of u is denoted up and the toroidal component is denoted uy.
u is called a poloidal vector field if ug = 0, and u is called a toroidal vector field if

U, = u, = 0.

The classical vector operators div and curl for vector fields u(r, z) on € considered

here are given in cylindrical coordinates by

_ 10(ruy) N Ju,

div(u) = r Or 0z (2.19)
Dug ou,  Ou, 10(rup) '
curl(v) = T i o or ) * roor

13



These definitions continue to hold for vector fields u = (u,, ug, u,) provided u,,uy €

VIQ),u, € H(Q). We make note of the identities

div(u) = div(up)
div(ur) =0
(2.20)
curl(up) = (curl(u))r
curl(ur) = (curl(u))p
and div(curl(u)) = 0 as usual. The divergence and curl for vector fields in L2(£2; R3)

are defined by duality.
Definition. Let u € L2(Q;R?). div(u) € (H.}'((Q))* is defined by

(div(u), ¢) = —/ﬂu Vordrdz Yo € H, () (2.21)

and curl(u) € (V,}o(Q) x V.1,(Q) x H!;(Q))* is defined by
(curl(u), (v,, vg,v,)) = / w - curl(v,.e, + vgeq + vye,) rdrdz (2.22)
0

for all (v, vg,v.) € V,15(Q) x V.1 (Q) x H}((Q).

The identities in (2.20Axisymmetric Vector Fieldsequation.2.3.20) hold for def-
initions (2.21equation.2.3.21), (2.22equation.2.3.22) as well. Our conditions on I'
imply that a unit outward normal v is defined a.e. on I'. If div(u) € L?(Q) or
curl(u) € L2(Q;R?), then the normal trace u - v or tangential trace u A v (resp.) is
also defined by duality. HA/Q(F) denotes the range of the trace v : H}(Q) — L2(T),

and V;/ *(T) denotes the range of 7 restricted to V().

14



Definition. Let v € L2(Q;R3). If div(u) € L?(Q), then the normal trace u - v €

(Hﬁ/Q(F))* is defined by

(u-v,y¢) = / u-Vordrdz+ / ¢div(u) rdrdz (2.23)
Q Q

for all € H(Q). If curl(u) € L2(2;R?), then the tangential trace uAv € (Vq~1/2(F) X

V,YA(T) x Hy'?(1))* is defined by

(u A v, (Yo, Y, YV,)) = / w - curl(v) rdrdz — / curl(u) - v rdrdz (2.24)
Q 0

for all v = (v, vp,v.) € VHQ) x VIQ) x H}Q).

Observe that the definition of u - v implies that ur - v = 0. This coincides with
the geometric result that the unit outward normal of a smooth surface of revolution

is poloidal.

2.4 Poincaré Inequalities

We will use Poincaré inequalities for functions in H(€2) to prove various coercivity
results. The following two versions hold by taking axisymmetric liftings of functions
in €2 to the volume of revolution 24, changing variables in the integrals, and then
applying the Poincaré inequalities for H}(Q4) and H'(24). Denote

vol(€24)
QO = /47 2.25
o =0 (2.25)
This is the cross-sectional area of 2.

Theorem 2.4.1. There is a constant C > 0 such that
/ || rdrdz < C’/ IVfI?rdrdz  for all f € H} (). (2.26)
Q Q

15



Theorem 2.4.2. There is a constant C > 0 such that

/|f—<f>|27’drdz§0/|Vf]2 rdrdz for all f € H}(S) (2.27)
Q Q

where

(f) = f“%‘f?ﬂd'z. (2.28)

We will also need the following variant of the Poincaré inequality for functions in

V1(). Recall

0w, 100w

1 = 2.2
curl(vey) 5.6t & (2:29)
for functions ¢ € V.}(Q).
Theorem 2.4.3. There is a constant C' > 0 such that
/ [Y|? rdrdz < C’/ | curl(eg)|* rdrdz, Yy € VHQ). (2.30)
Q Q

Proof. Our approach is to appeal to an existing estimate for three-dimensional fields
to the axisymmetric lifting of 1eq for ¢ € V1(2). Let Q4 denote the C? volume of
revolution obtained by rotating {2 about the z axis. Then our assumptions on €2 and
02 imply that Theorem 5.1 from [3] is applicable to 4. This theorem says that

there is a C' > 0 depending only on {24 such that

/ |A]? dz < C/ | curl(A)|*dx (2.31)
Qa

Qa

for all A € H'(Q4;R?) such that:

1. div(A) =0 1in Qu;

2. A-v=0o0n 0Qyu;

16



3. AL H Q)

where
H(Q,) =

{h € L*(Q4;R?) : div(h) = 0 in Q4 curl(h) =0 in Q4,h-v =0 on 9y}
(2.32)

It suffices to prove the estimate for 1) € CS5(Q) by density, hence suppose 1 € C5(9).

Let B denote the axisymmetric lifting of ey, so that

To T1
B(z :_—w(,/x2+x2,x)e +—w<\/x2+x2,w)e 2.33
) x3 + 13 A i + 3 oo (239

where @ = (21, 22, 23). A direct calculation shows that

° . |9B;

(9xj
oY
‘E <\/x% +x§,x3)

2

4,j=1
2

2
+ '?)_Z} (\/I%—FI%,JI:;)’ (2.34)

2

1
v (Vo)
Then ¢ € C%(Q2) C V,1(Q) implies that
3 2
9B, ¥
B> + : dx:277/1/12+ VY| + - rdrdz < oo, 2.35
/QA";% o+ Vol + 1 (2.35)

hence B € H'(Q4;R3) The axisymmetric lifting preserves the divergence and Eu-
clidean dot product so div(yep) = 0 in © and ey - v = 0 on I' imply div(B) = 0 in
Q4 and B -v = 0 on 04 respectively. ey is toroidal, so it suffices to check that
B is orthogonal to every h € H!(Q,4) with zero poloidal component. If h € H(Qy)

and h has no poloidal component, then div(h) = 0 means

10hy
—=g =0, (2.36)
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therefore hy is independent of 6, hence hgey is an axisymmetric harmonic toroidal
field. This means hy = 0 since )4 contains its axis of revolution. Then (B, h);2 =0

trivially. Now we apply Theorem 5.1 to obtain that
/ BPdz<C [ |ewl(B)]? da,
Q4 Q4
and upon changing variables back to the cylindrical coordinates we get

/ [ rdrdz < C/ | curl(yeq)|* 7drdz.
Q 9)

This holds for arbitrary ¢ € C(£2) so we conclude that the estimate holds for all

¥ € VHA). O

Definition. We call the estimate (2.30equation.2.4.30) the curl-Poincaré inequality
for V().

Corollary 2.4.4. || curl(yeg)|| 12 defines an equivalent norm on V,'(€2).

Proof. Again, the method of proof is to apply an existing result to the axisymmetric
lifting v of ey for 1 € C5(Q). If v is such an axisymmetric lifting, then Corollary 1
on p.212 of [12] Ch. IX shows that there is a constant C' > 0 independent of v such
that

ol < Clvlize + | eurl(v)lZ2) (2.37)

due to our conditions on d€24. Then changing variables back to cylindrical coordi-

nates yields the estimate

1117, < CURIL + [l curl(tbes) | 72) (2.38)
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since [|v]|: = 2[4}, Then we apply (2.30equation.2.4.30) to see that that there

is C' > 0 such that

1117, < C(

(Veo)ll72) < Cll curl(theg)|[7,- (2.39)

On the other hand, we may apply Young’s inequality to see that

2
Jeuttwenlty = [ 702+ + 225 ara:

2

2 2 1
/ |Vy|? + W}' rdrdz + 2 |¢| rdrdz + - / X rdrdz
2 Q 87"
2 I@/)I2
< C’/ (VY|" + —- rdrdz
Q T
< CllYl7,
(2.40)
which proves the claim. O
Theorem 2.4.5. There is a constant C' > 0 such that
/|f,.]2+ fo2 rdrdz < c/ curl(fre, + foes)? rdrdz (2.41)
Q Q

forall f, € VYQ), f. € H Q) such that div(fre,+f.e.) =0inQ, (vfre,+yf.e.) v =
0 on T, and (fre, + f.e.) € (Hoo(Q))*.

Proof. The argument here again relies on appealing to an existing result for fully
three-dimensional fields in L?(Q4;R?). Suppose that f. € C3(Q), f. € C>=(Q) such
that div(f.e,+f.e.) = 0in Q, (fre,+f.e.)-v =0on T, and (fre,+ f.e.) € (Hoo(Q))*.
Let F' : Q4 — R? be the axisymmetric lifting of f.e, + f.e, to all of Q4. Then
div(F)=0in Q4 and F - v =0 on 9Q4. Let H'(Q4) be as in the proof of the curl-

Poincaré inequality for V1(Q). Now the estimate (2.4lequation.2.4.41) is verified if
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F e (HYQ))L. L4(24;R3) is a closed subspace of L*(Q4;R3) so F' € (H'(Q4))* if
and only if F' is orthogonal to L% (Q4; R*) NH!(Q). Moreover f,e, + f.e, is poloidal,
so it suffices to check that F' is orthogonal to every field in L% (Q4; R?) NH!(Q4) with
zero toroidal component. Let h € L% (Q4;R3) N H'(Q4) with hy = 0. Then h|q is
well-defined since h is actually smooth by Weyl’s lemma. Moreover hlq is a poloidal
field since hy = 0 and h|q € H,o(Q2). Therefore F' 1. H'(Q4) by the condition that
(frer + frez) L H,0(Q2). Then Theorem 5.1 from [3] and the density of C55(Q) in

V1(Q) and C=(Q) imply the estimate (2.4lequation.2.4.41). O

T
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Chapter 3

Linear Axisymmetric Laplacian

Eigenproblems

3.1 Introduction

Let A denote the axisymmetric Laplacian in cylindrical coordinates, i.e.

”? 10 0?
A +-—+ (3.1)

T o2 ror 922
This chapter will study eigenproblems and boundary value problems for the operators

—A and —A + 772, If ey is the azimuthal unit vector in cylindrical coordinates and

1 is a smooth function then, in cylindrical coordinates

curl(curl(veg)) = (—Aw + %w) eo. (3.2)
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3.2 Eigenproblems for —A

3.2.1 The Dirichlet Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function ¢ # 0 and real

number A such that

~Ap=Ap in,
(3.3)

=0 onl.

If such a pair (¢, \) exists and ¢ is smooth, then we may integrate by parts to obtain

that

/QV¢-V@D rdrdz:)\/gdnﬂ rdrdz for all ¥ € C(Q). (3.4)
Both sides of (3.4The Dirichlet Eigenvalue Problemequation.3.2.4) are well-defined if
¢,v € H, (), hence we consider the problem of finding nontrivial (¢, ) € H; () x

R such that

/ Vo -V rdrdz= /\/ ¢ rdrdz  for all ¢ € H, ((Q) (3.5)
v Q

Definition. If (¢, \) € H},(2) xR is a nontrivial solution of (3.5The Dirichlet Eigenvalue Probleme
then ¢ is a Dirichlet eigenfunction of —A on € corresponding to the Laplacian Dirich-

let eigenvalue .

Let a: H}((Q) x H};(Q2) = R be the bilinear form

a(6, ) = /Q VoV rdrds, (3.6)

and let A : H}((€2) — R denote the quadratic form associated to a
A0) = alér0) = [ Vo rdrds. 1)
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so (3.5The Dirichlet Eigenvalue Problemequation.3.2.5) says

a(é, 1) = Mo, )z for all ¥ € Hy (). (3.8)

Theorem 3.2.1. The smallest Dirichlet eigenvalue Ay of —A is strictly positive and

1s characterized by the variational principle
1
N sup/ o> rdrdz  s.t. / IVo|? rdrdz=1,¢ € H7}70(Q). (3.9)
1 Q Q
Proof. Let Cy = {¢ € H} () : A($) = 1} and consider the problem of finding

B1 = sup 9]l (3.10)
ocCy

The Cauchy-Schwarz inequality implies that |a(¢,v)] < ||@||m||||m for all
¢, 0 € H((R2) so a is continuous on H () x H (). The Poincaré inequality for
H,(92) implies that there is a C' > 0 such that C||¢[|7,, < A(¢) for all ¢ € H, ()
50 a is also coercive on H, (). [¢]z2 is a norm on H. () C L¥(Q) so [|¢]|7, > 0
for all nonzero ¢ in H(2) and ||q5||%3 = 0 only if ¢ = 0. Moreover the embedding
HX(Q) — L2(Q) is compact. Then we may apply Theorem 3.1 in [4] to conclude

that:

(i) B1 > 0 is finite;
(i) there are maximizers +¢; of || - |7, on Cy where B is attained;

(iii) ¢1 is a Dirichlet eigenfunction of —A corresponding to the eigenvalue \; :=

1/517 i.e.
/ Vi - Vi rdrdz = M\ / G rdrdz, Vi € HY (Q);
Q Q
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(iv) Ap is the smallest eigenvalue and

1
/ 9)? rdrdz < —/ |Vo|? rdrdz, V¢ e H}(Q).
Q At Ja ’

The above proof shows that a(-,-) defines an inner product on H((Q). The
variational principle for A\; may be iterated to generate a sequence of eigenfunctions
that are orthonormal with respect to the bilinear form a. Let {(51, Qgg, i ,qgk_l} be

k — 1 eigenfunctions corresponding to the eigenvalues A\ < Ay < -+ < A\p_y.

