
INTERACTIONS ON COMPLEX NETWORKS:

INFERENCE ALGORITHMS AND APPLICATIONS

A Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Huy Nguyen

May 2013

INTERACTIONS ON COMPLEX NETWORKS:

INFERENCE ALGORITHMS AND APPLICATIONS

Huy Nguyen

APPROVED:

Rong Zheng, Chairman
Dept. of Computer Science, Univ. of Houston

Zhu Han
Dept. of Electrical and Computer Engineering,
Univ. of Houston

Jehan-Francois Paris
Dept. of Computer Science, Univ. of Houston

Christoph Eick
Dept. of Computer Science, Univ. of Houston

Weidong (Larry) Shi
Dept. of Computer Science, Univ. of Houston

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgements

First, I would like to thank my advisor, Dr. Rong Zheng for her advice and support.

This dissertation would not have been possible without her and without the freedom,

encouragement, and caring she has given me over the last four years. It is not often

that one finds an advisor who is always available to listen to all the problems and

issues that come up during the course of research. Her dedication and advice have

taught me innumerable lessons and provided insights on the workings of academic

research in general.

I have a wonderful group of coauthors and collaborators. Each of them deserves

my gratitude: Dr. Zhu Han, Dr. Gabriel Scalosub, Guanbo Zheng, Nam Nguyen,

Mohammad Esmalifalak, Yi Huang, and Arun Chhetri. I would especially like to

thank Dr. Zhu Han and Dr. Gabriel Scalosub for the fruitful collaboration that

results in indispensable parts of this dissertation. Working with them has been a

great experience and I was able to learn a lot from their great ideas, insights, and

advice.

Also, I would like thank my thesis committee members, Dr. Jehan-Francois Paris,

Dr. Christoph Eick, and Dr. Larry Shi for their advice and comments. Without

their help, technically and editorially, this dissertation would not be complete.

Finally, I thank my parents and my younger brother, for endless love, encour-

agement, advice and support. Thanks for always being there, sharing, caring, and

helping me overcome any difficulties.

iii

INTERACTIONS ON COMPLEX NETWORKS:

INFERENCE ALGORITHMS AND APPLICATIONS

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Huy Nguyen

May 2013

iv

Abstract

Complex networks are ubiquitous — from social and information systems to bi-

ological and technological systems. Such networks are platforms for interaction,

communication, and collaboration among distributed entities. Studying and analyz-

ing observable network interactions are therefore crucial to understand the hidden

complex network properties.

However, with pervasive adoption of the Internet and technology advancements,

networks under study today are not only substantially larger than those in the past,

but are often highly distributed over large geographical areas. Along with this mas-

sive scale, the volume of interaction data also presents a serious challenge to network

analysis and data mining techniques. This dissertation focuses on developing infer-

ence solutions to complex networks from different domains and applying them in

solving practical problems in information and social sciences.

In the first part of the dissertation, we propose Binary Independent Component

Analysis with OR Mixtures (bICA), an inference algorithm specialized for commu-

nication networks that can be formulated as a bipartite graph. Then we apply bICA

and its variants to solve a wide range of networking problems, ranging from optimal

monitoring and primary user separation in wireless networks to multicast network

tree topology inference. Evaluation results show that the methodology is not only

more accurate than previous approaches, but also more robust against measurement

noise.

In the second part, we extend our study to the online social networking do-

main, where the networks are both massive and dynamic. We conduct an extensive

v

analysis on Twitter and associated influence ranking services. Several interesting dis-

coveries have been made, which challenge some of the basic assumptions that many

researchers made in the past. We also investigate the problem of finding the set

of most influential entities on social networks given a limited budget. Experiments

conducted on both large-scale social networks and synthetically generated networks

demonstrate the effectiveness of the proposed solution.

vi

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Main contributions . 3

1.2.1 Inference on communication networks 4

1.2.2 Inference on social networks 5

1.3 Organization of the dissertation . 6

2 Background 7

2.1 Problem formulation . 7

2.1.1 Definitions and notations . 7

2.1.2 Network interaction . 10

2.2 Characteristics of complex networks 11

2.2.1 Heavy-tailed degree distribution 11

2.2.2 Small diameter . 12

2.2.3 Community structure . 12

2.3 Network inference . 13

2.3.1 Structure inference . 13

2.3.2 Parameter inference . 18

3 Interactions on Communication Networks 22

vii

3.1 Introduction of bICA . 23

3.2 Related work . 24

3.3 Properties of bICA . 28

3.4 The inference algorithm . 35

3.5 The inverse problem . 41

3.6 Applications in communication networks 44

3.6.1 Optimal monitoring in multichannel wireless network 44

3.6.2 Primary user separation in cognitive radio networks 49

3.6.3 Multicast tree topology inference 53

3.6.4 Binary blind identification of wireless transmission technologies 62

3.7 Summary . 68

4 Interactions on Online Social Networks 69

4.1 Introduction . 69

4.2 Online social network datasets . 72

4.2.1 Public datasets . 72

4.2.2 Twitter crawler . 74

4.2.3 Influence measurement services 77

4.3 A quantitative study of Twitter and influence measurement services . 79

4.3.1 Motivation . 79

4.3.2 Reciprocity in following relationship 82

4.3.3 Distribution of influence scores 83

4.3.4 Hierarchy . 85

4.3.5 Homophily . 86

4.3.6 First-influencer diffusion model 88

4.4 Budgeted influence maximization in online social networks 93

4.4.1 Motivation . 94

viii

4.4.2 Related work . 96

4.4.3 The budgeted influence maximization problem 98

4.4.4 Determining influence spread on DAGs 106

4.4.5 DAG construction . 111

4.4.6 Acceleration of seed selection algorithm 118

4.4.7 Evaluation . 122

4.5 Summary . 131

5 Conclusion 132

5.1 Summary of contributions . 132

5.2 Future work . 135

A List of Publications and Manuscripts 139

Bibliography 142

ix

List of Figures

2.1 Three networks from different domains: (a) Nodes are people, and
edges represent friendship relationships. (b) Nodes are people, and
edges represent work collaborations. (c) Nodes are proteins and edges
represent interactions. 8

2.2 A general directed graph with 8 nodes. Note that the graph has a
cycle containing {x4, x6, x8} . 10

2.3 Physical topology (left) and corresponding logical topology (right). R
is the root node (source) and 2,3,5,6 are the leaf nodes (receivers).
The dark unnumbered nodes are devices where no branching of traffic
occurs and therefore can not be detected. 14

2.4 Illustration of information spreading on blogosphere. Actual trans-
missions (edges) are usually not observable. 17

3.1 Illustration of the OR mixture model 24

3.2 A sample network scenario with number of sniffers m = 5, number of users

n = 10, its bipartite graph transformation and its matrix representation.

White circles represent independent users, black circles represent sniffers

and dashed lines illustrate sniffers’ coverage range. 46

3.3 Expected number of active users monitored with the number of sniffers
vary from 5 to 21. 48

3.4 Effects of the energy detection threshold and the number of PUs on inference results. 52

3.5 Effects of the energy detection threshold and the size of observations on inference

results. The x-axis is in logarithmic scale. 52

x

3.6 A canonical multicast tree and its bipartite graph transformation. In
the bipartite graph, a receiver i is connected to a node j iff j is an
ancestor of i. 54

3.7 The multicast testbed with 6 computers and 3 switches. Arrows indi-
cate the direction of the probe packets. 59

3.8 Comparison between seqBICA and DLT. x-axis indicates the number
of observations and y-axis indicates the error rate (%). Error bars are
symmetric, and indicate standard deviation over 10 runs with different
traces. 60

3.9 Experiment results with fixed and random tree topologies. The first column

shows the topologies studied. The second to fifth columns show Structure

Error Ratio, Loss Rate Error Ratio, Tree Error Rate and CPU runtime,

respectively as T increase from 50 to 1,000. Each graph includes experi-

ment results of seqBICA and DLT. Error bars are symmetric, and indicate

standard deviation over 50 runs with different seeds. 61

3.10 Spectrum measurement example . 62

3.11 Accuracy of the inference result with synthetic traces. Results are averages

of 50 runs with different initial seeds with symmetric error bars indicating

standard deviations. 67

4.1 The Twitter crawler . 74

4.2 Distribution of number of followers and followees. 83

4.3 Histogram of reciprocal level. 83

4.4 Distribution of Klout and PeerIndex scores. 84

4.5 Histogram of DI score. 85

4.6 Distribution of ∆r and ∆e. x-axis indicates ∆r and y-axis indicates ∆e. . 86

4.7 Distribution of ∆re and ∆nre. x-axis indicates ∆re and y-axis indicates ∆nre. 88

4.8 Model stability comparison. Error bars indicate standard deviation. 91

4.9 Influence spread prediction comparison. 92

4.10 An illustrative example of the seed selection algorithm. Edge propa-
gation probabilities are in gray. Node active probabilities are in bold
font. 105

xi

4.11 Converting a DAG into a factor graph. 110

4.12 CPT of C with two parents A, B . 110

4.13 DAG due to Algorithm 6. S1 and S2 are seed nodes. Edges in
MIOA(GR, R, θ) are in bold. (S1, B), (S2, A), (A,B), and (B,C)
are added into D1(S) to improve inference accuracy. θ = 0.0001. . . . 115

4.14 DAG due to Algorithm 7. S1 and S2 are seed nodes. D2(S) is the
union of MIOA(G, S1, θ) (solid edges) and MIOA(G, S2, θ) (dashed
edges). θ = 0.0001. 116

4.15 The building blocks of our proposed algorithm. Details are presented
in the previous sections. 119

4.16 Influence spread with node unit-cost on 4 datasets. DAG 1 results are in

red curves, DAG 2 are in blue curves, and other methods are in black curves.125

4.17 Computation time with node unit-cost on 4 datasets. 126

4.18 Influence spread with random node costs on 4 datasets. 127

4.19 Algorithm performance on different network conditions. 129

xii

List of Tables

3.1 Comparison of related work . 27

4.1 Online social datasets. 73

4.2 Collected datasets from Twitter. 76

4.3 Mean DI score in different communities. 84

4.4 Network datasets . 124

xiii

Chapter 1

Introduction

1.1 Overview

Many systems across numerous and diverse domains are naturally represented as

networks. A network is a system of interconnected entities typically represented

mathematically as a graph (i.e., a set of nodes and a set of links among the nodes).

With the pervasive use of the Internet, and the proliferation of mobile phones and

location-aware devices, there is a ever increasing availability of network data. For

instance, many Web-based services, such as online social networks, produce large

amounts of data on interactions and associations among individuals (e.g., Facebook

claims to have 1 billion users by October 2012 [18], occupying nearly half of the

world’s roughly 2.5 billion Internet users). Mobile phones and location-aware de-

vices produce copious amounts of data on both communication patterns and physical

proximity among people (e.g., [41, 79]). In the domain of biology, from neurons to

1

proteins to food webs, it is now possible to access to large networks of associations

among various entities necessitating novel methodologies to analyze and understand

these network data. The term “complex network” was therefore introduced to de-

scribe networks with non-trivial topological features – features that do not occur in

simple networks such as lattices or random graphs but often emerge in real graphs.

A concrete definition of complex network is not currently available in literature, how-

ever, it is widely believed that a complex network should both be scale-free (with

node degree distribution following power law distribution) and have small diameter

(small shortest path distance).

Interactions among network entities have various manifestations in different ap-

plication domains. It could be a data packet relayed from one router to another, a

signal from the access point to the end-user in communication networks, or a piece

of information spread among friends in a social network. Studying the network in-

teraction leads to a better understanding of the underlying network properties and

dynamic behaviors on it. Unfortunately, while some interactions are detectable and

can be fully captured, like data transmissions between computers in a local network;

most of them are hidden, or just partially observable. For example, how a probe

packet is delivered from the root to end receivers in a large multicast network, or

how an interesting story spreads from the source to many readers on the blog sphere

is typically very difficult, if not impossible, to be fully observed. Another challenge is

often times, the amount of observable data surpasses processing power in real time.

The problem is popular in network monitoring where network administrators need to

apply random sampling on the trace data. As another example, effectively detecting

2

and removing spam tweets on Twitter is a daunting task for data analysts.

The main objective of our research is to study and analyze network interactions

to gain a better understanding of its hidden structures and dynamic behaviors. Al-

though there exist a substantial body of work on interactions among networked enti-

ties in statistical literature and in social sciences, our objective is different. We focus

on devising robust methodologies to make inference from the observable interaction

data and apply them to solve real-world problems.

1.2 Main contributions

Our contribution in this dissertation is two-fold. First we study the inference problem

on communication networks. We observe in many existing problems, the underlying

network could be characterized as a bipartite graph, where the network itself can

be partitioned into two sets of interacting nodes. We propose Binary Independent

Component Analysis with OR Mixtures (bICA), an inference algorithm that reveals

the interaction between hidden and observable nodes on a bipartite graph. Then

we study the interactions on social networks, which are not only massive in scale,

but also structurally dynamic. We collect a large dataset from Twitter and conduct

a quantitative study, which reveals many interesting properties of the underlying

network. Furthermore, we define the Budgeted Influence Maximization problem on

social networks and propose a greedy solution to identify the set of most influential

nodes.

3

1.2.1 Inference on communication networks

We study inference problems on a diverge range of communication networks and

realize that many of them can be characterized as a special type of graphs: bipartite

graphs, where nodes can be divided into two disjoint sets such that every edge con-

nects a node in the first set to one in the second set. If each node in the network is

associated with a variable, the network consists of one “hidden set” containing latent

variables and one “observable set” of observable variables. The problem of interest

is, given the time series of observable data, how to infer the connection between the

two sets of nodes and parameters of the hidden variables. If the relationship between

the two sets is a linear relationship, then the problem can be solved using standard

independent component analysis (ICA) techniques. However, the inference becomes

challenging if the variables are boolean and the edges are associated with disjunctive

operators. We propose bICA which is an inference method for binary variables on

bipartite graphs and apply it to solve problems from various application domains,

including:

• Optimal monitoring in multichannel wireless networks

• Primary user separation in cognitive radio networks

• Multicast tree topology inference in wired networks

• Blind identification of wireless transmission technologies in wide spectrum

4

1.2.2 Inference on social networks

Monitoring and analyzing social networks is inherently more challenging than tradi-

tional ones because of the massive scale of these networks and innate features such

as scale-free and small-diameter. Our study focuses on the problem of information

diffusing in social networks, where a piece of information originated from a set of

nodes spreads itself over the edges of the underlying network.

