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ABSTRACT 

Epilepsy is effecting over 1% of the population worldwide, wherein 1/3 of the 

patients remain refractory to medication. Successful surgical treatment for patients with 

intractable epilepsy depends critically on the accurate delineation of the seizure onset 

zone (SOZ). High frequency oscillations (HFOs, 80 – 500 Hz) are proposed as putative 

biomarkers in epilepsy with their potentials of identifying the SOZ, either by augmenting 

or replacing the current preoperative evaluation modality which requires detained visual 

examination of long-term intracranial EEG recordings. The clinical utility of HFOs has 

been hampered due to the challenges associated with the quantitative identification of 

HFOs in massive-volume iEEG datasets. The lack of established criteria for 

distinguishing pathological HFOs from physiological oscillations also adds to the 

complexity of the problem.  

This dissertation aims at the computational analysis of HFOs with specific concerns 

over its practical application for the localization and prediction of SOZ. We proposed 

novel algorithms and tools for the auto-detection of HFO in prolonged clinical data based 

on advanced signal processing and unsupervised machine learning techniques, and 

investigated the correlation of possible HFO clusters and clinician-determined SOZ in 

different states. The algorithm achieved significant improvement compared to existing 

SOZ approximation techniques, indicating that unsupervised clustering methods 

exploring the time-frequency content of HFOs in the available full-band can efficiently 

be used to localize the epileptogenic zone in clinical practice. We further investigated the 

spatial and temporal dynamics of HFO in long-term iEEG recordings, verified the spatial 
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correlation of HFO and SOZ, and assessed the feasibility using automatically detected 

HFOs to identify SOZ in challenging cases where the ictal pattern was unclear. Finally, 

for the first time, we introduced SOZ-specific HFO waveform patterns, which are barely 

observed in the functional cortex introducing physiological HFOs.  

The outcomes of this work add to our understanding of the electrophysiological basis 

of HFOs as well as the epileptogenic networks, and provide new possibilities for the 

interpretation of HFOs that can be efficiently applied to distinguish SOZ from eloquent  

cortical areas, which is a critical step towards the translation of HFOs to valid clinical 

biomarkers.  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CHAPTER 1 INTRODUCTION AND BACKGROUND  

1.1 Research Background 

Epilepsy is a neurological disorder characterized by an enduring predisposition to 

generate recurrent, unprovoked seizures (Fisher et al., 2005). It is one of the most 

common neurological diseases, affecting over 65 million people all over the world 

(Moshé et al., 2015). The overall incidence of the disease reaches a percentage between 

0.5% – 2% (England et al., 2012; Holden et al., 2005). Seizures, which are caused by 

disorganized and sudden electrical activities of the brain, could be extremely hazard due 

to its unpredictability. According to the definition given by International League against 

Epilepsy (ILAE), the epileptic seizure is defined as “a transient occurrence of signs and/

or symptoms due to abnormal excessive or synchronous neuronal activity in the 

brain” (Fisher et al., 2005).  

During the past 30 years, the revolution in molecular cell biology and genetics, 

together with the development of human genomic technologies, have brought better 

insight into the mechanisms and pathophysiology of epilepsy. In 2017, ILAE has released 

a revised basic and expanded classification clarifying the seizure types, with initial 

categorization into “focal” versus “generalized” onset or unknown onset seizures. A 

scheme showing the pathway of focal and generalized seizures is provided in figure 1-1 

(A). In ILAE’s recommended terminology and concepts, the original generalized 

seizures, known as “originating at some point within and rapidly engaging bilaterally 

distributed networks”, were optionally sub-grouped into motor and nonmotor (absence) 

seizures. Focal seizures, which are formerly known as partial seizures, are defined as 
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“originating at some point with networks limited to one hemisphere”, and were further 

classified as focal seizure by level of awareness of the patients. The status of awareness is 

defined as “knowledge of self and environment”, which specifically refers to the status 

during a seizure, instead of the awareness of “whether a seizure has occurred” (Fisher et 

al., 2017). Unlike it was sub-classified to complex and simple partial types before, there 

is no specific artificial categories defined according to the new concept. Seizures should 

be described by their semiologic features only (Berg and Scheffer, 2011). 
Figure 1-1. (A) Scheme showing the pathway of partial seizure originates from temporal lobe (left) and primary generalized seizure (right). (B) Forty seconds of intracranial EEG recording segment. 
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Figure 1-1. (A) Scheme showing the pathway of partial seizure originates from 
temporal lobe (left) and primary generalized seizure (right). (B) Forty 
seconds of intracranial EEG recording segment.
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Nearly 30% of epilepsy patients remain refractory to drug treatment, making surgical 

resection of epileptogenic zone an optimal solution to produce seizure freedom (Kwan 

and Brodie, 2000; Rosenow and Lüders, 2001). The success of resectional surgery 

depends critically on the localization of epileptogenic zone. Continuous 

electroencephalography (EEG) with video monitoring is utilized as a routine approach for 

non-invasively collecting signals through scalp electrodes. Structural and functional 

imaging (MRI, PET and ictal-interictal SPECT) also contributes to a comprehensive non-

invasive presurgical workup. However, due to the interference from the dura, skull, and 

scalp, the sensitivity of EEG recording can be low (Yang, Hakimian and Schwartz, 2014). 

It has been discussed that scalp video-EEG is generally necessary yet not sufficient in the 

evaluation of the majority of surgical candidates. Scalp EEG sometimes exhibits 

propagated epileptiform discharges more predominantly than those generated at the 

seizure onset zone (SOZ). For instance, patients with large and unilateral early-onset 

cortical lesions sometimes show generalized or even falsely lateralized epileptiform 

discharges on scalp EEG. Such an unwanted phenomenon is also observed in 

magnetoencephalography (MEG) (Asano, Brown and Juhász, 2013). There exist many 

other circumstances where non-invasive monitoring might fail to lateralize or localize the 

epileptogenic focus entirely. Studies showed that scalp EEG can localize SOZ 

successfully only in approximately 50% of the patients with neocortical epilepsy, and is 

likely to falsely define the site of seizure onset in 5% – 10% of patients. In patients with 

hypothalamic hamartoma (HH) associated epilepsy, scalp EEG may show diverse 

features. The majority of gelastic seizures fail to demonstrate changes in the EEG signal, 
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suggesting the utility of EEG is limited in the evaluation of these patients. This absence 

of ictal discharges may due to the large distance between recording electrodes and the 

seizure generative locations (Asano et al., 2013; Troester et al., 2011). Simultaneous EEG 

recording during PET and SPECT imaging is believed to provide a more reliable 

interpretation when localizing SOZ. Nevertheless, in pediatric epilepsy surgery, 

neuroimaging may present normal in spite of the clinical evidence of localization-related 

epilepsy. In such cases, data recorded by invasive monitoring provides invaluable for 

SOZ localization and directing the surgical resection.  

Intracranial EEG (iEEG) is a monitoring method in which the electrodes are directly 

placed over the brain cortex that is surgically exposed inside or outside the operating 

room. For over six decades, it has been widely used by neurologists during the epilepsy 

surgery for the purpose of precisely identifying seizure foci and facilitating epilepsy 

surgery (Yang et al., 2014). Intracranial EEG recordings are indicated for surgical 

treatment of refractory epilepsy when other tests to identify the seizure focus are 

conflicting or inconclusive, when there is no abnormality shown in neuroimaging, when 

the SOZ is close to eloquent cortex (including many lesional cases), with dual or multiple 

pathology (e.g., hippocampal sclerosis plus a lesion), and occasionally in other scenarios 

(Ritaccio et al., 2013). The relatively high spatial resolution and signal to noise ratio of 

iEEG provides accurate seizure onset information, which greatly benefits the 

preoperative evaluation and management for the epileptic surgery (Engel et al., 2013; 

Freeman et al., 2000). Comparing to non-invasive techniques, iEEG recording also has 

higher bandwidth, and is less prone to artifacts (Ball et al., 2009). Therefore, iEEG is 
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preferred in many clinical procedures, such as presurgical evaluation, epilepsy diagnosis, 

SOZ localization (Rosenow & Lüders, 2001), and in electrical stimulation mapping 

(Uematsu et al., 1992). Moreover, current devices are capable for recording chronic 

ambulatory iEEG that may allow seizure prediction and warning. Such devices would 

improve patient safety and quality of life, as well as allow effective treatment for seizure 

prevention (Ritaccio et al., 2013). Till present, invasive EEG recording is still the gold 

standard that helps recognize the patient population who may profit from surgery 

(Baghdadi and Najjar, 2010). For over six decades, it has been widely used by 

epileptologists during the epilepsy surgery for the purpose of precisely identifying seizure 

foci. Meticulous implantation of intracranial electrodes and judicious interpretation of 

their data is a definite need in a successful epilepsy program. To accurately delineate the 

epileptogenic region, iEEG is recorded in the epilepsy monitoring unit (EMU) over days 

where multiple stereotypical clinical seizures are recorded to provide information about 

the SOZ.  Figure 1-2 (B) shows an example of iEEG data trace recorded by two depth 

electrodes that were implanted in the mesial temporal lobe (MTL) structures. As it is 

shown in the figure, the SOZ (in red) was identified as the deepest two contacts in the 

right anterior hippocampus (RAH), where the low-amplitude fast oscillatory activities 

started at channels 105 – 106 and propagated to other locations. 

Detection of epileptogenic zone requires invasive EEG monitoring over an extended 

period of time and detailed visual inspection of collected data by medical experts. The 

prolonged monitoring in the EMU adds to the risk of complications, increases the cost 

and places a high demand on the clinical service (Nagarajan et al., 2015). The rates of 
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reported complications related to invasive monitoring differ widely between studies, from 

no complications at all (Ross et al., 1996) up to 26.3% (Hamer et al., 2002). Problems 

related to implanted electrodes, including the risk of being pulled out by the patients, 

represent a unique challenge associated with invasive EEG monitoring, especially in 

pediatric cases (Arya et al., 2013). The potential complications associated with prolonged 

iEEG monitoring may include trivial issues, such as pain and discomfort, but may also 

include more serious issues, such as intracranial bleeding, meningoencephalitis, and 

death. According to retrospective studies, all complications associated with invasive 

monitoring are significantly more common in children than in adults (Roth et al., 2014). 

The overall frequency of complications is five times higher in the pediatric population 

(Arya et al., 2013; Hader et al., 2013). Moreover, complication risk is also correlated with 

younger age at the time of surgery and longer hospitalization (Roth et al., 2014). Longer 

duration of monitoring is found to be significantly associated with more frequent adverse 

events. The risk of adverse events per patient increases by about 4% per day after 7.8 

days of monitoring (Arya et al., 2013). Study showed that the decrease of infection rate 

(18% to 6%) was correlated with a shorter monitoring period (13 days vs. 9 days) (Hamer 

et al., 2002). Other than the risk of complications, EMU monitoring procedure extends 

the duration of therapy and causing long waiting periods for other patients requiring 

immediate treatment in countries with limited resources. The financial cost of a 

prolonged hospital stay and monitoring fees can be substantial (Sun et al., 2015). For 

pediatric patients, prolonged monitoring would result in missed school for the child, 
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missed work for the parents and disruption for the family because the parent and child are 

away from home, and overall increased parental anxiety, in general. 

In order to reduce the duration of prolonged monitoring and related cost, as well as 

the risks to patients whose seizures could result in fatal condition, there is urgent need to 

conduct research involving neurobiomarkers for the fast and accurate identification of 

seizure generating zone in epilepsy. Extraction of predictive patterns in iEEG can open 

the door of efficient diagnosis of SOZ, and may eliminate the need to wait for 

spontaneous epileptic seizures to occur over days in the hospital setting. 
Figure 1-2. Three seconds of raw iEEG data (top) and its time-frequency representation (bottom). A fast ripple occurs at the center with its primary high-band energy peak extending beyond 200 Hz. 

In this project we mainly concentrate upon the computational analysis of iEEG 

datasets because the recent advancement in clinical-practical high-band signal recording 

and data mining technologies has provided tools for the extensive investigation of local 

field potentials in human epilepsy patients, and introduced recordings in high temporal 

and spatial resolution where new possible electrophysiological signature for the 

epileptogenic network is emerging. Such neurobiomarkers in milliseconds time scale, 
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termed high frequency oscillations (HFOs), are transients with frequency spanning from 

80 to 500 Hz, far beyond the traditional EEG bandwidth. In figure 1-2 we provided an 

example of representative HFO centered in a 3-seconds iEEG signal. HFOs are 

distinctive compared to the classic Berger frequency band (0.3 – 70 Hz) and people 

believe that HFOs recorded from epileptic structures are generated by unique 

pathological mechanisms associated with epileptogenesis. 

Unlike the conventional non-invasive scalp EEG studies where data is commonly 

collected from both patient and healthy control cohorts, the investigation of invasive EEG 

are essentially limited to patients with partial epilepsy where intracranial macro-

electrodes are surgically implanted to monitor the ictal activities. Therefore, validation of  

the specificity of HFOs, interictal spikes and other neuronal activities recorded in iEEG is 

challenging (Worrell et al., 2012). One of the metric to assess the clinical utility of HFOs 

as SOZ localizing indicators will be examining the correlation of HFO properties with 

clinician defined epileptogenic zone as well as the postsurgical outcomes after the 

removal of the epileptogenic region. Before any ultimate conclusion can be made, 

however, a more practical challenge should be undertaken, which is the development of 

computational tools for the accurate and efficient identification of HFO in the continuous 

multi-channel iEEG recordings. Thus, a better understanding in the mechanism of HFO 

generation –  either pathologically or physiologically –  can be achieved by exploring the 

HFO spatial and temporal characteristics using tremendous amount of data obtained in 

large patient cohorts without human intervention which may put bias arising from visual 

validation, channel pre-selection and data reduction. 
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1.2 Aims and Contributions  

This dissertation is concerned with the role of HFOs in clinical epilepsy for the 

accurate and efficient localization of SOZ. We particularly focus our attention to the  

automatic HFO detection and its clinical applications to facilitate presurgical evaluation 

with two major objectives: i) the development of HFO detection algorithm, and ii) the 

investigation of HFO and its prognostic value in clinical epilepsy.  For the first aim, we 

proposed unsupervised detection approaches and tools to efficiently identify HFOs in 

massive clinical iEEG datasets in an automated fashion that is capable of isolating 

different subtypes of HFOs from interictal spikes and other non-neuronal events/artifacts. 

For the second aim, we demonstrated that the automatically detected HFOs could be used 

to provide specific information regarding the epileptogenic regions in different types of 

epilepsy in different states, and observed distinctive waveform patterns in physiological 

and epileptic HFOs which could be applied to distinguish SOZ from non-epileptic 

functional areas. The temporal attributes of HFO and its application in the early 

prediction of SOZ were also examined. 

This thesis is structured in a way described as following: first, a brief review of the 

literature on HFOs studies is given in Chapter 2. It includes the definition of HFO and its 

putatively described subtypes, namely “ripple” and “fast ripple (FR)”, distinguished by 

the different frequency bands. The clinical significance and previous studies focusing on 

the computational analysis of HFO are also discussed. Chapter 3 reports the 

methodological contributions of the thesis. A novel algorithm is introduced for the 

detection of HFO as well as the localization of SOZ, and the results are correlated with 
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clinician-defined SOZ, which is also known as the gold standard. We further validated the 

method in different typed of epilepsy, including some of the challenging cases where the 

ictal pattern was difficult to determine, and where both epileptogenic zone and eloquent 

brain regions were involved in the invasive monitoring, some of the representative results 

are given in Chapter 4 in the form of case studies. Chapter 5 and 6 report the original 

scientific contributions of the thesis, including a new pattern in the pathological HFO 

waveforms, and the temporal variation of HFOs in long-term recordings. Finally, in 

Chapter 7 we summarize the significance and conclusions of the dissertation, with ideas 

for future extensions of the work. 
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CHAPTER 2 REVIEW OF PRIOR WORK  

2.1 Definition of High Frequency Oscillations  

High frequency oscillations (HFOs) are field potentials that reflect short-term 

synchronization of neuronal activity (Zelmann et al., 2012). It was firstly recorded in rat 

hippocampus and entorhinal cortex, and then was discovered in human subjects with 

medial temporal lobe epilepsy recorded using microwires (Bragin et al., 1999). Since 

then, the mechanism of HFO as well as its relationship to epileptic spikes and other brain 

activities has been broadly studied. The definition of HFOs varied in literature. 

Investigators generally agree that HFOs are spontaneous neuronal activities between 80 

to 500 Hz that “clearly stand out from the baseline and persist for at least four oscillations 

cycles” (Zijlmans et al., 2017). The mechanism underlying the generation of HFO is to a 

large extent unclear. Recent studies support the view that HFOs are likely generated by 

multiple mechanisms at the cellular and network level,  including synchronized inhibitory 

postsynaptic potentials with sparse pyramidal cell firing (Buzsáki et al., 1992) or 

principle cell action potentials (Bragin et al., 2011). 

There has been an assumption that ripples (80 – 200 Hz), which have been well 

described in hippocampus and associated structures in normal animal brains, reflect 

physiological brain activities, whereas fast ripples (FRs, 200 – 500 Hz) reflect 

pathological hypersynchronous events that are crucially associated with seizure genesis 

(Staba et al., 2002). Scientists hold the view that ripples and γ activities (30 – 100 Hz) 

could be sharing similar mechanisms since they involve the same networks (Belluscio et 

al., 2012; Sullivan et al., 2011). Frequently found occurred with sharp waves, ripples are 
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considered as the production of periodic perisomatic inhibition generated by 

hippocampus. FR transients, by contrast, are more likely to be embedded in or following 

the inter-ictal spikes. Reports suggested that FRs can be production of the out-of-phase 

firing pyramidal cells, which otherwise produce epileptic spikes (Jefferys et al., 2012; 

Gulyás and Freund, 2014). 
Figure 2-1. Examples of ripple (left) from 10-second window (a) and fast ripple (right) from window (b). For both events, the raw and filtered signals above 80 Hz and 200 Hz are shown. 

!12

Figure 2-1. Examples of ripple (left) from 10-second window (a) and fast ripple 
(right) from window (b). For both events, the raw and filtered signals 
above 80 Hz and 200 Hz are shown.
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However, studies have demonstrated important aspects about HFOs, that is, both 

epileptic and physiologic process may generate HFOs with peak frequency in the 

identical band. The considerable overlap in spectral frequency between normal and 

epileptogenic oscillations makes the definition of physiological and pathological HFOs 

still controversial (Engel et al., 2009). Not only that ripples and FRs recorded from 

clinical macro-electrodes or micro-wires both increased in seizure generating brain 

regions (Jacobs et al., 2008b), FR activities in normal brain functioning that reflect 

neuronal network coordination related to attention, learning and memory are also 

reported in several recent studies (Kucewicz et al., 2014). Apparently, it is inappropriate 

to group normal and epileptic HFOs on the basis of their frequency bands alone. 

2.2 HFOs in Clinical Epilepsy 

HFOs are believed to be clinically significant, and thus could be used for seizure 

localization. In 2006, HFOs were recorded with a clinical setting for the first time, 

revealing that high-frequency EEG activity can be recorded with macro-electrodes in 

humans. The recorded HFOs underwent consistent modifications after spikes, and 

showed an increase trend in SOZ (Jirsch et al., 2006). Subsequent studies used macro- 

and micro-electrodes to record HFOs, indicating that HFO events captured by both of 

these two types of electrodes were increased in seizure generating brain regions (Schevon 

et al., 2009b; Worrell et al., 2008b).  Despite that there is yet no evidence showing the 

high frequency activities recorded by macro- and micro-electrodes are exactly same kind 

of events, macro-electrode recordings has been considered to have the advantage of 

filtering out physiological HFOs and preferentially leave the pathological ones, making it 
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possible to evaluate HFOs as markers of epileptogenic areas for clinical practice (Crépon 

et al., 2010; Jacobs et al., 2008b).   

HFOs are highly valued as promising clinical biomarkers for epilepsy. The 

identification of HFO generative locations produces direct connections to successful 

surgical evaluation. In general, presurgical localization in epilepsy is a combination of the 

identification of the irritative zone, the SOZ, the epileptogenic lesion, and the functional 

deficit zone (Zijlmans et al., 2012). The fact that HFOs usually occur superimposed on 

interictal spikes indicates that HFOs are associated with irritative zone. Study also shows 

that the rates of spikes and HFOs are higher inside than outside the SOZ, and that HFOs 

are more specific and accurate than spikes to delineate the SOZ in epileptic patients 

without a visible brain lesion, which implied a clear link between HFOs and the SOZ 

(Andrade-Valença et al., 2012). Moreover, it has been proved that the occurrence of 

HFOs can reflect focal cortical dysplasia lesions (Kerber et al., 2013). A series of studies 

illustrated that the removal of HFO generative regions within and outside the SOZ in 

children and adult patient population was correlated with seizure-free outcomes, 

suggesting HFOs can be excellent surrogate markers of epileptogenesis, and therefore 

should be recommended as the guide of surgical resection (Akiyama et al., 2005; Cho et 

al., 2014; Jacobs et al., 2010; Ochi et al., 2007; Wu et al., 2010).  

Recent studies have been focusing on the investigation of different HFO patterns and 

their relationship to different epileptogenic areas and seizure propagation. Reports 

suggested that ripples co-existed with distinctive background EEG activities might have 

different interpretations. Only the removal of those areas where HFOs occurred in a flat 
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background was significantly associated with good surgical outcomes (Kerber et al., 

2014). The relationship between HFO patterns and different epilepsy phenotypes is still 

under investigation. HFOs are considered more related to SOZ than to brain lesion 

(Jacobs et al., 2009). Data recorded with micro-electrodes provided evidence that FR was 

linked with volume reduction of hippocampus in epileptic subjects (Ogren et al., 2009). 

In one study, researchers highlighted that FR activities should also be considered for its 

potential in the presurgical workup of non-lesional epilepsy (Jiruska et al., 2010). Some 

groups argued that HFOs in ictal, preictal, and interictal stages presented different 

appearance, suggesting that the identification of HFO might be helpful in the clinical 

practice of epilepsy surgery (Jacobs et al., 2012; Jirsch et al., 2006; Zijlmans et al., 2011). 

Further, the pattern by which high frequency activities are propagated is believed to be 

helpful in identifying epileptogenic network nodes relevant to surgical planning 

(Korzeniewska et al., 2014). Additional study is needed to reveal whether there is a clear 

relationship between HFO patterns and different type or distinct phase of seizures. 

2.3 Identification of HFO in Human Intracranial EEG 

Although it is possible that HFOs being spotted directly from raw EEG data traces, 

they are more likely to become visible and detectable after band-pass filtering. Using the 

band-pass filtered data one is able to discover the high frequency events as oscillatory 

waveforms that “pop-out” from the background. Based on this theory, a basic HFO 

detector is built up by setting a threshold that would distinguish candidate events with a 

higher energy than the background. However, there are many types of brain signals, such 

as epileptic spikes, impulse-like artifacts, or non-sinusoidal oscillatory activities with 
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harmonics, which may contain residual energy in the high-band and show similar 

waveform patterns with HFOs, after straightforward filtering and thus resulting in “false” 

ripples that might easily be confounded with “genuine” ripples.  
Figure 2-2. (A) Previous study demonstrating the pitfalls associated with straight-forward filtering. (B) The distinctions between HFOs and “pseudo” events are clearer by inspecting the time-frequency characteristics. 

Discussion regarding to this issue have been addressed. Figure 2-2 (A) shows a series 

of iEEG transients with similar appearance after high-pass filtering process, which is 
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Figure 2-2. (A) Previous study demonstrating the pitfalls associated with straight-
forward filtering. (B) The distinctions between HFOs and “pseudo” 
events are clearer by inspecting the time-frequency characteristics.
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reported in a recent study by Bénar and colleagues (Bénar et al., 2010). A set of detection 

criteria has been brought up considering the natural properties of HFOs, that is, its 

amplitude range (10 – 1000 µV) and duration (30 – 100 ms) (Worrell et al., 2012). An 

alternative method to identify HFO is by viewing its time-frequency contents after short 

Fourier transform or wavelet transform. The high frequency component can be seen well 

isolated in the time-frequency panel, different from the pattern in pure spikes or sharp 

noise. Examples of HFO, spikes and other false detections are presented in figure 2-2 (B). 

The time-frequency representation of these events shows distinct characteristics and 

facilitates the visual verification of HFOs. Some studies have been using this technique in 

HFO studies for visual inspection, or seizure detection, with or without a preliminary 

auto-detector (Burnos et al., 2014; Park, Lee and Chung, 2014; Schevon et al., 2009b; 

Tzallas, Tsipouras and Fotiadis, 2009). 