Theorem 3.2.2. (i) The kth Dirichlet eigenvalue Ny of —A is characterized by

the variational principle

1
— = sup/ |p|* rdrdz (3.11)
Ak 0

for all ¢ € H;O(Q) such that [ |Vo|> rdrdz=1 and [,V¢ - ngj rdrdz =0

forj=1,...,k—1. We also have A\, > A\y_1 and

1
/Q|¢|2 rdrdz < A—k/g|v¢>|2 rdrdz (3.12)
for all ¢ € H(() such that [,V¢-Ve;rdrdz=0 for j=1,....k— 1.

(i) \p — o0 as k — oo and the set of eigenfunctions € = {ggk : k € N} s
an orthonormal basis of H.(Q) with respect to the inner product a(¢,1)) =

fQ Vo -Viprdrdz.

114) The normalized eigenfunctions £ = Nk = )\_I/nggk . k € N} form an orthonor-
k

mal basis of L*(Q)) with respect to the standard inner product.
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Proof. The bilinear form a is continuous and coercive, the inner product (¢,) 2
is continuous, and ||qb||%% > 0 for all ¢ € H/((©2) so we may apply Theorem 4.2 of
[4] to obtain the aforementioned variational characterization of A\x. The embedding
H} () — L2(Q) is compact with dense range since { is bounded, therefore Theorem
4.3 and Theorem 4.6 of [4], respectively, imply that £ is an orthonormal basis of
H}(€2) with respect to the inner product a and that £ is an orthonormal basis of

L2(2) with respect to the standard inner product. O

Example. Let Q4 = Bg(0) = {z € R : |z| < R} be the ball of radius R centered
at the origin. Then Q = {(r, z) € R : r* 4 2* < R}. The Dirichlet eigenfunctions of

—Aon  are

R GenVrE T 22 r
@,n(?“, Z) =\ = Je+1/2 | P =],
JeaVT2 4 22 R Vit + 22 (3.13)

for {=0,1,2,... andn=1,2,3,...
where Jy, /7 is the half-integer Bessel function of the first kind, ﬁyn is the nth pos-
itive root of Jyi1/2, and P is the Legendre polynomial of degree ¢. The Dirichlet

eigenvalues are
2

(‘%") for (=0,1,2,... andn=1,2,3,.... (3.14)

3.2.2 The Neumann Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function ¢ # 0 and real

number A such that

—Ap=\p inQ,
(3.15)

D,p=0 onl.
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Here D,¢ = V¢ - v is the normal derivative of ¢. If such a pair (¢, A) exists and ¢ is

smooth, then we may integrate by parts to obtain that

/w.vw rdrdz:)\/gbw rdrdz for all ¢ € C™®(Q). (3.16)
Q Q

Both sides of (3.16The Neumann Eigenvalue Problemequation.3.2.16) are well-defined
if ¢, € H!Q), hence we consider the problem of finding nontrivial (¢,\) €

H!(Q) x R such that

/V¢-V¢ rdrdz:)\/gb@b rdrdz for all ¢y € H}(Q) (3.17)
Q Q

Definition. If (¢, \) € H}(2)xR is a nontrivial (3.17The Neumann Eigenvalue Problemequation.3.
then ¢ is a Neumann eigenfunction of —A on Q) corresponding to the Laplacian Neu-

mann eigenvalue \.

We observe that ¢(()N) = 1 is a Neumann eigenfunction of —A corresponding to
the Neumann eigenvalue A\g = 0. Let H}  (Q) be the subspace of H} () consisting
of functions f such that fQ f rdrdz = 0. The existence of Neumann eigenfunctions
EWN) .= {(;S,EN) : k € N} and a nondecreasing sequence of strictly positive Neumann
eigenvalues {)\,EN) : k € N} such that E™) is a orthonormal basis of H}, () with
respect to the inner product a(¢,?), and the normalized eigenfunctions EN) =
{6 .= AMN=126N) . | ¢ N} form an orthonormal basis of L2(€2) with respect
to the standard inner product is proved very similarly as the case for the Dirichlet

eigenproblem.

Theorem 3.2.3. The smallest nonzero eigenvalue >\§N) of (3.17The Neumann Eigenvalue Probleme

18 strictly positive and is characterized by the variational principle

1
N = sup/ |p|* rdrdz s.t./ Vo[> rdrdz=1,¢ € H, (). (3.18)
i Q Q

26



Proof. Let O™ = {4 € H},(Q): A(¢) = 1} and consider the problem of finding

N = sup ||¢]l 2 (3.19)

pec™)

The Cauchy-Schwarz inequality implies that |a(¢,)| <
¢, € H}, (Q) so ais continuous on H', (Q) x H}, (€2). The Poincaré inequality for
H, () implies that there is a C' > 0 such that C'l|¢[|7, < A(¢) for all ¢ € H,, () so
a is also coercive on (). ||¢]|rz is a norm on H,,,(Q2) C L¥(2) so [|¢]|72 > 0 for
all nonzero ¢ in H,, (Q2) and ||qb||%2 = 0 only if » = 0. Then we may apply Theorem

3.1 in [4] to conclude that:

(i) 5§N) > 0 is finite;
(i) there are maximizers +¢\") of | - 12, on C™) where 8™ is attained:

(iii) § )is a Neumann eigenfunction of —A corresponding to the eigenvalue )\ =

1/8M ie.
/Q VoM . vy rdrdz = A /Q oV rdrdz, W € HE L (Q);
(iv) /\ﬁN) is the smallest nonzero Neumann eigenvalue of —A and
/ || rdrdz < )\1 / Vo> rdrdz, V¢ e H;, ().

]

Theorem 3.2.4. (i) The kth eigenvalue )\,(CN) of (3.17The Neumann Eigenvalue Problemequatior
1 characterized by the variational principle

1
NGl = sup/Q |p|? rdrdz (3.20)
k

27



forall ¢ € H}, (Q) such that [, |V¢|* rdrdz=1 and [, V¢-V¢E§N) rdrdz =0

orj=1,...,k—1. e also have >\ 5 oan
f 1,....k—1. We also have A" > A\ and
1
rdrdz < — rdrdz 21
o> rdrd (N) Vo2 rdrd 3.2
Q ALl Je

forall o € H!, (Q) such that [,V - nggg-N) rdrdz=0 forj=1,...,k—1.

(i1) A,iN) — 00 as k — oo and the set of eigenfunctions EN) = {QAS,(CN) : k € N} is
an orthonormal basis of H}m(Q) with respect to the inner product a(p, ) =
fQ Vo-Viprdrdz.

(iii) The normalized eigenfunctions EN) = {QEI(CN) = ()\I(CN))’l/QQAﬁéN) : k € N} form

an orthonormal basis of L?(Q2) with respect to the standard inner product.

3.2.3 The Harmonic Steklov Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function ¢ # 0 and real

number ¢ such that
Ap =0 in €,
(3.22)
D,p=06¢p onl.
If such a pair (¢, d) exists and ¢ is smooth on QUT', then we may integrate by parts

to obtain that

/V¢~V¢ rdrdzzé/@b rds for all ¢ € C=(9Q). (3.23)
Q r

Both sides of (3.23The Harmonic Steklov Eigenvalue Problemequation.3.2.23) are

well-defined if ¢,¢ € H!(Q), hence we consider the problem of finding nontrivial
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(¢,6) € HX(Q) x R such that

/ Vo -Virdrdz = 5/ ¢ rds for all o € H(Q) (3.24)
Q r

Definition. If (¢,0) € H} () xR is a nontrivial solution of (3.24The Harmonic Steklov Eigenvalue ]
then ¢ is a harmonic Steklov eigenfunction on §2 corresponding to the harmonic

Steklov eigenvalue 0.

We see that ¢y = const. is a harmonic Steklov eigenfunction corresponding to the
harmonic Steklov eigenvalue §y = 0. The remaining harmonic Steklov eigenvalues

are characterized by variational principles over H, , ().

Theorem 3.2.5. The smallest strictly positive harmonic Steklov eigenvalue §y is

characterized by the variational principle
1
5= Sup/ |9|? rds  s.t. / Vo> rdrdz=1,¢ € H} (). (3.25)
1 r Q

Proof. Let C’fN) ={¢ € H,,(Q) : A(¢) = 1} as before and consider the problem of
finding

€1 = Sup Hﬁb“%z(r)' (3.26)
pec™)

a is continuous on H,, () x H', (€2) and coercive on H',,(Q). ||§|| 2y is strictly
positive for some ¢ € H, (Q) since H,,, () # H}((Q). Moreover, the trace 7 :
H!(Q) — L2(T') is compact. Then we may apply Theorem 3.1 in [4] to conclude

that:
(i) €1 > 0 is finite;
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.. .. ~ N . .
(ii) there are maximizers X, of || - [|7, on C™) where ¢ is attained;
T

(iii) x7 is a harmonic Steklov eigenfunction corresponding to the eigenvalue 0; :=

1/61, ie.
/ Vxi1- VY rdrdz =6 / X1 rdrdz, Yy € Hr{m(Q);
Q r

(iv) 0 is the smallest nonzero harmonic Steklov eigenvalue and

/W rds < i/ Vo rdrdz, Vo€ HY (Q).
r o1 Jo ’

The bilinear form a satisfies the conditions necessary to apply Theorem 4.2 of [4]

to obtain the following result.

Theorem 3.2.6. (i) The (th eigenvalue 0, of (3.24The Harmonic Steklov Eigenvalue Problemeqs

15 characterized by the variational principle

1
— = sup/ 9| rds (3.27)
O r

for all ¢ € H (Q) such that Vo> rdrdz=1 and [, V¢ -Vx; rdrdz=0
r,m (9] Q J

forj=1,...,k—1. We also have 6; > 6,1 and

/|¢\2 rds < l/ Vol rdrdz (3.28)
r or Jo

for all ¢ € H: (Q) such that [ V¢ -Vx,;rdrdz=0 forj=1,...,0—1.
r,m 9] J
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3.3 Eigenproblems for —A + 7%

3.3.1 The Dirichlet Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function ¢ # 0 and real

number \ such that

— A+ %w =X\ inQ,
r (3.29)

Yv=0 onl.

The weak formulation is obtained using the usual approach. The weak form of

(3.29The Dirichlet Eigenvalue Problemequation.3.3.29) is to find nontrivial (¢, \) €

V!10(Q) x R satisfying

/ curl(vpeg) - curl(yeg) rdrdz = 5\/ Yx rdrdz  for all x € V,((Q). (3.30)
0 Q

Definition. If (¢, ) € V,!;(Q) xR is a nontrivial solution of (3.30The Dirichlet Eigenvalue Problems
then 1 is a Dirichlet eigenfunction of —A +1r=2 on Q corresponding to the Dirichlet

eigenvalue A

Let b: V() x V1) — R be the bilinear form

b(v,x) = /chrl(z/Jeg) -curl(xeq) rdrdz, (3.31)

and let B : V!(Q) — R denote the quadratic form associated to b

B(¢) = b(y,v¢) = / | curl(zpeg)|? rdrdz. (3.32)

Q

so (3.30The Dirichlet Eigenvalue Problemequation.3.3.30) says

b(,x) = At X)zz for all x € V(). (3.33)
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Theorem 3.3.1. The smallest eigenvalue i of (3.30The Dirichlet Eigenvalue Problemequation.3.3

18 strictly positive and is characterized by the variational principle
1
T sup/ 1|2 rdrdz  s.t. / | curl(zpeg)|* rdrdz = 1,4 € V(). (3.34)
1 Q Q
Proof. Denote S; = {1 € V,!o(Q) : B(¥)) = 1} and consider the problem of finding
i = sup [0l = sup [ [uf rdrdz, (3.35)
$ES ves Ja
If 1, x € V,}y(2), then

b(v,x) = /chrl(weg) -curl(xeg) rdrdz

:/ (W-Vx+¢—§> rdrdz
Q r

< IVOllalIVxliez + 1ellez, [IxIl ez,

(3.36)

< [[&llvelixllv,

so b is a continuous bilinear form on V,!;(Q) x V,1;(Q). The Poincaré-curl inequality
for V1, (€) asserts that B is coercive on V,l(Q). || - [|z2 is a norm on V,;(Q2) C LZ(Q)
50 |[1h||z2 > 0 for all nonzero ¢ € V,[j(Q) and ||¢[|;2 = 0 if and only if ¢) = 0. An

application of Theorem 3.1 in [4] shows that

(i) f1 > 0 is finite;
(i) there are maximizers £, of || - 12, on S; where §; is attained;

(iii) Wy is an eigenfunction corresponding to the eigenvalue A\; := 1 / By, ie.
/ curl(yhreg) - curl(xeg) rdrdz = A / Uiy rdrdz, Yy € V5o (€);
Q Q
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(iv) A; is the smallest eigenvalue and

1
/ 9F rdrdz < - / |curl(veg)|* rdrdz, Vi € Vi (Q).
Q 178

This variational principle may be iterated to generate a sequence of eigenfunctions
that are orthonormal with respect to the bilinear form b. Let {1&1, 2/32, - ,1@,@,1} be

k — 1 eigenfunctions corresponding to the eigenvalues 5\1 < :\2 <...< S\k—l-

Theorem 3.3.2. (i) The kth eigenvalue of (3.30The Dirichlet Eigenvalue Problemequation.3.3.3

15 characterized by the variational principle

1

— = sup/ 1|2 rdrdz (3.37)

Ak Q
for all ¢ € V\(Q) such that [, |curl(eg)]* rdr dz = 1 and [, curl(ey) -
curl(zzjeg) rdrdz=0 for j=1,...,k—1. We also have Ay > \p_1 and

1
/ [Y)? rdrdz < ~—/ | curl(zpeg) | rdrdz (3.38)
Q A Jo

for all ¥ € V3(Q) such that [,curl(seq) - curl(shje) v dr dz = 0 for j =
1. k—1.