To gain a comprehensive first-hand understanding on how information is spread,

we first crawl the networks of different communities on Twitter, along with interac-

tions among the nodes. Our dataset contains more than 20.5 million user profiles,

420.2 million social relationships and 105 million interactions (i.e., retweets, replies)

between these users. We also obtain the digital influence score of more than 18.3

million users (89.4%) from Klout and PeerIndex. Analysis on the resulting dataset

shows that some of the widely accepted assumptions in the research community do

not hold on Twitter. In response, we propose a new information diffusion model on

Twitter.

We next investigate the influence maximization (IM) problem, where the goal is

to pick a set of k most influential entities on the social sphere. The IM problem is

particularly relevant in viral marketing where a vendor needs to target a limited set

of consumers who can spread words regarding a product to maximize that product’s

adoption. Another application of the IM problem is in the field of epidemiology

where we need quickly identify and immunize the set of key nodes that if affected can

potentially corrupt the network. As a generalization of the IM problem, we introduce

5

the Budgeted Influence Maximization (BIM) problem, where “cost” is associated

with each node. A greedy algorithm that can effectively solve the BIM problem on

large-scale networks is proposed and evaluated on real-world and synthetic datasets.

1.3 Organization of the dissertation

This dissertation is structured as follows: In Chapter 2, we provide definitions of the

basic concepts and a brief survey on related literature. Chapter 3 focuses on our

contribution on communication networks. We describe the inference methodology

on bipartite graphs (bICA) and its applications in various networking problems.

Chapter 4 discusses the study on social networks. We first describe the process to

collect Twitter social network dataset and present the key findings from analyzing the

dataset. Then we rigorously define the budgeted influence maximization problem and

prove its hardness. A greedy algorithm is proposed and evaluated on both real and

synthetic datasets. Finally, we summarize our contributions and discuss potential

directions for future research.

6

Chapter 2

Background

In this chapter, we first present the problem formulation along with the basic defini-

tions and notations used throughout the dissertation. Several important properties

of complex networks are also discussed. Finally, we give a brief review of the related

literature on network inference.

2.1 Problem formulation

2.1.1 Definitions and notations

G = (V,E) is a network or graph where V is the set of vertices or nodes and E ⊆ V×V

is a set of links or edges. We denote by N the number of nodes (N = |V |) and by M

the number of edges (M = |E|). We use the terms network and graph interchangeably.

Note that a network here is static which is different from a dynamic network – a

7

(a) Social network (b) Collaboration network (c) Protein network

Figure 2.1: Three networks from different domains: (a) Nodes are people, and edges
represent friendship relationships. (b) Nodes are people, and edges represent work
collaborations. (c) Nodes are proteins and edges represent interactions.

network with varying structure and parameters at each time step [23].

The nodes and links of a graph may be used to represent a variety of systems.

In a social network, for instance, nodes may represent people and links may repre-

sent relationships (e.g., friendships), interactions (e.g., emails transmitted, physical

proximity), or even similarity (e.g., similar books purchased). Likewise, in biological

systems, nodes may represent neurons or, say, proteins and the links may repre-

sent neuronal connections or protein interactions (respectively). Figure 2.1 shows

networks from three different domains.

A graph may be undirected or directed. The edges of an undirected graph have no

explicit direction; they can be used to represent bidirectional relations between the

connected nodes. A directed graph has unidirectional or directed edges, implying

interaction directed from one node to the other, but not vice versa. Directed edges

8

provide the mechanism for representing causality. Graphs may also be either cyclic

or acyclic. An acyclic graph contains no cycle, that is, there doesn’t exist a path

starting from any vertex looping back to the that same node. On the other hand,

a cyclic graph must contain at least one cycle. In this dissertation, we focus the

discussion on general directed graphs as depicted in the Figure 2.2 since they are the

best representation of realistic networks. Together with probabilities associated on

the edges, they are similar to Bayesian networks, except that there may be cycles in

the graph. Probabilistic techniques on directed acyclic graphs, however, serve as the

basis in the proposed methodologies on the general directed graph.

Each node in the graph is associated with a variable that can be in a finite number

of states. We denote by xi the variable representing the state of node i. Associated

with the graph is a set of conditional probabilities: for example, consider the network

as depicted in Figure 2.2, we denote by p(x4|x2) the conditional probability of x4

given x2. In this case, we say that the node 2 is the “parent” of the node 4 because

x4 is conditionally dependent on x2. Some nodes like node 8 might have more than

one parent, in which case we define their conditional probabilities in term of all their

parents; thus we write p(x8|x5, x6) for the conditional probability of x8. For nodes

such as node 1 or node 2, which do not have any parent, we introduce probabilities

p(x1) and p(x2) that are not conditioned on any other variables.

9

x1 x2

x5

x8x7

x3

x6

x4

Figure 2.2: A general directed graph with 8 nodes. Note that the graph has a cycle
containing {x4, x6, x8}

2.1.2 Network interaction

Define the network interaction log as a set of triples (u, v, t) where at time t, node u

performs an action towards node v, and u is the source and v is the destination. We

consider one-on-one relationship. A one-to-many interaction, such as broadcasting

a message or spreading an idea, can be thought of as a collection of one-on-one

interactions. We also assume that the interaction (u, v, t) is possible only when there

is a direct connection from u to v (i.e., the edge (u, v) ∈ E). Some examples of

interactions on different networks are listed as follows:

On a wired network: Packet forwarding by intermediate network entities (router,

switch, hub, etc.)

10

On a wireless network: Signal transmissions between network entities (access

point, end-user, sniffer, etc.)

On a social network: Information (tweet, status, message, blog, idea, etc.) passed

from one user to another.

Collecting interaction log is feasible for small scale networks. However, it is

challenge to obtain complete information on larger networks. Furthermore, the in-

teractions are sometimes hidden, or just partially observable. For example, it is

possible to directly observe when nodes become infected with a virus; on the other

hand, observing individual interaction (from whom it was infected) is very difficult.

2.2 Characteristics of complex networks

Research over the past few years has identified properties universal in many real-

world networks from various domains. In this section, we discuss some fundamental

patterns that have been discovered in real complex networks, including heavy-tailed

degree distribution, small diameter, and community structure.

2.2.1 Heavy-tailed degree distribution

The degree-distribution of a graph follow a power law if the number of nodes Nd of

degree d is given by Nd ∝ d−α, where α > 1 is called the power law degree exponent.

For most real-world datasets, we have 2 < α < 3. Most of large real-world networks

exhibit heavy-tailed or power law degree distributions, and are thus often called

11

scale-free networks. This property is important as it differentiate real networks form

“randomly generated” networks.

2.2.2 Small diameter

The concept of a small-world network was first mentioned by Milgram et al. in [87]

where the authors presented and empirically validated the hypothesis that any two

persons on the planet are separated by at most six degrees of separation. In general,

small-diameter or small-world networks are graphs in which most nodes are not

neighbors of one another, but most nodes can be reached from every other through

small number of hops or steps. Formally, let L be the distance (of the shortest path)

between two random nodes and N be the number of nodes in the network, we have

L ∝ log(N) [15] or L ∝ log log(N) [36, 35].

2.2.3 Community structure

A network is said to have community structure if the nodes can be easily grouped

into sets of nodes such that more edges are present among members of a set than

between most of its members and other nodes on the network [52]. The problem of

community identification is often formulated as an unsupervised learning problem, a

form of clustering or graph partitioning with the objectives to partition the network

into disjoint but sometime also overlapping sets of nodes. Finding overlapping com-

munities is more difficult and requires more sophisticated techniques [67]. It is also

observed that communities have a recursive structure, where bigger communities can

12

further be split into smaller and smaller communities [33, 105]. Interpretation of “a

community” depends on the application domain. It could be organization units in

social networks, functional modules in biological networks, scientific disciplines in

collaboration networks between scientists, etc.

2.3 Network inference

As previously mentioned, complete structural information or interaction traces is

usually not available for complex network analysis. A technique that can be used to

alleviate these difficulties is network inference, where the problem is to estimate the

model or the interactions of different elements in the network, given the observed

data. There are two types of network inference: structure inference and parameter

inference. We briefly survey in this section related literature of each category.

2.3.1 Structure inference

Inducing the network structure is known to be a challenging problem due to enor-

mity of the search space. The number of possible network structures grows super-

exponentially with the number of nodes.

2.3.1.1 Communication networks

Structure inference on communication networks is referred to as the network topol-

ogy identification problem. When the network topology is unknown, tools such as

13

tracerout [10] or ping can be used in an attempt to identify it. These tools assume

the network is instrumented properly and the network elements are cooperating in

revealing themselves. These conditions are often not met in the modern Internet

area due to many reasons, like the lack of motivation to cooperate (since it con-

sumes computing and storage resources), or security issues (risk of exposing network

details), etc. It is therefore desirable to develop methods to estimate the network

topology using only measurements taken at network end-points.

R

1

3 4

25 6

R

1

3 4

2

5 6

Figure 2.3: Physical topology (left) and corresponding logical topology (right). R is
the root node (source) and 2,3,5,6 are the leaf nodes (receivers). The dark unnum-
bered nodes are devices where no branching of traffic occurs and therefore can not
be detected.

The problem is illustrated in Figure 2.3. We consider a single source that is

communicating with multiple receivers (denoted by the root node R). The physi-

cal topology can be represented by a directed graph, where each node represents a

network device and each edge represents a connection between the devices. Since

we limit ourselves to the availability of end-to-end measurements only, it is therefore

14

only possible to identify the “logical topology” of the network. In the logical topol-

ogy, each vertex represents a physical network device where the traffic branching

occurs.

There are two major categories of approaches in network topology identification:

using unicast and multicast probe packets. Ratnasamy et al. [100] were the first

to demonstrate that correlations in multicast loss measurements could be used to

reconstruct the logical topology. Later, Duffield et al. [43] rigourously established

the correctness of their proposed algorithm and developed a more general framework

in which other measurements, such as delay variance, could be used. Most recently,

we revisited the problem of multicast tree topology inference in [94] and proposed

a new solution based on independency analysis between receivers. The proposed

method was shown to converge much faster and obtain higher accuracy than the

state-of-the-art solutions.

Due to the dominance of unicast networks, there is a larger amount of liter-

ature focuses on using unicast packets to infer the network topology. Duffield et

al. conducted a series of study on the topic. In [45, 46, 42], the authors adapted

the multicast inference techniques proposed previously to perform inference of inter-

nal network characteristics from unicast end-to-end measurements. The idea is to

construct composite probes of unicast packets whose collective statistical properties

closely resemble those of a multicast packet. Nguyen et al. also conducted multi-

ple studies to investigate the problem. In [95], the authors proposed a new method

by exploiting the second-order moments of end-to-end flows. In [92], a solution to

solving systems of equations that do not have a unique solution was proposed. And

15

finally in [51], the authors introduced a novel network tomographic tool based on

their previous findings.

Beside the literature on the traditional topology inference problem, many other

studies using unicast packets explored different aspects of the problem, like multiple-

source, multiple-destination systems [99, 98], optimal probing scenario for unicast

packets [60], packet loss time correlation modeling [21], etc.

2.3.1.2 Social networks

On social networks, the problem becomes inferring the network of diffusion and

influence. The problem is motivated from the blogging communities, where bloggers

usually copy interesting articles without properly citing the source. In this case,

capturing when a node publishes the information is easy, but it is not possible to

observe the transmission (from whom the information came). The above problem is

illustrated in Figure 2.4.

Leskovec et al. conducted several studies to model the propagation of information

on the blogosphere. In [55], they converted the edge inference problem to be a

combinatorial optimization problem and proposed some useful heuristics to handle

large scale data. Later in [116], the authors suggested techniques to improve the

inference result when only a fraction of the complete data is available. In [103], they

tried to infer the node influence from the action log, given that the network graph is

unobserved.

A variance of the structure inference problem above is the hierarchy inference

16

7:30 AM

8:30 AM

9:00 AM 9:05 AM

10:00 AM

Figure 2.4: Illustration of information spreading on blogosphere. Actual transmis-
sions (edges) are usually not observable.

problem, where the goal is to find the hidden stratification structure of the network.

Recent studies showed that hierarchy does exists on many online social networks.

Rowe et al. [102] mined the email exchange dataset from corporations and extracted

their structural organization. Maiya et al. [82] proposed a heuristic to infer the

maximum likelihood hierarchy in social networks. Evaluations on the U.S. govern-

ment dataset have showed that their algorithm works well in practice. Most recently,

Gupte et al. [61] hypothesized that people form connections in a social network based

on their perceived social hierarchy. For instance, A follows B means that B’s social

rank is likely higher than A. The authors defined a measure of hierarchy on directed

online social networks and presented an algorithm to compute this measure. The

17

proposed solution has been verified on a variety of online social networks, including

Twitter, Delicious, YouTube, Flick, etc.

2.3.2 Parameter inference

Broadly speaking, parameter inference on complex networks involves estimating net-

work parameters based on the interaction trace collected from (usually a subset of)

network nodes.

2.3.2.1 Communication networks

Two forms of parameter inference problem on communication networks have been

addressed in literature: link-level parameter estimation based on end-to-end traffic

measurements and receiver-sender path-level traffic intensity estimation based on

link-level traffic measurements.

In link-level parameter estimation, the collected information usually consists of

counts of packets transmitted and/or received between source and destination nodes

or time delays between transmissions and receptions. The goal is to estimate the

loss rate or the queuing delay on each link. A packet is dropped if it does not suc-

cessfully reach the input buffer of the destination node, usually due to congestion or

queuing policies. In [43], Duffield et al. proposed three approaches to infer multicast-

tree topology and link performance using loss measurements at network end-points,

including (i) a grouping estimator that exploits the monotonicity of loss rate with

18

increasing path length; (ii) a maximum likelihood estimator; and (iii) a Bayesian es-

timator. It was shown that the algorithm in (i) offers the best performance in term of

accuracy and computational simplicity. Tian et al. proposed an inference algorithm

that utilizes hop count information in topology inference [109]. Most recently, Mao

et al. [83] proposed NetworkMD, an unsupervised learning algorithm. It proceeds

in two steps: (1) to find the number of monitor clusters using SVD, and (2) to infer

the network topology by non-negative matrix factorization (NMF). The proposed

method can be extended to multi-source, multi-destination setups like in [99].

In path-level traffic intensity estimation, the measurement consists of counts of

packets that pass through nodes in the network. In privately owned networks, the

collection of such measurements is straight-forward. Based on these measurements,

the goal is to estimate how much traffic originated from a node and was destined for a

receiver. Such information forms the origin-destination traffic matrix. Bin et al. [119]

proposed a statistical inverse algorithm for any fixed routing scheme. Later, the

authors proposed another solution [22] which relies on divide-and-conquer strategy

to lower the computation cost without losing accuracy. The proposed algorithm is

tested on a real network with 18 nodes, showing its accuracy. More recently, Liang et

al. [81] used a pseudo likelihood approach to solve the problem. The authors first

established some statistical properties and defined the pseudo likelihood function.

