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ABSTRACT 

The adequacy of replicability among psychological findings has previously been questioned, 

especially for neuroscientific fields of research.  Researchers increasingly point towards the 

negative effects of low power on replicability of findings.  Though decreased sensitivity in 

smaller samples is a well-known consequence of inadequate power, many overlook the 

increased likelihood of inflated observed effects and weakened positive predictive values.  

The aim of this study is to reveal the expected degrees of uncertainty among neuroimaging 

findings by conducting tests in different sample sizes from a larger-than-average sample, in 

an area of research with wide-ranging findings that have been proposed by some to be due in 

part to inadequate sample sizes: bilingual-monolingual structural brain differences.  

Bilinguals (n = 216) were compared with monolinguals (n = 146) using grey matter density 

in whole-brain analyses and grey matter volume measures across region-of-interest tests.  

Variability among findings were compared with the true full-sample findings, and taken in 

the context of expected differences within the larger bilingualism neuroimaging literature.  

Results demonstrate excessive variability across the lowest sample sizes (e.g. samples 

totaling 20 – 80 participants), and this is explored through the trends of subsample outcomes 

and effect sizes across sample sizes.  The extent to which infrequently utilized methods such 

as multivariate analyses of covariance (MANCOVAs) and Bayes Factors can improve the 

accuracy of results at lower sample sizes were also explored.  It is our hope that this study 

helps to demonstrate the influences of power on expected variability among sample findings, 

especially for bilingual researchers and any researchers interested in exploring group 

differences using neuroimaging. 

 Keywords: replicability, sample size, power, neuroimaging, MRI, bilingualism 
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An Exploration of Variability due to Low Power 

in Structural MRI Studies of Bilingualism 

Researchers have known and warned about a problem with the replicability of 

findings in psychology for over a decade.  In 2005, Ioannidis published an article which 

estimated the rate of false positives in psychology to be greater than 50% – suggesting that 

fewer than half of all studies would not be able to be replicated under similar testing 

conditions.  In 2015, Aarts and colleagues published a paper in Science testing these claims 

empirically.  The authors chose 100 influential studies from Psychological Science, Journal 

of Personality and Social Psychology, and Journal of Experimental Psychology: Learning, 

Memory, and Cognition.  In attempting to replicate the 100 studies, 39% of effects replicated 

findings from the original studies.  They conclude by observing, “Scientific progress is a 

cumulative process of uncertainty reduction that can only succeed if science itself remains 

the greatest skeptic of its explanatory claims” (p. 7).   

This question gets to the root of the academic discipline: are experiments and 

investigations really saying something informative about the population of interest?  The 

inability of a test to accurately portray the characteristics of a population would mean that, in 

fact, researchers’ conclusions are not as generalizable to the population at large as they 

would like to think. 

Statistical Concerns 

In considering replicability, achieved statistical power among studies often comes 

into question.  Statistical power is the likelihood of successfully finding an effect in a sample 

when it exists within the population (in other words, the likelihood of rejecting a false null 
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hypothesis).  Therefore, inadequate power results in a greater likelihood of a Type II error, 

where a true population effect is ignored within the sample.  Statistical power increases as the 

sample size increases, as the observed effect size increases, as standard deviation decreases, 

for larger (less restrictive) alpha values, and is higher for one-tailed than for two-tailed tests.  

The likelihood of a Type I error, where a significant effect is found in the sample even 

though it is not present in the population, decreases as the cutoff alpha value decreases.   

Therefore, there is often a tradeoff between attempts to control for Type I vs Type II 

errors, where researchers may try to increasingly control for Type I error rate by choosing 

more stringent alpha values, but thereby also increase the Type II error rate.  The importance 

of this balance may be somewhat overlooked in the neuroimaging literatures, where (by 

necessity) a high number of comparisons are commonly controlled for with a more restrictive 

alpha value.  With many comparisons and a small alpha, it becomes necessary to consider 

other variables in order to reach appropriate levels (often 0.8) of power: sample size, effect 

size, standard deviation, experiment structure, and various other ‘researcher degrees of 

freedom’.  In other words, neuroimaging researchers already do what they can to minimize 

Type I error, but this is sometimes not adequately balanced with higher sample sizes, which 

is one of the few researcher options to attain both more stringent alpha values with adequate 

Type II error rates. 

It has been noted (Yarkoni, 2009) that few studies have investigated power-related 

issues in the neuroimaging literature.  Of those that did, only a handful (Desmond & Glover, 

2002; Mumford & Nichols, 2008; Murphy & Garavan, 2004; Thirion et al., 2007) have tried 

to estimate the sample sizes necessary to gain sufficient power, and even then, all four 

studies were within-subject functional magnetic resonance imaging (fMRI) designs- 



VARIABILITY DUE TO LOW POWER IN STRUCTURAL MRI STUDIES OF BILINGUALISM                            3 
 

potentially limiting generalizability to structural MRI studies.  Referring to the power to 

detect effects in between- vs. within-person designs, Yarkoni (2009) stated, “The importance 

of this point is difficult to overstate: Under reasonable assumptions, the power to detect 

correlational effects may be as little as 5%-10% of the power to detect similar-sized within-

subject effects” (p. 295).  Some areas of research, such as those investigating differences 

between monolinguals and bilinguals, rely on between-group differences by necessity, and 

therefore start with less power overall than within-group investigations. 

Accurate estimates of population effect sizes are necessary in order to adequately 

predict necessary sample sizes for future studies.  However, certain researcher practices 

(beyond consistently reporting statistical effects for all tests) make accurate effect size 

estimates very difficult to obtain.  Yarkoni (2009) demonstrated the unacceptability of 

combining small sample sizes with stringent alpha levels, a design commonly seen in the 

MRI / fMRI literature.  Using a region of interest (ROI) test as an example, the authors show 

that, for example, for a sample of 20 subjects with 10 comparisons and a p = 0.005 (0.05 

corrected for 10 comparisons), the power for detecting a true effect is only 13%.  

Importantly, this also means that the critical value for detecting an effect becomes r = 0.6, a 

large effect within any psychology literature.  This causes observed effect sizes to become 

greatly inflated. 

The failure to detect a true effect is another potential outcome of underpowered 

studies.  Vadillo, Konstantinidis and Shanks (2016) reveal how, especially in research 

focusing on lack of an effect (as in unconscious learning), studies that have too little power 

can fail to find effects which are actually present.  Such an inability to find true effects is 

another power-related factor potentially influencing a lack of wider consistencies in findings. 
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Replicability of fMRI Research 

 In November 2017, Cremers, Wager, and Yarkoni published a thorough investigation 

into the effects of underpowered samples on researchers’ abilities to make accurate 

inferences in whole-brain fMRI analyses.  The authors created simulated brain slices of 

10,000 subjects, and drew 2,000 random subsamples at sample sizes ranging from 10-150.  

Their findings clearly demonstrate the harmful effects of underpowered samples, especially 

when combined with studies that contain many comparisons.   

First, and expectedly, they found that the vast majority of the smaller random samples 

did not show effects which were present in the full sample – confirming that the samples 

were in fact underpowered.  Interestingly, even their largest sample (N = 150), on average, 

only detected 9% of the true effects in the population / full sample.  Thus, at best, only 12.5% 

of what researchers often consider to be the minimum acceptable power (0.80) was actually 

attained.   

Secondly, though the number of significant voxels was found to increase with the 

increase in sample size, the average degree of significance actually exponentially decreased 

as sample size increased.  This occurs where tests have both low power and strict alpha 

corrections.  In order for an underpowered sample to be seen as significant when the alpha is 

very low, the differences have to be even more extreme, and this is often more extreme than 

what the true population differences are- whether or not those population differences are also 

significant. 

The authors note that a useful hypothesis-driven method to increase power (by 

decreasing the large number of tests, and thus reducing the necessary alpha correction) is to 



VARIABILITY DUE TO LOW POWER IN STRUCTURAL MRI STUDIES OF BILINGUALISM                            5 
 

use ROIs.  This allows for tests to be conducted in areas already supported by the literature, 

sidestepping the need to check every voxel, as is the case for whole-brain analyses.  

However, they mention it is important to remember that many ROIs, as are often used in 

neuroimaging, still necessitate a strict (though not as strict as whole-brain analyses) alpha 

correction for multiple comparisons – meaning that larger sample sizes are still important in 

order to achieve ideal levels of power. 

One might suggest that, since the power and assumptions of past studies in the 

neuroimaging literature on bilingualism can be calculated post-hoc and compared to what is 

recommended, the analysis of a novel sample is unnecessary in order to demonstrate a trend 

for underpowered studies – or even simulations performed viewing power in samples of 

fabricated data, as in Cremers, Wagner, and Yakoni (2017) above.  However, it has been 

shown (Sedlmeier & Gigerenzer, 1989) that studies on statistical power alone are unlikely to 

change trends in statistical methodology.  Szucs and Ioannidis (2017) also demonstrate that 

studies in the psychology and cognitive neuroscience literatures have not shown any 

improvements in power or effect sizes over the past 50 years, likely due to low sample sizes.  

The authors support the idea that over 50% of studies in psychology are false-positives, and 

that this is likely even worse in cognitive neuroscience specifically.   

In light of this, it makes sense to take a more concrete approach, where the 

consequences of a lack of power can be viewed in the context of tangible conclusions (or 

lack thereof) due to researcher practices.  One field which has seen an increase in 

neuroimaging studies recently is that of bilingualism.  In order to ensure best researcher 

practices, as well as giving a literature-based perspective of predictions and effect sizes, a 

model of neuroimaging studies on bilingualism will be used in order to create grouping 
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variables with evidence-based predictions for what differences ought to be observable, and 

within which regions. 

Bilingual-Monolingual Neuroanatomy Literature 

Several studies, including Li, Legault, and Litcofsky (2014), and García-Pentón, 

Garcia, Dunabeitia and Carreiras (2016), have reviewed the bilingual neuroanatomy literature 

in order to better grasp which structural differences are most consistently found between 

monolinguals and bilinguals, as well between bilinguals of varying language backgrounds.  A 

large number of brain regions have been tied to neuroanatomical differences due to language 

experience, which are covered extensively in the aforementioned meta-analyses.  

Interestingly, though there’s much overlap between the studies included in these meta-

analyses, reviewers have come to different conclusions in terms of whether there are 

consistent findings of differences across bilinguals and monolinguals.   

 For instance, in a review which included findings from 10 bilingual-monolingual 

brain comparison studies, Li, Legault and Litcofsky (2014) concluded that “the evidence 

reviewed so far portrays a picture that is highly consistent with structural neuroplasticity 

observed for other domains: second language experience-induced brain changes, including 

increased grey matter density and white matter integrity, can be found in children, young 

adults, and the elderly” (p. 301).  However, in a separate review of 11 studies (6 of which 

were the same as those covered in the 2014 Li et al. review), García-Pentón, Garcia, 

Dunabeitia and Carreiras (2016) concluded that, aside from the IFG and certain white matter 

connections, present research fails to consistently point to specific neurophysiological 

differences between monolinguals and bilinguals.  García-Pentón et al. then propose certain 

methodological inconsistencies between studies which may cause unexpected variability in 
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findings, including 1) differing corrections used for multiple comparisons, 2) inadequate 

descriptions of participant backgrounds, especially related to bilingual language experience, 

and 3) small sample sizes.   

Recall Yarkoni (2009), who demonstrated that small sample sizes are associated with 

inflated significant effect sizes relative to the true population effect size.  This might have 

significant ramifications on the overall replicability of a group of findings.  The decreased 

likelihood of finding significant effects which are true in the population is a clear mistake to 

be avoided by researchers, but a more overlooked outcome might be the inability to 

accurately design future studies with enough power.    

