WELL-POSEDNESS FOR WEAK SOLUTIONS OF AXISYMMETRIC DIV-CURL SYSTEMS

A Dissertation Presented to the Faculty of the Department of Mathematics University of Houston
\qquad
In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

By
Juan F. Lopez Jr. May 2018

WELL-POSEDNESS FOR WEAK SOLUTIONS OF AXISYMMETRIC DIV-CURL SYSTEMS

Juan F. Lopez Jr.
APPROVED:
Prof. Giles Auchmuty, Advisor
Dept. of Mathematics

Prof. Daniel Onofrei
Dept. of Mathematics

Prof. Mikhail Perepelitsa
Dept. of Mathematics

Prof. David Jackson
Dept. of Electrical and Computer Engineering

Dean, College of Natural Sciences and Mathematics

Acknowledgements

I would like to thank my advisor Professor Giles Auchmuty for his generous time, patience, and advice granted to me. I know I am very fortunate to have the pleasure of working with him. Our meetings and conservations on PDEs, Analysis, and life in general kept me motivated to complete this work. I am extremely grateful to the committee members Dr. Daniel Onofrei, Dr. Misha Perepelitsa, and Dr. David Jackson for taking time to read my work and for their expert advice.

I am grateful to the faculty in the UH Math Department for instructing my courses: Dr. Giles Auchmuty, Dr. Gordon Heier, Dr. David Blecher, Dr. Daniel Onofrei, Dr. Matt Nicol, Dr. Ronald Hoppe, Dr. Misha Perepelitsa, Dr. William Ott, and Dr. Andrew Torok. I am grateful to Dr. Shanyu Ji and Dr. Ilya Timofeyev for their time as Graduate Director during my studies at UH, and Ms. Neha Valji for her time as Graduate Advisor. I owe Tai McAlister a great amount for her help completing various administrative tasks.

I owe much to my friends in the math department for their support. Their camaraderie encouraged me during any struggles in research or teaching. Many problems were solved not on my own, but with their advice and input. They will be dearly missed.

I must also thank Virginia for her love, support, and patience during my studies. I could not have done this without her.

Ultimately, I would like to thank my family, especially my mother and my brother, for their unconditional love, support, and patience.

WELL-POSEDNESS FOR WEAK SOLUTIONS OF AXISYMMETRIC DIV-CURL SYSTEMS

An Abstract of a Dissertation
Presented to the Faculty of the Department of Mathematics
University of Houston

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

\qquad

By
Juan F. Lopez Jr.
May 2018

Abstract

We study the axisymmetrc div-curl system on bounded volumes of revolution with normal and tangential boundary conditions. This vector system of equations arises in classical field theories. In particular, the electrostatic and magnetostatic axisymmetric Maxwell equations are axisymmetric div-curl systems. The analysis is based on orthogonal decompositions of axisymmetric vector fields.

The characterization of the scalar potentials and stream functions in the orthogonal decompositions leads to the analysis of axisymmetric Laplacian boundary value problems. Axisymmetric Laplacian eigenproblems give rise to natural bases for special gradient and curl subspaces for the orthogonal decompositions, and the eigenvalues appear as best constants in energy estimates for solutions of the axisymmetric Laplacian boundary value problems and in energy estimates for the axisymmetric div-curl system.

The results presented are valid for a general class of bounded C^{2} volumes of revolution with a nonempty and connected intersection with the axis of symmetry. We allow the domain to contain toroidal holes.

Contents

1 Introduction 1
2 Spaces of Axisymmetric Functions and Vector Fields 4
2.1 Geometrical Preliminaries 4
2.2 Axisymmetric Functions 6
2.3 Axisymmetric Vector Fields 11
2.4 Poincaré Inequalities 15
3 Linear Axisymmetric Laplacian Eigenproblems 20
3.1 Introduction 20
3.2 Eigenproblems for $-\Delta$ 21
3.2.1 The Dirichlet Eigenvalue Problem 21
3.2.2 The Neumann Eigenvalue Problem 24
3.2.3 The Harmonic Steklov Eigenvalue Problem 27
3.3 Eigenproblems for $-\Delta+\frac{1}{r^{2}}$ 30
3.3.1 The Dirichlet Eigenvalue Problem 30
3.3.2 A Conormal Neumann Eigenvalue Problem 33
3.3.3 The Curl-Harmonic Steklov Eigenvalue Problem 35
4 Linear Axisymmetric Laplacian Boundary Value Problems 38
4.1 Introduction 38
4.2 Boundary Value Problems for $-\Delta$ 39
4.2.1 The Dirichlet Problem for $-\Delta$ 39
4.2.2 The Neumann Problem for $-\Delta$ 41
4.3 Boundary Value Problems for $-\Delta+r^{-2}$ 45
4.3.1 The Dirichlet Problem for $-\Delta+r^{-2}$ 45
4.3.2 A Conormal Neumann Problem for $-\Delta+r^{-2}$ 48
5 Orthogonal Decompositions for Axisymmetric Vector Fields 52
5.1 Orthogonal Decompositions for Poloidal Fields 52
5.2 Characterization of $\mathcal{H}_{\tau 0}(\Omega)$. 62
5.3 Characterization of $\mathcal{H}_{\nu 0}(\Omega)$ 65
6 Axisymmetric Div-curl systems 70
6.1 The Normal Div-curl System 71
6.2 The Tangential Div-curl System 78
Bibliography 88

Chapter 1

Introduction

Vector systems of equations are common and fundamental models in applications, e.g., Maxwell's equations in electromagnetism, Navier-Stokes equations in fluid dynamics, the Lamé system in elasticity. The div-curl system is a vector system of equations arising in classical field theories. For example, the electrostatic and magnetostatic Maxwell's equations have the form of a div-curl system. The primary focus of this thesis is the analysis of axisymmetric div-curl systems on bounded regions of revolution.

Axisymmetric vector fields can be represented using scalar potentials and it is important to carefully describe how these potentials should be chosen for specific fields. These representations give rise to linear axisymmetric Laplacian boundary value problems which characterize the scalar potentials and stream functions. Linear axisymmetric laplacian eigenvalue problems provide sharp estimates for some solutions
of the aforementioned boundary value problems in terms of the interior and boundary sources, as well as bases for special gradient and curl subspaces of axisymmetric vector fields. Finally, well-posedness results for weak solutions of the axisymmetric div-curl system with normal or tangential boundary conditions are obtained using the scalar potentials and stream functions in the decomposition theorems.

Auchmuty and Alexander in [5] study the planar div-curl system with normal, tangential, and mixed boundary conditions using orthogonal decompositions with scalar potentials and stream functions, and in [6] carry out similar analysis for fully 3D div-curl systems with normal or tangential boundary conditions; [7] concerns the case of 3D div-curl systems with mixed boundary conditions. [9] by Bernardi, Dauge, and Maday is an exhaustive reference for analytic and numerical results on partial differential equations in axisymmetric domains with polygonal cross-sections. Our analysis differs by considering domains with multiply-connected boundaries. Analytic results on axisymmetric Maxwell's equations on domains with polygonal crosssections are described in [1] by Assous, Ciarlet Jr., and Labrunie with a follow up [11] by Ciarlet Jr. and Labrunie describing some numerical results on the same problem. In [16] Mercier and Raugel analyze finite element methods for second order elliptic Dirichlet boundary value problems on axisymmetric domains with simply-connected cross-sections. Oh in [17] presents a theoretical framework for the analysis of axisymmetric problems using differential forms and exterior calculus. Other references on mathematical studies of vector systems are [2], [14], [12], [10], and [13] among others.

Chapter 2 describes the basic geometric setup and types of functions and vector
fields used in our analysis. The axisymmetric domains considered here are specified by their cross-sections. We prove some analytic results on the functions and vector fields used in later chapters.

Chapter 3 is on linear axisymmetric Laplacian eigenproblems. These eigenproblems are used to derive sharp estimates for weak solutions of Laplacian boundary value problems studied in Chapter 4. The eigenproblems also give rise to natural bases for special gradient and curl subspaces appearing in the orthogonal decompositions studied in Chapter 5.

Chapter 4 is on linear axisymmetric Laplacian boundary value problems. These boundary value problems arise in the characterization of the scalar potentials and stream functions used in the orthogonal decompositions studied in Chapter 5, and in the well-posedness results for the div-curl systems studied in Chapter 6.

Chapter 5 in on orthogonal decomposition results for axisymmetric vector fields, in particular for axisymmetric poloidal fields. The results from Chapters 3 and 4 are used to exhibit bases for special subspaces appearing in the decompositions, and for characterizations of the scalar potentials and stream functions. A characterization of special harmonic fields determined by the topology of the cross-section is presented.

Chapter 6 is on well-posedness results for weak solutions of axisymmetric div-curl systems with normal or tangential boundary conditions. The decompositions from Chapter 5 are used to establish existence and uniqueness results. The estimates from Chapter 4 are used to derive energy estimates for weak solutions of the div-curl systems.

Chapter 2

Spaces of Axisymmetric Functions and Vector Fields

2.1 Geometrical Preliminaries

We use Cartesian coordinates $x=\left(x_{1}, x_{2}, x_{3}\right)$ to denote a generic point $x \in \mathbb{R}^{3}$. The axisymmetric domains we consider here are bounded regions of revolution in \mathbb{R}^{3} whose axis of revolution is the x_{3}-axis and which intersect the axis of revolution. Let Ω_{A} denote such a volume. Let $\bar{\Omega}$ be the closed cross section of Ω_{A} in the $x_{1} x_{3^{-}}$ plane. We identify the open cross section Ω as a subset of the right half plane $\mathbb{R}_{+}^{2}=\left\{(r, z) \in \mathbb{R}^{2}: r>0\right\} . r$ and z are the cylindrical radius and height from the cylindrical coordinate system: $r=\sqrt{x_{1}^{2}+x_{2}^{2}}, z=x_{3}$. Let $\partial \Omega$ denote the boundary of Ω in $\overline{\mathbb{R}_{+}^{2}}$, and let $\Gamma=\{(r, z) \in \partial \Omega: r>0\}$. We assume that Γ consists of a single component $\Gamma=\Gamma_{0}$ or multiple components $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \cdots \cup \Gamma_{m} . \Omega_{A}$ and Ω are
constrained to obey the following conditions:
(i) Ω_{A} is a bounded, connected, volume of revolution about the x_{3}-axis in \mathbb{R}^{3} with C^{2} boundary $\partial \Omega_{A}$, and $\Omega_{A} \cap\left\{\left(0,0, x_{3}\right): x_{3} \in \mathbb{R}\right\}$ is a connected subset of the x_{3}-axis.
(ii) Ω contained in the open region interior to $\Gamma_{0} \cup\{r=0\}$;
(iii) $\Gamma_{1}, \ldots, \Gamma_{m}$ are closed C^{2} loops contained in the region interior to $\Gamma_{0} \cup\{r=0\}$;
(iv) or $\Gamma_{1}=\cdots=\Gamma_{m}=\emptyset$, in which case $\Gamma=\Gamma_{0}$.
(v) the distance from (r, z) to $\partial \Omega \cap\{r=0\}$ is r for all $(r, z) \in \Omega$.

Prototypical examples of Ω are shown in Figure 2.1The cross-section Ω of Ω_{A} when Γ has many components.figure.caption. 2 and Figure 2.2The cross-section Ω of the volume of revolution Ω_{A} when $\Gamma=\Gamma_{0}$.figure.caption.3.

Henceforth, the domain Ω_{A} and the cross-section Ω are always assumed to satisfy the conditions (i) - (v) above.

The functions and vector fields we study will be essentially determined by their values in Ω and Γ.

2.2 Axisymmetric Functions

All functions considered here have range in $[-\infty, \infty]$ unless otherwise noted.

Figure 2.1: The cross-section Ω of Ω_{A} when Γ has many components.

Definition. Let F be a Lebesgue measurable function on the volume of revolution Ω_{A}. We say that F is axisymmetric if there is a Lebesgue measurable function f on Ω such that $F(x)=F\left(x_{1}, x_{2}, x_{3}\right)=f\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right)$ almost everywhere on Ω_{A}. We call F an axisymmetric lifting of f.

Let r, θ, z be the cylindrical coordinates in \mathbb{R}^{3} defined by

$$
\begin{align*}
& x_{1}=r \cos (\theta) \\
& x_{2}=r \sin (\theta) \tag{2.1}\\
& x_{3}=z .
\end{align*}
$$

If $F \in L^{1}\left(\Omega_{A}\right)$ is axisymmetric with $F(x)=f\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right)$ then the change of

Figure 2.2: The cross-section Ω of the volume of revolution Ω_{A} when $\Gamma=\Gamma_{0}$.
variables theorem for Lebesgue integrals says that

$$
\begin{equation*}
\int_{\Omega_{A}} F(x) d x=2 \pi \int_{\Omega} f(r, z) r d r d z \tag{2.2}
\end{equation*}
$$

The function space $L_{r}^{2}(\Omega)$ is defined as all Lebesgue measurable functions $f(r, z)$ on Ω such that

$$
\begin{equation*}
\int_{\Omega}|f(r, z)|^{2} r d r d z<\infty \tag{2.3}
\end{equation*}
$$

$L_{r}^{2}(\Omega)$ is a Hilbert space with respect to the inner product

$$
\begin{equation*}
\langle f, g\rangle_{L_{r}^{2}}=\int_{\Omega} f g r d r d z \tag{2.4}
\end{equation*}
$$

For $f: \Omega \rightarrow \mathbb{R}$

$$
\begin{equation*}
\nabla f:=\left(\frac{\partial f}{\partial r}, 0, \frac{\partial f}{\partial z}\right) \tag{2.5}
\end{equation*}
$$

will denote the gradient of f. Let $C^{\infty}(\bar{\Omega})=\left\{\left.f\right|_{\bar{\Omega}}: f \in C^{\infty}\left(\mathbb{R}^{2}\right)\right\}$. The Sobolev space $H_{r}^{1}(\Omega)$ is defined the closure of $C^{\infty}(\bar{\Omega})$ with respect to the norm $\|\cdot\|_{H_{r}^{1}}$ defined by

$$
\begin{equation*}
\|f\|_{H_{r}^{1}}^{2}=\int_{\Omega}\left(|f|^{2}+|\nabla f|^{2}\right) r d r d z=\int_{\Omega}\left(|f|^{2}+\left|\frac{\partial f}{\partial r}\right|^{2}+\left|\frac{\partial f}{\partial z}\right|^{2}\right) r d r d z \tag{2.6}
\end{equation*}
$$

$H_{r}^{1}(\Omega)$ is a Hilbert space with respect to the inner product

$$
\begin{equation*}
\langle f, g\rangle_{H_{r}^{1}}=\int_{\Omega}(f g+\nabla f \cdot \nabla g) r d r d z \tag{2.7}
\end{equation*}
$$

Item (v) in Section 2.1 implies that $H_{r}^{1}(\Omega)$ coincides with the subspace of functions in $L_{r}^{2}(\Omega)$ whose weak derivatives with respect to r, z are also functions in $L_{r}^{2}(\Omega)$; see Remark 7.5 and Proposition 7.6 in [15]. Let $C_{z 0}^{\infty}(\bar{\Omega})=\left\{\left.f\right|_{\bar{\Omega}}: f \in C_{c}^{\infty}\left(\mathbb{R}_{+}^{2}\right)\right\}$ where $\mathbb{R}_{+}^{2}=\left\{(r, z) \in \mathbb{R}^{2}: r>0\right\}$ is the right-half plane of $\mathbb{R}^{2} . C_{z 0}^{\infty}(\bar{\Omega}) \subset C^{\infty}(\bar{\Omega})$ and $C_{z 0}^{\infty}(\bar{\Omega})$ consists of functions in $C^{\infty}(\bar{\Omega})$ with support away from the z-axis $\{r=0\}$. The Sobolev space $V_{r}^{1}(\Omega)$ is defined as the closure of $C_{z 0}^{\infty}(\bar{\Omega})$ with respect to the norm $\|\cdot\|_{V_{r}^{1}}$ defined by

$$
\begin{equation*}
\|f\|_{V_{r}^{1}}^{2}=\|f\|_{H_{r}^{1}}^{2}+\int_{\Omega} \frac{|f|^{2}}{r} d r d z=\int_{\Omega}\left(|f|^{2}+|\nabla f|^{2}+\frac{1}{r^{2}}|f|^{2}\right) r d r d z \tag{2.8}
\end{equation*}
$$

$V_{r}^{1}(\Omega)$ is a Hilbert space with respect to the inner product

$$
\begin{equation*}
\langle f, g\rangle_{V_{r}^{1}}=\langle f, g\rangle_{H_{r}^{1}}+\int_{\Omega} \frac{f g}{r} d r d z=\int_{\Omega}\left(f g+\nabla f \cdot \nabla g+\frac{f g}{r^{2}}\right) r d r d z \tag{2.9}
\end{equation*}
$$

Let $C_{\Gamma 0}^{\infty}(\Omega)$ be the set of all smooth functions $f \in C^{\infty}(\bar{\Omega})$ such that $\operatorname{supp}(f) \cap \Gamma=\emptyset$, and let $H_{r, 0}^{1}(\Omega)$ denote the closure of $C_{\Gamma 0}^{\infty}(\Omega)$ with respect to the H_{r}^{1}-norm. Let $V_{r, 0}^{1}(\Omega)$ denote the closure of $C_{c}^{\infty}(\Omega)$ with respect to the V_{r}^{1}-norm.

Remark 2.2.1. A standard argument shows that if $f \in H_{r}^{1}(\Omega)$ then the axisymmetric lifting $F(x):=f\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right)$ belongs to $H_{A}^{1}\left(\Omega_{A}\right)$. This is the justification for
introducing the weighted space $H_{r}^{1}(\Omega)$. Similarly, if $f \in H_{r, 0}^{1}(\Omega)$, then a standard argument shows that F belongs to $H_{A}^{1}\left(\Omega_{A}\right) \cap H_{0}^{1}\left(\Omega_{A}\right)$.

The Sobolev space $H_{r}^{1}(\Omega)$ is larger than the more common space $H^{1}(\Omega)$ since $L^{2}(\Omega) \subset L_{r}^{2}(\Omega)$. Therefore it is not immediately clear that a trace mapping onto Γ exists for functions in $H_{r}^{1}(\Omega)$. We also want the trace map to be compact and for the embedding $H_{r}^{1}(\Omega)$ into $L_{r}^{2}(\Omega)$ to be compact. Let $L_{A}^{2}\left(\Omega_{A}\right), H_{A}^{1}\left(\Omega_{A}\right)$ be the subspaces of $L^{2}\left(\Omega_{A}\right), H^{1}\left(\Omega_{A}\right)$ (resp.) consisting of axisymmetric functions. Note that these are closed subspaces of $L^{2}\left(\Omega_{A}\right), H^{1}\left(\Omega_{A}\right)$ respectively.

Lemma 2.2.2. Let Ω_{A}, Ω satisfy conditions (i) - (v) in Section 2.1. Then the embeddings $H_{r}(\Omega) \hookrightarrow L_{r}^{2}(\Omega), H_{r, 0}^{1}(\Omega) \hookrightarrow L_{r}^{2}(\Omega)$ are compact.

Proof. The embedding of $H_{r}^{1}(\Omega)$ into $L_{r}^{2}\left(\Omega_{A}\right)$ is compact if and only if the embedding $H_{A}^{1}\left(\Omega_{A}\right)$ into $L_{A}^{2}\left(\Omega_{A}\right)$ is compact, as seen by identifying a function $F \in L_{A}^{2}\left(\Omega_{A}\right)$ with a representative $f \in L_{r}^{2}(\Omega)$. Our assumptions on Ω_{A} allow the use of Rellich's theorem for the embedding $H^{1}\left(\Omega_{A}\right) \hookrightarrow L^{2}\left(\Omega_{A}\right)$. Hence compactness of $H_{A}^{1}\left(\Omega_{A}\right) \hookrightarrow L_{A}^{2}\left(\Omega_{A}\right)$ follows since a bounded sequence in $H_{A}^{1}\left(\Omega_{A}\right)$ is bounded in $H^{1}\left(\Omega_{A}\right)$, and therefore contains a subsequence which is Cauchy in $L_{A}^{2}\left(\Omega_{A}\right)$. A similar argument shows that the embedding $H_{r, 0}^{1}(\Omega) \hookrightarrow L_{r}^{2}(\Omega)$ is compact since the domain Ω_{A} is bounded and the embedding $H_{0}^{1}\left(\Omega_{A}\right) \hookrightarrow L^{2}\left(\Omega_{A}\right)$ is compact.

Definition. Let $F: \partial \Omega_{A} \rightarrow \mathbb{R}$ be a measurable function with respect to the twodimensional Hausdorff measure on $\partial \Omega_{A}$. We say F is axisymmetric if there is a
function $f: \Gamma \rightarrow \mathbb{R}$ measurable with respect to the one-dimensional Hausdorff measure on Γ such that

$$
\begin{equation*}
F(x)=f\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right) \quad \text { for all } x \in \partial \Omega_{A} \tag{2.10}
\end{equation*}
$$

Let $L_{A}^{2}\left(\partial \Omega_{A}\right)$ denote the subspace of $L^{2}\left(\partial \Omega_{A}\right)$ consisting of axisymmetric functions. We observe that $L_{A}^{2}\left(\partial \Omega_{A}\right)$ is a closed subspace of $L_{A}^{2}\left(\partial \Omega_{A}\right)$ just as $L_{A}^{2}\left(\Omega_{A}\right)$ is a closed subspace of $L^{2}\left(\Omega_{A}\right)$. Let $\gamma_{A}: H^{1}\left(\Omega_{A}\right) \rightarrow L^{2}\left(\partial \Omega_{A}\right)$ denote the trace map. Our conditions on $\partial \Omega_{A}$ imply that γ_{A} is compact.

Lemma 2.2.3. Let Ω_{A}, Ω satisfy conditions (i) $-(v)$ in Section 2.1. Then γ_{A} : $H_{A}^{1}\left(\Omega_{A}\right) \rightarrow L_{A}^{2}\left(\partial \Omega_{A}\right)$ is compact.

Proof. Let $F \in H_{A}^{1}\left(\Omega_{A}\right)$ and let $f \in H_{r}^{1}(\Omega)$ be a representative on Ω. Let $f_{n} \in$ $C^{\infty}(\bar{\Omega}), n \in \mathbb{N}$ be a sequence of smooth functions such that $f_{n} \rightarrow f$ in $H_{r}^{1}(\Omega)$. If $F_{n}, n \in \mathbb{N}$ are axisymmetric liftings to Ω_{A} of the f_{n}, then $F_{n} \in C^{\infty}\left(\overline{\Omega_{A}}\right)$ and $F_{n} \rightarrow F$ in $H_{A}^{1}\left(\Omega_{A}\right)$. Therefore $\gamma_{A} F_{n} \rightarrow \gamma_{A} F$ in $L^{2}\left(\partial \Omega_{A}\right) . \gamma_{A} F_{n}=\left.F_{n}\right|_{\partial \Omega_{A}} \in L_{A}^{2}\left(\partial \Omega_{A}\right)$ and $L_{A}^{2}\left(\partial \Omega_{A}\right)$ is closed, so $\gamma_{A} F \in L_{A}^{2}\left(\partial \Omega_{A}\right)$.

The preceding proof shows how to define a natural trace map $\gamma: H_{r}^{1}(\Omega) \rightarrow L_{r}^{2}(\Gamma)$ that is compact. Given $f \in H_{r}^{1}(\Omega)$, let $f_{n} \in C^{\infty}(\bar{\Omega}), n \in \mathbb{N}$ be a sequence of smooth functions such that $f_{n} \rightarrow f$ in $H_{r}^{1}(\Omega)$. For each f_{n}, let F_{n} denote its axisymmetric lifting to Ω_{A}. Then $F_{n} \rightarrow F$ in $H_{A}^{1}\left(\Omega_{A}\right)$ for some $F \in H_{A}^{1}\left(\Omega_{A}\right)$, and $\gamma_{A} F_{n} \rightarrow \gamma_{A} F$ in $L^{2}\left(\partial \Omega_{A}\right) . \gamma_{A} F_{n} \in L_{A}^{2}\left(\partial \Omega_{A}\right)$ and $L_{A}^{2}\left(\partial \Omega_{A}\right)$ is closed so $\gamma_{A} F \in L_{A}^{2}\left(\partial \Omega_{A}\right)$. We define γf to be the representative of $\gamma_{A} F$ on Γ such that (2.10equation.2.2.10) holds. Then
if $f \in C^{\infty}(\bar{\Omega})$ and F is an axisymmetric lifting of f to Ω_{A}

$$
\begin{equation*}
\int_{\Gamma}|f|^{2} r d s=\frac{1}{2 \pi} \int_{\partial \Omega_{A}}|F|^{2} d \sigma \leq C\|F\|_{H^{1}}^{2}=C\|f\|_{H_{r}^{1}}^{2} \tag{2.11}
\end{equation*}
$$

so γ is continuous from $H_{r}^{1}(\Omega)$ to $L_{r}^{2}(\Gamma)$.

Corollary 2.2.4. The trace $\gamma: H_{r}^{1}(\Omega) \rightarrow L_{r}^{2}(\Gamma)$ is compact.

Proof. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence in $H_{r}^{1}(\Omega)$ and let F_{n} denote the axisymmetric lifting of f_{n} to Ω_{A}. Then $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ is a bounded sequence in $H_{A}^{1}\left(\Omega_{A}\right)$ so a subsequence $\left\{\gamma_{A} F_{n_{j}}\right\}_{j \in \mathbb{N}}$ is Cauchy in $L_{A}^{2}\left(\partial \Omega_{A}\right)$ by compactness of γ_{A}. Therefore $\left\{\gamma f_{n_{j}}\right\}_{j \in \mathbb{N}}$ is Cauchy in $L_{r}^{2}(\Gamma)$ since

$$
\begin{equation*}
\int_{\Gamma}\left|\gamma f_{n}-\gamma f_{k}\right|^{2} r d s=\frac{1}{2 \pi} \int_{\partial \Omega_{A}}\left|F_{n}-F_{k}\right|^{2} d \sigma \tag{2.12}
\end{equation*}
$$

It follows that $V_{r, 0}^{1}(\Omega)$ and $V_{r}^{1}(\Omega)$ are also compactly embedded in $L_{r}^{2}(\Omega)$ and that the trace mapping $\left.\gamma\right|_{V_{r}^{1}(\Omega)}: V_{r}^{1}(\Omega) \subset H_{r}^{1}(\Omega) \rightarrow L_{r}^{2}(\Gamma)$ is compact.

2.3 Axisymmetric Vector Fields

Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard Euclidean frame fields in \mathbb{R}^{3}. Let

$$
\begin{equation*}
u(x)=\left(u_{1}(x), u_{2}(x), u_{3}(x)\right)=u_{1}(x) e_{1}+u_{2}(x) e_{2}+u_{3}(x) e_{3} \tag{2.13}
\end{equation*}
$$

be a vector field on Ω_{A}. The cylindrical components u_{r}, u_{θ}, u_{z} are defined by

$$
\begin{align*}
& u_{r}(x)=\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} u_{1}(x)+\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} u_{2}(x) \\
& u_{\theta}(x)=-\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} u_{1}(x)+\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} u_{2}(x) \tag{2.14}\\
& u_{z}(x)=u_{3}(x) .
\end{align*}
$$

We say that u is axisymmetric if the cylindrical components are axisymmetric functions.

An axisymmetric vector field u_{A} on Ω_{A} is thus identified with a vector field $u(r, z)=\left(u_{r}(r, z), u_{\theta}(r, z), u_{z}(r, z)\right)$ on Ω by its cylindrical components, and conversely a vector field $u(r, z)$ on Ω defines an axisymmetric vector field on Ω_{A}. Let R_{θ} be the rotation matrix

$$
R_{\theta}=\left(\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \tag{2.15}\\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then u is axisymmetric if and only if $R_{\theta}^{-1} \circ u \circ R_{\theta}=u$ on Ω_{A} for all $\theta \in[-\pi, \pi)$.