Then a expectation-maximization (EM) algorithm was developed to maximize the

pseudo log-likelihood function. The approach was evaluated on both synthetic and

real network data.

19

2.3.2.2 Social networks

The problem of inferring edge weight (influence) on social networks is an active

research topic. To perform parameter inference, a model on how the information is

spread on a social network has to be established. Two of the most widely adopted

diffusion models are the linear threshold (LT) and the independent cascade (IC)

models.

Linear threshold model [57]: each node in the network has a threshold t ∈ [0, 1],

drawn from some probability distribution. We also assign connection weights wu,v

on the edges from node u to node v of the network. A node is active if the sum of

connection weights from its active neighbors is greater than the threshold t.

Independent cascade model [54]: whenever a neighbor u of v is active, it will

have a single chance to activate v with probability pu,v associated with the network

edge from u to v.

Leskovec et al. in [55] adopted the IC model and proposed a heuristic to calculate

the edge weights by considering the most likely spanning tree. Saito et al. [104] for-

mulated this as a likelihood maximization problem and then apply an EM algorithm

to solve it. The algorithm was shown to be highly accurate, but with poor scalability.

Goyal et al. [56] also studied the problem of learning influence probabilities on the

IC model. They focused on the time varying nature of influence, and on factors such

as the influenceability of a specific user and influence-proneness of a certain action.

Although there is no study devoted to the problem of studying the nodal threshold

on the LT model, it can be inferred by a transformation from the edge propagation

20

probability on the IC model since the two models are logically equivalent [70].

21

Chapter 3

Interactions on Communication

Networks

In this chapter, we investigate the inference problem on communication networks.

Interestingly, in many problems, the network can be characterized by a bipartite

graph and interactions only occur between the two disjoint sets of nodes. We propose

Binary Independent Component Analysis with OR mixtures (bICA), an inference

algorithm on bipartite graphs. We prove that bICA is uniquely identifiable under

the disjunctive generative model, and propose a deterministic iterative algorithm to

determine the connections between the latent and observable variables, as well as the

distribution of the latent random variables. The inverse problem to infer the values

of latent variables is also considered for noisy measurements. Finally, we apply bICA

to solve practical problems from several application domains.

22

3.1 Introduction of bICA

Independent component analysis (ICA) is a computational method for separating

a multivariate signal into additive subcomponents under the mutual statistical in-

dependence of the non-Gaussian source signals. The classical ICA framework usu-

ally assumes linear combinations of independent sources over the field of real-valued

numbers R. Consider the following generative data model where the observations

are disjunctive mixtures of binary independent sources. Let x = [x1, x2, . . . , xm]T

be an m-dimension binary random vector with joint distribution P(x), which are

observable. x is generated from a set of n independent binary random variables

y = [y1, y2, . . . , yn]T as follows,

xi =
n∨
j=1

(gij ∧ yj), i = 1, . . . ,m, (3.1)

where ∧ is Boolean AND, ∨ is Boolean OR, and gij is the entry in the i’th row and

j’th column of an unknown binary mixing matrix G. Throughout this chapter, we

denote by Gi,: and G:,j the i’th row and j’th column of matrix G respectively. For

the ease of presentation, we introduce a short-hand notation for the above disjunctive

model as,

x = G⊗ y.

The relationship between observable variables in x and latent binary variables in

y can also be represented by an undirected bi-partite graph G = (U, V,E), where

U = {x1, x2, . . . , xm} and V = {y1, y2, . . . , yn} (Figure 3.1). An edge e = (xi, yj)

exists if gij = 1. We will refer to G as the binary adjacency matrix of graph G.

23

Figure 3.1: Illustration of the OR mixture model

Consider an m × T matrix X and an n × T matrix Y , which are the collection

of T realizations of random vector x and y respectively. The goal of bICA is to

estimate the distribution of the latency random variables y and the binary mixing

matrix G from X such that X can be decomposed into OR mixtures of columns of

Y .

3.2 Related work

Most ICA methods assume linear mixing of continuous signals [65]. A special variant

of ICA, called binary ICA (BICA), considers boolean mixing (e.g., OR, XOR etc.)

of binary signals. Existing solutions to BICA mainly differ in their assumptions of

the binary operator (e.g., OR or XOR), the prior distribution of the mixing matrix,

noise model, and/or hidden causes.

In [118], Yeredor considers BICA in XOR mixtures and investigates the iden-

tifiability problem. A deflation algorithm is proposed for source separation based

on entropy minimization. Since XOR is addition in the Galois field of two elements

(GF(2)), BICA in XOR mixtures can be viewed as the binary counterpart of classical

24

linear ICA problems. The number of independent random sources K is assumed to

be known. Furthermore, the mixing matrix is a K-by-K invertible matrix. Under

these constraints, it has been proved that the XOR model is invertible and there

exist a unique transformation matrix to recover the independent components up to

permutation ambiguity. Though our proof of identifiability in this chapter is inspired

by the approach in [118], due to the “non-linearity” of OR operations, the notion of

invertible matrices no longer applies. New proofs and algorithms are warranted to

unravel the properties of binary OR mixtures.

In [69], the problem of factorization and de-noise of binary data due to indepen-

dent continuous sources is considered. The sources are assumed to be continuous

following beta distributions in [0, 1]. Conditional on the latent variables, the obser-

vations follow the independent Bernoulli likelihood model with mean vectors taking

the form of a linear mixture of the latent variables. The mixing coefficients are as-

sumed to be non-negative and sum to one. A variational EM solution is devised to

infer the mixing coefficients. A post-process step is applied to quantize the recovered

“gray-scale” sources into binary ones. While the mixing model in [69] can find many

real-world applications, it is not suitable in the case of OR mixtures.

In [113], the authors introduced a noise-OR model to model dependency among

observable random variables using K (known) latent factors and then developed a

variational inference algorithm. The probabilistic dependency between observable

vectors and latent vectors is modeled via the noise-OR conditional distribution. The

dimension of the latent vector is assumed to be known and less than that of the

observable.

25

In [37], Wood et al. consider the problem of inferring infinite number of hidden

causes following the same Bernoulli distribution. Observations are generated from a

noise-OR distribution. Prior of the infinite mixing matrix is modeled as the Indian

buffet process [58]. Reversible jump Markov chain Monte Carlo and Gibbs sampler

techniques are applied to determine the mixing matrix based on observations. In our

model, the hidden causes are finite in size, and may follow different distributions.

Streith et al. [107] study the problem of multi-assignment clustering for boolean data,

where the observations are either drawn from a signal following OR mixtures or from

a noise component. The key assumption made in the work is that the elements of

matrix X are conditionally independent given the model parameters (as opposed to

the latent variables). This greatly reduces the computational complexity and makes

the scheme amenable to a gradient descent-based optimization solution. However,

this assumption is in general invalid.

There exists a large body of work on blind deconvolution with binary sources in

the context of wireless communication [38, 80]. In time-invariant linear channels, the

output signal x(k) is a convolution of the channel realizations a(k) and the input

signal s(k), k = 1, 2, . . . , K as follows:

x(k) =
L∑
l=0

a(l)s(k − l), k = 1, . . . , K. (3.2)

The objective is to recover the input signal s. Both stochastic and deterministic

approaches have been devised for blind deconvolution. As evident from the above

expression, the output signals are linear mixtures of the input sources in time, and

additionally the mixture model follows a specific structure.

26

Table 3.1: Comparison of related work

Under/Over Dimension of
Algorithm Sources Generative model

determined latent variables

[118] Binary Binary XOR – Known

[69] Continuous Linear Over Known

[113] Binary Noise-OR Over Known

[37] Binary Noise-OR Under Infinite

[107] Binary Binary OR Over Known

[50, 16] Binary Binary OR Over Unknown, try to minimize

[38, 80] Binary Linear – Known

bICA Binary Binary OR Under Unknown but finite

Literature on boolean/binary factor analysis (BFA) is also related to our work.

The goal of BFA is to decompose a binary matrix Xm×T into Am×n ⊗Bn×T with

⊗ being the OR mixture relationship as defined in (3.16). X in BFA is often called

an attribute-object matrix providing m-dimension attributes of T objects. A and

B are the attribute-factor and factor-object matrices. All the elements in X, A,

and B are either 0 or 1. n is the number of underlying factors and is assumed to

be considerably smaller than the number of objects T . BFA methods aim to find a

feasible decomposition minimizing n. Frolov et al. study the problem of factoring a

binary matrix using Hopfield neural networks [64, 50, 63]. This approach is based on

a heuristic and does not provide much theoretical insight regarding the properties

of the resulting decomposition. More recently, Belohlavek et al. propose a matrix

decomposition method utilizing formal concept analysis [16]. The paper claims that

optimal decomposition with the minimum number of factors are those where factors

are formal concepts. It is important to note that even though BFA assumes the same

disjunctive mixture model as in our work, the objective is different. While BFA tries

to find a matrix factorization so that the number of factors is minimized, bICA tries

27

to identify independent components. One can easily come up an example, where the

number of independent components (factors) is larger than the number of attributes.

Since BFA always finds factors no larger than the number of attributes, the resulting

factors are clearly dependent in this case.

Finally, [37] considers the under-represented case of fewer number of observable

than latent sources with continuous noise, while [69, 107, 50, 16] deal with the over-

determined case, where the number of observable variables is much larger. In this

work, we consider primarily the under-represented cases that we typically encounter

in data networks where the number of sensors are much smaller than the number of

signal sources (i.e. users).

We summarize the aforementioned related work in Table 3.1.

3.3 Properties of bICA

In this section, we investigate the fundamental properties of bICA. In particular, we

are interested in the following questions:

• Expressiveness: can any set of binary random variables be decomposed into

binary independent components using OR mixtures?

• Independence of OR mixtures: for mixtures of independent sources, what

is the condition that they are independent?

28

• Identifiability: given a set of binary random variables following the bICA

data model, is the decomposition unique?

Expressiveness: Expressiveness of OR mixtures is limited. This can be shown

through an example. Let y1 and y2 be two independent binary random variables with

P (y1 = 1) = p 6= 0.5 and P (y2 = 1) = q 6= 0.5. Let x1 = y1 and x2 = y1 + y2, where

‘+’ is addition in the finite field GF(2). It is easy to see that x1 and x2 are correlated

since P (x2 = 1) = P (y1 = 1)P (y2 = 0) + P (y1 = 0)P (y2 = 1) = q(1− p) + p(1− q),

P (x1 = 1) = p, while P (x1 = 1, x2 = 1) = P (y2 = 0) = 1− q. On the other hand, x2

can not be decomposed into an OR mixture of y1 and y2. This essentially shows that

OR mixtures of binary random variables only span a subset of multi-variate binary

distributions. There exist correlated binary random variables (x1, x2 in this example)

that cannot be modeled as OR mixtures of independent binary components.

Independence of mixtures: Now we turn to the second question, namely, under

what condition are binary random variables that follow the OR mixture model inde-

pendent. In general, pairwise independent random variables are not jointly indepen-

dent. Interestingly, we show that pairwise independence implies joint independence

for OR mixtures.

Theorem 1 Let y = [y1, y2, . . . , yn]T denote n statistically independent sources in

GF(2), the i-th source having 1-probability pi . Let x = D ⊗ y, where D is an

m × n matrix (with elements in GF(2)). Let η(x) and C(x) denote the mean and

covariance (resp.) of x. If:

1. All elements of η(x) are nonzero and not 1’s (called non-degenerate),

29

2. C(x) is diagonal,

Then i) m = n, and ii) D is a permutation matrix.

We first establish the following lemmas.

Lemma 1 Let u and v be two RVs in GF(2) with 1-probabilities pu and pv (resp.),

and w
∆
= u ∨ v. If u and v are independent, non-degenerate (0 < p, q < 1) then w is

also non-degenerate.

Proof. Clearly, pw = P (w = 1) = 1 − (1 − pu)(1 − pv). Since 0 < pu, pv < 1, we

have 0 < pw < 1.

Lemma 2 Consider non-degenerate independent binary random variables y1, y2, y3.

Then, x1 = y1 ∨ y2 and x2 = y3 are independent.

Proof. To prove independence of two binary random variables x1 and x2, it is

sufficient to show P (x1 = 1, x2 = 1) = P (x1 = 1)P (x2 = 1).

P (x1 = 1, x2 = 1) = P (y1 = 1, y2 = 1, y3 = 1)

+ P (y1 = 1, y2 = 0, y3 = 1)

+ P (y1 = 0, y2 = 1, y3 = 1)

= P (y1 = 1)P (y2 = 1)P (y3 = 1)

+ P (y1 = 1)P (y2 = 0)P (y3 = 1)

+ P (y1 = 0)P (y2 = 1)P (y3 = 1)

= P (x1 = 1)P (x2 = 1)

(3.3)

30

Similarly, we can show the following result.

Lemma 3 Consider non-degenerate independent binary random variables y1, y2, y3.

Then, x1 = y1 ∨ y2 and x2 = y1 ∨ y3 are correlated.

Now we are in the position to prove Theorem 1.

Proof. (Proof of Theorem 1) We prove by contradiction. The essence of the

proof is similar to that in [118]. Let us assume now that D is a general matrix, and

consider any pair xk and xl (k 6= l) in x. xk and xl are OR mixtures of respective

subgroups of the sources, indexed by the 1-s in Dk,:, and Dl,:, the k-th and l-th rows

(respectively) of D. These two subgroups consist of, in turn, three other subgroups

(some of which may be empty):

1. Sub-group 1: Sources common to Dk,: and Dl,: . Denote the OR mixing of

these sources as u;

2. Sub-group 2: Sources included in Dk,: but excluded from Dl,:. Denote the OR

mixing of these sources as v1;

3. Sub-group 3: Sources included in Dl,: but excluded from Dk,:. Denote the OR

mixing of these sources as v2.

In other words, xk = u ∨ v1 and xl = u ∨ v2. By applying Lemma 2 iteratively, we

can show that v1 and v2 are independent and non-degenerate. Furthermore, if u 6= 0,

then u is independent of v1 and v2. From Lemma 3, we show that xk and xl are

31

correlated. This contradicts with the condition that C(x) is diagonal. This implies

that u = 0. Therefore, the two rows Dk,: and Dl,: do not share common sources, or,

in other words, there is no column j in D such that both Dk,j and Dl,j are both 1.

There are only m such columns. Thus, m = n. Furthermore, D is a permutation

matrix.