The present author conducted a brief review of 14 studies was conducted in order to 

better glimpse the average effect sizes found for studies reporting anatomical differences 

between bilinguals and monolinguals.  Studies were selected through 1) the Li et al. (2014) 

review, 2) the García-Pentón et al. (2015) review, and 3) a Google Scholar search of 

“bilingual monolingual structural MRI.”  For these 14 studies, effect sizes were calculated 

wherever possible; 4 studies did not present sufficient information for Cohen’s d effect sizes 

to be calculated, and 5 others did not include comparable results of bilingual and 

monolingual neuroanatomy; some investigated only differences in effects of factors such as 

ages of acquisition in bilinguals (e.g. Berken et al., 2015), while others investigated 

interhemispheric differences (e.g. Felton et al., 2017).  See Table 1 for study-specific details, 

including sample sizes, mean within-study effect sizes and other details.  This left 5 studies 

which were used to estimate effect sizes of bilingual-monolingual differences in the 

literature. 
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The mean total sample size for all 14 studies was 52 participants; on average, 24 

monolinguals were compared with 28 bilinguals.  Of the 5 studies which reported adequate 

information for bilingual-monolingual comparison effect sizes to be calculated, the average 

Cohen’s d effect size for significant findings (1 mean value per study) was 1.21.  For all 10 

studies with adequate information to calculate effect sizes (which is more of a measure of 

general within- and between-group neurophysiological differences due to language 

experience), an average Cohen’s d effect size of 1.16 was found.  Putting this into 

perspective, Cohen (1992) suggested a Cohen’s d of 0.2 could be described as ‘small,’ 0.5 as 

‘medium,’ and 0.8 as ‘large.’ Seventeen years later, Sawilowski (2009) suggested an effect 

size of 1.2 might be described as ‘very large.’  Such a description would suggest that 

researchers are generally finding very large neuroanatomical differences between 

monolinguals and bilinguals.  However, this does not quite fit with some of the noted 

inconsistencies within the literature (e.g. García-Pentón et al., 2015).  If these are truly large 

differences within the populations of interest, they should then be more consistently observed 

between studies.  This inconsistency may be explained by the lack of power to 1) detect true 

population effects that are present in the population, and 2) accurately estimate the sizes of 

true effects in the population, rather than overestimating effect sizes with underpowered 

samples.  

How might we then pin down the extent to which small sample sizes, and other 

researcher degrees of freedom, are affecting variability in study findings?  One possibility is 

to take a larger-than-normal sample of bilingual and monolingual scans, and conduct 

simulated studies of smaller sample sizes (‘subsamples’) within this group.  The ‘population,’ 

or ‘full-sample,’ findings being known, this would reveal the extent to which variability of 1) 
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effect size inflation, 2) sensitivity (likelihood that a true finding in the population will be 

observed as a true positive in a sample), and 3) positive predictive values (likelihood that an 

observed true finding in a sample is actually true in the population) are due to factors such as 

sample size.   

If variability in this literature actually is due to inadequate sample sizes as has been 

suggested, then very inconsistent findings among smaller subsamples relative to whole-

sample differences would support this theory, and display concretely to researchers that 

further steps need to be taken in future studies in order to more consistently find differences 

that actually are present in the population.  If, however, these small-sample findings are able 

to adequately represent findings in the population, it would suggest that other reasons for the 

variability may be the primary cause of inconsistent results in the literature, such as 

inconsistent definitions of bilinguals and bilingual language experiences.  The present study 

uses a sample of monolinguals and bilinguals much larger than average in bilingual 

neuroimaging studies (356 total brain scans) in order to determine achieved decreases in 

expected variability at varying researcher degrees of freedom.  Beyond exploring variance 

due to certain ‘researcher-degrees-of-freedom’ such as sample size and alpha restrictiveness, 

an extension of the same ideas using either different methods, such as multivariate analyses 

of covariance (MANCOVAs), or different forms of statistical inference, such as using 

calculated Bayes Factors in place of traditional effect sizes could prove informative.  

Whole-brain Analyses 

 Whole-brain MRI and fMRI analyses are, in certain ways, more ideal than selecting 

ROIs.  ROI tests use predetermined regions to group voxels according to estimated brain 

structure locations, whereas whole-brain tests include every brain voxel without pre-grouping 
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voxels according to brain region.  As such, whole-brain analyses are less hypothesis-

dependent tests.  However, to an even greater extent than for ROI tests with a high number of 

comparisons, there are drawbacks when this is done without adequate sample sizes.  

As Cremers, Wager and Yarkoni (2017) demonstrated using simulated whole-brain 

fMRI data, “with smaller samples, statistically significant effect sizes appear to be much 

larger than the true effect sizes” (section 4.2).  This results from the combination of small 

sample sizes, a very large number of statistical comparisons, and stringent alpha corrections 

(to correct for the many comparisons).  However, the authors limited their analyses to both 

uncorrected p < 0.001 thresholds, and without using cluster-based selection (where only 

results with voxel differences in cluster sizes beyond a pre-determined threshold are 

considered significant).  These two factors were ignored for the sake of a demonstration of 

the effects of insignificant power.   

 So, to what extent would these results be consistent in a non-simulated sample using 

structural MRI?  Whole-brain analyses, which often include many thousands of statistical 

comparisons, allow us to test the extreme in terms of number of comparisons- and ROI 

analyses, as the focus of this paper, could then be thought of as addressing one major concern 

of whole-brain analyses, by severely reducing the number of comparisons to selected regions 

based on previous literature.  Higher degrees of inflated effects would be expected for whole-

brain analyses than for ROI analyses, due to the difference in number of comparisons.  

Moreover, the combined usage of family-wise error rate (FWE) correction and cluster-based 

selection of results within whole-brain analyses should help to lessen the extent of inflated 

effects across sample sizes. 

 



VARIABILITY DUE TO LOW POWER IN STRUCTURAL MRI STUDIES OF BILINGUALISM                            11 
 

Bayesian Statistics 

Bayesian statistics is a form of statistical inference which stems from Bayes’ 

Theorem (Bayes, Price, & Canton, 1763).  The most recognizable difference between 

Bayesian inference and traditional frequentist approaches to inference is that, in Bayesian 

inference, researchers begin with a ‘prior,’ where an educated guess based on past studies or 

theory is made about the conditions relating to the event of interest before the actual test is 

conducted.  The prior affects the likelihood of the outcomes, and therefore the results of the 

test itself.  Following the definition of a prior, models are used to predict the prior and then 

compared in terms of their explanatory value, resulting in a ‘Bayes Factor’ which gives the 

relative weight for one model versus another. 

 In the context of the present project, it would be informative to determine 

whether Bayesian modeling shows the same or similar influences of sample and test 

characteristics on power and effect size as frequentist approaches.  Using a Bayesian-defined 

model both with and without a variable of interest (here, bilingual or monolingual language 

status) would allow for Bayes Factors to be calculated, which could then be explored in terms 

of accuracy and potential degree of inflation at lower effect sizes.  This should help to clarify 

the utility or risks of Bayesian inference with analyses involving low sample sizes.   

Multivariate Analyses 

 There are certain alternative statistical analyses which may be used in place of 

individually testing each ROI in a univariate test, in order to conserve power.  Specifically, 

multivariate analyses of covariance (MANCOVAs) might be used.  Multivariate analyses 

(Anderson, 1958; Morrison, 2005) are statistical tests with more than one dependent variable.  
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Here, rather than testing every single ROI to determine whether specific regions are 

significantly related to predictors, the volumes for each ROI are included as dependent 

variables within the same test.   

Multivariate tests reveal whether the predictors, including language status (what we 

are interested in), explain a significant amount of variance in brain volume across selected 

brain regions as a whole.  Importantly, though dependent upon the inter-relatedness of the 

dependent variables (Cole, Maxwell, Arvey, & Salas, 1994), the power for conducting a 

single multivariate test is greater than conducting a single univariate test (such as, in the case 

of this paper, a univariate multiple regression) for each dependent variable.  So, in order to 

determine the extent to which inferences and accuracy would be improved through the use of 

multivariate tests, the eta-squared estimates, standardized and structural coefficients, and 

accuracy of MANCOVAs across samples were also investigated.  Interestingly, multivariate 

methods are very infrequently utilized in fMRI or MRI research, with one exception being 

Batty et al., 2010.  The present authors are unaware of any neuroimaging analyses of 

bilingual differences which make use of multivariate methods. 
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Hypotheses 

 The present study treated the large sample of monolingual and bilingual structural 

MRIs as the population, in order to determine variability in randomly sampled results across 

sample sizes and statistical methods. 

ROI Univariate Regressions 

1. Greater accuracy, here referring to fewer false positives, more true positives, and 

fewer false negatives, will be observed at higher subsample sizes than at lower 

subsample sizes. 

2. Sensitivity, or power, as well as PPV, will increase with subsample sizes. 

3. Stricter alpha corrections will decrease the total number of false positives, but 

increase the number of false negatives, across subsample sizes. 

4. Sensitivity, or power, will be smaller, and PPV will be greater, for stricter alpha 

corrections. 

5. Inflated effects relative to the full-sample effect size will be seen for smaller 

subsample sizes. 

6. More inflated effects will be seen when alpha corrections are stricter. 

Whole-Brain T-tests 

7. Whole-brain analyses will show a greater degree of inflated effects at smaller 

subsample sizes relative to ROI analyses. 

8. Whole-brain analyses with results selected above 20-voxel cluster thresholds will 

show a lesser degree of inflated effects at smaller subsample sizes relative to whole-

brain analyses without using a cluster-based threshold. 
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MANCOVAs 

9. Sensitivity, or power, as well as PPV, will be greater for MANCOVAs than for 

univariate multiple regressions where the alpha threshold is p = 0.025. 

10. Degree of inflated effects at smaller subsample sizes will be smaller for MANCOVAs 

than for univariate multiple regressions where the alpha threshold is p = 0.025. 

Bayes Factors 

11. Measures of test accuracy will be negatively influenced at smaller subsample sizes to 

a lesser extent when Bayes Factors are used to determine test outcomes than where p-

values are used to determine test outcomes. 

12. Degree of inflated effects will occur at smaller subsample sizes to a lesser extent 

when Bayes Factors are used to determine test outcomes than where p-values are used 

to determine test outcomes. 
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Method 

Participants 

 A total of 362 participants were scanned at the Center for Advanced Magnetic 

Resonance Imaging (CAMRI) in Houston, TX (234 females; 216 Spanish-English bilinguals) 

across 8 separate studies.  There were originally 376 participants in all 8 studies, but some 

scans were not usable due to reconstruction issues (7), technical MRI scanning issues (6), or 

brain trauma (1).  Participants were primarily University of Houston students, as well as 

members of the greater Houston community.  Compensation was given in the form of either 

1) Starbucks or Target gift cards, or 2) course extra credit.  All participants were screened for 

background factors incompatible with MRI.  See Table 2 in the appendix for means and 

standard deviations, split between bilinguals and monolinguals, of background variables of 

interest, including age, language proficiencies, and age of second language acquisition.  

 Monolinguals, who reported limited knowledge of any language other than English, 

were asked to complete the Boston Naming Test (Kaplan et al., 1983) and/or the following 

subtests of the Woodcock-Muñoz Language Survey – Revised: picture vocabulary, followed 

by either passage comprehension or English listening comprehension (for detailed 

explanation of each subtest see Woodcock, Muñoz-Sandova, Ruef, & Alvarado, 2005). 

Spanish-English bilinguals were asked to complete the above measures both in English and 

Spanish to ensure qualification as a bilingual participant. 

Voxel-Based Morphometry (VBM)  

 T1-weighted high-resolution images were obtained from a Siemens Magnetom Trio 

3-T MRI scanner at the Center for Advanced Magnetic Resonance Imaging (CAMRI) at 
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Baylor School of Medicine in Houston, Texas. The T1-weighted Magnetization Prepared 

Rapid Gradient Echo (MPRAGE) scans were collected using the following parameters for 

the eight studies: repetition time (TR) = 1200 ms, echo time (TE) = 2.66 ms, flip angle (FA) 

= 12°, voxel size = 0.479 x 0.479 x 1.0 mm, 192 slices.  