(i1) Mo — 00 as k — oo and the set of eigenfunctions F = {g@k . k € N} s
an orthonormal basis of V,\,(Q) with respect to the inner product b(v),x) =
Jq, curl(veg) - curl(xeg) rdrdz.

11) The mormalized eigenfunctions F = ~k S Ak . k € N} form an or-
k

thonormal basis of L?(Q) with respect to the standard inner product.
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Proof. This is proved very similarly to the case of the Dirichlet eigenproblem for

—A, so we omit the details of this proof. O

3.3.2 A Conormal Neumann Eigenvalue Problem

Consider the conormal Neumann eigenvalue problem of finding a nonzero function

1 and A € R such that
1
—A¢Y+ S =M inQ,
r

(3.39)
curl(vpeg) A\v =0 onT.
We call this a conormal Neumann eigenvalue problem since formally
1
curl(veg) ANv = ;V('r’w) ‘v (3.40)

so the boundary condition curl(¢eg) Av = 0 is equivalent to V(r¢)-v = 0. The weak

form of this eigenvalue problem is to find nontrivial ¢ € V}(Q) and A € R such that

/ curl(eeg) - curl(xey) rdrdz = /\/ Yx rdrdz for all x € V}(Q). (3.41)
Q Q

The existence of eigenfunctions F™ = {4") : k € N} and a nondecreasing

o
sequence of strictly positive eigenvalues {j\l(gN) : k € N} such that F®) is a orthonor-
mal basis of V}(€) with respect to the inner product b(¢, x), and the normalized
cigenfunctions F) .= {™ .= (AM)=1/2)M . | ¢ N} form an orthonormal basis
of L2(Q) with respect to the standard inner product is proved very similarly as the
case for the Dirichlet eigenproblem for —A+r~2. We state the results for clarity, but

omit the proofs as they are very similar. Interestingly, this Neumann eigenproblem

has no zero eigenvalue.
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Theorem 3.3.3. The smallest eigenvalue 5\§N) of (3.41A Conormal Neumann Eigenvalue Probleme

15 strictly positive and is characterized by the variational principle

™ —sup/w|2rdrdz s.t. /|cur1 Vveg)|? rdrdz = 1,9 € VHQ).  (3.42)
1

Theorem 3.3.4. (i) The kth eigenvalue of (3.41A Conormal Neumann Eigenvalue Problemequa

1 characterized by the variational principle

1
il = sup/Q 1Y) rdrdz (3.43)
k

for all o € VI(Q) such that [, |curl(veg)|* r dr dz = 1 and [, curl(yey) -
curl(%(-N)eg) rdrdz=0 forj=1,...,k—1. We also have ;\IEN) > :\Eﬁ)l and

/|’¢J|2 rdrdz < /|cur1 (veg) | rdrdz (3.44)

for all ¢ € VX(Q) such that [, curl(¢ey) - Curl(@ZA)](-N)eg) rdrdz =0 for j =
1o k—1.

(i1) S\,EN) — 00 as k — oo and the set of eigenfunctions F) = {@ZAJ,EN) : ke N}
is an orthonormal basis of V.}(Q2) with respect to the inner product b(v,x) =

Jq, curl(veg) - curl(xeg) rdrdz.

(iii) The normalized eigenfunctions FN) = {1/J(N) : ( M- 1/22/1 ik € N} form

an orthonormal basis of L2(Q) with respect to the standard inner product.
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3.3.3 The Curl-Harmonic Steklov Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function i # 0 and real

number & such that )
r

10(r) oy
P VT—F&I/Z—(S’(ﬁ on I'.

If such a pair (¢, 5) exists and 1 is smooth, then we may integrate by parts to obtain

(3.45)

that

/ curl(vpeg) - curl(yey) rdrdz = 5/ Yx rds for all y € O%(Q). (3.46)
0 r

Both sides of (3.46The Curl-Harmonic Steklov Eigenvalue Problemequation.3.3.46)
are well-defined if 1, x € V}(€2), hence we consider the problem of finding nontrivial

(v, 5) € V() x R such that

/ curl(vey) - curl(xeq) rdrdz = 5/1@( rds for all x € V}(Q). (3.47)
Q r

Definition. If (1,0) € V}(Q) xR is a nontrivial solution of (3.47The Curl-Harmonic Steklov Eigenv
then v is a curl-harmonic Steklov eigenfunction on §) corresponding to the curl-

harmonic Steklov eigenvalue 5.

Since \/ Jo [curl(peg)|? rdrdz defines a norm on V;'(Q2), we see that all curl-
harmonic Steklov eigenvalues are strictly positive. The first curl-harmonic Steklov

eigenvalue is characterized by a variational principle over V! ().

Theorem 3.3.5. The smallest positive curl-harmonic Steklov eigenvalue o, is char-

acterized by the variational principle

Si = sup/ 1Y) rds  s.t. / | curl(veg)|? rdrdz = 1,1 € V(Q). (3.48)
1 r Q
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Proof. Let 5{9) = {p € VX)) : B(¢) = 1} where B is the quadratic form B(¢) =
b(1, 1)) as before and consider the problem of finding

€1 = sup ||¢||%g(r)- (3.49)
pesty)

b is continuous on V() x V1(Q) and coercive on V}(Q) as /B(v)) defines a
norm on V(). ||¢[|r2r) is strictly positive for some i € V() since V,!1(Q2) is a
strict subset of V!(2). Moreover, the trace v : V!(2) — L2(T") is compact. Then we

may apply Theorem 3.1 in [4] to conclude that:

(i) € > 0 is finite;

(ii) there are maximizers :I:)Qgc) of || |3, on Sfc) where €; is attained;
(iii) f(gc) is a curl-harmonic Steklov eigenfunction corresponding to the eigenvalue
o =1/, ie.

/ curl(f(gc)eg) ccurl(veg) rdrdz = 6, / f(gc)@/} rdrdz, Vi € V(Q);
Q r
(iv) 0y is the smallest nonzero curl-harmonic Steklov eigenvalue and

1
/ [Y|? rds < g_/ | curl(veg)|? rdrdz, Y € V).
T 1J0Q

As before, we may again apply Theorem 4.2 of [4] to obtain the following.

Theorem 3.3.6. (i) The (th eigenvalue d; of (3.47The Curl-Harmonic Steklov Eigenvalue Probl

1 characterized by the variational principle
1 2
= =sup [ |[¢|° rds (3.50)
O¢ r
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for all ¢ € VYQ) such that curl(voeg)|? rdr dz = 1 and [, curl(veg) -
r Q Q

curl()zg-c)eg) rdrdz=0 for j=1,...,k—1. We also have &6; > 6,_, and

1
/|¢|2 rds < ~—/ | curl(vpeg)|? rdrdz (3.51)
r d¢ Ja

for all ¢ € VX(Q) such that [, curl(vey) - curl()2§c)) rdrdz =0 for j =
1, 0—1.
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Chapter 4

Linear Axisymmetric Laplacian

Boundary Value Problems

4.1 Introduction

This chapter is on boundary value problems for —A and —A + r~2 where A is the

Laplacian in cylindrical coordinates

0? 10 0?

These boundary value problems play a role in the characterization of the scalar

potential and stream function in the orthogonal decompositions in Chapter 5.
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4.2 Boundary Value Problems for —A

4.2.1 The Dirichlet Problem for —A

Homogenenous Boundary Data

Given a function f on €2, consider the problem of finding a function ¢ : 2 — R

satisfying

—A¢p=f inQ,
(4.2)
=0 onl.

Let f € (H}(€))*. The weak form of (4.2Homogenenous Boundary Dataequation.4.2.2)

is to find a function ¢ € H,((Q) satisfying

/Q(Vqﬁ V) rdrdz = (f,¢) Yo € H%O(Q). (4.3)

Theorem 4.2.1. There is a unique ¢ € Hﬁ’O(Q) satisfying (4.3Homogenenous Boundary Dataequat

Proof. The bilinear form a(¢,v) = [,(V¢ - Vo) rdrdz is clearly continuous over
H () and the Poincaré inequality for H,';(€2) implies that a is coercive over H ,(£2).
Therefore there is a unique ¢ € H,' () satisfying (4.3Homogenenous Boundary Dataequation.4.2.3)

by the Lax-Milgram theorem. O

Corollary 4.2.2. Let f € (H%O(Q))* and ¢ € H}(Q) satisfy (4.3Homogenenous Boundary Dataeqt

Then

_1\1/2
196l < (1+ A7) (1f 112 - (4.4)

where \y is the smallest Dirichlet eigenvalue of —A.
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Proof. Let ¢ € H}(Q) satisfy (4.3Homogenenous Boundary Dataequation.4.2.3).

We apply item (iv) from the proof of Theorem 3.2.1 to get

/Q Vo rdrdz = (f, )

<N llap )< 1Dl 0
9 9 1/2
= 1l (1613 + 19613 )

1/2

< iz (L4 AT TNVl

which proves the claim. O

Inhomogenenous boundary data
Given a function f on {2 and a function g on I', consider the problem of finding a
function ¢ : ) — R satisfying

—A¢p=f in Q,
(4.6)
¢p=¢g onl.

Let f € (H};(Q))* and g € v(H}(Q)) = H}/Q(F). We transform the inhomogenous
problem to a homogenenous one by finding ¢, € H;} () such that v¢ = g in L3(T),

and then consider finding ¢ € H (1) satisfying

/Q(ng; V) rdrdz = (f,0) — /Q(V¢g Vo) rdrdz Vo € H,y (). (4.7)

Theorem 4.2.3. Let f € (H}((Q))* and g € H}*(D). Let ¢, € HYQ) such that

Yoy = g in LE(T). Then there is a unique ¢ € Hﬂvo(Q) satisfying (4.7Inhomogenenous boundary date
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Proof. For i € H}((Q), there is a C' > 0 independent of ¢ such that

\ [ (96,90 rardz| < 190, 91
@ (4.8)

< O\ Vgl r2]l¥ |

so the right-hand side of (4.7Inhomogenenous boundary dataequation.4.2.7) defines
a continuous linear functional in (H(€2))*. Then we may apply the Lax-Milgram

theorem to obtain the conclusion. O

Corollary 4.2.4. Let f, g, qbg,(;ﬁ be as in the previous theorem. Set ¢ = gz~5—|—gz5g. Then

v¢ =g in LAT) and —A¢ = f in (H,0(Q))*, that is,
(V690 rdrdz = (g0 v € (@) (1.9)

Proof. If ¢ = ¢ + ¢, then y¢ = o+ vy = g in LA(T) since vo=0as ¢ € H} ().
(4.9equation.4.2.9) holds upon rearranging (4.7Inhomogenenous boundary dataequation.4.2.7).

]

4.2.2 The Neumann Problem for —A
Homogeneous Boundary Data

Given a function f on €2, consider the problem of finding a function ¢ : 2 — R

satisfying

—Ap=f in Q,
(4.10)
D,p=0 onl.
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Let f € L2(2) such that [, f rdrdz = 0. The weak form of (4.10Homogeneous Boundary Dataequal
is to find a function ¢ € H}(Q) satisfying

/(V(D-Vw)rdrdz:/f@b rdrdz Yy € HX(Q). (4.11)

Q Q
Let HY, (@) = {¢p € H'(Q) : [, ¢ rdrdz=0}.
Theorem 4.2.5. Let f € L2(Q2) such that [, f rdrdz =0.
There is a unique ¢ € H,, () satisfying (4.11Homogeneous Boundary Dataequation.4.2.11).

Proof. 1t is clear to see that fQ fY rdrdz defines a continuous linear functional in
(H},,(Q))* and that a(¢,1) = [,(V¢ - Vi) rdrdz is a continuous bilinear form on

H} (). The Poincaré inequality for H}() implies that a is coercive over H}, (€),

so the Lax-Milgram theorem implies that there is a unique ¢ € Him(Q) satisfying

/(V(b V) rdrdz = / frdrdz Vi € H;, (). (4.12)
0 0

More generally, if ¢ € H!(£2), then we may write ¢ = 1y + (¢)) where

B fQ¢ rdrdz

— o 4.13
fQ 1 rdrdz ( )

()
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and v = ¥ — (). Then if 1 € HY(Q),

/(Vgﬁ V) rdrdz = /(ng) V(¢ + (¥))) rdrdz
Q Q
= /Q(ng -Vib) rdrdz

:/fwo rdrdz

“ (4.14)
- [ 1= wyrara:
:/fw'r’drdz—(w>/frdrdz

Q Q
:/fl/J’I“deZ.