Theorem 1 necessarily implies the following result:

Corollary 1 Let x = G⊗y for some G and independent non-degenerate sources y.

Then, if elements of x is non-degenerate and pair-wise independent, the elements in

x are jointly independent.

Identifiability: Let x = [x1, . . . , xm]T . Define the set

Y (x) = {y |
n∨
j=1

(gij ∧ yj) = xi,∀i = 1, . . . ,m}.

Therefore,

P(x) = P(y ∈ Y (x)) =
∑

y∈Y (x)P(y)

=
∑

y∈Y (x)

∏n
i=1 p

yi
i (1− pi)1−yi

(3.4)

where P(y) is the joint probability of y, and pi
∆
= P(yi = 1). The last equality is

due to the independence among yi’s.

To see whether y is uniquely identifiable from x, we first restrict G such that

it has no identical columns, namely, each yj contributes to a unique set of xi’s.

Otherwise, if G:,i and G:,j are identical, we can merge yi and yj by a new component

32

corresponding to yi ∨ yj. Under the restriction, we can initialize n = 2m − 1 and G

of dimension m× 2m− 1 with rows being all possible n binary values. The G matrix

corresponds to a complete bipartite graph, where an edge exists between any two

vertices in U and V , respectively. For a random variable yj ∈ V , its neighbors in U is

given by the non-zero entries in G:,j. Thus, at most 2m− 1 independent components

can be identified. Given the distribution of random variables x ∈ {0, 1}m, 2m − 1

equations can be obtained from (3.4). As there are at most 2m − 1 unknowns (i.e.,

pi, i = 1, . . . , n), the probability of yj can be determined if a solution exists. To see

that the solution uniquely exists, we present a constructive proof as follows.

Let gk, k = 1, . . . , 2m − 1 be an m-dimension binary column vector, and the

degree of gk, d(gk) is the number of ones in gk. Define the frequency function

Fk = P(x = gk) = P(xi = gik, i = 1, . . .m). For each gk, we associate it with

an independent component yk. The goal is to show that pk
∆
= P(yk = 1) can be

uniquely decided. Starting from gk with the lowest degree, the derivation proceeds

to determine pk’s with increasing degree in gk.

Basis: It is easy to show that F0 =
∏2m−1

j=1 (1− pj). Since pk’s are non-degenerate,

F0 > 0. For k, s.t., d(gk) = 1, we have

Fk = pk

2m−1∏
j=1,j 6=k

(1− pj).

Therefore,

pk =
Fk

Fk + F0

F0. (3.5)

Induction : Define gi ≺ gj if gi 6= gj, and ∀l, s.t., gli = 1, glj = 1. Let Sk be the

set of indices i’s, s.t., Fi 6= 0 and gi ≺ gk, ∀i ∈ S. If Sk = ∅, then (3.5) applies.

33

Otherwise, we have

Fk

=
∏

j 6∈Sk,j 6=k (1− pj)× (pk+

(1− pk)
∑

B⊂Sk,
∨

i∈B gi=gk

∏
i∈B pi

∏
i∈B−Sk

(1− pi))

= F0

(1−pk)
∏

j∈Sk
(1−pj)

× (pk+

(1− pk)
∑

B⊂Sk,
∨

i∈B gi=gk

∏
i∈B pi

∏
i∈B−Sk

(1− pi))

= F0∏
j∈Sk

(1−pj)
× (pk

1−pk
+∑

B⊂Sk,
∨

i∈B gi=gk

∏
i∈B pi

∏
i∈B−Sk

(1− pi)).

where
∨
i∈B gi indicates the entry-wise OR of gi’s for i ∈ B. Let us define Lk

∆
=∑

B⊂S,
∨

i∈B gi=gk

∏
i∈B pi

∏
i∈B−S (1− pi)). Then,

pk =
Fk
∏

i∈Sk
(1− pi)−F0Lk

F0 + Fk
∏

i∈Sk
(1− pi)−F0Lk

. (3.6)

It is easy to verify that when the yi’s are non-degenerate, all the denominators are

positive. This proves that a solution to (3.4) exists and is unique. However, direct

application of the construction suffers from several problems. First, all Fk’s need to

be computed from the data, which requires a large amount of observations. Second,

the property that F0 6= 0 is very critical in estimating pk’s. When F0 is small, it

cannot be estimated reliably. Third, enumerating Sk for each k is computationally

prohibitive.

34

3.4 The inference algorithm

We initialize G to be an m × 2m adjacent matrix for the complete bipartite graph.

Furthermore, the columns of G are ordered such that gkl = 1 if l ∧ 2k = 1, for

k = 1, . . . ,m, where ∧ is the bit-wise AND operator. As an example, when m = 3

we have:

G =


0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


If the active probability of the l’th component pl = 0, this implies the correspond-

ing column G:,l can be removed from G. Before proceeding to the details of the

algorithm, we first present a technical lemma.

Lemma 4 Consider a set x = [x1, x2, . . . , xh−1, xh]
T generated by the data model

in (3.16), i.e., ∃ binary independent sources y, s.t., x = G ⊗ y. The conditional

random vector xxh=0 = [x1, x2, . . . , xh−1|xh = 0]T corresponds to the vector of the

first h− 1 elements of x when xh = 0. Then, xxh=0 = G′⊗y′, where G′ = G:,1...2h−1

(i.e. the first 2h−1 columns of G) and P(y′l = 1) = P(yl = 1) for l = 1, . . . , 2h−1.

35

Proof. We first derive the conditional probability distribution of the first h − 1

observation variables given xh = 0,

P(x1, x2, . . . , xh−1 | xh = 0)

= P(x1, x2, . . . , xh−1 | xh = 0)P(xh = 0)

(a)
=

∑
y∈Y (x)

2h−1∏
l=1

pyll (1− pl)1−yl

=
∑

y1..2h−1 ∈ Y (x1..h−1)

yl = 0,∀ghl = 1

∏
ghl=0

pyll (1− pl)1−yl
∏
ghl=1

(1− pl).

(3.7)

(a) is due to (3.4). Since P(xh = 0) =
∏
ghl=1

(1− pl), we have

P(x1, x2, . . . , xh−1 | xh = 0)

=
∑

y′∈Y (x1:h−1)

2h−1∏
l=1

(p′l)
y′l(1− p′l)1−y′l

=
∑

y1,... ,2h−1 ∈ Y (x1,... ,h−1)

yl = 0,∀ghl = 1

∏
ghl=0

pyll (1− pl)1−yl .
(3.8)

Clearly, by setting P(y′l = 1) = P(yl = 1) for l = 1, . . . , 2h−1, the above

equality holds. In other words, the conditional random vector xxh=0 = G′ ⊗ y′

for G′ = G:,1...2h−1 .

The above lemma establishes that the conditional random vector xxh=0 can be

represented as an OR mixing of 2h−1 independent components. Furthermore, the set

36

of independent components is the same as the first 2h−1 independent components of

x (under proper ordering).

Consider a sub-matrix of data matrix X, X0
(h−1)×T , where the rows correspond

to observations of x1, x2, . . . , xh−1 for t = 1, 2, . . . , T such that xht = 0. Define

X(h−1)×T , which consists of the first h−1 rows of X. Suppose that we have computed

the bICA for data matrices X0
(h−1)×T and X(h−1)×T . From Lemma 4, we know that

X0
(h−1)×T is a realization of OR mixtures of independent components, denoted by

y0
2h−1 . Furthermore, P [y0

2h−1(l) = 1] = P(yl = 1) for l = 1, . . . , 2h−1. Clearly,

X(h−1)×T is a realization of OR mixtures of 2h−1 independent components, denoted

by y2h−1 . Additionally, it is easy to see that the following holds:

P [y2h−1(l) = 1]

= 1− [1− P(y0
2h−1(l) = 1)][1− P(yl+2h−1 = 1)]

= 1− (1− pl)(1− pl+2h−1),

(3.9)

where l = 1, . . . , 2h−1. Therefore,

pl = P(y0
2h−1(l) = 1), l = 1, . . . , 2h−1,

pl+2h−1 = 1− 1−P(y
2h−1 (l)=1)

1−P(y0
2h−1 (l)=1)

, l = 2, . . . , 2h−1,

p2h−1+1 = F(xh=1∧xi=0,∀i∈[1...h−1])∏
l=1...2h,l 6=2h−1−1

(1−pl)
.

(3.10)

The last equation above holds because realizations of x where (xk = 1 while xi =

0;∀i ∈ {0, . . . , k − 1}) are generated from OR mixtures of y2k−1 ’s only.

Let F(A) be the frequency of event A, we have the iterative inference algorithm

as illustrated in Algorithm 1.

When the number of observation variables m = 1, there are only two possible

unique sources, one that can be observed by x1, denoted by [1]; and one that cannot,

37

Algorithm 1: Incremental binary ICA inference algorithm
FindBICA (X)
input : Data matrix Xm×T
init : n = 2m − 1;
ph = 0, h = 1, . . . , n;
G = m× (2m − 1) matrix with columns corresponding all possible binary vectors of length
m;
ε = the minimum threshold for ph to be considered a real component;

1 if m = 1 then
2 p1 = F(x1 = 0);
3 p2 = F(x1 = 1);

else

4 if X0
(m−1)×T = ∅ then

5 p1...2m−1 = FindBICA (X(m−1)×T);
6 p2m−1+1 = 1;
7 p2m−1+2...2m = 0;

else

8 p1...2m−1 = FindBICA (X0
(m−1)×T);

9 p′1...2m−1 = FindBICA (X(m−1)×T);
10 for l = 2, . . . , 2m−1 do

11 pl+2m−1 = 1− 1−p′l
1−pl

;

12 p2m−1+1 = F(xm=1∧xi=0,∀i∈[1...m−1])∏
l=1...2m−1,l 6=2m−1+1 (1−pl)

;

13 for h = 1, . . . , 2m do
14 if (ph < ε) ∨ (ph = 0) then
15 prune ph and corresponding columns gh;

16 output: p and G

denoted by [0]. Their active probabilities can easily be calculated by counting the

frequency of (x1 = 1) and (x1 = 0) (lines 1 – 3). If m ≥ 2, we apply Lemma 4

and (3.10) to estimate p and G through a recursive process. X0
(m−1)×T is sampled

from the columns of X that have xm = 0. If X0
(m−1)×T is an empty set (which

means xmt = 1,∀t) then we can associate xm with a constantly active component

and set the other components’ probability accordingly (lines 4 – 7). If X0
(m−1)×T

is non-empty, we invoke FindBICA on two sub-matrices X0
(m−1)×T and X(m−1)×T

to determine p1...2m−1 and p′1...2m−1 , then compute p2m−1+1...2m from (3.10) (lines 10 –

38

12). Finally, ph and its corresponding column gh in G are pruned in the final result

if ph < ε (lines 13 – 15), where ε is a user-defined threshold.

Reducing computation complexity: Let S(m) be the computation time for

finding bICA given Xm×T . From Algorithm 1, we have,

S(m) = 2S(m− 1) + c2m,

where c is a constant. It is easy to verify that S(m) = cm2m. Therefore, Algo-

rithm 1 has exponential computation complexity with respect to m. This is clearly

undesirable for large m’s. However, we notice that in practice, correlations among

xi’s exhibit locality, and the G matrix tends to be sparse. Instead of using a com-

plete bipartite graph to represent G, the degree of vertices in V (or the number of

non-zero elements in G:,k) tend to be much less than m. In what follows, we discuss

a few techniques to reduce the computation complexity by discovering and taking

advantage of the sparsity of G. We first establish a few technical lemmas.

Lemma 5 If xi and xk are uncorrelated, then P(yl = 1) = 0, ∀l s.t., gil = 1 and

gkl = 1.

Proof. We prove by contradiction. Suppose ∃l, s.t., gil = 1, gkl = 1, and P(yl =

1) = 0. Denote the l’s by a set L. Let u = ∧l∈Lyl. From the assumption, u is

non-degenerate. Without loss of generality, we can represent xi and xk as

xi = u ∨ v1

xk = u ∨ v2

39

where v1 and v2 are disjunctions of remaining non-overlapping components in xi and

xk, respectively. From Lemma 3, we know that xi and xk are correlated. This con-

tradicts the condition.

Lemma 6 Consider the conditional random vector xxk=0 = [x1, x2, . . . , xk−1|xk =

0]T from a set x = [x1, x2, . . . , xk−1, xk]
T generated by the data model in (3.16). If

xi and xk are uncorrelated, xxk=0(i) and xxk=0(k) are uncorrelated.

Proof. This lemma is a direct consequence of Lemma 4 and Lemma 5.

Lemma 5 implies that pair-wise independence can be used to eliminate edges/columns

in G. Lemma 6 states that pair-wise independence remains true for conditional vec-

tors. Therefore, we can treat the conditional vectors similarly as the original ones.

We also observe that for x = [x1, x2, . . . , xk−1, xk]
T if (3.11) holds then there

does not exist an independent component that generates xk and some of xj, j =

1, 2, . . . k−1. In other words, xk is generated by a “separate” independent component.

P(x1, x2, . . . , xk−1, xk) = P(x1, x2, . . . , xk−1)P (xk) (3.11)

Finally from (3.9), we see that P(yk−1(l) = 1) ≥ max(pl, pl+2k−1). Note that

P(yk−1(l) = 1) is inferred from X(k−1)×T , while the latter two are for Xk×T . This

property allows us to prune the G matrix along with the iterative procedure (as

opposed to at the very end).

Now we are in the position to outline our complexity reduction techniques.

40

T1 For every pair i and k, compute p-value of X i and Xk Let the associated p-

value be p(i, k). The basic idea of p-value is to use the original paired data

(X i,Xk), randomly redefining the pairs to create a new data set and compute

the associated r-values. The p-value for the permutation is proportion of the r-

values generated that are larger than that from the original data. If p(i, k) > ε,

where ε is a small value (e.g., 0.05), the corresponding columns in G and

elements in y can be removed.

T2 We can determine the bICA for each sub-vector separately if the following

holds,

P(x1, . . . , xk) = P(x1, . . . , xl)P(x1+1, . . . , xk).

T3 If the probability of the i’th component of Xk×T pi < ε, then ∀j, s.t., G:,i ≺

G:,j, the probability of the j’th component of Xk′×T pj < ε for k′ > k. In

other words, these columns and corresponding components can be eliminated.

From our evaluation study, we find the computation time is on the order of seconds

for a problem size m = 20 on a regular desktop PC.