The T1 scans were preprocessed through modulated normalized segmentation in 

order to create measures of grey matter volume, and without non-modulated normalized 

segmentation in order to create measures of grey matter density, using the Statistical 

Parametric Mapping (SPM) software (Ashburner et al., 2014; 

http://www.fil.ion.ucl.ac.uk/spm/).  All images were checked to confirm consistent 

orientation.  Region of interest (ROI) grey matter volume values were estimated using VBM, 

and both intracranial volume (ICV; used to control for overall brain size) and ROI volume 

data values extracted, using the SPM Computational Anatomy Toolbox (CAT12) SPM 

package (http://www.neuro.uni-jena.de/cat/). 

ROI Analyses 

ROI grey matter volume data was extracted from SPM and analyzed using the R 

statistical software (R Team, 2000).  Participants were randomly selected from the full 

sample at total sample sizes ranging from 20 to 280 in increasing increments of 20 (20, 40, . . 

. 280).  Every sample was controlled such that the proportion of bilinguals to monolinguals 

was 50:50. For instance, in a single sample size of 20 participants, 10 would be randomly 

selected bilinguals, and 10 would be randomly selected monolinguals.  For each sample size, 

1,000 randomized subsamples were created without replacement.   

http://www.fil.ion.ucl.ac.uk/spm/
http://www.neuro.uni-jena.de/cat/
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 Regressions that included language status (bilingual or monolingual) and ICV as 

predictors were conducted on each of 10 ROIs.  These included bilateral superior temporal 

gyrus (STG), basal ganglia (BG) anterior cingulate cortex (ACC), inferior frontal gyrus 

(IFG), and inferior parietal lobule (IPL).  ROIs were selected based on 1) published findings 

showing differences in either volume (left BG: Zou et al., 2012; left STG: Ressel et al., 2012; 

bilateral ACC: Abutalebi et al., 2015), density (left IFG: Mechelli et al., 2004; right IPL: 

Grogan et al., 2012) or cortical thickness (bilateral IFG: Klein et al., 2013), and 2) the 2007 

Abutalebi and Green model for regions associated with control during bilingual language 

processing, which includes the basal ganglia, ACC, IPL, and prefrontal cortex (including the 

IFG).  Significant differences in grey matter volume, grey matter density, and cortical 

thickness, as some of the most commonly used phenotypes in bilingual neuroimaging, served 

as determiners of potential regional brain differences.  The ‘true’ full-sample (N = 362) 

effects were calculated for each ROI, and compared with findings between subsamples.   

Several aspects of test accuracy were explored.  Achieved power per test, as well as 

the degree of effect size inflation (expected to be greater for significant effects within smaller 

subsamples, smaller true effects and more restrictive alphas) were graphed and summarized.  

The calculation of a ‘confusion matrix’ (Figure 1), which groups the percentage of 

significant or non-significant subsample tests vs. true or false full-sample tests, allowed for 

1) sensitivity and 2) positive predictive values, both positively associated with levels of 

achieved power, to be graphed across subsamples.  These are measures of both the 

consistency and accuracy of tests relative to the actual differences within the population.   

Sensitivity, or power, is calculated as the number of true positive findings (those 

which are both significant within a tested subsample and true in the population) divided by 
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the total number of true findings (true positive findings combined with false negative 

findings), and can be interpreted as the likelihood that a study is going to find a significant 

effect when there is a true effect present in the population.  Positive predictive value (PPV) is 

calculated as the number of true positive findings divided by the total number of positive 

findings (true positive findings combined with false positive findings), and can be interpreted 

as the likelihood that a significant effect found within a study is a true effect present in the 

population.  Because each of these are calculated by creating a cutoff value, two separate p-

value cutoffs were explored – one, a more stringent Bonferroni-corrected cutoff (p = 0.005 

for 10 total comparisons), and one less stringent (p = 0.025) – in order to explore differences 

in findings across alpha cutoff stringency. 

Whole-Brain t-tests 

 Whole-brain family-wise error rate (FWE)-corrected t-tests comparing grey matter 

density between monolinguals and bilinguals were conducted for random subsamples of the 

same description as in the ROI Analyses section.  Test significance, voxel cluster sizes, and 

peak voxel z scores were output by SPM for each of the random subsamples.  A threshold of 

20-voxel clusters was selected a priori as the cutoff for a cluster of meaningful difference.   

 In order to approximate the degree of overlapping clusters between subsample 

clusters and full-sample clusters, spheres of varying sizes, centered around peak cluster voxel 

differences, were manually calculated in R.  The spheres varied in size proportionately with 

the number of voxels within each cluster, such that roughly the same number of voxels were 

within each sphere.  A test was conducted to determine whether spheres from subsamples 

overlapped with those from the full sample (the ‘true effect’), and returned a ‘True Positive’ 

results for an overlap.  Any subsample sphere overlap with a full-sample sphere would count 
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as a single ‘True Positive’ instance, and more overlapping spheres were not counted as 

additional instances.  If a cluster from a subsample was significant but did not overlap with 

any from the full sample, this was considered a ‘False Positive.’  The total number of full-

sample spheres without any subsample overlap per subsample were counted as ‘False 

Negatives.’  Both the PPV and sensitivity were then calculated. 

 Peak z scores within each significant cluster were modeled across subsample sized in 

order to determine the degree of inflation in estimated effects.  As an exploration of the 

influence of a cluster-based threshold on observed effect sizes, peak z scores were also 

explored across subsample sizes without using a 20-voxel cluster threshold cutoff.  This 

ought to demonstrate a much higher degree of effect size inflation in lower subsamples than 

when a cutoff is used. 

 In order to determine the effect of sphere size upon estimations of overlapping 

clusters, spheres with roughly the same number of voxels as the original cluster around 

which they are centered were used in one exploration, and spheres with roughly twice the 

number of voxels were used in another.   

Also, due to the time-intensive nature of these analyses, whole-brain tests were only 

conducted on 250 random subsamples per sample size.  The results nonetheless demonstrate 

relatively smooth transitions in averages and counts between subsample sizes, suggesting that 

this is not an insufficient size of subsamples to accurately gauge changes in estimates with 

sample size. 
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Bayes Factors 

 Within the R statistical software, the BayesFactor package (Morey, Rouder, & Jamil, 

2015) allows for Bayes Factors to be calculated from general linear models which have been 

created and compared with other general linear models.  That is, a model which includes a 

term of interest, in this case ROI Volume ~ Language Status + ICV, compared with a model 

which does not, in this case Volume ~ ICV, allows for the relative contribution of Language 

Status alone towards explaining the variance in Volume to be calculated in terms of a Bayes 

Factor.  Using this package, Bayes Factors were calculated for the Language Status term, 

while using the default Jeffreys’ prior (1961) for each tested model.  This was done following 

the same randomized sample data selection process which is described in the ROI Analyses 

section. 

 Of interest is 1) the accuracy of Bayes Factors when a predefined cutoff is used, and 

2) the extent of inflation, if any, for Bayes Factors at lower subsample sizes.  The original 

cutoff chosen prior to testing was a Bayes Factor equal to 10, as this is described in Jeffreys 

(1961) as the cutoff between ‘strong’ and ‘very strong’ support of the evidence.  See Table 3 

for Jeffreys’ (1961) scale of strength of evidence when interpreting Bayes Factors.  However, 

in order to ensure consistency in the number of full-sample ROIs that were considered 

significant as with the p-value cutoffs for the original linear models, this was slightly 

adjusted to a Bayes Factor of 15. 

It should be noted that it is not recommended to create a cutoff between ‘significant’ 

and ‘non-significant’ when unnecessary, and the continuous nature with which Bayes Factors 

are treated is considered an advantage over the sharply separated p-value cutoffs- similar to 

effect sizes.  However, this cutoff is being used in order for a confusion matrix to be created 
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which can intuitively display the degree of accuracy in subsamples to predict the state of the 

full sample.  

Multivariate Analyses of Covariance 

  For each subsample across subsample sizes, a single Multivariate Analysis of 

Covariance (MANCOVA) with the predictors of language status (monolingual or bilingual) 

and ICV was conducted, using the same 10 ROIs described in the ROI Analyses section as 

outcome variables: bilateral STG, BG, ACC, IFG, and IPL.  The true positive rates were 

explored, along with eta-squared effect size estimates, and both the standardized and 

structure discriminant function coefficients.  The R candisc package (Friendly & Fox, 2017) 

was used to extract eta-squared values and discriminant function coefficients.   

Eta-squared are similar to r-squared values, with the difference being that the 

proportion of variance being explained by the predictor (language status) includes all of the 

outcome variables together.  The standardized discriminant function coefficients parallel beta 

weight coefficients in univariate ANOVA, where a larger observed coefficient suggests a 

stronger relationship between individual outcome variables (each ROI) and the predictor of 

interest, language status.  The structure discriminant function coefficients can be thought of 

as factor loadings of individual outcome variables (each ROI) upon the discriminant function 

itself.  This can help to give researchers an idea of the characteristics of the discriminant 

function which was selected by the analysis (Bray & Maxwell, 1985; Smith, 1958).   

Network Analyses 

 As an extended exploration into different treatments of the dependent ROIs, two 

separate combinations of ROIs were created as approximations of regions associated with 
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certain cognitive function ‘networks’: a cognitive control network, which includes the LIPL, 

bilateral BG, and bilateral ACC; and a language network, which includes the LSTG and 

LIFG.  Both were taken as combinations of regions from the original 10 ROIs, which had 

been selected based on findings from past bilingual-monolingual neuroimaging studies.  

Cognitive control network regions were selected based on Abutalebi and Green (2007), while 

language network regions were selected based on Hickok and Poeppel (2004).  A single 

measure of brain volume was created for each network by summing the ROIs associated with 

each. 

 The same linear regression and MANCOVA analyses described above were 

conducted on these network estimates of overall volume within regions related to each 

network (cognitive control and language).  Because multiple ROIs were summed, this means 

that a single univariate regression can test differences in the total volume across ROIs within 

each network, rather than one ROI at a time, which increases the critical alpha in order to 

correct for multiple comparisons.  The MANCOVA analyses were again single tests, this 

time including only 1) the cognitive control network ROIs, and 2) the language network 

ROIs.  Language status and ICV were again the predictors of both the regressions and 

MANCOVAs. 
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Results 

Whole-brain Full-sample T-tests 

 T-tests comparing grey matter density between bilinguals and monolinguals revealed 

a large number of FWE-corrected significantly different clusters greater than 20 voxels in 

size, where bilinguals show greater density than monolinguals.  Information on the 22 

significant clusters can be seen in Table 4, including region name, cluster sizes, peak voxel Z 

statistic, and MNI coordinates of the peak voxel differences.  No FWE-corrected full-sample 

differences were significant, regardless of cluster size, where monolinguals show greater 

density than bilinguals.  Because the subsample significance (FP) rates were so low across 

subsample sizes for comparisons of monolinguals greater than bilinguals, with a range of 

about 2 percent significance at the lowest subsample sizes to about 11 percent significance 

(with mostly single small clusters) at the largest subsample sizes, these were not further 

explored. 

 A number of the 5 bilateral regions selected for the ROI analyses were also found to 

have significantly greater volume in bilinguals than in monolinguals in the whole-brain t-test 

comparisons.  These include the bilateral IPL, right IFG, and right STG.  The left dorsolateral 

prefrontal cortex (DLPFC) was also a significant cluster, which has been previously found in 

fMRI studies of differences in bilingual and monolingual abilities to switch tasks 

(Hernandez, Martinez, & Kohnert, 2000).  The 5 largest clusters surrounded the bilateral 

anterior temporal lobes, right posterior cingulate gyrus, right IFG, and left primary visual 

cortex.  These also include 5 of the 6 most significant voxel differences. 
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Whole-brain T-test Accuracy 

 The accuracy of subsamples to predict the full-sample results was assessed by 

simplifying and measuring the number of overlapping subsample and full-sample clusters.  

Using spheres of voxels around each voxel of peak significance within each cluster (given in 

Table 4; spheres consisted of half the number of voxels as the original cluster), the number of 

full-sample clusters which overlap with any cluster from a subsample were counted as TPs.  

Missed full-sample clusters were counted as FNs, and subsample clusters which did not 

overlap with any full-sample clusters were counted as FPs. 