Let $\left\{e_{r}, e_{\theta}, e_{z}\right\}$ be the cylindrical frame fields in \mathbb{R}^{3}.
Definition. If $u=\left(u_{r}, u_{\theta}, u_{z}\right)=u_{r} e_{r}+u_{\theta} e_{\theta}+u_{z} e_{z}$ is a vector field on Ω, then we call the vector field $U=\left(U_{1}, U_{2}, U_{3}\right)$ on Ω_{A} with components defined by

$$
\begin{align*}
& U_{1}(x)=\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} u_{r}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right)-\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} u_{\theta}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right) \\
& U_{2}(x)=\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} u_{r}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right)+\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} u_{\theta}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right) \tag{2.16}\\
& U_{3}(x)=u_{z}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right)
\end{align*}
$$

an axisymmetric lifting of u.

Hence we restrict our attention to vector fields $u=\left(u_{r}, u_{\theta}, u_{z}\right)$ on Ω as our means to study axisymmetric vector fields on Ω_{A}. The space $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ is defined as the Hilbert space of vector fields $u=\left(u_{r}, u_{\theta}, u_{z}\right)$ on Ω with $u_{r}, u_{\theta}, u_{z} \in L_{r}^{2}(\Omega) . L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ is a Hilbert space with respect to the inner product

$$
\begin{equation*}
\langle u, v\rangle_{L_{r}^{2}}=\int_{\Omega} u \cdot v r d r d z=\int_{\Omega} u_{r} v_{r}+u_{\theta} v_{\theta}+u_{z} v_{z} r d r d z \tag{2.17}
\end{equation*}
$$

We will also denote the gradient of a function f on Ω using e_{r}, e_{z} by

$$
\begin{equation*}
\nabla f=\frac{\partial f}{\partial r} e_{r}+\frac{\partial f}{\partial z} e_{z} . \tag{2.18}
\end{equation*}
$$

Remark 2.3.1. If $u_{r}, u_{\theta} \in V_{r}^{1}(\Omega)$ and $u_{z} \in H_{r}^{1}(\Omega)$, then a standard argument shows that the axisymmetric lifting U of u defined by (2.16equation.2.3.16) belongs to $H_{A}^{1}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$. This is the justification for introducing the weighted space $V_{r}^{1}(\Omega)$. Similarly, if $u_{r}, u_{z} \in V_{r, 0}^{1}(\Omega)$ and $u_{z} \in H_{r, 0}^{1}(\Omega)$, then a standard argument shows that U belongs to $H_{A}^{1}\left(\Omega ; \mathbb{R}^{3}\right) \cap H_{0}^{1}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$.

Definition. Let $u=\left(u_{r}, u_{\theta}, u_{z}\right)$ be a vector field on $\Omega .\left(u_{r}, 0, u_{z}\right)=u_{r} e_{r}+u_{z} e_{z}$ is the poloidal component of u and $\left(0, u_{\theta}, 0\right)=u_{\theta} e_{\theta}$ is the toroidal component of u. The poloidal component of u is denoted u_{P} and the toroidal component is denoted u_{T}. u is called a poloidal vector field if $u_{\theta}=0$, and u is called a toroidal vector field if $u_{r}=u_{z}=0$.

The classical vector operators div and curl for vector fields $u(r, z)$ on Ω considered here are given in cylindrical coordinates by

$$
\begin{align*}
\operatorname{div}(u) & =\frac{1}{r} \frac{\partial\left(r u_{r}\right)}{\partial r}+\frac{\partial u_{z}}{\partial z} \\
\operatorname{curl}(u) & =-\frac{\partial u_{\theta}}{\partial z} e_{r}+\left(\frac{\partial u_{r}}{\partial z}-\frac{\partial u_{z}}{\partial r}\right) e_{\theta}+\frac{1}{r} \frac{\partial\left(r u_{\theta}\right)}{\partial r} e_{z} . \tag{2.19}
\end{align*}
$$

These definitions continue to hold for vector fields $u=\left(u_{r}, u_{\theta}, u_{z}\right)$ provided $u_{r}, u_{\theta} \in$ $V_{r}^{1}(\Omega), u_{z} \in H_{r}^{1}(\Omega)$. We make note of the identities

$$
\begin{align*}
\operatorname{div}(u) & =\operatorname{div}\left(u_{P}\right) \\
\operatorname{div}\left(u_{T}\right) & =0 \tag{2.20}\\
\operatorname{curl}\left(u_{P}\right) & =(\operatorname{curl}(u))_{T} \\
\operatorname{curl}\left(u_{T}\right) & =(\operatorname{curl}(u))_{P}
\end{align*}
$$

and $\operatorname{div}(\operatorname{curl}(u))=0$ as usual. The divergence and curl for vector fields in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ are defined by duality.

Definition. Let $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right) . \operatorname{div}(u) \in\left(H_{r, 0}^{1}(\Omega)\right)^{*}$ is defined by

$$
\begin{equation*}
\langle\operatorname{div}(u), \phi\rangle=-\int_{\Omega} u \cdot \nabla \phi r d r d z \quad \forall \phi \in H_{r, 0}^{1}(\Omega) \tag{2.21}
\end{equation*}
$$

and $\operatorname{curl}(u) \in\left(V_{r, 0}^{1}(\Omega) \times V_{r, 0}^{1}(\Omega) \times H_{r, 0}^{1}(\Omega)\right)^{*}$ is defined by

$$
\begin{equation*}
\left\langle\operatorname{curl}(u),\left(v_{r}, v_{\theta}, v_{z}\right)\right\rangle=\int_{\Omega} u \cdot \operatorname{curl}\left(v_{r} e_{r}+v_{\theta} e_{\theta}+v_{z} e_{z}\right) r d r d z \tag{2.22}
\end{equation*}
$$

for all $\left(v_{r}, v_{\theta}, v_{z}\right) \in V_{r, 0}^{1}(\Omega) \times V_{r, 0}^{1}(\Omega) \times H_{r, 0}^{1}(\Omega)$.

The identities in (2.20Axisymmetric Vector Fieldsequation.2.3.20) hold for definitions (2.21equation.2.3.21), (2.22equation.2.3.22) as well. Our conditions on Γ imply that a unit outward normal ν is defined a.e. on Γ. If $\operatorname{div}(u) \in L_{r}^{2}(\Omega)$ or $\operatorname{curl}(u) \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$, then the normal trace $u \cdot \nu$ or tangential trace $u \wedge \nu$ (resp.) is also defined by duality. $H_{r}^{1 / 2}(\Gamma)$ denotes the range of the trace $\gamma: H_{r}^{1}(\Omega) \rightarrow L_{r}^{2}(\Gamma)$, and $V_{r}^{1 / 2}(\Gamma)$ denotes the range of γ restricted to $V_{r}^{1}(\Omega)$.

Definition. Let $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$. If $\operatorname{div}(u) \in L_{r}^{2}(\Omega)$, then the normal trace $u \cdot \nu \in$ $\left(H_{r}^{1 / 2}(\Gamma)\right)^{*}$ is defined by

$$
\begin{equation*}
\langle u \cdot \nu, \gamma \phi\rangle=\int_{\Omega} u \cdot \nabla \phi r d r d z+\int_{\Omega} \phi \operatorname{div}(u) r d r d z \tag{2.23}
\end{equation*}
$$

for all $\phi \in H_{r}^{1}(\Omega)$. If $\operatorname{curl}(u) \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$, then the tangential trace $u \wedge \nu \in\left(V_{r}^{1 / 2}(\Gamma) \times\right.$ $\left.V_{r}^{1 / 2}(\Gamma) \times H_{r}^{1 / 2}(\Gamma)\right)^{*}$ is defined by

$$
\begin{equation*}
\left\langle u \wedge \nu,\left(\gamma v_{r}, \gamma v_{\theta}, \gamma v_{z}\right)\right\rangle=\int_{\Omega} u \cdot \operatorname{curl}(v) r d r d z-\int_{\Omega} \operatorname{curl}(u) \cdot v r d r d z \tag{2.24}
\end{equation*}
$$

for all $v=\left(v_{r}, v_{\theta}, v_{z}\right) \in V_{r}^{1}(\Omega) \times V_{r}^{1}(\Omega) \times H_{r}^{1}(\Omega)$.

Observe that the definition of $u \cdot \nu$ implies that $u_{T} \cdot \nu=0$. This coincides with the geometric result that the unit outward normal of a smooth surface of revolution is poloidal.

2.4 Poincaré Inequalities

We will use Poincaré inequalities for functions in $H_{r}^{1}(\Omega)$ to prove various coercivity results. The following two versions hold by taking axisymmetric liftings of functions in Ω to the volume of revolution Ω_{A}, changing variables in the integrals, and then applying the Poincaré inequalities for $H_{0}^{1}\left(\Omega_{A}\right)$ and $H^{1}\left(\Omega_{A}\right)$. Denote

$$
\begin{equation*}
|\Omega|=\frac{\operatorname{vol}\left(\Omega_{A}\right)}{2 \pi} . \tag{2.25}
\end{equation*}
$$

This is the cross-sectional area of Ω.

Theorem 2.4.1. There is a constant $C>0$ such that

$$
\begin{equation*}
\int_{\Omega}|f|^{2} r d r d z \leq C \int_{\Omega}|\nabla f|^{2} r d r d z \quad \text { for all } f \in H_{r, 0}^{1}(\Omega) \text {. } \tag{2.26}
\end{equation*}
$$

Theorem 2.4.2. There is a constant $C>0$ such that

$$
\begin{equation*}
\int_{\Omega}|f-\langle f\rangle|^{2} r d r d z \leq C \int_{\Omega}|\nabla f|^{2} r d r d z \quad \text { for all } f \in H_{r}^{1}(\Omega) \tag{2.27}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle f\rangle=\frac{\int_{\Omega} f r d r d z}{|\Omega|} . \tag{2.28}
\end{equation*}
$$

We will also need the following variant of the Poincaré inequality for functions in $V_{r}^{1}(\Omega)$. Recall

$$
\begin{equation*}
\operatorname{curl}\left(\psi e_{\theta}\right)=-\frac{\partial \psi}{\partial z} e_{r}+\frac{1}{r} \frac{\partial(r \psi)}{\partial r} e_{z} \tag{2.29}
\end{equation*}
$$

for functions $\psi \in V_{r}^{1}(\Omega)$.

Theorem 2.4.3. There is a constant $C>0$ such that

$$
\begin{equation*}
\int_{\Omega}|\psi|^{2} r d r d z \leq C \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z, \quad \forall \psi \in V_{r}^{1}(\Omega) \tag{2.30}
\end{equation*}
$$

Proof. Our approach is to appeal to an existing estimate for three-dimensional fields to the axisymmetric lifting of ψe_{θ} for $\psi \in V_{r}^{1}(\Omega)$. Let Ω_{A} denote the C^{2} volume of revolution obtained by rotating Ω about the z axis. Then our assumptions on Ω and $\partial \Omega$ imply that Theorem 5.1 from [3] is applicable to Ω_{A}. This theorem says that there is a $C>0$ depending only on Ω_{A} such that

$$
\begin{equation*}
\int_{\Omega_{A}}|A|^{2} d x \leq C \int_{\Omega_{A}}|\operatorname{curl}(A)|^{2} d x \tag{2.31}
\end{equation*}
$$

for all $A \in H^{1}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$ such that:

1. $\operatorname{div}(A)=0$ in Ω_{A};
2. $A \cdot \nu=0$ on $\partial \Omega_{A}$;

3. $A \perp \mathcal{H}^{1}\left(\Omega_{A}\right)$

where

$$
\begin{align*}
& \mathcal{H}^{1}\left(\Omega_{A}\right)= \\
& \quad\left\{h \in L^{2}\left(\Omega_{A} ; \mathbb{R}^{3}\right): \operatorname{div}(h)=0 \text { in } \Omega_{A}, \operatorname{curl}(h)=0 \text { in } \Omega_{A}, h \cdot \nu=0 \text { on } \partial \Omega_{A}\right\} . \tag{2.32}
\end{align*}
$$

It suffices to prove the estimate for $\psi \in C_{z 0}^{\infty}(\bar{\Omega})$ by density, hence suppose $\psi \in C_{z 0}^{\infty}(\bar{\Omega})$.
Let B denote the axisymmetric lifting of ψe_{θ}, so that

$$
\begin{equation*}
B(x)=-\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} \psi\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right) e_{1}+\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} \psi\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right) e_{2} \tag{2.33}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right)$. A direct calculation shows that

$$
\begin{align*}
& \sum_{i, j=1}^{3}\left|\frac{\partial B_{i}}{\partial x_{j}}\right|^{2}= \\
& \quad\left|\frac{\partial \psi}{\partial r}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right)\right|^{2}+\left|\frac{\partial \psi}{\partial z}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right)\right|^{2} \tag{2.34}\\
& \quad+\frac{1}{x_{1}^{2}+x_{2}^{2}}\left|\psi\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right)\right|^{2}
\end{align*}
$$

Then $\psi \in C_{z 0}^{\infty}(\bar{\Omega}) \subset V_{r}^{1}(\Omega)$ implies that

$$
\begin{equation*}
\int_{\Omega_{A}}|B|^{2}+\sum_{i, j=1}^{3}\left|\frac{\partial B_{i}}{\partial x_{j}}\right|^{2} d x=2 \pi \int_{\Omega}|\psi|^{2}+|\nabla \psi|^{2}+\frac{|\psi|^{2}}{r^{2}} r d r d z<\infty \tag{2.35}
\end{equation*}
$$

hence $B \in H^{1}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$ The axisymmetric lifting preserves the divergence and Euclidean dot product so $\operatorname{div}\left(\psi e_{\theta}\right)=0$ in Ω and $\psi e_{\theta} \cdot \nu=0$ on Γ imply $\operatorname{div}(B)=0$ in Ω_{A} and $B \cdot \nu=0$ on $\partial \Omega_{A}$ respectively. ψe_{θ} is toroidal, so it suffices to check that B is orthogonal to every $h \in \mathcal{H}^{1}\left(\Omega_{A}\right)$ with zero poloidal component. If $h \in \mathcal{H}^{1}\left(\Omega_{A}\right)$ and h has no poloidal component, then $\operatorname{div}(h)=0$ means

$$
\begin{equation*}
\frac{1}{r} \frac{\partial h_{\theta}}{\partial \theta}=0 \tag{2.36}
\end{equation*}
$$

therefore h_{θ} is independent of θ, hence $h_{\theta} e_{\theta}$ is an axisymmetric harmonic toroidal field. This means $h_{\theta} \equiv 0$ since Ω_{A} contains its axis of revolution. Then $\langle B, h\rangle_{L^{2}}=0$ trivially. Now we apply Theorem 5.1 to obtain that

$$
\int_{\Omega_{A}}|B|^{2} d x \leq C \int_{\Omega_{A}}|\operatorname{curl}(B)|^{2} d x
$$

and upon changing variables back to the cylindrical coordinates we get

$$
\int_{\Omega}|\psi|^{2} r d r d z \leq C \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z
$$

This holds for arbitrary $\psi \in C_{z 0}^{\infty}(\Omega)$ so we conclude that the estimate holds for all $\psi \in V_{r}^{1}(\Omega)$.

Definition. We call the estimate (2.30equation.2.4.30) the curl-Poincaré inequality for $V_{r}^{1}(\Omega)$.

Corollary 2.4.4. $\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}$ defines an equivalent norm on $V_{r}^{1}(\Omega)$.

Proof. Again, the method of proof is to apply an existing result to the axisymmetric lifting v of ψe_{θ} for $\psi \in C_{z 0}^{\infty}(\bar{\Omega})$. If v is such an axisymmetric lifting, then Corollary 1 on p. 212 of [12] Ch. IX shows that there is a constant $C>0$ independent of v such that

$$
\begin{equation*}
\|v\|_{H^{1}}^{2} \leq C\left(\|v\|_{L^{2}}^{2}+\|\operatorname{curl}(v)\|_{L^{2}}^{2}\right) \tag{2.37}
\end{equation*}
$$

due to our conditions on $\partial \Omega_{A}$. Then changing variables back to cylindrical coordinates yields the estimate

$$
\begin{equation*}
\|\psi\|_{V_{r}^{1}}^{2} \leq C\left(\|\psi\|_{L_{r}^{2}}^{2}+\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}^{2}\right) \tag{2.38}
\end{equation*}
$$

since $\|v\|_{H^{1}}^{2}=2 \pi\|\psi\|_{V_{r}^{1}}^{2}$. Then we apply (2.30equation.2.4.30) to see that that there is $C>0$ such that

$$
\begin{equation*}
\|\psi\|_{V_{r}^{1}}^{2} \leq C\left(\|\psi\|_{L_{r}^{2}}^{2}+\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}^{2}\right) \leq C\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}^{2} . \tag{2.39}
\end{equation*}
$$

On the other hand, we may apply Young's inequality to see that

$$
\begin{align*}
\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{V_{r}^{1}}^{2} & =\int_{\Omega}|\nabla \psi|^{2}+\frac{|\psi|^{2}}{r^{2}}+\frac{2 \psi}{r} \frac{\partial \psi}{\partial r} r d r d z \\
& \leq \int_{\Omega}|\nabla \psi|^{2}+\frac{|\psi|^{2}}{r^{2}} r d r d z+2 \int_{\Omega} \frac{|\psi|^{2}}{r^{2}} r d r d z+\frac{1}{2} \int_{\Omega}\left|\frac{\partial \psi}{\partial r}\right|^{2} r d r d z \\
& \leq C \int_{\Omega}|\nabla \psi|^{2}+\frac{|\psi|^{2}}{r^{2}} r d r d z \\
& \leq C\|\psi\|_{V_{r}^{1}}^{2} \tag{2.40}
\end{align*}
$$

which proves the claim.

Theorem 2.4.5. There is a constant $C>0$ such that

$$
\begin{equation*}
\int_{\Omega}\left|f_{r}\right|^{2}+\left|f_{z}\right|^{2} r d r d z \leq C \int_{\Omega}\left|\operatorname{curl}\left(f_{r} e_{r}+f_{z} e_{z}\right)\right|^{2} r d r d z \tag{2.41}
\end{equation*}
$$

for all $f_{r} \in V_{r}^{1}(\Omega), f_{z} \in H_{r}^{1}(\Omega)$ such that $\operatorname{div}\left(f_{r} e_{r}+f_{z} e_{z}\right)=0$ in $\Omega,\left(\gamma f_{r} e_{r}+\gamma f_{z} e_{z}\right) \cdot \nu=$ 0 on Γ, and $\left(f_{r} e_{r}+f_{z} e_{z}\right) \in\left(\mathcal{H}_{\nu 0}(\Omega)\right)^{\perp}$.

Proof. The argument here again relies on appealing to an existing result for fully three-dimensional fields in $L^{2}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$. Suppose that $f_{r} \in C_{z 0}^{\infty}(\bar{\Omega}), f_{z} \in C^{\infty}(\bar{\Omega})$ such that $\operatorname{div}\left(f_{r} e_{r}+f_{z} e_{z}\right)=0$ in $\Omega,\left(f_{r} e_{r}+f_{z} e_{z}\right) \cdot \nu=0$ on Γ, and $\left(f_{r} e_{r}+f_{z} e_{z}\right) \in\left(\mathcal{H}_{\nu 0}(\Omega)\right)^{\perp}$. Let $F: \Omega_{A} \rightarrow \mathbb{R}^{3}$ be the axisymmetric lifting of $f_{r} e_{r}+f_{z} e_{z}$ to all of Ω_{A}. Then $\operatorname{div}(F)=0$ in Ω_{A} and $F \cdot \nu=0$ on $\partial \Omega_{A}$. Let $\mathcal{H}^{1}\left(\Omega_{A}\right)$ be as in the proof of the curlPoincaré inequality for $V_{r}^{1}(\Omega)$. Now the estimate (2.41equation.2.4.41) is verified if
$F \in\left(\mathcal{H}^{1}(\Omega)\right)^{\perp} . L_{A}^{2}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$ is a closed subspace of $L^{2}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$ so $F \in\left(\mathcal{H}^{1}\left(\Omega_{A}\right)\right)^{\perp}$ if and only if F is orthogonal to $L_{A}^{2}\left(\Omega_{A} ; \mathbb{R}^{3}\right) \cap \mathcal{H}^{1}(\Omega)$. Moreover $f_{r} e_{r}+f_{z} e_{z}$ is poloidal, so it suffices to check that F is orthogonal to every field in $L_{A}^{2}\left(\Omega_{A} ; \mathbb{R}^{3}\right) \cap \mathcal{H}^{1}\left(\Omega_{A}\right)$ with zero toroidal component. Let $h \in L_{A}^{2}\left(\Omega_{A} ; \mathbb{R}^{3}\right) \cap \mathcal{H}^{1}\left(\Omega_{A}\right)$ with $h_{\theta}=0$. Then $\left.h\right|_{\Omega}$ is well-defined since h is actually smooth by Weyl's lemma. Moreover $\left.h\right|_{\Omega}$ is a poloidal field since $h_{\theta}=0$ and $\left.h\right|_{\Omega} \in \mathcal{H}_{\nu 0}(\Omega)$. Therefore $F \perp \mathcal{H}^{1}\left(\Omega_{A}\right)$ by the condition that $\left(f_{r} e_{r}+f_{z} e_{z}\right) \perp \mathcal{H}_{\nu 0}(\Omega)$. Then Theorem 5.1 from [3] and the density of $C_{z 0}^{\infty}(\bar{\Omega})$ in $V_{r}^{1}(\Omega)$ and $C^{\infty}(\bar{\Omega})$ imply the estimate (2.41equation.2.4.41).

Chapter 3

Linear Axisymmetric Laplacian

Eigenproblems

3.1 Introduction

Let Δ denote the axisymmetric Laplacian in cylindrical coordinates, i.e.

$$
\begin{equation*}
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial z^{2}} . \tag{3.1}
\end{equation*}
$$

This chapter will study eigenproblems and boundary value problems for the operators $-\Delta$ and $-\Delta+r^{-2}$. If e_{θ} is the azimuthal unit vector in cylindrical coordinates and ψ is a smooth function then, in cylindrical coordinates

$$
\begin{equation*}
\operatorname{curl}\left(\operatorname{curl}\left(\psi e_{\theta}\right)\right)=\left(-\Delta \psi+\frac{1}{r^{2}} \psi\right) e_{\theta} . \tag{3.2}
\end{equation*}
$$

3.2 Eigenproblems for $-\Delta$

3.2.1 The Dirichlet Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function $\phi \neq 0$ and real number λ such that

$$
\left\{\begin{align*}
-\Delta \phi=\lambda \phi & \text { in } \Omega \tag{3.3}\\
\phi=0 & \text { on } \Gamma .
\end{align*}\right.
$$

If such a pair (ϕ, λ) exists and ϕ is smooth, then we may integrate by parts to obtain that

$$
\begin{equation*}
\int_{\Omega} \nabla \phi \cdot \nabla \psi r d r d z=\lambda \int_{\Omega} \phi \psi r d r d z \quad \text { for all } \psi \in C_{\Gamma 0}^{\infty}(\Omega) \tag{3.4}
\end{equation*}
$$

Both sides of (3.4The Dirichlet Eigenvalue Problemequation.3.2.4) are well-defined if $\phi, \psi \in H_{r, 0}^{1}(\Omega)$, hence we consider the problem of finding nontrivial $(\phi, \lambda) \in H_{r, 0}^{1}(\Omega) \times$ \mathbb{R} such that

$$
\begin{equation*}
\int_{\Omega} \nabla \phi \cdot \nabla \psi r d r d z=\lambda \int_{\Omega} \phi \psi r d r d z \quad \text { for all } \psi \in H_{r, 0}^{1}(\Omega) \tag{3.5}
\end{equation*}
$$

Definition. If $(\phi, \lambda) \in H_{r, 0}^{1}(\Omega) \times \mathbb{R}$ is a nontrivial solution of (3.5The Dirichlet Eigenvalue Probleme then ϕ is a Dirichlet eigenfunction of $-\Delta$ on Ω corresponding to the Laplacian Dirichlet eigenvalue λ.

Let $a: H_{r, 0}^{1}(\Omega) \times H_{r, 0}^{1}(\Omega) \rightarrow \mathbb{R}$ be the bilinear form

$$
\begin{equation*}
a(\phi, \psi)=\int_{\Omega} \nabla \phi \cdot \nabla \psi r d r d z \tag{3.6}
\end{equation*}
$$

and let $\mathcal{A}: H_{r, 0}^{1}(\Omega) \rightarrow \mathbb{R}$ denote the quadratic form associated to a

$$
\begin{equation*}
\mathcal{A}(\phi)=a(\phi, \phi)=\int_{\Omega}|\nabla \phi|^{2} r d r d z \tag{3.7}
\end{equation*}
$$

so (3.5The Dirichlet Eigenvalue Problemequation.3.2.5) says

$$
\begin{equation*}
a(\phi, \psi)=\lambda\langle\phi, \psi\rangle_{L_{r}^{2}} \quad \text { for all } \psi \in H_{r, 0}^{1}(\Omega) \tag{3.8}
\end{equation*}
$$

Theorem 3.2.1. The smallest Dirichlet eigenvalue λ_{1} of $-\Delta$ is strictly positive and is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\lambda_{1}}=\sup \int_{\Omega}|\phi|^{2} r d r d z \quad \text { s.t. } \int_{\Omega}|\nabla \phi|^{2} r d r d z=1, \phi \in H_{r, 0}^{1}(\Omega) \tag{3.9}
\end{equation*}
$$

Proof. Let $C_{1}=\left\{\phi \in H_{r, 0}^{1}(\Omega): \mathcal{A}(\phi)=1\right\}$ and consider the problem of finding

$$
\begin{equation*}
\beta_{1}=\sup _{\phi \in C_{1}}\|\phi\|_{L_{r}^{2}} \tag{3.10}
\end{equation*}
$$

The Cauchy-Schwarz inequality implies that $|a(\phi, \psi)| \leq\|\phi\|_{H_{r}^{1}}\|\psi\|_{H_{r}^{1}}$ for all $\phi, \psi \in H_{r, 0}^{1}(\Omega)$ so a is continuous on $H_{r, 0}^{1}(\Omega) \times H_{r, 0}^{1}(\Omega)$. The Poincaré inequality for $H_{r, 0}^{1}(\Omega)$ implies that there is a $C>0$ such that $C\|\phi\|_{H_{r}^{1}}^{2} \leq \mathcal{A}(\phi)$ for all $\phi \in H_{r, 0}^{1}(\Omega)$ so a is also coercive on $H_{r, 0}^{1}(\Omega) .\|\phi\|_{L_{r}^{2}}$ is a norm on $H_{r, 0}^{1}(\Omega) \subset L_{r}^{2}(\Omega)$ so $\|\phi\|_{L_{r}^{2}}^{2}>0$ for all nonzero ϕ in $H_{r, 0}^{1}(\Omega)$ and $\|\phi\|_{L_{r}^{2}}^{2}=0$ only if $\phi=0$. Moreover the embedding $H_{r}^{1}(\Omega) \rightarrow L_{r}^{2}(\Omega)$ is compact. Then we may apply Theorem 3.1 in [4] to conclude that:
(i) $\beta_{1}>0$ is finite;
(ii) there are maximizers $\pm \hat{\phi}_{1}$ of $\|\cdot\|_{L_{r}^{2}}^{2}$ on C_{1} where β_{1} is attained;
(iii) $\hat{\phi}_{1}$ is a Dirichlet eigenfunction of $-\Delta$ corresponding to the eigenvalue $\lambda_{1}:=$ $1 / \beta_{1}$, i.e.

$$
\int_{\Omega} \nabla \hat{\phi}_{1} \cdot \nabla \psi r d r d z=\lambda_{1} \int_{\Omega} \hat{\phi}_{1} \psi r d r d z, \quad \forall \psi \in H_{r, 0}^{1}(\Omega)
$$

(iv) λ_{1} is the smallest eigenvalue and

$$
\int_{\Omega}|\phi|^{2} r d r d z \leq \frac{1}{\lambda_{1}} \int_{\Omega}|\nabla \phi|^{2} r d r d z, \quad \forall \phi \in H_{r, 0}^{1}(\Omega) .
$$

The above proof shows that $a(\cdot, \cdot)$ defines an inner product on $H_{r, 0}^{1}(\Omega)$. The variational principle for λ_{1} may be iterated to generate a sequence of eigenfunctions that are orthonormal with respect to the bilinear form a. Let $\left\{\hat{\phi}_{1}, \hat{\phi}_{2}, \ldots, \hat{\phi}_{k-1}\right\}$ be $k-1$ eigenfunctions corresponding to the eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k-1}$.