Due to its significant value in clinical use, scientists are dedicated to the investigation 

of this standalone transient. Staba et.al recorded intracranial EEG data during rapid and 

non-rapid eye movement (REM, NREM) sleep as well as waking state of patients with 

epilepsy. They used a root mean square (RMS) detector to distinguish HFOs, suggesting 

that both ripple and FR could be detected during waking and sleep segments, and that the 

highest rate of occurrence was found during NREM sleep (Staba et al., 2002, 2004). In 

order to validate the HFO as an applicable clinical biomarker, researchers need to clarify 

whether inter-ictal spikes with pathological HFOs are more reliable to indicate 

epileptogenesis than spike itself, and whether HFOs that are not associated with spikes 

have the identical connection to epileptogenicity as those co-exist with interictal spikes. 
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Existed studies indicated that HFO underwent consistent modifications after EEG spikes 

(Urrestarazu et al., 2006). By visual observation using 10-minute data during slow wave 

sleep, researchers demonstrated that spikes were more likely to co-occur with ripples 

rather than FR. Furthermore, the rate of FRs and of spikes with FRs showed the highest 

sensitivity in indicating the SOZ (Jacobs et al., 2008b). In other studies where HFOs, 

spikes and other waves were marked by human visualization, results implied that HFOs 

occurred to a high degree independently of spikes, and that when they co-occurred with 

spikes, it seemed to be more often the case in SOZ areas (Gardner et al. 2007). 

The detection and investigation of HFO provided a better understanding of the inner 

relationship between this particular type of activity and epilepsy. However, due to the 

massive size of modern iEEG datasets and the short duration, low amplitude of the 

transient, visually marking the events in long-term recordings is not feasible, which 

stressed the necessity to introduce a robust, reliable auto-detector that is applicable for 

quantitative data analysis in large-scale modern iEEG database. 

A summary of existing HFO studies and the utilized HFO identification approaches is 

given in table 1-1 (A). While majority of the research performed visual identification, 

some of the studies adapted a sensitive amplitude based detector followed by visual 

validation. One of the existing benchmark detection method is to compute the root mean 

square (RMS) of band-pass filtered data (100 – 500 Hz) using a 3 ms window as the 

measurement of background energy. Successive RMS with amplitude greater than 5 times 

of standard deviation (SD) above the overall mean RMS value and a minimum duration 

of 6 ms were selected as putative HFO events, and were subjected to the additional 
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criteria, which was defined as containing at least 6 peaks greater than 3 SD above the 

mean value of the rectified band-pass signal (Staba et al., 2002). Following optimized 

detectors were using diverse parameters, including filter settings and adaptive threshold; 

HFO duration and minimum event interval definition also differs among several studies 

(Gardner  et al., 2007; Worrell et al., 2008; Blanco et al., 2010, 2011). Other than the 

RMS based detector, several studies utilized the “short time line-length” for baseline 

detection, which is a technique based on fractal dimension method that was firstly 

proposed for seizure detection in 2001 (Esteller et al., 2001). The line-length of a signal 

can be described as the sum of the absolute differences between successive samples of 

the signal, and is treated as a measure of the combined amplitude-frequency features of 

the signal (Esteller, Echauz and Tcheng, 2004). Line-length has been one of the most 

preferable features in seizure and epileptic event detection, due to its sensitivity to 

amplitude and frequency fluctuation and its low computational burden (Esteller et al., 

2004; Guo et al., 2010; Koolen et al., 2014; Paz et al., 2013). Using 85 ms window 

without additional ripple count criteria, line-length based detector window showed a 

more robust performance when compared to the conventional RMS detector, yet tended 

to over-detect especially to the artifacts, spike-like events and events with low amplitude 

and short high frequency component (Gardner et al., 2007). Another group utilized line-

length detector with 200 ms long, 50 ms overlapped sliding window to identify 

pathological HFOs in epileptic subjects, associated with expert visual validation. The 

result showed that the majority of HFOs occurred with epileptiform sharp wave transients 

(Matsumoto et al., 2013). 
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The critical methodological difference among variety types of detectors lies on the 

functions used to compute the energy of the filtered signal. Besides, HFO detectors may 

be semi- or fully-automatic, depending on their post-processing techniques to prune false 

detected events. In both cases, the initial detector should have a high-sensitivity, low-

specificity property in order to successfully distinguish all the high frequency candidate 

events from the background signal. This preliminary detector can be built using RMS or 

line-length method, as described above, or other approaches such as computing signal 

envelope using Hilbert transform (Crépon et al., 2010) and the autocorrelation of the 

signal to build a baseline model (Zelmann et al., 2012). Several studies used a 

combination of the benchmark detection methods to optimize the performance of the 

detector (Birot et al., 2013; Dümpelmann et al., 2012; Schevon et al., 2009b). 

Many of the existing HFO detectors are so-called “semi-automatic” because of its 2-

stage processing strategy, where an automated detector is used in the first place, and then 

visual inspection is performed in the second place (Crépon et al., 2010; Schevon et al., 

2009b; Worrell et al., 2008b). Several research groups have been working on the 

development of fully automated algorithms for HFO detection. Either supervised 

classification procedure or advanced signal-processing steps are executed after initial 

detection (Burnos et al., 2014; Chaibi et al., 2013; Dümpelmann et al., 2012; López-

Cuevas et al., 2013). However, due to the highly-intensive labor cost associate with the 

manual labeling of the events, these proposed supervised detectors commonly 

investigated short data segments or performed data reduction/channel pre-selection to 

decrease the work load. As it is given in table 1-1 (B),  most of the automatic techniques 
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executed HFO analysis using 1 to 10 minutes of data. A recent study introduced an 

unsupervised approach implemented by means of clustering (Blanco et al., 2011, 2010a), 

where the unlabeled, detected events are automatically grouped into several clusters 

based on their distinctive features and then inspected by the authors. This approach 

further deducts human inspection; hence it should be applicable for massive data 

processing. Additionally, it is likely to provide objective evidence showing the essential 

distinction of different HFO patterns that have been taken largely for granted. 

Nevertheless, in the existing clustering based study the authors did not perform validation 

of the detected HFOs. Till present, few reports correlated the HFO findings with the 

clinical information, and little is known whether the automatic detection of HFO can be 

employed to serve the accurate localization of SOZ. 
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Table 1-1 (A) Review of HFO characterization studies 

Study Method Study Method

Staba et al., 2004
RMS + visual 

inspection

Blanco et al., 2010, 

2011

Automatic (k-

means clustering)

Jirsch et al., 2006 Visual inspection
Zelmann et al.,  2010, 

2012

Automatic (MNI: 

wavelet entropy + 

RMS)

Gardner et al., 2007
Line length + 

visual inspection

Zijlmans et al., 2011, 

2012
Visual inspection

Worrell et al., 2008, 

2010

Line length + visual 

inspection

Gotman et al., 2011, 

2013
Visual inspection

Urrestarazu et al., 

2007
Visual inspection Valença et al., 2012 Visual inspection

Jacobs et al., 2008, 

2009, 2010, 2015
Visual inspection

Dümpelmann et al.,

2012, 2015

Automatic (neural 

network, ripple 

only)

Bagshow et al.,

2009
Visual inspection Pearce et al., 2013

Automatic 

detection (k-means 

clustering)

Schevon et al.,2009
RMS + visual 

inspection
Cho et al., 2014

RMS + visual 

inspection

Crepon et al., 2010
Envelope + visual 

inspection
Burnos et al., 2014

Automatic (time-

frequency 

analysis)

Wu et al., 2010 Visual inspection
Klink et al., 2014, 

2015
Visual inspection
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Table 1-1 (B) Review of HFO auto-detection techniques 

Study Data Method Validation Note

Staba et al., 

2002

Ten-min segments 

from 5 patients, 

NREM sleep

RMS /
Benchmark 

detector

Gardner et al., 

2007

Three-min single 

channel data from 2 

patients

Line-length

1330 HFOs 

were validated 

by human 

reviewers

Blanco et al., 

2010

Continuous recording 

from 9 patients, 

approximately 3 

hours multichannel 

recording per patient

RMS + 

Unsupervise

d clustering

/

Zelmann et al., 

2010

One-min sections 

from 19 patients, 

totally 373 channels. 

Bad channels 

excluded

MNI 

detector: 

wavelet 

entropy + 

RMS

7994 HFOs 

were visually 

marked by 2 

reviewers 

“It takes 10h 

to mark 

HFOs in a 

10-channel 

10-min 

recording”

Dumpelmann 

et al., 2012

Three-min recording 

from 11 patients, 

totally 128 channels. 

Neural 

network

41722 HFOs 

were visually 

marked by an 

experienced 

reviewer 

Ripples only

Burnos et al.,

2014

Five-min recording 

from 7 patients, 

totally 36 channels

Time-

frequency 

analysis

Correlated the 

HFO channels 

with SOZ

Selected a 

subset of 

channels

!23



CHAPTER 3 UNSUPERVISED HFO DETECTION USING 

MULTICHANNEL IEEG RECORDINGS IN PATIENTS WITH 

EPILEPSY 

3.1 Introduction 

High frequency oscillations (HFOs) in the frequency range of 80 to 500 Hz are 

proposed as putative clinical neurobiomarkers for epilepsy, with their potential to 

improve the postsurgical outcomes of SOZ removal operations in patients with epilepsy 

resistant to medication. The duration an HFO may possess range from a few milliseconds 

to tens of milliseconds depending on the minimal frequency component that outlines the 

event (Zijlmans et al., 2017). Due to the short duration and low amplitude of the 

transient, as well as the massive data size, visually annotating the event in long-term 

recordings could be exhausted and cumbersome, making it an obstacle to introduce HFO 

into clinical routine. This stressed the necessity to introduce a robust, reliable technique 

that is applicable for quantitative data analysis in large-scale iEEG database.  

Similarly to epileptiform spikes, some artifactual sharp waveforms and physiological 

neuronal events associated with normal brain functions may contain high-frequency 

spectral contents that overlap with epileptic HFOs, and therefore resulting in false 

detections that might easily be confounded with HFOs introduced by epileptogenic 

networks. Discussion regarding to this issue have been addressed, and a set of detection 

criteria has been brought up considering the signal properties of HFOs in the high-pass 

filtered iEEG data. Several HFO detectors have been proposed in literature based on 
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these regulations in the time and frequency domain. One of the critical methodological 

differences among variety types of detectors lies on the functions used to compute the 

energy of the filtered signal. Most of the studies define background energy by computing 

the root mean square (RMS) or signal line length. The initial detector generally includes a 

high-sensitivity, low-specificity property in order to successfully distinguish all the high 

frequency candidates from the background EEG signal. In semi-automatic detectors, 

usually a visual inspection step is performed after the prior detection, whereas in fully-

automatic detectors, supervised classifiers or advanced signal processing steps are 

required. 

Despite that many efforts have been made towards the investigation of HFOs, to our 

knowledge, until now there exist few reports utilizing automatic detection to localize the 

seizure onset zone (SOZ) on account of the potential prognostic value of HFOs. The aim 

of this study is to identify epileptic seizure onset regions in brain using HFOs detected by 

an automatized technique. We developed analysis tools integrating clustering method 

involving k-means and Gaussian Mixture Models (GMM) to explore the time and time-

frequency content of HFOs. High frequency transients were first detected by an energy-

based threshold, and then were further discriminated using an unsupervised approach 

where the unlabeled, detected candidates were automatically grouped into several clusters 

according to their distinctive features. We did not perform any channel pre-selection or 

artifact elimination in the original datasets. The algorithm was tested using 10 minutes of 

iEEG data segment in the sleep, awake, and pre-ictal state of 8 patients collected from 
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two deferent centers. The relationship between SOZ and HFO generative regions was 

also discussed. 

3.2 Data Acquisition  

A total of 8 patients with refractory epilepsy were involved in the study (3 male, 5 

female, ages 28 – 55).  The iEEG data of 5 patients (P1 – P5) with focal and generalized 

tonic-clonic seizures were recorded for 6 – 14 days at the Fairview Hospital at the 

University of Minnesota. The iEEG data was digitized at 2 kHz sampling frequency by 

using a multichannel bioamplifier with XLTEK EMU128FS system (Natus Medical Inc, 

CA), which had an anti-aliasing filter set to 1 kHz. The iEEG data of 3 patients (P6 – P8) 

were recorded at Capa Hospital of Istanbul University (Istanbul, Turkey) with Nicolet 

C64 amplifier (Natus Medical Inc, CA) at 1 kHz sampling frequency for 5 – 6 days, with 

150 Hz anti-aliasing filter implied. All patients were suffering from medically refractory 

epilepsy and underwent monitoring with clinical grid and/or depth electrodes. Detailed 

description of patient characteristics, electrode implantation information, MRI and PET 

characterization are shown in table 3-1. Data collection and scientific workup was 

approved by the University of Minnesota institutional review board and the ethical 

committee of Istanbul University, respectively. 

We defined 10-minute segments in sleep and waking state as sleep baseline (SB) and 

waking baseline (WB), which was at least 60 min away from the onset of the first seizure 

of each day. The pre-ictal (PI) data was defined as 10-minute segments before the seizure 

onset. For each subject, all channels were used for data analysis. The SOZ was defined as 

the contacts where a seizure was firstly occurred during the EEG monitoring, which was 
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identified by neurophysiologists, and was taken as the gold standard for result validation. 

Sample bipolar raw and 80 – 500 Hz band-pass filtered iEEG data in three states is shown 

in figure 3-1. Channel pair where a seizure first occurred was marked in red. 
Figure 3-1. Data collection protocol with sample bipolar raw and 80 – 500 Hz band-pass filtered iEEG data. Only 5 seconds of SB/WB, and 15 seconds before and after the seizure onset are shown. 
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Figure 3-1. Data collection protocol with sample bipolar raw and 80 - 500 Hz 
band-pass filtered iEEG data. Only 5 seconds of SB/WB, and 15 
seconds before and after the seizure onset are shown.
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Table 3-1. Patient demographics

a FS: focal seizures. GTC: secondary generalized tonic-clonic seizures.  

ID Sex Age
Seizure 
typesa SOZb  

Chan 
No.

Electrode 
types MRI

SZ 
No.

SB 
No.

WB 
No.

Surgery 
Outcomec

P1 M 30 FS
  RAH 
(18) 28

Strip; 
Depth

Right 
mesial 
temporal 
sclerosis 

6 6 6
Engel 
class I

P2 F 28 FS
LA, LAH, 
LPH 
(4,11.18)

52
Strip; 
Depth

Left  
mesial 
temporal 
sclerosis 

4 4 7
Engel 
class I

P3 F 35
FS 
and 
GTC

RA, RM, 
RP 
(28,36,43)

56 Depth Normal 5 4 6 Engel 
class III

P4 M 44
FS  
and 
GTC

RA, RAH, 
RPH 
(31,32,38,
45)

60
Strip; 
Depth Normal 4 13 14

Engel 
class I

P5 F 32 FS

LA, LAH, 
LPH, RA, 
RAH, 
RPH 
(8,15,22,2
3,29,36,43
)

56 Strip; 
Depth

Foci of 
cortical 
thinning 
in the left 
frontal 
operculum 
and left 
temporal 
lobe

11 5 5 Engel 
class I

P6 M 38 FS
LOL(20-2
3,25-27) 52

Strip; 
Depth Normal 5 6 6

Engel 
class I

P7 F 55 FS
RTL 
(14-16,23) 32 Depth 

Normal 
(wide 
spread 
small 
sized 
hyper-
intensities 
in WM)

4 6 6
Engel 
class I

P8 F 30 FS RH (1,2) 24 Depth

Right 
hippocam
pal 
sclerosis 

3 2 2
Engel 
class I
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b LAH: left anterior hippocampus. LPH: left posterior hippocampus. RAH: right 

hippocampus anterior. RPH: right hippocampus posterior. LA: left amygdala. RA: right 

amygdala. RM: right mid-temporal. LOL: left occipital lobe. RTL: right temporal lobe. 

RH: right hippocampus. For each patient, SOZ channel indices are shown in parenthesis. 

c Engel Class: the classification of postoperative outcomes for epilepsy surgery. Class I: 

free from disabling seizures; class III: worthwhile improvement (Engel et al., 1987). 

3.3 Proposed Algorithm 

The approach was performed in three stages as depicted in figure 3-2 (A): HFO 

detection, time-frequency analysis and feature extraction/clustering. All data analysis 

procedures were implemented in MATLAB (Mathworks, MA) environment. An HFO 

investigation tool integrating HFO detection and unsupervised clustering was developed 

and used to analyze all segments as shown in figure 3-2 (B). 

3.3.1. Initial Detection 

A high sensitivity automatic detector was built based on the existing technique 

proposed by Staba et al. (Staba et al., 2002) with modification to minimize noise/artifact 

and other false detections. Raw data of multichannel iEEG segments were first processed 

using a 64-order FIR digital band pass filter in 80 – 500 Hz range. The data was filtered 

in forward and reverse directions to avoid phase distortion using filtfilt function in 

MATLAB. We computed the standard deviation (SD) of the band-pass filtered signal in 

100 ms windows. Then an amplitude threshold was set to 5 times the median of the SDs. 

For all samples with amplitudes larger than the threshold, an epoch of 128 ms before and 
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after the sample were extracted on the raw data. In order to give a flavor of typical events 

captured by the initial threshold, we provided raw and band-pass filtered iEEG 

waveforms, and their time-frequency maps in figure 3-3. These events then went through 

the HFO sieving procedure based on the assumption that HFOs are transients with 

protruding oscillatory components that “pop out” from the background signal (local 

baselines) after high-pass filtering. 
Figure 3-2. (A) Schematic diagram of the algorithm. (B) Interface of the customized HFO investigation  tool. 
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Figure 3-2. (A) Schematic diagram of the algorithm. (B) Interface of the 
customized HFO investigation  tool. 
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More specifically, raw data with a zero-crossing number larger than 10 were 

considered artifacts, and therefore were excluded from the event pool. After band-pass 

filtering the raw iEEG within 80 – 500 Hz range, the signal envelope was computed using 

the Hilbert transform for each extracted segment. A threshold defining the local 

background activity was set to three times of the median of the background envelope, 

which was obtained from the first and last 80 ms segment. In addition, the protruding part 

of the bell-shaped envelope with an amplitude exceeding the threshold should be well 

localized in the center, lasting for 30 – 100 ms. The threshold-crossing number of the 

filtered data should be no less than 8 times to ensure at least 4 successive peaks standing 

out from the background. Figure 3-3 describes the HFO sieving criteria during initial 

detection. As it is shown in the figure, the spike was discarded as its threshold-crossing 

number was less than 8. The first noise example was excluded since the raw waveform 

crossed zero-baseline for more than 10 times. The second noise example was excluded 

for its threshold crossing number being less than 8.   

3.3.2. Time-Frequency Analysis and “Denoising” 

In the past, feature extraction techniques were generally employed on the band pass 

filtered iEEG data. However, the noise and spikes generally have residual energy in the 

HFO band and it becomes difficult to isolate these events from real HFO when the 

analysis is restricted to a certain portion of the available bandwidth. Here, we explored 

the time-frequency content of the raw iEEG in the 0 – 500 Hz band around each HFO 

candidate that survived the initial detection. We observed that, not only high frequency, 

but also low bands below 80 Hz played a crucial role in distinguishing HFOs from other 
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events such as epileptic spikes. We used a short time Fourier transform (STFT) to observe 

the time-frequency content of iEEG around each HFO candidate. Moreover, a denoising 

procedure was executed to improve the detection accuracy. The STFT was computed in a 

256 ms segment starting 128 ms before the center of HFO and extending 128 ms after it. 

The Fourier transform was computed in a 64 ms Hanning window which was shifted 

sample by sample to create a time-frequency map. 
Figure 3-3. HFO sieving and denoising step. Appropriate denoising would reveal the high frequency component of an HFO. The spectrum was derived from the original and denoised time-frequency map. 
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Figure 3-3. HFO sieving and denoising step. Appropriate denoising would reveal 
the high frequency component of an HFO. The spectrum was derived 
from the original and denoised time-frequency map.
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Generally, these time-frequency maps were quite noisy due to background noise, 

making it difficult for visual exploration. To remedy this, we performed a denoising 

procedure in which we first computed the cumulative energy of the time-frequency map 

using the expansion coefficients for each event, then retained only the components that 

made up the majority of the total energy and omitted the rest. In figure 3-3 the time-

frequency maps of a representative HFO, a non-HFO spike, and two types of noise 

samples were provided before denoising and after denoising (with 97% and 90% energy 

preserved respectively). We observed that these maps were extremely useful in visual 

inspection, and noted that no residual energy remained above 80 Hz in spikes following 

the denoising step (i.e., no spectral peak left after denoising), whereas The HFOs were 

represented with two isolated components, one located in low frequency band and the 

other as a blob in 80 – 500 Hz band whereas the spikes were represented with a single 

component in the low band. With this motivation, we eliminated those spikes with no 

residual energy above 80 Hz from the event pool, and used the surviving candidates with 

clear high-band spectral peaks standing out from the background in the feature extraction 

step. 

3.3.3. Feature Extraction 

Three HFO distinctive features were extracted from the frequency and time-frequency 

domains and an unsupervised clustering step was implemented on these features to 

cluster similar events, which include HFOs, inter-ictal spikes, sharp waves and many 

other pseudo events due to noise. 

• Frequency corresponding to maximum peak to notch energy ratio.  
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Figure 3-4. Frequency corresponding to maximum peak to notch ratio.  

In the denoised time-frequency map of an HFO, the high-frequency component is 

clearly revealed with a “gap” between the low frequency component (see figure 3-3 for 

examples). The peak to notch feature is designed to quantify this discriminant 

information. Figure 3-4 gives detailed explanation of the feature. As an initial step, two 

power spectra of the HFO was computed from a segment that centered on 100 ms of the 

original and denoised time-frequency map. In the following step, we further processed 

the remaining anomalies by searching for the peaks in the high-band using their original 

and denoised power spectrum. In each candidate, we first localized the frequency with 

the minimum energy between 40 and 100 Hz ( ! , marked with green arrow in the figure), 

and then in the denoised spectrum, we stored all the energy peaks above fm (magenta dots, 

A and B) together with their corresponding frequency indices. Then we searched for the 

local minimum within the 50 Hz band below the frequency corresponding to in the 

fm
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Figure 3-4. Frequency corresponding to maximum peak to notch ratio.



original power spectrum (blue stars, A’ and B’). The frequency with the maximum energy 

ratio was used as a feature to identify genuine HFOs from other events. In the sample 

event given in figure 3-4, although the maximum energy occurred at point A, the 

maximum peak to notch ratio is corresponding to B which corresponds to fHFO. 

• Sub-band power ratio.  

For each candidate, we computed the ratio of the signal power in the presumed HFO  

band (80 – 500 Hz) to the power in low band (16 – 80 Hz) using the following equation: 

! ,      (3-1) 

where P is the power spectrum density (PSD) defined as  

! ,                     (3-2) 

with fs representing the sampling frequency, and  representing a multitaper power 

spectral density estimate, in our case, the periodogram derived by using Welch’s method: 

!  ,                                     (3-3) 

where  denotes the modified periodogram of the uth measurement in the signal. 

• Spectral entropy.  

For each candidate, the denoised spectrum was normalized by its sum to construct a 

probability function. The signal entropy was thereafter obtained by: 

! ,    (3-4) 

P[80−500]

P[16−80]

P[a,b] = ∑
{k∈Z|ζ(a)≤k≤ζ(b)}

̂Pk
2
, (a < b) ∈ (0,

fs
2

)

̂Pk

̂Pk =
1
U

U

∑
u=1

̂PM

̂PM

H = − ∑
f

s( f )log[s( f )]
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where  !  represents the normalized signal spectrum.  

Here the entropy measures the sharpness of the spectrum and serves as a useful 

feature in distinguishing HFO from irrelevant events.  

3.3.4. Unsupervised Clustering 

After feature extraction, unsupervised GMM clustering was used with these three 

features to map survived candidate events into different categories, and the resulting 

groups were presented to experienced reviewers with their temporal and spatial patterns. 

In GMM, the feature distribution is presented by a weighted combination of K Gaussian 

components, with its probability density distribution (pdf) characterized by: 

! ,     (3-5) 

where !  is the weight of each component satisfying  

! ,     (3-6) 

and x is the measurement of features, !  (k = 1, 2, …, K) represents the weight of each 

component, !  and !  stands for the means and covariance, !  is the component 

Gaussian density represented as: 

               ! .   (3-7) 

Here, D is the dimensionality of the data. The component density parameters ! , !  and 

!  are estimated by a probabilistic approach that maximizes the likelihood of the sample: 

s( f )

p(x) =
K

∑
k=1

πkη(x |μk, Σk)

πk

K

∑
k=1

πk = 1

πk

μk Σk η(x |μk, Σk)

η(x |μk, Σk) =
1

(2π)D/2 |Σk |1/2 exp(−
1
2

(x − μk)TΣ−1
k (x − μk))

πk μk

Σk
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! .             (3-8) 

The standard GMM clustering generally starts with a random selection of K samples 

as the initial centroids. Here the initialization of the iteration process was conducted 

based on an optimized version of the Partitioning Around Medoids (PAM) algorithm, also 

known as k-medoids (Kaufman and Rousseeuw, 1987), which is a variant of k-means. 