 Figure 2 shows the counts of these whole-brain cluster-specific outcomes for each 

subsample.  For subsample sizes below 50 or so per group, there is very little change in either 

the number of TPs or FPs.  Above 50 per group, TPs increase at a faster rate, but FPs are, 

interestingly, also seen to slightly increase with subsample size.   

 Figure 3 shows those same counts in the form of PPV and sensitivity.  As one would 

expect from the previous figure, sensitivity of whole-brain tests does not noticeably increase 

until roughly 60 participants per group.  PPV increases at a fast rate, reaching a maximum 

value of 0.80 at 120 / 130 participants per group.  However, it is important to note that this 

cutoff lies beyond the threshold of the average sample size seen in bilingual neuroimaging 

studies- which, as calculated from the selected studies earlier, lies at roughly 26 participants 

per group.   

Interestingly, if the sizes of spheres are greatly inflated to include 20 times as many 

voxels as the original clusters, similar rates of test outcomes are seen (Figure 4).  This 

suggests that the test of overlapping peak voxels is not necessarily insensitive to see what 
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would otherwise be overlapping clusters, but instead that underpowered subsamples are in 

fact inadequately finding clusters that are truly present in the full sample.  Sensitivity in the 

lenient overlapping tests are the same, while PPV does increase significantly faster (Figure 

5).  This suggests that the clusters are simply not being found at all (with a cutoff of 20 

voxels per cluster) in the subsamples- while all full-sample clusters that are present in each 

subsample are being found (thus the high PPV), sensitivity remaining low means that this is a 

small proportion of the full-sample clusters that should be found. 

Whole-brain Effect Size Inflation 

 Contrary to what was expected based on Cremers, Wager, and Yarkoni (2017), who 

showed inflated effects in small sample sizes for simulated fMRI data, the effect sizes of 

peak voxel differences are not inflated at lower subsample sizes (Figure 6).  In fact, it 

appears that higher subsample sizes generally show higher peak z score voxel differences, 

which is what would be expected with increased sample sizes generally- especially for true 

effects. 

 One major difference with Cremers, Wager, and Yarkoni (2017) is that they did not 

perform corrections for multiple comparisons, nor did they create a cluster size cutoff for 

significance.  The authors instead used a general alpha = 0.01 significance threshold for 

descriptive purposes.  Therefore, in order to determine the extent to which the cluster cutoff 

influenced our estimates of inflated effects, a peak voxel z scores across subsamples were 

also explored where all significant clusters were included (Figure 7).  Ignoring a cluster 

cutoff does take away much of the difference in effect size, but there is still no hint of 

inflated effects in smaller subsample sizes.  If there are differences across subsample sizes, it 
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appears that larger subsamples have more large effects than smaller subsamples- though this 

doesn’t seem to substantially change the median value.   

Whole-brain t-tests were also conducted where only a general alpha = 0.01 was used, 

and this demonstrates even an even stronger difference in peak Z-score effect sizes across 

subsample sizes, in the opposite direction than expected (Figure 8).  It is possible that this 

relates to the very strong whole-sample effects, where bilinguals show much greater grey 

matter volume than monolinguals, whereas Cremers, Wager, and Yarkoni (2017) found the 

strongest amount of inflation to be in a whole-brain effect which was small but dispersed 

throughout many brain regions. 

Full-sample ROI Univariate Multiple Regressions 

 Table 5 contains the R-squared effect sizes and p values for the linear multiple 

regressions which included all 362 participants.  The full-sample results, which represent the 

‘true’ outcomes to which subsamples are compared, reveal volume in the RACC to be 

predicted by language status at p = 0.028 (t = 2.21), and in the RIPL at p = 0.0008 (t = 3.37), 

when controlling for ICV.  Each of the other eight ROIs were non-significant with p’s > 0.20.  

Because alpha cutoff corrections for multiple comparisons were chosen a priori as p = 0.005 

(Bonferroni correction; more stringent) and p = 0.025 (less stringent), the full-sample RIPL is 

the only ROI which survives correction.  This is therefore the only region of the 10 which 

serves as a ‘correct’ detection of a significant full-sample effect. 

ROI Replication Rates Using a Cutoff Value 

Figure 9 shows changes in the accuracy of findings across subsample sizes.  For each 

of the 10 ROIs, the amount of variance contributed by language status (bilingual or 
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monolingual) is either significant (p < 0.005) or non-significant (p > 0.005).  This was 

compared to the full-sample results (all 362 subjects) for each ROI, where findings were also 

tested at a Bonferroni-corrected p value of 0.005.  Significant subsample findings are called 

‘Positive’, and non-significant subsample findings are called ‘Negative’.  If the subsample 

finding matches the full sample finding, it is ‘True’; if it does not match, it is ‘False’.  

Thus, in a ‘True Positive’ finding for a single ROI, a significant amount of variability 

in the region (measured with volume) is explained by language status in the full sample, and 

this is also found in the smaller random subsample.  In a ‘False Positive’ finding, a 

significant amount of variability in the region is not explained by language status in the full 

sample, but language status is still found to be significant in the smaller random subsample.  

In a ‘True Negative’ finding, a significant amount of variability in the region is not explained 

by language status in the full sample, and language status is also not found to be significant 

in the smaller random subsample.  In a ‘False Negative’ finding, a significant amount of 

variability in the region is explained by language status in the full sample, but language status 

is not found to be significant in the smaller random subsample.  See Figure 1 for a simple 

visualization.  For instance, if a significant amount of variability in right ACC volume is 

explained by language status in the regression for the full sample, but is not found to be 

significant in a random subsample of 30 monolinguals and 30 bilinguals, this would count as 

one instance of a ‘False Negative’ for N = 30.   

True Negatives were not included, as they 1) did not change significantly across 

subsample sizes, and 2) were much more numerous than the other three outcomes, making it 

more difficult to compare the other outcomes.  True Negatives occurred in roughly 5 out of 6 
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tests across subsample sizes. Figure 9 is cut off at 1,000, but the true total number of tests for 

each subsample size is 10,000.  

ROI Multiple Regression Accuracy 

Figure 9 demonstrates that, at a Bonferroni-corrected critical cutoff of p = 0.005, as 

subsample size increases, the likelihood of finding a true positive effect also increases, the 

likelihood of finding a false negative decreases, and the likelihood of finding a false positive 

is stable, with a slight decrease.  As we would expect, increasing the subsample size of a 

statistical test has positive effects on the accuracy of that that test to guess at the ‘true 

population-level’ group differences. 

However, what researchers view as ‘acceptable’ rates of true vs. false findings (often 

a power of 0.80, or false negative rates limited to 20% where findings in the full sample are 

actually positive) is not even approached at the highest subsample sizes.  At the lowest 

subsample size, 10 monolinguals vs. 10 bilinguals, a very small proportion of tests (less than 

4%) are detecting the only truly significant full-sample effect of RIPL.  At this rate of true 

positive findings, tests are actually more likely to be falsely detecting a difference which is 

actually not significant within the full sample (roughly 5%).  The rate of true positive 

findings only becomes greater than false positives where tests are conducted with 30 

monolinguals and 30 bilinguals in each group- the difference between a true positive and a 

false positive is roughly a coin flip, which lasts until subsamples with 70 or more participants 

in each group are attained.  

What is often thought of as a minimum level of power, 0.80, is not even achieved 

with the largest subsamples consisting of 140 participants per group (280 total).  As covered 
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by Yarkoni (2009), the factors of 1) small effects (which are often an issue in neuroimaging 

studies), 2) multiple comparisons, such as the case here of using many ROIs, and 3) a 

stringent alpha restriction (Bonferonni-corrected p = 0.005, used here, is somewhat stringent, 

though not so when compared to whole-brain analyses) all combine to reduce achieved 

power.  With the purpose of clarifying the effects of alpha stringency on test accuracy, the 

outcome of using a relatively less stringent alpha of p = 0.025 was explored.  This is detailed 

in Figure 10, which shows the same accuracy metrics for subsample vs. full samples as 

Figure 9, with the only difference being that the threshold of significance was changed from 

p = 0.005 in Figure 9 to p = 0.025 in Figure 10. 

Figure 10 demonstrates an increase in the rates of True Positives across all subsample 

sizes, especially as subsample sizes increase- since the threshold to significance is lower, it is 

more likely to find a truly significant difference in the random subsamples.  It is also clear 

that False Negative rates, nearly 100% for a more stringent alpha correction, start off lower 

(roughly 85%) and decrease more rapidly as subsample sizes increase.  This means that at the 

highest subsample size of 140 per group, a power of 80% is nearly reached – but still not 

quite.  However, this is a tradeoff with increased overall False Positive rates.  For subsamples 

below 60 per group, researchers would be more likely to falsely conclude that a test was 

significant than to accurately do so – and at the lowest subsample sizes, they would be much 

more likely to reach such a misleading conclusion. 

 Positive Predictive Value (PPV), or the number of True Positive findings out of the 

total number of positive subsample findings, is (again) a metric used to measure the 

likelihood that an observed positive (significant) finding is reflective of a finding that is 

actually positive within the full sample.  Figure 11, with a critical alpha cutoff of p = 0.005, 
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shows that although the PPV increases with subsample size, it is very unlikely (about a 25% 

chance) in many of the smaller subsample sizes that a positive result actually reflects a true 

population finding.   

 Sensitivity, or the number of True Positive findings out of the total number of true 

full-sample findings, is a metric used to measure the likelihood that a subsample will return a 

positive (significant) result when it should.  In the context of this test and these ROIs, the 

only positive full-sample outcome is the RIPL.  So, here, sensitivity refers to the likelihood 

of a subsample finding a significant different in the RIPL.  Figure 12, again with a critical 

alpha cutoff of p = 0.005, shows a dismal sensitivity across subsample sizes for a test to find 

a significant difference in the RIPL, where it should be found. 

ROI Effect Size Inflation 

 Yarkoni (2009) has shown with simulated fMRI data that underpowered tests 

combined with strict alpha corrections are more likely to have inflated significant outcomes.  

This is at first counterintuitive, in that lower subsample sizes often mean smaller observed 

effect sizes.  This is true when we think of an individual statistical test, without regard for 

whether it is significant.  But, as discussed by Yarkoni, when studies are restricted to findings 

with very restrictive alpha cutoffs, this creates a scenario where smaller subsample sizes need 

to have larger effects in order to become significant, on average.  So, with a higher critical 

cutoff and many potential comparisons being looked at, researchers would be more likely to 

find higher-than-actual effect sizes from subsamples which are small than from large 

subsamples. 
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 The present data reflected the phenomenon described in the above paragraph.  

Looking at the variability in effect sizes across subsamples, Figure 13 shows that as 

subsample size increases, the average significant observed R-squared effect size (where the 

Bonferroni-corrected alpha = 0.005) decreases in size, especially for subsamples less than 40 

per group in size.  This variability is seen to ‘stretch’ the interval of observed effects away 

from the true average, which is closer to the observed R-squared 0.015 for the only 

statistically significant difference in the RIPL comparison (see Table 5 for all full-sample test 

effect sizes).  So, smaller subsamples are more likely to see inflated effects when significant, 

and observed effect sizes asymptotically approach the true full-sample effect size as 

subsample size increases.   

 Also consistent with Yarkoni (2009), less stringent alpha cutoffs (p = 0.025) show a 

smaller amount of average inflation away from the true full-sample R-squared effect size. 

Figure 14, shows that with a less stringent alpha cutoff, smaller subsample sizes differ less in 

average observed R-squared values relative to larger subsamples. So, increased power that 

results from less stringent alpha cutoffs does lead subsamples to more accurately estimate the 

true effect sizes.  However, it should be noted that this is just demonstrated for illustrative 

purposes; it is not recommended to trade increases in Type I errors, which are potentially 

more damaging false conclusions for researchers to make, for decreases in Type II errors.  