Theorem 3.2.2. (i) The k th Dirichlet eigenvalue λ_{k} of $-\Delta$ is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\lambda_{k}}=\sup \int_{\Omega}|\phi|^{2} r d r d z \tag{3.11}
\end{equation*}
$$

for all $\phi \in H_{r, 0}^{1}(\Omega)$ such that $\int_{\Omega}|\nabla \phi|^{2} r d r d z=1$ and $\int_{\Omega} \nabla \phi \cdot \nabla \hat{\phi}_{j} r d r d z=0$ for $j=1, \ldots, k-1$. We also have $\lambda_{k} \geq \lambda_{k-1}$ and

$$
\begin{equation*}
\int_{\Omega}|\phi|^{2} r d r d z \leq \frac{1}{\lambda_{k}} \int_{\Omega}|\nabla \phi|^{2} r d r d z \tag{3.12}
\end{equation*}
$$

for all $\phi \in H_{r, 0}^{1}(\Omega)$ such that $\int_{\Omega} \nabla \phi \cdot \nabla \hat{\phi}_{j} r d r d z=0$ for $j=1, \ldots, k-1$.
(ii) $\lambda_{k} \rightarrow \infty$ as $k \rightarrow \infty$ and the set of eigenfunctions $\mathcal{E}:=\left\{\hat{\phi}_{k}: k \in \mathbb{N}\right\}$ is an orthonormal basis of $H_{r, 0}^{1}(\Omega)$ with respect to the inner product $a(\phi, \psi)=$ $\int_{\Omega} \nabla \phi \cdot \nabla \psi r d r d z$.
(iii) The normalized eigenfunctions $\tilde{\mathcal{E}}:=\left\{\tilde{\phi}_{k}:=\lambda_{k}^{-1 / 2} \hat{\phi}_{k}: k \in \mathbb{N}\right\}$ form an orthonormal basis of $L_{r}^{2}(\Omega)$ with respect to the standard inner product.

Proof. The bilinear form a is continuous and coercive, the inner product $\langle\phi, \psi\rangle_{L_{r}^{2}}$ is continuous, and $\|\phi\|_{L_{r}^{2}}^{2}>0$ for all $\phi \in H_{r, 0}^{1}(\Omega)$ so we may apply Theorem 4.2 of [4] to obtain the aforementioned variational characterization of λ_{k}. The embedding $H_{r, 0}^{1}(\Omega) \hookrightarrow L_{r}^{2}(\Omega)$ is compact with dense range since Ω is bounded, therefore Theorem 4.3 and Theorem 4.6 of [4], respectively, imply that \mathcal{E} is an orthonormal basis of $H_{r, 0}^{1}(\Omega)$ with respect to the inner product a and that $\tilde{\mathcal{E}}$ is an orthonormal basis of $L_{r}^{2}(\Omega)$ with respect to the standard inner product.

Example. Let $\Omega_{A}=B_{R}(0)=\left\{x \in \mathbb{R}^{3}:|x|<R\right\}$ be the ball of radius R centered at the origin. Then $\Omega=\left\{(r, z) \in \mathbb{R}_{+}^{2}: r^{2}+z^{2}<R\right\}$. The Dirichlet eigenfunctions of $-\Delta$ on Ω are

$$
\begin{align*}
\phi_{\ell, n}(r, z)= & \left(\frac{R}{\tilde{j}_{\ell, n} \sqrt{r^{2}+z^{2}}}\right) J_{\ell+1 / 2}\left(\frac{\tilde{j}_{\ell, n} \sqrt{r^{2}+z^{2}}}{R}\right) P_{\ell}\left(\frac{r}{\sqrt{r^{2}+z^{2}}}\right) \tag{3.13}\\
& \text { for } \ell=0,1,2, \ldots \quad \text { and } n=1,2,3, \ldots
\end{align*}
$$

where $J_{\ell+1 / 2}$ is the half-integer Bessel function of the first kind, $\tilde{j}_{\ell, n}$ is the nth positive root of $J_{\ell+1 / 2}$, and P_{ℓ} is the Legendre polynomial of degree ℓ. The Dirichlet eigenvalues are

$$
\begin{equation*}
\left(\frac{\tilde{j}_{\ell, n}}{R}\right)^{2} \quad \text { for } \ell=0,1,2, \ldots \quad \text { and } n=1,2,3, \ldots \tag{3.14}
\end{equation*}
$$

3.2.2 The Neumann Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function $\phi \neq 0$ and real number λ such that

$$
\left\{\begin{array}{c}
-\Delta \phi=\lambda \phi \quad \text { in } \Omega \tag{3.15}\\
D_{\nu} \phi=0 \quad \text { on } \Gamma
\end{array}\right.
$$

Here $D_{\nu} \phi=\nabla \phi \cdot \nu$ is the normal derivative of ϕ. If such a pair (ϕ, λ) exists and ϕ is smooth, then we may integrate by parts to obtain that

$$
\begin{equation*}
\int_{\Omega} \nabla \phi \cdot \nabla \psi r d r d z=\lambda \int_{\Omega} \phi \psi r d r d z \quad \text { for all } \psi \in C^{\infty}(\bar{\Omega}) \tag{3.16}
\end{equation*}
$$

Both sides of (3.16The Neumann Eigenvalue Problemequation.3.2.16) are well-defined if $\phi, \psi \in H_{r}^{1}(\Omega)$, hence we consider the problem of finding nontrivial $(\phi, \lambda) \in$ $H_{r}^{1}(\Omega) \times \mathbb{R}$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla \phi \cdot \nabla \psi r d r d z=\lambda \int_{\Omega} \phi \psi r d r d z \quad \text { for all } \psi \in H_{r}^{1}(\Omega) \tag{3.17}
\end{equation*}
$$

Definition. If $(\phi, \lambda) \in H_{r}^{1}(\Omega) \times \mathbb{R}$ is a nontrivial (3.17The Neumann Eigenvalue Problemequation.3. then ϕ is a Neumann eigenfunction of $-\Delta$ on Ω corresponding to the Laplacian Neumann eigenvalue λ.

We observe that $\phi_{0}^{(N)} \equiv 1$ is a Neumann eigenfunction of $-\Delta$ corresponding to the Neumann eigenvalue $\lambda_{0}=0$. Let $H_{r, m}^{1}(\Omega)$ be the subspace of $H_{r}^{1}(\Omega)$ consisting of functions f such that $\int_{\Omega} f r d r d z=0$. The existence of Neumann eigenfunctions $\mathcal{E}^{(N)}:=\left\{\hat{\phi}_{k}^{(N)}: k \in \mathbb{N}\right\}$ and a nondecreasing sequence of strictly positive Neumann eigenvalues $\left\{\lambda_{k}^{(N)}: k \in \mathbb{N}\right\}$ such that $\mathcal{E}^{(N)}$ is a orthonormal basis of $H_{r, m}^{1}(\Omega)$ with respect to the inner product $a(\phi, \psi)$, and the normalized eigenfunctions $\tilde{\mathcal{E}}^{(N)}:=$ $\left\{\tilde{\phi}_{k}^{(N)}:=\left(\lambda_{k}^{(N)}\right)^{-1 / 2} \hat{\phi}_{k}^{(N)}: k \in \mathbb{N}\right\}$ form an orthonormal basis of $L_{r}^{2}(\Omega)$ with respect to the standard inner product is proved very similarly as the case for the Dirichlet eigenproblem.

Theorem 3.2.3. The smallest nonzero eigenvalue $\lambda_{1}^{(N)}$ of (3.17The Neumann Eigenvalue Probleme is strictly positive and is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\lambda_{1}^{(N)}}=\sup \int_{\Omega}|\phi|^{2} r d r d z \quad \text { s.t. } \int_{\Omega}|\nabla \phi|^{2} r d r d z=1, \phi \in H_{r, m}^{1}(\Omega) \tag{3.18}
\end{equation*}
$$

Proof. Let $C_{1}^{(N)}=\left\{\phi \in H_{r, m}^{1}(\Omega): \mathcal{A}(\phi)=1\right\}$ and consider the problem of finding

$$
\begin{equation*}
\beta_{1}^{(N)}=\sup _{\phi \in C_{1}^{(N)}}\|\phi\|_{L_{r}^{2}} . \tag{3.19}
\end{equation*}
$$

The Cauchy-Schwarz inequality implies that $|a(\phi, \psi)| \leq\|\phi\|_{H_{r}^{1}}\|\psi\|_{H_{r}^{1}}$ for all $\phi, \psi \in H_{r, m}^{1}(\Omega)$ so a is continuous on $H_{r, m}^{1}(\Omega) \times H_{r, m}^{1}(\Omega)$. The Poincaré inequality for $H_{r}^{1}(\Omega)$ implies that there is a $C>0$ such that $C\|\phi\|_{H_{r}^{1}}^{2} \leq \mathcal{A}(\phi)$ for all $\phi \in H_{r, m}^{1}(\Omega)$ so a is also coercive on $H_{r, m}^{1}(\Omega) .\|\phi\|_{L_{r}^{2}}$ is a norm on $H_{r, m}^{1}(\Omega) \subset L_{r}^{2}(\Omega)$ so $\|\phi\|_{L_{r}^{2}}^{2}>0$ for all nonzero ϕ in $H_{r, m}^{1}(\Omega)$ and $\|\phi\|_{L_{r}^{2}}^{2}=0$ only if $\phi=0$. Then we may apply Theorem 3.1 in [4] to conclude that:
(i) $\beta_{1}^{(N)}>0$ is finite;
(ii) there are maximizers $\pm \hat{\phi}_{1}^{(N)}$ of $\|\cdot\|_{L_{r}^{2}}^{2}$ on $C_{1}^{(N)}$ where $\beta_{1}^{(N)}$ is attained;
(iii) $\hat{\phi}_{1}^{(N)}$ is a Neumann eigenfunction of $-\Delta$ corresponding to the eigenvalue $\lambda_{1}^{(N)}:=$ $1 / \beta_{1}^{(N)}$, i.e.

$$
\int_{\Omega} \nabla \hat{\phi}_{1}^{(N)} \cdot \nabla \psi r d r d z=\lambda_{1} \int_{\Omega} \hat{\phi}_{1}^{(N)} \psi r d r d z, \quad \forall \psi \in H_{r, m}^{1}(\Omega) ;
$$

(iv) $\lambda_{1}^{(N)}$ is the smallest nonzero Neumann eigenvalue of $-\Delta$ and

$$
\int_{\Omega}|\phi|^{2} r d r d z \leq \frac{1}{\lambda_{1}^{(N)}} \int_{\Omega}|\nabla \phi|^{2} r d r d z, \quad \forall \phi \in H_{r, m}^{1}(\Omega)
$$

Theorem 3.2.4. (i) The k th eigenvalue $\lambda_{k}^{(N)}$ of (3.17The Neumann Eigenvalue Problemequation is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\lambda_{k}^{(N)}}=\sup \int_{\Omega}|\phi|^{2} r d r d z \tag{3.20}
\end{equation*}
$$

for all $\phi \in H_{r, m}^{1}(\Omega)$ such that $\int_{\Omega}|\nabla \phi|^{2} r d r d z=1$ and $\int_{\Omega} \nabla \phi \cdot \nabla \hat{\phi}_{j}^{(N)} r d r d z=0$ for $j=1, \ldots, k-1$. We also have $\lambda_{k}^{(N)} \geq \lambda_{k-1}^{(N)}$ and

$$
\begin{equation*}
\int_{\Omega}|\phi|^{2} r d r d z \leq \frac{1}{\lambda_{k}^{(N)}} \int_{\Omega}|\nabla \phi|^{2} r d r d z \tag{3.21}
\end{equation*}
$$

for all $\phi \in H_{r, m}^{1}(\Omega)$ such that $\int_{\Omega} \nabla \phi \cdot \nabla \hat{\phi}_{j}^{(N)} r d r d z=0$ for $j=1, \ldots, k-1$.
(ii) $\lambda_{k}^{(N)} \rightarrow \infty$ as $k \rightarrow \infty$ and the set of eigenfunctions $\mathcal{E}^{(N)}=\left\{\hat{\phi}_{k}^{(N)}: k \in \mathbb{N}\right\}$ is an orthonormal basis of $H_{r, m}^{1}(\Omega)$ with respect to the inner product $a(\phi, \psi)=$ $\int_{\Omega} \nabla \phi \cdot \nabla \psi r d r d z$.
(iii) The normalized eigenfunctions $\tilde{\mathcal{E}}^{(N)}:=\left\{\tilde{\phi}_{k}^{(N)}:=\left(\lambda_{k}^{(N)}\right)^{-1 / 2} \hat{\phi}_{k}^{(N)}: k \in \mathbb{N}\right\}$ form an orthonormal basis of $L_{r}^{2}(\Omega)$ with respect to the standard inner product.

3.2.3 The Harmonic Steklov Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function $\phi \neq 0$ and real number δ such that

$$
\left\{\begin{array}{c}
\Delta \phi=0 \quad \text { in } \Omega \tag{3.22}\\
D_{\nu} \phi=\delta \phi \quad \text { on } \Gamma .
\end{array}\right.
$$

If such a pair (ϕ, δ) exists and ϕ is smooth on $\Omega \cup \Gamma$, then we may integrate by parts to obtain that

$$
\begin{equation*}
\int_{\Omega} \nabla \phi \cdot \nabla \psi r d r d z=\delta \int_{\Gamma} \phi \psi r d s \quad \text { for all } \psi \in C^{\infty}(\bar{\Omega}) \tag{3.23}
\end{equation*}
$$

Both sides of (3.23The Harmonic Steklov Eigenvalue Problemequation.3.2.23) are well-defined if $\phi, \psi \in H_{r}^{1}(\Omega)$, hence we consider the problem of finding nontrivial
$(\phi, \delta) \in H_{r}^{1}(\Omega) \times \mathbb{R}$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla \phi \cdot \nabla \psi r d r d z=\delta \int_{\Gamma} \phi \psi r d s \quad \text { for all } \psi \in H_{r}^{1}(\Omega) \tag{3.24}
\end{equation*}
$$

Definition. If $(\phi, \delta) \in H_{r}^{1}(\Omega) \times \mathbb{R}$ is a nontrivial solution of (3.24The Harmonic Steklov Eigenvalue I then ϕ is a harmonic Steklov eigenfunction on Ω corresponding to the harmonic Steklov eigenvalue δ.

We see that $\phi_{0} \equiv$ const. is a harmonic Steklov eigenfunction corresponding to the harmonic Steklov eigenvalue $\delta_{0}=0$. The remaining harmonic Steklov eigenvalues are characterized by variational principles over $H_{r, m}^{1}(\Omega)$.

Theorem 3.2.5. The smallest strictly positive harmonic Steklov eigenvalue δ_{1} is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\delta_{1}}=\sup \int_{\Gamma}|\phi|^{2} r d s \quad \text { s.t. } \int_{\Omega}|\nabla \phi|^{2} r d r d z=1, \phi \in H_{r, m}^{1}(\Omega) . \tag{3.25}
\end{equation*}
$$

Proof. Let $C_{1}^{(N)}=\left\{\phi \in H_{r, m}^{1}(\Omega): \mathcal{A}(\phi)=1\right\}$ as before and consider the problem of finding

$$
\begin{equation*}
\epsilon_{1}=\sup _{\phi \in C_{1}^{(N)}}\|\phi\|_{L_{r}^{2}(\Gamma)}^{2} \tag{3.26}
\end{equation*}
$$

a is continuous on $H_{r, m}^{1}(\Omega) \times H_{r, m}^{1}(\Omega)$ and coercive on $H_{r, m}^{1}(\Omega) .\|\phi\|_{L_{r}^{2}(\Gamma)}$ is strictly positive for some $\psi \in H_{r, m}^{1}(\Omega)$ since $H_{r, m}(\Omega) \neq H_{r, 0}^{1}(\Omega)$. Moreover, the trace γ : $H_{r}^{1}(\Omega) \rightarrow L_{r}^{2}(\Gamma)$ is compact. Then we may apply Theorem 3.1 in [4] to conclude that:
(i) $\epsilon_{1}>0$ is finite;
(ii) there are maximizers $\pm \hat{\chi}_{1}$ of $\|\cdot\|_{L_{r}^{2}}^{2}$ on $C_{1}^{(N)}$ where ϵ_{1} is attained;
(iii) $\hat{\chi}_{1}$ is a harmonic Steklov eigenfunction corresponding to the eigenvalue $\delta_{1}:=$ $1 / \epsilon_{1}$, i.e.

$$
\int_{\Omega} \nabla \hat{\chi}_{1} \cdot \nabla \psi r d r d z=\delta_{1} \int_{\Gamma} \hat{\chi}_{1} \psi r d r d z, \quad \forall \psi \in H_{r, m}^{1}(\Omega)
$$

(iv) δ_{1} is the smallest nonzero harmonic Steklov eigenvalue and

$$
\int_{\Gamma}|\phi|^{2} r d s \leq \frac{1}{\delta_{1}} \int_{\Omega}|\nabla \phi|^{2} r d r d z, \quad \forall \phi \in H_{r, m}^{1}(\Omega)
$$

The bilinear form a satisfies the conditions necessary to apply Theorem 4.2 of [4] to obtain the following result.

Theorem 3.2.6. (i) The ℓ th eigenvalue δ_{ℓ} of (3.24The Harmonic Steklov Eigenvalue Problemeq is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\delta_{\ell}}=\sup \int_{\Gamma}|\phi|^{2} r d s \tag{3.27}
\end{equation*}
$$

for all $\phi \in H_{r, m}^{1}(\Omega)$ such that $\int_{\Omega}|\nabla \phi|^{2} r d r d z=1$ and $\int_{\Omega} \nabla \phi \cdot \nabla \hat{\chi}_{j} r d r d z=0$ for $j=1, \ldots, k-1$. We also have $\delta_{\ell} \geq \delta_{\ell-1}$ and

$$
\begin{equation*}
\int_{\Gamma}|\phi|^{2} r d s \leq \frac{1}{\delta_{\ell}} \int_{\Omega}|\nabla \phi|^{2} r d r d z \tag{3.28}
\end{equation*}
$$

for all $\phi \in H_{r, m}^{1}(\Omega)$ such that $\int_{\Omega} \nabla \phi \cdot \nabla \hat{\chi}_{j} r d r d z=0$ for $j=1, \ldots, \ell-1$.

3.3 Eigenproblems for $-\Delta+\frac{1}{r^{2}}$

3.3.1 The Dirichlet Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function $\phi \neq 0$ and real number $\tilde{\lambda}$ such that

$$
\left\{\begin{align*}
-\Delta \psi+\frac{1}{r^{2}} \psi & =\tilde{\lambda} \psi \tag{3.29}
\end{align*} \quad \text { in } \Omega,\right.
$$

The weak formulation is obtained using the usual approach. The weak form of (3.29The Dirichlet Eigenvalue Problemequation.3.3.29) is to find nontrivial $(\psi, \tilde{\lambda}) \in$ $V_{r, 0}^{1}(\Omega) \times \mathbb{R}$ satisfying

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z=\tilde{\lambda} \int_{\Omega} \psi \chi r d r d z \quad \text { for all } \chi \in V_{r, 0}^{1}(\Omega) \tag{3.30}
\end{equation*}
$$

Definition. If $(\psi, \tilde{\lambda}) \in V_{r, 0}^{1}(\Omega) \times \mathbb{R}$ is a nontrivial solution of (3.30The Dirichlet Eigenvalue Problem then ψ is a Dirichlet eigenfunction of $-\Delta+r^{-2}$ on Ω corresponding to the Dirichlet eigenvalue $\tilde{\lambda}$.

Let $b: V_{r}^{1}(\Omega) \times V_{r}^{1}(\Omega) \rightarrow \mathbb{R}$ be the bilinear form

$$
\begin{equation*}
b(\psi, \chi)=\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z \tag{3.31}
\end{equation*}
$$

and let $\mathcal{B}: V_{r}^{1}(\Omega) \rightarrow \mathbb{R}$ denote the quadratic form associated to b

$$
\begin{equation*}
\mathcal{B}(\psi)=b(\psi, \psi)=\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z \tag{3.32}
\end{equation*}
$$

so (3.30The Dirichlet Eigenvalue Problemequation.3.3.30) says

$$
\begin{equation*}
b(\psi, \chi)=\tilde{\lambda}\langle\psi, \chi\rangle_{L_{r}^{2}} \quad \text { for all } \chi \in V_{r}^{1}(\Omega) \tag{3.33}
\end{equation*}
$$

Theorem 3.3.1. The smallest eigenvalue $\tilde{\lambda}_{1}$ of (3.30The Dirichlet Eigenvalue Problemequation.3.3 is strictly positive and is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\tilde{\lambda}_{1}}=\sup \int_{\Omega}|\psi|^{2} r d r d z \quad \text { s.t. } \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z=1, \psi \in V_{r, 0}^{1}(\Omega) . \tag{3.34}
\end{equation*}
$$

Proof. Denote $S_{1}=\left\{\psi \in V_{r, 0}^{1}(\Omega): \mathcal{B}(\psi)=1\right\}$ and consider the problem of finding

$$
\begin{equation*}
\tilde{\beta}_{1}=\sup _{\psi \in S_{1}}\|\psi\|_{L_{r}^{2}}^{2}=\sup _{\psi \in S_{1}} \int_{\Omega}|\psi|^{2} r d r d z . \tag{3.35}
\end{equation*}
$$

If $\psi, \chi \in V_{r, 0}^{1}(\Omega)$, then

$$
\begin{align*}
b(\psi, \chi) & =\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z \\
& =\int_{\Omega}\left(\nabla \psi \cdot \nabla \chi+\frac{\psi \chi}{r^{2}}\right) r d r d z \tag{3.36}\\
& \leq\|\nabla \psi\|_{L_{r}^{2}}\|\nabla \chi\|_{L_{r}^{2}}+\|\psi\|_{L_{-1}^{2}}\|\chi\|_{L_{-1}^{2}} \\
& \leq\|\psi\|_{V_{r}^{1}}\|\chi\|_{V_{r}^{1}}
\end{align*}
$$

so b is a continuous bilinear form on $V_{r, 0}^{1}(\Omega) \times V_{r, 0}^{1}(\Omega)$. The Poincaré-curl inequality for $V_{r, 0}^{1}(\Omega)$ asserts that \mathcal{B} is coercive on $V_{r, 0}^{1}(\Omega) \cdot\|\cdot\|_{L_{r}^{2}}$ is a norm on $V_{r, 0}^{1}(\Omega) \subset L_{r}^{2}(\Omega)$ so $\|\psi\|_{L_{r}^{2}}>0$ for all nonzero $\psi \in V_{r, 0}^{1}(\Omega)$ and $\|\psi\|_{L_{r}^{2}}=0$ if and only if $\psi=0$. An application of Theorem 3.1 in [4] shows that
(i) $\tilde{\beta}_{1}>0$ is finite;
(ii) there are maximizers $\pm \hat{\psi}_{1}$ of $\|\cdot\|_{L_{r}^{2}}^{2}$ on S_{1} where $\tilde{\beta}_{1}$ is attained;
(iii) $\hat{\psi}_{1}$ is an eigenfunction corresponding to the eigenvalue $\tilde{\lambda}_{1}:=1 / \tilde{\beta}_{1}$, i.e.

$$
\int_{\Omega} \operatorname{curl}\left(\hat{\psi}_{1} e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z=\tilde{\lambda}_{1} \int_{\Omega} \hat{\psi}_{1} \chi r d r d z, \quad \forall \chi \in V_{r, 0}^{1}(\Omega) ;
$$

(iv) $\tilde{\lambda}_{1}$ is the smallest eigenvalue and

$$
\int_{\Omega}|\psi|^{2} r d r d z \leq \frac{1}{\tilde{\lambda}_{1}} \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z, \quad \forall \psi \in V_{r, 0}^{1}(\Omega) .
$$

This variational principle may be iterated to generate a sequence of eigenfunctions that are orthonormal with respect to the bilinear form b. Let $\left\{\hat{\psi}_{1}, \hat{\psi}_{2}, \ldots, \hat{\psi}_{k-1}\right\}$ be $k-1$ eigenfunctions corresponding to the eigenvalues $\tilde{\lambda}_{1} \leq \tilde{\lambda}_{2} \leq \ldots \leq \tilde{\lambda}_{k-1}$.

Theorem 3.3.2. (i) The k th eigenvalue of (3.30The Dirichlet Eigenvalue Problemequation.3.3.3 is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\tilde{\lambda}_{k}}=\sup \int_{\Omega}|\psi|^{2} r d r d z \tag{3.37}
\end{equation*}
$$

for all $\psi \in V_{r, 0}^{1}(\Omega)$ such that $\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z=1$ and $\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right)$. $\operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right) r d r d z=0$ for $j=1, \ldots, k-1$. We also have $\tilde{\lambda}_{k} \geq \tilde{\lambda}_{k-1}$ and

$$
\begin{equation*}
\int_{\Omega}|\psi|^{2} r d r d z \leq \frac{1}{\tilde{\lambda}_{k}} \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z \tag{3.38}
\end{equation*}
$$

for all $\psi \in V_{r, 0}^{1}(\Omega)$ such that $\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right) r d r d z=0$ for $j=$ $1, \ldots, k-1$.
(ii) $\tilde{\lambda}_{k} \rightarrow \infty$ as $k \rightarrow \infty$ and the set of eigenfunctions $\mathcal{F}:=\left\{\hat{\psi}_{k}: k \in \mathbb{N}\right\}$ is an orthonormal basis of $V_{r, 0}^{1}(\Omega)$ with respect to the inner product $b(\psi, \chi)=$ $\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z$.
(iii) The normalized eigenfunctions $\tilde{\mathcal{F}}:=\left\{\tilde{\psi}_{k}:=\tilde{\lambda}_{k}^{-1 / 2} \hat{\psi}_{k}: k \in \mathbb{N}\right\}$ form an orthonormal basis of $L_{r}^{2}(\Omega)$ with respect to the standard inner product.

Proof. This is proved very similarly to the case of the Dirichlet eigenproblem for $-\Delta$, so we omit the details of this proof.

3.3.2 A Conormal Neumann Eigenvalue Problem

Consider the conormal Neumann eigenvalue problem of finding a nonzero function ψ and $\lambda \in \mathbb{R}$ such that

$$
\left\{\begin{align*}
&-\Delta \psi+\frac{1}{r^{2}} \psi=\lambda \psi \quad \text { in } \Omega \tag{3.39}\\
& \operatorname{curl}\left(\psi e_{\theta}\right) \wedge \nu=0 \quad \text { on } \Gamma
\end{align*}\right.
$$

We call this a conormal Neumann eigenvalue problem since formally

$$
\begin{equation*}
\operatorname{curl}\left(\psi e_{\theta}\right) \wedge \nu=\frac{1}{r} \nabla(r \psi) \cdot \nu \tag{3.40}
\end{equation*}
$$

so the boundary condition $\operatorname{curl}\left(\psi e_{\theta}\right) \wedge \nu=0$ is equivalent to $\nabla(r \psi) \cdot \nu=0$. The weak form of this eigenvalue problem is to find nontrivial $\psi \in V_{r}^{1}(\Omega)$ and $\lambda \in \mathbb{R}$ such that

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z=\lambda \int_{\Omega} \psi \chi r d r d z \quad \text { for all } \chi \in V_{r}^{1}(\Omega) . \tag{3.41}
\end{equation*}
$$

The existence of eigenfunctions $\mathcal{F}^{(N)}:=\left\{\hat{\psi}_{k}^{(N)}: k \in \mathbb{N}\right\}$ and a nondecreasing sequence of strictly positive eigenvalues $\left\{\tilde{\lambda}_{k}^{(N)}: k \in \mathbb{N}\right\}$ such that $\mathcal{F}^{(N)}$ is a orthonormal basis of $V_{r}^{1}(\Omega)$ with respect to the inner product $b(\psi, \chi)$, and the normalized eigenfunctions $\tilde{\mathcal{F}}^{(N)}:=\left\{\tilde{\psi}_{k}^{(N)}:=\left(\tilde{\lambda}_{k}^{(N)}\right)^{-1 / 2} \hat{\psi}_{k}^{(N)}: k \in \mathbb{N}\right\}$ form an orthonormal basis of $L_{r}^{2}(\Omega)$ with respect to the standard inner product is proved very similarly as the case for the Dirichlet eigenproblem for $-\Delta+r^{-2}$. We state the results for clarity, but omit the proofs as they are very similar. Interestingly, this Neumann eigenproblem has no zero eigenvalue.