3.5 The inverse problem

Now we have the mixing matrix Gm×n and the active probabilities P(y), given

observation Xm×T , the inverse problem concerns inferring the realizations of the

latent variables Y n×T . Recall that n is the number of latent variables. Denote yi

to be the binary variable for the i’th latent variable. Let x = G ⊗ y. We assume

41

that the probability of observing X given x depends on their Hamming distance

d(x,X) =
∑

i |X i − xi|, and P(x|X) = p
d(x,X)
e (1 − pe)

m−d(x,X), where pe is the

error probability of the binary symmetric channel. To determine y, we can maximize

the posterior probability of y given X derived as follows,

P{y|X} =
P{X |y}P{y}
P{X}

=
P{X |y}P{y}
P{X}

(a)
=
P{X ,x|y}P{y}

P{X}
(b)
=
P{X |x}P{y}
P{X}

=
∏m

i=1 P{X i|xi}
∏n

j=1 P{yi}
P{X}

=
∏m

i=1 p
|xi−X |
e (1−pe)1−|xi−X |∏n

j=1 p
yi
i (1−pi)1−yi

P{X}
,

where x = G ⊗ y. (a) and (b) are due to the deterministic relationship between x

and y. Recall that xi =
∨n
j=1 (gij ∧ yj), i = 1, . . . ,m. With M devoting a “large

enough” constant, we can use the ’big-M formulation [59] to relax the disjunctive

set and convert the above relationship between x and y into the following two sets

of conditions:

xi ≤
∑n

j=1 gijyj, ∀i = 1, . . . ,m.

M · xi ≥
∑n

j=1 gijyj, ∀i = 1, . . . ,m.
(3.12)

Here, since
∑n

j=1 gijyj ≤ n, we can set M = n. Finally, taking log on both sides and

introducing additional auxiliary variable αi = |X i − xi|, we have the the following

42

integer programming problem:

max .
α,y

m∑
i=1

[αi log pe + (1− αi) log(1− pe)]

+
∑n

j=1 [(1− yj) log (1− pj) + yj log pj]

s.t. xi ≤
n∑
j=1

gijyj, ∀i = 1, . . . ,m,

n · xi ≥
n∑
j=1

gijyj, ∀i = 1, . . . ,m,

αi ≥X i − xi, ∀i = 1, . . . ,m,

αi ≥ xi −X i, ∀i = 1, . . . ,m,

αi, xi, yj = {0, 1} , ∀i = 1, . . . ,m, j = 1, . . . , n.

(3.13)

This optimization problem can be solved using ILP solvers. Note that pe can be

thought of the penalty for mismatches between xi and X i’s.

Zero Error Case: If X is perfectly observed, containing no noise, we have pe = 0

and αi = xi −X i = 0, or equivalently, xi = X i. The integer programming problem

in (3.13) can be simplified as:

max .
y

n∑
j=1

[(1− yj) log (1− pj) + yj log pj]

s.t. X i ≤
n∑
j=1

gijyj, ∀i = 1, . . . ,m,

n ·X i ≥
n∑
j=1

gijyj, ∀i = 1, . . . ,m,

yj = {0, 1} , ∀j = 1, . . . , n.

(3.14)

Clearly, the computation complexity of the zero error case is lower compared

to (3.13). It can also be used in the case where prior knowledge regarding the noise

level is not available.

43

3.6 Applications in communication networks

In this section, we present some case studies on real-world application of bICA.

In general, bICA can be applied to any problem that concerns identifying hidden

source signals from binary OR mixtures. The proposed method therefore can find

applications in many domains. In multi-assignment clustering [107], where boolean

vectorial data can simultaneously belong to multiple clusters, the binary data can

be modeled as the disjunction of the prototypes of all clusters the data item belongs

to. In medical diagnosis, the symptoms of patients are explained as the result of

diseases that are not themselves directly observable [37]. Multiple diseases can ex-

hibit similar symptoms. In the Internet tomography [24], losses on end-to-end paths

can be attributed to losses on different segments (e.g., edges) of the paths. In all

above applications, the underlying data models can be viewed as disjunctions of bi-

nary independent components (e.g., membership of a cluster, presence of a disease,

packet losses on a network edge, etc). In this dissertation, we only present some

specific applications in communication networks and demonstrate how bICA can be

effectively applied.

3.6.1 Optimal monitoring in multichannel wireless network

Passive monitoring is a technique where a dedicated set of hardware devices called snif-

fers, or monitors, are used to monitor activities in wireless networks. These devices

capture transmissions of wireless devices or activities of interference sources in their

vicinity, and store the information in trace files, which can be analyzed distributively

44

or at a central location. Most operational networks operate over multiple channels,

while a single radio interface of a sniffer can only monitor one channel at a time.

Thus, the important question is to decide the sniffer-channel assignment to maximize

the total information (user transmitted packets) collected.

3.6.1.1 Network model and optimal monitoring

Consider a system of m sniffers, and n users, where each user u operates on one

of K channels, c(u) ∈ K = {1, . . . , K}. The users can be wireless (mesh) routers,

access points or mobile users. At any point in time, a sniffer can only monitor packet

transmissions over a single channel. We represent the relationship between users

and sniffers using an undirected bi-partite graph G = (S, U,E), where S is the set of

sniffer nodes and U is the set of users. An edge e = (s, u) exists between sniffer s ∈ S

and user u ∈ U if s can capture the transmission from u. If transmissions from a

user cannot be captured by any sniffer, the user is excluded from G. For every vertex

v ∈ U ∪ S, we let N(v) denote vertex v’s neighbors in G. For users, their neighbors

are sniffers, and vice versa. We will also refer to G as the binary m × n adjacency

matrix of graph G. An example network with sniffers and users, the corresponding

bipartite graph G, and its matrix representation G are given in Figure 3.2.

As mentioned earlier, the more complete information can be collected, the easier it

is for a network administrator to make decisions regarding network troubleshooting.

We can measure the quality of monitoring by the total expected number of active

users monitored by the sniffers. Our problem now is to find an assignment of sniffers

to channels so that the expected number of active users monitored is maximized. It

45

1

1

2 3

4

5

2

3

4 5

6

7

8

9

10

1 2 3 4 5

654 987321 10

y

x

G =


1 1 0 1 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 1 1 0 0 1 1 1


x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Figure 3.2: A sample network scenario with number of sniffers m = 5, number of users
n = 10, its bipartite graph transformation and its matrix representation. White circles rep-
resent independent users, black circles represent sniffers and dashed lines illustrate sniffers’
coverage range.

can be casted as the following integer programming problem:

max .
y,z

∑
u∈U puyu

s.t.
∑K

k=1 zs,k ≤ 1, ∀s ∈ S,

yu ≤
∑

s∈N(u) zs,c(u), ∀u ∈ U,

yu ≤ 1, ∀u ∈ U,

yu, zs,k ∈ {0, 1} , ∀u, s, k,

(3.15)

where the binary decision variable zs,k = 1 if the sniffer is assigned to channel k; 0

otherwise. yu is a binary variable indicating whether or not user u is monitored, and

pu is the active probability of user u.

46

3.6.1.2 Network topology inference with binary observations

From (3.15), it is clear that we need the network and user-level information in order

to maximize the quality of monitoring. However, this information is not always

available. We consider binary sniffers, or sniffers that can only capture binary

information (on or off) regarding the channel activity. Examples of such kind of

sniffers are energy detection sensors in spectrum sensing. Let x = [x1, x2, . . . , xm]T

be a vector of m binary random variables and X be the collection of T realizations

of x, where xit denotes whether or not sniffer si captures communication activities

in its associated channel at time slot t. Let y = [y1, y2, . . . , yn]T be a vector of n

binary random variables, where yj = 1 if user uj transmits in its associated channel,

and yj = 0 otherwise. Sniffer observations are thus disjunctive mixtures of user

activities. The problem now is to infer the user-sniffer relationship (i.e. G) and the

active probability of users from the observation data (i.e. X). In other words, given

that the relationship between x and y follows x = G⊗ y, we can use bICA to infer

G and y.

3.6.1.3 WiFi trace collection and evaluation results

We evaluate our proposed scheme by data traces collected from the University of

Houston campus wireless network using 21 WiFi sniffers deployed in the Philip G.

Hall. Over a period of 6 hours, between 12 p.m. and 6 p.m., each sniffer captured

approximately 300,000 MAC frames. Altogether, 655 unique users are observed

operating over three channels. The number of users observed on channels 1, 6,

47

11 are 382, 118, and 155, respectively. Most users are active less than 1% of the

time except for a few heavy hitters. User-level information is removed leaving only

binary channel observations from each sniffer. G and p are then inferred using bICA

and input to the integer program (3.15) to find the best sniffer channel assignment

that maximizes the expected number of active users monitored. Obviously, the

more accurate the network model is inferred, the better the assignment is and the

more users are monitored. We also vary the result by randomly select a subset of

sniffers and observe the number of monitored users from this set of sniffers. Result

is presented in Figure 3.3

4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

Number of sniffers

A
ve

ra
ge

 n
um

be
r

of
 a

ct
iv

e
us

er
s

m
on

ito
re

d

MAX
LPR − USER
LPR − BICA

Figure 3.3: Expected number of active users monitored with the number of sniffers
vary from 5 to 21.

In Figure 3.3, we compare the average of the number of active users monitored

using the inferred Ĝ and p̂, and the ground truth. The integer programming problem

(3.15) is solved using a random rounding procedure on its LP relaxation, which is

shown to perform very close to the LP upper bound in our earlier work [31].

48

Note that most users are active less than 1% and the average active probability

of users is 0.0014. The system consists of 655 unique users, therefore the average

number of active users monitored is around 1 in each slot. For comparison, we also

include a naive scheme (Max) that puts each sniffer to its busiest channel. Therefore,

Max does not infer or utilize any structure information. From Figure 3.3, we observe

that the sniffer-channel assignment scheme with bICA (LPR – BICA) performs close

to the case when full information is available (LPR – USER), and much better than

an agnostic scheme such as Max (MAX). This demonstrates that bICA can indeed

recover useful structure information from the observations.

3.6.2 Primary user separation in cognitive radio networks

With tremendous growth in wireless services, the demand for radio spectrum has

significantly increased. However, spectrum resources are scarce and most of them

have been already licensed to existing operators. Recent studies have shown that

despite claims of spectral scarcity, the actual licensed spectrum remains unoccupied

for long periods of time [47]. Thus, cognitive radio (CR) systems have been pro-

posed [88, 62, ?] in order to efficiently exploit these spectral holes, in which licensed

primary users (PUs) are not present. CRs or secondary users (SUs) are wireless

devices that can intelligently monitor and adapt to their environment, hence, they

are able to share the spectrum with the licensed PUs, operating when the PUs are

idle.

One key challenge in CR systems is spectrum sensing, i.e., SUs attempt to learn

49

the environment and determine the presence and characteristics of PUs. Energy de-

tection is one of the most commonly used method for spectrum sensing, where the

detector computes the energy of the received signals and compares it to a certain

threshold value to decide whether the PU signal is present or not. It has the advan-

tage of short detection time but suffers from low accuracy compared to feature-based

approaches such as cyclostationary detection [62, ?]. From the prospective of a CR

system, it is often insufficient to detect PU activities in a single SU’s vicinity (“is

there any PU near me?”). Rather, it is important to determine the identity of PUs

(“who is there?”) as well as the distribution of PUs in the field (“where are they?”).

We call these issues the PU separation problem. Clearly, PU separation is a more

challenging problem compared to node-level PU detection.

3.6.2.1 Solving PU separation problem with bICA

Consider a slotted system in which the transmission activities of n PUs are modeled

as a set of independent binary variables y with active probabilities P(y). A network

interaction is defined as the transmission from a PU that is sensed by a SU (monitor).

The binary observations due to energy detection at the m monitor nodes are modeled

as an m-dimension binary vector x = [x1, x2, . . . , xm]T with joint distribution P(x).

It is assumed that presence of any active PU surrounding of a monitor leads to

positive detection. If we let an (unknown) binary mixing matrix G represents the

relationship between the observable variables in x and the latent binary variables in

y = [y1, y2, . . . , yn]T , then we can write x = G⊗ y. The PU separation is therefore

amenable to bICA. Given the estimated mixing matrix G and active probabilities

50

P(y), PU activity matrix Y can be inferred by solving the inverse problem 3.5.

3.6.2.2 Simulation setup and results

In the simulation, 10 SUs and n PUs are uniformly deployed in a 100x100 square

meter area. Euclidean distances between PUs and SUs are computed from the coor-

dinates of their locations. The PUs’ transmit power levels Pt are fixed at 20mW; the

noise floor N0 at each SU is -95dBm; the center frequency f is 2.4GHz and the path

loss exponent α is 3. The channel gain matrix is assumed to follow the standard

Rayleigh fading model. The detection threshold τ for the SUs is set to -89dBm,

-87dBm and -85dBm respectively, which corresponds to 6dB, 8dB and 10dB above

the noise floor. The PUs’ activities a modeled by a two-stage Markov chain with

transition probabilities uniformly distributed over (0, 1
30

). We run the simulation

for T slots and obtain the binary observations X and X l for the binary OR and

quantized linear mixture model, respectively. We compare performance of bICA and

MAC [107] on two sets of experiments:

Varying the number of PUs: We fix the sample size T = 10, 000 and vary the

number of PUs from 5 to 20 to study the impact on the accuracy of the proposed

method. Active probabilities of PUs are randomly distributed in (0, 1) with mean

= 0.1. Note that we need to specify the number of PU n as in input to MAC

to speed up its execution. Therefore, no PU miscount is reported for MAC. We

also omit results of MAC in noisy environments (τ = -89dBm and -87dBm) due to

significantly inferior performance. Result is reported in Figure 3.4.

51

Varying the size of observations: In the second set of experiments, we fix the

number of PUs n = 10 and study the impact of the observation size T . A small T

(and thus insufficient observations) would lead to higher uncertainty while a large T

incurs higher computation overhead. Furthermore, if T is too small, some PUs may

never be active in the trace, making them impossible to be inferred. It is therefore

interesting to investigate the effect of T on the accuracy and computation overhead

of the proposed algorithm. Result is reported in Figure 3.5.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of PUs

K
L

D
iv

er
ge

nc
e

bICA τ = −89dBm
bICA τ = −87dBm
bICA τ = −85dBm
MAC τ = −85dBm

5 10 15 20
0

5

10

15

20

25

30

35

40

45

Number of PUs

P
re

di
ct

io
n

E
rr

or
 o

n
N

um
be

r
of

 P
U

s

bICA τ = −89dBm
bICA τ = −87dBm
bICA τ = −85dBm

5 10 15 20
0

10

20

30

40

50

Number of PUs

P
re

di
ct

io
n

E
rr

or
 o

n
Y

 (
%

)

bICA τ = −89dBm
bICA τ = −87dBm
bICA τ = −85dBm
MAC τ = −85dBm

(a) PU transmission prob. error (b) Miscount of PUs (c) PU activity error ratio

Figure 3.4: Effects of the energy detection threshold and the number of PUs on inference results.