This is likely a part of the reason why stringent alpha cutoffs are often prioritized over 

adequate power for statistical tests.  The primary ways to address these issues, addressed in 

further detail below, would be to strive for increased subsample sizes, and more consistent 

and powerful statistical methods across studies. 
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Full-Sample ROI Bayes Factors 

 Table 6 contains the Bayes Factors for the model comparisons which included all 362 

participants.  These full-sample results, which again refer to the ‘true’ outcomes to which the 

subsequently explored subsamples are compared, show that the relative evidence 

substantially-to-strongly favors a model with RACC as the outcome (Bayes Factor = 10.40), 

while evidence decisively favors a model with RIPL as the outcome (Bayes Factor = 243.60).  

All other ROIs resulted in Bayes factors between 1.0 and 2.0, which is considered evidence 

barely worth mentioning.  This mirrors the linear multiple regression results, which also 

showed the RACC and RIPL to be significant at 0.05, and only the model predicting volume 

in the RIPL to be significant at 0.005.  Therefore, this is again the only region of the 10 

which serves as a ‘correct’ detection of a ‘significant’ full-sample effect.   

ROI Bayes Factor Accuracy 

 The use of Bayes Factors was shown to be very similar to the original regressions in 

terms of degree of accuracy towards predicting outcomes in the full sample, when results for 

a Bayes Factor cutoff of 15 is compared with those for alpha value cutoffs of 0.025. Figure 

15 demonstrates a very comparable plot of the rate of true positives, false positives, and false 

negatives across subsample sizes using Bayes Factors relative to the standard linear multiple 

regressions at a 0.025 alpha cutoff (Figure 10).  TP rates are nearly identical, but the average 

FP rate is overall lower- from an average of 230 FPs per 10,000 to 125.  Likewise, Figure 16 

shows extremely similar PPV and sensitivity curves across subsample sizes relative to Figure 

12.  In terms of accuracy of effects detected (or not) at a cutoff, the primary difference in 

accuracy for using a Bayes Factor cutoff of 15 vs. an alpha cutoff of 0.025 appears to be 

similar to a simple difference in cutoff stringency.  That is, a slightly more stringent alpha 
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cutoff, such as between 0.025 and 0.005, would have a similar effect where both FPs and TPs 

are slightly decreased. 

ROI Bayes Factor Effect Size Inflation 

On the other hand, Figure 17 demonstrates substantially different influences of 

subsample sizes for Bayes Factors.  While effect sizes were clearly inflated beyond the 

largest full sample effect sizes in linear multiple regressions (Figures 6 and 7), Bayes Factors 

were not inflated in smaller subsample sizes (Figure 17).  In fact, sizes of Bayes Factors only 

reach the size of the truly ‘significant’ full-sample Bayes Factor of 243.60 (RIPL) a handful 

of times in the smallest of subsample sizes (group subsample sizes = 10 or 20), and 

overestimations of the size of Bayes Factors occur more frequently from there.  This suggests 

that the use of Bayes analyses actually somewhat underestimates the sizes of the Bayes 

Factors in smaller subsamples. 

ROI Full-sample MANCOVAs 

 MANCOVAs, which in this context treat multiple ROIs as dependent variables in a 

single test, were also explored.  Within the full sample, there was a statistically significant 

difference between bilinguals and monolinguals on the combined ROI dependent variables 

after controlling for ICV, p(10, 350) = 0.0002, F = 3.47, Pillai’s trace = 0.09. The obtained 

eta-squared for ICV is 0.69, and the obtained eta-squared for language status 0.079.  Table 7 

shows both the standardized and structural coefficients for language status in the full sample 

MANCOVA test.  Consistent with the univariate multiple regression results, the RIPL has 

the largest of both standardized and structural coefficients, and the RACC is estimates among 

the second largest structural and third largest standardized coefficient (very slightly below 
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LIPL), demonstrating the strength of relationship between each specific ROI and language 

status.  

MANCOVA Accuracy 

 Because only one outcome is true in a single MANCOVA test, each subsample 

outcome was compared to the significant full-sample result.  Figure 18 therefore shows only 

the rate of TPs and FNs across subsample sizes, both of which are a difference of the 

opposite measure from the total number of subsamples per group (1000).   

It is clear that the rate of true outcomes is much more favorable where the 

MANCOVA was used.  At about 60 participants per language group, an equal number of true 

(TP) and false (FN) outcomes are seen, and beyond this a consistently linear approach to 

100% TP outcomes is seen.  However, samples of about 20 or 30 per language group are 

only 25% likely to show the significant finding.  This means that the most commonly used 

sample sizes in structural neuroimaging studies of bilingualism, while having improved 

overall accuracy relative to many univariate regressions, are still not consistently finding a 

strong positive outcome in the full sample. 

MANCOVA Effect Size Inflation 

 Eta-squared, a similar measure to r-squared in univariate regression tests, was 

explored here to examine the consistency of effect sizes attributed per subsample size to 

language status in the MANCOVA test.  Figure 19 shows a substantial amount of increased 

inflation in smaller subsample sizes for MANCOVA tests than was observed in even the 

more stringently-corrected univariate regression tests (Figure 13).  While r-squared estimates 

in univariate tests are very inflated for 10 participants per language group, they stabilize 
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(decrease to 0.10 and below) for subsamples with 20 and more participants per group.  

Meanwhile, the eta-squared estimates in MANCOVAs are even more inflated at the lower 

subsample sizes, with nearly 75% of subsample eta-squared estimates resting above 0.40 in 

size where subsamples include 20 participants per language group, and estimates being about 

double the true effect size on average even at roughly 50 participants per group. 

 This could be due to the fact that the MANCOVA, as a single test with a high eta-

squared estimate (0.079), is more likely to show inflated effects than the many univariate 

tests, of which only two (RIPL and RACC) r-squared slightly exceeded 0.01 in size.  This 

appears to present a divergence in terms of the overall likelihood of an accurate test vs. the 

degree of inflated effect sizes.  While power is preserved in multivariate tests and this allows 

for a higher chance of an accurate test outcome, the inflation of multivariate eta-squared 

effect sizes appears to be greater than the inflation of univariate r-squared effect sizes. 

MANCOVA Coefficient Consistencies 

 MANCOVA coefficients allow for interpretations of the degree of estimated 

influence of each ROI towards a calculated discriminant function.  The consistencies of these 

coefficients were explored across subsample sizes, in the form of visualizing both moderately 

large and very small ROI values for both standardized (Figure 20) and structural (Figure 21) 

coefficients.  Table 7 includes each of the estimated coefficients for all 10 of the ROIs.   

 Figure 20 demonstrates that, for a very small coefficient estimate (LACC), while the 

interquartile range is consistently around the true value (-0.02), the amount of variability 

decreases as subsample sizes increase.  Meanwhile, for a moderately large coefficient 

estimate (LIPL), estimates in the smallest sample sizes begin by underestimating the true size 
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of the coefficient (0.55); for samples with 60 or fewer participants per group, about 75% of 

the subsamples underestimated the coefficient size.  Estimates normalize around the true 

value as subsample sizes increase. 

 Figure 21 shows similar trends, this time for structural coefficients.  Again, a very 

small coefficient estimate (LBG) is centered near its true value (0.02) across subsample sizes, 

and decreases in the amount of variability around this value as subsample sizes increase.  

Meanwhile, a moderately large coefficient estimate (RACC) underestimates the size of the 

coefficient in smaller subsamples, and approaches the true value (-0.40) as subsample sizes 

increase.  Again, more than 75% of subsamples underestimate the size of the true effect, and 

these appear to require a larger number of participants per group to normalize around the true 

size than was seen for the LIPL in Figure 20.   

Brain Network Full-sample Analyses 

 While ROI analyses are commonly approached as separate univariate analyses in the 

bilingual neuroimaging literature, one potential way to treat the many ROIs may be to 

combine them into meaningful groups based on overlapping cognitive functions.  The chosen 

networks were a cognitive control network, consisting of the LIPL, bilateral ACC, and 

bilateral BG, and a language network, consisting of the LIFG and LSTG.  In order to create 

aggregated measures of volume in these regions, the selected ROIs were summed into single 

‘network scores’ which were investigated to indicate differences in total volume in regions 

considered important to these cognitive abilities.  Each of these network variables were 

investigated in univariate regressions, as well as in MANCOVAs where the ROIs were 

included as individual dependent variables. 
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 The full-sample univariate multiple regression results reveal neither an aggregated 

cognitive control network measure (p = 0.20, R-squared = 0.002) nor an aggregated language 

network measure (p = 0.67, R-squared = 0.0002) to be significantly predicted by language 

status when controlling for ICV.  Table 8 contains the estimated mean differences, test 

statistics, p values, and R-squared effect sizes for both network full-sample univariate 

regressions. 

 The MANCOVA results, meanwhile, found a significant amount of variability to be 

explained in only one of the chosen networks.  Within the full sample, there was a 

statistically significant difference between bilinguals and monolinguals on the cognitive 

control-related ROI dependent variables after controlling for ICV, p(5, 355) = 0.033, F = 

2.47, Pillai’s trace = 0.034. The obtained eta-squared for ICV is 0.59, and the obtained eta-

squared for language status 0.019.  Table 9 shows both the standardized and structural 

coefficients for language status in the full-sample cognitive control network MANCOVA 

test.  RACC, the second-most influential dependent variable towards the discriminant 

function of all 10 ROIs, becomes most influential using both standardized and structural 

coefficient measures among the cognitive control network ROIs (where RIPL is removed).  

There was not a statistically significant difference between bilinguals and monolinguals on 

the language-related ROI dependent variables after controlling for ICV, p(2, 358) = 0.093, F 

= 2.39, Pillai’s trace = 0.013. The obtained eta-squared for ICV is 0.59, and the obtained eta-

squared for language status 0.007.  Table 10 shows both the standardized and structural 

coefficients for language status in the full-sample language network MANCOVA test. 
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Brain Network Regression Accuracy and Effect Size Inflation 

 Figure 22 shows the accuracy of subsample outcomes for univariate regression tests 

of the aggregated cognitive control network ROI measure.  Because the true full-sample 

effect is non-significant, only FPs and TNs are possible outcomes.  It is clear that there is 

little change across subsample size, with slightly less than 10% of all outcomes being untrue 

FPs until the highest subsample sizes, when a slight decline can be seen.  Figure 23 shows 

the R-squared effect size distributions across subsample sizes for univariate regression tests 

of the cognitive control network measure.  A similar trend of inflated effects in the smallest 

subsample sizes can be seen as with Figure 14, which shows R-squared effect sizes for all 10 

univariate ROI regression tests across subsamples. 

 With similar full-sample outcomes, the exploration of subsample accuracy and effect 

sizes do not greatly differ for aggregated language network ROI outcomes.  Figure 24 shows 

the accuracy of subsample outcomes across subsample sizes for language network univariate 

regression tests, and here we again see little change across subsample sizes.  The total 

number of FPs does seem to be smaller relative to cognitive control network tests, which may 

be due to an extremely small effect size (R-squared = 0.0002), even relative to the already-

small effect size observed in the full-sample cognitive control network test (R-squared = 

0.002).  Figure 25 also shows an extremely similar trend for inflated R-squared effects in the 

smallest subsample sizes as was seen in Figure 23.  While the use of a single outcome 

variable for each of the networks of interest allows for alpha corrections for multiple 

comparisons to be avoided, the lack of full-sample significance make deeper interpretation of 

the influences of subsample size difficult. 
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Brain Network MANCOVA Accuracy, Effect Size Inflation, and Coefficients 

 The same ROI networks were explored using MANCOVAs, this time without first 

combining the ROIs into a single measure.  The MANCOVA tests overall relatedness of the 

predictors, here language status and ICV, with each of the outcome variables, here whichever 

of the ROIs are entered in as dependent variables.  This is a more holistic test of whether the 

predictors influence the outcome variables, and is truer to considering the variance between 

each of the outcome ROIs than when they are simply summed into a single aggregate 

measure, as was done in the univariate multiple regressions. 