Theorem 3.3.3. The smallest eigenvalue $\tilde{\lambda}_{1}^{(N)}$ of (3.41A Conormal Neumann Eigenvalue Probleme is strictly positive and is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\tilde{\lambda}_{1}^{(N)}}=\sup \int_{\Omega}|\psi|^{2} r d r d z \quad \text { s.t. } \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z=1, \psi \in V_{r}^{1}(\Omega) . \tag{3.42}
\end{equation*}
$$

Theorem 3.3.4. (i) The k th eigenvalue of (3.41A Conormal Neumann Eigenvalue Problemequa is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\tilde{\lambda}_{k}^{(N)}}=\sup \int_{\Omega}|\psi|^{2} r d r d z \tag{3.43}
\end{equation*}
$$

for all $\psi \in V_{r}^{1}(\Omega)$ such that $\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z=1$ and $\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right)$. $\operatorname{curl}\left(\hat{\psi}_{j}^{(N)} e_{\theta}\right) r d r d z=0$ for $j=1, \ldots, k-1$. We also have $\tilde{\lambda}_{k}^{(N)} \geq \tilde{\lambda}_{k-1}^{(N)}$ and

$$
\begin{equation*}
\int_{\Omega}|\psi|^{2} r d r d z \leq \frac{1}{\tilde{\lambda}_{k}^{(N)}} \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z \tag{3.44}
\end{equation*}
$$

for all $\psi \in V_{r}^{1}(\Omega)$ such that $\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\hat{\psi}_{j}^{(N)} e_{\theta}\right) r d r d z=0$ for $j=$ $1, \ldots, k-1$.
(ii) $\tilde{\lambda}_{k}^{(N)} \rightarrow \infty$ as $k \rightarrow \infty$ and the set of eigenfunctions $\mathcal{F}^{(N)}:=\left\{\hat{\psi}_{k}^{(N)}: k \in \mathbb{N}\right\}$ is an orthonormal basis of $V_{r}^{1}(\Omega)$ with respect to the inner product $b(\psi, \chi)=$ $\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z$.
(iii) The normalized eigenfunctions $\tilde{\mathcal{F}}^{(N)}:=\left\{\tilde{\psi}_{k}^{(N)}:=\left(\tilde{\lambda}_{k}^{(N)}\right)^{-1 / 2} \hat{\psi}_{k}^{(N)}: k \in \mathbb{N}\right\}$ form an orthonormal basis of $L_{r}^{2}(\Omega)$ with respect to the standard inner product.

3.3.3 The Curl-Harmonic Steklov Eigenvalue Problem

Consider the eigenvalue problem of finding a real-valued function $\psi \neq 0$ and real number $\tilde{\delta}$ such that

$$
\left\{\begin{align*}
-\Delta \psi+\frac{1}{r^{2}} \psi & =0 \quad \text { in } \Omega \tag{3.45}\\
\frac{1}{r} \frac{\partial(r \psi)}{\partial r} \nu_{r}+\frac{\partial \psi}{\partial z} \nu_{z} & =\tilde{\delta} \psi \quad \text { on } \Gamma
\end{align*}\right.
$$

If such a pair $(\psi, \tilde{\delta})$ exists and ψ is smooth, then we may integrate by parts to obtain that

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z=\tilde{\delta} \int_{\Gamma} \psi \chi r d s \quad \text { for all } \chi \in C_{z 0}^{\infty}(\bar{\Omega}) \tag{3.46}
\end{equation*}
$$

Both sides of (3.46The Curl-Harmonic Steklov Eigenvalue Problemequation.3.3.46) are well-defined if $\psi, \chi \in V_{r}^{1}(\Omega)$, hence we consider the problem of finding nontrivial $(\psi, \tilde{\delta}) \in V_{r}^{1}(\Omega) \times \mathbb{R}$ such that

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z=\tilde{\delta} \int_{\Gamma} \psi \chi r d s \quad \text { for all } \chi \in V_{r}^{1}(\Omega) \tag{3.47}
\end{equation*}
$$

Definition. If $(\psi, \tilde{\delta}) \in V_{r}^{1}(\Omega) \times \mathbb{R}$ is a nontrivial solution of (3.47The Curl-Harmonic Steklov Eigenv then ψ is a curl-harmonic Steklov eigenfunction on Ω corresponding to the curlharmonic Steklov eigenvalue $\tilde{\delta}$.

Since $\sqrt{\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z}$ defines a norm on $V_{r}^{1}(\Omega)$, we see that all curlharmonic Steklov eigenvalues are strictly positive. The first curl-harmonic Steklov eigenvalue is characterized by a variational principle over $V_{r}^{1}(\Omega)$.

Theorem 3.3.5. The smallest positive curl-harmonic Steklov eigenvalue $\tilde{\delta}_{1}$ is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\tilde{\delta}_{1}}=\sup \int_{\Gamma}|\psi|^{2} r d s \quad \text { s.t. } \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z=1, \psi \in V_{r}^{1}(\Omega) \tag{3.48}
\end{equation*}
$$

Proof. Let $S_{1}^{(C)}=\left\{\psi \in V_{r}^{1}(\Omega): \mathcal{B}(\phi)=1\right\}$ where \mathcal{B} is the quadratic form $\mathcal{B}(\psi)=$ $b(\psi, \psi)$ as before and consider the problem of finding

$$
\begin{equation*}
\tilde{\epsilon}_{1}=\sup _{\phi \in S_{1}^{(N)}}\|\psi\|_{L_{r}^{2}(\Gamma)}^{2} \tag{3.49}
\end{equation*}
$$

b is continuous on $V_{r}^{1}(\Omega) \times V_{r}^{1}(\Omega)$ and coercive on $V_{r}^{1}(\Omega)$ as $\sqrt{\mathcal{B}(\psi)}$ defines a norm on $V_{r}^{1}(\Omega) .\|\phi\|_{L_{r}^{2}(\Gamma)}$ is strictly positive for some $\psi \in V_{r}^{1}(\Omega)$ since $V_{r, 0}^{1}(\Omega)$ is a strict subset of $V_{r}^{1}(\Omega)$. Moreover, the trace $\gamma: V_{r}^{1}(\Omega) \rightarrow L_{r}^{2}(\Gamma)$ is compact. Then we may apply Theorem 3.1 in [4] to conclude that:
(i) $\tilde{\epsilon}_{1}>0$ is finite;
(ii) there are maximizers $\pm \hat{\chi}_{1}^{(C)}$ of $\|\cdot\|_{L_{r}^{2}}^{2}$ on $S_{1}^{(C)}$ where $\tilde{\epsilon}_{1}$ is attained;
(iii) $\hat{\chi}_{1}^{(C)}$ is a curl-harmonic Steklov eigenfunction corresponding to the eigenvalue $\tilde{\delta}_{1}:=1 / \tilde{\epsilon}_{1}$, i.e.

$$
\int_{\Omega} \operatorname{curl}\left(\hat{\chi}_{1}^{(C)} e_{\theta}\right) \cdot \operatorname{curl}\left(\psi e_{\theta}\right) r d r d z=\tilde{\delta}_{1} \int_{\Gamma} \hat{\chi}_{1}^{(C)} \psi r d r d z, \quad \forall \psi \in V_{r}^{1}(\Omega) ;
$$

(iv) $\tilde{\delta}_{1}$ is the smallest nonzero curl-harmonic Steklov eigenvalue and

$$
\int_{\Gamma}|\psi|^{2} r d s \leq \frac{1}{\tilde{\delta}_{1}} \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z, \quad \forall \psi \in V_{r}^{1}(\Omega)
$$

As before, we may again apply Theorem 4.2 of [4] to obtain the following.
Theorem 3.3.6. (i) The ℓ th eigenvalue $\tilde{\delta}_{\ell}$ of (3.47The Curl-Harmonic Steklov Eigenvalue Proble is characterized by the variational principle

$$
\begin{equation*}
\frac{1}{\tilde{\delta}_{\ell}}=\sup \int_{\Gamma}|\psi|^{2} r d s \tag{3.50}
\end{equation*}
$$

for all $\psi \in V_{r}^{1}(\Omega)$ such that $\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z=1$ and $\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right)$. $\operatorname{curl}\left(\hat{\chi}_{j}^{(C)} e_{\theta}\right) r d r d z=0$ for $j=1, \ldots, k-1$. We also have $\tilde{\delta}_{\ell} \geq \tilde{\delta}_{\ell-1}$ and

$$
\begin{equation*}
\int_{\Gamma}|\psi|^{2} r d s \leq \frac{1}{\tilde{\delta}_{\ell}} \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z \tag{3.51}
\end{equation*}
$$

for all $\psi \in V_{r}^{1}(\Omega)$ such that $\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\hat{\chi}_{j}^{(C)}\right) r d r d z=0$ for $j=$ $1, \ldots, \ell-1$.

Chapter 4

Linear Axisymmetric Laplacian

Boundary Value Problems

4.1 Introduction

This chapter is on boundary value problems for $-\Delta$ and $-\Delta+r^{-2}$ where Δ is the Laplacian in cylindrical coordinates

$$
\begin{equation*}
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial z^{2}} . \tag{4.1}
\end{equation*}
$$

These boundary value problems play a role in the characterization of the scalar potential and stream function in the orthogonal decompositions in Chapter 5.

4.2 Boundary Value Problems for $-\Delta$

4.2.1 The Dirichlet Problem for $-\Delta$

Homogenenous Boundary Data

Given a function f on Ω, consider the problem of finding a function $\phi: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\left\{\begin{align*}
-\Delta \phi=f & \text { in } \Omega \tag{4.2}\\
\phi=0 & \text { on } \Gamma .
\end{align*}\right.
$$

Let $f \in\left(H_{r, 0}^{1}(\Omega)\right)^{*}$. The weak form of (4.2Homogenenous Boundary Dataequation.4.2.2) is to find a function $\phi \in H_{r, 0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z=\langle f, \psi\rangle \quad \forall \psi \in H_{r, 0}^{1}(\Omega) \tag{4.3}
\end{equation*}
$$

Theorem 4.2.1. There is a unique $\phi \in H_{r, 0}^{1}(\Omega)$ satisfying (4.3Homogenenous Boundary Dataequati

Proof. The bilinear form $a(\phi, \psi):=\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z$ is clearly continuous over $H_{r, 0}^{1}(\Omega)$ and the Poincaré inequality for $H_{r, 0}^{1}(\Omega)$ implies that a is coercive over $H_{r, 0}^{1}(\Omega)$.

Therefore there is a unique $\phi \in H_{r, 0}^{1}(\Omega)$ satisfying (4.3Homogenenous Boundary Dataequation.4.2.3) by the Lax-Milgram theorem.

Corollary 4.2.2. Let $f \in\left(H_{r, 0}^{1}(\Omega)\right)^{*}$ and $\phi \in H_{r, 0}^{1}(\Omega)$ satisfy (4.3Homogenenous Boundary Dataequ Then

$$
\begin{equation*}
\|\nabla \phi\|_{L_{r}^{2}} \leq\left(1+\lambda_{1}^{-1}\right)^{1 / 2}\|f\|_{H_{r, 0}^{1}(\Omega)^{*}} \tag{4.4}
\end{equation*}
$$

where λ_{1} is the smallest Dirichlet eigenvalue of $-\Delta$.

Proof. Let $\phi \in H_{r, 0}^{1}(\Omega)$ satisfy (4.3Homogenenous Boundary Dataequation.4.2.3). We apply item (iv) from the proof of Theorem 3.2.1 to get

$$
\begin{align*}
\int_{\Omega}|\nabla \phi|^{2} r d r d z & =\langle f, \phi\rangle \\
& \leq\|f\|_{H_{r, 0}^{1}(\Omega)^{*}}\|\phi\|_{H_{r, 0}^{1}(\Omega)} \tag{4.5}\\
& =\|f\|_{H_{r, 0}^{1}(\Omega)^{*}}\left(\|\phi\|_{L_{r}^{2}}^{2}+\|\nabla \phi\|_{L_{r}^{2}}^{2}\right)^{1 / 2} \\
& \leq\|f\|_{H_{r, 0}^{1}(\Omega)^{*}}\left(1+\lambda_{1}^{-1}\right)^{1 / 2}\|\nabla \phi\|_{L_{r}^{2}}
\end{align*}
$$

which proves the claim.

Inhomogenenous boundary data

Given a function f on Ω and a function g on Γ, consider the problem of finding a function $\phi: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\left\{\begin{align*}
-\Delta \phi=f & \text { in } \Omega \tag{4.6}\\
\phi=g & \text { on } \Gamma .
\end{align*}\right.
$$

Let $f \in\left(H_{r, 0}^{1}(\Omega)\right)^{*}$ and $g \in \gamma\left(H_{r}^{1}(\Omega)\right)=H_{r}^{1 / 2}(\Gamma)$. We transform the inhomogenous problem to a homogenenous one by finding $\phi_{g} \in H_{r}^{1}(\Omega)$ such that $\gamma \phi=g$ in $L_{r}^{2}(\Gamma)$, and then consider finding $\tilde{\phi} \in H_{r, 0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}(\nabla \tilde{\phi} \cdot \nabla \psi) r d r d z=\langle f, \psi\rangle-\int_{\Omega}\left(\nabla \phi_{g} \cdot \nabla \psi\right) r d r d z \quad \forall \psi \in H_{r, 0}^{1}(\Omega) \tag{4.7}
\end{equation*}
$$

Theorem 4.2.3. Let $f \in\left(H_{r, 0}^{1}(\Omega)\right)^{*}$ and $g \in H_{r}^{1 / 2}(\Gamma)$. Let $\phi_{g} \in H_{r}^{1}(\Omega)$ such that $\gamma \phi_{g}=g$ in $L_{r}^{2}(\Gamma)$. Then there is a unique $\tilde{\phi} \in H_{r, 0}^{1}(\Omega)$ satisfying (4.7Inhomogenenous boundary data

Proof. For $\psi \in H_{r, 0}^{1}(\Omega)$, there is a $C>0$ independent of ψ such that

$$
\begin{align*}
\left|\int_{\Omega}\left(\nabla \phi_{g} \cdot \nabla \psi\right) r d r d z\right| & \leq\left\|\nabla \phi_{g}\right\|_{L_{r}^{2}}\|\nabla \psi\|_{L_{r}^{2}} \tag{4.8}\\
& \leq C\left\|\nabla \phi_{g}\right\|_{L_{r}^{2}}\|\psi\|_{H_{r}^{1}}
\end{align*}
$$

so the right-hand side of (4.7Inhomogenenous boundary dataequation.4.2.7) defines a continuous linear functional in $\left(H_{r, 0}^{1}(\Omega)\right)^{*}$. Then we may apply the Lax-Milgram theorem to obtain the conclusion.

Corollary 4.2.4. Let $f, g, \phi_{g}, \tilde{\phi}$ be as in the previous theorem. Set $\phi=\tilde{\phi}+\phi_{g}$. Then $\gamma \phi=g$ in $L_{r}^{2}(\Gamma)$ and $-\Delta \phi=f$ in $\left(H_{r, 0}(\Omega)\right)^{*}$, that is,

$$
\begin{equation*}
\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z=\langle f, \psi\rangle \quad \forall \psi \in H_{r, 0}^{1}(\Omega) \tag{4.9}
\end{equation*}
$$

Proof. If $\phi=\tilde{\phi}+\phi_{g}$ then $\gamma \phi=\gamma \tilde{\phi}+\gamma \phi_{g}=g$ in $L_{r}^{2}(\Gamma)$ since $\gamma \tilde{\phi}=0$ as $\phi \in H_{r, 0}^{1}(\Omega)$. (4.9equation.4.2.9) holds upon rearranging (4.7Inhomogenenous boundary dataequation.4.2.7).

4.2.2 The Neumann Problem for $-\Delta$

Homogeneous Boundary Data

Given a function f on Ω, consider the problem of finding a function $\phi: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\left\{\begin{align*}
-\Delta \phi=f & \text { in } \Omega \tag{4.10}\\
D_{\nu} \phi=0 & \text { on } \Gamma .
\end{align*}\right.
$$

Let $f \in L_{r}^{2}(\Omega)$ such that $\int_{\Omega} f r d r d z=0$. The weak form of (4.10Homogeneous Boundary Dataequat is to find a function $\phi \in H_{r}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z=\int_{\Omega} f \psi r d r d z \quad \forall \psi \in H_{r}^{1}(\Omega) \tag{4.11}
\end{equation*}
$$

Let $H_{r, m}^{1}(\Omega)=\left\{\phi \in H_{r}^{1}(\Omega): \int_{\Omega} \phi r d r d z=0\right\}$.
Theorem 4.2.5. Let $f \in L_{r}^{2}(\Omega)$ such that $\int_{\Omega} f r d r d z=0$.
There is a unique $\phi \in H_{r, m}^{1}(\Omega)$ satisfying (4.11Homogeneous Boundary Dataequation.4.2.11).

Proof. It is clear to see that $\int_{\Omega} f \psi r d r d z$ defines a continuous linear functional in $\left(H_{r, m}^{1}(\Omega)\right)^{*}$ and that $a(\phi, \psi)=\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z$ is a continuous bilinear form on $H_{r, m}^{1}(\Omega)$. The Poincaré inequality for $H_{r}^{1}(\Omega)$ implies that a is coercive over $H_{r, m}^{1}(\Omega)$, so the Lax-Milgram theorem implies that there is a unique $\phi \in H_{r, m}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z=\int_{\Omega} f \psi r d r d z \quad \forall \psi \in H_{r, m}^{1}(\Omega) \tag{4.12}
\end{equation*}
$$

More generally, if $\psi \in H_{r}^{1}(\Omega)$, then we may write $\psi=\psi_{0}+\langle\psi\rangle$ where

$$
\begin{equation*}
\langle\psi\rangle=\frac{\int_{\Omega} \psi r d r d z}{\int_{\Omega} 1 r d r d z} \tag{4.13}
\end{equation*}
$$

and $\psi_{0}=\psi-\langle\psi\rangle$. Then if $\psi \in H_{r}^{1}(\Omega)$,

$$
\begin{align*}
\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z & =\int_{\Omega}\left(\nabla \phi \cdot \nabla\left(\psi_{0}+\langle\psi\rangle\right)\right) r d r d z \\
& =\int_{\Omega}\left(\nabla \phi \cdot \nabla \psi_{0}\right) r d r d z \\
& =\int_{\Omega} f \psi_{0} r d r d z \tag{4.14}\\
& =\int_{\Omega} f(\psi-\langle\psi\rangle) r d r d z \\
& =\int_{\Omega} f \psi r d r d z-\langle\psi\rangle \int_{\Omega} f r d r d z \\
& =\int_{\Omega} f \psi r d r d z
\end{align*}
$$

Corollary 4.2.6. Let $f \in L_{r}^{2}(\Omega)$ such that $\int_{\Omega} f r d r d z=0$ and let $\phi \in H_{r, m}^{1}(\Omega)$ be the unique function satisfying (4.11Homogeneous Boundary Dataequation.4.2.11). Then

$$
\begin{equation*}
\|\nabla \phi\|_{L_{r}^{2}} \leq \lambda_{1}^{(N)^{-1 / 2}}\|f\|_{L_{r}^{2}} \tag{4.15}
\end{equation*}
$$

where $\lambda_{1}^{(N)}$ is the smallest strictly positive Neumann eigenvalue of $-\Delta$ on $H_{r}^{1}(\Omega)$.

Proof. Let f, ϕ be as prescribed. Then we may apply item (iv) in the proof of Theorem 3.2.3 to get

$$
\begin{align*}
\int_{\Omega}|\nabla \phi|^{2} r d r d z & =\int_{\Omega} f \phi r d r d z \\
& \leq\|f\|_{L_{r}^{2}}\|\phi\|_{L_{r}^{2}} \tag{4.16}\\
& \leq \lambda_{1}^{(N)^{-1 / 2}}\|f\|_{L_{r}^{2}}
\end{align*}
$$

Inhomogeneous Boundary Data

Given a function f on Ω and g on Γ, consider the problem of finding a function $\phi: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\left\{\begin{align*}
-\Delta \phi=f & \text { in } \Omega \tag{4.17}\\
D_{\nu} \phi=g & \text { on } \Gamma .
\end{align*}\right.
$$

Let $f \in L_{r}^{2}(\Omega), g \in L_{r}^{2}(\Gamma)$ such that $\int_{\Omega} f r d r d z=-\int_{\Gamma} g r d s$. The weak form of (4.17Inhomogeneous Boundary Dataequation.4.2.17) is to find a function $\phi \in H_{r}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z=\int_{\Gamma} g \gamma \psi r d s+\int_{\Omega} f \psi r d r d z \quad \forall \psi \in H_{r}^{1}(\Omega) \tag{4.18}
\end{equation*}
$$

Theorem 4.2.7. Let $f \in L_{r}^{2}(\Omega), g \in L_{r}^{2}(\Gamma)$ such that $\int_{\Omega} f r d r d z=-\int_{\Gamma} g r d s$. There is a unique $\phi \in H_{r, m}^{1}(\Omega)$ satisfying (4.18Inhomogeneous Boundary Dataequation.4.2.18).

Proof. If $g \in L_{r}^{2}(\Gamma)$ and $\psi \in H_{r}^{1}(\Omega)$, then the continuity of the trace $\gamma: H_{r}^{1}(\Omega) \rightarrow$ $L_{r}^{2}(\Gamma)$ implies that there is $C>0$ such that

$$
\begin{align*}
\left|\int_{\Gamma} g \gamma \psi r d s\right| & \leq\|g\|_{L_{r}^{2}(\Gamma)}\|\gamma \psi\|_{L_{r}^{2}(\Gamma)} \tag{4.19}\\
& \leq C\|g\|_{L_{r}^{2}(\Gamma)}\|\psi\|_{H_{r}^{1}(\Omega)}
\end{align*}
$$

therefore the right hand side of (4.18Inhomogeneous Boundary Dataequation.4.2.18) defines a continuous linear functional on $H_{r, m}^{1}(\Omega) . a(\phi, \psi)=\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z$ is a continuous and coercive bilinear form on $H_{r, m}^{1}(\Omega)$, so the Lax-Milgram theorem implies that there is a unique $\phi \in H_{r, m}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z=\int_{\Gamma} g \gamma \psi r d s+\int_{\Omega} f \psi r d r d z \quad \forall \psi \in H_{r, m}^{1}(\Omega) . \tag{4.20}
\end{equation*}
$$

For $\psi \in H_{r}^{1}(\Omega)$, then write $\psi=\psi_{0}+\langle\psi\rangle$ as before. Then if $\psi \in H_{r}^{1}(\Omega)$,

$$
\begin{align*}
\int_{\Omega}(\nabla \phi \cdot \nabla \psi) r d r d z & =\int_{\Omega}\left(\nabla \phi \cdot \nabla\left(\psi_{0}+\langle\psi\rangle\right)\right) r d r d z \\
& =\int_{\Omega}\left(\nabla \phi \cdot \nabla \psi_{0}\right) r d r d z \\
& =\int_{\Gamma} g \gamma \psi_{0} r d s+\int_{\Omega} f \psi_{0} r d r d z \\
& =\int_{\Gamma} g \gamma(\psi-\langle\psi\rangle) r d s+\int_{\Omega} f(\psi-\langle\psi\rangle) r d r d z \\
& =\int_{\Gamma} g \gamma \psi r d s+\int_{\Omega} f \psi r d r d z-\langle\psi\rangle\left(\int_{\Gamma} g r d s+\int_{\Omega} f r d r d z\right) \\
& =\int_{\Gamma} g \gamma \psi r d s+\int_{\Omega} f \psi r d r d z \tag{4.21}
\end{align*}
$$

Corollary 4.2.8. Let $f \in L_{r}^{2}(\Omega), g \in L_{r}^{2}(\Gamma)$, and suppose that ϕ is the unique function in $H_{r, m}^{1}(\Omega)$ satisfying (4.18Inhomogeneous Boundary Dataequation.4.2.18). Then

$$
\begin{equation*}
\|\nabla \phi\|_{L_{r}^{2}} \leq \delta_{1}^{-1 / 2}\|g\|_{L_{r}^{2}(\Gamma)}+\lambda_{1}^{(N)^{-1 / 2}}\|f\|_{L_{r}^{2}(\Omega)} \tag{4.22}
\end{equation*}
$$

where δ_{1} is the smallest strictly positive harmonic Steklov eigenvalue on $H_{r, m}^{1}(\Omega)$ and $\lambda_{1}^{(N)}$ is the smallest strictly positive Neumann eigenvalue for $-\Delta$ on $H_{r, m}^{1}(\Omega)$.

Proof. Let f, g, ϕ be as prescribed. We apply item (iv) of Theorem 3.2.3 and item (iv) of Theorem 3.2.5 to obtain

$$
\begin{align*}
\int_{\Omega}|\nabla \phi|^{2} r d r d z & =\int_{\Gamma} g \gamma \phi r d s+\int_{\Omega} f \phi r d r d z \\
& \leq\|g\|_{L_{r}^{2}(\Gamma)}\|\gamma \phi\|_{L_{r}^{2}(\Gamma)}+\|f\|_{L_{r}^{2}(\Omega)}\|\phi\|_{L_{r}^{2}(\Omega)} \tag{4.23}\\
& \leq\left(\delta_{1}^{-1 / 2}\|g\|_{L_{r}^{2}(\Gamma)}+\lambda_{1}^{(N)^{-1 / 2}}\|f\|_{L_{r}^{2}(\Omega)}\right)\|\nabla \phi\|_{L_{r}^{2}} .
\end{align*}
$$

4.3 Boundary Value Problems for $-\Delta+r^{-2}$

4.3.1 The Dirichlet Problem for $-\Delta+r^{-2}$

Homogeneous Boundary Data

Given a function f on Ω, consider the problem of finding a function $\psi: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\left\{\begin{align*}
-\Delta \psi+\frac{1}{r^{2}} \psi=f & \text { in } \Omega \tag{4.24}\\
\psi=0 & \text { on } \Gamma
\end{align*}\right.
$$

Let $f \in\left(V_{r, 0}^{1}(\Omega)\right)^{*}$. The weak form of (4.24Homogeneous Boundary Dataequation.4.3.24) is to find a function $\psi \in V_{r, 0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}\left(\operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right)\right) r d r d z=\langle f, \chi\rangle \quad \forall \chi \in V_{r, 0}^{1}(\Omega) \tag{4.25}
\end{equation*}
$$

Theorem 4.3.1. Let $f \in\left(V_{r, 0}^{1}(\Omega)\right)^{*}$. There is a unique $\psi \in V_{r, 0}^{1}(\Omega)$ satisfying (4.25Homogeneous Boundary Dataequation.4.3.25).

Proof. The bilinear form $b(\psi, \chi)=\int_{\Omega}\left(\operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right)\right) r d r d z$ is continuous over $V_{r, 0}^{1}(\Omega)$, and the curl-Poincaré inequality implies that b is coercive over $V_{r, 0}^{1}(\Omega)$. Therefore there is a unique $\psi \in V_{r, 0}^{1}(\Omega)$ satisfying (4.25Homogeneous Boundary Dataequation.4.3.25 by the Lax-Milgram theorem.