50 100 500 1000 2500 5000 10000
0

0.5

1

1.5

2

2.5

Sample Size

K
L

D
iv

er
ge

nc
e

bICA τ = −89dBm
bICA τ = −87dBm
bICA τ = −85dBm
MAC τ = −85dBm

50 100 500 1000 2500 5000 10000
0

5

10

15

20

25

30

35

40

45

Sample Size

P
re

di
ct

io
n

E
rr

or
 o

n
N

um
be

r
of

 P
U

s

bICA τ = −89dBm
bICA τ = −87dBm
bICA τ = −85dBm

50 100 500 1000 2500 5000 10000
0

5

10

15

20

25

30

35

40

45

Sample Size

P
re

di
ct

io
n

E
rr

or
 o

n
Y

 (
%

)

bICA τ = −89dBm
bICA τ = −87dBm
bICA τ = −85dBm
MAC τ = −85dBm

(a) PU transmission prob. error (b) Miscount of PUs (c) PU activity error ratio

Figure 3.5: Effects of the energy detection threshold and the size of observations on inference
results. The x-axis is in logarithmic scale.

From the evaluation results, our proposed method outperforms MAC in every

metric in all experiments. Not only does bICA achieve higher accuracy at all noise

52

levels, it also converges much faster, and thus significantly reduces the computation

overhead. More detailed information on this problem can be found at [93].

3.6.3 Multicast tree topology inference

The problem of inferring logical tree topologies from end-to-end measurements can

find applications in network tomography, where both the underlying multicast trees

as well as losses on the logical links/nodes are not known. It was first studied by

Cáceres et al. [20, 19]. Recently, Mao et al. [83] investigated topology inference and

failure diagnosis for last mile cable networks. In a cable network, a single administra-

tive area encompasses hundreds or thousands of end-customers (e.g., cable modems

and VoIP phones) with thousands of intermediate distribution devices forming a tree

topology. Intermediate devices are passive and/or too costly to monitor directly.

To see the connection between the disjunctive generation model in bICA and

the tree topology inference problem, let us consider a simple example in Figure 3.6.

Probes are injected from the root node and disseminated on the tree. Denote yl ∈

{0, 1}, l = 1, 2, . . . , 8 the random variables corresponding to the loss events (i.e., 1

for loss; 0 otherwise) on node l. Let xi = {0, 1}, i = 1, 2, . . . , 5 denotes whether a loss

event is detected at the receiver i. Receivers themselves are assumed to be non-lossy.

Clearly, xi’s follow a disjunctive relationship of the loss events on the nodes from the

root to receiver i. For example, x1 = y1 ∨ y2 ∨ y4 since if any loss occurs at node 1,

2 or 4, receiver 1 will miss the probe packet. Probes packets transferred from one

network node to another in this case is considered network interactions.

53

x2 x3 x4 x5x1

y7 y8y6 y3y5 y1y4 y2

y2

y1

y3

y5 y6 y7 y8y4

x2 x3 x4 x5x1

Figure 3.6: A canonical multicast tree and its bipartite graph transformation. In the
bipartite graph, a receiver i is connected to a node j iff j is an ancestor of i.

3.6.3.1 Notation and network model

Let T = (V, L) denote the tree from a given source to many receivers. T consists

of a set of nodes V and the set of links L. A link is an ordered pair (j, k) ∈ V × V

denoting a link from node j to node k; a link is said to be internal if neither j nor

k is the root node or a leaf node. We use d(j) to denote the set of children of node

j. (i.e., d(j) = k ∈ V : (k, j) ∈ L). For each node j ∈ V excluding the root, there is

a unique node k = f(j) to be the parent of j, such that (k, j) ∈ L. We shall define

fn(k) recursively by fn(k) = f(fn−1(k)). We further define f 0(k) = k. Node j is

said to be an n-level descendant of k if k = fn(j) for some integer n > 0.

The root node ∈ V is the source of the probes. Each leaf node in R ⊂ V is

attached a receiver (monitor). Without loss of generality, we assume there is no

54

loss on the receivers themselves. As a result, we can treat the receivers and the

leaf nodes interchangeably. We model the loss of probe packets on T by a set of

mutually independent Bernoulli processes. Each node k ∈ V is associated with

a Bernoulli process y = (yk)k∈V where each yk takes a value in {0,1}. yk = 1

corresponds to the event that a probe packet is lost on the node k, and 0 otherwise.

Define p = P (y = 1) to be the loss probability vector and pk ∈ p,∀k ∈ V to be

the associated loss probability at each node k. For any node k ∈ V \R, if the probe

is lost at k (or yk = 1), then it is lost at all children of k (and consequently at all

descendants of k). X is an m× T collection of T realizations of vector x on the m

receivers as T probes are dispatched from the root. For the t’th probe, X(r, t) = 0 if

it reaches the receiver r, and X(r, t) = 1 if it was lost somewhere on the path from

root node to r.

In this application, we can use an adjacency matrix G = [gij]m×n to represent

T , where n is the number of nodes (n = |V |) and m is the number of monitors or

leaf nodes (m = |R| < n). gij = 1 if node j is an ancestor of the leaf node i, i.e.,

j = fh(i) for some integer h ≥ 0; and gij = 0 otherwise. In other words, gij = 1

implies that probe packets originated at the root travel through node j before being

received at leaf node i. If the packet is lost at node j (or yj = 1), it will not be

received at any receiver i that descends from node j (xi = 1, ∀i : gij = 1). As an

55

example, the adjacency matrix for the multicast tree in Figure 3.6 is:

G =



1 1 0 1 0 0 0 0

1 1 0 0 1 0 0 0

1 0 1 0 0 1 0 0

1 0 1 0 0 0 1 0

1 0 1 0 0 0 0 1



x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7 y8

3.6.3.2 The inference algorithm

Let Xxk=0 be the observation matrix, where Xxk=0(j, t) ∈ {0, 1}, ∀j ∈ R\ {k} and

xk(t) = 0. We proved that, when xk(t) = 0, the binary random variables xj(t), j 6= k

can be grouped into clusters that are independent to each other (while dependency

still exists among receivers within a same cluster). Additionally, receivers in each

cluster Ckh are descendants of a common ancestor fh(k) for some h. In the definition

of the adjacency matrix G, gij = 1 if node j is an ancestor of the leaf node i.

Therefore, there exists an h such that gij = 1,∀i ∈ Ckh, j = fh(k). This leads to the

seqBICA algorithm, which inspects Xxk=0 for each k ∈ {1, 2, . . . ,m}. At each step,

it partitions R\ {k} into independent clusters and includes into G a new column (or

equivalently a new independent component) for the new set of clusters generated.

Our proposed approach is summarized in Algorithm 2.

56

Algorithm 2: Sequential bICA algorithm
seqBICA(X)

input : X = data matrix
init : m = number of receivers

T = number of observations
n = 1 (the tree is initialized with a root node)
Gm×1 = [1, . . . , 1]T

1 for i = 1, . . . ,m do
2 Xxk=0 = ∅
3 for j = 1, . . . , T do
4 if X(i, j) = 0 then
5 add the j’th column of X into Xxk=0

6 C = FindCluster(Xxk=0)
7 foreach U ⊂ C do
8 colm×1 = [0, . . . , 0]T

9 col(j)∀j∈U = 1
10 if col 6⊂ G then
11 G = G ∪ col
12 n = n+ 1

13 for i = 1, . . . , n do
14 R(i) = j : j ∈ {1, 2, . . . ,m} ∧ gij = 1

15 Ω = Λ = {1}
16 Φ = {2, . . . , n}
17 while Ω 6= ∅ do
18 for j ∈ Ω do
19 d(j) = MinSetCover(R(j),

⋃
l∈Φ {R(l)})

20 Ω = Ω ∪ d(j)
21 Λ = Λ ∪ d(j)
22 Ω = Ω\j
23 Φ = Φ\Ω

24 Remove columns of G 6∈ Λ

output
:

Adjacency matrix G

57

3.6.3.3 Evaluation

In this section, we first introduce performance metrics and then present performance

of the proposed method on both synthetic and real traces. We compate the per-

formance of seqBICA with that of DLT in [44]. We also run the original bICA

algorithm and NetworkMD [83] on the same set of experiments, but omit the result

due to inferior performance.

Performance metrics: We denote by Ĝ and p̂ the inferred adjacency matrix

and the inferred loss rate1 of non-leaf nodes, respectively. Algorithm performance is

evaluated using the following metrics:

• Error on G: This metric indicates how accurately the adjacency matrix is

estimated. It is defined by the Hamming distance between G and Ĝ divided

by its size. Denote G:i to be the i’th column of G and dH to be the Hamming

distance between two vectors.

H̄(G, Ĝ)
∆
= 1

mn

∑n
i=1 d

H(G:i, Ĝ:i).

• Error on p: Prediction error in the inferred loss rate of independent internal

nodes is measured by the root mean square error ratio between p and p̂, defined

as below:

P̄ (p, p̂)
∆
=

√∑n
i=1(p̂i−pi)2

n
/
∑n

i=1 pi
n

.

Loss Rate Error Ratio can be interpreted as the fraction of the inferred loss

probability that deviates from the true values.

1Having Ĝ, we calculate p̂ using the algorithm described in [20].

58

• Error on T : This metric measures the percentage of time that the multicast

tree topology is not correctly inferred, meaning Ĝ 6= G. Clearly, the tree error

rate is generally larger than the structure error ratio.

• Computation time: This metric measures how long an algorithm takes to

finish inferring the network topology.

x1 x2 x3 x4

x5

y2 y3

y1

mcast source

CS dept. router

Figure 3.7: The multicast testbed with 6 computers and 3 switches. Arrows indicate
the direction of the probe packets.

Virtual LAN experiments: We set up a small-scale multicast testbed at the CS

department, University of Houston, which consists of 6 commodity workstations and

3 Netgear Gigabit GS105 switches as shown in Figure 3.7. The workstations run

Debian and Windows OS. One computer acts as the multicast source and broadcasts

UDP multicast messages, and the other 5 receivers listen to the multicast packets

over Ethernet. We vary the number of observations T from 50 to 1,000, and collect

the traces 10 times for each configuration. All experiments are conducted on a work-

station with an Intel Core i5-750@2.66GHz processor and 6GB RAM. Algorithms

are implemented in Matlab.

59

As shown in Figure 3.8, seqBICA significantly outperforms DLT when the number

of probes are small. In fact, seqBICA can infer the topology correctly with 100%

confidence interval even with 50 probe packets. DLT, on the other hand, converges

much slower and requires at least 200 observations to correctly estimate the topology.

0

20

40

60

50 10
0

20
0

40
0

70
0

10
00

seqBICA
DLT

0

20

40

60

80

100

50 10
0

20
0

40
0

70
0

10
00

seqBICA
DLT

(a) Error on G (%) (b) Error on T (%)

Figure 3.8: Comparison between seqBICA and DLT. x-axis indicates the number of
observations and y-axis indicates the error rate (%). Error bars are symmetric, and
indicate standard deviation over 10 runs with different traces.

Simulated network experiments: We also have experimented with tree topolo-

gies used in related work as well as randomly generated trees with a good coverage

of diverse scales and complexities. Simulation results are reported in Figure 3.9. In

generating random tree topologies, the number of receivers varies from 10 to 20. Link

loss probability on all trees is chosen uniformly in [0.05, 0.1]. p-value threshold ε in

FindCluster, is set to 0.003. The results presented are the average of 50 runs for

each scenario (with 50 different topologies for the random tree scenario).

From Figure 3.9(ii), we observe that when the number of observations T increases

from 50 to 1,000, the structure error reduces drastically. When T = 1,000, structure

error of both methods are close to 0. However, seqBICA converges much faster and

have a lower error rate than DLT. The trend in Figure 3.9(iv) is similar, which shows

60

Error on G (%) Error on p (%) Error on T (%) Comp. time (sec.)

(i) (ii) (iii) (iv) (v)

(a)

A very simple tree

0

10

20

30

50 10
0

20
0

40
0

70
0

10
00

seqBICA
DLT

0

20

40

60

50 10
0

20
0

40
0

70
0

10
00

0

50

100

50 10
0

20
0

40
0

70
0

10
00

0

0.05

0.1

0.15

50 10
0

20
0

40
0

70
0

10
00

(b)

A complicated tree

0

10

20

30

50 10
0

20
0

40
0

70
0

10
00

seqBICA
DLT

0

20

40

60

50 10
0

20
0

40
0

70
0

10
00

0

50

100

50 10
0

20
0

40
0

70
0

10
00

0

0.5

1

1.5

50 10
0

20
0

40
0

70
0

10
00

(c)

Random model

0

10

20

30

40

50 10
0

20
0

40
0

70
0

10
00

seqBICA
DLT

0

20

40

60

50 10
0

20
0

40
0

70
0

10
00

0

50

100

50 10
0

20
0

40
0

70
0

10
00 0

2

4

6

50 10
0

20
0

40
0

70
0

10
00

Figure 3.9: Experiment results with fixed and random tree topologies. The first column
shows the topologies studied. The second to fifth columns show Structure Error Ratio,
Loss Rate Error Ratio, Tree Error Rate and CPU runtime, respectively as T increase from
50 to 1,000. Each graph includes experiment results of seqBICA and DLT. Error bars are
symmetric, and indicate standard deviation over 50 runs with different seeds.

a decrement in the tree error rate as the number of measurements increases for each

algorithm. Again, seqBICA generally outperforms DLT in both convergence time

and error rate. Performance of both algorithms in the p error test is comparable

with seqBICA slightly outperforms the other in most cases. And finally, we see from

Figure 3.9(v) that even though the computation time of seqBICA is negligible, DLT

is still much faster.

61

3.6.4 Binary blind identification of wireless transmission tech-

nologies

The increasingly widespread adoption of wireless devices pose challenges in ensur-

ing the satisfactory operations of wireless networks. Electro-magnetic interference

(EMI) from unintended devices can potentially compromise the safety of mission-

critical applications such as medical delivery. Even for non-critical applications such

as VOIP or file transferring, excessive interference can greatly degrade their perfor-

mance. Therefore, it is of great importance to monitor the spectrum usage in wireless

networks. Efficient data collection, representation, processing and mining techniques

need to be developed to facilitate real-time or offline diagnosis of wireless networks.