 Figure 26 shows the accuracy of subsample outcomes for MANCOVA tests of 

cognitive control-related ROIs.  Because this was the only significant full-sample brain 

network test, outcomes in subsamples are either TPs or FNs.  Though the number of TPs is 

lower than is ideal for many of the subsample sizes (below 25% TP until 80 participants per 

group and above, and never reaches 50% TP), the accuracy of outcomes (number of observed 

TPs) does increase linearly across subsample sizes.  Consistent with the MANCOVA tests of 

all ROIs (Figure 19), Figure 27 shows that the Eta-squared effect sizes are inflated in the 

lower subsample sizes, though to a lesser degree.  Also consistent are the changes in both 

standardized (Figure 28) and structural (Figure 29) MANCOVA coefficients across 

subsample sizes.  Again, the more influential ROI (here, RACC in both standardized and 

structural coefficients) is seen to be underestimated in smaller subsample sizes. 

 Figure 30 shows the accuracy of subsample outcomes for MANCOVA tests of 

language-related ROIs.  A non-significant full-sample finding means that subsamples are 

either FP or TN, and a relatively high rate of FPs across subsample sizes, at just below 25% 

of outcomes, can be seen.  The number of FPs do seem to actually, very slightly, increase 
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across subsample sizes.  Eta-squared effect sizes, shown in Figure 31, appear to only be 

slightly inflated in lower subsample sizes, and again approach the true full-sample effect size 

estimate as subsample sizes increase.   

Figure 32 shows changes in estimates of standardized coefficients, and Figure 33 

changes in structural coefficients, across subsample sizes for LIFG and LSTG, the only two 

ROIs in the language network.  Standardized coefficients are consistent with earlier displays 

of changes in moderately large coefficient accuracy across subsample sizes, but structural 

coefficients appear to differ.  For both LIFG and LSTG, there is a very large amount of 

variability in structural coefficient estimates across subsample sizes, and this decreases 

somewhat with increases in subsample sizes.  However, structural coefficient estimates of 

LIFG are uniquely overestimated in the smallest subsample sizes, and actually somewhat 

decrease to approach closer estimates as subsample sizes increase.  This is likely related to 

the extreme variance for both estimates, with the entire range of coefficients being included 

within 1.5 standard deviations of the median value, which itself lies above the true coefficient 

value for the LIFG in the majority of subsample sizes. 
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Discussion 

The present study illustrates the inaccuracies which might be expected from 

underpowered samples in neuroimaging, specifically when investigating bilingual-

monolingual differences in brain volume.  Though this is the framework through which the 

results are being viewed, as shown in Cremers, Wager, and Yarkoni (2017), these effects are 

generalizable to MRI / fMRI studies, and likely for any study which uses the frequentist 

statistical approach to experimental testing.  Also explored are a number of infrequently 

utilized options for exploring group differences in more powerful ways, which has revealed 

certain benefits as well as potential drawbacks. 

Whole-brain T-tests 

 The whole-brain t-tests showed that monolinguals did not have greater grey matter 

volume in any brain regions relative to bilinguals, while bilinguals had greater grey matter in 

22 separate clusters.  This supports previous findings that have found bilingual experience to 

be related to greater grey matter volume. 

 However, the finding was not present in smaller subsamples whatsoever, regardless 

of the leniency of the test- no clusters greater than 20 voxels in size survived the FWE 

correction.  TP clusters were more consistently found as subsample sizes increased, with the 

overall FP rate only slightly increasing.  This is a demonstration of the importance of using 

adequate sample size when strenuous whole-brain FWE correction is used.  Until roughly 70 

participants per group were included in the whole-brain t-tests, no overlapping clusters were 

found between subsamples and full-samples, regardless of the leniency of overlap testing.  

The main influence of increased test leniency was an improved PPV at moderately large 
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subsample sizes (30-70 participants per group), though this is simply indicating improved 

accuracy for the few clusters which were found to be significant at these subsample sizes. 

 The inflation of peak cluster effect sizes is unexpectedly absent from whole-brain 

findings, regardless of whether clusters were cut off at greater than 20 voxels per cluster or 

not.  This is likely due to FWE correction being used, which was not used (for descriptive 

purposes) in Cremers, Wager and Yarkoni (2017).  This suggests that, for whole-brain t-tests 

of brain density comparing groups, such effect size inflation may not be as much a problem 

as with uncorrected fMRI testing. 

ROI Univariate Multiple Linear Regressions 

Full-sample univariate multiple linear regressions which separately tested language 

status for each of the 10 ROIs showed that the RIPL was the only region which survived 

Bonferroni corrections (p = 0.0008), with the RACC approaching significance (p = 0.028).  

The RIPL replicates a finding by Grogan et al. (2012), though Grogan et al. had found this 

region when using grey matter density as an outcome, and not grey matter volume.  The 

RACC is not quite significant, but is consistent with grey matter volume findings by 

Abutalebi et al. (2015). 

Several regression tests of ROIs resulted in the expected lack of accuracy due to 

insufficient sample sizes.  Inadequate power is related to an inability to find true sample 

differences, as well as a higher likelihood of showing significant effects that are not truly 

significant within the population- not because of increased FPs, but because of an increased 

proportion of FPs relative to the number of TPs.  Because bilingual neuroimaging studies lie 
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on the smaller end of the explored subsample sizes at an average N = 26, this paints a picture 

of inadequate sample sizes clearly  

Beyond this, smaller samples which result in significant findings are more likely to 

present inflated effect sizes.  This is true to an even greater extent where more stringent alpha 

corrections are used.  ROI analyses do not appear to increase power enough to improve 

inflated effect sizes in the smallest sample sizes- which are also the range of sample sizes 

most commonly achieved in bilingual neuroimaging studies.  Such inflated effects could 

hinder meta-analyses and calculations for necessary power analyses in future studies by 

giving researchers inaccurate measures for expected effect sizes. 

ROI Bayes Factors 

 The exploration of Bayes Factors across sample sizes serves as an initial foray into 

expanding replicability investigations into relevant areas of statistics, but is not meant to 

represent an in-depth investigation of the factors influencing replicability using Bayesian 

inference.  Bayes Factors are here simply calculated and compared with output from 

traditional frequentist analyses without manipulating prior values beyond the identical 

frequentist null-model likelihoods. 

 The use of Bayes Factors calculated from univariate multiple regressions, with a 

Bayes Factor cutoff of 15 in order to determine significance, revealed an extremely similar 

distribution of accuracy of outcomes as what was found for the multiple regressions with an 

alpha cutoff of 0.025.  This is consistent with expectations as long as a similar cutoff is used, 

as the Bayes Factors were calculated from those same multiple regression analyses which 

were earlier explored.   
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However, the degree of effect size inflation is greatly reduced relative to the original 

regressions.  Whereas significant R-squared effects were inflated for the smallest subsample 

sizes (10-30 per group), significant Bayes Factors are not at all inflated at the smaller 

subsample sizes.  Effects actually appear to increase across subsample sizes.  This suggests 

that the use of Bayes Factors may pose benefits in terms of estimating effect sizes at lower 

sample sizes.  This is likely due to the prior assumptions made in the BayesFactor R 

statistical package to calculate Bayes Factors, which assumes large effects are less likely than 

smaller effects (Morey, Rouder, & Jamil, 2015; Ioannidis, 2008a; Ioannidis, 2008b).   

 Though it would make for an interesting extension, an investigation into the 

influences of informative vs. uninformative priors towards the necessity for a large sample 

size is beyond the scope of this project.  In a comparison of Bayesian and classical 

frequentist approaches, Sadia and Hossain (2014) demonstrate how the Bayesian method 

requires smaller sample sizes when more informative prior information is used.  An applied 

exploration of the extent to which samples can be optimized with informative prior use 

would help to clarify the utility of Bayesian analyses towards small-sample research 

questions. 

ROI MANCOVAs 

 The full-sample MANCOVA including all 10 ROIs was very significant, suggesting 

that language status, while controlling for ICV, is significantly related to the included ROIs 

together.  Post-hoc discriminant analyses demonstrated consistent results with the univariate 

multiple regressions, where the sizes of both RIPL and RACC coefficients showed them to 

be most related to the calculated discriminating function.  The use of these coefficients may 

pose a more holistic method to compare ROIs on predictors than to use a univariate test of 
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each, as this allows for overlapping ROI variances to be considered within both the entire test 

and the post-hoc ROI-specific discriminant analyses. 

 Subsamples revealed the number of observed TPs to increase linearly with subsample 

sizes, with a relatively high value at lower subsample sizes.  The high number of overall TPs 

is likely related to the significance of the effect, though the sensitivity of a MANCOVA 

analysis to detect differences in the many ROIs is here demonstrated relative to univariate 

tests. 

 Interestingly, the degree of Eta-squared effect size inflation is much greater at the 

smaller subsample sizes relative to the univariate tests.  Smaller-sampled MANCOVA tests, 

while more likely to return a TP result in this scenario, were also more likely to return 

inflated effect sizes.  Conversely, discriminant function coefficients were shown to be 

underestimated at smaller subsample sizes if they were moderately large.   

Although multivariate analyses do not test the significance of each individual 

dependent variable, their use in determining whether predictors are related to multiple 

dependent variables was shown here.  Because it is only a single test, stringent correction for 

multiple tests is also able to be avoided.  Moreover, post-hoc discriminant analyses allowed 

for each ROI to be examined in terms of their influence towards the predictors.  Two 

potential drawbacks that researchers should be mindful of, however, are 1) a greater tendency 

for returning inflated Eta-squared effect sizes, and 2) a tendency for moderately large 

discriminant function coefficients (both standardized and structural) to be underestimated at 

smaller subsample sizes. 
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ROI Network Analyses 

 Neither the univariate nor multivariate full-sample network analyses appeared to be 

more sensitive overall tests, nor did subsample sizes appear to be uniquely related with either 

network relative to analyses which included all 10 ROIs.  Both non-significant univariate 

multiple regression explorations showed a consistent number of FPs across subsample sizes, 

and similar amounts of effect size inflation in the smallest subsamples.  While MANCOVA 

using cognitive control brain network ROIs did result in a significant test, the observed 

trends across subsamples was consistent with earlier findings.  Only for the non-significant 

MANCOVA using language brain network ROIs was a difference found.  For the larger 

structural coefficient of the two ROIs, LIFG, the trend in lower subsample sizes was for 

slightly inflated coefficient estimates.  This is the opposite of what was seen for other 

moderately large MANCOVA coefficients, and may relate to the very high amount of 

variance in this coefficient across subsample sizes. 
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Conclusion and Future Directions 

 The negative influences of inadequate sample sizes in testing the influence of 

language experience on measures of brain structure were explored in this paper.  Significant 

drawbacks in wholebrain t-tests and ROI analyses were found, while multivariate analyses 

and Bayes Factors offered certain alternatives to mitigate some of these drawbacks.  While 

MANCOVAs were seen to have better power and more sensitive tests of differences, they 

also showed even more inflated Eta-squared effect sizes than were seen for R-squared effects 

in the univariate regressions.  Also, while Bayes Factors showed nearly identical test 

accuracy where a cutoff is defined, their utility in measuring the effect sizes across 

subsample sizes, without having a trend for inflated effects in smaller subsample sizes, was 

shown.  It is important for these tools to be more fully explored in the context of 

underpowered studies.  A multivariate Bayesian analysis may prove to be the best of both 

worlds, but could pose its own unique risks as well.  In the field of bilingual neuroimaging, 

such an analysis could be particularly useful, but remains to be investigated. 

While the influences of power within bilingual neuroimaging analyses were explored 

here, other potentially influential factors also ought to be considered in planning and 

conducting future studies.  García-Pentón et al. (2015) suggest that these include ensuring 

randomized (less region- and population-specific) sample selection, as well as clearer and 

more consistent operationalization of variables between studies, such as the definition for a 

“bilingual” versus a “monolingual.”  Without a clear and consistent definition of what 

constitutes a ‘bilingual,’ it is very difficult, if not impossible, to study ‘bilingual-monolingual 

differences.’   
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One of the first responses to requests for larger samples in research is, 

understandably, “Okay, then.  Give us the money and we’ll collect more participants!”  

Larger samples are the most direct way to achieve higher power, and ought to be aimed for 

whenever certain effects / analyses require it, but sample size is not the only influencer on 

achieved power.  Button and colleagues (2013), after criticizing the trend for inadequate 

power in the neurosciences, list several methods to help improve researcher practices, which 

would have a positive impact on replicability of findings in the long term.   