Corollary 4.3.2. Let $f \in\left(V_{r, 0}^{1}(\Omega)\right)^{*}$ and $\psi \in V_{r, 0}^{1}(\Omega)$ satisfy (4.25Homogeneous Boundary Dataeque Then there is constant $C>0$ such that

$$
\begin{equation*}
\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}} \leq C\left(1+\tilde{\lambda}_{1}^{-1}\right)^{1 / 2}\|f\|_{V_{r, 0}^{1}(\Omega)^{*}} \tag{4.26}
\end{equation*}
$$

where $\tilde{\lambda}_{1}$ is the smallest Dirichlet eigenvalue of $-\Delta+r^{-2}$ on $V_{r, 0}^{1}(\Omega)$.

Proof. Let $\psi \in V_{r, 0}^{1}(\Omega)$ satisfy (4.25Homogeneous Boundary Dataequation.4.3.25). $\left(\|\psi\|_{L_{r}^{2}}^{2}+\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}^{2}\right)^{1 / 2}$ is an equivalent norm on $V_{r, 0}^{1}(\Omega)$ according to Corollary 2.4.4, so we apply item (iv) from the proof of Theorem 3.3.1 to get

$$
\begin{align*}
\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z & =\langle f, \psi\rangle \\
& \leq\|f\|_{V_{r, 0}^{1}(\Omega)^{*}}\|\psi\|_{V_{r}^{1}} \tag{4.27}\\
& \leq C\|f\|_{V_{r, 0}^{1}(\Omega)^{*}}\left(\|\psi\|_{L_{r}^{2}}^{2}+\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}^{2}\right)^{1 / 2} \\
& \leq C\|f\|_{V_{r, 0}^{1}(\Omega)^{*}}\left(1+\tilde{\lambda}_{1}^{-1}\right)^{1 / 2}\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}
\end{align*}
$$

which proves the claim.

Inhomogenenous Boundary Data

Given a function f on Ω and a function g on Γ, consider the problem of finding a function $\psi: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\left\{\begin{align*}
-\Delta \psi+\frac{1}{r^{2}} \psi=f & \text { in } \Omega \tag{4.28}\\
\psi=g & \text { on } \Gamma
\end{align*}\right.
$$

Let $f \in\left(V_{r, 0}^{1}(\Omega)\right)^{*}$ and $g \in \gamma\left(V_{r}^{1}(\Omega)\right)=V_{r}^{1 / 2}(\Gamma)$. We transform the inhomogenenous problem to a homogeneous problem by finding $\psi_{g} \in V_{r}^{1}(\Omega)$ such that $\gamma \psi_{g}=g$ in $L_{r}^{2}(\Gamma)$, and then consider finding $\psi \in V_{r, 0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}\left(\operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right)\right) r d r d z=\langle f, \chi\rangle-\int_{\Omega}\left(\operatorname{curl}\left(\psi_{g} e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right)\right) r d r d z \tag{4.29}
\end{equation*}
$$

for all $\chi \in V_{r, 0}^{1}(\Omega)$. This is the weak form of (4.28Inhomogenenous Boundary Dataequation.4.3.28).

Theorem 4.3.3. Let $f \in\left(V_{r, 0}^{1}(\Omega)\right)^{*}$ and $g \in V_{r}^{1 / 2}(\Gamma)$. Let $\psi_{g} \in V_{r}^{1}(\Omega)$ such that $\gamma \psi_{g}=g$ in $L_{r}^{2}(\Gamma)$. Then there is a unique $\tilde{\psi} \in V_{r, 0}^{1}(\Omega)$ satisfying (4.29Inhomogenenous Boundary Da for all $\chi \in V_{r, 0}^{1}(\Omega)$.

Proof. For $\chi \in V_{r, 0}^{1}(\Omega)$, the curl-Poincaré inequality for $V_{r}^{1}(\Omega)$ implies that there is a constant $C>0$ independent of χ such that

$$
\begin{align*}
\left|\int_{\Omega}\left(\operatorname{curl}\left(\psi_{g} e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right)\right) r d r d z\right| & \leq\left\|\operatorname{curl}\left(\psi_{g} e_{\theta}\right)\right\|_{L_{r}^{2}}\left\|\operatorname{curl}\left(\chi e_{\theta}\right)\right\|_{L_{r}^{2}} \tag{4.30}\\
& \leq C\left\|\operatorname{curl}\left(\psi_{g} e_{\theta}\right)\right\|_{L_{r}^{2}}\|\chi\|_{V_{r}^{1}}
\end{align*}
$$

so the right-hand side of (4.29Inhomogenenous Boundary Dataequation.4.3.29) defines a continuous linear functional in $\left(V_{r, 0}^{1}(\Omega)\right)^{*}$. Then we may apply the LaxMilgram theorem to obtain the conclusion.

Corollary 4.3.4. Let $f \in\left(V_{r, 0}^{1}(\Omega)\right)^{*}, g \in V_{r}^{1 / 2}(\Gamma), \psi_{g} \in V_{r}^{1}(\Omega)$ such that $\gamma \psi_{g}=g$ in $L_{r}^{2}(\Gamma)$, and let $\tilde{\psi}$ be the unique function in $V_{r, 0}^{1}(\Omega)$ satisfying (4.29Inhomogenenous Boundary Dataeq Set $\psi=\tilde{\psi}+\psi_{g}$. Then $\gamma \psi=g$ in $L_{r}^{2}(\Gamma)$ and $\left(-\Delta+r^{-2}\right) \psi=f$ in $\left(V_{r, 0}^{1}(\Omega)\right)^{*}$, that is,

$$
\begin{equation*}
\int_{\Omega}\left(\operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right)\right) r d r d z=\langle f, \chi\rangle \quad \forall \chi \in V_{r, 0}^{1}(\Omega) \tag{4.31}
\end{equation*}
$$

Proof. If $\psi=\tilde{\psi}+\psi_{g}$ then $\gamma \psi=\gamma \tilde{\psi}+\gamma \psi_{g}=g$ in $L_{r}^{2}(\Gamma)$ since $\gamma \tilde{\psi}=0$ as $\tilde{\psi} \in V_{r, 0}^{1}(\Omega)$.
(4.31equation.4.3.31) holds upon rearranging (4.29Inhomogenenous Boundary Dataequation.4.3.29)

4.3.2 A Conormal Neumann Problem for $-\Delta+r^{-2}$

Homogenenous Boundary Data

Given a function f on Ω, consider the problem of finding a function $\psi: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\left\{\begin{align*}
-\Delta \psi+\frac{1}{r^{2}} \psi=f & \text { in } \Omega \tag{4.32}\\
\operatorname{curl}\left(\psi e_{\theta}\right) \wedge \nu=0 & \text { on } \Gamma
\end{align*}\right.
$$

We call this a conormal Neumann problem since we may formally express

$$
\begin{equation*}
\operatorname{curl}\left(\psi e_{\theta}\right) \wedge \nu=\frac{1}{r}(\nabla(r \psi) \cdot \nu) e_{\theta} \quad \text { on } \Gamma . \tag{4.33}
\end{equation*}
$$

Let $f \in\left(V_{r}^{1}(\Omega)\right)^{*}$. The weak form of (4.32Homogenenous Boundary Dataequation.4.3.32) is to find a function $\psi \in V_{r}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}\left(\operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right)\right) r d r d z=\langle f, \chi\rangle \tag{4.34}
\end{equation*}
$$

for all $\chi \in V_{r}^{1}(\Omega)$. Note that unlike the homogenenous Neumann problem for $-\Delta$, this conormal Neumann problem has no compatibility condition relating the source function f and the homogenenous boundary data. Moreover, the source f may be a linear functional and not necessarily a measurable function.

Theorem 4.3.5. Let $f \in\left(V_{r}^{1}(\Omega)\right)^{*}$. There is a unique $\psi \in V_{r}^{1}(\Omega)$ satisfying (4.34Homogenenous Boundary Dataequation.4.3.34) for all $\chi \in V_{r}^{1}(\Omega)$.

Proof. The bilinear form $b(\psi, \chi)=\int_{\Omega}\left(\operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right)\right) r d r d z$ is continuous over $V_{r}^{1}(\Omega)$ and the curl-Poincaré inequality for $V_{r}^{1}(\Omega)$ implies that b is also coercive over $V_{r}^{1}(\Omega)$. Then the Lax-Milgram theorem implies that there is a unique $\psi \in V_{r}^{1}(\Omega)$
satisfying (4.34Homogenenous Boundary Dataequation.4.3.34) for all $\chi \in V_{r}^{1}(\Omega)$.

Corollary 4.3.6. Let $f \in L_{r}^{2}(\Omega)$ and $\psi \in V_{r}^{1}(\Omega)$ be the unique function satisfying (4.34Homogenenous Boundary Dataequation.4.3.34) for all $\chi \in V_{r}^{1}(\Omega)$. Then

$$
\begin{equation*}
\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}} \leq \frac{\|f\|_{L_{r}^{2}}}{\sqrt{\tilde{\lambda}_{1}^{(N)}}} \tag{4.35}
\end{equation*}
$$

where $\tilde{\lambda}_{1}^{(N)}$ is the smallest positive conormal Neumann eigenvalue of $-\Delta+r^{-2}$ over $V_{r}^{1}(\Omega)$.

Proof. Let f, ψ be as prescribed. Then we may apply Theorem 3.3.3 to get

$$
\begin{align*}
\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z & =\int_{\Omega} f \psi r d r d z \\
& \leq\|f\|_{L_{r}^{2}}\|\psi\|_{L_{r}^{2}} \tag{4.36}\\
& \leq \frac{\|f\|_{L_{r}^{2}}}{\sqrt{\tilde{\lambda}_{1}^{(N)}}}\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}
\end{align*}
$$

which proves the claim.

Inhomogenenous Boundary Data

Given a function f on Ω and g on Γ, consider the problem of finding a function $\psi: \Omega \rightarrow \mathbb{R}$ satisfying

$$
\left\{\begin{array}{l}
-\Delta \psi+\frac{1}{r^{2}} \psi=f \quad \text { in } \Omega, \tag{4.37}\\
\operatorname{curl}\left(\psi e_{\theta}\right) \wedge \nu=g e_{\theta} \quad \text { on } \Gamma .
\end{array}\right.
$$

Note that the boundary condition is just an equivalence of toroidal fields, so it reduces to one scalar equation which may be formally stated as

$$
\begin{equation*}
\frac{1}{r}(\nabla(r \psi)) \cdot \nu=g \quad \text { on } \Gamma . \tag{4.38}
\end{equation*}
$$

Let $f \in\left(V_{r}^{1}(\Omega)\right)^{*}, g \in L_{r}^{2}(\Gamma)$. The weak form of (4.37Inhomogenenous Boundary Dataequation.4.3.3 is to find a function $\psi \in V_{r}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}\left(\operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right)\right) r d r d z=\int_{\Gamma} g \gamma \chi r d s+\langle f, \chi\rangle \tag{4.39}
\end{equation*}
$$

for all $\chi \in V_{r}^{1}(\Omega)$.

Theorem 4.3.7. Let $f \in\left(V_{r}^{1}(\Omega)\right)^{*}, g \in L_{r}^{2}(\Gamma)$. There is a unique $\psi \in V_{r}^{1}(\Omega)$ satisfying (4.39Inhomogenenous Boundary Dataequation.4.3.39) for all $\chi \in V_{r}^{1}(\Omega)$.

Proof. Let $f \in\left(V_{r}^{1}(\Omega)\right)^{*}, g \in L_{r}^{2}(\Gamma), \chi \in V_{r}^{1}(\Omega)$. We may apply the continuity of the trace $\gamma: V_{r}^{1}(\Omega) \rightarrow L_{r}^{2}(\Gamma)$ to get

$$
\begin{align*}
\left|\int_{\Gamma} g \gamma \chi r d s+\langle f, \chi\rangle\right| & \leq\|g\|_{L_{r}^{2}(\Gamma)}\|\gamma \chi\|_{L_{r}^{2}(\Gamma)}+\|f\|_{V_{r}^{1}(\Omega)^{*}}\|\chi\|_{V_{r}^{1}(\Omega)} \tag{4.40}\\
& \leq C\left(\|g\|_{L_{r}^{2}(\Gamma)}+\|f\|_{V_{r}^{1}(\Omega)^{*}}\right)\|\chi\|_{V_{r}^{1}(\Omega)}
\end{align*}
$$

for some constant $C>0$ independent of χ. Therefore the right-hand side of (4.39Inhomogenenous Boundary Dataequation.4.3.39) defines a continuous linear functional in $\left(V_{r}^{1}(\Omega)\right)^{*}$, and we may conclude, just as in the homogenenous case using the Lax-Milgram theorem, that there is a unique $\psi \in V_{r}^{1}(\Omega)$ satisfying (4.39Inhomogenenous Boundary] for all $\chi \in V_{r}^{1}(\Omega)$.

Corollary 4.3.8. Let $f \in L_{r}^{2}(\Gamma), g \in L_{r}^{2}(\Gamma)$, and $\psi \in V_{r}^{1}(\Omega)$ be the unique function satisfying (4.39Inhomogenenous Boundary Dataequation.4.3.39) for all $\chi \in V_{r}^{1}(\Omega)$.

Then

$$
\begin{equation*}
\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}} \leq \frac{\|g\|_{L_{r}^{2}(\Gamma)}}{\sqrt{\tilde{\delta}_{1}}}+\frac{\|f\|_{L_{r}^{2}(\Omega)}}{\sqrt{\tilde{\lambda}_{1}^{(N)}}} \tag{4.41}
\end{equation*}
$$

where $\tilde{\delta}_{1}$ is the smallest positive curl-harmonic Steklov eigenvalue of $-\Delta+r^{-2}$ over $V_{r}^{1}(\Omega)$ and $\tilde{\lambda}_{1}^{(N)}$ is the smallest positive conormal Neumann eigenvalue of $-\Delta+r^{-2}$ over $V_{r}^{1}(\Omega)$.

Proof. Let f, g, ψ be as prescribed. Then we may apply Theorem 3.3.3 and Theorem 3.3.5 to get

$$
\begin{align*}
\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z & =\int_{\Gamma} g \gamma \psi r d s+\int_{\Omega} f \psi r d r d z \\
& \leq\|g\|_{L_{r}^{2}(\Gamma)}\|\gamma \psi\|_{L_{r}^{2}(\Gamma)}+\|f\|_{L_{r}^{2}(\Omega)}\|\psi\|_{L_{r}^{2}(\Omega)} \tag{4.42}\\
& \leq\left(\frac{\|g\|_{L_{r}^{2}(\Gamma)}}{\sqrt{\tilde{\delta}_{1}}}+\frac{\|f\|_{L_{r}^{2}(\Omega)}}{\sqrt{\tilde{\lambda}_{1}^{(N)}}}\right)\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}
\end{align*}
$$

which proves the claim.

Chapter 5

Orthogonal Decompositions for Axisymmetric Vector Fields

5.1 Orthogonal Decompositions for Poloidal Fields

This chapter studies orthogonal decompositions for axisymmetric vector fields in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$. Classical results of this type for divergence-free fields are presented in [8]. The first step is a decomposition into poloidal and toroidal components. Poloidal and toroidal vector fields are pointwise orthogonal in Ω so they are also mutually orthogonal in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$:

$$
\begin{equation*}
L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)=\operatorname{Pol}(\Omega) \oplus \operatorname{Tor}(\Omega) \tag{5.1}
\end{equation*}
$$

where $\operatorname{Pol}(\Omega)$ is the subspace of axisymmetric poloidal fields and $\operatorname{Tor}(\Omega)$ is the subspace of axisymmetric toroidal fields with components in $L_{r}^{2}(\Omega)$. The gradient subspaces $\operatorname{Grad}_{0}(\Omega), \operatorname{Grad}(\Omega)$ of $\operatorname{Pol}(\Omega)$ are defined by

$$
\begin{align*}
\operatorname{Grad}_{0}(\Omega) & =\left\{\nabla \phi=\frac{\partial \phi}{\partial r} e_{r}+\frac{\partial \phi}{\partial z} e_{z}: \phi \in H_{r, 0}^{1}(\Omega)\right\} \\
\operatorname{Grad}(\Omega) & =\left\{\nabla \phi=\frac{\partial \phi}{\partial r} e_{r}+\frac{\partial \phi}{\partial z} e_{z}: \phi \in H_{r}^{1}(\Omega)\right\} \tag{5.2}
\end{align*}
$$

and the curl subspace $\operatorname{Curl}_{0}(\Omega), \operatorname{Curl}(\Omega)$ are defined by

$$
\begin{align*}
\operatorname{Curl}_{0}(\Omega) & =\left\{\operatorname{curl}\left(\psi e_{\theta}\right)=-\frac{\partial \psi}{\partial z} e_{r}+\frac{1}{r} \frac{\partial(r \psi)}{\partial r} e_{z}: \psi \in V_{r, 0}^{1}(\Omega)\right\} \tag{5.3}\\
\operatorname{Curl}(\Omega) & =\left\{\operatorname{curl}\left(\psi e_{\theta}\right)=-\frac{\partial \psi}{\partial z} e_{r}+\frac{1}{r} \frac{\partial(r \psi)}{\partial r} e_{z}: \psi \in V_{r}^{1}(\Omega)\right\}
\end{align*}
$$

Theorem 5.1.1. Let $u \in \operatorname{Pol}(\Omega)$. Then

1. $u \perp \operatorname{Grad}_{0}(\Omega)$ if and only if $\operatorname{div}(u)=0$
2. $u \perp \operatorname{Grad}(\Omega)$ if and only if $\operatorname{div}(u)=0$ and $u \cdot \nu=0$
3. $u \perp \operatorname{Curl}_{0}(\Omega)$ if and only if $\operatorname{curl}(u)=0$
4. $u \perp \operatorname{Curl}(\Omega)$ if and only if $\operatorname{curl}(u)=0$ and $u \wedge \nu=0$

Proof. Let $u \in \operatorname{Pol}(\Omega)$
1.

$$
\begin{equation*}
u \perp \operatorname{Grad}_{0}(\Omega) \Leftrightarrow \int_{\Omega} u \cdot \nabla \phi r d r d z \forall \phi \in H_{r, 0}^{1}(\Omega) \Leftrightarrow \operatorname{div}(u)=0 . \tag{5.4}
\end{equation*}
$$

2. $u \perp \operatorname{Grad}(\Omega)$ implies $u \perp \operatorname{Grad}_{0}(\Omega)$ so $\operatorname{div}(u)=0$. Then

$$
\begin{equation*}
\langle u \cdot \nu, \gamma \phi\rangle=\int_{\Omega} u \cdot \nabla \phi r d r d z=0 \forall \phi \in H_{r}^{1}(\Omega) \tag{5.5}
\end{equation*}
$$

so $u \cdot \nu=0$. Conversely, if $\operatorname{div}(u)=0$ and $u \cdot \nu=0$, then we may substitute into (2.23equation.2.3.23) to see that $u \perp \operatorname{Grad}(\Omega)$.
3.
$u \perp \operatorname{Curl}_{0}(\Omega) \Leftrightarrow \int_{\Omega} u \cdot \operatorname{curl}\left(\psi e_{\theta}\right) r d r d z=0 \forall \psi \in V_{r, 0}^{1}(\Omega) \Leftrightarrow \operatorname{curl}(u)=0$.
4. $u \perp \operatorname{Curl}(\Omega)$ implies $u \perp \operatorname{Curl}_{0}(\Omega)$ so $\operatorname{curl}(u)=0$. Then

$$
\begin{equation*}
\left\langle u \wedge \nu, \gamma \psi e_{\theta}\right\rangle=\int_{\Omega} u \cdot \operatorname{curl}\left(\psi e_{\theta}\right) r d r d z=0 \forall \psi \in V_{r}^{1}(\Omega) \tag{5.7}
\end{equation*}
$$

so $u \wedge \nu=0$. Conversely, if $\operatorname{curl}(u)=0$ and $u \wedge \nu=0$, then we may substitute into (2.24equation.2.3.24) to see that $u \perp \operatorname{Curl}(\Omega)$.

Let $N($ div $)$ and $N($ curl $)$ denote the subspaces of $\operatorname{Pol}(\Omega)$ consisting of poloidal fields with zero divergence and zero curl respectively.

Theorem 5.1.2. $\operatorname{Curl}(\Omega) \subset N(\operatorname{div})$ and $\operatorname{Grad}(\Omega) \subset N(\operatorname{curl})$.

Proof. 1. Let $\operatorname{curl}\left(\psi e_{\theta}\right) \in \operatorname{Curl}(\Omega)$. Then if $\phi \in C_{\Gamma 0}^{\infty}(\Omega)$ we may integrate by parts to get

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \nabla \phi r d r d z=\int_{\Omega} \psi e_{\theta} \cdot \operatorname{curl}(\nabla \phi) r d r d z=0 \tag{5.8}
\end{equation*}
$$

since clearly $\operatorname{curl}(\nabla \phi)=0$ for smooth ϕ. By density, we see that $\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right)$. $\nabla \phi r d r d z=0$ for all $\phi \in H_{r, 0}^{1}(\Omega)$, therefore $\operatorname{div}\left(\operatorname{curl}\left(\psi e_{\theta}\right)\right)=0$.
2. Let $\nabla \phi \in \operatorname{Grad}(\Omega)$. Then if $\psi \in C_{c}^{\infty}(\Omega)$ we may integrate by parts to get

$$
\begin{equation*}
\int_{\Omega} \nabla \phi \cdot \operatorname{curl}\left(\psi e_{\theta}\right) r d r d z=\int_{\Omega} \phi \operatorname{div}\left(\operatorname{curl}\left(\psi e_{\theta}\right)\right) r d r d z=0 \tag{5.9}
\end{equation*}
$$

since clearly $\operatorname{div}\left(\operatorname{curl}\left(\psi e_{\theta}\right)\right)=0$ for smooth ψ. By density we see that $\int_{\Omega} \nabla \phi$. $\operatorname{curl}\left(\psi e_{\theta}\right) r d r d z=0$ for all $\psi \in V_{r, 0}^{1}(\Omega)$, therefore $\operatorname{curl}(\nabla \phi)=0$.

Next we show that the gradient and curl subspaces are in fact closed subspaces of $\operatorname{Pol}(\Omega)$ and exhibit bases for these subspaces.

Theorem 5.1.3. $\operatorname{Grad}_{0}(\Omega)$ and $\operatorname{Grad}(\Omega)$ are closed subspaces of $\operatorname{Pol}(\Omega)$.

Proof. Fix $v \in \operatorname{Pol}(\Omega)$ and consider finding the orthogonal projection of v onto $\operatorname{Grad}_{0}(\Omega)$. Let $\mathcal{G}_{v}: H_{r}^{1}(\Omega) \rightarrow \mathbb{R}$ be the functional

$$
\begin{equation*}
\mathcal{G}_{v}(\phi)=\int_{\Omega}|\nabla \phi|^{2} r d r d z-2 \int_{\Omega} \nabla \phi \cdot v r d r d z \tag{5.10}
\end{equation*}
$$

Riesz's theorem says that a minimizer of \mathcal{G}_{v} defines the projection of v onto $\operatorname{Grad}(\Omega)$. First observe that \mathcal{G}_{v} is bounded below since

$$
\begin{equation*}
\mathcal{G}_{v}(\phi)=\|v-\nabla \phi\|_{L_{r}^{2}}^{2}-\|v\|_{L_{r}^{2}}^{2} \geq-\|v\|_{L_{r}^{2}}^{2} . \tag{5.11}
\end{equation*}
$$

The Poincaré inequality for $H_{r, 0}^{1}(\Omega)$ implies that there is a constant C independent of $\phi \in H_{r, 0}^{1}(\Omega)$ such that

$$
\begin{align*}
\mathcal{G}_{v}(\phi) & =\frac{1}{2} \int_{\Omega}|\nabla \phi|^{2} r d r d z+\frac{1}{2} \int_{\Omega}|\nabla \phi|^{2} r d r d z-2 \int_{\Omega} \nabla \phi \cdot v r d r d z \\
& \geq \frac{C}{2} \int_{\Omega}|\phi|^{2} r d r d z+\frac{1}{2} \int_{\Omega}|\nabla \phi|^{2} r d r d z-2\|v\|_{L_{r}^{2}}\|\nabla \phi\|_{L_{r}^{2}} \tag{5.12}\\
& \geq \frac{\min (1, C)}{2}\|\phi\|_{H_{r}^{1}}^{2}-2\|v\|_{L_{r}^{2}}\|\phi\|_{H_{r}^{1}},
\end{align*}
$$

therefore \mathcal{G}_{v} is coercive on $H_{r, 0}^{1}(\Omega) . \mathcal{G}_{v}$ is strictly convex and continuous on $H_{r}^{1}(\Omega)$, so \mathcal{G}_{v} is w.l.s.c. on $H_{r, 0}^{1}(\Omega)$ and therefore \mathcal{G}_{v} has a unique minimizer on $H_{r, 0}^{1}(\Omega)$. This holds for all $v \in \operatorname{Pol}(\Omega)$, so the projectional functional $\|v-\nabla \phi\|_{L_{r}^{2}}^{2}=\mathcal{G}_{v}(\phi)+\|v\|_{L_{r}^{2}}^{2}$
is minimized by a unique gradient in $\operatorname{Grad}_{0}(\Omega)$ given any $v \in \operatorname{Pol}(\Omega)$, and we may conclude that $\operatorname{Grad}_{0}(\Omega)$ is closed. The proof that $\operatorname{Grad}(\Omega)$ is closed follows from a similar argument by replacing $H_{r, 0}^{1}(\Omega)$ with $H_{r, m}^{1}(\Omega)$, applying the Poincaré inequality for $H_{r, m}^{1}(\Omega)$, and then noting that a gradient in $\operatorname{Grad}(\Omega)$ has a unique representative given by a function in $H_{r, m}^{1}(\Omega)$.

The poloidal gradient subspaces $\operatorname{Grad}_{0}(\Omega), \operatorname{Grad}(\Omega)$ are spanned by gradients of eigenfunctions of $-\Delta$. Let $\tilde{\mathcal{E}}=\left\{\tilde{\phi}_{\ell}:=\lambda^{-1 / 2} \hat{\phi}_{\ell}: \ell \in \mathbb{N}\right\}$ be a maximal sequence of normalized Dirichlet eigenfunctions of $-\Delta$ in $H_{r, 0}^{1}(\Omega)$ and let $\tilde{\mathcal{E}}^{(N)}=\left\{\tilde{\phi}_{\ell}^{(N)}:=\right.$ $\left.\left(\lambda_{\ell}^{(N)}\right)^{-1 / 2} \hat{\phi}_{\ell}^{(N)}\right\}$ be a maximal sequence of normalized nonconstant Neumann eigenfunctions as in Theorem 3.2.2.

Corollary 5.1.4. The gradients of the normalized Dirichlet eigenfunctions $G \tilde{\mathcal{E}}:=$ $\left\{\nabla \tilde{\phi}_{\ell}: \ell \in \mathbb{N}\right\}$ form an orthonormal basis of $\operatorname{Grad}_{0}(\Omega)$ in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$, and the gradients of the normalized nonconstant Neumann eigenfunctions $G \tilde{\mathcal{E}}^{(N)}:=\left\{\nabla \tilde{\phi}_{\ell}^{(N)}: \ell \in \mathbb{N}\right\}$ form an orthonormal basis of $\operatorname{Grad}(\Omega)$ in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$.

Proof. We will show that $G \tilde{\mathcal{E}}$ is an orthonormal basis of $\operatorname{Grad}_{0}(\Omega)$. The proof that $G \tilde{\mathcal{E}}^{(N)}$ is an orthonormal basis of $\operatorname{Grad}(\Omega)$ is a very similar argument. We have

$$
\begin{equation*}
\int_{\Omega}\left|\nabla \tilde{\phi}_{k}\right|^{2} r d r d z=\lambda_{k}^{-1}\left(\lambda_{k} \int_{\Omega}\left|\hat{\phi}_{k}\right|^{2} r d r d z\right)=1 \tag{5.13}
\end{equation*}
$$

as $\hat{\phi}_{k} \in C_{k}$, and the $\nabla \tilde{\phi}_{k}$ are orthogonal in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ by construction. Let $\psi \in$ $H_{r, 0}^{1}(\Omega)$ and suppose that $\int_{\Omega} \nabla \psi \cdot \nabla \tilde{\phi}_{k} r d r d z=0$ for all $k \in \mathbb{N}$. Then

$$
\begin{equation*}
\lambda_{k} \int_{\Omega} \psi \tilde{\phi}_{k} r d r d z=\int_{\Omega} \nabla \psi \cdot \nabla \tilde{\phi}_{k} r d r d z=0 \tag{5.14}
\end{equation*}
$$

for all $k \in \mathbb{N}$ since the $\tilde{\phi}_{k}$ are eigenfunctions. $\lambda_{k}>0$ for all k so we must have $\int_{\Omega} \psi \tilde{\phi}_{k} r d r d z=0$ for all $k .\left\{\tilde{\phi}_{k}\right\}_{k \in \mathbb{N}}$ is an orthonormal basis of $L_{r}^{2}(\Omega)$ which implies $\psi=0$ and therefore $\nabla \psi=0$.