Q

O

Corollary 4.2.6. Let f € L2(Q) such that [, f rdrdz =0 and let ¢ € H},,(Q)
be the unique function satisfying (4.11Homogeneous Boundary Dataequation.4.2.11).
Then

~1/2
IWllz < X1 e (4.15)
where )\gN) is the smallest strictly positive Neumann eigenvalue of —A on H(Q).

Proof. Let f,¢ be as prescribed. Then we may apply item (iv) in the proof of

Theorem 3.2.3 to get

/|ng5|2 rdrdZ:/fgbrdrdz
Q Q

< I fllz2llll 2 (4.16)

Ny —1/2
<A e
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Inhomogeneous Boundary Data

Given a function f on 2 and g on I', consider the problem of finding a function

¢ : 2 — R satisfying
—A¢p=f in Q,
(4.17)
D,p=¢g onl.
Let f € L2(Q),9 € LZ(T) such that [, f rdrdz = — [.g rds. The weak form of
(4.17Inhomogeneous Boundary Dataequation.4.2.17) is to find a function ¢ € H!(Q)

satisfying

/(w.vw) rdrdz = /g’ylp rds—l—/fw rdrdz Yy € HX(Q). (4.18)
0 r Q
Theorem 4.2.7. Let [ € L2(Q),g € LXT') such that [, f rdrdz = — [,g rds.

There is a unique ¢ € H, (Q) satisfying (4.18Inhomogeneous Boundary Dataequation.4.2.18).

Proof. If g € LA(T) and ¢ € H!(Q), then the continuity of the trace v : H}(Q) —

L3(T') implies that there is C' > 0 such that

/gw rds| < ||gllL2ay V|| 2
T

(4.19)
< Cligllzay 19l 2.0

therefore the right hand side of (4.18Inhomogeneous Boundary Dataequation.4.2.18)
defines a continuous linear functional on H}  (Q). a(¢,v) = [(V¢ - Vo) rdrdz
is a continuous and coercive bilinear form on H}, (), so the Lax-Milgram theorem

implies that there is a unique ¢ € H,,, () satisfying

/(qu V) rdrdz = /gfyw rds+ / fordrdz Vi e H, (). (4.20)
0 r 0
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For ¢ € H}(Q), then write ¢ = vy + () as before. Then if ¢ € H}(Q),
/(V(;ﬁ V) rdrdz = /(ngﬁ V(o + (¥))) rdrdz
Q 0
= /(ng -Vbg) rdrdz
v
:/g’y@/}o rds—{—/fwo rdrdz
r 0
— [t = @) rds+ [ fo- @) rara:
r 0

:/ng@/z rd$+/ﬂf@b rdrdz — () (/Fg rds+/9frdrdz)

:/gwb rds—l—/fz/z rdrdz.
r Q
(4.21)

]

Corollary 4.2.8. Let f € L?(Q),g € LA(T), and suppose that ¢ is the unique
function in H, () satisfying (4.18Inhomogeneous Boundary Dataequation.4.2.18).
Then

/2‘

_ N)— 1
Vo2 < 6 lgllzawy + A I flraw (4.22)

where 01 is the smallest strictly positive harmonic Steklov eigenvalue on Hﬂm(Q) and

)\gN) 1s the smallest strictly positive Neumann eigenvalue for —A on Hﬁm(Q)

Proof. Let f,g,¢ be as prescribed. We apply item (iv) of Theorem 3.2.3 and item

(iv) of Theorem 3.2.5 to obtain

/|ng§|27’drdz:/gv(brds—i—/fgbrdrdz
Q r Q

< ||9||L%(F)||7¢||L%(F) + ||f||Lg(Q)||¢||Lz(Q) (4.23)

~1/2 N)y—1/2
< (572 gllezy + Al ) 190z
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4.3 Boundary Value Problems for —A + r2

4.3.1 The Dirichlet Problem for —A + r2
Homogeneous Boundary Data

Given a function f on ), consider the problem of finding a function ¢ : @ — R

satisfying
1
M e =] nQ,
r (4.24)
Yv=0 onl.
Let f € (V,}y(€2))*. The weak form of (4.24Homogeneous Boundary Dataequation.4.3.24)

is to find a function ¢ € V,;(Q) satisfying

/Q(curl(weg) ccurl(xep)) rdrdz = (f,x) Vx € V.o(Q). (4.25)

Theorem 4.3.1. Let f € (V((Q))*. There is a unique ¢ € V! \(Q) satisfying

(4.25Homogeneous Boundary Dataequation.4.3.25).

Proof. The bilinear form b(y), x) = [,(curl(¢ey) - curl(xeq)) r dr dz is continuous
over V,!;(€), and the curl-Poincaré inequality implies that b is coercive over V[j(€2).
Therefore there is a unique ¢ € V;}O(Q) satisfying (4.25Homogeneous Boundary Dataequation.4.3.25

by the Lax-Milgram theorem. [

Corollary 4.3.2. Let f € (V,})(Q))* and € V,[((Q) satisfy (4.25Homogeneous Boundary Dataequ

Then there is constant C' > 0 such that

- 1/2
Jewl(en)llzz < € (1+47) " 1 Iy (4.26)
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where i is the smallest Dirichlet eigenvalue of —A + 12 on V!o(92).

Proof. Let 1 € V1(Q) satisfy (4.25Homogeneous Boundary Dataequation.4.3.25).
(10]|25 + || curl(veg)[|2,)"/? is an equivalent norm on V,}(€2) according to Corollary

2.4.4, so we apply item (iv) from the proof of Theorem 3.3.1 to get

/Q | curl(eg)|* rdrdz = (f, 1)

S f 1 * ¢ 1
1l o Il  m
< Ol gy (1013, + Il cwl(es)]3,)
<\ 12
< Cllf vy (T+ATY) " llewrl(e) o2
which proves the claim. O

Inhomogenenous Boundary Data

Given a function f on {2 and a function g on I', consider the problem of finding a

function ¢ : ) — R satisfying

—Ay + T—12¢ =f in (), (429

Y=g onl.

Let f € (V.,(Q))* and g € v(V,'(Q)) = W1/2(F). We transform the inhomogenenous
problem to a homogeneous problem by finding ¢, € V;}(Q) such that v, = g in

L2(T), and then consider finding ¢ € V,}((Q) satisfying

/Q(curl(weg) ~curl(xeg)) rdrdz = (f,x) — /(curl(wgeg) ~curl(xeg)) rdrdz (4.29)

Q

for all x € V,[y(Q2). This is the weak form of (4.28Inhomogenenous Boundary Dataequation.4.3.28).
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Theorem 4.3.3. Let f € (V,},(Q))* and g € V2D, Let b, € VX(Q) such that
vy = g in L2(T). Then there is a unique ¢ € V,}o(Q) satisfying (4.29Inhomogenenous Boundary Da
for all x € V.1(Q).

Proof. For x € V,;(€2), the curl-Poincaré inequality for V;!(Q) implies that there is

a constant C' > 0 independent of x such that

/(curl(wgeg) -curl(xeg)) rdrdz| < || curl(vgeq)| 2 || curl(xes)| 2
Q (4.30)

< Cff curl(dhgeq)l| 2l xlv;2

so the right-hand side of (4.29Inhomogenenous Boundary Dataequation.4.3.29) de-

*

fines a continuous linear functional in (V,!5(€2))*. Then we may apply the Lax-

Milgram theorem to obtain the conclusion. O

Corollary 4.3.4. Let f € (V(2))*,g € Vi'*(D), vy € VHQ) such that yib, = g in
LA(T), and let ¥ be the unique function in VT}O(Q) satisfying (4.29Inhomogenenous Boundary Dataeq
Set ) = +v,. Then v = g in L2(T) and (—A +172)¢ = f in (V,1(Q))*, that is,

/Q (curl(eg) - curl(xeq)) rdrdz = (f,x) Vx € Vio(€). (4.31)

Proof. It =9 + 1), then yp = 1 + 71, = g in L2(T') since yp=0as e VTIO(Q)
(4.31equation.4.3.31) holds upon rearranging (4.29Inhomogenenous Boundary Dataequation.4.3.29)
O]
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4.3.2 A Conormal Neumann Problem for —A + r—2

Homogenenous Boundary Data

Given a function f on (), consider the problem of finding a function ¢ : & — R

satisfying
1
“AY+ = f inQ,
r (4.32)
curl(ypeg) A\v =0 onT.
We call this a conormal Neumann problem since we may formally express
1
curl(veg) N\v=—(V(ry) -v)ey onT. (4.33)
r

Let f € (V}1(Q))*. The weak form of (4.32Homogenenous Boundary Dataequation.4.3.32)

is to find a function ¢ € V,}(2) satisfying

/Q(curl(weg) -curl(xeg)) rdrdz = (f, x) (4.34)

for all y € V1(Q). Note that unlike the homogenenous Neumann problem for —A,
this conormal Neumann problem has no compatibility condition relating the source
function f and the homogenenous boundary data. Moreover, the source f may be a

linear functional and not necessarily a measurable function.

Theorem 4.3.5. Let f € (VXQ))*. There is a unique b € VQ) satisfying

(4.34Homogenenous Boundary Dataequation.4.3.34) for all x € V}(Q).

Proof. The bilinear form b(1, x) = [, (curl(yeg) - curl(xeq)) rdrdz is continuous over
V1) and the curl-Poincaré inequality for V1(€) implies that b is also coercive over

V1(Q). Then the Lax-Milgram theorem implies that there is a unique ¢ € V}()
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satisfying (4.34Homogenenous Boundary Dataequation.4.3.34) for all x € V}(Q).
0

Corollary 4.3.6. Let f € L2(Q) and ¢ € VY(Q) be the unique function satisfying
(4.34Homogenenous Boundary Dataequation.4.3.34) for all x € V.}(Q). Then

£z

J(V
A

|| curl(voeq) || 2 < (4.35)

where S\(IN) is the smallest positive conormal Neumann eigenvalue of —A +r~2 over

V).

Proof. Let f,1 be as prescribed. Then we may apply Theorem 3.3.3 to get

/|curl(weg)|2 rdrdz = / fu rdrdz
v 0

< szl (4.36)
< ||f~ Li curl(tpeg)|| L2
AN
which proves the claim. O

Inhomogenenous Boundary Data

Given a function f on 2 and g on I, consider the problem of finding a function
¥ 2 — R satisfying

AbELp=f me,
r (4.37)

curl(tpeg) ANv =ges onT.
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Note that the boundary condition is just an equivalence of toroidal fields, so it reduces

to one scalar equation which may be formally stated as
1
. (V(ry))-v=g onT. (4.38)

Let f € (V1(2))*,g € L*(T). The weak form of (4.37Inhomogenenous Boundary Dataequation.4.3.3

is to find a function ¢ € V}(Q) satisfying
/ (curl(eg) - curl(xeg)) rdrdz = /gfyx rds+ (f, x) (4.39)
0 r
for all y € V1(Q).

Theorem 4.3.7. Let f € (V}(Q))*,g € L3(T). There is a unique ¥ € V}(Q)

satisfying (4.39Inhomogenenous Boundary Dataequation.4.3.39) for all x € V.}(2).

Proof. Let f € (VY(Q))*,g € L3(T"), x € V.}(2). We may apply the continuity of the

trace v : V1(Q) — L2(T') to get

X|| V()

/ gvx rds + (0] < gl sz Iz + 1 v
r (4.40)

<C (HQHLg(r) + ”f”VTl(Q)*) Ixlv1 (e
for some constant C' > 0 independent of x. Therefore the right-hand side of
(4.39Inhomogenenous Boundary Dataequation.4.3.39) defines a continuous linear func-
tional in (V}())*, and we may conclude, just as in the homogenenous case using the

Lax-Milgram theorem, that there is a unique 1 € V}(Q) satisfying (4.39Inhomogenenous Boundary |
for all y € V1(Q). O

Corollary 4.3.8. Let f € L2(T'),g € LA(T), and ¢ € V,}(Q) be the unique function

satisfying (4.39Inhomogenenous Boundary Dataequation.4.3.39) for all x € V.}(Q).
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Then

(4.41)

| enrl(tpeq) |2 < F
-2

where 0, is the smallest positive curl-harmonic Steklov eigenvalue of —A +r—= over

Vl

T

over V1(Q).