This classic partitioning technique was chosen to define the initial centers of GMM 

because of its low computational complexity and robustness.   

In k-means, given a set of observations (x1, x2, …, xN), where each observation is a D-

dimensional real vector, k-means clustering partitions the N observations into k sets (k ≤ 

N) C ={C1, C2, …, Ck} so as to minimize the within-cluster sum of squares: 

! ,                                         (3-9) 

where µi is the mean of observations in Ci. The initial centers are 2 random samples, and 

the algorithm iteratively compute the new centroids through the assignment step: 

! ,      (3-10) 

 where each observation is assigned to the cluster whose mean yields the least squared 

Euclidean distance (update step): 

!  ,                               (3-11) 

 which is intuitively regarded the nearest mean. 

N

∏
i=1

p(xi)

argmin
k

∑
i=1

∑
xj∈Ci

xj − μi
2

Ci = {xq : xq − mi
2 ≤ xq − mj ∀j,1 ≤ j ≤ k}

mi =
1

Ci
∑

xj∈Ci

xj
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The proposed algorithm uses the L1 norm (Manhattan distance) as distance metric in 

the update step, where the medoid of each cluster (i.e. the most centrally located 

datapoint in each cluster) is computed, yielding the k-medoids approach. Considering that 

the initial random selection of medoids will increase the number of iteration, a specific 

way of choosing centers was applied (Arthur and Vassilvitskii, 2007). Briefly, after initial 

center  was randomly chosen among all datapoints, the algorithm computes the distance 

between and the nearest medoid, then the new medoid is determined with weighted 

probability distribution (Jiang and Zhang, 2014).   

After initial centers were found, the parameters of the model were determined by 

expectation maximization (EM) approach (Dempster, Laird and Rubin, 1977). During the 

E-step, the algorithm computes the posterior probability for each sample as a member of 

the Kth component: 

   ! ,                 (3-12) 

then re-estimate the parameters through M-step:  

                          !  ,            (3-13)

! ,  and          (3-14) 

! ,                       (3-15) 

where 

pi(k) =
πkη(xi |μk, Σk)

∑K
j=1 πjη(xi |μj, Σj)

μk =
1
N

N

∑
i=1

pi(k)xi

Σk =
1
N

N

∑
i=1

pi(k)(xi − μk)(xi − μk)T

πk =
Nk

N
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!  .                 (3-16) 

The entire procedure was repeated until model parameters converged. Each observation 

was assigned to the Gaussian component that provided the highest posterior probability. 

Consequently, the number of cluster is defined by the number of Gaussian components. 

In order to find the optimal number of mixtures, K, for each dataset, we plotted !  

with respect to different K values. This curve represented the change in log-likelihood 

when increasing the number of mixtures. We observed that following an initial increase 

after a few mixtures, the log-likelihood reached a plateau. By inspecting this plot we 

selected the elbow of the curve to determine the optimal mixture number. 

3.3.5. Validation  

The cluster validity was measured by computing the well-accepted validation index 

Silhouette coefficient (Rousseeuw 1987) defined as: 

! ,          (3-17) 

where !  is the average distance of element !  with all other members in the same cluster, 

and !  is the minimum average distance of i with elements that belong to any other 

cluster. This method measures for every point its cohesion to its separation. The result 

ranges from -1 to 1, a higher value indicates an object is well assigned to its own cluster. 

A Silhouette value greater than 0.7 is preferable (Chen, Ibekwe-SanJuan and Hou, 2010). 

Nk =
N

∑
i=1

pi(k)

pi

S =
1
N

N

∑
i=1

(
di − li

ma x {li, di}
)

li xi

di
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The detected HFOs were used to identify the seizure onset areas. With varying 

denoising levels ranging from 90% to 100% (i.e., no denoising executed), we investigated 

the spatial distribution of automatically clustered HFOs. The SOZ detection accuracy was 

measured by assessing the overlapping rate of HFO generative channels and the gold 

standard – clinician-determined SOZ. A channel was considered true positive if it was 

overlapped with the seizure onset location identified by neurologists and was considered 

false positive if it lied outside of the SOZ. The sensitivity (SE) and specificity (SP) was 

evaluated by: 

 !  and     (3-18) 

 ! ,     (3-19) 

where TP stands for true positive, TN stands for true negative, FP stands for false 

positive, and FN stands for false negative (Burnos et al., 2014). 

We compared these HFO channels with seizure onset channels in different states of 

each patient. The efficacy of the algorithm was tested by using a leave-one-subject-out 

cross validation procedure. Each time, one patient was separated from the entire patient 

population. Data from the remaining patients were used for learning the optimum 

denoising level, and this learned parameter was tested on the iEEG data of the left-out 

patient. This procedure was repeated for all patients, rotating the left-out subject. The 

performance was compared with another existing SOZ detection algorithm (Geertsema et 

al., 2015). Statistical analysis was implemented using paired Wilcoxon test with a 

confidence interval of 95%. 

SE =
TP

TP + FN

SP =
TN

FP + TN
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3.4 Results 

3.4.1. Feature Distribution of Detected Events 

Across all 8 patients, a total of 10,188 events were accepted by the initial threshold 

detection and spike elimination steps, and then grouped by the clustering method. In 

general, 2 to 5 clusters were identified by the algorithm in each state of each patient, 

where one or two of them appeared to be HFOs, others were artifacts. The two HFO sub-

clusters presented diverse energy distribution in the high band. One cluster was 

comprised by HFOs with their energy extending above 200 Hz, we referred them as fast 

HFO (fHFO); the other cluster presented oscillatory activity around 80 to 100 Hz and was 

interpreted as slow HFO (sHFO). In three patients with 1 kHz sampling rate (P6 – P8), no 

fHFO was detected due to the built in anti-aliasing hardware filter of the amplifier which 

was set to 150 Hz. For each individual patient, the number of HFO cluster was always 

fixed (either one or two) in all states. In patients where two HFO clusters were generated, 

we used fHFO cluster for the SOZ detection. 
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Figure 3-5. Number of cluster (left) and HFOs detected per 10-minute segment 
(right) in different states (PSB-WB = 0.30; PSB-PI = 0.10; PWB-PI = 0.17) and 
HFO numbers (PSB-WB = 0.09; PSB-PI = 0.14; PWB-PI = 0.71). 
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Figure 3-5. Number of cluster (left) and HFOs detected per 10-minute segment (right) in different states. There is no significant difference in cluster numbers or HFO numbers. 

Table 3-2. Cluster number and average event number per data segment 

The current clustering solution yielded an average Silhouette value of 0.74 (ranging 

from 0.60 to 0.92), suggesting a desirable clustering result. A lower Silhouette value was 

found in P5 due to the large number of noisy events detected in this patient. The number 

of clusters, and the amount of HFO events in each cluster is given in table 3-2. Overall, 

the algorithm found smaller number of clusters in SB. This could be due to the low level 

of noise/artifacts in the data originating from the movements of patients as the patients 

are not active during sleep. As it is shown in figure 3-5, the HFO amount captured per 

data segment tended to be greater in SB compared to WB and PI, although the difference 

was not statistically significant (PSB-WB = 0.09, PSB-PI = 0.14). Figure 3-6 shows the 

feature distribution in two patients where 2 and 3 clusters were generated, respectively. 

For each cluster (sHFO/fHFO/artifact), typical waveforms and averaged time-frequency 

map of 20 random selected members are presented. 

ID Cluster No. (HFO Noa./ candidate No.) S-value 
(average)SB WB PI

P1 2 (13/31) 2 (8/24) 2 (6/12) 0.82

P2 3 (56/102) 4 (60/259) 4 (9/79) 0.72

P3 3 (48/121) 3 (92/232) 4 (43/147) 0.67

P4 4 (14/73) 3 (20/54) 3 (11/55) 0.92

P5 2 (12/21) 3 (10/22) 3 (24/50) 0.60

P6 5 (29/73) 5 (9/31) 4 (18/46) 0.82

P7 2 (36/39) 3 (11/18) 5  (7/36) 0.72

P8 3 (42/86) 3 (5/17) 4 (93/156) 0.74
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Figure 3-6. (A) Feature distribution and the curvature of log-likelihood with respect to K values of GMM in 2 patients. (B) Time-frequency maps averaged from randomly selected 20 events in each cluster. 

3.4.2. Localization of the Seizure Onset Zone 

In each state of each patient, clustered candidates were displayed and explored by 

using the HFO investigation tool. For those patients with one cluster composed of HFO, 
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Figure 3-6. (A) Feature distribution and the curvature of log-likelihood with 
respect to K values of GMM in 2 patients. (B) Time-frequency maps 
averaged from randomly selected 20 events in each cluster.
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that particular cluster was selected for the spatial distribution analysis; for those patients 

with two different HFO clusters, the one composed of faster oscillations was selected to 

explore its spatial distribution. Figure 3-7 (A) illustrates the spatial distribution of HFO 

among all bipolar channel pairs in each state of each patient. Each row in a single panel 

represents a different state (SB-WB-PI); the color strips display the HFO numbers located 

in each channel pair. The SOZ identified by neurologists are marked by red and yellow 

arrows (red arrows indicate the channels with highest seizure frequency). In all patients, 

HFOs were sparsely distributed and well localized in a few channels. In all patients 

except P3, the channels with maximum number of HFOs identified the SOZ. In P3, the 

HFO generative areas were found in the contralateral site of the presumed SOZ. The 

postsurgical outcome of P3 was poor. Although there was an improvement in seizure 

frequency of the patient, it was less than 80% of reduction. The patient continued to have 

monthly seizures after the surgery.  We therefore excluded this patient from successive 

analysis. 

Seven patients with Engel class I outcome were used to evaluate the SOZ detection 

performance. Overall, 11% if the total channels were delineated as SOZ (28/251).  In 

each patient, 1 – 7 contacts were visually marked by neurologists and were used as the 

gold standard. During cross-validation, a denoising level of 97% was learned for testing 

in all except one patient in all states. In SB of P6, a denoising level of 90% was used. The 

algorithm resulted in sensitivities of 81%, 63%, and 74%, with specificities of 96%, 96%, 

and 94% in SB, WB and PI, respectively. We observed that none of the 14 corrupted 

channels  was  identified  as  the  SOZ. In all states of P1, the seizure onset channels were  
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Figure 3-7. (A) HFO spatial distribution in SB, WB and PI. (B) For each Engel class I patient, all channels are sorted according to their HFO numbers (up to 20 channels are shown). 

perfectly detected by the algorithm, leading sensitivity and specificity to 100%. In P5, 

where a larger number of channels were identified as SOZ, the majority of fHFOs were 

localized ipsilaterally in the left hemisphere, causing the lowest SE of 48% on the 
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Figure 3-7. (A) HFO spatial distribution in SB, WB and PI. (B) For each Engel 
class I patient, all channels are sorted according to their HFO 
numbers (up to 20 channels are shown).
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average. Considering different states, the sensitivity result was  significantly  higher using 

data in SB comparing to WB (P < 0.001), whereas no evidence showing a significant 

difference existing between SB and PI (P = 0.32). The detection results are shown in 

table 3-3. 

We ranked all channels according to their HFO densities, the result is presented in 

figure 3-7 (B). In 5 out of 7 patients, the channels that generated most of the HFOs 

correctly identified the locations where seizures occurred more frequently (marked by red 

arrows). 

Table 3-3. SOZ detection results 

3.4.3. Spatial Distribution of sHFO, fHFO, and Spikes 

Compared to sHFOs, the vast majority (90%) of fHFOs were generated from only 7% 

of the total channels. In contrast, sHFOs were detected in 24% of the total channels, 

ID Channel 
No.

SOZ 
Channel 
No.

SB WB PI

SE SP SE SP SE SP

P1 24 1 100% 100% 100% 100% 100% 100%

P2 45 3 66.7% 100% 66.7% 92.9% 100% 95.2%

P4 51 4 100% 93.6% 100% 95.8% 50% 95.7%

P5 49 7 42.9% 100% 42.9% 100% 57.1% 97.6%

P6 41 7 80% 97.2% 28.6% 97.1% 57.1% 100%

P7 26 4 75% 86.4% 50% 95.5% 50% 90.9%

P8 15 2 100% 92.3% 50% 92.3% 100% 76.9%

Average 80.7% 95.7% 62.6% 96.2% 73.5% 94.1%
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including many of the neighboring regions of the SOZ, even the contralateral sites to the 

SOZ. Although the sHFO can be observed bilaterally, we noted that their occurrence was 

much higher in the ipsilateral side to the SOZ (P = 0.001). The boxplot for sHFO 

distribution is shown in figure 3-8 (C). 

We inspected the spatial characteristics of fHFO, sHFO and spikes using SB data 

segments in 5 patients where both sHFOs and fHFOs were successfully captured, the 

clustering results and samples of captured events are provided in figure 3-8 (A). Unlike 

HFOs, the spatial distribution of spikes appeared to be more wide-spread and 

inconsistent. In figure 3-8 (D) we show the boxplots demonstrating the distribution of 

three types of activities with respect to their relationships to SOZ, computed from all 

patients with Engel Class I outcome. Overall, 95% of the fHFOs captured by the 

algorithm were located inside of SOZ. On the contrast, 65% of the sHFO and only 38% 

of the spikes occurred inside of the SOZ. Most of the spikes were found extending well 

beyond the SOZ regions, spreading neighboring locations as well as contralateral sites of 

the seizure onset channels.  

Using different types of events identified by the detector, we assessed the efficacy of 

fHFOs, sHFO and spikes as indicators to SOZ localization in all patients with favorable  

surgical outcomes. The average sensitivity and specificity across 4 patients were 70% and 

100% for fHFOs, 81% and 82% for sHFOs, 92% and 76% for spikes, respectively. 

3.4.4. Comparing with existing techniques 

We compared our detector with an automatic SOZ detector established by Geertsema 

et al. (Geertsema et al., 2015), which is based on the  evaluation of  autoregressive  model  
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Figure 3-8. (A) Feature distribution for spikes and HFOs in P3. (B) Spatial distribution for sHFO, fHFO and spikes in 3 patients. (C) Proportion of events inside the SOZ. (D) Spatial distribution for sHFO.  
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Figure 3-8. (A) Feature distribution for spikes and HFOs in P3. (B) Spatial 
distribution for sHFO, fHFO and spikes in 3 patients. (C) Proportion 
of events inside the SOZ. (D) Spatial distribution for sHFO.
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residual variation (ARR). This recently proposed method estimates the time-variation of 

residuals from autoregressive models of iEEG windows computed from each channel, by 

obtaining the normalized standard deviation (CV, coefficient of variance) of the residuals. 

In order to reproduce the algorithm, we applied the same parameters as in the report, and 

computed the CV value for each channel in each 10-minute data segment. In each state, 

the receiver operating characteristic (ROC) curve was obtained by assessing the SE and 

SP for various thresholds from the training population. An optimal threshold was chosen 

when the ROC curve reached its elbow, and then was used to test the left-out patient.  

The ARR detector obtained SE of 60%, 60%, 40% with SP of 70%, 69% and 80% in 

SB, WB, and PI, respectively. Comparing to ARR detector, the overall performance of 

our detector was significantly higher in terms of both sensitivity (P = 0.02) and 

specificity (P < 0.001). 

3.5 Discussion  

3.5.1. Main Contributions 

In this study, we showed that localizing SOZ using HFOs identified in 10-minute of 

SB data provided significantly higher overall sensitivity compared to WB in both centers.  

Using 10-minute baselines and pre-ictal data, the algorithm successfully detected HFOs, 

and localized the seizure onset areas in 7 out of 8 patients, where the HFO spatial 

distribution was closely overlapped with the electrodes that were placed over the regions 

where the seizures were thought to originate, suggesting the good prognostic value of 

HFOs captured by automatic technique. 
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HFO detection techniques have been widely discussed over recent 10 years. 

Conventional methods use high-pass or band-pass filtering to expose those high 

frequency transients of interest, followed by amplitude thresholding in time domain. 

However, some components in brain signal may present a broadband characteristic, and 

could be confounded with actual oscillatory activities after filtering. Nevertheless, 

traditional HFO detection has been suffering from false positives introduced by epileptic 

spikes or non-sinusoidal oscillatory events that contain harmonics. The pitfalls related to 

straight forward filtering of iEEG were recently addressed in two reports (Bénar et al., 

2010; Mina Amiri et al., 2016) which once again emphasized the need for new algorithms 

for the accurate detection of HFOs. Our proposed algorithm refined the detection by 

introducing additional HFO criteria considering its morphometric features. Without 

channel pre-selection, the algorithm was able to keep out the non-neuronal events 

resulting from the contaminated channels, as none of these visually identified corrupted 

channels was classified as SOZ. Moreover, we assume that one of the critical aspects of 

HFO identification in human examination is the existence of well-isolated high frequency 

component that could be distinguished from other oscillatory events after time-frequency 

analysis. We introduced a denoising step to pinpoint the frequency in correspondence 

with this prominent power increase in the high-frequency range after proper compression 

of the background noise. In this way we were able to eliminate spikes without HFO 

components from subsequent steps. By clustering, we further purified the detected HFO 

candidates and provided evidence of the existence of diverse HFO patterns, which is 
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usually pre-assumed in the forms of ripples (80 – 200 Hz) and fast ripples (200 – 500 Hz) 

in many of the previous studies. 

We analyzed human iEEG data recorded in real clinical cases, which is essentially 

different from most of the previous reports where experimental data with better signal 

fidelity is commonly used. We were able to reliably identify SOZ using clustered HFOs, 

supporting the assumption that HFOs are good indicators for the epileptogenic zone. 

When the spatial distribution of the entire HFO group was used, we observed a SOZ 

identification accuracy with 81% sensitivity in SB, and 96% specificity in both SB and 

WB. Moreover, we tuned the algorithm by using different proportion of detected HFOs to 

determine HFO generative channels. When the spatial distribution of HFOs was shrunk 

to those channels capturing 55% of the total number of HFOs, the algorithm obtained an 

overall specificity of 99% in SB, 98% in WB, and 100% in PI state. In 5 out of the 7 

Engel class I patients, the detector achieved specificity of 100%. In this case, fewer 

locations were involved and classified as seizure generating areas, resulting in lower 

sensitivity of 42%, 44%, and 49%. This trade-off between the measures need to be further 

studied to meet the actual clinical demands. 

3.5.2. Identifying SOZ in Different States 

We showed that localizing SOZ using HFOs identified in 10-minute of SB data 

provided significantly higher overall sensitivity compared to WB in both centers. The 

relationship between sleep-wake cycle and epileptiform discharges has been reported in 

literature. Investigation of HFOs using both short-term and long-term iEEG data shows 

an increment of HFO rate with non-rapid eye movement (NREM) sleep stage, especially 
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in subjects with epilepsy generating from temporal lobe (Crépon et al., 2010; 

Dümpelmann, Jacobs and Schulze-Bonhage, 2015; Jacobs et al., 2008a; Schevon et al., 

2009b). Sleep activates both focal and generalized spikes and other epileptic discharges 

in about 1/3 of all patients due to the increased temporal and spatial synchronization 

caused by the hyperpolarization of cortical and thalamocortical neurons (Kotagal and 

Yardi, 2008). A latest report suggests that sleep slow waves, particularly the upward 

trend, are the specific components of NREM sleep that is responsible for the mediation of 

activating the epileptic activity, which may further explain the rise in occurrence of the 

epileptic oscillatory events (Frauscher et al., 2015). Our result suggests that obtaining 

sleep recordings of a sufficient interval in clinical routine should be beneficial to 

quantitative HFO analysis and SOZ localization. 

3.5.3. The Prognostic Value of HFOs 

Using 10-minute baselines and pre-ictal data, the algorithm successfully detected 

HFOs, and localized the seizure onset areas in 7 out of 8 patients, where the HFO spatial 

distribution was closely overlapped with the electrodes that were placed over the regions 

where the seizures were thought to originate, suggesting the good prognostic value of 

HFOs captured by automatic technique.  

In this study, we did not presuppose the existence of different HFO sub-categories. 

Nevertheless, in 4 out of 5 patients with 2 kHz sampling rate recordings, two distinct 

HFO groups with oscillation in different frequency bands were discovered by the 

algorithm, which was consistent with prior studies that differentiate between “ripple” and 

“fast ripple”. In our study, these two HFO classes were interpreted as sHFO (around 80 – 
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100 Hz) and fHFO (above 200 Hz) since their frequency range didn't strictly fit the 

definition of the terms ripple (80 – 200 Hz) and FR (200 – 500 Hz). We noticed that these 

two HFO groups presented some dissimilarity in waveform pattern and spatial 

distribution. Compared to fHFOs, sHFO distribution appeared to be more wide spread. 

Nevertheless, most of the sHFOs were originated from the seizure onset sites. This result 

shows disagreement with a previous study reporting greater number of ripple oscillations 

being found in sites contralateral to seizure onset (Staba et al., 2002).   

There has been an assumption that ripples, which have been well described in 

hippocampus and associated structures in normal animal brains, reflect physiological 

brain activities, whereas FRs reflect pathological hypersynchronous events that are 

crucially associated with seizure genesis (2002). However, the considerable overlap in 

spectral frequency between normal and epileptogenic oscillations makes the definition of 

physiological and pathological HFOs still controversial (Engel et al., 2009). Apparently, 

it is inappropriate to group normal and epileptic HFOs on the basis of their frequency 

bands alone. FR activities can be physiological, as they have been reported in normal 

brain functioning as a reflection of neuronal network coordination related to attention, 

learning and memory (Kucewicz et al., 2014). Besides, not all pathological HFOs are FRs 

(Menendez de la Prida, Staba and Dian, 2015). Though the diagnostic value of HFOs 

below 200 Hz remained in doubt, we argue that it is not necessary to conclude that ripples 

are not associated with epilepsy, since our results have proved that sHFO generating 

locations still gave considerable clues to epileptogenic regions. The investigation of 
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different HFO patterns should attribute to a better understanding of epilepsy, and should 

be taken into consideration during presurgical evaluation.  

HFOs and spikes are both considered reflections of dysfunctional neural networks. 

Clinical and experimental evidences supported that HFOs are better markers than 

interictal spikes to identify seizure onset zones (Zijlmans et al., 2012; Jacobset et al., 

2008). To explore the relationship among spikes and two sub-categories of HFOs 

discovered by the algorithm, we also assessed the value of these neuronal events in SOZ 

approximation. Our results suggested that the majority of HFOs appeared in a subset of 

spike generating channels. In two patients with generalized tonic-clonic seizures (P3 and 

P4), the channels with most of the FRs differed from the most spiking locations, which 

may provide critical information for disease propagation.  

Although in other seizure free patients the HFO generating areas were always 

consistent with SOZ, interestingly, in P8 we detected HFOs from bilateral hippocampus. 

This particular patient showed poor scalp EEG findings in terms of “switch of 

lateralization” (Sirin et al., 2013), where the seizure generated from right hippocampus, 

and propagated to the contralateral site immediately after onset. A series of studies 

illustrate that the removal of HFO generative regions outside the SOZ is also correlated 

with good surgical outcomes, and therefore can be used as a guide to surgical resection 

(Akiyama et al., 2005; Jacobs et al., 2010; Ochi et al., 2007; Wu et al., 2010). This is the 

first report regarding the prognosis value of HFO in an epilepsy patient with hippocampal 

sclerosis and “switch of lateralization” phenomenon. Whether the HFO generative region 
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in such patients provides additional information regarding epilepsy needs to be further 

investigated with a larger population.  

In the only patient (P3) where the HFOs showed inconsistency with the presumed 

SOZ, the patient had bilateral temporal slowing and bilateral frequent independent 

epileptiform activities during the invasive intracranial recording.  P3 had a total of 6 

habitual target seizures that were reported by the patient and family during the 

intracranial EEG monitoring.  All these 6 seizures were found to be right temporal onset.  

However, there were also 3 subclinical seizures recorded during the intracranial 

monitoring.  All these 3 subclinical seizures were left temporal onset, originating from 

the HFO generating locations (channels 7, 8, 14, 21, and 22).  Right temporal lobectomy 

was proposed as a palliative procedure to reduce the seizure burden and to improve the 

quality of life, which the patient elected to proceed with. However, P3 continued to have 

clinical seizures after surgical resection. P3 did not go through a second surgery to 

remove HFO regions, which made it difficult to validate the relationship between HFO 

and seizure-free outcome. HFO generative areas outside the SOZ may provide additional 

information, which is of substantial importance in presurgical evaluation, and should 

prompt further clinical investigation. 