Theorem 5.1.5. $\operatorname{Curl}_{0}(\Omega)$ and $\operatorname{Curl}(\Omega)$ are closed subspaces of $\operatorname{Pol}(\Omega)$.

Proof. Fix $v \in \operatorname{Pol}(\Omega)$ and consider finding the orthogonal projection of v onto $\operatorname{Curl}_{0}(\Omega)$. Let $\mathcal{C}_{v}: V_{r}^{1}(\Omega) \rightarrow \mathbb{R}$ be the functional

$$
\begin{equation*}
\mathcal{C}_{v}(\psi)=\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z-2 \int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot v r d r d z \tag{5.15}
\end{equation*}
$$

\mathcal{C}_{v} is bounded below on $V_{r}^{1}(\Omega)$ since

$$
\begin{equation*}
\mathcal{C}_{v}(\psi)=\left\|v-\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}^{2}-\|v\|_{L_{r}^{2}}^{2} \geq-\|v\|_{L_{r}^{2}}^{2} . \tag{5.16}
\end{equation*}
$$

The curl-Poincaré inequality implies that there is a constant $C>0$ independent of $\psi \in V_{r}^{1}(\Omega)$ such that

$$
\begin{align*}
\mathcal{C}_{v}(\psi) & =\frac{1}{2} \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z+\frac{1}{2} \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z-2 \int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot v r d r d z \\
& \geq \frac{C}{2} \int_{\Omega}|\psi|^{2} r d r d z+\frac{1}{2} \int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z-2\|v\|_{L_{r}^{2}}\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}} \\
& \geq \frac{\min (1, C)}{2}\left(\|\psi\|_{L_{r}^{2}}^{2}+\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}^{2}\right)-2\|v\|_{L_{r}^{2}}\left\|\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}} \tag{5.17}
\end{align*}
$$

The above estimate together with (2.39Poincaré Inequalitiesequation.2.4.39) imply that \mathcal{C}_{v} is coercive on $V_{r}^{1}(\Omega) \cdot \mathcal{C}_{v}$ is strictly convex and continuous on $V_{r}^{1}(\Omega)$, so \mathcal{C}_{v} is w.l.s.c. on $V_{r}^{1}(\Omega)$ and therefore \mathcal{C}_{v} has a unique minimizer on $V_{r}^{1}(\Omega)$. This holds for all $v \in \operatorname{Pol}(\Omega)$, so the projectional functional $\left\|v-\operatorname{curl}\left(\psi e_{\theta}\right)\right\|_{L_{r}^{2}}^{2}=\mathcal{C}_{v}(\phi)+\|v\|_{L_{r}^{2}}^{2}$ is minimized by a unique curl in $\operatorname{Curl}(\Omega)$ given any $v \in \operatorname{Pol}(\Omega)$, and we may conclude
that $\operatorname{Curl}(\Omega)$ is closed. We may apply the same argument to the functional \mathcal{C}_{v} restricted to $V_{r, 0}^{1}(\Omega)$ to show that $\operatorname{Curl}_{0}(\Omega)$ is closed.

Let $\tilde{\mathcal{F}}:=\left\{\tilde{\psi}_{k}:=\tilde{\lambda}_{k}^{-1 / 2} \hat{\psi}_{k}: k \in \mathbb{N}\right\}$ be a maximal sequence of normalized Dirichlet eigenfunctions of $-\Delta+r^{-2}$ in $V_{r, 0}^{1}(\Omega)$, and let $\tilde{\mathcal{F}}^{(N)}:=\left\{\tilde{\psi}_{k}^{(N)}:=\left(\tilde{\lambda}_{k}^{(N)}\right)^{-1 / 2} \hat{\psi}_{k}^{(N)}:\right.$ $k \in \mathbb{N}\}$ be a maximal sequence of normalized conormal Neumann eigenfunctions of $-\Delta+r^{-2}$ in $V_{r}^{1}(\Omega)$.

Corollary 5.1.6. $C \tilde{\mathcal{F}}:=\left\{\operatorname{curl}\left(\tilde{\psi}_{\ell} e_{\theta}\right): \ell \in \mathbb{N}\right\}$ is an orthonormal basis of $\operatorname{Curl}_{0}(\Omega)$ in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$, and $C \tilde{\mathcal{F}}^{(N)}:=\left\{\operatorname{curl}\left(\tilde{\psi}_{\ell}^{(N)} e_{\theta}\right): \ell \in \mathbb{N}\right\}$ is an orthonormal basis of $\operatorname{Curl}(\Omega)$ in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$.

Proof. We will show that $C \tilde{\mathcal{F}}:=\left\{\operatorname{curl}\left(\tilde{\psi}_{\ell} e_{\theta}\right): \ell \in \mathbb{N}\right\}$ is an orthonormal basis of $\operatorname{Curl}_{0}(\Omega)$. The proof that $C \tilde{\mathcal{F}}^{(N)}:=\left\{\operatorname{curl}\left(\tilde{\psi}_{\ell}^{(N)} e_{\theta}\right): \ell \in \mathbb{N}\right\}$ is an orthonormal basis of $\operatorname{Curl}(\Omega)$ is a very similar argument. We have

$$
\begin{equation*}
\int_{\Omega}\left|\operatorname{curl}\left(\tilde{\psi}_{k} e_{\theta}\right)\right|^{2} r d r d z=\tilde{\lambda}_{k}^{-1}\left(\tilde{\lambda}_{k} \int_{\Omega}\left|\hat{\psi}_{k}\right|^{2} r d r d z\right)=1 \tag{5.18}
\end{equation*}
$$

as $\hat{\psi}_{k} \in C_{k}$, and the $\operatorname{curl}\left(\tilde{\psi}_{k} e_{\theta}\right)$ are orthogonal in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ by construction. Let $\chi \in V_{r, 0}^{1}(\Omega)$ and suppose that $\int_{\Omega} \operatorname{curl}\left(\chi e_{\theta}\right) \cdot \operatorname{curl}\left(\tilde{\psi}_{k} e_{\theta}\right) r d r d z=0$ for all $k \in \mathbb{N}$. Then

$$
\begin{equation*}
\tilde{\lambda}_{k} \int_{\Omega} \chi \tilde{\psi}_{k} r d r d z=\int_{\Omega} \operatorname{curl}\left(\chi e_{\theta}\right) \cdot \operatorname{curl}\left(\tilde{\psi}_{k} e_{\theta}\right) r d r d z=0 \tag{5.19}
\end{equation*}
$$

for all $k \in \mathbb{N}$ since the $\tilde{\psi}_{k}$ are eigenfunctions. $\tilde{\lambda}_{k}>0$ for all k so we must have $\int_{\Omega} \chi \tilde{\psi}_{k} r d r d z=0$ for all $k .\left\{\tilde{\psi}_{k}\right\}_{k \in \mathbb{N}}$ is an orthonormal basis of $L_{r}^{2}(\Omega)$ which implies $\chi=0$ and therefore $\operatorname{curl}\left(\chi e_{\theta}\right)=0$.

Definition. Let

$$
\begin{align*}
& N_{\nu 0}(\text { div })=\{u \in N(\text { div }): u \cdot \nu=0\} \tag{5.20}\\
& N_{\tau 0}(\text { curl })=\{u \in N(\text { curl }): u \wedge \nu=0\} .
\end{align*}
$$

Corollary 5.1.7. $\operatorname{Pol}(\Omega)$ has the following orthogonal decompositions:

$$
\begin{align*}
\operatorname{Pol}(\Omega) & =\operatorname{Grad}_{0}(\Omega) \oplus N(\text { div }) \\
& =\operatorname{Grad}(\Omega) \oplus N_{\nu 0}(\text { div }) \tag{5.21}\\
& =\operatorname{Curl}_{0}(\Omega) \oplus N(\operatorname{curl}) \\
& =\operatorname{Curl}(\Omega) \oplus N_{\tau 0}(\text { curl }) .
\end{align*}
$$

Proof. Theorem 4.1.1. shows that $\operatorname{Pol}(\Omega)=\overline{\operatorname{Grad}_{0}(\Omega)} \oplus N($ div $)$ and Theorem 4.1.4. shows that $\overline{\operatorname{Grad}_{0}(\Omega)}=\operatorname{Grad}_{0}(\Omega)$. The other decomposition follow similarly.

Theorem 4.1.2. let's us refine these decompositions since $\operatorname{Grad}(\Omega) \subset N($ curl $)$ and $\operatorname{Curl}(\Omega) \subset N($ div $)$.

Definition. Let $\mathcal{H}_{\nu 0}(\Omega)$ be the orthogonal complement of $\operatorname{Grad}(\Omega) \oplus \operatorname{Curl}_{0}(\Omega)$ in $\operatorname{Pol}(\Omega)$, and let $\mathcal{H}_{\tau 0}(\Omega)$ denote the orthogonal complement of $\operatorname{Grad}_{0}(\Omega) \oplus \operatorname{Curl}(\Omega)$ in $\operatorname{Pol}(\Omega)$.

Corollary 5.1.8. $\operatorname{Pol}(\Omega)$ has the following orthogonal decompositions:

$$
\begin{align*}
\operatorname{Pol}(\Omega) & =\operatorname{Grad}_{0}(\Omega) \oplus \operatorname{Curl}(\Omega) \oplus \mathcal{H}_{\tau 0}(\Omega) \tag{5.22}\\
& =\operatorname{Grad}(\Omega) \oplus \operatorname{Curl}_{0}(\Omega) \oplus \mathcal{H}_{\nu 0}(\Omega)
\end{align*}
$$

Definition. A vector field $u=\left(u_{r}, u_{\theta}, u_{z}\right)$ on Ω is called harmonic if $\operatorname{div}(u)=0$ and $\operatorname{curl}(u)=0$.

In particular, $\mathcal{H}_{\nu 0}(\Omega)$ and $\mathcal{H}_{\tau 0}(\Omega)$ are spaces of harmonic poloidal fields. We will show that these are special finite dimensional subspaces of harmonic fields determined by the topology of the cross section Ω. The description of these special harmonic fields begins with showing that gradients of axisymmetric scalar potentials and curls of axisymmetric stream functions are sufficient to characterize every poloidal field in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$.

Theorem 5.1.9. Let $u \in \operatorname{Pol}(\Omega)$. If $u \perp \operatorname{Grad}(\Omega)$, then $u \in \operatorname{Curl}(\Omega)$. If $u \perp$ $\operatorname{Curl}(\Omega)$, then $u \in \operatorname{Grad}(\Omega)$.

Proof. Let $u \in \operatorname{Pol}(\Omega)$ and suppose that $u \perp \operatorname{Grad}(\Omega)$. Let \tilde{u} be the zero extension of u to all of \mathbb{R}_{+}^{2}, i.e.

$$
\tilde{u}= \begin{cases}u & \text { in } \Omega \tag{5.23}\\ 0 & \text { in } \mathbb{R}_{+}^{2} \backslash \bar{\Omega}\end{cases}
$$

If $\phi \in C^{\infty}\left(\mathbb{R}^{2}\right)$ then

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{2}} \tilde{u} \cdot \nabla \phi r d r d z=\int_{\Omega} u \cdot \nabla \phi r d r d z=0 \tag{5.24}
\end{equation*}
$$

since $\left.\nabla \phi\right|_{\Omega} \in \operatorname{Grad}(\Omega)$ and $u \perp \operatorname{Grad}(\Omega)$. Let \tilde{U} be an axisymmetric lifting of \tilde{u} to the whole space \mathbb{R}^{3}. Then (5.24Orthogonal Decompositions for Poloidal Fieldsequation.5.1.24) implies $\operatorname{div}(\tilde{U})=0$ in \mathbb{R}^{3}, where $\operatorname{div}(\tilde{U})$ is meant in the weak sense. Theorem 3.4 and Remark 3.7 in [14] show that there is a vector potential $A \in H^{1}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ such that $\operatorname{div}(A)=0$ and $\tilde{U}=\operatorname{curl}(A)$. The equation $\operatorname{curl}(A)=\tilde{U}$ reads in Fourier transform

$$
\begin{equation*}
\mathcal{F} \tilde{U}(\xi)=2 i \pi\left(\xi_{2} \mathcal{F} A_{3}-\xi_{3} \mathcal{F} A_{2}, \xi_{3} \mathcal{F} A_{1}-\xi_{1} \mathcal{F} A_{3}, \xi_{1} \mathcal{F} A_{2},-\xi_{2} \mathcal{F} A_{1}\right) \tag{5.25}
\end{equation*}
$$

$\operatorname{div}(A)=0$ means that A is determined by the equation

$$
\begin{equation*}
\left(4 i \pi|\xi|^{2}\right) \mathcal{F} A=\mathcal{F}(\operatorname{curl}(\tilde{U})) \tag{5.26}
\end{equation*}
$$

\tilde{U} is poloidal so $\operatorname{curl}(\tilde{U})$ is toroidal, in particular, $(\operatorname{curl}(\tilde{U}))_{3}=0$. Then (5.26Orthogonal Decompositi implies that $(\mathcal{F} A)_{3}=0$ so $A_{3}=0$. When $A_{3}=0$ there is a unique solution of (5.25Orthogonal Decompositions for Poloidal Fieldsequation.5.1.25) given by

$$
\begin{equation*}
\mathcal{F} A_{1}=\frac{\mathcal{F} \tilde{U}_{2}}{2 i \pi \xi_{3}}, \quad \mathcal{F} A_{2}=-\frac{\mathcal{F} \tilde{U}_{1}}{2 i \pi \xi_{3}} \tag{5.27}
\end{equation*}
$$

\tilde{U} is poloidal, so the condition $\tilde{U}_{\theta}=0$ means.

$$
\begin{equation*}
-x_{2} \tilde{U}_{1}+x_{1} \tilde{U}_{2}=0 \tag{5.28}
\end{equation*}
$$

If we apply the Fourier transform to (5.28Orthogonal Decompositions for Poloidal Fieldsequation.5. we get

$$
\begin{equation*}
-\frac{\partial\left(\mathcal{F} \tilde{U}_{1}\right)}{\partial \xi_{2}}+\frac{\partial\left(\mathcal{F} \tilde{U}_{2}\right)}{\partial \xi_{1}}=0 . \tag{5.29}
\end{equation*}
$$

\tilde{U} has compact support so $\mathcal{F} \tilde{U}$ is smooth and we may differentiate $\mathcal{F} A_{1}, \mathcal{F} A_{2}$ in (5.27Orthogonal Decompositions for Poloidal Fieldsequation.5.1.27) to get

$$
\begin{equation*}
\frac{\partial\left(\mathcal{F} A_{1}\right)}{\partial \xi_{1}}+\frac{\partial\left(\mathcal{F} A_{2}\right)}{\partial \xi_{2}}=\left(\frac{1}{2 i \pi \xi_{3}}\right)\left(\frac{\partial\left(\mathcal{F} \tilde{U}_{2}\right)}{\partial \xi_{1}}-\frac{\partial\left(\mathcal{F} \tilde{U}_{1}\right)}{\partial \xi_{2}}\right) \tag{5.30}
\end{equation*}
$$

Then (5.29Orthogonal Decompositions for Poloidal Fieldsequation.5.1.29) implies that

$$
\begin{equation*}
\frac{\partial\left(\mathcal{F} A_{1}\right)}{\partial \xi_{1}}+\frac{\partial\left(\mathcal{F} A_{2}\right)}{\partial \xi_{2}}=0 \tag{5.31}
\end{equation*}
$$

Now apply the inverse Fourier transform to (5.31Orthogonal Decompositions for Poloidal Fieldsequa to get $x_{1} A_{1}+x_{2} A_{2}=0$ which implies $A_{r}=0$. Thus the vector potential A is toroidal so we may write $A=A_{\theta} e_{\theta}$. Now apply the condition $\operatorname{div}(A)=0$ in cylindrical coordinates to get

$$
\begin{equation*}
\operatorname{div}(A)=\frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta}=0 \tag{5.32}
\end{equation*}
$$

therefore A_{θ} is independent of θ, so $A \in H^{1}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ is an axisymmetric toroidal vector field. Hence there is a stream function ψ on Ω such that

$$
\begin{equation*}
A(x)=\psi\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right) e_{\theta} \quad x \in \Omega_{A} \tag{5.33}
\end{equation*}
$$

Our conditions on $\partial \Omega_{A}$ guarantee that the restriction $\left.A\right|_{\Omega_{A}}$ is an H^{1} vector field on Ω_{A}, therefore the stream function is in $V_{r}^{1}(\Omega)$ according to (2.35Poincaré Inequalitiesequation.2.4.35) Then taking the restriction to Ω shows that $u=\operatorname{curl}\left(\psi e_{\theta}\right)$ as desired. The case that $u \perp \operatorname{Curl}(\Omega)$ is proved similarly by extending u to an axisymmetric vector field on all of \mathbb{R}^{3} and using Fourier transform to construct the scalar potential $\phi \in H_{r}^{1}(\Omega)$ such that $u=\nabla \phi$.

5.2 Characterization of $\mathcal{H}_{\tau 0}(\Omega)$

Let $h \in \mathcal{H}_{\tau 0}(\Omega)$. Then Theorem 4.1.7. shows that $h=\nabla \phi$ for some $\phi \in H_{r}^{1}(\Omega)$. The conditions $\operatorname{div}(h)=0$ and $h \wedge \nu=0$ yield the boundary problem

$$
\left\{\begin{align*}
\Delta \phi=0 & \text { in } \Omega \tag{5.34}\\
\nabla \phi \cdot \tau=0 & \text { on } \Gamma
\end{align*}\right.
$$

where $\tau=\left(-\nu_{z}, 0, \nu_{r}\right)$. Let $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \cdots \cup \Gamma_{m}$ where $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ are the connected components of Γ such that Ω contained in the region interior to $\Gamma_{0} \cup\{r=$ $0\}, \Gamma_{j} \cap \Gamma_{k} \neq \emptyset \Leftrightarrow j=k$, and the $\Gamma_{1}, \ldots, \Gamma_{m}$ are closed C^{2} loops. For $j=1, \ldots, m$, let $f_{j} \in H_{r}^{1}(\Omega)$ be a function whose trace on Γ is

$$
f_{j}=\left\{\begin{align*}
0 & \text { on } \Gamma_{0}, \tag{5.35}\\
\delta_{j \ell} & \text { on } \Gamma_{\ell}, \text { for } \ell=1, \ldots, m
\end{align*}\right.
$$

Let $G_{j}=\left\{\phi_{0}+f_{j}: \phi_{0} \in H_{r, 0}^{1}(\Omega)\right\}$ for $j=1, \ldots, m$. If $\Gamma=\Gamma_{0}$ then we set f_{0} to some $H_{r, 0}^{1}(\Omega)$ function and $G_{0}=H_{r, 0}^{1}(\Omega)$.

Let $\mathcal{D}: H_{r}^{1}(\Omega) \rightarrow \mathbb{R}$ be the Dirichlet energy

$$
\begin{equation*}
\mathcal{D}(\phi)=\int_{\Omega}|\nabla \phi|^{2} r d r d z \tag{5.36}
\end{equation*}
$$

If $\Gamma=\Gamma_{0}$, then $\phi \equiv 0$ is the unique minimizer of \mathcal{D} over $G_{0}=H_{r, 0}^{1}(\Omega)$. Consider the problem of minimizing \mathcal{D} over G_{j} for $j \geq 1$.

Theorem 5.2.1. \mathcal{D} has a unique minimizer $\hat{\phi}$ on G_{j} for $j=1, \ldots, m$. $\hat{\phi}$ is the unique weak solution in $H_{r}^{1}(\Omega)$ of

$$
\left\{\begin{align*}
\Delta \phi=0 & \text { in } \Omega \tag{5.37}\\
\phi=f_{j} & \text { on } \Gamma
\end{align*}\right.
$$

Proof. G_{j} may be expressed as $G_{j}=f_{j}+H_{r, 0}^{1}(\Omega)=\left\{f_{j}+\phi: \phi \in H_{r, 0}^{1}(\Omega)\right\}$. Then minimizing (5.36Characterization of $\mathcal{H}_{\tau 0}(\Omega)$ equation.5.2.36) over G_{j} is equivalent to minimizing $\mathcal{D}_{j}: H_{r, 0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\mathcal{D}_{j}(\phi)=\int_{\Omega}\left|\nabla \phi+\nabla f_{j}\right|^{2} r d r d z \tag{5.38}
\end{equation*}
$$

Clearly, \mathcal{D}_{j} is continuous, strictly convex, and the Poincaré inequality for $H_{r, 0}^{1}(\Omega)$ implies that \mathcal{D}_{j} is coercive on $H_{r, 0}^{1}(\Omega)$. Therefore \mathcal{D} has a unique minimizer $\hat{\phi}_{j}$ on G_{j}. The functional D_{j} is Gateaux differentiable on $H_{r, 0}^{1}(\Omega)$ and the first order condition for a minimizer reads

$$
\begin{equation*}
\int_{\Omega} \nabla\left(\phi+f_{j}\right) \cdot \nabla \psi r d r d z=0 \quad \text { for all } \psi \in H_{r, 0}^{1}(\Omega) \tag{5.39}
\end{equation*}
$$

Plugging in $\hat{\phi}_{j}$ into this condition shows that $\hat{\phi}_{j}$ is the unique weak solution in $H_{r}^{1}(\Omega)$ of the harmonic boundary value problem (5.37equation.5.2.37).

$$
\text { For } j=1, \ldots, m \text {, let } h_{j}=\nabla \hat{\phi}_{j} \text { where } \hat{\phi}_{j} \text { is the unique minimizer in } G_{j} \text { of } \mathcal{D} \text {. }
$$

Theorem 5.2.2. If $\Gamma=\Gamma_{0}$, then $\mathcal{H}_{\tau 0}(\Omega)=\{0\}$. Otherwise if $m \geq 1$, then $\left\{h_{j}: j=\right.$ $1, \ldots, m\}$ is a basis of $\mathcal{H}_{\tau 0}(\Omega)$.

Proof. Let $h \in \mathcal{H}_{\tau 0}(\Omega)$. As mentioned earlier, there is a scalar potential $\phi \in H_{r}^{1}(\Omega)$ such that $h=\nabla \phi$ where ϕ is a solution of the harmonic boundary value problem (5.34Characterization of $\mathcal{H}_{\tau 0}(\Omega)$ equation.5.2.34). The boundary condition $\nabla \phi \cdot \tau=$ 0 and the regularity of Γ imply that ϕ is constant on each component of Γ. If $\Gamma=\Gamma_{0}$, then the only solution of (5.34Characterization of $\mathcal{H}_{\tau 0}(\Omega)$ equation.5.2.34) is $\phi=$ const. and then $h=\nabla \phi=0$, so $\mathcal{H}_{\tau 0}(\Omega)=\{0\}$ is a trivial subspace. Now consider the case that $m \geq 1$ and suppose that $c_{j}, j=0,1, \ldots, m$ are constants such that $\phi=c_{j}$ on $\Gamma_{j}, j=0,1, \ldots, m$. The function

$$
\begin{equation*}
\psi=\phi-c_{0}-\sum_{j=1}^{m}\left(c_{j}-c_{0}\right) \hat{\phi}_{j} \tag{5.40}
\end{equation*}
$$

satisfies $\Delta \psi=0$ in Ω and $\psi=0$ on Γ, which means $\psi \equiv 0$. Therefore

$$
\begin{equation*}
\phi=c_{0}+\sum_{j=1}^{m}\left(c_{j}-c_{0}\right) \hat{\phi}_{j} . \tag{5.41}
\end{equation*}
$$

Now take the gradient to get

$$
\begin{equation*}
\nabla \phi=\sum_{j=1}^{m}\left(c_{j}-c_{0}\right) \nabla \hat{\phi}_{j}=\sum_{j=1}^{m}\left(c_{j}-c_{0}\right) h_{j} \tag{5.42}
\end{equation*}
$$

so $\left\{h_{1}, \ldots, h_{m}\right\}$ spans $\mathcal{H}_{\tau 0}(\Omega)$. Suppose that there are constants a_{1}, \ldots, a_{m}, not all zero, such that

$$
\begin{equation*}
\sum_{j=1}^{m} a_{j} h_{j}=0 \tag{5.43}
\end{equation*}
$$

This says that

$$
\begin{equation*}
\nabla\left(\sum_{j=1}^{m} a_{j} \hat{\phi}_{j}\right)=0 \quad \text { in } \Omega . \tag{5.44}
\end{equation*}
$$

Γ is connected so we must have that $\sum_{j=1}^{m} a_{j} \hat{\phi}_{j}$ is constant on Ω. Taking traces onto Γ implies

$$
\sum_{j=1}^{m} a_{j} \hat{\phi}_{j}=\left\{\begin{align*}
a_{\ell} & \text { on } \Gamma_{\ell} \tag{5.45}\\
0 & \text { on } \Gamma_{0}
\end{align*}\right.
$$

As $\sum_{j=1}^{m} a_{j} \hat{\phi}_{j}$ is constant, we must have that $a_{j}=0$ for all j, a contradiction. Therefore $\left\{h_{1}, \ldots, h_{m}\right\}$ is a maximal spanning set for $\mathcal{H}_{\tau 0}(\Omega)$.

This result implies that the dimension of $\mathcal{H}_{\tau 0}(\Omega)$ is equal to the number of internal loops comprising $\Gamma \backslash \Gamma_{0}$. These loops correspond to toroidal holes in the volume of revolution Ω_{A}. We may also characterize the projection of a poloidal field u using the gradient basis for $\mathcal{H}_{\tau 0}(\Omega)$. Let $u \in \operatorname{Pol}(\Omega)$ and let $u_{d 0}$ be the projection of u onto N (div). We may write $u_{0}=u-\nabla \phi$ where $\nabla \phi$ is the projection of u onto $\operatorname{Grad}_{0}(\Omega)$. Then if $\hat{\phi}_{j}$ is as above and using the definition of the linear functional $u_{d 0} \cdot \nu$ we get

$$
\begin{align*}
\int_{\Omega} u \cdot \nabla \hat{\phi}_{j} r d r d z & =\int_{\Omega} \nabla \phi \cdot \nabla \hat{\phi}_{j} r d r d z+\int_{\Omega} u_{d 0} \cdot \nabla \hat{\phi}_{j} r d r d z \\
& =0+\left\langle u_{d 0} \cdot \nu, \phi_{j}\right\rangle \tag{5.46}\\
& =:\left\langle u_{d 0} \cdot \nu, 1\right\rangle_{\Gamma_{j}}
\end{align*}
$$

If $u_{d 0}$ is regular enough, then $\left\langle u_{d 0} \cdot \nu, 1\right\rangle_{\Gamma_{j}}$ may be written as

$$
\begin{equation*}
\int_{\Gamma_{j}} u_{d 0} \cdot \nu r d s \tag{5.47}
\end{equation*}
$$

This says that that the projection of u onto the harmonic subspace $\mathcal{H}_{\tau 0}(\Omega)$ is uniquely determined by the flux of the divergence-free component $u_{d 0}$ through each interior Γ_{j} for $j=1, \ldots, m$.