(Q) and 5\§N) is the smallest positive conormal Neumann eigenvalue of —A + r2

Proof. Let f, g, be as prescribed. Then we may apply Theorem 3.3.3 and Theorem

3.3.5 to get

/Q\curl(weg)\2rd'r’dz:/rgfyz/1 rd8+/9f1p rdrdz

< llgllzm Ivellzay + 1 £l 2@ ¥l 2 (4.42)
< Hg\“/Li HfLL &) | curl(zbeq)|| 2
which proves the claim. O
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Chapter 5

Orthogonal Decompositions for

Axisymmetric Vector Fields

5.1 Orthogonal Decompositions for Poloidal Fields

This chapter studies orthogonal decompositions for axisymmetric vector fields in
L%(Q; R3). Classical results of this type for divergence-free fields are presented in [8].
The first step is a decomposition into poloidal and toroidal components. Poloidal
and toroidal vector fields are pointwise orthogonal in €) so they are also mutually

orthogonal in L?(Q;R3):

L2(S;R?) = Pol(Q) @ Tor(Q) (5.1)
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where Pol(Q2) is the subspace of axisymmetric poloidal fields and Tor(£2) is the sub-

space of axisymmetric toroidal fields with components in L?(€). The gradient sub-

spaces Grady(€2), Grad(Q2) of Pol(£2) are defined by

Grady(92) = {ng = %er + %ez L€ Hio(Q)}

_ _99 099 1
Grad(Q2) = {ng =5, Cr + 5,6 xS HT(Q)} :
and the curl subspace Curly(2), Curl(Q2) are defined by

o, 190)

Curl(6) = {curl(vee) = - c. v E VO

oz " r Or
Curl(Q) = {curl(weg) = —g—f@ + %a(g;m e, € VTI(Q)}

Theorem 5.1.1. Let u € Pol(Q2). Then

1. u L Gradg(Q) if and only if div(u) =0
2. u L Grad(Q) if and only if div(u) =0 and u-v =0
3. u L Curly(2) if and only if curl(u) =0
4. u L Curl(Q) if and only if curl(u) =0 and u Av =0

Proof. Let u € Pol(Q)

1.

u L Grado(Q) / u-Vordrdz¥e € H) ((Q) < div(u) = 0.
Q

2. u L Grad(€2) implies v L Grady(2) so div(u) = 0. Then

(u-v,vp) = / u-Vordrdz=0Y¢ € H(Q)
Q

%)

(5.2)

(5.3)

(5.4)

(5.5)



so u-v = 0. Conversely, if div(u) = 0 and u - v = 0, then we may substitute into

(2.23equation.2.3.23) to see that u L Grad(€2).

3.

u L Curly(Q) & / u - curl(yeg) rdrdz =0V € V() & curl(u) = 0. (5.6)
Q

4. u L Curl(2) implies u L Curly(2) so curl(u) = 0. Then

(u A v, yibeg) = / u - curl(vpeg) rdrdz = 0V € VH(Q) (5.7)
Q

so u A v = 0. Conversely, if curl(u) = 0 and u A v = 0, then we may substitute into

(2.24equation.2.3.24) to see that u L Curl(Q). O
Let N(div) and N(curl) denote the subspaces of Pol(2) consisting of poloidal

fields with zero divergence and zero curl respectively.

Theorem 5.1.2. Curl(2) C N(div) and Grad(€2) C N(curl).

Proof. 1. Let curl(yey) € Curl(Q2). Then if ¢ € CRJ(2) we may integrate by parts

to get
/ curl(veg) - Vo rdrdz = / e - curl(Vo) rdrdz =0 (5.8)
0 Q

since clearly curl(V@) = 0 for smooth ¢. By density, we see that [, curl(¢ey) -
V¢ rdrdz =0 for all ¢ € H}((Q), therefore div(curl(ey)) = 0.

2. Let V¢ € Grad(2). Then if ¢ € C2°(£2) we may integrate by parts to get

/ V¢ - curl(yeg) rdrdz = / ¢ div(curl(eg)) rdrdz =0 (5.9)
0 Q
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since clearly div(curl(ieg)) = 0 for smooth . By density we see that [, V¢ -

curl(¢eq) rdrdz = 0 for all ¢ € V,[(Q), therefore curl(Ve) = 0. O

Next we show that the gradient and curl subspaces are in fact closed subspaces

of Pol(£2) and exhibit bases for these subspaces.

Theorem 5.1.3. Grady($2) and Grad(S2) are closed subspaces of Pol(£2).

Proof. Fix v € Pol(Q2) and consider finding the orthogonal projection of v onto

Grado(Q). Let G, : H}(Q2) — R be the functional

gv(¢):/Q|ng|27“drdz—2/gv¢-vrdrdz. (5.10)

Riesz’s theorem says that a minimizer of G, defines the projection of v onto Grad(2).

First observe that G, is bounded below since
Go(9) = llv = Voll7z — llvll72 > —lv]l7e. (5.11)

The Poincaré inequality for H}(€) implies that there is a constant C' independent
of ¢ € H}((Q) such that

gv(qﬁ):%/Q]VqﬁIQTdrdz%—%/Q]VqﬁF rdrdz—Q/QV¢~vrdrdz

C 1
2 _/ ¢ Tdrdz—i——/ IVo|? rdrdz —2||v|| 2 ||V 2 (5.12)
2 Ja 2 Jq o 7
min(1, C
> PO oz, — 2zl

therefore G, is coercive on H} (). G, is strictly convex and continuous on H} (),
50 G, is w.l.s.c. on H}'((Q) and therefore G, has a unique minimizer on H}(€2). This

holds for all v € Pol($2), so the projectional functional [[v — V¢||7. = Gu(¢) + [[v[|7.
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is minimized by a unique gradient in Grady({2) given any v € Pol(Q2), and we may
conclude that Grady(?) is closed. The proof that Grad((2) is closed follows from a
similar argument by replacing H,' () with H} (), applying the Poincaré inequality
for H' (), and then noting that a gradient in Grad({2) has a unique representative

given by a function in H} (). O

The poloidal gradient subspaces Grady(€2), Grad(£2) are spanned by gradients of
eigenfunctions of —A. Let & = {Q;g = )\*1/2@ : ¢ € N} be a maximal sequence
of normalized Dirichlet eigenfunctions of —A in H,((2) and let EWN) = {%N) =
(A 126MY be a maximal sequence of normalized nonconstant Neumann cigen-

functions as in Theorem 3.2.2.

Corollary 5.1.4. The gradients of the normalized Dirichlet eigenfunctions GE :=
{V¢y : £ € N} form an orthonormal basis of Grady(Q) in L2(Q; R?), and the gradients
of the normalized nonconstant Neumann eigenfunctions GE®) := {V(;BEN) : 0 € N}

form an orthonormal basis of Grad(Q)) in L2(;R?).

Proof. We will show that G€ is an orthonormal basis of Grady(2). The proof that

GEW) is an orthonormal basis of Grad(f) is a very similar argument. We have

/ (Vo> rdrdz = X! (/\k/ || Tdrdz) =1 (5.13)
Q Q

as ¢p € Cy, and the V¢, are orthogonal in L2(Q;R3) by construction. Let ¢ €

H} () and suppose that [, Vi - Vi rdrdz =0 for all k € N. Then

Ak/ﬂwkrdrdz:/Qw-vékrdrdz:o (5.14)
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for all k& € N since the ¢ are eigenfunctions. A, > 0 for all k so we must have
Ja Yoy, rdrdz =0 for all k. {¢y}ren is an orthonormal basis of L2(Q) which implies
1) = 0 and therefore Vi = 0. 0

Theorem 5.1.5. Curly(2) and Curl(2) are closed subspaces of Pol(£2).

Proof. Fix v € Pol(Q2) and consider finding the orthogonal projection of v onto

Curly(2). Let C, : V1(Q) — R be the functional

Co(¥) = /Q | curl(yeg)|* rdrdz — 2/chrl(weg) ~vrdrdz. (5.15)

C, is bounded below on V!(Q) since
Co(¥) = |lv — curl(veg) 172 — l[vllz2 = —lvl|Z2. (5.16)

The curl-Poincaré inequality implies that there is a constant C' > 0 independent of

Y € V() such that

1 1
Co(v) = 5 /Q | curl(eg)|* rdrdz + 5 /Q | curl(zpeg)|* rdrdz — Q/Qc:url(weg) ~vrdrdz

1
> 5 [0 rdrdz-+ 5 [ Jeultven) rdrds — 2lolz] curl(en) |2
Q Q

S min(1,C)

> ———(I1llzz + [l eurl(veo)[z2) = 20l szl curl(theg)|| 2.

(5.17)
The above estimate together with (2.39Poincaré Inequalitiesequation.2.4.39) imply
that C, is coercive on V!(2). C, is strictly convex and continuous on V,}(Q), so C, is
w.lLs.c. on V1(Q) and therefore C, has a unique minimizer on V,!(Q2). This holds for
all v € Pol(2), so the projectional functional ||v — curl(weg)ﬂig = Cy(o) + Hv||%% is

minimized by a unique curl in Curl(2) given any v € Pol(2), and we may conclude
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that Curl(Q2) is closed. We may apply the same argument to the functional C,

restricted to V,[j(Q2) to show that Curly(€2) is closed. O

Let F := {4y, := ;\,:1/ Y, - k € N} be a maximal sequence of normalized Dirichlet
cigenfunctions of —A + =2 in V!;(2), and let FI) = {Q/N)IEN) = (S\I(CN))*I/Z@@](CN) ;
k € N} be a maximal sequence of normalized conormal Neumann eigenfunctions of

—A+7r72in VD).

Corollary 5.1.6. C.F := {curl(¢yey) : £ € N} is an orthonormal basis of Curly(Q) in
L2(Q;R?), and CFN) .= {Curl(@/;éN)eg) : £ € N} is an orthonormal basis of Curl(2)
in L2(Q;R3).

Proof. We will show that CF := {curl(yyeg) : £ € N} is an orthonormal basis of
Curly(€). The proof that CF™) := {curl( ~éN)€9) : £ € N} is an orthonormal basis

of Curl(Q) is a very similar argument. We have

/ |curl(¢eq)|* rdrdz = X\t (S\k/ |r|? rdrdz) =1 (5.18)
Q Q

as Uy, € Cy, and the curl(Yyey) are orthogonal in L2(€2;R?) by construction. Let

X € V4(92) and suppose that [, curl(xep) - curl(¢peq) rdrdz = 0 for all k € N. Then

Ak / U rdrdz = / curl(xesp) - curl(zﬁkeg) rdrdz =0 (5.19)
Q Q

for all k¥ € N since the ¢, are eigenfunctions. A, > 0 for all k& so we must have
[ Xty rdrdz = 0 for all k. {y }xen is an orthonormal basis of L2(2) which implies

X = 0 and therefore curl(xey) = 0. 0
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Definition. Let
Nyo(div) = {u € N(div) : u-v = 0}

(5.20)
Nyo(curl) = {u € N(curl) : u Av =0}.
Corollary 5.1.7. Pol(2) has the following orthogonal decompositions:
Pol(Q2) = Grady(2) @ N(div)
= Grad(Q2) @ N,o(div)
(5.21)

= Curly(Q2) & N(curl)
= Curl(2) & No(curl).

Proof. Theorem 4.1.1. shows that Pol(§2) = Grado(Q2) & N(div) and Theorem 4.1.4.

shows that Grady(Q2) = Grady(€2). The other decomposition follow similarly. O

Theorem 4.1.2. let’s us refine these decompositions since Grad(£2) C N(curl) and

Curl(Q) C N(div).

Definition. Let H,¢(€2) be the orthogonal complement of Grad(2) & Curly(Q?) in
Pol(Q2), and let H,¢(€2) denote the orthogonal complement of Grady(£2) & Curl(f2) in
Pol(Q).

Corollary 5.1.8. Pol(Q2) has the following orthogonal decompositions:

Pol(2) = Grado(2) @ Curl(2) ® H,0(£2) (52
= Grad(2) @ Curly(Q) ® H,o(92). |

Definition. A vector field u = (u,, ug, u,) on € is called harmonic if div(u) = 0 and

curl(u) = 0.
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In particular, H,o(2) and H,o(2) are spaces of harmonic poloidal fields. We will
show that these are special finite dimensional subspaces of harmonic fields determined
by the topology of the cross section 2. The description of these special harmonic
fields begins with showing that gradients of axisymmetric scalar potentials and curls
of axisymmetric stream functions are sufficient to characterize every poloidal field in
L2(;R3).

Theorem 5.1.9. Let u € Pol(). If u L Grad(R?), then u € Curl(Q). Ifu L
Curl(Q?), then u € Grad(€2).