F
re

qu
en

cy

Samples

50 100 150 200 250 300 350 400 450 500

2.410GHz

2.419GHz

2.428GHz

2.437GHz

2.446GHz

2.456GHz

2.465GHz

2.474GHz

2.483GHz

2.492GHz −95

−90

−85

−80

−75

−70

−65

−60

−55

−50

−45

Figure 3.10: Spectrum measurement example

In this application, we make an initial but yet significant effort toward devel-

oping efficient techniques for spectrum monitoring. We make a case for the binary

62

representation of spectrum activities, and develop a novel technique for the identifi-

cation of wireless transmission technologies from binary data. We term the proposed

methodology “binary blind identification” (“blind” in a sense that no high-level fea-

tures such as cyclostationarity are utilized). The identification is purely based on

the spectrum bins that are occupied during transmissions of respective devices. Cor-

relation in frequency domain is exploited such as one can distinguish whether the

occupied spectrum bins are due to a single or multiple transmission technologies.

To get an intuition of the proposed approach, consider the spectrumography cap-

tured using a spectrum analyzer. Figure 3.10 shows the power spectrum density over

time in gray scale. From Figure 3.10, we can clearly observe activates in the range

2.410GHz – 2.492GHz, which are likely to be associated with WiFi radio in channel

1, 6, 11 and Zigbee radios operating over channel 11, 17, 22, and 26. Even though the

spectrum ranges 2.4603 – 2.4615GHz are occupied together by transmissions from

both technologies at some times, it is not always the case, which allows us to separate

the two technologies. The example demonstrates the promise of identifying wireless

technologies based on spectrum activities. However, it is important to automate

the above process and translate human knowledge into efficient algorithms since the

amount of raw data is too large or too complicated to be processed manually.

3.6.4.1 Problem Formulation

Consider monitoring a wide-band spectrum divided into m sub-channels c ∈ C =

{c1, c2, . . . , cm}. Wireless devices using n different technologies w ∈ W = {w1, w2, . . . , wn}

coexist in the same spectrum space of these m sub-channels. Each wireless device

63

is subject to one distinct technology, and each wireless technology in turn occupies

a fixed set of continuous sub-channels. At any point in time, a transmission will

result in power surge on its associated sub-channels. In this application domain, a

we can consider a transmission that is captured by the spectrum sensing device an

interaction on the network. We assume that activities of wireless devices operating

on different frequency bands are independent. We represent the relationship between

spectrum sub-channels and distinguished wireless technologies using an undirected

bi-partite graph G = (C,W , E). An edge e = (c, w) ∈ E exists between the sub-

channel c ∈ C and the technology w ∈ W if w operates on c. Channels not having

any functional technology or technologies operating on channels outside the spectrum

range of C will not be considered.

Let G be the m × n binary adjacency matrix of the graph G. Entries in G

encode the sub-channels occupancy status of each transmission technology. Using

a spectrum sensing device such as the energy detector, we can observe the sub-

channel occupancy status over time. Let the binary time series data representing

spectrum occupancy be Xm×T , where T is the total of slots. xij ∈ X equals to

1 if sub-channel i is occupied at time j; and equals to 0 otherwise. Define x as

the binary observation vector on all sub-channels; xij,∀i = 1, . . . ,m is therefore

a realization of x at time slot j. Activities of wireless technologies are modeled

by a set of mutually independent Bernoulli processes. Each technology w ∈ W is

associated with a Bernoulli process y = (yw)w∈W , where each yw takes a value in

{0,1}. We call matrix Y n×T (that contains T realizations of vector y) the activity

matrix. ywt ∈ Y equals to 1 corresponds to the event that at least one device using

64

technology w is transmitting at time t. Let p = P (yw = 1). Whenever a device using

a particular technology is active, its associated sub-channels are occupied. Formally,

the relationship between x, G, and y can be formulated as,

xi =
n∨
j=1

(gij ∧ yj), i = 1, . . . ,m, (3.16)

where ∧ is Boolean AND, ∨ is Boolean OR, and gij is the entry in the i’th row and the

j’th column of the unknown binary mixing matrix G. For the ease of presentation,

we introduce a short-hand notation for the above disjunctive model as,

x = G⊗ y. (3.17)

Therefore, from the binary encoded spectrum measurements matrix X, we can apply

bICA to infer G, p as well as y.

3.6.4.2 Evaluation

We denote by Ĝ, p̂, Ŷ , and n̂ the inferred mixing matrix, the inferred active prob-

ability vector, the inferred activity matrix, and inferred number of technologies,

respectively. Four metrics are used to measure the accuracy of the inferred quanti-

ties.

• Structure error ratio: This metric is defined similar to error on G in Sec-

tion 3.6.3.3

• Transmission probability error: This metric is defined similar to error on

p in Section 3.6.3.3

65

• Activity error ratio: This metric measures how accurately the activity ma-

trix is inferred by calculating the ratio of the absolute difference between Y

and Ŷ over the size of Y .

H̄y
∆
= 1

nT

∑T
i=1 d(Y :,i, Ŷ :,i),

where Y :,i is the i’th column of Y .

• Technology quantity error: We measure how many technologies are mis-

counted by calculating |n− n̂|.

We consider a scenario in which multiple WiFi devices operate on 3 orthogonal

WiFi channels 1, 6, 11 and ZigBee devices operate on 8 ZigBee channels 11 – 18.

Thus, there are a total of 11 sets of occupied frequency bands (i.e., n = 11). Trans-

mission probabilities of devices are randomly selected in [0.05, 0.1]. The sample size

is T = 5,000. We divide the 2,400MHz – 2,499MHz spectrum into 100 sub-channels

of 1MHz (m = 100). Spectrum sensing noise is introduced by randomly flipping the

binary value in observation matrix X with error probability pe varying from 0% to

15%.

Evaluation results presented in Figure 3.11 are the average value of 50 runs. From

Figure 3.11 (a), we observe that the structure error ratio is negligible when pe ≤ 10%.

At higher noise levels (pe > 10%), structure error ratio monotonically increases. The

transmission probability error and activity error ratio exhibits a similar trend as the

error gets larger at higher noise (Figure 3.11 (b) and (c)). The proposed methodology

shows its robustness against noise as the structure error ratio and activity error ratio

are constantly kept below 7% even at very high noise level (15%). Figure 3.11 (d)

66

shows the number of inferred components matches the ground truth at zero noise and

gets larger as noise increases. Surprisingly, at very high noise levels (10% – 15%),

most noise components tend to have small active probabilities and are thus pruned,

resulting a decrement in the quantity error.

0 5 10 15
0

1

2

3

4

5

6

Noise (%)

P
re

di
ct

io
n

E
rr

or
 o

n
G

 (
%

)

0 5 10 15
0

0.05

0.1

0.15

0.2

Noise (%)

P
re

di
ct

io
n

E
rr

or
 o

n
P

(a) Structure error ratio (b) Transmission probability error

0 5 10 15
0

1

2

3

4

5

6

7

8

Noise (%)

P
re

di
ct

io
n

E
rr

or
 o

n
Y

 (
%

)

0 5 10 15
0

1

2

3

4

5

6

7

8

Noise (%)

P
re

di
ct

io
n

E
rr

or
 o

n
n

(c) Activity error ratio (d) Technology quantity error

Figure 3.11: Accuracy of the inference result with synthetic traces. Results are averages of
50 runs with different initial seeds with symmetric error bars indicating standard deviations.

67

3.7 Summary

In this chapter we provided a comprehensive study of the inference problems on

communication networks. We identified a family of inference problems on network-

ing domain where nodal interaction can characterized by a bipartite graph. We

devised bICA algorithm and establish its key properties. Comparing to other simi-

lar approaches, bICA is not only faster, but also more accurate and robust against

noise. We have also demonstrated the use of bICA in many network applications,

including optimal monitoring in multichannel wireless network, primary user separa-

tion in cognitive radio network, multicast tree topology inference, and binary blind

identification of wireless transmission technologies. We believe the methodology can

be useful in many other application domains as well.

68

Chapter 4

Interactions on Online Social

Networks

4.1 Introduction

A social network is defined as a network of interactions or relationships, where the

nodes represent actors, and the edges represent the relationships or interactions be-

tween these actors. In general, the concept of social networks is not restricted to

the specific case of an Internet-based social network such as Facebook. Conventional

social network studies have the history before the advent of computers and the In-

ternet. Milgram et al. [87] in 1967 hypothesized that any two random individuals

on the planet are separated by at most six degrees of separation. This is referred to

as the small world phenomenon. Extensive verification of such a hypothesis was not

possible until many decades later, with the proliferation of online social networks.

69

Nowadays, the social network of interactions among a group of individuals plays

a fundamental role in the spread of information, ideas, and influence. Such effects

have been observed in many cases, when an idea or action gains sudden widespread

popularity through “word-of-mouth” or “viral marketing” effects. To take a recent

example from the technology domain, free e-mail services such as Microsoft’s Hot-

mail, later Google’s Gmail, and most recently Google’s Google+ achieved wide usage

largely through referrals, rather than direct advertising (Gmail and Google+ achieved

wide usage at a time when the only way to obtain an account was through a refer-

ral). One also finds many examples in weblogs (blogs), where a piece of information

spreads rapidly from one blogger to another before eventually being picked up by

the mass media.

Analyzing and mining such large-scale complex networks are inherently difficult

due to non-trivial features of the network itself. First, the network can be huge, com-

prising of billions of nodes and having one or two orders of magnitude more links.

Any solution that targets such networks must be scalable and efficient to be able

to produce meaningful results. Second, due to its nature, the graph might contain

cycles, which make statistical inference problematic (since they are not fully charac-

terized by simpler models such as Bayesian networks). Third, proposed algorithms

should also take into account special network properties, like scale free and small

diameter.

The main goal of our research is to understand the information diffusion process

on social networks. How do the information and viruses spread over the network?

What are the factors that affect the propagation process? Do they follow any kind

70

of pattern? How can we identify the set of most influential or critical nodes in

the network? Answers to such questions are vital to a range of application areas,

including viral marketing, biological network interactions, epidemiology and disease

outbreak detection, etc.

We make several contributions to this topic:

• We crawl interaction traces from many Twitter communities and influence

rank associated with each user. The dataset will be publicly available in a near

future.

• We conduct an extensive analysis of Twitter and its power as a new medium for

information propagation. Several interesting observations are drawn regarding

the network properties and user behavior. A new information propagation

model on Twitter is proposed to better characterize how the influence is spread.

• We introduce the budget influence maximization problem, a generalization of

the traditional influence maximization (IM) problem. A greedy algorithm is

proposed with a proven performance bound. Evaluations on both real-world so-

cial networks and randomly generated networks show its superior performance

compared to state-of-the-art solutions. Furthermore, by varying properties of

the synthetic networks, we are able to conduct study on the impact of graph

structure on different IM algorithms.

71

4.2 Online social network datasets

4.2.1 Public datasets

Collecting social interaction datasets is essential to understand online social networks.

To relieve researchers from the burden of individually collecting datasets, which

typically requires considerable efforts, many online repositories provide public access

to large network datasets. Some of the prominent repositories include:

Stanford Network Analysis Project (SNAP) [9]: A collection of more than 50

large network datasets from tens of thousands of nodes and edges to tens of millions

of nodes and edges. It includes social networks, web graphs, road networks, internet

networks, citation networks, collaboration networks, and communication networks.

Community Resource for Archiving Wireless Data At Dartmouth (CRAW-

DAD) [3]: A public archive aims to provide wireless trace data from many con-

tributing locations. The staff also develop and provide tools for collecting, anonymiz-

ing, and analyzing the data.

Social Computing Data Repository [8]: A repository contains 19 datasets from

many different social media sites, most of which have blogging capacity.

From the above sources, we pick several datasets which originate from a rich

set of domains, including social, information, technological, and randomly generated

networks. This diversity allows a more comprehensive study of network interactions

and a thorough assessment of various network inference techniques. Details of the

datasets are presented in Table 4.1.

72

Table 4.1: Online social datasets.

Name Nodes Edges Description

soc-Epinions1 75,879 508,837 Who-trusts-whom network of Epinions.com
soc-LiveJournal1 4,847,571 6,8993,773 LiveJournal online social network
wiki-Vote 7,115 103,689 Wikipedia who-votes-on-whom network
email-EuAll 265,214 420,045 Email network from a EU research institution
cit-HepPh 34,546 421,578 Arxiv High Energy Physics paper citation network
cit-Patents 3,774,768 16,518,948 Citation network among US Patents
web-BerkStan 685,230 7,600,595 Web graph of Berkeley and Stanford
web-Google 875,713 5,105,039 Web graph from Google
amazon0302 262,111 1,234,877 Amazon product network from March 2 2003
amazon0312 400,727 3,200,440 Amazon product network from March 12 2003
amazon0505 410,236 3,356,824 Amazon product network from May 5 2003
amazon0601 403,394 3,387,388 Amazon product network from June 1 2003
soc-sign-epinions 131,828 841,372 Epinions signed social network

Even though many online datasets are available, they provide little insight in the

dynamics of the network. We are not only interested in the network structure, but

also need the interactions between them. Most existing social datasets only con-

tain graphs with nodes representing users on the network and links representing the

relationship. User identity is usually discarded from the dataset due to privacy con-

cerns. Information exchanged between users (like tweets, messages), which is crucial

to understand and analyze their relationship, is considered sensitive and cannot be

published. Therefore we have to build a network crawler to collect new datasets from

Twitter. By doing so, we can access not only the detailed information of each user

but also their interactions. Furthermore, since we are also interested in users’ social

influence, we crawl data from influence measurement services to rank the user ability

to drive action in online social networks.

73

Crawler clients

Crawler
server

Database
server

Figure 4.1: The Twitter crawler

4.2.2 Twitter crawler

4.2.2.1 Implementation

Twitter offers an Application Programming Interface (API) that is easy to crawl and

collect data. We developed a network crawler in Java to extract data from Twitter

and store in a MySQL database. However, due to the excessive amount of API

requests that Twitter receives, they enforce a rate-limit of 350 requests per hour per

IP address and terminate their whitelist program [11] (which allows a whitelisted IPs

to make upto 20,000 requests per hour). This poses a challenge to the amount of

attainable data since extracting the complete profile of a user would normally take

upto 3 requests. To alleviate the above problem, we design a crawler following the

client-server model as depicted in Figure 4.1.

Each crawler client with a different IP will make requests to crawl data from

Twitter. Those data are aggregated at the crawler server. The server will then

74

check for data integrity and correctness before storing it in the database server. We

control a PC pool with 50 machines making requests continuously from October to

December 2012.

4.2.2.2 Data collection

The goal of the Twitter crawler is to obtain a complete dataset to capture nodes’

relations and the interactions between them. Even with 50 machines crawling conti-

nously, obtaining a dataset on the scale of the entire Twitter sphere is not technically

possible. Instead, we focus on crawling specific communities on Twitter where users

share common interests on a trending topic.