3.5.4. Towards the Clinical Application 

The results of the current study indicate that the integration of time-frequency 

analysis of iEEG and unsupervised clustering is capable of identifying HFOs in an 

efficient manner, and can be employed for automatic SOZ localization. Although it is 

comparable to previous HFO detection reports, our proposed HFO detection technique 
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was tested on a small number of patients. Among the involved 8 patients, 7 had temporal 

lobe epilepsy (3 with hippocampal sclerosis, 4 without structural abnormalities), 1 had 

occipital lobe epilepsy without lesion. Due to the limited sample size and disease 

phenotypes, it remains unclear whether the algorithm is applicable to different types of 

epilepsy other than mesial temporal lobe onset, or does it have superior performance 

when applied to a specific patient population. It remains an open question whether or not 

this technique can be used as a practical tool to assist in SOZ delineation especially in 

neocortical onset epilepsy, where larger cerebral cortex including functional regions and 

eloquent areas might be involved during the intracranial EEG monitoring. In order to 

answer this question, in the next chapter we reported 3 cases where the unsupervised 

detection was applied to adult and pediatric patients with lesional and non-lesional 

neocortical epilepsy.  It is expected that the proposed HFO detection algorithm can be 

applied to provide critical information regarding the SOZ in challenging cases. 

A limitation of the current study is that the analysis was based on 10 minutes of iEEG 

data in different states. Although past research suggested the use of 10-minute of data 

should be sufficient for HFO analysis, we argue that data of longer intervals should be 

involved in future work to test the robustness of the detector and its generalization 

capability. This question is specifically clarified in Chapter 6 where the HFO detection 

was executed using iEEG data segments of extended-length in order to show the temporal 

variation of event rates and its possible effect on the SOZ localization. 
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CHAPTER 4 HFO AUTO-DETECTION FOR THE LOCALIZATION 

OF SEIZURE ONSET ZONE: CASE STUDIES 

4.1 Introduction 

High frequency oscillations (HFOs) are believed to be clinically significant, and thus 

could be used for SOZ localization (Worrell and Gotman, 2011). A series of studies have 

shown that the complete removal of HFO generative cerebral tissue within and outside 

the SOZ provides favorable surgical outcomes in patients with drug-resistant epilepsy, 

suggesting HFOs can be excellent surrogate markers of SOZ, and emphasized their 

potential to guide the pre-operative evaluation for epilepsy surgery. Human identification 

of HFO has been hindered by the massive data size and the short duration (in 

milliseconds scale) and low amplitude of the HFO transients due to the 1/f nature of 

iEEG signals. To date, most studies on HFOs in epilepsy to large extent rely on highly 

human-intensive process to extract the signals of interest from multichannel iEEG. Due 

to difficulties associated with visual inspection and manual annotation of data over 

multiple channels and recordings lasting for several days or weeks, investigators typically 

perform dramatic data reduction steps before committing the data to statistical analysis. 

Such data reduction techniques and complexity associated with visual inspection, limiting 

the functional usage of HFO information in clinical routine. 

Compared to epilepsy literature, the fields of HFOs and the related detection 

techniques are in their infancy states. Majority of the current existing automatic or semi-

automatic HFO identification techniques focus on the supervised classification of event 

candidates, based on human screening and labeling the events of interest, after prior 
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selection of artifact-free iEEG traces (Blanco et al., 2010a). Manually identified HFO 

events by multiple experienced reviewers are commonly used as the target variables and 

detectors were forced to classify these events in pre-defined ripple and fast ripple ranges 

as well as other subtypes, for instance, physiologic or pathologic HFOs. Such visual 

identification of HFO events by medical experts reviewing hundreds of hours of data puts 

considerable bias to the class labels. More importantly, few reports have capitalized on 

the prognostic role of HFO captured by automatic detection in the localization of SOZ. 

No studies have explored the entire iEEG spectrum, and the functional use of HFO auto-

detection in clinical practice is poorly documented. In order to fill this gap, in this chapter 

the HFOs identified by the proposed three-stage automatized technique were utilized as 

spatial markers to the epileptic seizure onset regions in the brain. The relationship among 

spikes and presumed discrete sub-groups of HFOs discovered by the algorithm were 

explored, and the spatial distribution of HFOs were compared with the clinician 

delineated SOZ in these representative unique cases, to assess the value of these neuronal 

events in SOZ approximation using data collected in real clinical environment. 

4.2 Data Acquisition and Analysis 

Data collection protocol is demonstrated in figure 4-1. Continuous iEEG data was 

recorded intra-operatively during the electrode implantation and/or post-operatively in 

the epilepsy monitoring unit (EMU) for 48 hours using both gHIamp system (g.tec 

medical engineering GmbH, Graz Austria) and Nicolet C64 system (Natus Medical Inc, 

CA) through a parallel recording setup, simultaneously with video monitoring thought the 

period. For the HFO analysis, continuous data recorded by gHIamp bioamplifer at 2.4 
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kHz sampling frequency and 24 bit A/D resolution was used, with an anti-aliasing filter 

set to 600 Hz. The signal acquisition and real-time visualization was executed with a 

customized Simulink model (Matlab R2014a, Mathworks, Inc) and gHIsys real-time 

signal processing library (g.tec medical engineering GmbH, Graz Austria). 

Figure 4-1. Scheme and photos showing the data collection setup. 
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The previously validated HFO detector (see Chapter 3) was used to analyze the 

multichannel SEEG or ECoG data (Liu et al. 2016), the workflow is given in figure 4-2. 

Briefly, raw data first went through band-pass filtering within the 80 to 500 Hz range and 

a series of HFO-sieving criteria. Next, we performed the short-time Fourier transform 

(STFT) and executed a denoising step on the time-frequency maps to eliminate 

background activity with small amplitude. Finally, we explored the entire bandwidth of 

surviving candidates to extract the three features: high-band to low-band power ratio, 

entropy, and frequency corresponding to maximum peak to notch ratio. These features 

were used for GMM clustering to map candidate events into different categories. 
Figure 4-2. Schematic diagram of the three-stage automatic HFO detection method. 

The grid/depth electrodes and distribution maps can be visualized by using a self-

developed software application dedicated to the interactive co-registration of brain 

surface model or MRI volume, customized electrode model, and CT images. After 

loading the reconstructed MRI data of a brain template or an individual subject, one or 

multiple ECoG electrodes will be added by using one of the following modalities: i) each 
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electrode contact will be manually co-registered with the cortex model/3D rendering by 

referring to the surgical photographs that show the sulcal and gyral landmarks on 

individual anatomy, or ii) electrode models will be generated after automatic 

coregistration of preoperative MRI and postoperative CT that shows the electrode 

location in the 3D space. To accomplish this, a Matlab-based tool is developed to get the 

inputs from the user where two point-sets are defined by manually locating the 

anatomical landmarks (nasion, inion, earlobes, etc.) on both MRI and CT images. A 

widely applied Iterative closest point (ICP) algorithm (Besl et al., 1992) is then executed  
Figure 4-3. Workflow for the coregistration of pre-op MRI and post-op CT images. A customized software is developed for the visualization of electrodes.  
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A customized software is developed for the visualization of electrodes. 



to minimize the difference between two clouds of points, and to match the source image 

with the reference or target image. Alternatively, the electrode models can be directly 

generated after acquiring the contact positions defined by Talairach or Montreal 

Neurological Institute (MNI) coordinates. The analysis results showing the HFO spatial 

distribution will be mapped to the brain and visualized instantly by the software. 

4.3 Case 1: HFOs in Epilepsy Associated with Cavernous Malformation 

Cavernous malformations (CM) are dynamic vascular lesions in the central nervous 

system (Rigamonti et al., 1988). When cortical tissues are involved, CMs pose a 

significant risk for the development of medically refractory epilepsy that requires surgical 

treatment (Alonso-Vanegas, Cisneros-Franco and Otsuki, 2012; Cosgrove 1999). Invasive 

electrocorticography (ECoG) monitoring has been used as the gold standard for the 

localization of SOZ (Shah and Mittal, 2014) and has frequently been applied during the 

presurgical evaluation in patients with epilepsy associated with CM. By investigating the 

intracranial electroencephalogram (EEG) recordings, neurologists try to define the 

accurate location of seizure onset in relation to the CM, determine pathways of seizure 

propagation, and perform intraoperative mapping of cortical function before the excision, 

especially in pediatric cases (Bourgeois, Di Rocco and Sainte-Rose, 2006; von der Brelie, 

Kuczaty and von Lehe, 2014). Studies have shown that lesionectomy plus ECoG yields 

better seizure control outcomes; one cohort demonstrated a significant advantage with 

lesionectomy assisted by intracranial ECoG delineation of the SOZ (Baumann et al., 

2007; Jooma et al., 1995). To this point, HFOs have not been described in pediatric 

patients with CM-caused epilepsy. 
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4.3.1. Case Presentation  

The 3-year-old left-handed male patient was referred to Texas Children’s Hospital 

with focal epilepsy initially presenting as recurrent spells of loss of awareness starting at 

2.5 years of age. The seizures were stereotyped and clinically consisted of eyes slowly 

closing and the patient sway- ing back and forth in association with unresponsiveness 

lasting 2 – 6 s. The seizures occurred in clusters of 20 – 30 events, with the clusters 

occurring up to 3 – 4 times per day. 

Continuous ECoG data were acquired from an 8 × 8 grid. Data collection and 

scientific workup were approved by the Baylor College of Medicine Institutional Review 

Board. The ECoG was recorded for 62 hours and 39 minutes. ECoG data were visually 

inspected for the characterization of the background activity, abnormal focal and 

generalized features, as well as interictal and ictal epileptiform activity. Electrical seizure 

activity was correlated with the clinical events of the patient recorded on video. The 

patient was given trials of levetiracetam, oxcarbazepine, zonisamide, and clobazam 

without resolution of seizures. Seizure medications have not been adjusted up to this 

point.  

Initial scalp EEGs showed spikes that were maximal in the left frontal region (F3). 

They were often seen focally restricted to this region but other times were seen quickly 

propagating to the left mid-to-posterior temporal region (T7/P7). Brain MRI revealed a 

1.7 cm × 1.5 cm × 1.5 cm lesion in the left frontal operculum as shown in figure 4-1 (A). 

The lesion had a heterogeneous “popcorn” appearance on T2-weighted images, with a 

rim of hypointensity and mild surrounding edema, consistent with a CM. Positron 
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emission tomography (PET) CT showed a corresponding focal area of hypometabolism, 

suggestive of a seizure focus, as shown in figure 4-4 (C). Figure 4-4 (D) presents the 

magnetic source imaging showing frequent spikes localizing to the left frontal cavernoma 

and posterior perisylvian region. Upon presenting the patient’s case to the epilepsy 

surgery conference, the consensus was to implant intracranial EEG to define surgical 

resection borders. The sketch of the electrode and the 3-D rendering of MRI coregistered 

with CT image are given in figure 4-4 (E) and (F), where the CM is shown in white color. 

 
Figure 4-4. (A) Structural MRI. (B) Postoperative CT image. (C) PET image showing hypometabolism. (D) Magnetic source imaging. (E) A schematic of grid channel orders. (F) Three-dimensional rendering of the individual brain with electrode model.  

!64

Figure 4-4. (A) Structural MRI (B) Postoperative CT image. (C) PET image 
showing hypometabolism. (D) Magnetic source imaging. (E) A 
schematic of grid channel orders. (F) Three-dimensional rendering of 
the individual brain with electrode model. 
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4.3.2. Results 
Figure 4-5. Twenty seconds of ECoG recording in bipolar montage, with seizure onset represented by the red vertical line. Thirty-two channel pairs are shown. 

Frequent epileptiform discharges were seen over much of the subdural grids. As it is 

shown in figure 4-4 (E), the most frequent spike population was seen at contacts 37 – 45 

– 53, propagating inferiorly and anteriorly to contacts 28 – 36 – 44, 19 – 27 – 35, 2 – 10 – 

18, and 1 – 9. The second-most frequent spike population was seen at contacts 14 – 16, 

23, 24, 32, 40, covering the posterior/inferior part of the grid. Visual identification of the 

ictal onset zone suggested the anterior/superior perilesional cortex with some more 

distant sites being involved in seizure initialization. More than 70 of the habitual seizures 
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Figure 4-5. Twenty seconds of ECoG recording in bipolar montage, with seizure 
onset represented by the red vertical line. Thirty-two channel pairs 
are shown.



were captured, with > 90% of the seizures appearing to arise from contacts 27, 34 – 36, 

and 42. When seen, the ictal pattern consisted of a dramatic buildup of spikes at the onset 

of the clinical seizures. The remainder of the clinical seizures had indeterminate EEG 

onset. A 20-second segment of raw ECoG data in bipolar montage showing the ictal onset 

is given in figure 4-5.  
Figure 4-6. Feature distribution of the three clusters calculated from the first 10 min of recording.  

A total of 150 min of ECoG data were extracted for HFO analysis (30 min 

immediately at the beginning of monitoring in the epilepsy monitoring unit (EMU), and 

then separately for 30 min during slow-wave sleep and awake states in each day over 2 

days which were at least 4 h away from seizure activity). As a result, a total of 23,810 

HFO events and 12,365 spikes were detected by the algorithm. For each segment, the 
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Figure 4-6. Feature distribution of the three clusters calculated from the first 10 
min of recording. CH: HFOs, CS: spikes, CI: irregular waveforms. For 
CH and CS, three random sample events are shown. 
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detected events were identified as three subgroups, as shown in figure 4-6. In general, 

one cluster (CH) was a mixture of ripple and FR, one cluster (CS) was composed of 

spikes, the rest (CI) was a group of irregular waveforms with noisy background. CH and 

CS were hereby used for the spatial analysis.  

Consistently in all segments, the spatial maps indicated that most of the HFOs were 

generated from channels 28 – 29 located above the superior border of the cavernoma. 

More- over, channels 35 – 36 and 37 – 38, representing the area superior to the lesion, 

were also involved as HFO-generating sites but with less consistency. Some less active 

locations responsive to HFO generation were found in channels 31 – 32, 39 – 40, and 41 

– 42, covering the perilesional area and the posterior and anterior/superior parts of the 

electrode, especially in waking states (figure 4-7).  

The HFO mapping results estimated from 30-min ECoG segments consistently 

highlighted the perilesional region, regardless of the day of recording. In particular, the 

HFO distribution was more compact and robust over days in sleep state, concentrating on 

channels 28 – 29 sitting immediately above the border of the CM. Remarkably, the HFO 

spatial map obtained from ECoG data of a short period recorded right after the electrode 

placement had also correlated with the CM and perilesional location. On the contrary, 

spikes were initially found in channels 17 – 18 – 19, covering Broca’s area, along with 

channels 28 – 29 and 34 – 37, representing the CM and its anterior/superior region. 

During the monitoring period, spike channels shifted anteriorly and inferiorly 

surrounding the CM. The distribution also changed through the sleep-wake cycle, as 

shown in figure 4-7 (A) and (B).  
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Figure 4-7 (A) 3D rendering of the MRI with spatial distribution maps, with red representing the locations with most of the captured events. (B) Spatial distribution of HFOs and spikes in bar plot. 

Cavernous malformation does not contain neural parenchyma, thus the perilesional 

cortex, not the lesion itself, is always implicated in ictogenesis. The preictal spiking 
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Figure 4-7 (A) 3D rendering of the MRI with spatial distribution maps, with red 
representing the locations with most of the captured events. (B) 
Spatial distribution of HFOs and spikes in bar plot.
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patterns of ECoG data indicated a perilesional cortex anterior and superior to the CM as 

the SOZ. Taking into account the proximity of the nearly eloquent language regions, the 

neurologists decided to perform a cautious and conservative resection of the CM and 

adjacent hemosiderin-affected cortex only with plans to reevaluate for further resection if 

the seizures remained unaffected.Considering the associated risk, postsection 

intraoperative ECoG was not performed in this patient. As of today (February 2017), the 

patient remains seizure free with follow-up of 1 year.  

4.4 Case 2: HFOs in Extra-Temporal Lobe Epilepsy 

Ripples below 200 Hz have been historically linked to physiological events which 

plays an important role in memory consolidation (Girardeau and Zugaro, 2011; Kucewicz 

et al., 2014), however the discrimination between pathological or physiological HFOs 

cannot rely on the frequency distinctions alone. Studies have shown evidence that FR 

above 200 – 250 Hz can be absent in some cases, particularly in patients with neocortical 

epilepsy. Recent studies investigated different HFO patterns by visual inspection, where 

the investigators generally looked into features related to amplitude, duration, frequency 

and phase-coupling phenomenon (Matsumoto et al., 2013; Nonoda et al., 2016). 

Nevertheless, it is still challenging to reliably separate functional and pathological 

oscillations when recorded using macro-electrodes in clinical environment, particularly in 

the ripple range (Zijlmans et al., 2012). In this section a case where interictal ripples in 80 

– 200 Hz range were automatically captured and identified as two sub-groups were 

presented. The detected HFOs were spatially correlated with seizure onset regions 

identified by neurologists, as well as the functional sites indicated by anatomical 
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landmarks or direct cortical stimulation. In addition, we investigated the classic features 

that had been used in literature, including mean frequency, amplitude, and duration of the 

oscillations. The group difference between clusters was quantified by performing two-

sample student t-test.   

4.4.1. Case Presentation 

The 36 year-old female patient was referred to Capa Hospital of Istanbul University 

(Istanbul, Turkey) for drug resistant focal epilepsy with an aura of white vision and 

forced deviation to the left. There was no personal history of any neurological disorder. 

Neuropsychological evaluation showed non-pathological attention impairment. The 

patient had been treated with Carbamazepine (800 mg/day) and Levetiracetam (2000 mg/

day) without resolution of seizures. Anatomical MRI showed normal result; PET scan 

showed hypometabolism on the right mesial temporal region. 

The patient underwent electrode implantation after presurgical workup. Four surface/

depth electrodes were placed to the possible irritative sites, including one 6 × 8 grid to the 

right temporal-parietal region, one 2 × 8 grid on the right temporal lobe, one 4-contact 

depth in the anterior insula, and one 6-contact depth in the posterior insula. 

4.4.2. Results 

Twenty-seconds of iEEG data showing a seizure onset is given in figure 4-8 (A). 

Most of the seizures (> 60%) arose from the parietal region covered by contacts 33 – 37 

on the large grid, extending to all contacts on both grids. In figure 4-8 (B) we marked the 

SOZ contacts with different colors in accordance with their seizure frequency; contacts 
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with functional response are shown in the blue circle. The 3D reconstruction was 

obtained by co-registering the post-operative CT image with the patient’s individual MRI. 
Figure 4-8. (A) Twenty-seconds of iEEG data in bipolar montage showing the seizure onset. (B) Co-registration of pre-operative MRI and post-operative CT with SOZ information and functional zone. 
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Cortical stimulation mapping for the patient was performed with a current amplitude 

of 15 mA, pulse width of 300 µs, and duration of 0.2 s. The stimulation was conducted 

between each pair of contacts on the 6 × 8 grid. The result revealed negative motor 

responses of the left mid finger on contacts 23 – 31, and the left index finger on contacts 

24 – 32, as given in figure 4-8 (B). No other eloquent brain area was identified by the 

motor mapping. 

A total of 60-minute waking baseline recording was pruned and used for HFO 

analysis, which was at least 4 hours away from a seizure. All 66 channels were used as 

the input. Consequently, 1,569 events were captured during initial detection. Surviving 

candidates were sub-classified into three clusters, with the spike group marked in green 

(n = 1096), one HFO group in orange (type 1 HFO, n = 183), and another HFO group in 

purple colors (type 2 HFO, n = 290). The feature distribution and 4 randomly selected 

sample events in both types of HFOs are given in figure 4-9 (A). For each HFO group, 

the time-frequency map averaged across 20 random samples is also provided in figure 

4-9 (B). As we observed from the time-frequency representation, events in both HFO 

groups showed high-band spectral peaks in 80 – 200 Hz range, hence were deemed 

ripples. No fast ripple was detected in this data.  

Figure 4-9 (C) illustrates the spatial distribution of type 1 and type 2 HFO. Transients 

from each group were seen in 30% and 58% of the total channels, respectively. The 

spatial maps implied that the majority (81%) of type 1 ripples were generated from 

contact 33 – 37 and the adjacent 25 – 28 (the posterior-inferior part on the large grid), 

which were also a subset of seizure onset channels with the highest seizure frequency. We  

!72



Figure 4-9. (A) Feature distribution in 3D space. (B) Averaged time-frequency maps across 20 random samples in type 1 and type 2 HFO groups. (C) Spatial distribution of type 1 (left) and 2 HFO (right).   
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Figure 4-9. (A) Feature distribution in 3D space. (B) Averaged time-frequency 
maps across 20 random samples in type 1 and type 2 HFO groups. (C) 
Spatial distribution of type 1 (left) and 2 HFO (right).  
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assumed these were pathological HFOs (pHFOs). In contrast, most type 2 ripples were 

restricted to contacts 23, 24 and 31, 32, which were located outside the SOZ but 

overlapped with the functional motor area as delineated by electrical cortical stimulation, 

and hence were considered physiological/normal HFOs (nHFOs). 

The 290 nHFOs generated from the motor cortex were compared with the 183 

pHFOs. In the time domain, the average peak amplitude for pHFOs after high-pass 

filtered at 80 Hz was 51.9 µV, significantly greater than nHFOs (21.2 µV, P < 10-10). 

PHFO exhibited shorter mean duration (62.6 ms) than nHFO (110.2 ms), with P < 10-3.  

Compared to nHFOs, the mean frequency of pHFOs was also higher, with a small but 

significant difference (fp = 122 Hz, fn = 112 Hz, P < 10-3). 

4.5 Case 3: the Influence of Contact Size on HFO Detection 

In the current case we investigated the HFO characteristics in a patient with 

uncontrollable frontal lobe seizures. In particular, a customized surface electrode array 

was used which consisted of 113 contacts in two different sizes, to evaluate the effect of 

contact size on HFO recordings. 

Epileptic HFOs were firstly recorded in human with temporal lobe epilepsy using 

microwires with 40 – 60 µm in diameter (Bragin et al., 1999), and then were successfully 

recorded using commercially available macro-electrodes with contacts in various sizes 

(2.5 to 20 mm2) (Akiyama et al., 2005; Worrell et al., 2008a, 2004a).  Recent studies 

using microwires and macro-contact depth electrodes suggested an impact of contact size 

on the HFO detection rate in animal models and human patients (Bundy et al., 2014; 

Schevon et al., 2009a; Worrell et al., 2008a). Therefore, it is necessary to carry out 
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investigations into the methodology for optimized HFO recording in clinical 

environments. To our knowledge, the influence of contacts size on HFO recording ability 

using ECoG electrodes has not been documented. In this context, we evaluated the effect 

of contact size on HFO detection in ECoG recordings using a customized hybrid surface 

electrode array with macro-contacts in 1 mm and 2.7 mm diameters (0.8 mm2 and 5.7 

mm2 surface areas). The clustered HFOs and spikes were spatially correlated with the 

resection border and postsurgical outcome, and then grouped based on the type of 

contacts by which they were recorded, in order to assess the influence of contact size on 

event detection. The rate of HFO and spike recorded by small contacts were compared in 

pair with the average of the neighboring four large contacts. In addition, the difference in 

signal amplitude, duration, high-band power, and mean frequency of HFOs were also 

discussed. A non-parametric Wilcoxon’s Test was used for statistical analysis. 

4.5.1. Case Presentation 

The ECoG data were acquired from a 28-year-old male patient with brain tumor 

related epilepsy who underwent his first operation in 2012 for tumor resection in the left 

frontal lobe. The patient was admitted to the clinic at Capa Hospital of Istanbul 

University (Istanbul, Turkey) for new onsets of absence seizures resistant to antiepileptic 

drugs. The pre- and postoperative MRIs are provided in figure 4-10 (A). Neurological 

assessment showed no neurological deficit postoperatively. 

A customized 113-channel hybrid ECoG grid (CorTec GmbH, Freiburg Germany) 

was implanted subdurally to map the eloquent functional area and to monitor the seizure 

activity. The electrode was positioned in a way to cover the border of the tumor and the 
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presumed seizure foci, and extended towards the primary motor area (M1) as shown in 

figure 4-10 (B). The grid consisted of 64 large contacts with 2.7-mm-diameter and 1 cm 

spacing, interlaced with 49 1-mm-diameter small contacts in 1 cm spacing (platinum-

iridium alloy) embedded in medical grade silicon rubber substrate. The overall dimension 

of the electrode was 86 mm × 80 mm × 0.4 mm. A sketch of the electrode array is 

provided in figure 4-10 (C). 
Figure 4-10. (A) Preoperative image (upper) and postoperative MRI (lower). (B) Coregistration of the preoperative MRI and the intraoperative photos of the cortex. (C) The sketch of the hybrid electrode grid. 
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Figure 4-10. (A) Preoperative image (upper) and postoperative MRI (lower). (B) 
Coregistration of the preoperative MRI and the intraoperative photos 
of the cortex. (C) The sketch of the hybrid electrode grid.
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4.5.2. Results 

Five hours of continuous ECoG data recorded during slow-wave sleep which was at 

least 4 hours always from seizures was analyzed for HFO detection. Without any channel 

pre-selection or artifact removal, the entire data segment was investigated using a 

previously published automated HFO detector. 