Proof. Let u € Pol(Q2) and suppose that u L Grad(2). Let @ be the zero extension

of u to all of ]R%r, ie.

u in €,
= (5.23)
0 inRZ\Q.
If ¢ € C°(R?) then
/ ﬂ-V¢rdrdz:/u-V¢rdrdz:0 (5.24)
R2 Q

since Vo|o € Grad(Q) and u L Grad(Q). Let U be an axisymmetric lifting of @ to the
whole space R®. Then (5.240rthogonal Decompositions for Poloidal Fieldsequation.5.1.24)
implies div(D7) = 0 in R?, where div(U) is meant in the weak sense. Theorem 3.4 and

Remark 3.7 in [14] show that there is a vector potential A € H'(R?;R3) such that
div(A) = 0 and U = curl(A). The equation curl(A) = U reads in Fourier transform

FUE) = 2in(6F Ay = 6F Ay, 6F Ay = EF As, F Ay, —6:F A1), (5.25)
div(A) = 0 means that A is determined by the equation

(4im|€)?)FA = F(curl(U)). (5.26)
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U is poloidal so curl(U) is toroidal, in particular, (curl(U))s = 0. Then (5.260rthogonal Decompositi
implies that (FA); = 0 so A3 = 0. When A3 = 0 there is a unique solution of

(5.250rthogonal Decompositions for Poloidal Fieldsequation.5.1.25) given by

FU, FU,
— Y2 A, — 2
2’”1'537 f 2 (5 7)

A - .
4 ! 27:7'('53

U is poloidal, so the condition Uy = 0 means.
—25Uy 4 2,0, = 0. (5.28)

If we apply the Fourier transform to (5.280rthogonal Decompositions for Poloidal Fieldsequation.5.

we get
CO(FUy) | O(FUy)
96, + o6 0. (5.29)

U has compact support so FU is smooth and we may differentiate FA;, FAs in

(5.270rthogonal Decompositions for Poloidal Fieldsequation.5.1.27) to get

O(FA) | AFAy) ( 1 )(a@@ am?l))' (530

96 9

&1 08 - 23

Then (5.290rthogonal Decompositions for Poloidal Fieldsequation.5.1.29) implies that

0(F4,) N O(FAy)

5%, 5w =" (5.31)

Now apply the inverse Fourier transform to (5.310rthogonal Decompositions for Poloidal Fieldseque
to get 1A +x9A5 = 0 which implies A, = 0. Thus the vector potential A is toroidal
so we may write A = Agey. Now apply the condition div(A) = 0 in cylindrical coor-

dinates to get

10Ay
div(A) = ———=0 5.32
iv(4) = - (532)
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therefore Ay is independent of 6, so A € H'(R3R3) is an axisymmetric toroidal

vector field. Hence there is a stream function 1 on €2 such that

Az) = (\/1‘% + x%,x3> eg T € Na. (5.33)

Our conditions on 924 guarantee that the restriction Alq, is an H! vector field on
.4, therefore the stream function is in V! (Q2) according to (2.35Poincaré Inequalitiesequation.2.4.35)
Then taking the restriction to 2 shows that u = curl(¢ey) as desired. The case that
u L Curl(€) is proved similarly by extending u to an axisymmetric vector field on
all of R and using Fourier transform to construct the scalar potential ¢ € H!(Q)

such that u = V. [

5.2 Characterization of H ()

Let h € H.0(Q2). Then Theorem 4.1.7. shows that h = V¢ for some ¢ € H}(2). The

conditions div(h) = 0 and h A v = 0 yield the boundary problem

Ap=0 1in Q,
(5.34)

Vo-7=0 onl
where 7 = (—v,,0,v,). Let ' = TyuTyU---UT,, where I'g,I'y,..., I, are the
connected components of I' such that € contained in the region interior to I'o U {r =

0}, T;NTy # 0 < j =k, and the T'y,..., T, are closed C? loops. For j =1,...,m,

let f; € H} () be a function whose trace on T' is

0 on Fo,
fi= (5.35)
dje only, for=1,...,m.
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Let G = {¢o+ fj : ¢o € H}((Q)} for j =1,...,m. If ' = T then we set f, to some
H} () function and Gy = H;((Q).

Let D : H!(Q) — R be the Dirichlet energy

D(g) = /Q V6P rdrdz. (5.36)

If I' = Ty, then ¢ = 0 is the unique minimizer of D over Gy = H, (). Consider the

problem of minimizing D over G; for j > 1.

~

Theorem 5.2.1. D has a unique mmimizergzg on G for j =1,...,m. ¢ is the

unique weak solution in H(Q)) of

Ap=0 1w,
(5.37)

¢o=1f; onl.

Proof. Gj may be expressed as G; = f; + H}o(Q) = {f; + ¢ : ¢ € H}((Q)}. Then
minimizing (5.36Characterization of H,o(€2)equation.5.2.36) over G, is equivalent to

minimizing D; : H((2) — R defined by

Dj(¢) = /Q Vo + V§|° rdrdz. (5.38)

Clearly, D; is continuous, strictly convex, and the Poincaré inequality for H;O(Q)
implies that D; is coercive on H((Q). Therefore D has a unique minimizer &,
on Gj. The functional D; is Gateaux differentiable on H((2) and the first order

condition for a minimizer reads
/ V(¢ + f;)-Vrdrdz=0 forall ¥ € H (). (5.39)
Q

Plugging in qgj into this condition shows that qgj is the unique weak solution in H!(Q)

of the harmonic boundary value problem (5.37equation.5.2.37). [
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Forj=1,...,m,let h; = Vgﬁj where <;§j is the unique minimizer in G; of D.

Theorem 5.2.2. IfI' =T, then H.o(Q) = {0}. Otherwise if m > 1, then {h; : j =

1,...,m} is a basis of H.o(Q).

Proof. Let h € H,o(2). As mentioned earlier, there is a scalar potential ¢ € H}!(£2)
such that h = V¢ where ¢ is a solution of the harmonic boundary value problem
(5.34Characterization of H,o(2)equation.5.2.34). The boundary condition V¢ - 7 =
0 and the regularity of I" imply that ¢ is constant on each component of I'. If
I' = 'y, then the only solution of (5.34Characterization of H,o(£2)equation.5.2.34)
is ¢ = const. and then h = V¢ = 0, so H.o(2) = {0} is a trivial subspace. Now
consider the case that m > 1 and suppose that ¢;,7 = 0,1,...,m are constants such
that ¢ =c; on I';,7 =0,1,...,m. The function

m

77/1 = gb — Cy — Z(Cj - CO)ng (540)

i=1

satisfies Ay =0 in  and ¥ = 0 on I, which means 1) = 0. Therefore

qb = Cp + Z(Cj — CO)ng- (541)
j=1
Now take the gradient to get
V(Z5 = Z(Cj - co)ngAﬁj = Z(Cj - Co)hj (542)
j=1 j=1

so {h1,...,hy} spans H.o(€2). Suppose that there are constants ay, ..., a,,, not all

zero, such that

> ajh; =0. (5.43)
j=1
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This says that
\% (Z angj) =0 inQ. (5.44)
j=1

I' is connected so we must have that 2311 aquj is constant on (). Taking traces onto

I' implies
m R ap on I'y,
> ab; = (5.45)
j=1 0 on I.
As Y70, ajngSj is constant, we must have that a; = 0 for all j, a contradiction.
Therefore {hy, ..., hy,} is a maximal spanning set for H.(€2). O

This result implies that the dimension of H((€2) is equal to the number of internal
loops comprising I' \ T'g. These loops correspond to toroidal holes in the volume of
revolution 4. We may also characterize the projection of a poloidal field u using
the gradient basis for H.o(2). Let u € Pol(2) and let w4 be the projection of u onto
N(div). We may write ug = u — V¢ where V¢ is the projection of u onto Grady(£2).

Then if ¢2j is as above and using the definition of the linear functional ug - v we get

/u~V<ﬁj TdeZ—/V(ﬁ'Vngj rdrdz—l—/udO'ngAﬁj rdrdz
Q ) Q
=0+ (uay - v, &) (5.46)

=: (uqo - v, 1)r,.

If uqo is regular enough, then (uq - v,1)r, may be written as

/ Ugo - V Tds. (5.47)
r

J

This says that that the projection of u onto the harmonic subspace H,o(£2) is uniquely
determined by the flux of the divergence-free component u4y through each interior

Ijforj=1,...,m.
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5.3 Characterization of H,,(2)

We may describe the fields in H,¢(€2) in a similar manner to those in H,o(£2). If
k € H,0(f2), then there is a stream function ¢ € V,}(Q) such that k = curl(iey)
according to Theorem 4.1.7. Then the conditions curl(k) = 0 and k- v = 0 yield the

boundary value problem

1
T

(5.48)
V(ry)-7=0 onl.
For j=1,...,mlet g; € V}(Q) be a function whose trace on T is
0 on Fo,
L onTy,l=1,...,m.
r

Let K; = {vo+g;: o € VIQ)} for j =1,....m. If T =Ty, we set gy to some

VT}D(Q) function and K, = V7}0(Q) Let B: V1(Q) — R be the functional

B(y) = /Q | curl(vep)? rdr dz. (5.50)

If ' = Ty, then ¢ = 0 is the unique minimizer of B over K, = V;;(€2) since

\/B() defines a norm on V! (Q).

Theorem 5.3.1. B has a unique minimizer 1/; on K; forj =1,...,m. Qﬂ 18 the

unique weak solution in V.}(Q) of
1 :
—AYp+ <=0 1inQ,
" (5.51)
Y =g; onl.
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Proof. K; = {1 = thg+g; : Yo € V,1,(Q)} for j = 1,...,m, so minimizing B over G,

is equivalent to minimizing B; : V,[;(Q2) — R over where

Bj(y) = /Q | curl(yeg) + curl(gjeq) | rdrdz. (5.52)

Clearly B; is continuous, strictly convex, and the curl-Poincaré inequality for V,}(Q)
implies that B; is coercive on V,!;(€2). Therefore B has a unique minimizer Y on
K;. The functional B; is Gateaux differentiable and the first order condition for a

minimizer reads
/ curl((¢) + g;)ep) - curl(xeg) rdrdz =0 for all x € V,j(Q). (5.53)
0

Plugging @j into this condition shows that z/}j is the unique weak solution in V}(Q)

of the boundary value problem (5.51equation.5.3.51). O

For j=1,...,m,let k; = curl(z[zjeg) where ﬂj is the unique minimizer in K of

B.

Theorem 5.3.2. IfI' = Iy, then H,o(Q2) = {0}. Otherwise, if m > 1, then {k; :

j=1,...,m} is a basis of H,o(Q).

Proof. Let k € H,o(2). Then there is a stream function ¢ € V}(2) such that k =
curl(peg) where 9 is a solution of the boundary value problem (5.48Characterization of H,o(2)equat
The boundary condition V(ri) - 7 and the regularity of I imply that ¢ is constant
on each component of I'. If I' = T’y and ¥ = const./r on I', then the trace of 1) on T is
in L2(T') if and only if const. = 0. Therefore ¢ = 0 on T" and the only weak solution

in V1(Q) of Ay + 772y = 0 with the boundary condition ¢ = 0 is ¢) = 0. Hence
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in this case we have H,0(2) = {0}. Now consider the case that m > 1 and suppose
that ¢;,j = 1,...,m are constants such that ¢ = ¢;/r on I'; for j = 1,...,m; we

already saw that 1 = 0 on I'y. Consider the function
X=1-> ¢y (5.54)
j=1
Then x obeys —Ax + 772y =0 and x|r = 0, so we must have y = 0. Therefore
=iy (5.55)
j=1
Taking curls in the equation above we get
curl(ypeg) = Z ¢; curl(y;eq) = Z c;k; (5.56)
=1 j=1

so {ki,...,kn} spans H,o(€2). Suppose that there are constants ay, ..., a,, not all

zero, such that
Z (ljk?j =0. (557)
j=1
This says that
curl (Z ajz&j) =0 inQ (5.58)
j=1
or equivalently,

v (Z aj(mzij)) =0. (5.59)

j=1
Qs connected so Y 7" aj(mﬁj) is constant on 2. Then taking traceson I'g, 'y, ..., T,
we get
m ) ap onlpl=1,....m
> a(rdy) = (5.60)
Jj=1 0 on P().
Then we must have a; = 0 for all j = 0,1,...,m, a contradiction. Hence the k;’s
are a maximal spanning set for H,o(£2). O
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This characterization of H,0(2) and H,¢(£2) have the same dimension: the num-
ber of internal loops in the cross-section €2 which is equal to the number of toroidal
holes in the cross-section €24. The projection of a poloidal field onto H,o(£2) has
an interpretation using circulations, just as the projection onto H,o(£2) has an in-
terpretation using fluxes. Let u be a poloidal field and let u.y the projection onto
N(curl). We may write us = u — curl(¢ey) where curl(ey) is the projection of u
onto Curly(Q2). Then if 1); is as above and using the definition of the linear functional

Uen N\ vV, We get

/ - curl(qﬂjeg) rdrdz = / curl(vey) - Curl(qﬁjeg) rdrdz + / Uep * curl(iﬂeg) rdrdz
Q Q

Q

=0+ (uq A v, zlzje(»

=:{ U NV, —€y .
T T

J

(5.61)
When u, is smooth enough, (uq A v, e9/r)r; may be expressed as

/ Ueo T dS. (5.62)
F.

J
This says that that the projection of u onto the harmonic subspace H,o(2) is uniquely
determined by the circulation of the curl-free component u. around each interior I';

forj=1,...,m.
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Chapter 6

Axisymmetric Div-curl systems

This chapter will describe well-posedness results on axisymmetric div-curl systems
with normal or tangantial boundary conditions. The axisymmetric div-curl systems
arise in classical field theories when the domain has rotational symmetry and the
data is axisymmetric. In particular, the results of this chapter may be applied to
some forms of the quasi-static Maxwell equations on domains such as those described

in Section 2.1 with axisymmetric data as in Sections 2.2 and 2.3.
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6.1 The Normal Div-curl System

This section studies the well-posedness of the normal div-curl system

;

div(u) = p in

curl(u) =w in €, (6.1)

u-v=yu onl.
\

Here p is a function on €2, w is a vector field on 2, and p is a function on I'. The
boundary condition v -v = pu is a single scalar equation. We decompose the analysis
of this problem into poloidal and toroidal parts. The poloidal-normal div-curl system
is )

div(up) = p in Q,

curl(up) = wr in £, (6.2)

up-v=yu onl.
\

The toroidal-normal div-curl system is
(

div(ur) =0 in €,

curl(ur) = wp in Q, (6.3)

ur-v=0 onl.