5.3 Characterization of $\mathcal{H}_{\nu 0}(\Omega)$

We may describe the fields in $\mathcal{H}_{\nu 0}(\Omega)$ in a similar manner to those in $\mathcal{H}_{\tau 0}(\Omega)$. If $k \in \mathcal{H}_{\nu 0}(\Omega)$, then there is a stream function $\psi \in V_{r}^{1}(\Omega)$ such that $k=\operatorname{curl}\left(\psi e_{\theta}\right)$ according to Theorem 4.1.7. Then the conditions $\operatorname{curl}(k)=0$ and $k \cdot \nu=0$ yield the boundary value problem

$$
\left\{\begin{align*}
-\Delta \psi+\frac{1}{r^{2}} \psi=0 & \text { in } \Omega \tag{5.48}\\
\nabla(r \psi) \cdot \tau=0 & \text { on } \Gamma
\end{align*}\right.
$$

For $j=1, \ldots, m$ let $g_{j} \in V_{r}^{1}(\Omega)$ be a function whose trace on Γ is

$$
g_{j}=\left\{\begin{align*}
0 & \text { on } \Gamma_{0} \tag{5.49}\\
\frac{\delta_{j \ell}}{r} & \text { on } \Gamma_{\ell}, \ell=1, \ldots, m
\end{align*}\right.
$$

Let $K_{j}=\left\{\psi_{0}+g_{j}: \psi_{0} \in V_{r}^{1}(\Omega)\right\}$ for $j=1, \ldots, m$. If $\Gamma=\Gamma_{0}$, we set g_{0} to some $V_{r, 0}^{1}(\Omega)$ function and $K_{0}=V_{r, 0}^{1}(\Omega)$. Let $\mathcal{B}: V_{r}^{1}(\Omega) \rightarrow \mathbb{R}$ be the functional

$$
\begin{equation*}
\mathcal{B}(\psi)=\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)\right|^{2} r d r d z \tag{5.50}
\end{equation*}
$$

If $\Gamma=\Gamma_{0}$, then $\psi \equiv 0$ is the unique minimizer of \mathcal{B} over $K_{0}=V_{r, 0}^{1}(\Omega)$ since $\sqrt{\mathcal{B}(\psi)}$ defines a norm on $V_{r}^{1}(\Omega)$.

Theorem 5.3.1. \mathcal{B} has a unique minimizer $\hat{\psi}$ on K_{j} for $j=1, \ldots, m$. $\hat{\psi}$ is the unique weak solution in $V_{r}^{1}(\Omega)$ of

$$
\left\{\begin{align*}
-\Delta \psi+\frac{1}{r^{2}} \psi & =0 \quad \text { in } \Omega \tag{5.51}\\
\psi & =g_{j}
\end{align*} \quad \text { on } \Gamma .\right.
$$

Proof. $K_{j}=\left\{\psi=\psi_{0}+g_{j}: \psi_{0} \in V_{r, 0}^{1}(\Omega)\right\}$ for $j=1, \ldots, m$, so minimizing \mathcal{B} over G_{j} is equivalent to minimizing $\mathcal{B}_{j}: V_{r, 0}^{1}(\Omega) \rightarrow \mathbb{R}$ over where

$$
\begin{equation*}
\mathcal{B}_{j}(\psi)=\int_{\Omega}\left|\operatorname{curl}\left(\psi e_{\theta}\right)+\operatorname{curl}\left(g_{j} e_{\theta}\right)\right|^{2} r d r d z \tag{5.52}
\end{equation*}
$$

Clearly \mathcal{B}_{j} is continuous, strictly convex, and the curl-Poincaré inequality for $V_{r}^{1}(\Omega)$ implies that \mathcal{B}_{j} is coercive on $V_{r, 0}^{1}(\Omega)$. Therefore \mathcal{B} has a unique minimizer $\hat{\psi}$ on K_{j}. The functional \mathcal{B}_{j} is Gateaux differentiable and the first order condition for a minimizer reads

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}\left(\left(\psi+g_{j}\right) e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z=0 \quad \text { for all } \chi \in V_{r, 0}^{1}(\Omega) \tag{5.53}
\end{equation*}
$$

Plugging $\hat{\psi}_{j}$ into this condition shows that $\hat{\psi}_{j}$ is the unique weak solution in $V_{r}^{1}(\Omega)$ of the boundary value problem (5.51equation.5.3.51).

For $j=1, \ldots, m$, let $k_{j}=\operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right)$ where $\hat{\psi}_{j}$ is the unique minimizer in K_{j} of \mathcal{B}.

Theorem 5.3.2. If $\Gamma=\Gamma_{0}$, then $\mathcal{H}_{\nu 0}(\Omega)=\{0\}$. Otherwise, if $m \geq 1$, then $\left\{k_{j}\right.$: $j=1, \ldots, m\}$ is a basis of $\mathcal{H}_{\nu 0}(\Omega)$.

Proof. Let $k \in \mathcal{H}_{\nu 0}(\Omega)$. Then there is a stream function $\psi \in V_{r}^{1}(\Omega)$ such that $k=$ $\operatorname{curl}\left(\psi e_{\theta}\right)$ where ψ is a solution of the boundary value problem (5.48Characterization of $\mathcal{H}_{\nu 0}(\Omega)$ equat The boundary condition $\nabla(r \psi) \cdot \tau$ and the regularity of Γ imply that $r \psi$ is constant on each component of Γ. If $\Gamma=\Gamma_{0}$ and $\psi=$ const. $/ r$ on Γ, then the trace of ψ on Γ is in $L_{r}^{2}(\Gamma)$ if and only if const. $=0$. Therefore $\psi=0$ on Γ and the only weak solution in $V_{r}^{1}(\Omega)$ of $\Delta \psi+r^{-2} \psi=0$ with the boundary condition $\psi=0$ is $\psi \equiv 0$. Hence
in this case we have $\mathcal{H}_{\nu 0}(\Omega)=\{0\}$. Now consider the case that $m \geq 1$ and suppose that $c_{j}, j=1, \ldots, m$ are constants such that $\psi=c_{j} / r$ on Γ_{j} for $j=1, \ldots, m$; we already saw that $\psi=0$ on Γ_{0}. Consider the function

$$
\begin{equation*}
\chi=\psi-\sum_{j=1}^{m} c_{j} \hat{\psi}_{j} \tag{5.54}
\end{equation*}
$$

Then χ obeys $-\Delta \chi+r^{-2} \chi=0$ and $\left.\chi\right|_{\Gamma}=0$, so we must have $\chi=0$. Therefore

$$
\begin{equation*}
\psi=\sum_{j=1}^{m} c_{j} \hat{\psi}_{j} \tag{5.55}
\end{equation*}
$$

Taking curls in the equation above we get

$$
\begin{equation*}
\operatorname{curl}\left(\psi e_{\theta}\right)=\sum_{j=1}^{m} c_{j} \operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right)=\sum_{j=1}^{m} c_{j} k_{j} \tag{5.56}
\end{equation*}
$$

so $\left\{k_{1}, \ldots, k_{m}\right\}$ spans $\mathcal{H}_{\nu 0}(\Omega)$. Suppose that there are constants a_{1}, \ldots, a_{m}, not all zero, such that

$$
\begin{equation*}
\sum_{j=1}^{m} a_{j} k_{j}=0 \tag{5.57}
\end{equation*}
$$

This says that

$$
\begin{equation*}
\operatorname{curl}\left(\sum_{j=1}^{m} a_{j} \hat{\psi}_{j}\right)=0 \quad \text { in } \Omega \tag{5.58}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\nabla\left(\sum_{j=1}^{m} a_{j}\left(r \hat{\psi}_{j}\right)\right)=0 \tag{5.59}
\end{equation*}
$$

Ω is connected so $\sum_{j=1}^{m} a_{j}\left(r \hat{\psi}_{j}\right)$ is constant on Ω. Then taking traces on $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ we get

$$
\sum_{j=1}^{m} a_{j}\left(r \hat{\psi}_{j}\right)= \begin{cases}a_{\ell} & \text { on } \Gamma_{\ell}, \ell=1, \ldots, m \tag{5.60}\\ 0 & \text { on } \Gamma_{0}\end{cases}
$$

Then we must have $a_{j}=0$ for all $j=0,1, \ldots, m$, a contradiction. Hence the k_{j} 's are a maximal spanning set for $\mathcal{H}_{\nu 0}(\Omega)$.

This characterization of $\mathcal{H}_{\nu 0}(\Omega)$ and $\mathcal{H}_{\tau 0}(\Omega)$ have the same dimension: the number of internal loops in the cross-section Ω which is equal to the number of toroidal holes in the cross-section Ω_{A}. The projection of a poloidal field onto $\mathcal{H}_{\nu 0}(\Omega)$ has an interpretation using circulations, just as the projection onto $\mathcal{H}_{\tau 0}(\Omega)$ has an interpretation using fluxes. Let u be a poloidal field and let $u_{c 0}$ the projection onto N (curl). We may write $u_{c 0}=u-\operatorname{curl}\left(\psi e_{\theta}\right)$ where $\operatorname{curl}\left(\psi e_{\theta}\right)$ is the projection of u onto $\operatorname{Curl}_{0}(\Omega)$. Then if $\hat{\psi}_{j}$ is as above and using the definition of the linear functional $u_{c 0} \wedge \nu$, we get

$$
\begin{align*}
\int_{\Omega} u \cdot \operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right) r d r d z & =\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right) r d r d z+\int_{\Omega} u_{c 0} \cdot \operatorname{curl}\left(\hat{\psi} e_{\theta}\right) r d r d z \\
& =0+\left\langle u_{c 0} \wedge \nu, \hat{\psi}_{j} e_{\theta}\right\rangle \\
& =:\left\langle u_{c 0} \wedge \nu, \frac{1}{r} e_{\theta}\right\rangle_{\Gamma_{j}} \tag{5.61}
\end{align*}
$$

When $u_{c 0}$ is smooth enough, $\left\langle u_{c 0} \wedge \nu, e_{\theta} / r\right\rangle_{\Gamma_{j}}$ may be expressed as

$$
\begin{equation*}
\int_{\Gamma_{j}} u_{c 0} \cdot \tau d s \tag{5.62}
\end{equation*}
$$

This says that that the projection of u onto the harmonic subspace $\mathcal{H}_{\nu 0}(\Omega)$ is uniquely determined by the circulation of the curl-free component $u_{c 0}$ around each interior Γ_{j} for $j=1, \ldots, m$.

Chapter 6

Axisymmetric Div-curl systems

This chapter will describe well-posedness results on axisymmetric div-curl systems with normal or tangantial boundary conditions. The axisymmetric div-curl systems arise in classical field theories when the domain has rotational symmetry and the data is axisymmetric. In particular, the results of this chapter may be applied to some forms of the quasi-static Maxwell equations on domains such as those described in Section 2.1 with axisymmetric data as in Sections 2.2 and 2.3.

6.1 The Normal Div-curl System

This section studies the well-posedness of the normal div-curl system

$$
\left\{\begin{align*}
\operatorname{div}(u)=\rho & \text { in } \Omega \tag{6.1}\\
\operatorname{curl}(u)=\omega & \text { in } \Omega \\
u \cdot \nu=\mu & \text { on } \Gamma
\end{align*}\right.
$$

Here ρ is a function on Ω, ω is a vector field on Ω, and μ is a function on Γ. The boundary condition $u \cdot \nu=\mu$ is a single scalar equation. We decompose the analysis of this problem into poloidal and toroidal parts. The poloidal-normal div-curl system is

$$
\left\{\begin{array}{cc}
\operatorname{div}\left(u_{P}\right)=\rho & \text { in } \Omega \tag{6.2}\\
\operatorname{curl}\left(u_{P}\right)=\omega_{T} & \text { in } \Omega \\
u_{P} \cdot \nu=\mu & \text { on } \Gamma
\end{array}\right.
$$

The toroidal-normal div-curl system is

$$
\left\{\begin{array}{c}
\operatorname{div}\left(u_{T}\right)=0 \quad \text { in } \Omega \tag{6.3}\\
\operatorname{curl}\left(u_{T}\right)=\omega_{P} \quad \text { in } \Omega \\
u_{T} \cdot \nu=0 \quad \text { on } \Gamma
\end{array}\right.
$$

The following conditions are imposed on the data ρ, ω, μ for (6.1The Normal Div-curl Systemeque
(N1) $\rho \in L_{r}^{2}(\Omega)$;
(N2) $\omega \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$;
$(\mathrm{N} 3) \operatorname{div}\left(\omega_{P}\right)=0$;

$$
\text { (N4) } \mu \in L_{r}^{2}(\Gamma)
$$

(N5) $\int_{\Omega} \rho r d r d z=\int_{\Gamma} \mu r d s ;$
(N6) $\omega_{P} \perp \mathcal{H}_{\tau 0}(\Omega)$.

Definition. Let ρ, ω, μ be given such that conditions (N1) through (N6) are satisfied.
A vector field $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ is a weak solution of (6.1The Normal Div-curl Systemequation.6.1.1) provided it satisfies

$$
\begin{equation*}
\int_{\Omega} u \cdot \nabla \phi r d r d z=-\int_{\Omega} \rho \phi r d r d z+\int_{\Gamma} \mu \gamma \phi \quad \text { for all } \phi \in H_{1}^{1}(\Omega) \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} u \cdot \operatorname{curl}(F) r d r d z=\int_{\Omega} \omega \cdot F r d r d z \quad \text { for all } F \in V_{r, 0}^{1}(\Omega) \times V_{r, 0}^{1}(\Omega) \times H_{r, 0}^{1}(\Omega) \tag{6.5}
\end{equation*}
$$

By linearity, $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ is a weak solution of (6.1The Normal Div-curl Systemequation.6.1.1) if and only if the poloidal and toroidal components u_{P}, u_{T} are weak solutions of (6.2The Normal Div-curl Systemequation.6.1.2) and (6.3The Normal Div-curl Systemequation.6.1.3 respectively. The conditions (N5) and (N6) are actually compatibility conditions that must hold.

Theorem 6.1.1. Let ρ, ω, μ be given such that (N1) through (N4) are satisfied and suppose that $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ is a weak solution of (6.1The Normal Div-curl Systemequation.6.1.1). Then ρ, ω, μ satisfy (N5) and (N6).

Proof. Let $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ solve (6.1The Normal Div-curl Systemequation.6.1.1). If
$\phi \equiv 1 \in H_{r}^{1}(\Omega)$, then $\gamma \phi \equiv 1$ on Γ so

$$
\begin{align*}
\langle\mu, 1\rangle & =\langle u \cdot \nu, 1\rangle \\
& =\int_{\Omega} u \cdot \nabla(1) r d r d z+\int_{\Omega} \operatorname{div}(u)(1) r d r d z \\
& =\int_{\Omega} \operatorname{div}(u) r d r d z \tag{6.6}\\
& =\int_{\Omega} \rho r d r d z
\end{align*}
$$

If u solves (6.1The Normal Div-curl Systemequation.6.1.1) then, in particular, $\operatorname{curl}\left(u_{T}\right)=$ $\omega_{P} \in \operatorname{Pol}(\Omega)$. This says that $\omega_{P} \in \operatorname{Curl}(\Omega)$ which implies $\omega_{P} \perp\left(\operatorname{Grad}_{0}(\Omega) \oplus\right.$ $\left.\mathcal{H}_{\tau 0}(\Omega)\right)$.

Now we want to show that when (N1) through (N6) are satisfied, then the system (6.1The Normal Div-curl Systemequation.6.1.1) has a solution $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$. To this end, we construct a solution u_{P} of the poloidal-normal div-curl system using the decompositions from the previous chapter. Consider $u_{P}=-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)$ with $\phi \in H_{r}^{1}(\Omega)$ a weak solution of

$$
\left\{\begin{align*}
-\Delta \phi=\rho & \text { in } \Omega, \tag{6.7}\\
D_{\nu} \phi=-\mu & \text { on } \Gamma .
\end{align*}\right.
$$

and $\psi \in V_{r, 0}^{1}(\Omega)$ a weak solution of

$$
\left\{\begin{align*}
-\Delta \psi+\frac{1}{r^{2}} \psi & =\omega_{\theta} \tag{6.8}\\
\psi & \text { in } \Omega \\
\psi & \text { on } \Gamma
\end{align*}\right.
$$

A weak solution of (6.7The Normal Div-curl Systemequation.6.1.7) exists when the conditions (N1), (N4), and (N5) are satisfied according to Theorem 4.2.3; a weak
solution of (6.8The Normal Div-curl Systemequation.6.1.8) exists when ω satisfies (N2) according to Theorem 4.3.1.

Lemma 6.1.2. Suppose that ρ, ω, μ are given such that conditions (N1) through (N6) are satisfied. Let $\phi \in H_{r}^{1}(\Omega)$ be a weak solution of (6.7The Normal Div-curl Systemequation.6.1.7) and $\psi \in V_{r, 0}^{1}(\Omega)$ be a weak solution of (6.8The Normal Div-curl Systemequation.6.1.8). Then $u_{p}=-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)$ is a weak solution of the poloidal-normal div-curl system.

Proof. Let $\chi \in H_{r}^{1}(\Omega)$. Then

$$
\begin{align*}
\int_{\Omega} u_{P} \cdot \nabla \chi r d r d z & =\int_{\Omega}\left(-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)\right) \cdot \nabla \chi r d r d z \\
& =-\int_{\Omega} \nabla \phi \cdot \nabla \chi r d r d z+\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \nabla \chi r d r d z \tag{6.9}\\
& =-\int_{\Omega} \nabla \phi \cdot \nabla \chi r d r d z
\end{align*}
$$

since $\operatorname{curl}\left(\psi e_{\theta}\right)$ and $\nabla \chi$ are orthogonal in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$. A weak solution $\phi \in H_{r}^{1}(\Omega)$ of (6.7The Normal Div-curl Systemequation.6.1.7) satisfies

$$
\begin{equation*}
\int_{\Omega} \nabla \phi \cdot \nabla \chi r d r d z=\int_{\Omega} \rho \chi r d r d z-\int_{\Gamma} \mu \gamma \chi r d s \tag{6.10}
\end{equation*}
$$

so

$$
\begin{align*}
\int_{\Omega} u_{P} \cdot \nabla \chi r d r d z & =-\int_{\Omega} \nabla \phi \cdot \nabla \chi r d r d z \tag{6.11}\\
& =-\int_{\Omega} \rho \chi r d r d z+\int_{\Gamma} \mu \gamma \chi r d s
\end{align*}
$$

Now if $\chi \in V_{r, 0}^{1}(\Omega)$ and ψ is a weak solution of (6.8The Normal Div-curl Systemequation.6.1.8), then

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z=\int_{\Omega} \omega_{\theta} \chi r d r d z \tag{6.12}
\end{equation*}
$$

therefore we may argue similarly as before to show that

$$
\begin{equation*}
\int_{\Omega} u_{P} \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z=\int_{\Omega} \omega_{\theta} \chi r d r d z \tag{6.13}
\end{equation*}
$$

Hence u_{P} is a weak solution of the poloidal-normal div-curl system (6.2The Normal Div-curl Systeme

The existence of a solution to the toroidal-normal div-curl problem (6.3The Normal Div-curl Syst is proved using the decomposition

$$
\begin{equation*}
\operatorname{Pol}(\Omega)=\operatorname{Grad}_{0}(\Omega) \oplus \operatorname{Curl}(\Omega) \oplus \mathcal{H}_{\tau 0}(\Omega) \tag{6.14}
\end{equation*}
$$

Lemma 6.1.3. Suppose that condition (N1) through (N6) are satisfied. Then there is a weak solution $u_{T} \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ of the toroidal-normal div-curl system.

Proof. The conditions (N3) and (N6) say that the poloidal field $\omega_{P} \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ satisfies $\operatorname{div}\left(\omega_{P}\right)=0$ and $\omega_{P} \perp \mathcal{H}_{\tau 0}(\Omega)$. If $\operatorname{div}\left(\omega_{P}\right)=0$ then $\omega_{P} \perp \operatorname{Grad}_{0}(\Omega)$, so $\omega_{P} \in\left(\operatorname{Grad}_{0}(\Omega) \oplus \mathcal{H}_{\tau 0}(\Omega)\right)^{\perp}=\operatorname{Curl}(\Omega)$. Then there is a unique $\chi \in V_{r}^{1}(\Omega)$ such that $\omega_{P}=\operatorname{curl}\left(\chi e_{\theta}\right)$. Set $u_{T}=\chi e_{\theta}$. Then

$$
\begin{equation*}
\int_{\Omega} u_{T} \cdot \nabla \eta r d r d z=0 \tag{6.15}
\end{equation*}
$$

for all $\eta \in H_{r}^{1}(\Omega)$ since u_{T} is toroidal and $\nabla \chi$ is poloidal. Let $F_{r} \in V_{r, 0}^{1}(\Omega), F_{z} \in$ $H_{r}^{1}(\Omega)$. Then the definition of $\omega_{P}=\operatorname{curl}\left(\chi e_{\theta}\right)$ implies that

$$
\begin{align*}
\int_{\Omega} u_{T} \cdot \operatorname{curl}\left(F_{r} e_{r}+F_{z} e_{z}\right) r d r d z & =\int_{\Omega} \chi e_{\theta} \cdot \operatorname{curl}\left(F_{r} e_{r}+F_{z} e_{z}\right) r d r d z \tag{6.16}\\
& =\int_{\Omega} \omega_{P} \cdot\left(F_{r} e_{r}+F_{z} e_{z}\right) r d r d z
\end{align*}
$$

Hence u_{T} is a weak solution of the toroidal-normal div-curl system.

Corollary 6.1.4. Let ρ, ω, μ be given such that conditions (N1) through (N6) are satisfied. Then the normal div-curl system (6.1The Normal Div-curl Systemequation.6.1.1) has a weak solution.

Proof. Let $u=-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)+\chi e_{\theta}$ with ϕ, ψ as in Lemma 5.1.2 and χ as in the proof of Lemma 5.1.3. Then $u_{P}=-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)$ solves the poloidal-normal div-curl system, $u_{T}=\chi e_{\theta}$ solves the toroidal-normal div-curl system, so $u=u_{P}+u_{T}$ solves the complete normal div-curl system.

This resolves the existence problem for the normal div-curl system. We now address the problem of uniqueness. The orthogonal decompositions in Chapter 4 suggest that the uniqueness problem for the poloidal part depends on the topology of Ω, since the space of harmonic fields $\mathcal{H}_{\nu 0}(\Omega)$ are in the null-space of the divergence, curl, and normal trace operators. On the other hand, the toroidal part of the problem has uniqueness guaranteed since there are no nontrivial harmonic toroidal fields in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$.

Theorem 6.1.5. Let ρ, ω, μ be given such that conditions (N1) through (N6) are satisfied. If Γ has a single component $\Gamma=\Gamma_{0}$, then there is a unique weak solution in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ to the normal div-curl system. If Γ has multiple components $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup$ $\cdots \cup \Gamma_{m}$, then the set of weak solutions in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ of the normal div-curl system is an m-dimensional affine subspace.

Proof. Let u, v be two weak solutions of the normal div-curl system and let $w=u-v$ be their difference. The toroidal part w_{T} is therefore a harmonic toroidal field so it must have the form $w_{T}=(C / r) e_{\theta}$ for some constant C. If $w_{T} \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ then

$$
\begin{equation*}
\int_{\Omega} \frac{C^{2}}{r^{2}} r d r d z=\int_{\Omega} \frac{C^{2}}{r} d r d z<\infty \tag{6.17}
\end{equation*}
$$

if and only if $C=0$ since $\bar{\Omega}$ has nontrivial intersection with the z-axis. Therefore $w_{T}=0$, so $u_{T}=v_{T}$. The poloidal component w_{P} is a harmonic poloidal field in
$L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ with zero normal trace, i.e. $w_{P} \in \mathcal{H}_{\nu 0}(\Omega)$. If $\Gamma=\Gamma_{0}$, then Theorem 4.3.2 asserts that $w_{P}=0$, so $u_{P}=v_{P}$ and consequently $u=v$. If $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \cdots \cup \Gamma_{m}$ with $\Gamma_{1}, \ldots, \Gamma_{m}$ all nonempty, then Theorem 4.3.2 asserts that $\mathcal{H}_{\nu 0}(\Omega)$ is a m-dimensional subspace of $\operatorname{Pol}(\Omega)$. Therefore $u=v+\sum_{j=1}^{m} c_{j} \operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right)$, with $\operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right)=k_{j}$ as in Theorem 4.3.2, for some constants c_{1}, \ldots, c_{m}.

A unique weak solution of the normal div-curl system in the case that Γ has multiple components $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ may be obtained by prescribing extra conditions. Namely, the projection of the solution onto the one-dimensional subspaces $\left\{a \operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right): a \in \mathbb{R}\right\}, j=1, \ldots, m$ uniquely determines a weak solution.

Corollary 6.1.6. Let ρ, ω, μ be given such that conditions (N1) through (N6) are satisfied and let $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ be the connected components of Γ as before with $\Gamma_{1}, \ldots, \Gamma_{m}$ all nonempty. Let $\left\{\operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}: j=1, \ldots, m\right\}\right.$ be a basis for $\mathcal{H}_{\nu 0}(\Omega)$ as in Theorem 4.3.2. Then the normal div-curl system has a unique weak solution if the m functionals

$$
\begin{equation*}
\int_{\Omega} u \cdot \operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right) r d r d z, \quad j=1, \ldots, m \tag{6.18}
\end{equation*}
$$

are also prescribed in addition to ρ, ω, μ satisfying conditions (N1) through (N6).

Proof. If ρ, σ, μ are given such that conditions (N1) through (N6) satisfied, then there is an m-dimensional affine subspace of solutions $u+\mathcal{H}_{\nu 0}(\Omega)$ where u is a particular solution. The m functionals (6.18equation.6.1.18) uniquely determine the projection of a solution onto the subspace $\mathcal{H}_{\nu 0}(\Omega)$, hence there is a unique solution when the m functionals in (6.18equation.6.1.18) are prescribed.

The prescription of the functionals in (6.18equation.6.1.18) may be interpreted as prescribing m circulations of the curl-free part of the desired vector field. Lastly we present an energy estimate demonstrating the dependence of a solution on the data ρ, ω, μ.

Corollary 6.1.7. Let ρ, ω, μ be given satisfying conditions (N1) - (N6). Suppose that Γ has multiple components $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ with $\Gamma_{1}, \ldots, \Gamma_{m}$ all nonempty. Let $\left\{\operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right): j=1, \ldots, m\right\}$ be a basis for $\mathcal{H}_{\nu 0}(\Omega)$. Let $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ be a solution of the normal div-curl system with $\kappa_{j}, j=1, \ldots, m$ the values of the m functionals

$$
\begin{equation*}
\kappa_{j}=\int_{\Omega} u \cdot \operatorname{curl}\left(\hat{\psi}_{j} e_{\theta}\right) r d r d z, \quad j=1, \ldots, m \tag{6.19}
\end{equation*}
$$

and denote $\kappa=\left(\kappa_{1}, \ldots, \kappa_{m}\right)$. Then there is a constant $C>0$ such that

$$
\begin{equation*}
\int_{\Omega}|u|^{2} r d r d z \leq C\left(\int_{\Gamma}|\mu|^{2} r d s+\int_{\Omega}|\rho|^{2} r d r d z+\int_{\Omega}|\omega|^{2} r d r d z+|\kappa|\right) . \tag{6.20}
\end{equation*}
$$

Proof. Let u_{P} be the poloidal part of u and write $u_{P}=-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)+k$ where $\nabla \phi$ is the projection onto $\operatorname{Grad}(\Omega), \operatorname{curl}\left(\psi e_{\theta}\right)$ is the projection onto $\operatorname{Curl}_{0}(\Omega)$, and k is the projection onto $\mathcal{H}_{\nu 0}(\Omega)$. The characterizations of ϕ, ψ as weak solutions of boundary value problems let us apply Corollary 4.2.8 and Corollary 4.3.2 to derive a constant $C>0$ such that

$$
\begin{equation*}
\int_{\Omega}\left|u_{P}\right|^{2} r d r d z \leq C\left(\int_{\Gamma}|\mu|^{2} r d s+\int_{\Omega}|\rho|^{2} r d r d z+\int_{\Omega}\left|\omega_{T}\right|^{2} r d r d z+|\kappa|\right) \tag{6.21}
\end{equation*}
$$

$\omega_{P} \in \operatorname{Curl}(\Omega)$ with $\omega_{P}=\operatorname{curl}\left(u_{\theta} e_{\theta}\right)$ and $u_{\theta} \in V_{r}^{1}(\Omega)$ by conditions (N2), (N3), and (N6), so we may apply the curl-Poincaré inequality for $V_{r}^{1}(\Omega)$ to obtain

$$
\begin{equation*}
\int_{\Omega}\left|u_{\theta} e_{\theta}\right|^{2} r d r d z \leq C \int_{\Omega}\left|\operatorname{curl}\left(u_{\theta} e_{\theta}\right)\right|^{2} r d r d z=C \int_{\Omega}\left|\omega_{P}\right|^{2} r d r d z \tag{6.22}
\end{equation*}
$$

for some constant $C>0$. Combining (6.21The Normal Div-curl Systemequation.6.1.21) and (6.22The Normal Div-curl Systemequation.6.1.22) yields (6.20equation.6.1.20).