A 30-second ECoG data segment showing an ictal onset with widespread propagation 

is given in figure 4-11 (A). A total of 7,583 events were identified by the detector, 

including 2,119 inter-ictal spikes and 5,464 HFOs. In general, we observed 3 clusters 

identified within the survived events, with one cluster consisting of HFO candidates in 

ripple frequency range, one cluster of spike activities, and another cluster of arbitrary 

noise or artifactual signal. Figure 4-11 (B) illustrates the 3-dimensional feature 

distribution of a subset of events containing 906 observations detected from one hour of 

recording. For each cluster, 8 random samples together with the averaged time-frequency 

maps are shown, to give a flavor of the cluster content. 

Thirty-eight channels were identified as HFO-generating channels, accounting for 

33% of the total channels. In 12 channels the rate of occurrence > 1 HFO/min. Spikes 

were found originated from smaller regions involving 27 channels. HFOs were captured 

in 61% of these spike channels. In figure 4-12 we present the spatial distribution maps of 

HFO and spike computed from the entire ECoG data, as well as their relationship to the 

resection border. Notably, while 59.8% of the HFOs localized inside the area of resection, 

a considerable proportion of HFOs were discovered from a more distant area extending 

towards the motor, temporal, and parietal cortex  as  well. By  contrast, most of the spikes  
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Figure 4-11. (A) Thirty-second of raw ECoG data in monopolar montage. (B) Feature distribution and clustering result using 1 hour of data, 8 random samples are shown with their averaged time-frequency maps. 
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(81.0%) were located within the tumor area inside the resection border. Postsurgical 

evaluation indicated that the patient received limited improvement in seizure frequency 

(Engel Class III), although the majority of spike generating sites have been surgically 

removed, as presented in figure 4-12. 
Figure 4-12. Spatial distribution of HFO (left) and spike (right) projected to the individual MRI data, with the resection border given (yellow line). 

In figure 4-13  we show the total number of events captured by contacts in both sizes 

together with representative HFO and spike samples for each. Using 5-hour of continuous 

data, 3,975 HFOs were detected on the 1-mm contacts, whereas only 1,489 HFOs were 

detected on the 2.7-mm ones. Statistical analysis showed a significant advantage in ripple 

detection rate using small contacts compared to large ones (median = 13.3 vs. 5.0 HFOs/

min, P = 0.001). However, the performance in spike detection using small contacts was 

statistically comparable with the large ones (median = 3.7 vs. 3.2 spikes/min). 

Overall, the HFOs shared similar appearance between groups, but differed in some 

other properties. The peak amplitude of HFOs (high-pass filtered by 80 Hz) recorded by 1-
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Figure 4-12. Spatial distribution of HFO (left) and spike (right) projected to the 
individual MRI data, with the resection border given (yellow line).



mm contacts was larger than those detected by 2.7-mm contacts (P < 0.001). Likewise, the 

mean frequency in small-contact group was higher, with a slight but significant difference 

compared to the other (median = 112.9 vs. 112.2 Hz, P = 0.03). On the other hand, the 

HFOs in large-contact group possessed greater power in the high-band above 80 Hz (P < 

0.001). The duration of HFOs showed no statistical difference between small and large 

groups (median = 52.5 vs. 49.6 ms). 

Figure 4-13. Comparison of the event count between small and large contact groups for HFO and spike. For each group, three sample events are presented. 
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Figure 4-13. Comparison of the event count between small and large contact 
groups for HFO and spike. For each group, three sample events are 
presented.



The distribution maps of HFOs detected by two sized contacts were projected to the 

individual’s brain image, for the comparison of spatial characteristics between groups. In 

both cases, most of the HFOs originated from the surrounding tissue of the tumor with 

78% overlap. Pairwise comparison showed a significant correlation in HFO rate between 

small and large contacts (r = 0.58, P < 0.001), suggesting these two groups were spatially 

dependent. Nevertheless, the most active sites responsible for the generation of HFOs 

were located at the temporal-frontal region which was identified by the small contacts but 

could not be seen on the map of large contacts, as shown in figure 4-14. 

Figure 4-14. Spatial maps of HFOs captured by small contacts (left) and large contacts (right) 

4.6 Discussion 

We proposed signal representation methods that can be applied on the iEEG data of 

individual patients, and representative results were provided in this chapter.   
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Figure 4-14. Spatial maps of HFOs captured by small contacts (left) and large 
contacts (right).  



In case 1 the spatial characteristics of HFOs and interictal spikes were investigated in 

a pediatric patient with CM-caused epilepsy. The clinical EEG evaluation results 

indicated a dramatic buildup of preictal spikes across channels located anterior/superior 

to the CM. The interictal epileptiform discharges extended far beyond the limits of the 

lesional area and furthermore extended to the majority of the grid. Interestingly, most of 

the HFOs were localized at channels 28 – 29 consistently over all awake and sleep states 

as well as in a brief 30-min recording right after the electrode implantation. We noted that 

both HFOs and spiking activity patterns at the seizure onset pointed to the superior/

anterior perilesional cortex. However, compared to the ictal data, HFOs were more 

localized to the perilesional area superior to the CM. Based on the clinical evaluation, a 

conservative excision was limited to the resection of the CM and hemosiderin ring only, 

which correlated well with the HFO distribution and provided seizure freedom to the 

patient. Epileptic seizures are the most frequent symptom in patients with CM. During 

the presurgical evaluation, neurologists need to accurately define the resection territories 

in order to abolish the seizures. However, the precise identification of the seizure focus 

and resection border is cumbersome, because the epileptogenic zone is complex in most 

cases and could involve not only the perilesional region but also brain sites that are 

geographically distant from the lesion and functionally independent. Studies show that 

only 75% of patients with CM-caused epilepsy who undergo lesionectomy solely achieve 

postoperative seizure freedom because of the presence of independent epileptogenic 

regions, insufficient estimation of the planned resection area, or postoperative scar 

formation (Englot et al., 2011; Sevy et al., 2014). To identify the epileptogenic areas 
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more accurately, prolonged invasive monitoring is often required to guide a tailored 

resection for optimal seizure control (Schwartz 2010). Despite the potential benefits, the 

expense and risk of adverse events during intracranial monitoring have been documented, 

and the associated complications are significantly more common in pediatric patients 

(Arrington et al., 2013). There is an urgent demand for the investigation of reliable 

neurobiomarkers, which may potentially shorten the undefined monitoring period and 

assist presurgical planning. In our results, the HFO clustering results clearly pointed to 

the actual perilesion location consistently in all analyzed data segments. The brain sites 

with most of the HFOs were stably limited to two contacts, which were located 

immediately above the superior edge of the CM, and further linked to seizure-free 

outcome. We also observed that the HFO spatial distribution was more compact in sleep 

compared to in the waking state. Compared to the HFO maps, the spatial distribution of 

spikes was not robust because it varied over days as well as during the sleep-wake cycle. 

This is the first report describing HFOs in a pediatric patient with CM-caused epilepsy 

and shows their potential in identifying the seizure focus in an accurate and efficient 

manner, suggesting that the epileptic perilesional structure could be identified from the 

HFO spatial distribution estimated from 30-min ECoG data recorded immediately after 

the electrode placement.  

In case 2 we reported our experience of automatically separating two types of HFOs 

by using the cluster based detection method. Type 1 HFO, as we assumed pathological, 

were generated from epileptic tissues and highly correlated with seizure-free outcome; 

type 2 HFO, deemed normal, were discovered from normal cerebral tissues distant from 
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the SOZ and from functional motor sites defined by electrical stimulation mapping. In 

this case we presented an example of applying time-frequency analysis with clustering 

technique in the detection and discrimination of normal and pathological HFOs. The 

results demonstrated that unsupervised clustering method with our current features had 

the potential to reliably and efficiently differentiate pHFOs from nHFOs, which is an 

essential step to utilize HFOs as valid clinical biomarkers in epilepsy surgical treatment. 

Interestingly, the HFOs analyzed in both cases were limited to the ripples-band. Early 

seminal observations supported the hypothesis that FRs were distinctly pathological 

transients associated with epileptic brain. However, later studies suggested that ripples 

within 80 – 200 Hz range might also have predictive power for the SOZ and they might 

actually have higher clinical values than fast ripples which can be difficult to detect in a 

substantial proportion of patients with neocortical epilepsy. Compared to fast ripples, 

ripples are commonly generated from a larger extent including both seizure foci and non-

epileptic functional brain sites. This section provided preliminary evidences of 

simultaneously detecting and discriminating epileptic spikes, normal and pathological 

ripples using human iEEG according to their natural characteristics, without labeling the 

events which requires the existence of a yet unachievable precise definition for different 

HFO subtypes. Compared to nHFOs, we found the pHFO cluster presented higher 

frequency and amplitude but shorter duration, as described in other reports (Alkawadri et 

al., 2014; Nagasawa et al., 2012). The successful discrimination between pHFO and 

nHFO events may facilitate the accurate delineation of SOZ and avoid unwanted 

detection of functionally critical sites in the brain. In addition, by data inspection we 
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observed special waveform patterns in pHFO activities. We believe that the signal 

morphology and the relation between oscillation and signal baseline is a key feature for 

the interpretation of normal or pathological HFOs. In order to test this hypothesis, the 

current study was expanded with the details described in the Chapter 5. 

In case 3 we executed automated HFO detection in continuous ECoG data recorded 

from an epilepsy patient with brain tumor using a hybrid high-density surface electrode 

array, and investigated whether HFOs were equally detectable using different sized ECoG 

contacts. Our results showed initial evidence that the detection efficacy of HFOs in the 

ripple range may be higher using small contacts, possibly due to the spatial averaging 

effect of the comparatively large surface area of the 2.7-mm contacts. Studies utilizing 

microwires or Utah arrays have demonstrated that HFOs are primarily generated by 

highly localized neuronal clusters in sub-millimeter scale (Bragin et al., 2002; Jefferys et 

al., 2012; Schevon et al., 2009b), which should theoretically be more effectively captured 

by smaller contacts that record from less volume of brain tissues. Since the contacts with 

1-mm diameter had higher spatial specificity, this might provide an advantage in 

capturing focal HFO events which are generated by relatively small pathologic circuits. 

We observed that contact size significantly influenced HFO detection not only on the 

occurrence rate but also on signal characteristics including the amplitude, high-band 

power, and mean frequency, which is different from previous studies mainly suggesting 

similarities. A previous study using depth electrodes containing three sized macro-

contacts (0.02, 0.05 and 0.09 mm2) suggested no significant difference in detection ability 

between contact sizes in a rat epilepsy model (Bragin et al., 2002). Another report 
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showed similar results in epilepsy patients by using electrodes with a surface area ranging 

from 0.2 – 5 mm2  (Châtillon et al., 2011). The difference in our results might attribute to 

the distinct recording modalities (SEEG and ECoG), detection methods (human 

inspection and automatic detection), and subject population. The investigated HFOs in 

this study had a mean frequency of 112 Hz (85 – 198 Hz) and hence were deemed 

ripples. The overall rate, 14 HFOs/min, was comparable to other studies (Châtillon et al., 

2011, 2013). The absence of fast ripples could partly be due to the decreased ability in 

HFO detection using macro-electrodes, especially in the higher frequency range above 

200 Hz (Bundy et al., 2014). Despite the advantages, recordings using micro-electrodes 

require specialized equipment that do not allow for clinical data acquisition, which 

greatly limits its use in clinical practice. By contrast, intracranial recordings using macro-

electrodes allows the direct application of HFO observations in SOZ prediction and 

presurgical planning, thus becoming more relevant to epilepsy diagnosis. For these 

reasons, the investigation of HFOs recorded using classical macro-contacts is of 

substantial importance for the utilization of HFO data in clinical practice. The macro-

contacts used in this study were limited to two sizes. The influence of contact size on 

HFO detection in ECoG needs to be further explored in a larger population by increasing 

the size range. It is also noteworthy that after the removal of the presumed epileptogenic 

regions the patient received limited postsurgical improvement. In this case, over 40% of 

the HFO were generated from the cerebral tissues which were not resected during the 

surgery, we speculate that the existence of HFO generating areas outside of the resection 

region could be a possible cause of the poor seizure control. We therefore believe that 
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HFO spatial information might as well be taken into account for the delineation of the 

resection boundary to achieve a complete seizure-free outcome. 
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CHAPTER 5 DISCRIMINATION OF SEIZURE ONSET ZONES AND 

CRITICAL FUNCTIONAL REGIONS 

5.1 Introduction 

Resective surgical therapy targeting ictogenic cortex, clinically determined as the site 

with earliest detectable electrographic ictal discharges during habitual clinically evident 

seizures as the “seizure onset zone” (SOZ), has the potential to eliminate seizures in 

patients with medically intractable epilepsy. Long term monitoring of intracranial 

electroencephalogram (iEEG) is commonly utilized by epileptologists for the accurate 

localization of SOZ (Brna et al., 2015; Engel et al., 1990; Henry et al., 1999; So et al., 

1989), where subdural grid or depth leads are surgically implanted into the presumed 

seizure focus. Accurate detection of an epileptogenic zone requires iEEG monitoring over 

an extended period of time and detailed visual inspection of collected data by medical 

experts. High frequency oscillations (HFOs, 80 – 500 Hz) recorded in iEEG have been 

proposed as promising neurobiomarkers for epileptogenic tissue. Studies over the last 

decade have shown that HFO transients are significantly correlated with epileptogenesis 

(Allen, Fish and Smith, 1992; Jirsch et al., 2006; Urrestarazu et al., 2006; Zijlmans et al., 

2011), however, more recent reports indicate that HFOs can be generated not only by 

epileptic cerebral tissue but also by non-epileptic sites often including motor cortex, 

visual cortex and language areas (Kucewicz et al., 2014; Matsumoto et al., 2013; 

Nagasawa et al., 2012; Sinai et al., 2005), rising the question whether HFOs should be 

considered specific to epileptogenic tissue. The co-occurrence of pathological HFOs and 

physiological HFOs may interfere with the delineation of ictogenesis and increase the 
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risk of injury to functional area, as the spatial distribution of physiological HFOs can 

correlate with brain regions that are not responsible for seizure generation but 

functionally important and need to be preserved during resection.  

Discrimination between physiological and pathological HFOs is not so 

straightforward. Spectral frequency alone is not a reliable differential feature (Bragin, 

Wilson and Engel, 2007; Köhling and Staley, 2011), as pathological HFOs may contain 

significant spectral power in the ripple-band (80 –  200 Hz), which had been historically 

linked to physiological activities. Further, fast ripples (FR, 200 – 500 Hz) could be 

observed in normal brain structures associated with visual perception which also 

complicates the clinical use of HFOs as valid biomarkers to guide epilepsy surgery 

(Dümpelmann et al., 2012; Jacobs et al., 2008b; Kerber et al., 2014; Wu et al., 2010). 

Currently, it is cumbersome to reliably separate functional and pathological HFOs when 

recorded using macro-electrodes in clinical environments, particularly in the ripple range 

(Zijlmans et al., 2012). To address this issue, several recent studies investigated the 

difference between HFOs discovered inside and outside the SOZ (Kerber et al., 2014; 

Melani et al., 2013); others compared pathological HFOs with oscillations induced by 

motor/visual tasks or cortical stimulation (Matsumoto et al., 2013; Nonoda et al., 2016). 

The investigators generally performed visual marking of HFOs in a pre-defined subset of 

data, then looked into features related to the rate of HFO occurrence, amplitude, duration, 

frequency, and their interaction with slow waves or baseline activities; some also 

attempted to differentiate between epileptic and non-epileptic HFOs using supervised 

classifiers based on the abovementioned features (Alkawadri et al., 2014; Burnos et al., 
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2014; Nagasawa et al., 2012; Von Ellenrieder et al., 2016). Although some of the features 

presented group-wise statistical difference, little is known if the largely overlapped 

features can be employed to improve the process of clinical decision-making.  

In Chapter 4 we reported a case where ripples below 200 Hz were generated by two 

distant cortical regions, one being epileptogenic and the other was involved in motor  

function. Based on initial visual inspection within the identified HFO clusters from this 

case, as well as other prior studies, we observed that HFOs generated from epileptogenic 

regions tended to be similar in wave shape, and repetitively occur throughout the 

recording.  We hypothesized that pathological HFOs occur in a repetitive fashion with a 

similar waveform morphology that specifically indicate seizure onset zones. Here we 

expanded our previous method and by using a pipeline of unsupervised machine learning 

techniques we captured recurrent stereotyped HFO waveforms in large iEEG recordings 

automatically. We  we investigated these “clones” of HFO waveforms in 13 patients with 

focal epilepsy and five control patients with brain tumor but no epilepsy, where subdural 

ECoG grids are implanted for the mapping of the eloquent brain regions. In particular, we 

aimed to clarify whether the recurrence of similar HFO waveforms is exclusively linked 

to seizure focus, such that it can be used to facilitate the discrimination between SOZ and 

other functional regions. We believe our methods and results will provide a new pathway 

towards the separation of pathological and physiological HFOs, and assist in the accurate 

delineation of SOZ as well distinguish them from eloquent areas to assist surgical therapy 

of epilepsy. 
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5.2 Materials and Methods 

5.2.1. Patient Population 

Eighteen subjects were included in the study (12 females), including 13 patients with 

intractable temporal lobe or neocortex epilepsy (P1 – P13), and five control subjects with 

brain tumor but no epilepsy who went through intraoperative functional mapping in an 

awake surgery (C1 – C5). The inclusion criteria for epilepsy cohort consisted of the 

following: patients with intractable temporal lobe or neocortex epilepsy who went 

through iEEG monitoring with video after the implantation of subdural grid or depth 

electrodes in University of Minnesota (UMN, Minneapolis, Minnesota), Capa Hospital of 

Istanbul University (IU, Istanbul, Turkey), and Texas Children’s Hospital (TCH, Houston, 

Texas). This yielded a total of 13 patients, including 10 adults (ages 30 – 53) and three 

pediatric patients (ages 3 – 18). Additional data was collected using the same recording 

system at Istanbul University and MD Anderson Cancer Center (MDA, Houston, Texas) 

from five control subjects with brain tumor but no epilepsy history who underwent 

intraoperative cortical stimulation to identify the functional cortex. These subjects were 

involved for the investigation of non-epileptic HFOs originating from functional regions. 

Data collection and scientific workup have been approved by the Institutional Review 

Board of each institution.  

5.2.2. Electrode Placement and Intracranial EEG Recording 

Electrode implantation was performed after presurgical workup. In the 13 patients 

with epilepsy, a combination of surface and depth electrodes were implanted to the 
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possible irritative sites for the accurate delineation of SOZ. Subdural grid arrays were 

placed over the functional region in 10 subjects to give a sufficient coverage of the 

eloquent cortex (P9 – P13 and C1 – C5). Post-implantation MRI/CT or intraoperative 

photos were taken to determine the electrode locations in all subjects. 

Multichannel iEEG data was obtained with 2 kHz (at UMN) or 2.4 kHz (at IU, TCH 

and MDA) sampling frequency and 24 bit A/D resolution using g.HIamp system (g.tec 

Medical Engineering, Austria) with an anti-aliasing filter set to 600 Hz. For P1 – P13, 

continuous iEEG signal was recorded for 2 – 4 days in the EMU simultaneously with 

video monitoring throughout the period. For C1 – C5, data was recorded intraoperatively 

in awake state for 40 – 50 minutes.  

5.2.3. Delineation of SOZ and Functional Regions  

For the epilepsy cohort, the seizure onset channels with earliest ictal discharges were 

visually determined by neurologists based on the long-term video iEEG monitoring. 

Functional mapping was performed in 10 subjects as a part of clinical routine, including 

five patients with epilepsy where the implanted grid electrodes covered the motor/

language areas, and five control subjects without history of epilepsy. Direct cortical 

stimulation (DCS) was conducted between each pair of contacts row- and colume-wise 

on the grid, shifting from the first to the last contact, with a current amplitude ranging 

from 3 – 15 mA, pulse width of 200 – 300 µs, and duration of 0.2 s, according to the 

patient’s individual tolerance. Contacts with motor responses were defined at which the 

stimulation reproducibly induced sensory changes or body movement.  

!92



5.2.4. Data Selection and HFO Detection 

All data was de-identified and transferred to University of Houston for the offline 

analysis in Matlab environment (Mathworks, MA, USA). For P1 – P13 who underwent 

prolonged recording in the EMU, 60 minutes of iEEG data in the waking baseline (at 

least 4 hours away from seizures) was used per patient to obtain a sufficient number of 

HFO events. For C1 – C5, the entire intraoperative recording was used for the analysis.  

Detection of HFOs and their waveform patterns was performed by using a pipeline of 

unsupervised machine learning techniques which is provided in figure 5-1. HFOs were 

automatically identified in all recorded channels using our previously validated detector 

(Liu et al., 2016) with modifications. In brief, raw iEEG data firstly went through an 

amplitude-based detector after band-pass filtering within 80 – 500 Hz range. Short-time 

Fourier transform (STFT) was then performed on the original signal in each remained 

candidate, followed by a denoising step to eliminate minor background activities on the 

time-frequency map. The denoising level, detection threshold and other parameters were 

consistent with our previous studies (Liu et al., 2015, 2016). For all surviving events, the 

entire iEEG bandwidth was explored, where three time-frequency features were extracted 

and used with Gaussian Mixture Model (GMM) clustering with k-medoids initialization 

(Kaufman and Rousseeuw, 1987)  to isolate HFOs from spikes and other arbitrary events. 

The cluster number was determined based on the elbow method (Ketchen and Shook, 

1996).  
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Figure 5-1. Data analysis workflow. The HFO clusters were first categorized by their spatial origins for a group-wise comparison. Next, the detection of  stereotyped HFOs was blindly performed in the entire HFO pool. 

After generating a pool of HFOs, we categorized them according to their spatial 

origin and group comparison was performed among HFOs inside the SOZ (sHFO), 

outside the SOZ (oHFO), and inside the functional areas (fHFO) across patients. Classic 
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Figure 5-1. Data analysis workflow. The HFO clusters were first categorized by 
their spatial origins for a group-wise comparison. Next, the detection 
of  stereotyped HFOs was blindly performed in the entire HFO pool.
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HFO features including mean frequency and rate of occurrence were also inspected. The 

detection of recurrent HFO subclusters within sHFO, oHFO and fHFO was implemented 

using the procedures described in the section below. 

5.2.5 Detection of Stereotyped HFOs  

Following a visual inspection of HFOs in a few subjects, we observed that HFOs 

originated from epileptic tissues tended to occur repeatedly with similar waveform 

morphology, raising a presumption that pathological HFOs might produce compact 

subclusters in the high-dimensional native space, with each of the subcluster being a 

group of events that shared the same waveform pattern. In comparison, HFO members 

detected in non-SOZ areas were assumed to present irregular wave shapes with relatively 

large intra-cluster distance in native space. To uncover this underlying pattern in an 

objective and unbiased manner, we performed the detection using the density-based 

spatial clustering of applications with noise (DBSCAN) approach (Ester et al., 1996). As 

it is explained in figure 5-2, the original algorithm was designed to identify dense regions 

in a dataset by grouping data points neighboring a “core point” within a certain radius 

Epsilon (ϵ). The radius also represents the distance between two events (measure of 

dissimilarity). The “core point” is defined as a point with its neighbor count exceeding a 

user-specified threshold MinPts. After isolating the HFO events with GMM method, we 

executed DBSCAN algorithm to capture subclusters of stereotyped HFO waveforms. 

Specifically, we implemented the algorithm in different HFO groups (sHFO, oHFO and 

fHFO) with an increasing sequence of ϵ, computed the corresponding number of 

subcluster (NSC), and visualized the estimation result by plotting the curves of clustering 
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ratio (NSC vs. ϵ), which is the change in the number of detected subclusters within each 

HFO group for different distance values. The initial ϵ was assigned to 0, with MinPts of 

1, such that each HFO event in the group was taken as an individual subcluster at the first 

place. Given that closely spaced points would be merged instantly as the cluster radius ϵ 

expanded, we expected to observe an immediate drop in the NSC value in sHFO datasets 

with repetitive waveform patterns (figure 5-1). Thus, the difference in waveform patterns 

among sHFO, oHFO and fHFO groups can be quantified by comparing the area under 

curve (AUC) between groups. The estimation was executed in HFO data after removing 

the low-band component below 4 Hz. The dissimilarity of the signals was computed 

using Euclidean distance metric after aligning the HFO observations by maximizing the 

absolute cross-correlation (± 10 ms lags) between each pair of events. 
Figure 5-2. DBSCAN clustering algorithm. A core point has neighboring points more than a specified number (MinPts) within distance ϵ; a noise point is any point that is not a core point or a border point. 
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5.2.6. Identification of SOZ Using Stereotyped HFOs  

In this stage, we investigated if stereotyped HFO waveform patterns could be 

employed in the discrimination of SOZ and eloquent areas in a blinded fashion. This was 

done by executing DBSCAN in all HFOs recorded from each patient without grouping 

them according to their origins, and quantifying the change in spatial distribution of 

HFOs when the degree of signal dissimilarity increased. 