The following conditions are imposed on the data p, w, p for (6.1The Normal Div-curl Systemequ:

(N1) p € L2(0);
(N2) w € L2(Q; R3);

(N3) div(wp) = 0;
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(N4) pe LA(T);
(N5) [oprdrdz= [.prds;
(N6> wp 1 Hro(Q)

Definition. Let p,w, u be given such that conditions (N1) through (N6) are satisfied.
A vector field u € L?(Q; R3) is a weak solution of (6.1The Normal Div-curl Systemequation.6.1.1)

provided it satisfies

/u-ngTdrdz:—/pgb rdrdz+/;w¢ for all ¢ € H{ () (6.4)
Q Q r

and

/u-curl(F) rdrdz = / w-Frdrdz for all F e V,j(Q) x V() x H, (). (6.5)
0 Q

By linearity, u € L?(£2; R?) is a weak solution of (6.1The Normal Div-curl Systemequation.6.1.1)
if and only if the poloidal and toroidal components up,ur are weak solutions of
(6.2The Normal Div-curl Systemequation.6.1.2) and (6.3The Normal Div-curl Systemequation.6.1.:
respectively. The conditions (N5) and (N6) are actually compatibility conditions that

must hold.

Theorem 6.1.1. Let p,w, i be given such that (N1) through (Nj) are satisfied and
suppose that u € L2(Q; R?) is a weak solution of (6.1The Normal Div-curl Systemequation.6.1.1).

Then p,w, pu satisfy (N5) and (N6).

Proof. Let u € L2(€;R?) solve (6.1The Normal Div-curl Systemequation.6.1.1). If
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¢p=1€ HYQ), then y¢p =1 on T so

(1) = (u-v, 1)
:/u~V(1)rdrdz+/div(u)(1) rdrdz
:/div(u)rdrdz

= / prdrdz.
Q

If u solves (6.1The Normal Div-curl Systemequation.6.1.1) then, in particular, curl(ur) =

(6.6)

wp € Pol(Q2). This says that wp € Curl(2) which implies wp L (Grady(f2) &
H.o(2)). O

Now we want to show that when (N1) through (N6) are satisfied, then the system
(6.1The Normal Div-curl Systemequation.6.1.1) has a solution v € L?(Q;R?). To
this end, we construct a solution up of the poloidal-normal div-curl system using the
decompositions from the previous chapter. Consider up = —V¢ + curl(vey) with

¢ € H}(Q) a weak solution of

—Ap=p inQ,
(6.7)
D,p=—p onl.
and ¥ € V,[)(Q) a weak solution of
1 :
A+ <P =wpy inQ,
r (6.8)

Yv=0 onl.

A weak solution of (6.7The Normal Div-curl Systemequation.6.1.7) exists when the

conditions (N1), (N4), and (N5) are satisfied according to Theorem 4.2.3; a weak
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solution of (6.8The Normal Div-curl Systemequation.6.1.8) exists when w satisfies

(N2) according to Theorem 4.3.1.

Lemma 6.1.2. Suppose that p,w, i are given such that conditions (N1) through (N6)
are satisfied. Let ¢ € H'(Q) be a weak solution of (6.7The Normal Div-curl Systemequation.6.1.7)
and 1 € V,}1(Q) be a weak solution of (6.8The Normal Div-curl Systemequation.6.1.8).

Then u, = —Vo+curl(yey) is a weak solution of the poloidal-normal div-curl system.

Proof. Let x € H}(). Then
/QuP -Vx rdrdz = /Q(—ng + curl(vey)) - Vx rdrdz
=— /Q Vo -Vxrdrdz+ /Q curl(veg) - Vx rdrdz (6.9)
= —/QV¢-VX rdrdz

since curl(weg) and Vy are orthogonal in L?(2;R?). A weak solution ¢ € H}(2) of

(6.7The Normal Div-curl Systemequation.6.1.7) satisfies

/V¢~erdrdz:/pxrdrdz—/,wyxrds (6.10)
Q Q r

SO

/uP-VX rdrdz:—/v¢~VX rdrdz
Q Q

:—/px rdrdz—i—//wx rds.
Q r

Now if x € V,!;(€) and 1 is a weak solution of (6.8The Normal Div-curl Systemequation.6.1.8),

(6.11)

then
/ curl(vpeg) - curl(yeg) rdrdz = / wex rdrdz, (6.12)
Q Q
therefore we may argue similarly as before to show that
/ up - curl(xeq) rdrdz = / wex rdrdz. (6.13)
Q Q
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Hence up is a weak solution of the poloidal-normal div-curl system (6.2The Normal Div-curl Systemse

O

The existence of a solution to the toroidal-normal div-curl problem (6.3The Normal Div-curl Syst

is proved using the decomposition
Pol(Q2) = Grady(€Q2) @ Curl(Q2) @ H,o(2). (6.14)

Lemma 6.1.3. Suppose that condition (N1) through (N6) are satisfied. Then there

is a weak solution ur € L*(Q;R?) of the toroidal-normal div-curl system.

Proof. The conditions (N3) and (N6) say that the poloidal field wp € L?(Q;R?)
satisfies div(wp) = 0 and wp L Ho(2). If div(wp) = 0 then wp L Grady(2), so
wp € (Grado(Q) @ H.0(2))+ = Curl(Q). Then there is a unique x € V() such that

wp = curl(xep). Set ur = xeg. Then

/uT-Vn rdrdz =0 (6.15)
0

for all n € H}'(Q) since uy is toroidal and Vy is poloidal. Let F, € V.};(Q),F. €

H!(Q). Then the definition of wp = curl(yey) implies that

/ up - curl(Fre, + F,e,) rdrdz = / xeq - curl(Fre, + F.e,) rdrdz
@ 2 (6.16)
= / wp - (Fre, + F,e,) rdrdz.
Q

Hence ur is a weak solution of the toroidal-normal div-curl system. O]
Corollary 6.1.4. Let p,w, 1 be given such that conditions (N1) through (N6) are sat-

isfied. Then the normal div-curl system (6.1The Normal Div-curl Systemequation.6.1.1)

has a weak solution.
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Proof. Let u = —V¢ + curl(teg) + xeg with ¢,1 as in Lemma 5.1.2 and y as in
the proof of Lemma 5.1.3. Then up = —V¢ + curl(yey) solves the poloidal-normal
div-curl system, ur = xeg solves the toroidal-normal div-curl system, so u = up + ur

solves the complete normal div-curl system. O]

This resolves the existence problem for the normal div-curl system. We now
address the problem of uniqueness. The orthogonal decompositions in Chapter 4
suggest that the uniqueness problem for the poloidal part depends on the topology
of €2, since the space of harmonic fields H,0(£2) are in the null-space of the divergence,
curl, and normal trace operators. On the other hand, the toroidal part of the problem
has uniqueness guaranteed since there are no nontrivial harmonic toroidal fields in
L2(;R3).

Theorem 6.1.5. Let p,w, p be given such that conditions (N1) through (N6) are
satisfied. If I has a single component I' = T'y, then there is a unique weak solution in
L2(2;R3) to the normal div-curl system. If T has multiple components T' = ToUT; U
-+ UT,,, then the set of weak solutions in L*(Q;R3) of the normal div-curl system

is an m-dimensional affine subspace.

Proof. Let u, v be two weak solutions of the normal div-curl system and let w = u—v
be their difference. The toroidal part wr is therefore a harmonic toroidal field so it

must have the form wr = (C/r)ey for some constant C. If wy € L2(2;R?) then

2

2
/ < rdrdz = < dr dz < oo (6.17)
0

r? ar
if and only if C' = 0 since  has nontrivial intersection with the z-axis. Therefore

wr = 0, so up = vp. The poloidal component wp is a harmonic poloidal field in
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L%(Q; R3) with zero normal trace, i.e. wp € H,o(2). If T =T, then Theorem 4.3.2
asserts that wp = 0, so up = vp and consequently u = v. If I' = I'qUI"yU- - -UT",,, with
I'y,..., I, all nonempty, then Theorem 4.3.2 asserts that #,0(€2) is a m-dimensional
subspace of Pol(Q2). Therefore u=v+> " ¢; curl(¢;eq), with curl(¢;eq) = k; as in

Theorem 4.3.2, for some constants cq, ..., ¢p,. O

A unique weak solution of the normal div-curl system in the case that I' has
multiple components I'g,I'1,...,I',, may be obtained by prescribing extra condi-
tions. Namely, the projection of the solution onto the one-dimensional subspaces

{acurl(t;eq) : a € R},j = 1,...,m uniquely determines a weak solution.

Corollary 6.1.6. Let p,w, i be given such that conditions (N1) through (NG) are
satisfied and let T'g,I'y,..., 'y, be the connected components of I' as before with
I'y,...,T, all nonempty. Let {curl(z[)je@ 2 j = 1,...,m} be a basis for H,o(Q)
as in Theorem 4.3.2. Then the normal div-curl system has a unique weak solution if

the m functionals
/u-curl(z@jeg) rdrdz, j=1,...,m (6.18)
Q

are also prescribed in addition to p,w, p satisfying conditions (N1) through (N6).

Proof. If p, o, i are given such that conditions (N1) through (N6) satisfied, then there
is an m-dimensional affine subspace of solutions u + H,0(§2) where u is a particular
solution. The m functionals (6.18equation.6.1.18) uniquely determine the projection
of a solution onto the subspace #,0(£2), hence there is a unique solution when the m

functionals in (6.18equation.6.1.18) are prescribed. ]
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The prescription of the functionals in (6.18equation.6.1.18) may be interpreted
as prescribing m circulations of the curl-free part of the desired vector field. Lastly
we present an energy estimate demonstrating the dependence of a solution on the

data p,w, u.

Corollary 6.1.7. Let p,w, p be given satisfying conditions (N1) - (N6). Suppose
that I' has multiple components I'g,I'y,..., 'y, with I'y,...,I',, all nonempty. Let
{cwrl(jeq) 1 j = 1,...,m} be a basis for Hyo(Q). Let u € L2(Q;R?) be a solution of

the normal div-curl system with k;,j = 1,...,m the values of the m functionals
Kj = / w-curl(jeq) rdrdz,  j=1,....,m (6.19)
Q
and denote k = (K1, ...,km). Then there is a constant C > 0 such that

/|u|2rdrdz§C’(/ |,u|2rds—|—/|p|2rdrdz+/ |w|27"d7“dz—|—]/<a|). (6.20)
0 r Q0 0

Proof. Let up be the poloidal part of u and write up = —V¢ + curl(vey) + k where
V¢ is the projection onto Grad(2), curl(iey) is the projection onto Curly(£2), and
k is the projection onto H,o(£2). The characterizations of ¢,1) as weak solutions of
boundary value problems let us apply Corollary 4.2.8 and Corollary 4.3.2 to derive

a constant C' > 0 such that

/\up\zrdrdZSC(/ \ul? rds—l—/\p\zrdrdz—l—/ ]wﬂzrdrdz—i-\/ﬂ). (6.21)
0 r 0 Q

wp € Curl(Q) with wp = curl(ugey) and ug € V() by conditions (N2), (N3), and

(N6), so we may apply the curl-Poincaré inequality for V() to obtain

/ lugeq|* rdrdz < C'/ | curl(ugeg)|* rdrdz = C’/ |wp|? rdrdz (6.22)
Q Q Q
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for some constant C' > 0. Combining (6.21The Normal Div-curl Systemequation.6.1.21)

and (6.22The Normal Div-curl Systemequation.6.1.22) yields (6.20equation.6.1.20).

m
6.2 The Tangential Div-curl System
This section studies the well-posedness of the tangential div-curl system
div(u) = p in Q,
curl(u) =w in Q, (6.23)
uANv=oc onl.

\

where p,w are as in Section 6.1, and ¢ is a vector field on I'. The boundary condi-
tion for the tangential div-curl system consists of three scalar equations. We again
decompose the analysis of this problem into poloidal and toroidal parts. The poloidal-

tangential div-curl system is

(

div(up) = p in 2,
curl(up) =wr in £, (6.24)

upANv=or onl.

The toroidal-normal div-curl system is

/

div(ur) =0 in Q,

curl(ur) = wp in Q, (6.25)

ur A\v=cp onl.

The following conditions are imposed on the data p, w, o for (6.23The Tangential Div-curl System
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(N1) p € L7(2)
(N2) w € L2(;R?)
(N3) div(wp) = 0
(N6) wp L Hs0(Q)
(N7) o € L2(T;R9)

(N8)

/WP'UPTdeZ:—/UP"YUpTdS
Q r

for all vp = v.e, + v,e, with v, € VI(Q),v, € H(Q), curl(vp) = 0.