6.2 The Tangential Div-curl System

This section studies the well-posedness of the tangential div-curl system

$$
\left\{\begin{array}{cl}
\operatorname{div}(u)=\rho & \text { in } \Omega \tag{6.23}\\
\operatorname{curl}(u)=\omega & \text { in } \Omega \\
u \wedge \nu=\sigma & \text { on } \Gamma
\end{array}\right.
$$

where ρ, ω are as in Section 6.1, and σ is a vector field on Γ. The boundary condition for the tangential div-curl system consists of three scalar equations. We again decompose the analysis of this problem into poloidal and toroidal parts. The poloidaltangential div-curl system is

$$
\left\{\begin{array}{c}
\operatorname{div}\left(u_{P}\right)=\rho \quad \text { in } \Omega \tag{6.24}\\
\operatorname{curl}\left(u_{P}\right)=\omega_{T} \quad \text { in } \Omega \\
u_{P} \wedge \nu=\sigma_{T} \quad \text { on } \Gamma .
\end{array}\right.
$$

The toroidal-normal div-curl system is

$$
\left\{\begin{array}{c}
\operatorname{div}\left(u_{T}\right)=0 \quad \text { in } \Omega \tag{6.25}\\
\operatorname{curl}\left(u_{T}\right)=\omega_{P} \quad \text { in } \Omega \\
u_{T} \wedge \nu=\sigma_{P} \quad \text { on } \Gamma
\end{array}\right.
$$

The following conditions are imposed on the data ρ, ω, σ for (6.23The Tangential Div-curl System
(N1) $\rho \in L_{r}^{2}(\Omega)$
(N2) $\omega \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$
(N3) $\operatorname{div}\left(\omega_{P}\right)=0$
(N6) $\omega_{P} \perp \mathcal{H}_{\tau 0}(\Omega)$
(N7) $\sigma \in L_{r}^{2}\left(\Gamma ; \mathbb{R}^{3}\right)$

$$
\begin{equation*}
\int_{\Omega} \omega_{P} \cdot v_{P} r d r d z=-\int_{\Gamma} \sigma_{P} \cdot \gamma v_{P} r d s \tag{N8}
\end{equation*}
$$

for all $v_{P}=v_{r} e_{r}+v_{z} e_{z}$ with $v_{r} \in V_{r}^{1}(\Omega), v_{z} \in H_{r}^{1}(\Omega), \operatorname{curl}\left(v_{P}\right)=0$.

Definition. Let ρ, ω, σ be given such that conditions (N1) - (N3), (N6) - (N8) are satisfied. A vector field $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ is a weak solution of (6.23The Tangential Div-curl Systemeque provided it satisfies

$$
\begin{equation*}
\int_{\Omega} u \cdot \nabla \phi r d r d z=-\int_{\Omega} \rho \phi r d r d z \quad \text { for all } \phi \in H_{r, 0}^{1}(\Omega) \tag{6.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} u \cdot \operatorname{curl}(v) r d r d z=\int_{\Gamma} \sigma \cdot \gamma v r d s+\int_{\Omega} \omega \cdot v r d r d z \tag{6.27}
\end{equation*}
$$

for all $v=\left(v_{r}, v_{\theta}, v_{z}\right)$ with $v_{r}, v_{\theta} \in V_{r}^{1}(\Omega)$ and $v_{z} \in H_{r}^{1}(\Omega)$.

Just like the normal div-curl system, $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ is a weak solution of (6.23The Tangential Div if and only if the poloidal and toroidal components u_{P}, u_{T} are weak solutions of (6.24The Tangential Div-curl Systemequation.6.2.24) and (6.25The Tangential Div-curl Systemequ respectively.

We construct solutions of the poloidal-tangential div-curl system by formulating boundary value problems for the scalar potential and stream function. Consider $u_{P}=-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)$ where $\phi \in H_{r, 0}^{1}(\Omega)$ is a weak solution of

$$
\left\{\begin{align*}
-\Delta \phi=\rho & \text { in } \Omega \tag{6.28}\\
\phi=0 & \text { on } \Gamma
\end{align*}\right.
$$

and $\psi \in V_{r}^{1}(\Omega)$ is a weak solution of

$$
\left\{\begin{align*}
-\Delta \psi+\frac{1}{r^{2}} \psi=\omega_{\theta} & \text { in } \Omega \tag{6.29}\\
\operatorname{curl}\left(\psi e_{\theta}\right) \wedge \nu=\sigma_{T} & \text { on } \Gamma
\end{align*}\right.
$$

A weak solution of (6.28The Tangential Div-curl Systemequation.6.2.28) exists when (N1) is satisfied and a weak solution of (6.29The Tangential Div-curl Systemequation.6.2.29) exists when (N2) and (N7) are satisfied.

Lemma 6.2.1. Suppose that ρ, ω, σ are given such that (N1) - (N3), (N6) - (N8) are satisfied. Let $\phi \in H_{r, 0}^{1}(\Omega)$ be a weak solution of (6.28The Tangential Div-curl Systemequation.6.2.28 and $\psi \in V_{r}^{1}(\Omega)$ be a weak solution of (6.29The Tangential Div-curl Systemequation.6.2.29). Then $u_{P}=-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)$ is a weak solution of the poloidal-tangential div-curl system.

Proof. Let $\chi \in H_{r, 0}^{1}(\Omega)$ and $u_{P}=-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)$ where ϕ, ψ are weak solutions of (6.28The Tangential Div-curl Systemequation.6.2.28), (6.29The Tangential Div-curl Systemequatio respectively. Then

$$
\begin{align*}
\int_{\Omega} u_{P} \cdot \nabla \chi r d r d z & =\int_{\Omega}\left(-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)\right) r d r d z \\
& =-\int_{\Omega} \nabla \phi \cdot \nabla \chi r d r d z-\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \nabla \chi r d r d z \tag{6.30}\\
& =-\int_{\Omega} \rho \chi r d r d z
\end{align*}
$$

since $\operatorname{curl}\left(\psi e_{\theta}\right)$ and $\nabla \chi$ are orthogonal in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$. Now if $\chi \in V_{r}^{1}(\Omega)$ we have

$$
\begin{align*}
\int_{\Omega} u_{P} \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z & =\int_{\Omega}\left(-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z \\
& =\int_{\Omega} \operatorname{curl}\left(\psi e_{\theta}\right) \cdot \operatorname{curl}\left(\chi e_{\theta}\right) r d r d z \tag{6.31}\\
& =\int_{\Gamma} \sigma_{\theta} \gamma \chi r d s+\int_{\Omega} \omega_{\theta} \chi r d r d z
\end{align*}
$$

since $\nabla \phi$ and $\operatorname{curl}\left(\chi e_{\theta}\right)$ are orthogonal in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$. Therefore u_{P} is a weak solution of the poloidal-tangential div-curl system.

The problem of existence of a solution to the toroidal-tangential div-curl system is more subtle. Unlike the normal div-curl system, the boundary condition $u_{T} \wedge \nu=\sigma_{P}$ is not immediately satisfied by virtue of u_{T} being toroidal. We consider instead writing $u_{T}=\operatorname{curl}\left(v_{P}\right)$ for some poloidal field $v_{p}=\left(v_{r}, 0, v_{z}\right)$ with $v_{r} \in V_{r}^{1}(\Omega), v_{z} \in$ $H_{r}^{1}(\Omega)$. Let $X_{P}(\Omega)=\left\{v_{p} \in \operatorname{Pol}(\Omega): v_{r} \in V_{r}^{1}(\Omega), v_{z} \in H_{r}^{1}(\Omega), \operatorname{div}\left(v_{P}\right)=0\right.$ in Ω, v_{P}. $\nu=0$ on $\Gamma\}$ and define the norm on $X_{P}(\Omega)$ to be $\left\|v_{P}\right\|_{X_{P}}:=\left(\left\|v_{r}\right\|_{V_{r}^{1}}^{2}+\left\|v_{z}\right\|_{H_{r}^{1}}^{2}\right)^{1 / 2}$. Now consider the variational problem of finding $v_{p} \in X_{p}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}\left(v_{P}\right) \cdot \operatorname{curl}\left(w_{P}\right) r d r d z=\int_{\Gamma} \sigma_{P} \cdot \gamma w_{P} r d s+\int_{\Omega} \omega_{P} \cdot w_{P} r d r d z \tag{6.32}
\end{equation*}
$$

for all $w_{P}=\left(w_{r}, 0, w_{z}\right)$ with $w_{r} \in V_{r}^{1}(\Omega), w_{z} \in H_{r}^{1}(\Omega)$.
Lemma 6.2.2. Let $\omega \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right), \sigma \in L_{r}^{2}\left(\Gamma ; \mathbb{R}^{3}\right)$. Then there is a unique $v_{P} \in$ $X_{P}(\Omega) \cap \mathcal{H}_{\nu 0}(\Omega)^{\perp}$ satisfying (6.32The Tangential Div-curl Systemequation.6.2.32) for all $w_{P} \in X_{P}(\Omega) \cap \mathcal{H}_{\nu 0}(\Omega)^{\perp}$.

Proof. Clearly the right-hand side of (6.32The Tangential Div-curl Systemequation.6.2.32) defines a continuous linear functional on $X_{P}(\Omega) \cap \mathcal{H}_{\nu 0}(\Omega)^{\perp} . B\left(v_{P}, w_{P}\right)=\int_{\Omega} \operatorname{curl}\left(v_{P}\right)$.
$\operatorname{curl}\left(w_{P}\right) r d r d z$ is a continuous bilinear form on $X_{P}(\Omega)$, and Theorem 2.4.5 implies that B is coercive on $X_{P}(\Omega) \cap \mathcal{H}_{\nu 0}(\Omega)^{\perp}$. Then we may apply the Lax-Milgram theorem to conclude that there is a unique $v_{P} \in X_{P}(\Omega) \cap \mathcal{H}_{\nu 0}(\Omega)^{\perp}$ satisfying (6.32The Tangential Div-cur for all $w_{P} \in X_{P}(\Omega) \cap \mathcal{H}_{\nu 0}(\Omega)^{\perp}$.

Theorem 6.2.3. Let $\omega \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right), \sigma \in L_{r}^{2}\left(\Gamma ; \mathbb{R}^{3}\right)$ such that conditions (N2), (N3), (N6) - (N8) are satisfied. Suppose that $v_{P} \in X_{p}(\Omega) \cap \mathcal{H}_{\nu 0}(\Omega)^{\perp}$ satisfies (6.32The Tangential Div-curl Systemequation.6.2.32) for all $w_{P} \in X_{P}(\Omega) \cap \mathcal{H}_{\nu 0}(\Omega)^{\perp}$. Then v_{P} also satisfies (6.32The Tangential Div-curl Systemequation.6.2.32) for all $w_{P} \in \operatorname{Pol}(\Omega)$ with $w_{r} \in V_{r}^{1}(\Omega), w_{z} \in H_{r}^{1}(\Omega)$.

Proof. Let $w_{P} \in \operatorname{Pol}(\Omega)$ with $w_{r} \in V_{r}^{1}(\Omega), w_{z} \in H_{r}^{1}(\Omega)$, and write $w_{P}=\nabla \phi+$ $\operatorname{curl}\left(\psi e_{\theta}\right)+k$ where

$$
\begin{align*}
\nabla \phi & \in \operatorname{Grad}(\Omega), \\
\operatorname{curl}\left(\psi e_{\theta}\right) & \in \operatorname{Curl}_{0}(\Omega), \tag{6.33}\\
k & \in \mathcal{H}_{\nu 0}(\Omega)
\end{align*}
$$

Then $\operatorname{curl}\left(w_{P}\right)=\operatorname{curl}\left(\operatorname{curl}\left(\psi e_{\theta}\right)\right)$ and $\operatorname{curl}\left(\psi e_{\theta}\right) \in \mathcal{H}_{\nu 0}(\Omega)^{\perp}$. We need to check that $\operatorname{curl}\left(\psi e_{\theta}\right)_{r} \in V_{r}^{1}(\Omega)$ and $\operatorname{curl}\left(\psi e_{\theta}\right)_{z} \in H_{r}^{1}(\Omega)$. To do this, note that ψ is characterized as the unique weak solution in $V_{r, 0}^{1}(\Omega)$ of

$$
\left\{\begin{align*}
-\Delta \psi+\frac{1}{r^{2}} \psi & =\operatorname{curl}\left(w_{P}\right)_{\theta} \quad \text { in } \Omega, \tag{6.34}\\
\psi & =0 \quad \text { on } \Gamma .
\end{align*}\right.
$$

$\operatorname{curl}\left(w_{P}\right)_{\theta} \in L_{r}^{2}(\Omega)$ as $w_{r} \in V_{r}^{1}(\Omega), w_{z} \in H_{r}^{1}(\Omega)$ imply

$$
\begin{equation*}
\operatorname{curl}\left(w_{P}\right)=\left(\frac{\partial w_{r}}{\partial z}-\frac{\partial w_{z}}{\partial r}\right) e_{\theta} . \tag{6.35}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\operatorname{curl}\left(\operatorname{curl}\left(\psi e_{\theta}\right)\right)=\left(-\Delta \psi+\frac{1}{r^{2}} \psi\right) e_{\theta}=\operatorname{curl}\left(w_{P}\right) \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right) \tag{6.36}
\end{equation*}
$$

Now we reinterpret (6.34The Tangential Div-curl Systemequation.6.2.34) in the Cartesian setting using an axisymmetric lifting Ψ of ψ where

$$
\begin{equation*}
\Psi(x)=-\frac{x_{2}}{r} \psi\left(r, x_{3}\right) e_{1}+\frac{x_{1}}{r} \psi\left(r, x_{3}\right) e_{2} \tag{6.37}
\end{equation*}
$$

with $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$. The axisymmetric lifting preserves divergence-free fields so $\operatorname{div}(\Psi)=\operatorname{div}\left(\psi e_{\theta}\right)=0$. Hence $\operatorname{curl}(\operatorname{curl}(\Psi))=-\Delta_{3} \Psi$ where Δ_{3} is the Laplacian in Cartesian coordinates in \mathbb{R}^{3}, and (6.36The Tangential Div-curl Systemequation.6.2.36) then implies

$$
\begin{equation*}
-\Delta_{3} \Psi=\operatorname{curl}\left(W_{P}\right) \tag{6.38}
\end{equation*}
$$

where W_{P} is the axisymmetric lifing of w_{P}. We have $\Psi \in H_{A}^{1}\left(\Omega_{A} ; \mathbb{R}^{3}\right) \cap H_{0}^{1}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$ according to Remark 2.3.1. $\Delta_{3} \Psi$ coincides with $\left(\Delta_{3} \Psi_{1}, \Delta_{3} \Psi_{2}, \Delta_{3} \Psi_{3}\right)$ in Cartesian coordinates so each Cartesian component $\Psi_{j} \in H_{0}^{1}\left(\Omega_{A}\right)$ is the unique weak solution of the system

$$
\left\{\begin{align*}
\Delta_{3} \Psi_{j} & =\operatorname{curl}\left(W_{P}\right)_{j} \quad \text { in } \Omega_{A} \tag{6.39}\\
\Psi_{j} & =0 \quad \text { on } \partial \Omega_{A}
\end{align*}\right.
$$

Then standard elliptic regularity theory asserts that $\Psi \in H^{2}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$ as $\operatorname{curl}\left(W_{P}\right) \in$ $L^{2}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$. In particular $\operatorname{curl}(\Psi) \in H^{1}\left(\Omega_{A} ; \mathbb{R}^{3}\right)$. This implies that $\operatorname{curl}\left(\psi e_{\theta}\right)_{r} \in$ $V_{r}^{1}(\Omega), \operatorname{curl}\left(\psi e_{\theta}\right)_{z} \in H_{r}^{1}(\Omega)$ upon changing back to cylindrical coordinates. Then

$$
\begin{align*}
\int_{\Omega} \operatorname{curl}\left(v_{P}\right) \cdot \operatorname{curl}\left(w_{P}\right) r d r d z & =\int_{\Omega} \operatorname{curl}\left(v_{P}\right) \cdot \operatorname{curl}\left(\operatorname{curl}\left(\psi e_{\theta}\right)\right) r d r d z \\
& =\int_{\Gamma} \sigma_{P} \cdot \gamma\left(\operatorname{curl}\left(\psi e_{\theta}\right)\right) r d s+\int_{\Omega} \omega_{P} \cdot \operatorname{curl}\left(\psi e_{\theta}\right) r d r d z \tag{6.40}
\end{align*}
$$

since $\operatorname{curl}\left(\psi e_{\theta}\right) \in X_{P}(\Omega) \cap \mathcal{H}_{\nu 0}(\Omega)^{\perp}$. For $\nabla \phi, k$, a similar argument appealing to elliptic regularity in the Cartesian case will show that their r, z components are in $V_{r}^{1}(\Omega), H_{r}^{1}(\Omega)$ respectively. Since $\operatorname{curl}(\nabla \phi)=\operatorname{curl}(k)=0$, we now apply condition (N8) to obtain

$$
\begin{equation*}
\int_{\Gamma} \sigma_{P} \cdot \gamma(\nabla \phi+k) r d s+\int_{\Omega} \omega_{P} \cdot(\nabla \phi+k) r d r d z=0 \tag{6.41}
\end{equation*}
$$

Therefore we may combine (6.40The Tangential Div-curl Systemequation.6.2.40) and (6.41The Tangential Div-curl Systemequation.6.2.41) to get

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}\left(v_{P}\right) \cdot \operatorname{curl}\left(w_{P}\right) r d r d z=\int_{\Gamma} \sigma_{P} \cdot \gamma w_{P} r d s+\int_{\Omega} \omega_{P} \cdot w_{P} r d r d z \tag{6.42}
\end{equation*}
$$

which proves the claim.

Corollary 6.2.4. Let ω, σ be given such that conditions (N2) - (N3), (N6) - (N8) are satisfied. Then the toroidal-tangential div-curl system has a weak solution in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$.

Proof. Take v_{P} as in the conclusion of Lemma 6.2.2 and note that $\operatorname{curl}\left(v_{P}\right)$ is a toroidal field in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$. Then Theorem 6.2.3 asserts that $\operatorname{curl}\left(v_{P}\right)$ is a weak solution of the toroidal-tangential div-curl system.

Lemma 6.2 .1 and Corollary 6.2.4 together show that the tangential div-curl system has a solution when ρ, ω, σ are given satisfying conditions (N1) - (N3), (N6) (N8). Just as the normal div-curl system, the nullspace of the tangential div-curl system depends on the topology of the cross-section Ω. In this case, the nullspace is $\mathcal{H}_{\tau 0}(\Omega)$.

Theorem 6.2.5. Let ρ, ω, σ be given such that conditions (N1) - (N3), (N6) - (N8) are satisfied. If Γ has a single component $\Gamma=\Gamma_{0}$ then there is a unique weak solution in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ of the tangential div-curl system. If Γ has multiple components $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \cdots \cup \Gamma_{m}$, then the set of weak solutions in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ of the tangential div-curl system is an m-dimensional affine subspace.

Proof. This is proved very similarly to the case of the normal div-curl system. A weak solution of the toroidal-tangential div-curl system is unique since the difference of any two weak solutions must be a harmonic toroidal field in $L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$, but such field must be zero. The difference of any two weak solutions of the poloidal-tangential div-curl system is a field in $\mathcal{H}_{\tau 0}(\Omega)$. Theorem 5.2.2 asserts that $\mathcal{H}_{\tau 0}(\Omega)=\{0\}$ if $\Gamma=\Gamma_{0}$, so a weak solution of the poloidal-tangential div-curl system is unique. If $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \cdots \cup \Gamma_{m}$, then Theorem 5.2.2 asserts that $\operatorname{dim}\left(\mathcal{H}_{\tau 0}(\Omega)=m\right.$, in which case the set of weak solutions is an m-dimensional affine subspace.

Corollary 6.2.6. Let ρ, ω, σ be given satisfying conditions (N1) - (N3), (N6) (N8), and let $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ be the connected components of Γ with $\Gamma_{1}, \cdots, \Gamma_{m}$ all nonempty. Let $\left\{\nabla \hat{\phi}_{j}: j=1, \ldots, m\right\}$ be a basis for $\mathcal{H}_{\nu 0}(\Omega)$. Then the tangential div-curl system has a unique weak solution if the m functionals

$$
\begin{equation*}
\int_{\Omega} u \cdot \nabla \hat{\phi}_{j} r d r d z, \quad j=1, \ldots, m \tag{6.43}
\end{equation*}
$$

are also prescribed in addition to $\rho, \omega \sigma$ satisfying conditions (N1) - (N3), (N6) (N8).

Proof. The set of solutions of the tangential div-curl form an m-dimensional affine
subspaces isomorphic to $\mathcal{H}_{\nu 0}(\Omega)$, and the prescription of the m functionals in (6.43equation.6.2.43) uniquely determines the projection of a solution onto $\mathcal{H}_{\nu 0}(\Omega)$.

The prescription of the functionals in (6.43equation.6.2.43) may be interpreted as prescribing m fluxes through each Γ_{j} of the divergence-free part of the desired vector field. We may derive a similar energy estimate as in the case of the normal div-curl system.

Corollary 6.2.7. Let ρ, ω, σ be given satisfying conditions (N1) - (N3), (N6) - (N8). Suppose that Γ has multiple components $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ with $\Gamma_{1}, \ldots, \Gamma_{m}$ all nonempty. Let $\left\{\nabla \hat{\phi}_{j}: j=1, \ldots, m\right\}$ be a basis for $\mathcal{H}_{\tau 0}(\Omega)$. Let $u \in L_{r}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ be a solution of the normal div-curl system with $\eta_{j}, j=1, \ldots, m$ the values of the m functionals

$$
\begin{equation*}
\eta_{j}=\int_{\Omega} u \cdot \nabla \hat{\phi}_{j} r d r d z, \quad j=1, \ldots, m \tag{6.44}
\end{equation*}
$$

and denote $\eta=\left(\eta_{1}, \ldots, \eta_{m}\right)$. Then there is a constant $C>0$ such that

$$
\begin{equation*}
\int_{\Omega}|u|^{2} r d r d z \leq C\left(\int_{\Gamma}\left|\sigma_{T}\right|^{2} r d s+\int_{\Omega}|\rho|^{2} r d r d z+\int_{\Omega}|\omega|^{2} r d r d z+|\eta|\right) \tag{6.45}
\end{equation*}
$$

Proof. Let u_{P} be the poloidal part of u and write $u_{P}=-\nabla \phi+\operatorname{curl}\left(\psi e_{\theta}\right)+h$ where $\nabla \phi$ is the projection onto $\operatorname{Grad}_{0}(\Omega), \operatorname{curl}\left(\psi e_{\theta}\right)$ is the projection onto $\operatorname{Curl}(\Omega)$, and h is the projection onto $\mathcal{H}_{\tau 0}(\Omega)$. The characterizations of ϕ, ψ as weak solutions of boundary value problems let us apply Corollary 4.2 .2 and Corollary 4.3 .8 to derive a constant $C>0$ such that

$$
\begin{equation*}
\int_{\Omega}\left|u_{P}\right|^{2} r d r d z \leq C\left(\int_{\Gamma}\left|\sigma_{T}\right|^{2} r d s+\int_{\Omega}|\rho|^{2} r d r d z+\int_{\Omega}\left|\omega_{T}\right|^{2} r d r d z+|\eta|\right) \tag{6.46}
\end{equation*}
$$

$\omega_{P} \in \operatorname{Curl}(\Omega)$ with $\omega_{P}=\operatorname{curl}\left(u_{\theta} e_{\theta}\right)$ and $u_{\theta} \in V_{r}^{1}(\Omega)$ by conditions (N2), (N3), and (N6), so we may apply the curl-Poincaré inequality for $V_{r}^{1}(\Omega)$ to obtain

$$
\begin{equation*}
\int_{\Omega}\left|u_{\theta} e_{\theta}\right|^{2} r d r d z \leq C \int_{\Omega}\left|\operatorname{curl}\left(u_{\theta} e_{\theta}\right)\right|^{2} r d r d z=C \int_{\Omega}\left|\omega_{P}\right|^{2} r d r d z \tag{6.47}
\end{equation*}
$$

for some constant $C>0$. Combining (6.46The Tangential Div-curl Systemequation.6.2.46) and (6.47The Tangential Div-curl Systemequation.6.2.47) yields (6.45equation.6.2.45).

The interesting part of (6.45equation.6.2.45) is that the right-hand side is independent of σ_{P}. Thus the energy of the solution in Ω may be controlled independent of the energy of σ_{P} on Γ. The reason is that the energy of u_{T} is completely controlled by the prescribed curl ω_{P} via the curl-Poincaré inequality.

Bibliography

[1] F. Assous, P. Ciarlet, Jr., and S. Labrunie. Theoretical tools to solve the axisymmetric Maxwell equations. Math. Methods Appl. Sci., 25(1):49-78, 2002.
[2] Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille. Variational analysis in Sobolev and BV spaces, volume 17 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, second edition, 2014. Applications to PDEs and optimization.
[3] Giles Auchmuty. Orthogonal decompositions and bases for three-dimensional vector fields. Numer. Funct. Anal. Optim., 15(5-6):455-488, 1994.
[4] Giles Auchmuty. Bases and comparison results for linear elliptic eigenproblems. J. Math. Anal. Appl., 390(1):394-406, 2012.
[5] Giles Auchmuty and James C. Alexander. L^{2} well-posedness of planar div-curl systems. Arch. Ration. Mech. Anal., 160(2):91-134, 2001.
[6] Giles Auchmuty and James C. Alexander. L^{2}-well-posedness of 3D div-curl boundary value problems. Quart. Appl. Math., 63(3):479-508, 2005.
[7] Giles Auchmuty and James C. Alexander. Finite-energy solutions of mixed 3D div-curl systems. Quart. Appl. Math., 64(2):335-357, 2006.
[8] George Backus, Robert Ladislav Parker, and Catherine Constable. Foundations of Geomagnetism. Cambridge University Press, 1996.
[9] Christine Bernardi, Monique Dauge, and Yvon Maday. Spectral methods for axisymmetric domains, volume 3 of Series in Applied Mathematics (Paris). Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris; NorthHolland, Amsterdam, 1999. Numerical algorithms and tests due to Mejdi Azaïez.
[10] Franck Boyer and Pierre Fabrie. Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, volume 183 of Applied Mathematical Sciences. Springer, New York, 2013.
[11] Patrick Ciarlet, Jr. and Simon Labrunie. Numerical solution of Maxwell's equations in axisymmetric domains with the Fourier singular complement method. Differ. Equ. Appl., 3(1):113-155, 2011.
[12] Robert Dautray and Jacques-Louis Lions. Mathematical analysis and numerical methods for science and technology. Vol. 3. Springer-Verlag, Berlin, 1990. Spectral theory and applications, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson.
[13] G. Duvaut and J.-L. Lions. Inequalities in mechanics and physics. SpringerVerlag, Berlin-New York, 1976. Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219.
[14] Vivette Girault and Pierre-Arnaud Raviart. Finite element methods for NavierStokes equations, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms.
[15] Alois Kufner. Weighted Sobolev spaces. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1985. Translated from the Czech.
[16] B. Mercier and G. Raugel. Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en θ. RAIRO Anal. Numér., 16(4):405-461, 1982.
[17] Minah Oh. A new approach to the analysis of axisymmetric problems. IMA J. Numer. Anal., 34(4):1686-1700, 2014.