After employing the GMM clustering in 3D feature space on the entire candidate 

event population and forming the HFO pool, we identified repetitive HFO waveforms in 

P1 – P11, using an increasing value of ϵ from 0.05 to 1 and a fixed MinPts of 3. At each ϵ 

level, the algorithm discovered subclusters of stereotypical HFO waveforms with intra-

cluster distance smaller than the current ϵ. We computed the proportion of clustered 

HFOs inside the SOZ, inspected the spatial distribution of HFOs with and without a 

repetitive waveform pattern, and discussed their correlation with SOZ and functional 

regions. For each patient, the spatial maps of HFOs were projected to a 3D model of the 

brain which was generated after the coregistration of post-implantation CT image and the 

individual’s MRI. Finally, we sought to clarify whether the highly correlated HFOs (i.e., 

clustered by DBSCAN using a small radius) give specific information about 

epileptogenic location, and evaluated the predictive performance when these HFOs were 

used for SOZ localization. More precisely, we determined the number of channels with 

repetitive HFO patterns (CHR) and without a repetitive pattern (CHNoR), and then 

evaluated their relationship with SOZ channels by calculating the sensitivity, specificity 

and accuracy which were defined as: 
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!  ,   (5-1) 

!  , and  (5-2) 

!  .   (5-3) 

5.2.7. Statistical Analysis 

We compared the HFO rates, mean frequency, the minimum clustering radius and 

area under the clustering ratio curve inside and outside the SOZ using a two-tailed non-

parametric Wilcoxon signed rank test with a confidence interval of 95%. A Wilcoxon 

rank sum test was carried out to compare the signal characteristics between fHFO and the 

other two groups across patients. The same test was also applied for the comparison 

between epilepsy and control cohorts.   

5.3 Results 

5.3.1. SOZ Identification and Functional Mapping Results 

Demographic and clinical information for all subjects is provided in table 5-1. In each 

individual subject 28 – 120 channels were implanted. SOZ was visually identified by 

neurologists in 11 patients (P1 – P11) after electrode placement and the following long-

term video EEG monitoring. In each patient, 2 – 14 channels where the earliest clear 

electroencephalographic discharges started were determined by the neurologists and 

marked as the SOZ. As a result, 92 out of 1,309 channels were defined as the SOZ, 

Sensitivity =
CHR in SOZ

CHR in SOZ  +  CHNoR in SOZ

Specificity =
CHNoR not in SOZ

CHNoR not in SOZ  +  CHR not in SOZ

Accuracy =
CHR in SOZ + CHNoR not in SOZ

Number of total Channels
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accounting for 15% of the channels in P1 – P11, and 7% of the total recorded channels. 

After 12 – 24 months of follow-up, as of May 2017 all patients received significant 

seizure reduction with  Engel class I or II outcome (Engel 1987). In P12 and P13 the SOZ 

could not be identified after initial implantation. In these cases the grid electrodes 

covered eloquent areas of the brain, and the data was used for functional HFO analysis 

only. Direct cortical stimulation (DCS) were performed in five patients with epilepsy (P9 

– P13) and all control subjects (C1 – C5) intraoperatively to map the eloquent cortex. The 

total number of channels with functional response was 138, accounting for 11% of the 

recorded channels, with 2 – 34 contacts being identified per subject. 

Table 5-1 Patient demographic data 

ID Age Gender
Seizure 
typea

MRIb
Electrode 
type

Channel 
Number

SOZc
Surgical 
outcomed

P1 30 M FAS RMTS 
Depth, 
strip

28 RAH I

P2 32 F FAS Normal
Depth, 
strip

56
LA, LAH, LPH, 
RA, RAH, RPH

I

P3 37 M FIAS LMTS
Depth, 
grid

54 LA, LAT I

P4 15 F FAS TS Depth 74 AMF, PMF II

P5 18 F FAS LMTS Depth 64
LPH, left uncus, left 
occipital-temporal

I

P6 35 F FIAS

Left 

temporal 
grey matter 
heterotopia 

Grid, strip 64 LST I

P7 32 M FIAS RMTS Grid, strip 48
Right temporal, 

LST, LLT, RAST, 
RPST

I
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a FAS: focal aware seizure, previously known as simple focal seizure; FIAS: focal 

impaired awareness seizure, previously known as complex focal seizure.  

b L/RMTS: left/right mesial temporal sclerosis; TS: tuberous sclerosis; CM: cavernous 

malformation; LGG: low-grade glioma. 

c L/RA: left/right amygdala; L/RAH: left/right anterior hippocampus; L/RPH: left/right 

posterior hippocampus; L/RAT: left/right anterior temporal; L/RPT: left/right posterior 

Table 5-1 Patient demographic data (continue)

P8 53 F FAS Normal Grid, strip 40
LAT, LST, RAT, 

RPT
II*

P9 36 F FAS Normal Grid 66
Left parietal-
temporal

I

P10 3 M FAS CM Grid 64
LA, LAH, LPH, 
RA, RAH, RPH

I

P11 36 F FIAS RMTS Grid, strip 72 AST, PST I

P12 49 F FAS Normal Grid 54 Left cingulate gyrus /

P13 36 F FAS Normal Grid 120 Left temporal /

C1 53 M /
Right 

parietal 
LGG   

Grid 32 / /

C2 30 M /
Left 
posterior 

frontal LGG

Grid 113 / /

C3 40 F /
Left frontal 
LGG

Grid 120 / /

C4 42 F /
Right frontal 
LGG

Grid 120 / /

C5 45 F /
Right 
posterior 
frontal LGG

Grid 120 / /
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temporal; A/PMF: anterior/posterior middle frontal gyrus; L/RST: left/right sub-temporal; 

A/PST: anterior/posterior sub-temporal. 

d Surgical outcome is measured by Engel Classification. Class I: free from disabling 

seizures. Class II: Rare disabling seizures (almost “seizure-free”). 

* P8 has been treated with responsive neural stimulation system. The patient has received 

a significant reduction of seizure frequency since the device implantation. 

5.3.2. Unsupervised HFO detection 

 Across 18 subjects, a total of 28,832 events were captured in the 16.5 hours of 

recording during the amplitude-based detection stage, generating the initial pool of 

candidates. In each patient, the events in candidate pool were categorized into 2 – 4 

clusters in 3D feature space using GMM method, which generally consisted of one-or-

two clusters of HFOs, while other clusters turned out to be mixtures of irregular 

waveforms or artifacts. In the epilepsy group, one additional cluster of spikes was 

identified consistently per patient. This step helped us to successfully isolate HFOs from 

spikes and other events. The scatter plots of two representative patients (P3 and P9) 

showing the distribution of detected events in 3D feature space are given in figure 5-3. 

For each HFO cluster, four random event members and their filtered signal above 80 Hz 

are displayed together with the t-f maps, to give a flavor of the cluster content. For each 

patient, the spatial extent of HFO cluster is presented on the electrode sketch in the last 

column. Higher HFO rate is represented by darker shades. Although majority of the 

HFOs are located in the SOZ in P3, the large portion of HFOs recorded from the 
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functional area in P9 evidences that HFO rate alone will not be sufficient to identify the 

SOZ in certain cases. 

Figure 5-3. Three-dimensional distribution of HFO and spikes identified by GMM clustering in 2 patients. In P9, the HFOs were generated from both SOZ (red line) and functional area (blue line).  

5.3.3. Comparison of HFOs Originating From Different Locations 

In total, 13,011 HFOs were isolated by the unsupervised detection based on GMM 

and were investigated in the subsequent analysis. The number of HFO-generating 

channels in each patient ranged from 9 to 77. In epilepsy patients with clear SOZ 

definition (P1 – P11), HFOs were found in 60% of the channels. In P12, P13 and the 

control subjects (C1 – C5) where the electrode covered the functional cortex only, the 

HFOs were located in 38% of the recorded channels. Based on the SOZ delineation and 

!102

Left frontal

LA

RA
RH

P3

Feature Distribution HFO Examples Spatial Distribution

Right 
temporal-
parietal

: SOZ
: Contacts with functional response

LAT
0

0
0.50

0.5

0.5

11

1

0

0
0.50

0.5

0.5

11

1

a a
a a

Frequency with max P/N

Frequency with max P/N
Sub-band power ratio

Sub-band power ratio

E
nt

ro
py

E
nt

ro
py

P9

HFOs        

HFOs        

Spikes

Spikes

0 100 200 300
-0.4

-0.2

0

0.2

Am
pl

itu
de

 (m
V)

0 100 200 300
Duration (ms)

-0.04

-0.02

0

0.02

0.04

0.05 0.1 0.15 0.2
Time (s)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y 
(H

z)

0 100 200 300
-0.5

0

0.5

1

Am
pl

itu
de

 (m
V)

0 100 200 300
Duration (ms)

-0.05

0

0.05

0.05 0.1 0.15 0.2
Time (s)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y 
(H

z)

0 100 200 300
-0.5

0

0.5

Am
pl

itu
de

 (m
V)

0 100 200 300
Duration (ms)

-0.05

0

0.05

0.05 0.1 0.15 0.2
Time (s)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y 
(H

z)

0 100 200 300
-0.2

0

0.2

Am
pl

itu
de

 (m
V)

0 100 200 300
Duration (ms)

-0.01

0

0.01

0.05 0.1 0.15 0.2
Time (s)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y 
(H

z)

0 100 200 300
-0.2

0

0.2

0.4

Am
pl

itu
de

 (m
V)

0 100 200 300
Duration (ms)

-0.02

0

0.02

0.05 0.1 0.15 0.2
Time (s)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y 
(H

z)

0 100 200 300
-0.4

-0.2

0

0.2

Am
pl

itu
de

 (m
V)

0 100 200 300
Duration (ms)

-0.02

0

0.02

0.05 0.1 0.15 0.2
Time (s)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y 
(H

z)

0 100 200 300
-0.4

-0.2

0

0.2

Am
pl

itu
de

 (m
V)

0 100 200 300
Duration (ms)

-0.02

0

0.02

0.05 0.1 0.15 0.2
Time (s)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y 
(H

z)

a a

0 100 200 300
-0.2

0

0.2

0.4

Am
pl

itu
de

 (m
V)

0 100 200 300
Duration (ms)

-0.05

0

0.05

0.05 0.1 0.15 0.2
Time (s)

0

50

100

150

200

250

300

Fr
eq

ue
nc

y 
(H

z)

4
Duration (ms) Time (s)

Duration (ms) Time (s)

Duration (ms) Time (s)

Duration (ms) Time (s)

Duration (ms) Time (s)

Duration (ms) Time (s)Duration (ms) Time (s)

Duration (ms) Time (s)

0 300

0 3000 300

0 300

0 300

0 300

0 300

0 300

A
m

pl
itu

de
 

(m
V

)
A

m
pl

itu
de

 
(m

V
)

-0.2

0.4

-0.4

0.2

-0.02

0.02

-0.02

0.02

A
m

pl
itu

de
 

(m
V

)
A

m
pl

itu
de

 
(m

V
)

-0.2

0.2

-0.5

0.5

-0.05

0.05

-0.01

0.01

0 300

0 300

0 300

0 300

0 0.3 0 300

0 300

0 300

0 300

A
m

pl
itu

de
 

(m
V

)
A

m
pl

itu
de

 
(m

V
)

-0.4

0.2

-0.5

1

-0.05

0.05

-0.04

0.04

Fr
eq

ue
nc

y 
(H

z)

0

300

Fr
eq

ue
nc

y 
(H

z)

0

300

Fr
eq

ue
nc

y 
(H

z)

0

300

Fr
eq

ue
nc

y 
(H

z)

0

300

Fr
eq

ue
nc

y 
(H

z)

0

300

Fr
eq

ue
nc

y 
(H

z)

0

300

Fr
eq

ue
nc

y 
(H

z)

0

300

Fr
eq

ue
nc

y 
(H

z)

0

300

A
m

pl
itu

de
 

(m
V

)
A

m
pl

itu
de

 
(m

V
)

-0.2

0.4

-0.4

0.2

-0.02

0.02

-0.05

0.05

0 0.3 0 0.3

0 0.3

0 0.3

0 0.30 0.3

0 0.3

Figure 5-3. Three-dimensional  distribution  of  HFO  and  spikes  identified  by 
GMM clustering in 2 patients. In P9, the HFOs were generated from 
both SOZ (red line) and functional area (blue line). 



functional mapping results, the HFO candidates were first grouped according to their 

spatial locations. Overall, 41% HFOs were detected from the seizure onset channels in P1 

– P11 and were named as sHFO. In these same patients, 32% percent of HFOs were 

detected from other brain regions excluding the SOZ and functional regions. These HFOs 

were denoted as oHFO. Finally, 19% of the HFOs were recorded from the functional 

regions such as motor or language cortex in 10 subjects where functional mapping was 

performed, and hence were labeled as fHFO. 

Figure 5-4. Group comparison of sHFO, oHFO and fHFO. The mean frequency for sHFO was higher than oHFO and fHFO events. The rate for sHFO was higher compared to oHFO but not to fHFO events. 

In figure 5-4 we provide the boxplots showing the comparison among sHFO, oHFO 

and fHFO groups in terms of mean frequency and the rate of occurrence. The sHFO 

events possessed higher mean frequency compared to the other two HFO types (sHFO = 

154 Hz, oHFO = 146 Hz, fHFO = 150 Hz, P < 10-3), with substantial overlaps across 

groups. The average rate per channel for sHFO = 1.2/min, which was significantly higher 
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than oHFO (0.2/min, P < 10-3) but comparable to fHFO events (1.0/min, P = 0.4). The 

rate of fHFO was also significantly higher compared to oHFO (P < 0.01). 

5.3.4. Stereotyped HFO Waveform Patterns 

We executed DBSCAN clustering in sHFO, oHFO and fHFO groups in each patient 

to identify subclusters of repetitive HFOs with similar morphometric waveform patterns, 

without prior knowledge on the shape of the raw signal. Highly stereotyped HFO 

waveforms in varying shapes were observed from single or multiple sources in individual 

patients. In figure 5-5 we present examples of repetitive HFO waveform subclusters and 

HFOs without a repetitive pattern in 5 patients. For each type of HFO, four individual 

samples and the pile plot of events in the same subcluster are shown along with the 

averaged t-f map. The origin of the presented HFOs are marked on the electrode contacts 

in red color if it’s inside the SOZ, yellow if it’s outside the SOZ, or blue if it’s located 

inside the functional area. In P1, repetitive HFOs in different forms were generated by 

epileptic hippocampal structure. In P2, repetitive HFOs were generated by posterior 

hippocampus and amygdala, both of which appeared to be epileptogenic. In P3, highly 

similar ripples were found in the temporal lobe. These repetitive HFOs recorded from a 

subset of SOZ channels commonly associated with stereotyped waveform patterns in the 

form of slow waves, spikes or sharp waves resigning in the low band. In P9 and P10, 

while recurrent HFO patterns were seen in the SOZ (temporo-parietal and frontal region), 

the irregular HFOs were mostly seen in the functional motor cortex appearing more 

frequently with oscillating background activities and not correlated with the SOZ.  
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Figure 5-5. Examples of HFO subclusters and their spatial locations in five patients. For each pattern, 4 sample events and the pile plot of the events in the same subcluster are shown with the averaged t-f map. 
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Figure 5-5. Examples of HFO subclusters and their spatial locations in five 
patients. For each pattern, 4 sample events and the pile plot of the 
events in the same subcluster are shown with the averaged t-f map.



In order to give more insight into these stereotypical waveform structures, we 

visualized the distance matrix of HFOs by plotting a circular network for each HFO 

group. In figure 5-6 (A), we first provide the results obtained from 13 HFO samples 

which were manually selected based on their waveform morphology. In the network, each 

node represents a HFO observation, which is connected to other samples by edges in 

different shades indicating the strength of the relevant connection. In our case, a strong 

connection provides smaller Euclidean distance demonstrating higher similarity between 

two HFO candidates. HFOs with very similar waveforms provide linkage in darker 

shades. The connectivity of subsets of events in one representative patient (P9) is shown 

in figure 5-6 (B), where HFOs were detected inside the SOZ, out of the SOZ, and from 

the functional sites of this patient, respectively. The result suggested a much stronger 

correlation between events in the sHFO group compared to oHFO and fHFO groups. The 

“gap” in the network graph indicates that at least two distinct patterns exist among the 

presented sHFO candidates, each of which shared compact intra-subgroup connectivity 

but barely correlated with the other pattern. Quite weak connectivity was observed in the 

fHFO network compared to the other two groups. These results suggested that with 

different distance thresholds SOZ could be distinguished from functional and other 

regions by investigating the HFO waveform similarity between the captured events. 

Figure 5-7 (A) displays the curve of clustering ratio (NSC vs.  ϵ) for 3 representative 

patients.  The number of subclusters (NSC) is normalized to the total number of events in 

each HFO group. For a distance ϵ = 0, where the constraint is to have identical 

waveforms, the number of subclusters is equal to the number of events. As the ϵ or the 
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radius of possible subclusters increased, the NSC values started to decrease for all groups 

but dramatically faster for sHFO events, where we consistently observed subclusters of 

recurrent HFO waveforms for moderate distance values (ϵ < 0.5).  
Figure 5-6. (A) Circular network visualizing the distance matrix in 13 HFO samples. (B) Network plots in 3 groups, each being composed of 30 HFOs inside the SOZ, outside SOZ, and inside the motor area in P9. 
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The averaged plots in figure 5-7 (B) were computed from sHFO and oHFO groups in 

11 patients, and fHFOs in 10 subjects with functional mapping. We noted that, in all cases 

the NSC values for sHFO exhibited a sharper decline as soon as the cluster radius reached 

a relatively small value (≈ 0.1). For oHFO and fHFO groups, by contrast, the initial ϵ 

where individual observations started to merge were significantly larger, as with the area 

under curve (AUC) (P < 0.01), as shown in figure 5-7 (C). The difference was more 

evident between sHFO and fHFO groups (P < 10-3). The initial “plateau” in the curves of 

fHFO group implied a relatively large and uniform spacing of the members, which then 

gradually fell to the bottom. The comparison of initial clustering radius ϵ between oHFO 

and fHFO also showed significant difference (P < 0.05), suggesting that fHFO events 

may exhibit greater variability in signal shapes. These results indicate that epileptogenic 

brain regions tend to produce stereotypical HFOs with quite repetitive waveform 

morphology whereas the HFOs occurring in functional areas are relatively irregular in 

their wave shapes.  

5.3.5. Comparison of HFOs in Epilepsy Patients and the Control Group 

We sought to determine whether the functional HFOs recorded from controls also 

followed the same irregular waveform characteristic with those recorded from patients 

with epilepsy. A total of 3,207 HFOs were recorded from the five control subjects and 

73% of these HFOs were detected from the contact locations identified by DCS, whereas 

the remaining 27% of events were located at the surrounding cortical regions. The fHFOs 

recorded in control subjects were compared with the sHFOs in 11 epilepsy patients, as 

well as the other fHFOs recorded from the motor and language cortex of the five epilepsy  
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Figure 5-7. (A) Clustering ratio curves for three representative patients. (B) The average clustering ratio plots. (C) The curves in fHFOs of epilepsy patients and controls. (D) Group differences in the AUC and minimum ϵ to generate sub-clusters. 

patients. Figure 5-7 (C) demonstrates the clustering ratio curves of fHFO in epilepsy and 

control cohorts. The AUC and minimum clustering rate for fHFO in control cohort were 

comparable to that of the epilepsy cohort, both of which were significantly larger than 
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sHFOs (P < 10-3). Similar to the fHFO events of epilepsy patients, the fHFOs of control 

subjects did not build subclusters at low distances suggesting that their waveforms were 

random and non-repeating. These results indicated that fHFOs generated by the motor 

cortex in controls possessed similar characteristics with fHFOs of epilepsy cohort and 

could be differentiated from sHFOs by using the clustering ratio analysis. 

5.3.6. Spatial Correlation of HFO Waveform Patterns with SOZ and Eloquent 

Cortex 

In order to explore whether the HFOs with repetitive patterns could distinguish the 

SOZ from functional regions, we identified stereotyped HFO waveforms within the entire 

HFO pool in those cases where the electrodes also covered the eloquent cortex. Based on 

the clustering rates given in figure 5-7 (B), at a radius of 0.5 we noted around 70% of 

sHFOs had been merged with other similar events forming subclusters, whereas 92% – 

95% of fHFOs remained un-clustered. Consequently, we set the radius ϵ to 0.5 and 

visually inspected the spatial distribution of clustered events and those ones which had 

not been assigned to any subcluster using ϵ = 0.5.  

Figure 5-8 provides representative data showing HFO distribution in those cases 

where the grid electrode covered SOZ and functional areas (P9 and P10) or functional 

areas only (P12 and C1). In the two patients where both SOZ and eloquent cortex were 

included, while the channels dominated by repetitive HFOs were found restricted to SOZ, 

the random shaped HFOs showed distinct spatial distribution suggesting a considerable 

portion of HFO activities located in the motor and language function areas, as well as the  
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Figure 5-8. Spatial projection of repetitive and non-repetitive HFOs in four patients. Using a ϵ ≤ 0.5, the remaining un-clustered HFOs are spatially localized at functional cortex or brain regions distinct from the SOZ. 
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surrounding eloquent regions. In P12 and C1, the spatial maps of un-clustered HFOs also 

pointed the functional motor areas identified by DCS.  

Overall, the results indicated that at a radius of 0.5, the percentage of un-clustered 

HFOs originated from outside the SOZ was significantly higher than that of the clustered 

HFOs (56% vs. 32%, P < 0.01). In P12, P13, and C1 – C5, where repetitive HFOs were 

rarely observed (less than 3%, ϵ = 0.5), the non-repetitive HFOs were concentrated 

around the motor cortex with majority of them falling into the functional regions defined 

by DCS mapping.  

5.3.7. Localizing the SOZ Using Stereotyped HFO Waveforms. 

We observed an association between the degree of HFO signal similarity and 

ictogenecity, as events clustered by a smaller ϵ generally pinpointed those channels with 

higher seizure frequency. Figure 5-9 illustrates an example of HFO subcluster 

automatically identified by using different radius (0.15, 0.3 and 0.5) in P9. The SOZ is 

represented by red dashed lines, while contacts locations generating most of the seizures 

are marked with red solid lines. Interestingly, the spatial distribution of highly repetitive 

HFOs clustered by a smaller radius also reflected the epileptic brain structures generating 

most of the seizures. 

To investigate to what extend the identification of repetitive HFOs can contribute to 

the accurate delineation of the SOZ, we detected the stereotypical HFOs for each patient 

(with SOZ definition) at varying cluster radius (similarity levels). By using the channels 

involving stereotyped waveforms, the sensitivity, specificity and accuracy were computed 
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at each radius for SOZ identification. In figure 5-10 we give the results of specificity, 

accuracy, and the proportion of repetitive HFOs occurring inside the SOZ at each ϵ in P1 

– P11.  Consistently in all patients, the spatial distribution of stereotyped HFOs presented  
Figure 5-9. Spatial association of “cloned” HFO waveforms and the SOZ. As the intra-cluster similarity decreases, the clustered HFO provides a larger spatial expansion that extends beyond the SOZ.  

agreement with clinician defined SOZ. A specificity of 100% and an accuracy of 86% 

was achieved when the “most compact” HFO subclusters were used for the SOZ 

prediction. In other words, all of the HFOs firstly being clustered were generated by the 

seizure onset regions. The averaged sensitivity was low in this case (24%, ranging from 

11% to 100%), as expected, because the initially identified HFO patterns consisted of 

small number of events spatially concentrated to 1% – 5% of the total channels, making 

up 0.1% – 1% of the entire HFO pool (3 – 7 events per subcluster). Nevertheless, the 

origin of HFO subclusters with smallest diameter precisely pointed the locations 

responsible for the initiation of most seizures. As the cluster radius increased to 0.5, the 

proportion of HFO inside the SOZ decreased by 10% – 87% per patient, leading to an 
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Figure 5-9. Spatial association of “cloned” HFO waveforms and the SOZ. As the 
intra-cluster similarity decreases, the clustered HFO provides a larger 
spatial expansion that extends beyond the SOZ.



overall specificity of 63% (20% – 87%), a sensitivity of 85% (38% – 100 %) and an 

accuracy of 65% (25% – 80%). Further increase in the radius caused significant drop in 

the accuracy, especially in P6 where the HFOs were predominantly originated from left 

inferior frontal region independent from the SOZ (left mesial temporal lobe), and in P9 – 

P11 where the electrodes covered both SOZ and functional regions. Using ϵ = 1, as the 

entire HFO pool was taken into consideration for SOZ localization, the specificity and 

accuracy reduced to 44% and 52%, respectively. These results suggested that the radius to 

detect stereotyped HFO waveforms had to be adapted to each case for the accurate 

prediction of the SOZ. 
Figure 5-10. SOZ identification performance using HFOs clustered by using radius (ϵ) ranging from 0.05 to 1. As the radius increases to 1, the overall specificity and accuracy decrease considerably. 
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5.3.8. Stereotyped Ripple and Fast Ripple Oscillations 

Finally, we explored the spectral content of HFOs clustered by DBSCAN in all 

subjects, in order to characterize the rate of repetitive HFOs in ripple and FR ranges. Fig. 