Definition. Let p,w, o be given such that conditions (N1) — (N3), (N6) — (N8) are
satisfied. A vector field u € L2(Q; R3) is a weak solution of (6.23The Tangential Div-curl Systemequs

provided it satisfies

/ u-Vordrdz =— / p¢ rdrdz  for all ¢ € H((Q) (6.26)
0 0

and
/u-curl(v)rdrdz:/a'yv rds—i—/w-vrd’rdz (6.27)
Q r Q

for all v = (v,., v, v.) with v,,vp € V1(Q) and v, € H}(Q).

Just like the normal div-curl system, u € L?(€2; R3) is a weak solution of (6.23The Tangential Div
if and only if the poloidal and toroidal components up,ur are weak solutions of
(6.24The Tangential Div-curl Systemequation.6.2.24) and (6.25The Tangential Div-curl Systemequ

respectively.
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We construct solutions of the poloidal-tangential div-curl system by formulating
boundary value problems for the scalar potential and stream function. Consider

up = —V¢ + curl(veg) where ¢ € H/((Q) is a weak solution of

—A¢p=p in €,
(6.28)
=0 onl,
and ¢ € V1(Q) is a weak solution of
1
—AY+ < =wpy in,
r
(6.29)

curl(vpeg) N\v =07 on T,
A weak solution of (6.28The Tangential Div-curl Systemequation.6.2.28) exists when
(N1) is satisfied and a weak solution of (6.29The Tangential Div-curl Systemequation.6.2.29)

exists when (N2) and (N7) are satisfied.

Lemma 6.2.1. Suppose that p,w, o are given such that (N1) - (N3), (N6) — (N8) are

satisfied. Let ¢ € H,((Q) be a weak solution of (6.28The Tangential Div-curl Systemequation.6.2.28
and ) € VX(Q) be a weak solution of (6.29The Tangential Div-curl Systemequation.6.2.29).

Then up = —V¢ + curl(vey) is a weak solution of the poloidal-tangential div-curl

system.

Proof. Let x € H} () and up = —V¢ + curl(yeg) where ¢, are weak solutions of
(6.28The Tangential Div-curl Systemequation.6.2.28), (6.29The Tangential Div-curl Systemequatio

respectively. Then

/up-VX rdrdz:/(—v¢+curl(weg)) rdrdz
Q

Q

= — / Vo -Vxrdrdz— / curl(veg) - Vx rdrdz (6.30)
Q Q

= — / px rdrdz
Q
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since curl(eg) and Vx are orthogonal in L2(2;R3). Now if y € V}(Q) we have

/ up - curl(xeg) rdrdz = / (=Vo + curl(vey)) - curl(xeq) rdrdz
Q

Q

= / curl(tpey) - curl(yeg) rdrdz (6.31)
Q

:/UG”YX rds—i—/ng rdrdz
T Q

since V¢ and curl(yey) are orthogonal in L?(2; R3). Therefore up is a weak solution

of the poloidal-tangential div-curl system. O]

The problem of existence of a solution to the toroidal-tangential div-curl system is
more subtle. Unlike the normal div-curl system, the boundary condition ur Av = op
is not immediately satisfied by virtue of ur being toroidal. We consider instead
writing ur = curl(vp) for some poloidal field v, = (v, 0,v,) with v, € V,}(Q),v, €
H}Q). Let Xp(R2) = {v, € Pol(Q) : v, € V}(Q),v, € H(Q),div(vp) = 0in Q,vp -
v =0 on I'} and define the norm on Xp(Q) to be ||vp|x, = (”’UTH%/?} + ||Uz||?{71>>1/2'
Now consider the variational problem of finding v, € X,(€2) such that

op - ywp rds—i—/wP-wp rdrdz (6.32)
Q

/ curl(vp) - curl(wp) rdrdz = /
Q

r

for all wp = (w,,0,w,) with w, € V}(Q),w, € H(Q).

Lemma 6.2.2. Let w € L2(Q;R?),0 € L3T;R3). Then there is a unique vp €
Xp(Q)NH,0(Q)* satisfying (6.32The Tangential Div-curl Systemequation.6.2.32) for
all wp € XP(Q) N Hyo(Q)J‘.

Proof. Clearly the right-hand side of (6.32The Tangential Div-curl Systemequation.6.2.32)

defines a continuous linear functional on Xp(Q)NH,0(Q)*. B(vp,wp) = [, curl(vp)-
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curl(wp) rdrdz is a continuous bilinear form on Xp(€2), and Theorem 2.4.5 implies
that B is coercive on Xp(Q) NH,0(2)*. Then we may apply the Lax-Milgram theo-
rem to conclude that there is a unique vp € Xp(Q)NH,0(2)* satisfying (6.32The Tangential Div-cur
for all wp € Xp(2) NH,o(Q)*. O

Theorem 6.2.3. Let w € L2(;R3),0 € L2T;R3) such that conditions (N2),
(N3), (N6) - (N8) are satisfied. Suppose that vp € X,(Q) N H,o(Q)*F satisfies
(6.32The Tangential Div-curl Systemequation.6.2.32) for all wp € Xp(2)NH,0()*.

Then vp also satisfies (6.32The Tangential Div-curl Systemequation.6.2.32) for all
wp € Pol(Q) with w, € V}(Q),w, € H(Q).

Proof. Let wp € Pol(Q) with w, € V}(Q),w, € HQ), and write wp = V¢ +

curl(yeg) + k where
V¢ € Grad(Q2),

curl(¢eq) € Curly(€), (6.33)

k€ H,o(9).
Then curl(wp) = curl(curl(vey)) and curl(eg) € Hoo(Q2)*. We need to check that
curl(veq), € V1(Q) and curl(vey), € H(Q). To do this, note that 1 is characterized

as the unique weak solution in V!;(€) of

—Ay + %1& = curl(wp)p in Q,
r

(6.34)
=0 onl.
curl(wp)g € L2(Q) as w, € VH(Q),w, € H(Q) imply
ow, Ow,
curl(wp) = ( 5 " o )69. (6.35)
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Therefore
curl(curl(yey)) = (—A¢ + %1/)) eg = curl(wp) € L2(;R?). (6.36)

Now we reinterpret (6.34The Tangential Div-curl Systemequation.6.2.34) in the Carte-

sian setting using an axisymmetric lifting ¥ of ¢ where
x x
V(r) = —72¢(T7 r3)e; + 71?/1(7“7 T3)es (6.37)

with r = \/m The axisymmetric lifting preserves divergence-free fields so
div(V) = div(yeg) = 0. Hence curl(curl(V)) = —A3¥ where Aj is the Laplacian in
Cartesian coordinates in R?, and (6.36 The Tangential Div-curl Systemequation.6.2.36)
then implies

—A3V¥ = curl(Wp) (6.38)

where Wp is the axisymmetric lifing of wp. We have ¥ € H}(Q24;R?) N H(Q4; R?)
according to Remark 2.3.1. AzV¥ coincides with (AzW;, A3Wy, A3W3) in Cartesian
coordinates so each Cartesian component W; € Hj(£2,4) is the unique weak solution

of the system

AV, = curl(Wp); in Qga,
(6.39)
U, =0 on dfyu.

Then standard elliptic regularity theory asserts that U € H?(Q4;R3) as curl(Wp) €
L*(24;R?). In particular curl(¥) € H'(Q4;R3). This implies that curl(yeq), €

V), curl(veq), € HH(Q) upon changing back to cylindrical coordinates. Then

/ curl(vp) - curl(wp) rdrdz = / curl(vp) - curl(curl(yey)) rdrdz
Q Q

= /O'p -y(curl(eg)) rds + / wp - curl(yey) rdrdz
r Q
(6.40)
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since curl(yeg) € Xp(2) N Hyo(Q)*. For Vo, k, a similar argument appealing to
elliptic regularity in the Cartesian case will show that their r, 2 components are in
V), H (Q) respectively. Since curl(V¢) = curl(k) = 0, we now apply condition
(N8) to obtain

/0p-7(v¢+k) rds+/wp-(v¢+k:) rdrdz = 0. (6.41)
r Q

Therefore we may combine (6.40The Tangential Div-curl Systemequation.6.2.40) and
(6.41The Tangential Div-curl Systemequation.6.2.41) to get

/ curl(vp) - curl(wp) rdrdz = /
Q

op - YWwp rds—l—/wp-wp rdrdz (6.42)
r

Q

which proves the claim. O

Corollary 6.2.4. Let w,o be given such that conditions (N2) — (N3), (N6) — (N8)
are satisfied. Then the toroidal-tangential div-curl system has a weak solution in

L2(;R3).

Proof. Take vp as in the conclusion of Lemma 6.2.2 and note that curl(vp) is a
toroidal field in L?(Q;R?). Then Theorem 6.2.3 asserts that curl(vp) is a weak

solution of the toroidal-tangential div-curl system. O]

Lemma 6.2.1 and Corollary 6.2.4 together show that the tangential div-curl sys-
tem has a solution when p,w, o are given satisfying conditions (N1) — (N3), (N6) —
(N8). Just as the normal div-curl system, the nullspace of the tangential div-curl

system depends on the topology of the cross-section €2. In this case, the nullspace is

HTO(Q)‘
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Theorem 6.2.5. Let p,w, o be given such that conditions (N1) — (N3), (N6) — (N8)
are satisfied. If T' has a single component I' = Ty then there is a unique weak
solution in L2(2;R3) of the tangential div-curl system. If T has multiple components
[ =TqUTyU---UT,,, then the set of weak solutions in L*(Q;R3) of the tangential

div-curl system is an m-dimensional affine subspace.

Proof. This is proved very similarly to the case of the normal div-curl system. A weak
solution of the toroidal-tangential div-curl system is unique since the difference of
any two weak solutions must be a harmonic toroidal field in LZ(Q; R?), but such field
must be zero. The difference of any two weak solutions of the poloidal-tangential
div-curl system is a field in H,o(€2). Theorem 5.2.2 asserts that H,o(2) = {0} if
I' =T, so a weak solution of the poloidal-tangential div-curl system is unique. If
'=Tyul'yU---UT,,, then Theorem 5.2.2 asserts that dim(#.o(2) = m, in which

case the set of weak solutions is an m-dimensional affine subspace. O

Corollary 6.2.6. Let p,w,o be given satisfying conditions (N1) — (N3), (N6) —
(N8), and let T'y,T'y,..., [y, be the connected components of I' with T'y,--- T, all
nonempty. Let {Vo; : j = 1,...,m} be a basis for H,o(Q). Then the tangential

div-curl system has a unique weak solution if the m functionals

/u . nggj rdrdz, j=1,...,m (6.43)
Q

are also prescribed in addition to p,wo satisfying conditions (N1) — (N3), (N6) —
(N8).

Proof. The set of solutions of the tangential div-curl form an m-dimensional affine

88



subspaces isomorphic to H,¢(£2), and the prescription of the m functionals in (6.43equation.6.2.43)

uniquely determines the projection of a solution onto H,q(€2). O

The prescription of the functionals in (6.43equation.6.2.43) may be interpreted
as prescribing m fluxes through each I'; of the divergence-free part of the desired
vector field. We may derive a similar energy estimate as in the case of the normal

div-curl system.

Corollary 6.2.7. Let p,w, o be given satisfying conditions (N1) — (N3), (N6) — (N8).
Suppose that I' has multiple components Iy, 'y, ... 'y, with 'y, ... Ty, all nonempty.
Let {VQASJ- :7=1,...,m} be a basis for H.o(). Let u € L*(;R3) be a solution of

the normal div-curl system with n;, 7 =1,...,m the values of the m functionals

Uj—/u'véj rdrdz, j7=1,....m (6.44)
Q

and denote n = (N1, ...,nm). Then there is a constant C > 0 such that

/ lu|? rdrdz < C (/ lor|? TdS—I—/ | Tdrdz—i—/ |w|? rdrdz + |n|) . (6.45)
Q r 0 Q

Proof. Let up be the poloidal part of u and write up = —V¢ + curl(¢ey) + h where
V¢ is the projection onto Grady(£2), curl(vey) is the projection onto Curl(£2), and
h is the projection onto H,o(€2). The characterizations of ¢,1) as weak solutions of
boundary value problems let us apply Corollary 4.2.2 and Corollary 4.3.8 to derive

a constant C > 0 such that

/|uP|2rdrdz§C’</|0T|2 rds—l—/|p|27“d7‘dz+/ |wT|2rdrdz+|77|). (6.46)
Q r Q Q
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wp € Curl(Q) with wp = curl(ugeq) and uy € V,}(Q) by conditions (N2), (N3), and

(N6), so we may apply the curl-Poincaré inequality for V,!(Q) to obtain

/ lugeq|* rdrdz < C/ | curl(ugeg)|* rdrdz = C’/ |wp|? rdrdz (6.47)
Q 0 Q

for some constant C' > 0. Combining (6.46The Tangential Div-curl Systemequation.6.2.46)
and (6.47The Tangential Div-curl Systemequation.6.2.47) yields (6.45equation.6.2.45).
O

The interesting part of (6.45equation.6.2.45) is that the right-hand side is inde-
pendent of op. Thus the energy of the solution in 2 may be controlled independent
of the energy of op on I'. The reason is that the energy of ur is completely controlled

by the prescribed curl wp via the curl-Poincaré inequality.
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