First, if an a-priori power calculation is conducted, researchers will have a good idea 

as to how many participants would need to be collected in order to run certain statistical tests.  

This relates to study pre-registration, which holds researchers accountable to their original 

hypotheses, and (in certain journals) allows for studies to be published based upon their 

designs and investigations alone, rather than on significant findings- thus also decreasing the 

“file-drawer” problem of unpublished null results.  Also, considering that larger grants are 

not always available for optimal sample sizes, Button recommends collaboration between 

labs with similar data.  This would not only make larger sample sizes available, but would 

also somewhat alleviate the problem of lab- and region-specific findings. 

The present study is an exploration of the influences of inadequately powered studies 

in the hopes of having a more direct impact on researcher practices.  This is aimed towards 

revealing how accurately studies in the bilingualism literature are approximating population-

level brain structure differences between bilinguals and monolinguals given current 

researcher practices.  The high amounts of observed variability in samples of 10 to 30 

participants per group suggest that researchers ought to strongly consider some of the 

aforementioned options for addressing power in studies.   
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This study does not definitively demonstrate that factors such as inadequate power 

and multiple comparisons are a causal influence behind the observed variability within the 

bilingual neuroimaging literature.  However, it does reinforce the possibility that these 

factors have negatively affected the accuracy and consistency of neuroimaging studies on 

bilingualism.  It is our hope that this study helps to open the eyes of bilingual researchers 

who use neuroimaging, as well as researchers in other areas, to the negative inferential 

effects that coincide with inadequate statistical power. 
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APPENDIX 

Table 1 

Year, sample sizes (Total N), comparison of interest, and mean effect sizes for 15 bilingual-monolingual 

structural comparisons conducted between 2012 and 2017 (with one conducted in 2004).  Where insufficient 

information was available in a manuscript to calculate a statistic, N/A is given. 

 
Year Total N N Monolingual N Bilingual Comparison Mean Cohen’s D 

Significant Effect Size 

Abutalebi et al. 2013 28 14 14 B > M N/A 

Abutalebi et al. 2014 46 23 23 B > M N/A 

Abutalebi et al. 2015 38 19 19 B > M N/A 

Abutalebi et al. 2015 60 30 30 Age and AoA 1.67 

Berken et al. 2015 34 N/A 34 AoA 1.58 

Burgaleta et al. 2016 88 46 42 B > M 0.9 

Felton et al. 2017 78 39 39 Asym.* 0.689 

Gold et al. 2013 40 20 20 B > M N/A 

Grogan et al. 2012 61 31 30 Mult > B 0.754 

Klein et al. 2014 88 22 66 Various* 0.953 

Mechelli et al. 2004 83 25 58 B > M 1.57 

Olsen et al. 2015 28 14 14 B > M 1 

Pliatsikas et al. 2014 39 22 17 M > B N/A 

Ressel et al. 2012 44 22 22 B > M 0.724 

Zou et al. 2012 27 13 14 B > M 1.73 
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Table 2 

Group means and standard deviations for participants averaged within each language group.  Standard 

deviations are given in parentheses. 

 
Age English Proficiency Spanish Proficiency Age of Acquisition 

Bilingual 23.53 (4.8) 0.74 (0.1) 0.67 (0.14) 8.13 (5.78) 

Monolingual 22.72 (4.39) 0.79 (0.07) NA NA 
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Table 3 

Harold Jeffreys’ (1961) scale of strength of evidence for Bayes Factors. 

Strength of Evidence Bayes Factor 

Negative (supports other model) BF < 1.0 

Barely Worth Mentioning 1.0 < BF < 3.16 

Substantial 3.16 < BF < 10 

Strong 10 < BF < 31.6 

Very Strong 31.6 < BF < 100 

Decisive 100 < BF 
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Table 4 

Full-sample (216 bilinguals; 146 monolinguals), FEW-corrected, whole-brain density t-test results, where 

bilinguals > monolinguals, including cluster size, peak z score voxel values, coordinates (x, y, z) for each peak z 

score statistic, and corresponding hemisphere and brain region. No regions were significant in a comparison of 

monolinguals > bilinguals. 

Region Hem Cluster Size Peak Z x y z {mm} 

Posterior Cingulate Gyrus R 1606 7.36 26 -50 8 

Anterior Temporal Lobe R 3743 6.92 50 15 -36 

Primary Visual Cortex L 885 6.58 -18 -68 4 

Anterior Temporal Lobe L 4366 6.52 -50 20 -22 

Inferior Parietal Lobule R 155 6.36 18 -58 68 

Inferior Frontal Gyrus R 4474 6.31 56 32 16 

Medial Parietal Lobe R 171 6.18 58 -33 27 

Inferior Temporal Gyrus L 280 6.04 -40 -27 -28 

Inferior Temporal Gyrus R 194 5.95 51 -22 -28 

Inferior Parietal Lobule L 120 5.59 -18 -66 64 

Superior Temporal Gyrus R 218 5.58 58 2 -4 

Angular Gyrus L 75 5.51 -48 -62 39 

Primary Somatosensory Cortex R 82 5.5 32 -46 68 

Dorsal Posterior Cingulate Gyrus R 86 5.48 2 -70 24 

Superior Parietal Lobule L 34 5.27 -18 -62 48 

Primary Somatosensory Cortex R 34 5.24 6 -38 74 

Angular Gyrus R 37 5.24 56 -56 22 

Sensory Association Area L 25 5.16 -6 -40 74 

Premotor Cortex R 64 5.16 62 2 26 

Sensory Association Area L 23 5.09 -10 -38 66 

Thalamus L 61 5.08 -16 -34 8 

Inferior Temporal Gyrus R 84 5.06 34 9 -46 

Dorsolateral Prefrontal Cortex L 65 4.95 -40 30 44 
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Table 5 

Full-sample (216 bilinguals; 146 monolinguals) R-squared effect sizes, estimates, t statistics, and p values for 

each tested grey matter volume ROI from each regression.  Specifically, these values are for the bilingual-

monolingual comparisons within each regression, while controlling for intra-cranial volume. ACC = Anterior 

Cingulate Cortex. IFG = Inferior Frontal Gyrus. IPL = Inferior Parietal Lobule. STG = Superior Temporal 

Gyrus. BG = Basal Ganglia. 

ROI R-squared Estimate Statistic p value 

LACC 0.002 0.06 1.04 0.30  

RACC 0.011 0.14 2.21 0.028  

LIFG 0.002 -0.10 -1.11 0.27  

RIFG 0.00005 0.02 0.17 0.87  

LIPL 0.001 0.15 0.95 0.34 

RIPL 0.015 0.56 3.37 0.0008  

LSTG 0.0005 0.04 0.65 0.51  

RSTG 0.0000007 -0.01 -0.07 0.94  

LBG 0.0003 -0.01 -0.39 0.70 

RBG 0.0002 -0.01 -0.33 0.74 
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Table 6 

Full-sample (216 bilinguals; 146 monolinguals) Bayes Factors for each tested grey matter volume ROI from 

each regression.  These values demonstrate the unique explanatory value of bilingual-monolingual comparisons 

within each regression, while controlling for intra-cranial volume. ACC = Anterior Cingulate Cortex. IFG = 

Inferior Frontal Gyrus. IPL = Inferior Parietal Lobule. STG = Superior Temporal Gyrus. BG = Basal Ganglia. 

ROI Bayes Factor 

LACC 1.70 

RACC 10.40 

LIFG 1.84 

RIFG 1.01 

LIPL 1.56 

RIPL 243.60 

LSTG 1.23 

RSTG 1.00 

LBG 1.08 

RBG 1.06 
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Table 7 

MANCOVA standardized and structural coefficients where all 10 ROIs are included as dependent variables, 

with both language status and ICV as predictors. 

ROI Standardized 
Coefficients 

Structural 
Coefficients 

LACC -0.02 -0.20 

RACC -0.50 -0.40 

LIFG 0.43 0.11 

RIFG -0.06 -0.07 

LIPL 0.55 -0.17 

RIPL -1.25 -0.49 

LSTG -0.16 -0.13 

RSTG 0.38 -0.04 

LBG 0.14 0.02 

RBG 0.22 0.003 
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Table 8 

Full-sample (216 bilinguals; 146 monolinguals) cognitive control and language network R-squared effect sizes, 

estimates, t statistics, and p values from each regression.  Specifically, these values are for the bilingual-

monolingual comparisons within each regression, while controlling for intra-cranial volume. Cognitive Control 

Network = LIPL + LBG + RBG + LACC + RACC, and Language Network = LSTG + LIFG.  

Network R-squared Estimate Statistic p value 

Cognitive 
Control 

0.002 0.33 1.28 0.20  

Language 0.0002 -0.05 -0.43 0.67  
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Table 9 

MANCOVA standardized and structural coefficients where cognitive control network-related ROIs are included 

as dependent variables, with both language status and ICV as predictors. A test of Pillai’s trace on language 

status is significant, p (5, 355) = 0.03, F = 2.47, Pillai’s trace = 0.03. Eta-squared for ICV is 0.59, and eta-

squared for language status 0.019. 

ROI Standardized 
Coefficients 

Structural 
Coefficients 

LACC 0.01 0.53 

RACC 0.92 0.87 

LIPL 0.36 0.52 

LBG -0.78 0.13 

RBG 0.23 0.17 
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Table 10 

MANCOVA standardized and structural coefficients where language network-related ROIs are included as 

dependent variables, with both language status and ICV as predictors. A test of Pillai’s trace on language 

status is non-significant, p (2, 358) = 0.09, F = 2.39, Pillai’s trace = 0.013. Eta-squared for ICV is 0.59, and 

eta-squared for language status 0.007. 

ROI Standardized 
Coefficients 

Structural 
Coefficients 

LIFG 0.98 0.56 

LSTG -0.77 -0.23 
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  Population Outcome  

  Positive Negative  

 Positive True Positive (TP) False Positive 
Positive Predictive Value = 
(TP / (TP + FP)) 

Sample Outcome   (FP; Type I Error)  

 Negative False Negative True Negative (TN)  

  (FN; Type II Error)   

  

Sensitivity =                      
(TP / (TP + FN))   

Figure 1 

A simplified confusion matrix.  Population (in this paper, full-sample) outcomes are separated by columns, 

whereas sample (in this paper, sub-sample) outcomes are separated by rows.  The calculations used to create 

measures of both sensitivity and Positive Predictive Values are given. 
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Figure 2 

Whole-brain accuracy of subsample test outcomes relative to the full sample across subsample sizes per group, 

FWE corrected, for clusters > 20 voxels in size. Accuracy is here determined by counting the number of 

overlapping clusters, simplified as spheres with roughly the same number of voxels as the original clusters, to 

full-sample clusters.  

False Negatives (FN; the yellow triangles) are the most common outcome, and slightly decrease as the 

subsample size increases. False Positives (FP; the red squares) are least common, and very slightly increases 

in the higher subsample sizes. True Positives (TP; the green circles) increase as subsample size increases. 

There is little change in accuracy until subsample sizes reach about 70 per group.  
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Figure 3 

Average sensitivity (the yellow circles), also known as power, and Positive Predictive Value (PPV; the purple 

squares) across subsample sizes per group, for FWE-corrected whole-brain analyses, in terms of the detection 

of overlapping (simplified, spherical) subsample clusters and full-sample clusters. Sensitivity increases more 

quickly at lower subsample sizes, and eventually reaches 0.80 where 140 participants are included per group. 

PPV, however, remains below 0.10 until 90 participants are included in each group, and below 0.25 in all 

subsamples.  

Sensitivity, or power, is defined as the proportion of TPs to the sum of TPs and FNs (TP / (TP + FN)), and is 

therefore, for these whole-brain analyses, a measure of the likelihood of observing an overlapping subsample 

cluster of voxels with a full-sample cluster of voxels, given the total number of significant full-sample clusters. 