8 summarizes the proportion of stereotyped ripples versus FRs clustered by using radius 

ranging from 0.1 to 0.4.  Further increase in the radius resulted in the mixing of ripple 

and FR events and hence was not investigated. At each ϵ, the clustered HFO events were 

visually inspected by an expert and then were assigned to ripple or FR category based on 

the t-f maps showing their spectral peaks in the high-band. Using ϵ ≤ 0.4, the algorithm 

identified 683 stereotyped FRs in four patients. The initial subclusters identified by the 

algorithm were comprised mostly of HFOs above 200 Hz, suggesting that FRs 

represented the most stereotypical HFO patterns in these patients. As the cluster radius 

gradually increased, the number of clustered ripples started to grow and eventually 

dominated the repetitive HFO category. These results indicated that compared to ripples, 

the  presence  of  repetition  in FRs were more evident in these patients, as majority of the  
Figure 5-11. Proportion of stereotyped FR versus ripple clustered by different radius. FRs were recorded in four patients, and consistently presented a higher degree of signal similarity compared to ripples.  
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Figure 5-11. Proportion of stereotyped FR versus ripple clustered by different 
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a higher degree of signal similarity compared to ripples.  
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FRs formed sub-groups with small radius that were identified by the algorithm at the first 

place. 

5.4 Discussion 

As many of the previous studies have shown, the brain regions with high rate of HFO 

activity often correlate with epileptogenesis (Bragin et al., 1999; Jacobs et al., 2008a; 

Worrell et al., 2008a), and a complete resection of HFO-generative sites is likely to 

provide favorable surgical outcomes (Cho et al., 2014; Jacobs et al., 2010; Wu et al., 

2010). Nevertheless, not all kinds of HFOs were specifically linked to epileptogenicity, 

since they can be recorded from normal (Buzsáki and Silva, 2012) or functional areas 

(Bragin et al., 2007; Girardeau and Zugaro, 2011; Köhling and Staley, 2011; Staba et al., 

2002). The fact that channels with the highest HFO rate may correspond to non-epileptic 

functional areas increases the complexity of HFO application in epilepsy presurgical 

planning. Because injury to the eloquent regions may cause irreversible neurologic 

impairment to the patient, it is paramount to develop methods that could efficiently and 

reliably identify pathological HFOs specific to the epileptogenic zones.  

In the present study, we investigated HFOs automatically detected from 13 patients 

with focal epilepsy and five control subjects without epilepsy. HFOs were simultaneously 

detected from inside and outside the SOZ as well as the functional regions. HFOs were 

firstly categorized into three groups based on their spatial origins. Events in sHFO group 

were generated from epileptogenic zone identified by neurologists through intracranial 

video EEG monitoring.  The other two groups, namely oHFO and fHFO, were extracted 

from regions outside the SOZ and from functional sites as defined by direct cortical 
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stimulation respectively. We explored the characteristics of these three groups of HFOs in 

terms of their traditional features such as frequency and rate of occurrence. The results 

were concordant with previous studies pointing out that sHFOs had higher frequency than 

those detected from outside the SOZ (Matsumoto et al., 2013). However, the fact that 

there are substantial overlaps observed across these groups supported the view that 

spectral frequency is not a prominent feature to determine the pathological nature of 

HFOs (Engel et al., 2009), or to assist in the discrimination between SOZ and eloquent 

cortex. Previous modeling works suggested that both epileptic and physiologic processes 

can produce HFOs with identical peak frequencies (Stacey, Krieger and Litt, 2011). 

Mixed events recorded using micro- and macro-electrodes also suggested that epileptic 

HFOs might overlap with physiological HFOs in both ripple and FR bands (Blanco et al., 

2011; Le Van Quyen et al., 2010; Worrell et al., 2008a, 2004b). Therefore, restricting the 

peak frequency of HFOs alone is not sufficient to assure that they are specific to SOZ. On 

the other hand, in our data the HFO rate presented significant difference between sHFO 

and oHFO groups, which was consistent with previous studies demonstrating a strong 

correlation between HFO rate and the SOZ (Allen et al., 1992; Jirsch et al., 2006; 

Urrestarazu et al., 2006; Zijlmans et al., 2011). Nonetheless, the difference in event rate 

between sHFO and fHFO groups showed no statistical significance, demonstrating that 

the rate alone may not be an accurate indicator to distinguish between SOZ and eloquent 

regions. It has been addressed, that the use of HFOs in brain structures such as mesial 

temporal lobe is limited by the inability to separate pathological HFOs from 

physiological activities generated over the same areas. Thus, an area with high HFO rate 
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may not only represent an active epileptogenic region but also indicate active memory 

processing, which makes the current use of interictal HFOs for clinical decision 

premature (Jacobs et al., 2012). Consequently, any process to utilize HFOs for clinical 

decision making must account for this fact that there will always be a channel with the 

highest HFO rate, even if the recording site does not include the SOZ. Besides the 

spectral peak and rate of the event, other properties such as signal amplitude and duration 

have also been investigated in studies, but the significantly overlapped distribution 

highlighted the fact that the use of conventional features was not adequate to separate 

pathological and physiological HFOs.  

Recently, several studies suggested to distinguish pathological HFOs from different 

perspectives by looking into the interaction between high-band and low-band components 

of the signal. The investigators showed evidence that pathological HFOs commonly 

occurred before the peak of “down” stage of slow waves (Von Ellenrieder et al., 2016), or 

modulated by slow activities within 3 – 4 Hz (Nonoda et al., 2016). Yet these studies are 

limited by the restriction of the patients’ states (NREM sleep) as well as the HFO 

identification process (visual review). In the current study we detected “clones” of HFO 

events by applying a density-based aggregated clustering method without presumption of 

any specific waveform pattern, and presented evidences that sHFO group included small 

subclusters of stereotypical waveforms whereas the fHFO waveforms were more 

irregular. The stereotyped patterns in sHFO were identified in all patients with SOZ 

regardless of the disease phenotype or implantation modalities. These results suggested 

that HFOs generated by epileptic tissues may present in a variety of morphological 
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patterns such as on top of slow/sharp waves or spikes but tended to be re-occur constantly 

throughout the recording. The oligomorphic waveform distribution of epileptic HFOs 

makes them distinguishable from non-epileptic HFOs, as the values of minimum radius 

necessary for detecting repetitive event subclusters and the areas under the clustering 

ratio curve in sHFO and fHFO groups showed very limited overlap. Examining the 

waveform patterns in the time domain enabled the separation of time-series data with 

morphological distinctions, which might otherwise overlap in the frequency or time-

frequency domains. Our results did not rule out the possibility that a random HFO pattern 

may still associate with epileptic network, however it is conceivable that HFOs 

associated with a stereotypical pattern is more likely to be introduced by pathological 

circuits. Our observations also offered practical implications into the clinical utilization 

of HFOs to guide the epilepsy surgery. The unsupervised identification of repetitive HFO 

waveforms can be applied as a universal method without the aid of prior knowledge of 

any specific wave shape, which makes the approach more robust to interpatient variation. 

These findings, when combined with appropriate methodologies, can provide an excellent 

tool for one to efficiently locate the “core” HFOs that are highly indicative of the SOZ 

and separate them from eloquent cortexes and other non-SOZ regions.  

On the other hand, the most heterogeneous HFO patterns were seen in fHFO groups 

where the events were detected from functional structures distinct and distant from the 

SOZ (P9 – P13), as well as in the control subjects without seizure history (C1 – C5). The 

inclusion of the control group provides important data regarding the spatial distribution of 

HFOs in patients without epilepsy. We note that, the clustering rate for fHFOs in control 
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cohort was very similar to the epilepsy cohort indicating that the nature of physiological 

HFOs are similar in these groups and repetitive waveforms barely originate from 

functional areas detected in these subjects.  

By blindly detecting stereotypical waveforms among all HFO candidates, we 

demonstrated that HFOs with repetitive waveform patterns were specifically associated 

with epileptogenicity. When used for SOZ localization, the highly stereotyped HFO 

waveforms provided direct information of ictogenesis with a specificity of 100%. More 

importantly, we showed that the spatial origin of the most compact stereotypical HFO 

subclusters consistently linked to SOZ also in difficult cases where multiple HFO 

generating sites were covered by electrodes, and where the HFO rate estimated from the 

entire pool was not a good discriminator for SOZ and other areas of the cortex.  For 

instance, we noted that in those cases (P9 – P11) where the electrodes covered both SOZ 

and functional regions, the detection of stereotyped HFO events with highest degree of 

similarity made more significant difference in the accuracy of SOZ identification 

compared to those cases (P1 – P5) where the electrodes were sitting in deep brain 

structures and the surrounding areas.  

Our data showed that the rate and compactness of repetitive HFO waveforms is also 

related to the spectral content of the event. In particular, our method detected FRs in four 

patients, where we consistently observed a higher degree of waveform similarity 

compared to ripples, supporting the view that FRs might be better indicators for 

epileptogenesis (Bikson, Fox and Jefferys, 2003; Jacobs et al., 2010; Köhling and Staley, 

2011). Early observations raised the hypothesis that FRs were distinctly pathological 
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transients associated with epileptic brain (Bragin et al., 1999). From a cellular 

perspective, each pathological HFO event appears to represent co-firing of small groups 

of principal cells, which are pathologically interconnected (Bragin et al., 2007; Foffani et 

al., 2007). Previous studies showed evidence that ripples were associated with rhythmic 

firing of presumed interneurons whereas FRs were believed to reflect abnormal 

synchronous burst firing of small independent neuronal clusters of principal neurons in 

areas of seizure onset. It has been demonstrated that FRs are generated by the bursting 

activity of hyperexcitable principal cells whereas larger networks contribute the 

generation of ripples other than FRs. We speculate that the higher rate of stereotypical 

waveforms with more compact structure in FRs could be due to involvement of small 

clusters of neurons and related bursting patterns. The larger networks involved in ripple 

generation might increase the randomness in waveform structure.  Compared to FRs, 

ripples are less preferred as clinical biomarkers because they are commonly generated 

from a larger area including both seizure foci and non-epileptic functional brain sites 

(Engel et al., 2009; Grenier, Timofeev and Steriade, 2003). It is likely that these 

physiological ripples will interfere with the HFO interpretation, and most of the proposed 

clinical studies, particularly the ones with automatic HFO detectors applied, investigated 

a mixture of both physiological and pathological activities (Kerber et al., 2014). It is 

noteworthy that in our results the highly repetitive waveforms did not exist solely in FR 

but also in ripple oscillations. We therefore speculate the repetition in HFO is associated 

with enhanced pathological synchronization in neuronal populations, thus may reflect the 

underlying neuronal substrates of epileptogenesis. This finding may introduce new 
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avenues to describe pathological and physiological HFOs other than the current spectral-

based characterization. 

Our analysis of the multichannel iEEG data was executed using all recorded channels 

in a fully-automatic fashion, which differs from most of the previous studies where the 

investigators commonly use retrospective visual review to select HFOs from limited 

datasets (Worrell and Gotman, 2011). While recognizing that there is no clear 

demarcation between “pathological” and “physiological”, so as the “ripple” and “fast 

ripple” HFOs, we sought to uncover the distinction between presumed HFO subclasses 

by utilizing unsupervised clustering technique to “let the data speak”. It is expected that 

the characterization of “cloned” signal patterns can give additional clues toward the 

detection and discrimination of multiple types of signature neuronal activities in human 

iEEG without manual labeling process which might potentially put bias towards the 

examination. The method may benefit from the use of an extended length of recording, 

and need to be validated with larger patient cohort.  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CHAPTER 6 TEMPORAL CHARACTERIZATION OF HFO AND 

EARLY PREDICTION OF THE SEIZURE ONSET ZONE IN 

TEMPORAL LOBE EPILEPSY 

6.1 Introduction 

Surgical resection of epileptogenic zone, defined as the cerebral tissues responsible 

for the generation of ictal activity, has the potential to eliminate seizures and produce 

seizure freedom in patients with drug-resistant epilepsy. The successful localization of 

seizure onset zone (SOZ) can be achieved by intensive visual inspection of intracranial 

EEG (iEEG) recordings obtained during video-iEEG monitoring of an prolonged period 

of time to ensure that numbers of habitual clinical seizures have been recorded. The time  

of hospitalization in the epilepsy monitoring unit (EMU) is often undefined, which adds 

to the risk of complications, increases the cost and places a high demand on the clinical 

service (Nagarajan et al., 2015). It is an essential need to conduct research involving 

translational biomarkers for the fast and accurate identification of seizure generating zone 

to reduce the associated medical risks and expenses. 

The increasing number of high frequency oscillation (HFO) studies using macro-

electrode recordings allow the correlation of clinical EEG events with HFOs recorded 

from the same locations, and potentially facilitates the SOZ delineation based on HFO 

findings. However, the visual identification of HFO has been impeded by the transient 

appearance and narrow-band nature of the signal. For this reason, majority of the past 

research primarily investigated HFO activities using iEEG data of relatively short length 
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(1 – 10 minutes per patient) to reduce the highly intensive labor work (Andrew et al., 

2007; Jacobs et al., 2008a; Schevon et al., 2009b; Staba et al., 2002, 2004; Urrestarazu et 

al., 2006; Zelmann et al., 2012). Data collected during non-rapid eye movement (NREM) 

sleep is preferentially used, as prior studies analyzing HFOs detected in 10-minute data 

segments pointed out the HFO rates during sleep appeared to be higher compared to 

waking states (Staba et al., 2004). These studies successfully demonstrated the advantage 

of using HFOs as a spatial markers that are specific to SOZ, but methodological 

challenge in large scale data processing has limited the progress in the temporal 

characterization of these standalone signature events.  

Early seminal research using data in vitro suggested a significant increase in both 

ripple and FR rates before seizures (Khosravani et al., 2005). Similarly, several studies 

investigating HFO temporal changes in human subjects also observed increased high-

band power 8 – 10 seconds before the seizure onset (Khosravani et al., 2009), supporting 

the hypothesis that HFOs are highly associated with ictogenesis. On the other hand, later 

studies investigating HFO temporal distribution using data of 15-30 min showed highly 

variable changes in all patients where no clear systematic trends could be demonstrated 

(Blanco et al., 2011; Dümpelmann et al., 2015; Pearce et al., 2013). There have been very 

few studies evaluating the temporal stability of HFO using prolonged data segments of 

multiple hours. Elucidation of the long-term dynamics of HFOs is still one of the biggest 

challenge that need to be resolved (Jiruska et al., 2017). 

In the current study we investigated the spatiotemporal properties of HFO by 

conducting automatic HFO detection using long-term continuous iEEG data collected in 
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6 patients with mesial temporal lobe epilepsy, with particular intentions to clarify whether 

HFOs can be used prospectively as a screening technique to predict seizure and thus 

shortening the undefined invasive monitoring period. Based on prior studies of individual 

cases and preliminary observation of the data, we developed our hypotheses that i) HFO 

rates present variability across time and exhibit changes during the transition of baseline 

to pre- and postictal status, ii) using iEEG data of longer intervals gain advantages over 

10-minute segments in terms of HFO detection, and iii) HFOs detected in hours of data 

collected at the beginning of EMU monitoring provide critical information and can be 

used for SOZ early prediction. 

6.2 Materials and Methods 

6.2.1. Data Description 

Multi-channel iEEG data was collected from 6 patients (P1 – P6, 4 females, ages 28 – 

34) with temporal lobe epilepsy refractory to anti-epilepsy drugs from University of 

Minnesota (MN, USA). All patients underwent intracranial EEG monitoring 

simultaneously with video monitoring in the context of presurgical workup. In each 

patient, 4 – 8 depth electrodes consisting of 4 – 10 stainless steel contacts with 5 mm 

spacing (Ad-Tech, Racine, WI, USA) were implanted bilaterally to the medial temporal 

structures where the neurologist speculated to be ictogenetic, with 28 – 72 channels being 

recorded per patient. The sleep stage was visually annotated by neurologists based on the 

combined information of EEG and video recording. Data acquisition was conducted by 

University of Minnesota using XLTEK EMU128FS (Natus Medical Inc, CA) with 2 kHz 
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sampling frequency and an anti-aliasing filter set to 1 kHz. Data collection and scientific 

workup was approved by the University of Minnesota Institution Review Board. The 

description of demographical information, seizure types and SOZ are given in table 6-1. 

Table 6-1. Patient demographic data 

*P2 has been implanted with responsive neural stimulation system because of bilateral 

temporal onset seizures. Post-surgery outcome based on clinical report and follow up of 

the patient. a, b, c See table 3-1. 

6.2.2 Delineation of the Seizure Onset Zone 

All patients involved in this study went through 6 – 9 days of intracranial EEG 

monitoring. For each individual patient, 3 – 11 clinical and subclinical seizures were 

recorded during the EMU monitoring period. In all patients, the first seizure generally 

ID Sex Age
Seizure 
typesa SOZb MRI

No. of 
Sz

Day of 
monitoring

Day of 
1st Sz

Surgery 
Outcomec

P1 M 30 FAS RHA
Right mesial 
temporal 
sclerosis 

6 6 Day 4 Engel class I

P2 F 32 FAS
LA, LAH, 
LPH, RA, 
RAH, RPH

Foci of 
cortical 
thinning in 
the LFO and 
LT

6 5 Day 3
Significant 
reduction of 
seizure 
frequency*

P3 F 28 FAS LA, LAH, 
LPH

Left  mesial 
temporal 
sclerosis 

4 7 Day 5 Engel class I

P4 F 28 FIAS
LAT, LMT, 
RMT Normal 11 9 Day 4 Engel class I

P5 M 33 GTC RMT, RAT Normal 3 7 Day 6 Engel class I

P6 F 34 FIAS
RAH, 
RPH, RPT Normal 7 8 Day 6 Engel class I
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occurred after 3 – 6 days of monitoring. Data were retrospectively analyzed after the 

detailed review and determination of the SOZ performed independently by two 

neurologists. The ictal iEEG onset of a seizure was defined as the time of the earliest 

iEEG signal change (a clear electrographic seizure discharge) as annotated by the 

clinicians, and the corresponding electrode contacts were thereby determined as the SOZ. 

6.2.3 HFO Detection 

The HFO detection was implemented using an unsupervised clustering based 

approach depicted in Chapter 3. To concisely summarize, after converting the raw iEEG 

signal to bipolar montage by subtracting the data from adjacent contacts, in the first stage 

all anomalies were detected and extracted through an amplitude-based initial detector and 

sieved according to a set of HFO selective criteria which were established upon the 

broadly accepted definition of an HFO, namely, an oscillatory neuronal activity 

possessing a minimum of 4 oscillatory cycles that are clearly distinct from background 

activities, with a duration of approximately 20 – 100 ms. In the next stage, all accepted 

event candidates went through the feature extraction step and were passed to the final 

clustering step in order to separate HFOs of interest, recognized as an isolated energy 

“blob” concentrated in the high-band beyond 80 Hz in the time-frequency 

representations, from other activities such as inter-ictal spikes and arbitrary waveforms or 

artifacts. The method is capable of simultaneously grouping spikes, ripples and fast 

ripples in an automated fashion. The algorithm has been validated for the accurate and 

efficient quantitative detection of HFOs (Liu et al. 2016).  All data analysis procedures 

are implemented in Matlab environment (Mathwork, MA) using a self-developed 
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software package dedicated for data exploration, event navigation and the three-stage 

detection. 
Figure 6-1.  Schematic diagram of the HFO detection algorithm. 

6.2.4. Temporal Characterization of HFO 

In each patient, two successive hours of iEEG data segment recorded at the 

immediate beginning of the intracranial monitoring were extracted as “initial 

baseline” (IB). In addition, we used two hours of data recorded during NREM sleep on 

the first day of monitoring, as well as 60 minutes before and after each seizure, defining 

them as sleep baseline (SB), preictal, and postictal states, separately. Data of extended 

length (2 hours) was used as baselines for the purpose of examining the HFO temporal 

progression in a longer period of time after the surgical implantation of intracranial 

electrodes and during sleep. Data of a shorter interval (1 hour) was chosen for pre- and 

postictal analysis to avoid any overlap in time between two seizures. 

After executing the unsupervised detection algorithm, temporal variation of the 

events was computed from the clustering results in terms of detections per bipolar 
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Figure 6-1.  Schematic diagram of the HFO detection algorithm.



channel-pair and the corresponding time stamp for each detected event. Considering that 

most of the past studies have recommended the use of 10-min data epochs for HFO 

analysis, for each 2-hour baseline segment we computed the total numbers of FR, ripple 

and spike recorded from all regions, as well as the number of events detected in the SOZ 

channels only, using 10-minute window bins. Same estimation was conducted for pre- 

and postictal states of each seizure in all patients, to study the temporal changes in the 

presence of HFO and spike activities after electrode implantation, during sleep, and 

during the interictal-to-ictal transition. 

6.2.5. Early Prediction of the SOZ 

Given the observed variability in the temporal distribution of HFOs, we speculate that 

the localization of SOZ may benefit from HFO analysis using a prolonged iEEG data 

epoch rather than a randomly selected 10-minute data chunk, either during awake or sleep 

states. We therefore computed the SOZ localization accuracy using FR, ripple and spikes 

captured during the 120 minutes of IB (i.e. the first two hours of EMU monitoring) for 

each patient. In order to answer if there is noticeable improvement in the performance of 

SOZ localization compared to the use of data in discrete windows, the localization 

accuracy was computed in a cumulative fashion based on the spatial distribution of 

detected events aggregated every 10 minutes.  

Specifically, in each individual patient, information regarding the contact locations 

where seizures were believed to originate were provided by epileptologists, and were 

defined as seizure onset channels. For all types of events (i.e., FR, ripple, and spike), we 

used bipolar channel pairs introducing majority of the events as HFO/spike generative 
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channels (positives), and cumulatively computed the overlapping rate of the predicted 

channels with the SOZ channels using 10-minute discrete windows. We hypothesized that 

studying the iEEG data recorded during the beginning 1 – 2 hours of EMU monitoring 

should be sufficient for the investigation of HFO (especially for FR) and thereby provide 

substantial evidence for the localization of SOZ. 

6.2.6. Statistical Analysis 

To evaluate the performance of the SOZ prediction using FRs, ripples and spikes, we 

computed the accuracy (ACC) and Matthew correlation coefficient (MCC) (Matthews 

1975)  over each inspected epoch. Channels generating less than 5% of the total number 

of accumulated events were disregarded. The prediction was considered true positive if it 

was in agreement with the seizure onset location, or false positive if it lied outside of the 

SOZ. The ACC and MCC are defined as:  

                                  !  and                (6-1) 

!  .    (6-2) 

In this equation, TP stands for true positive, TN for true negative, FP for false 

positive, and FN for false negative. Both ACC and MCC take benefit of all the 

information in the contingency table (confusion matrix) and as such are more 

representative and comprehensive in terms of performance evaluation. In particular, the 

MCC value ranges from -1 to 1, with the minimum value of -1 representing a negative 

correlation, 0 a random prediction and 1 a perfect correlation. The MCC was computed in 

ACC =
TP + TN

P + N

MCC =
TP × TN − FP × FN

(TP + FP) × (TP + FN) × (FP + TN) × (TN + FN)
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addition to the ACC because it is generally regarded as a good measure when the two 

classes (i.e., SOZ and non-SOZ channels) are largely imbalanced (Powers 2011). .  

The non-parametric Mann–Whitney U-test was taken for the group comparison 

between the HFOs rates in IB and SB, as well as pre- and postictal periods of each 

seizure in each patient. Same test was performed to evaluate the cumulative prediction 

improvements using data of 10 – 120 min in IB, with significance level P < 0.05.  

6.3 Results 

6.3.1. Automatic Detection of HFO and Spike 

Overall, 98 hours of multichannel iEEG data was used for the automatic detection of 

HFO and spikes, consisting of  24 hours of baseline data (including SB and IB) recorded 

on the first day of monitoring, 37 hours of pre-ictal, and 37 hours of post-ictal data for 

each seizure. The total number of electrode channels being involved in this study was 

310, the average number of recorded channel per patient was 52.  

 Over 150,000 event candidates were accepted after the initial detection and sieving 

stages and were clustered in the final phase. In each patient, the algorithm successfully 

isolated one or two HFO clusters from spikes and other arbitrary events. As a result, the 

automatic detection algorithm identified 16,572 FRs, 49,964 ripples and 45,550 spikes in 

6 patients, making up 11%, 33% and 30% of the entire candidate pool respectively, with 

the rest 25% being clusters of irrelevant noise/artifacts. 
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6.3.2. Spatial Characterization of Detected Events 

In each patient, 2 to 9 channels were determined as SOZ, accounting for 10% of the 

total recorded channels.  As a result, 91% of the detected FRs, 45% of the ripples, and 

50% of the spikes were located inside the SOZ. In figure 6-2 we present boxplots 

demonstrating the proportion of FR, ripple and spike inside the SOZ in IB, SB, pre- and 

postictal periods. Regardless of the different states, the percentage of FR locating inside 

the SOZ was significantly higher than both ripple and spike populations (P < 0.001). 
Figure 6-2. Spatial distribution of FR, ripples and spikes. Compared to ripples and spikes, Majority of the FRs were detected inside of the SOZ. 

6.3.3. Comparing the Event Rates In Different States 

Temporal distribution of HFO and spike was evaluated for each individual patient 

using iEEG data during the 2-hour baselines, 1-hour data prior to each electrographic 

seizure onsets, and 1-hour after seizure termination. All data were used as the input, 

without manual selection of corrupted channels (if any). In figure 6-3 we provide the 

rates of FR, ripple and spike captured in four states computed from all patients. Across 6 
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Figure 6-2. Spatial distribution of FR, ripple and spike in different states. 
Compared to ripples and spikes, majority of the FRs were detected 
inside of the SOZ . 
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patients, the mean FR rate during IB was 4.7/min (ranging from 1.3 to 12.2/min) which 

was comparable with the results derived from SB (4.3/min, ranging from 1.1 to 9.3/min). 

Interestingly, we observed reduction in FR rate during the pre- and postictal epochs 

(mean = 2.9/min and 1.6/min, respectively; P < 0.05 ), suggesting that FR rates both 

before and after seizures were significantly different compared to baselines in all patients. 

This suppression in rate of occurrence was not observed for ripples. As it is shown in 

figure 6-3, both ripple and spike activities presented similar firing frequency with large 

inter-patient variations, whether or not being close to a seizure. The mean rates for ripples 

were 8.5/min in IB (0.7 – 15.0/min), 7.1/min in SB (1.7 – 16.5/min), 7.3/min for preictal 

(0.8 – 16.7/min), and 10.2/min for postictal (1.1 – 19.0/min). Similar to ripple activities, 

the spike rates exhibited large variation across patients. The average rates were 10.3/min 

for IB (1.3 – 36.0/min), 8.4/min for SB (1.3 – 32.6/min), 3.8/min for preictal (0.8 – 8.7/

min), and 9.4/min for postictal (0.4 – 41.0/min), respectively. 
Figure 6-3. Event rates for FR, ripple and spike in different states. FR rates were significantly lower in pre- and postictal periods compared to IB and SB .  
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Figure 6-3.  Event rates for FR, ripple and spike in different states. FR rates were 
significantly lower in pre- and postictal periods compared to IB and 
SB. 
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6.3.4. Temporal Dynamics of Events In Different States 

Using discrete time windows we inspected the event count in each 10-minute epoch 

for all detected HFOs/spikes and those detected in SOZ channels only. In figure 6-4 (A) 

we give the results regarding the number of event captured during IB and SB states in one 

patient (P4), with the overall results presented in figure 6-4 (B). As it is seen in the figure, 

in P4 the number of FR captured in each 10-min window varied dramatically, spanning 

from no detections at all to over 30 events per window. The fluctuation in FR rate 

coincided during both IB and SB in all patients, of which four had time periods with 

absent or minimal FR events lasting for 10 – 30 min, raising the question that a random 

pick of 10-min epoch may fail to catch the proper segment where FR activity is more 

frequent. The variation also existed in ripple and spike groups where the temporal 

changes occurred both inside and outside the SOZ, most of the time independent from 

FRs.  

The results for preictal temporal distribution of FR, ripple or spike did not show 

systematic change across patients. Furthermore, we found intra-individual variation in 

terms of FR temporal trend in all patients. While the FR rate during postictal periods 

behaved rather consistently, we noted multiple patterns of FR temporal distribution 

existed preictally within the same patient, which can be summarized as following: i) none-

to-very low FR rate throughout the investigated 60-min preictal period; ii) general 

decrease in FR rate, iii) general increase in FR rate, and iv) a sudden increase before a 

seizure emerges. Pattern ii) and iii) might be accompanied by rate fluctuations. Pattern iv)  
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Figure 6-4. (A) The number of FR, ripple and spike captured during IB and SB states in P4. (B) The FR and ripple temporal variation in each 10-min window in baseline segments for 6 patients. 
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Figure 6-4. (A) The number of FR, ripple and spike captured during IB and SB 
states in P4. (B) The FR and ripple temporal variation in each 10-min 
window in baseline segments for 6 patients.
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were observed in 3 patients where we speculated might attribute to the actual ictal onset, 

considering the fact that it is challenging to precisely identify a electrographic seizure 

onset (Khosravani et al., 2009). We therefore examined the FR firing patterns in those 

preictal segments where dramatic FR increase was seen in the last 10-min preictal 

window. Results indicated that the rising in FR rate occurred 30 s – 10 min before these 

seizures, making it unlikely that the increased firing rate was due to an inaccurate 

annotation of seizure onset. 

In figure 6-5 we provide the pre- and postictal HFO temporal distribution results in 3 

seizures derived from a representative patient (P6) where preictal temporal patterns i), ii) 

and iii) were observed. For two seizures we also plotted the FR distribution in the first 10-

minute after the seizure termination to show the recovery activity. All of the three 

presented seizures in this patient were complex partial seizures emerged form right 

mesial anterior hippocampus, followed by ictal propagation involving the posterior 

temporal and fontal-occipital lobes. In this patient, ripple and spike (not shown) activities 

presented similar patterns of temporal progression compared to FR, with significant 

postictal increase in ripple and spike rates both in- and out of the SOZ (P < 0.05). 

 To illustratively evaluate any seizure associated pre- and postictal changes, we 

plotted the event count of FR and ripple inside the SOZ in each 10-min bin, computed 

from each seizure in each patient, the results are given in figure 6-6. We noticed distinct 

patient-specific trends in the evolution of FR rates before impending seizures. More 

specifically, In three of the patients (P1, P3, and P4), the number of FR as well as its 

variance was relatively low as seizures were approaching. More pronounced variability in  
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Figure 6-5. Pre- and postictal HFO temporal distribution results in 3 seizures derived from P6 where three preictal patterns were observed for FR. 
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FR rate was found in P2, P5 and P6 where the boxplots of the last 10-min widow bin 

suggested sudden FR increase in some of the seizures in these three patients. The 

individual temporal changes in ripple, however, behaved quite differently in P2 (ripple 

stayed inactive while FR rate boosted during the last 10 minutes before seizures). In P3, 

P5 and P6 the ripple rates exhibited same preictal patterns as FR, whereas in P1 and P4 

no clear firing pattern was observed.  

Considering each individual patient, pairwise comparison showed a trend of overall 

decrease in FR rate postictally compared to the preictal stage, but the difference was not 

significant, due to the contradicting behavior in FR in one patient (P6). We noted that P6 

was the only patient with neocortical onset seizures, and majority of the postictal FRs 

were generated from the neocortex. Despited the exception, the averaged postictal 

temporal trend for FRs fit into the linear regression model with P < 0.01. On the contrary, 

we observed overall predominance of ripples in postictal states in all patients. Ripples in 

the SOZ appeared to be more active after seizure termination (P < 0.05), and their 

temporal distribution showed distinctions compared to FRs (non-linear trends). These 

findings demonstrated the strong temporal relationships FRs had with ictal activities, the 

existence of diverse mechanisms underlying FR and ripple generation in epileptogenic 

structures, as well as the disparate patterns found in different patients. 

6.3.5. Early Prediction of the SOZ 

By showing the temporal dynamics in each patient, we observed drastic changes in 

the rate of events, particularly in FRs. The spatial locations of FRs, when found, was 

rather stable and consistent compared to ripples or spikes, with the premise  that a “right”  
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Figure 6-6. (A) Event count of FRs and (B) ripples inside the SOZ in each 10-min bin, computed from each seizure in each patient. 
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Figure 6-6. (A) Event count of FRs and (B) ripples inside the SOZ in 
each 10-min bin, computed from each seizure in each 
patient.
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data segment introducing sufficient number of FR was selected (figure 6-7). It was then 

expected that FR detection and SOZ localization would benefit from examining iEEG of 

extended length. To determine the amount of time required for robust detection as well as 

the interpretation of HFOs, we performed SOZ prediction based on the spatial attributes 

of FR, ripple and spike events cumulatively captured in 10 – 120 minutes at the 

beginning of EMU monitoring. Channels contributing to > 90% of the total events were 

taken into account for SOZ prediction. 
Figure 6-7. Left: spatiotemporal distribution for FRs in 1-min discrete windows throughout the 2-hour IB recording in P3. Middle: cumulative FRs distribution. Right: spatiotemporal distribution for ripples. 

In figure 6-8 we present the prediction specificity, ACC and MCC results for FRs, 

ripples and spikes in each patient as well as the average cumulative prediction curves. 

Unlike spikes or ripples, FRs were well localized in a few channels from the very 

beginning of recording which showed consistency with SOZ indicated by neurologists, 
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Figure 6-7. Left: spatiotemporal distribution for FRs in 1-min discrete windows 
throughout the 2-hour IB recording in P3. Middle: cumulative FRs 
distribution. Right: spatiotemporal distribution for ripples.
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resulting in a high average specificity of 95.0% (82.6% – 100%) starting from the first 10-

minute recording. The ACC in this case was 88.2% (80.0% – 95.6%), with initial MCC of 

0.29 (-0.10 – 0.63). The performance of the detection improved significantly after 30 

minutes of cumulative detection in terms of ACC and MCC (ACC = 92.4%, MCC = 0.39, 

P < 0.05), both of which continued the rising trend till the 6th window bin representing 1 

hour of recording (ACC = 94.5%, MCC = 0.67). After this point, the cumulative 

prediction curves reached the plateau with subtle rise and falls but no significant 

difference was seen. At the end of the 120-min recording we were able to achieve an 

overall ACC of 94.4% and MCC of 0.71, representing a very strong positive relationship 

between FR distribution and SOZ information (Powers et al., 2011).  

The initial ACC for ripple prediction was 85.9% (80.0% – 95.9%), with an average 

MCC of 0.25 (-0.12 – 0.61). The prediction performance using ripples showed a 

significant improvement after 40 minutes of recording when both ACC and MCC values 

reached their peaks (ACC = 91.6%, MCC = 0.54, P < 0.05). Further recordings, however, 

did not provide informative input towards the SOZ prediction and the final result for 

ACC (= 89.3%) and MCC (= 0.44) did not show statistical difference compared to the  

results acquired from the first 10-min window. Similarly, no significant advantage was 

seen using spikes collected from 120-min data (ACC = 87.6%, MCC = 0.31) comparing 

to the use of 10-min data segment (ACC = 87.0%, MCC = 0.36).  

6.4 Discussion 

In the current study we investigated the spatial and temporal characteristics of HFOs 

and spikes during 120-min preictal-ictal-postictal transition periods in 6 patients with 
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temporal lobe epilepsy which has not been explored previously. Inter- and intra-patient 

variability was observed in terms of HFO temporal progression during 60-min preictal 

periods. Although no consistent changes were noted, we observed significant reduction in  

Figure 6-8. Cumulative prediction results for FR, ripple and spikes. 
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HFO rates 1 hour before and after seizures compared to baseline segments. This 

suppression was exclusively observed in the fast ripple group (above 200 Hz) but not in 

ripples or spikes, suggesting the specific association between FR and epileptogenesis. In 

addition, we explored the temporal dynamics of  different  subtypes of  HFOs in  different  

baseline states of multiple hours, with specific consideration to the HFO progression at 

the beginning of intracranial monitoring after implantation surgery. By performing 

cumulative SOZ prediction using FRs detected from initial baseline data collected at the 

beginning 2 hours in the EMU we achieved an overall prediction accuracy of 92% after 

30 minutes of monitoring, which later increased to 95% and reached a plateau after 

approximately 1 hour of monitoring. This is the first report emphasizing the benefit of 

using extended iEEG recording for HFO analysis and its potential application for SOZ 

early prediction. 

Up till present, majority of the existing research focusing on HFO detection and 

evaluation was conducted using iEEG data of short length (Andrew et al., 2007; 

Dümpelmann et al., 2012; Melani et al., 2013; Staba et al., 2002). More recent studies 

utilizing advanced machine learning techniques showed capability of detecting HFOs in 

longer intervals (Blanco et al., 2010b). Nevertheless, few of the reports capitalized the 

use of automatically detected HFOs in clinical application or validated the predictive 

value of HFO as a specific SOZ indicator to serve presurgical evaluation. Here for the 

first time we investigated the HFO temporal distribution during prolonged baseline data 

as well as expanded pre- and postictal periods in 6 patients, with an average of 16 hours 

of data being analyzed per patient. By computing the aggregation for HFOs and spikes 
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using 10-min time windows, we found considerable variations in the rate of FR, ripple 

and spike during baseline and preictal stages. A previous study looking into HFO rate 

during sleep/waking cycles demonstrated great temporal variation in ripple (< 250 Hz) 

generation (Dümpelmann et al., 2015). In the present study we showed evidence that FR 

temporal distribution also varied dramatically, suggesting that the brain network 

responsible for FR generation does not activate evenly across time in sleep or vigilance 

states, resulting in the absence in FR during certain time intervals. This temporal 

variation in HFO generation may leave substantial influence on HFO detection, putting 

into question if analysis based on the selection of tens of minutes of interictal data during 

sleep or awake states can be regarded as reliable and robust. 

Multiple studies have reviewed the change in HFO activity before an impending 

seizure. Still, researchers barely look at HFO dynamics anytime earlier than 30-min 

before a seizure emerges, and generally pay less attention to HFO activity after seizures. 

In this study we tried to determine whether HFO firing rate presents distinct temporal 

trends before and after seizures. We observed different patterns preictally across patients 

and across seizures within the same patient. Typical patterns include a total “silence” or 

extensive suppression of FR in the SOZ, a decreasing/increasing trend, as well as a rapid 

increase 30 s to 5 min immediately before a seizure. These findings are in agreement with 

other studies inspecting preictal HFO properties in a shorter period of time. Although 

there is evidence showing preictal power increase in the HF band using very short data 

segments (30 s) (Khosravani et al., 2007), no consistent and systematic trend was 

documented when analyzing preictal epochs by several minutes (Jacobs et al., 2009; 
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Pearce et al., 2013). It has been proved that the HFO increase during seizure onset is 

associated with seizure types. For instance, ictal HFOs were found increasing right before 

the onset of spam but not other types of seizures (Zijlmans et al., 2011, 2009a). Our 

results suggest that FR activities close to seizure generation may be modulated by 

individual’s unique pathological network or mechanism of the disease, and therefore must 

be evaluated individually for HFO interpretation. Further, in this study we observed an 

overall decrease in FR rate 60 minutes before and after seizures which was not seen in 

ripples or spikes, supporting the view that fast ripples are more specifically associated 

with epileptogenesis. Due to the temporal fluctuation, it remains unclear if the decrease in 

FR rate can be reliably used as a discriminative feature to monitor seizure activity. 

Additional studies are needed to test whether this information can be employed in a 

predictable manner. 

 Our results showed that postictal recovery for FR could take up to one hour after 

seizure termination in patients with mesial temporal lobe seizure onsets. On the contrary, 

ripple rates after seizure increased significantly inside and outside the SOZ, suggesting 

different mechanisms underneath these two HFO subtypes. Studies showed that spike 

frequency increased postictally in widespread regions that might or might not correspond 

to SOZ (Gotman and Koffler, 1989; Gotman and Marciani, 1985), which was also 

observed in this study. Nonetheless, reports related to HFO post-seizure activity is sparse. 

The aftermath of a seizure gives clue of altered brain function, and therefore their 

biological significance need to be investigated (So and Blume, 2010). 
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One prior HFO study with human-screening suggested that HFO distribution was 

stable across multiple days when only 1 minute of data was scored each night (Zijlmans 

et al., 2009b). We argue that, although spatially consistent, the temporal variation will 

affect the detectability of FRs and interfere with the interpretation. By contrast, we 

observed that both temporal and spatial distributions changed considerably over time for 

ripple events. The most frequent ripple generative regions shifted across the long-term 

time window, suggesting the co-existence of pathological ripples and physiological ones 

generated from non-epileptic regions. This is the supporting evidence for previous 

research demonstrating the necessity of separating epileptic and non-epileptic HFOs, 

particularly in the frequency range below 250 Hz.  

By executing cumulative SOZ prediction using 10 – 120 minutes of initial baseline in 

6 patients we confirmed that HFO detection and SOZ identification could profit from 

prolonged iEEG recording of 30 – 60 minutes compared to the conventionally used 10-

min data segment. In particular, SOZ prediction performance using FR information 

showed significant improvement after 30 minutes of detection, and stabilized at the level 

of 95% after 1 hour of monitoring. There are evidence that epileptic FRs are generated by 

small clusters of desynchronous firing cells (Demont-Guignard et al., 2012), making 

them spatially sparse in nature, which further links to high specificity when used for 

channel prediction (i.e., tends to assign most of the channels to negatives). One may 

argue that such imbalanced class sizes (numbers of SOZ and non-SOZ channels) make it 

difficult to evaluate the classification, and that prediction accuracy may not be sufficient 

to reflect the actual performance of the prediction. However, from a practical standpoint, 
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it would still be helpful if the HFO generative region always indicated a subset of the 

critical epileptic network. In addition, to overcome the bias towards prediction specificity 

we used another descriptor, MCC, to assess the prediction results. The cumulative MCC 

showed prominent increase from 3.5 to 7.1, reflecting a very strong association between 

FR channels and SOZ location (Davenport Jr and El-Sanhurry, 1991). Due to the larger 

spatial extent and variability of ripples and spikes,   

It is noteworthy that in current study the early prediction of SOZ was achieved by 

using the first hour of EMU recording after electrode implantation. Considering the 

clinical utility of HFOs as markers of epileptogenicity always arises the question of 

whether to analyze HFOs during awake, sleep, or preictal, periods (Jacobs et al., 2012). 

Earlier HFO study using limited length of data is in favor of detecting HFO during 

NREM sleep, however it is important that a valid neurobiomarker for epileptogenic 

regions being independent from patient’s states, thus providing additional advantage that 

neurologists would not be relying on a specific condition, or waiting for multiple 

spontaneous seizures to occur during the intracranial EEG investigation. Here by 

executing the cumulative FR detection we present evidence that SOZ prediction can be 

achieved within the initial two hours of monitoring with high accuracy of 94%. Further 

study is required to answer whether HFOs are better predictors of disease activity and 

epilepsy remission than the traditional hall mark, known as the interictal spikes. 
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CHAPTER 7 SIGNIFICANCE AND CONCLUSION  

7.1 Major Contributions  

HFOs are complex dynamic phenomena that are difficult to identify by visual 

inspection. In this thesis we introduced a series of new method for automatically 

detecting and characterizing high frequency field potential oscillations within 80 – 500 

Hz range in continuous intracranial electroencephalographic recordings collected in 

realistic clinical environment without channel pre-exclusion. Instead of limiting the 

analysis to 80 – 500 Hz range, we explored the raw iEEG data of the entire frequency 

band. The automatized detection showed capability of identifying HFO and spikes using 

iEEG data collected from multiple centers. It is important to point out that this thesis is 

not merely about new theoretical advancement in signal processing or machine learning 

techniques, but how this proposed algorithm can be utilized as a unique tool to solve the 

problem of HFO detection and spatial approximation of the SOZ using clinical data 

which are more prone to signal artifacts compared to data collected in an experimental 

setting. 

First, in Chapter 3 we reported the methodological contributions of the thesis, where a 

novel algorithm integrating the amplitude-based detection, time-frequency analysis and 

unsupervised clustering is introduced to automatically separate HFO activities with other 

false detections such as interictal spikes and arbitrary events, based on the concept of 

learning from the data. By using novel features extracted after time-frequency analysis, 

we investigated the correlation of possible HFO clusters and clinician-determined SOZ in 

patients with epilepsy in sleep, awake, and pre-ictal states. The algorithm successfully 
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localized SOZ in all patients but one whose postoperative outcome reported unfavorable 

results, achieving its highest sensitivity in the sleep state. Comparing to existing SOZ 

approximation method, the algorithm provided significantly better performance. Our 

results indicate that unsupervised clustering methods exploring the time-frequency 

content of HFOs in the available full band can efficiently be used to localize the 

epileptogenic zone in clinical practice. 

In Chapter 4, we described how the proposed detection method can be applied in real 

clinical cases where the seizure onset patterns are not robust nor clear, and where the 

patients had extra-temporal onset that is generally considered more challenging in terms 

of HFO interpretation due to the inclusion of functional cerebral cortex. By running 

unsupervised HFO detection in patients with extra-temporal lobe onset epilepsy we 

showed that the spatial location of automatically detected HFOs correlated well with the 

epileptogenic zone as well as the postsurgical outcome in all investigated cases. In 

addition, we explored the spatial attribute of HFOs by executing automated HFO 

detection in continuous ECoG data using a hybrid high-density surface electrode array, 

and examined whether HFOs were equally detectable using different sized ECoG 

contacts. Our results provide initial evidence that the detection efficacy of HFOs in the 

ripple range may be higher using small contacts possibly due to the spatial averaging 

effect. 

Chapter 5 describes a critical finding where we observed a novel pattern in HFO 

waveforms originating from pathological structures that were rarely seen in the eloquent 

brain regions responsible for the generation of physiological oscillations. Such patterns 
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can be automatically identified using unsupervised machine learning approaches and thus 

being efficiently employed to localize the SOZ and avoid unwanted detections of the 

functional areas. Most importantly, the highly stereotypical HFO waveform patterns 

described in this chapter are observed exclusively in SOZ, yielding a new possibility to 

describe HFOs instead of the current frequency-based characterization. The outcomes of 

this study adds to our understanding of the electrophysiological basis of HFOs as well as 

the epileptogenic networks, and provide new avenues for the interpretation of HFOs that 

can be efficiently applied to distinguish SOZ from functional cortical structures that need 

to be preserved during the resection surgery, which is a critical step towards the 

translation of HFOs to valid clinical biomarkers. It is expected that the identification of 

stereotyped signal patterns can give additional clues toward the detection and 

discrimination of multiple types of signature neuronal activities in human iEEG without 

manual labeling process which might potentially put bias towards the examination. 

In Chapter 6 we further investigate the temporal variation of HFOs during awake and 

sleep, as well as the temporal distribution of HFOs before and after seizures. To explore 

the temporal characteristics of HFO, our analysis was executed using all recorded 

channels over ninety hours of multichannel iEEG data in a fully-automatic fashion, which 

differs from most of the previous studies where the investigators commonly use 

retrospective visual review to select HFOs from limited datasets. On top of this, we 

sought to answer whether SOZ can be predicted earlier than the first clinical seizure 

observed during prolonged monitoring, which may potentially reduce the time frame and 

cost of the invasive monitoring. The results of this study present the spatial stability and 
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temporal variability of FRs, which was confirmed by the cumulative SOZ detection 

accuracy. It is possible that using FR information, SOZ prediction can be achieved after 

the initial 60 to 120 min of EMU recording, which may reduce the potential risk 

associated with long-term invasive monitoring. 

7.2 Future Directions 

Even though emerging studies are showing strong evidences that HFOs are of high 

clinical significance and should be used as a guide to assist in the presurgical evaluation, 

these studies are derived from relatively small patient cohorts. Therefore, in future it is 

necessary  to  conduct  properly  designed,  randomized  multichannel  trials  that  provide 

strong statistical power to assess the validity of HFOs as clinical indicators. One of the 

most exciting aspects of future work would be to map the epileptogenic brain regions and 

monitor the ictal activity based on HFOs information and other epileptic hallmarks, for 

instance, interictal spikes. It  is possible that the real-time detection of these signature 

activities will open the door to intraoperative localization of SOZ, and thus eliminating 

the need for prolonged invasive monitoring and the associated medical complication risk 

and expenses. 

Another possible future direction of HFO studies would be the application of HFO in 

neuromodulation  therapies,  for  example,  in  open-  and  close-loop  neurostimulation 

treatments. Neurostimulation is a new option for epilepsy treatment which is flexible and 

reversible. Its efficacy and safety has been proved by pivotal clinical trials. Both deep-

brain  stimulation  (DBS)  and  responsive  neurostimulation  (RNS)  devices  have 

programmable  settings  to  control  its  output  by  adjusting  the  current,  pulse  width, 

frequency  and  polarity,  which  will  also  determine  the  stimulation  effect  on  neuronal 
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tissue. The efficacy of therapeutic stimulation depends critically on the targeted site of 

effect and on the exact nature (parameters) of the stimulus, which have been empirically 

derived by trial  and error,  and the mechanisms by which electrical  stimulation might 

benefit  patients  with epilepsy are  still  poorly understood.  Stimulation technology and 

protocols  are  usually  adapted  from  approaches  to  treat  disparate  conditions  such  as 

movement  disorders.  Study  reporting  the  HFO  dynamics  related  to  direct  brain 

stimulation is rare.  Considering the association of HFO and epileptogenic network, it 

would be interesting to carry out studies to explore the role of HFO as a biomarker to 

predict the efficacy of neurostimulation therapy, which may also help us understand the 

exact mechanism of action and the best parameters used during electrical stimulation. 
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