PPV is defined as the proportion of TPs to the sum of TPs and FPs (TP / (TP + FP)), and is therefore a 

measure of the likelihood that a significant subsample cluster of voxels is also a cluster which overlaps with a 

full-sample cluster. 

 

 



VARIABILITY DUE TO LOW POWER IN STRUCTURAL MRI STUDIES OF BILINGUALISM                            70 
 

 

Figure 4 

Lenient whole-brain accuracy of subsample test outcomes relative to the full sample across subsample sizes per 

group, FWE corrected, for clusters > 20 voxels in size. Accuracy is here determined by counting the number of 

overlapping clusters, simplified as spheres, to full-sample clusters. Spheres here are significantly increased in 

size to include roughly 20 times as many voxels as the original clusters, and yet little difference is seen in the 

resulting number of outcomes vs. the normally-sized spheres in Figure 2. 
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Figure 5 

Average lenient sensitivity (the yellow circles), also known as power, and PPV (the purple squares) across 

subsample sizes per group, for FWE-corrected whole-brain analyses, in terms of the detection of overlapping 

(simplified, spherical) subsample clusters and full-sample clusters. Here, the overlapping spheres are 20 times 

as large as the original clusters, and yet the trends do not seem to meaningfully differ in sensitivity from the 

original visualization using the same number of voxels in overlapping spheres (Figure 3), though PPV 

increases much more quickly. 
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Figure 6 

Boxplot of FWE-corrected peak whole-brain cluster Z statistics across subsample sizes where clusters are 

greater than 20 voxels in size. Effects appear to grow larger as subsample sizes increase- reflecting the 

expected relationship between subsample size and effect size. 
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Figure 7 

Boxplot of FWE-corrected peak whole-brain cluster Z statistics across subsample sizes regardless of cluster 

size. Peak effects do not appear to differ greatly across subsamples, though more extreme effects are seen in 

larger subsample sizes. 
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Figure 8 

Boxplot of uncorrected (p < 0.01) peak whole-brain cluster Z statistics across subsample sizes regardless of 

cluster size. Contrary to expectations, uncorrected peak effects are not inflated in the smaller subsamples, and 

in fact increase greatly as subsample sizes increase.  Clusters which survived at p < 0.01 were all greater than 

20 voxels in size. 
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Figure 9 

Accuracy of subsample test outcomes relative to the full sample across subsample sizes per group, where the 

stringent critical alpha = 0.005. False Negatives (FN; the yellow triangles) are the most common outcome, and 

decrease as the subsample size increases. False Positives (FP; the red squares) are least common, and remain 

constant as the subsample size increases. True Positives (TP; the green circles) are seen to increase as 

subsample size increases. 

The result of each individual ROI test within each subsample size is included here. Thus, 5 bilateral ROIs 

multiplied by the number of random samples (1,000) tested at each subsample size makes the total 10,000, 

though the y-axis is cut off at 1,000. This is because True Negatives are not included, as they 1) change a very 

small amount across subsample sizes, and 2) make up a large majority of the test outcomes. Here, where the 

critical alpha = 0.005, True Negatives were seen in about 8,960 of the 10,000 tests across each subsample size.  
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Figure 10 

Accuracy of subsample test outcomes relative to the full sample, where the more lenient critical alpha = 0.025. 

False Negatives (FN; the yellow triangles) again decrease as the subsample size increases, here at a greater 

rate- and even become less frequent than True Positives (TP; the green circles) where the subsample size >= 

100 per group. False Positives (FP; the red squares) are now seen to be more common than TP in lower 

subsample sizes and overall more frequent. As expected, a less stringent alpha is a trade-off between resulting 

in both more TP and FP. 

Here, where the critical alpha = 0.025, True Negatives were seen in about 8,800 of the 10,000 tests across each 

subsample size.  
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Figure 11 

Average sensitivity (the yellow circles), also known as power, and Positive Predictive Value (PPV; the purple 

squares) across subsample sizes per group, where the stringent critical alpha = 0.005. Both sensitivity and PPV 

can be seen to steadily increase with subsample size, though sensitivity remains below 0.25 for the majority of 

the subsample sizes.  

Sensitivity, or power, is defined as the proportion of TPs to the sum of TPs and FNs (TP / (TP + FN)), and is 

therefore a measure of the likelihood that a positive outcome in a binary statistical test will mirror a significant 

(positive) difference in the full sample. PPV is defined as the proportion of TPs to the sum of TPs and FPs (TP / 

(TP + FP)), and is therefore a measure of the likelihood that a positive outcome in a binary statistical test 

accurately reflects a significant (positive) difference in the full sample. 
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Figure 12 

Average sensitivity (the yellow circles), also known as power, and Positive Predictive Value (PPV; the purple 

squares) across subsample sizes per group, where the lenient critical alpha = 0.025. Both sensitivity and PPV 

can still be seen to steadily increase with subsample size. However, the lenient alpha cutoff results in overall 

increased sensitivity / power, with the tradeoff of a decreased PPV.  
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Figure 13 

Boxplot of significant R-squared effect sizes across subsample sizes where the stringent critical alpha = 0.005. 

The average R-squared for subsamples of 10 per group is clearly inflated relative to higher subsample sizes 

which approach the true full-sample significant R-squared value of 0.015. 
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Figure 14 

Boxplot of significant R-squared effect sizes across subsample sizes where the lenient critical alpha = 0.025. 

Again, the average R-squared value for subsamples of 10 per group is inflated relative to others, though the 

overall degree of inflation among lower-N groups is somewhat decreased. Higher power due to the more 

lenient critical alpha relates to more accurate estimates of the true effect sizes. 
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Figure 15 

Accuracy of subsample test outcomes relative to the full sample across subsample sizes per group, where the 

‘critical bayes factor’ cutoff = 15. Results are nearly identical to the accuracy of linear multiple regressions to 

predict differences at p = 0.25 (Figure 10). False Negatives (FN; the yellow triangles) are the most common 

outcome, and decrease as the subsample size increases. False Positives (FP; the red squares) are least 

common, and remain constant as the subsample size increases. True Positives (TP; the green circles) are seen 

to increase as subsample size increases. 

Here, where the ‘critical Bayes Factor’ = 15, True Negatives were seen in about 8,900 of the 10,000 tests 

across each subsample size.  
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Figure 16 

Average sensitivity (the yellow circles), also known as power, and Positive Predictive Value (PPV; the purple 

squares) across subsample sizes per group, for tests where Bayes Factors are greater 15. As with Figure 15, 

accuracy for these Bayesian analyses are nearly identical to the accuracy of linear multiple regressions to 

predict differences at p = 0.25 (Figure 12). 
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Figure 17 

Boxplots of Bayes Factors greater than 15 across subsample sizes. The average Bayes Factor for lower 

subsample sizes is not inflated relative to larger subsample sizes, which become larger as they approach the 

true full-sample Bayes Factor of 243.6. 
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Figure 18 

Accuracy of Multivariate Analysis of Covariance (MANCOVA) outcomes using significance of Pillai’s trace 

across subsamples.  Because the MANCOVA tested all ROIs in a single test, no FWE correction was necessary, 

and an alpha cutoff of 0.05 was used.  TP’s increase linearly as subsample sizes increase, reaching 50% at 

roughly 60 participants per group, and approaches 100% accuracy at about 120+ participants per group. 

 

 

 

 

 

 



VARIABILITY DUE TO LOW POWER IN STRUCTURAL MRI STUDIES OF BILINGUALISM                            85 
 

 

Figure 19 

Boxplots of Eta-squared for significant MANCOVAs across subsample sizes.  Observed Eta-squared values are 

very inflated when significant for smaller subsample sizes, and appear to require more participants per group 

to approach the true effect size than a linear regression (Figure 13). 
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Figure 20 

Variability in standardized MANCOVA coefficients across subsample sizes for the LIPL (largest standardized 

coefficient) and the LACC (smallest standardized coefficient). While the LACC hovers around its estimated 

coefficient of roughly 0, and slightly decreases in the amount of variability around this median as subsample 

sizes increase, the LIPL underestimates the size of its standardized coefficient at lower subsample sizes, and 

approaches it as subsample sizes increase.  At around 80-100 participants per group, estimates of the LIPL 

standardized coefficients begin to normalize around its true value. 
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Figure 21 

Variability in structural MANCOVA coefficients across subsample sizes for the RACC (largest structural 

coefficient) and the LBG (smallest structural coefficient). While the LBG hovers around its estimated coefficient 

of roughly 0, and slightly decreases in the amount of variability around this median as subsample sizes 

increase, the RACC underestimates the size of its structural coefficient at lower subsample sizes, and 

approaches it as subsample sizes increase.  Only for the highest subsample sizes do estimates of the RACC 

standardized coefficients begin to normalize around its true value. 
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Figure 22 

Number of FP and TN outcomes using combined (summed) Cognitive Control Network ROIs as the dependent 

variable in a linear multiple regression analysis. Because the full-sample test was non-significant at p < 0.05, 

subsample outcomes are only either FP or TN. Rates do not appear to change across subsample sizes. 
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Figure 23 

Boxplot of significant R-squared effect sizes across subsample sizes where p < 0.05, using the summed 

Cognitive Control Network ROIs as the outcome variable. Again, the average R-squared for subsamples of 10 

per group is inflated relative to higher subsample sizes which approach the very small, true full-sample 

significant R-squared value of 0.002. 
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Figure 24 

Number of FP and TN outcomes using combined (summed) Language Network ROIs as the dependent variable 

in a linear multiple regression analysis. Because the full-sample test was non-significant at p < 0.05, subsample 

outcomes are only either FP or TN. Rates do not appear to change across subsample sizes. 
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Figure 25 

Boxplot of significant R-squared effect sizes across subsample sizes where p < 0.05, using the summed 

Language Network ROIs as the outcome variable. Again, the average R-squared for subsamples of 10 per 

group is inflated relative to higher subsample sizes which approach the very small, true full-sample significant 

R-squared value of 0.0002. 
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Figure 26 

Number of TP and FN outcomes using combined (summed) Cognitive Control Network ROIs as the dependent 

variable in a linear multiple regression analysis. Because the full-sample test was significant at p < 0.05, 

subsample outcomes are only either TP or FN. TP rates increase across subsample sizes, showing an 

improvement in accuracy, though it doesn’t quite reach 50% of TP outcomes even at 140 participants per 

group- likely due to the very small Eta-squared effect size, even though it is a significant test. 

 

 

 

 

 



VARIABILITY DUE TO LOW POWER IN STRUCTURAL MRI STUDIES OF BILINGUALISM                            93 
 

 

Figure 27 

Boxplots of Eta-squared for significant Cognitive Control Network MANCOVAs across subsample sizes.   
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Figure 28 

Variability in standardized MANCOVA coefficients across subsample sizes for the LACC (largest standardized 

coefficient) and the RACC (smallest standardized coefficient) of Cognitive Control Network dependent ROIs.  
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Figure 29 

Variability in standardized MANCOVA coefficients across subsample sizes for the RACC (largest structural 

coefficient) and the LBG (smallest structural coefficient) of Language Network dependent ROIs.  
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Figure 30 

Number of FP and TN outcomes using combined (summed) Language Network ROIs as the dependent variable 

in a linear multiple regression analysis. Because the full-sample test was significant at p < 0.05, subsample 

outcomes are only either FP or TN. FP rates are relatively high throughout (just below 1 in 4 outcomes), and 

very slightly increase as subsample sizes increase. 
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Figure 31 

Boxplots of Eta-squared for significant Language Network MANCOVAs across subsample sizes. 
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Figure 32 

Variability in standardized MANCOVA coefficients across subsample sizes for the LIFG and the LSTG as the 

only Language Network dependent ROIs.  
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Figure 33 

Variability in structural MANCOVA coefficients across subsample sizes for the LIFG and the LSTG as the only 

Language Network dependent ROIs.  

Interestingly, estimates of the structural coefficient for LIFG are slightly inflated in the lower subsample sizes, 

and stabilize around the true value as subsample sizes increase. All other MANCOVA structural coefficient 

figures show trends for underestimations of MANCOVA structural coefficients at lower subsample sizes. 

 

 