Trending topics: Twitter tracks phrases, words, and hashtags that are often men-

tioned and classifies them as “trending topics”. A hashtag is a convention among

Twitter users to create and follow a thread of discussion by prefixing a word with

a “#” character. By hashtagging the word, Twitter users create trends, that may

draw the community’s attention. By crawling the most popular hashtags on Twitter

on many different topics [111], we obtain a diverse set of datasets that represent the

most active communities on Twitter.

User profiles: Twitter profiles can be crawled from the list of user ids that partic-

ipate in each trending topic. Twitter allows public access to a user’s profile including

name, location, web address, a short bio, and the number of tweets, unless the user

set their profile to “private”. The people who follow the user (followers) and those

that the user follows (followees or friends) are also listed. Note that for the sake of

75

Table 4.2: Collected datasets from Twitter.

Hashtag Nodes Edges Trend description

#android 172,817 1,695,021 Android phone, OS and applications

#at&t 74,200 426,518 Discussions on AT&T phone and service quality

#family guy 170,290 1,577,836 American animated TV show

#hiphop 93,440 1,862,110 Hip hop music genre

#iphone 94,928 501,295 Iphone and its applications

#ladygaga 19,525 65,158 American female singer

#marketing 226,606 19,123,496 General discussions on marketing and business

#nfl 55,200 703,090 American national football league

#sopa 36,993 474,173 U.S. bill to combat digital content piracy

#teaparty 19,772 3,169,181 American political party

graph compactness, we do not consider connections that are outside our observed

communities. More specifically, we discard any connections and tweets of a twitterer

to and from users not in our datasets.

To this end, we obtained 20.5 million user profiles, along with 420.2 million di-

rected relations of follower and followee. We observe that 8.58% of the users set

their profile to private, preventing us from accessing their information and relation-

ships. We have to discard them from the dataset since the analysis could be biased.

Incomplete datasets due to severely crawling rate and processing resource limit are

discarded as well. The set of complete datasets are listed in Table 4.2.

Tweets: To collect tweets from a user, we first crawl the tweet history. Twitter

keeps the history of most recent 3,200 tweets from a user. Older tweets are discarded.

Since 3,200 tweets are insufficient to capture active user’s history, we therefore moni-

tor each user for a one-month period and capture all the tweets in that timing period.

We collect the full text, the author, the time stamp, as well as the receiver if the

76

tweet is a reply. A total of 105 million tweets were collected.

4.2.2.3 Removing spam tweets

Spam tweets have increased in Twitter as the popularity of Twitter grows. Similar to

spam webpages farms undermine the accuracy of PageRank on Google, spam tweets

introduce noise and bias in our analysis. The Twitter Support Team suspends any

user reported to be a spammer. Still, unreported spam tweets are present in our

collected datasets, most notable in the #iphone and #android communities. We

employ the well-known mechanism of the FireFox add-on, Clean Tweets [2]. Clean

Tweets filters tweets from users who have been on Twitter for less than a day when

presenting Twitter search results to FireFox. It also remove the tweets that contain

three or more trending hashtags. We use the same mechanisms to remove spam

tweets from our data.

4.2.3 Influence measurement services

With the proliferation of online social networks, the need for one to measure his

social influence grows and many social influence scoring services emerge as a result.

These services are measurement systems that assign the creators of online content a

numerical rank based on behaviors that can trigger responses from other users. They

promise to identify people who might serve as brand advocates (or “influencers”) on

social networks. Influence is measured by tracking and evaluating user actions from a

diverse sites including Twitter, Facebook, Google+, Youtube, LinkedIn, etc. Among

77

many available services (such as Klout, PeerIndex, Kred, Empire Avenue, PROskore,

etc.), we crawl the influence score from the two most popular ones:

Klout [4]: It is by far the most successful service. User influence score ranges from

1 to 100 with 100 being the most influential. U.S. President Barack Obama and pop

star Justin Beiber are two persons that were scored 100. Klout measures influence

mostly by using data points from Twitter, such as following count, follower count,

retweets, list memberships, the influence of one’s followers, etc.

PeerIndex [6]: PeerIndex also measure one’s influence on a scale of 1 to 100.

The service distincts itself by emphasizing its contributions at topic-by-topic level.

The ability of users to drive conversations and provoke interactions are reported in

different topics.

Although such services are mostly in beta phase and still constantly evolve, they

somewhat reflect the influenceability of online users. Klout and PeerIndex score for

all users in our database are crawled in one month from November to December 2012.

We observe that 94.3% users have a Klout score, and 84.4% users have a PeerIndex

score.

78

4.3 A quantitative study of Twitter and influence

measurement services

4.3.1 Motivation

Recently, micro-blogging has emerged to be a new medium of communication. User

can publish short messages (or statuses) to spread the information to his friends.

Among the micro-blogging services, Twitter is the most notable one which claimed

to have more than 500 million users by 2013 [68]. Basic functionalities of Twitter

include disseminating tweet (a short message with a length limit of 140 characters)

updating and socializing among users. A message can be retweeted by a recipient

to further spread it beyond the reach of the original tweet’s followers. Unlike other

social network services that require users to grant permissions to other users to

befriend them, Twitter employs a “free-to-follow” model which allows any user to

follow and get update from others without seeking any permission. User A who

follows B is called B’s follower, while B is called A’s followee or friend (we prefer

the term followee to avoid confusion with other types of social friendship like that of

Facebook, but will sometimes use the term friend interchangeably).

Being the most popular micro-blogging service, Twitter is also the most popular

platform for social network research due to its open API that allows easy data access

to researchers. Many investigations have been conducted to obtain a better under-

standing of the network’s topological characteristics and user behaviors. Java et

al. [66] conducted preliminary analysis on Twitter in 2007 with a small dataset of

79

76,000 users and 1 million tweets. The authors find user clusters based on user’s

interest to topics by clique percolation methods. Krishnamurthy et al. [75] analyzed

the user characteristics by the relationships between the number of followers and

that of followings. Zhao and Rosson [120] qualitatively investigated the motivation

of using Twitter. Haewoon et al. [76] presented the first study on the entire Twit-

ter sphere. Some interesting observations have been made, including non-power-law

follower distribution, short effective diameter, and low reciprocity.

How to rank twitterers based on their influence is also an active research topic.

A conventional indicator is the number of followers that one has. However, recent

research [25, 114, 14] pointed out that this is not the case. Many researchers have

strived to come up an intuitive and fair ranking system on Twitter. Kwak et al. [76],

in an effort to indentify the most influential users on Twitter, applied several ranking

metrics, including the number of followers, the number of retweets, and PageRank

algorithm. The authors found that ranking results do not correlate, which means

none of the above metrics is reliable. Cha et al. in [25] employed another metric:

the number of times a user is mentioned. Weng et al. [114] proposed TwitterRank,

an extension of PageRank algorithm to measure user influence.

Although a substantial body of work on Twitter analytic exists in literature,

we approach the problem from a different angle. We present in this chapter an

empirical study of Twitter in conjunction with influence measurement services, which

are “social scoring systems” that assign each user a numeric score based on the user’s

ability to drive actions and provoke interactions within others. Such services are

popular nowadays, including Klout, PeerIndex, Kred, Empire Avenue, PROskore,

80

just to name a few. The basic idea is as follow: those services scrape social network

data, use it to create profiles of individuals, and assign each an “influence score”.

Twitter users do not have to register with the measurement services to have their

profile evaluated, since their information can be obtained via Twitter’s API interface.

Once the user registers, the service will have full access to their data and provide more

accurate measurement results. In exchange, user with high influence score (normally

higher than 40) will be eligible for perks (discounted coupons, promotions, etc.) from

many retailers. In this study, we analyze data from Klout and PeerIndex, as they

are the two most popular services.

Rather than studing the entire Twitter network, for which a complete dataset

can’t practically be obtained, we focus on analyzing specific Twitter communities,

identified by hashtags. This give us more information regarding how network prop-

erties and user behavior vary from one group of users to another. We present in this

section results from the communities #ladygaga, #sopa, #android, and #marketing.

Results from other communities are similar and therefore omitted.

From the analysis, we make several interesting observations, including non-power-

law influence score distribution, asymmetric follower/followee distribution, strong

reciprocity among users in a community, existence of homophily and hierarchial re-

lationships on Twitter network. Furthermore, we find that whether or not a twitterer

retweets a message is due to the influence from the first of his followees who posted

that message. We will refer to this as the first influencer (FI) spreading model, which

better characterize the spreading process on Twitter. We show through extensive

evaluation that FI is more accurate in prediction influence spread on the Twitter

81

network.

4.3.2 Reciprocity in following relationship

We begin our analysis by presenting the basic follower/followee distribution of our

datasets in Figure 4.2. The number of followers and followees from each user is plot-

ted in log scale. The main diagonal (dotted line) represents the perfect reciprocity

where the number of followers is equal to the number of followees. Percentage above

the diagonal represents the percentage of those who have more followees than fol-

lowers. Unsurprisingly, more users are above the diagonal due to the “free-to-follow”

mechanism of Twitter.

However, we find that there are a significant number of twitterers with equal

number of followers and followews, most notable from #android and #ladygaga

communities1. More specifically, this indicates a very strong reciprocity in these

communities. To verify this finding, we first define a mutual follower to be a follower

who is also a followee. Then we introduce a new metric, reciprocal level, defined as

the ratio of the number of mutual follower to the number of followers. The histogram

of reciprocal level on four communities is presented in Figure 4.3.

A large portion of users have reciprocal level 1, which means they follow all of

those who follow them. Such a strong mutual relationship was not observed when

the same study was conducted on the scale of Twitter [76]. Our results show that at

a community level, users tend to have strong bidirectional connections to each other.

1Note that we only count relationships between users who are inside the community.

82

10
0

10
2

10
410

0

10
2

10
4

47.71%

15.2%

F
ol

lo
w

ee
s

Followers
10

0
10

210
0

10
1

10
2

25.81%

14.15%

F
ol

lo
w

ee
s

Followers
10

0
10

2
10

410
0

10
2

10
4

66.14%

27.27%

F
ol

lo
w

ee
s

Followers
10

0
10

210
0

10
2

60.25%

13.78%

F
ol

lo
w

ee
s

Followers

(a) #android (b) #ladygaga (c) #marketing (d) #sopa

Figure 4.2: Distribution of number of followers and followees.

0 0.5 1
0

10

20

30

40

50

Reciprocal level

P
er

ce
nt

0 0.5 1
0

20

40

60

80

Reciprocal level

P
er

ce
nt

0 0.5 1
0

10

20

30

40

Reciprocal level
P

er
ce

nt
0 0.5 1

0

10

20

30

40

50

Reciprocal level

P
er

ce
nt

(a) #android (b) #ladygaga (c) #marketing (d) #sopa

Figure 4.3: Histogram of reciprocal level.

4.3.3 Distribution of influence scores

The influence score distributions from Klout and PeerIndex are presented in Fig-

ure 4.4. Note that a score of less than 10 is not an indicator of weak influenceability,

but rather, like Klout and PeerIndex encounter issues in scraping the user’s data

for. This problem has been noted on Klout’s developer blog [5]. As a result in our

study, we discard users that have either score less than 10 (12.8% of the users). Since

neither of the services publish their the ranking methodology, we can only infer that

they user very different methods, as the correlation between the two is very low, on

all datasets. Within the scope of this study, we suggest a simple metric to rank a

user by taking the average of the two scores. We will refer to the new metric as the

digital influence (DI) score.

83

20 40 60 80 100

20

40

60

80

100

P
ee

rI
nd

ex

Klout
20 40 60 80 100

20

40

60

80

100

P
ee

rI
nd

ex

Klout
20 40 60 80 100

20

40

60

80

100

P
ee

rI
nd

ex

Klout
20 40 60 80 100

20

40

60

80

100

P
ee

rI
nd

ex

Klout

(a) #android (b) #ladygaga (c) #marketing (d) #sopa

Figure 4.4: Distribution of Klout and PeerIndex scores.

We observe that the DI score does not follow a power law distribution, but rather

a beta distribution with two shape parameters 2 < α < β and the mean value around

30 to 40. Figure 4.5 depicts the distribution of DI scores with its maximum likelihood

estimates of the beta distribution. We also observe that the mean DI score varies

from one community to another. As summarized in Table 4.3. The mean DI score

is higher in the “#marketing” community since they include many business people

and mass media entities, who have strong influence on others. On the contrary,

the DI score is lower in the “#android” community. We observe that most tweets

that contain an “#android” tag are from people who are playing games on Android.

They tend to post tweets containing information of the game with an “#android”

tag to receive perks or bonuses from the game provider. Those tweets will most of

the time be discarded by other twitterers and therefore result a low average score in

the “#android” community.

Table 4.3: Mean DI score in different communities.

Dataset #android #ladygaga #marketing #sopa
Mean DI score 29.15 34.33 45.04 33.25

84

5 10 15 20
0

5

10

15
α = 1.8
β = 5.2

DI score

P
er

ce
nt

5 10 15 20
0

5

10

15

20
α = 6.79
β = 13

DI score

P
er

ce
nt

5 10 15 20
0

5

10

15
α = 5.94
β = 7.26

DI score

P
er

ce
nt

5 10 15 20
0

5

10

15
α = 2.3
β = 5.2

DI score

P
er

ce
nt

(a) #android (b) #ladygaga (c) #marketing (d) #sopa

Figure 4.5: Histogram of DI score.

4.3.4 Hierarchy

Social hierarchy or stratification among humans is a well studied concept in sociology.

Online social networks with their tremendous amount of available data give rise to

new opportunities to study the social hierarchy for networks of different types and

scales.

Although there is no official definition of stratification, recent studies show that

hierarchy does exist on many online social networks, including Twitter. Researchers

in [102, 82, 61] assume that people from connections in a social network based on

their perceived social hierarchy. For instance, A following B means that B’s rank is

likely higher than A.

We conduct an analysis on our datasets to verify the hypothesis that the direction

of social relationship encodes hierarchial information, from the influence ranking

point of view. Let Nout(u) and Nin(u) be the set of node u’s followers and followees,

respectively. We define ∆r(u) and ∆e(u) to be the difference between the DI score

of u and the mean DI score of u’s followers and followees, respectively.

∆r(u) = DI(u)−
∑
∀v∈Nout(u)

DI(v)

|Nout(u)| and ∆e(u) = DI(u)−
∑
∀v∈Nin(u)DI(v)

|Nin(u)| .

85

−100 −50 0 50 100
−100

−50

0

50
1.008% 17.03%

69.62% 12.34%

−100 −50 0 50 100
−100

−50

0

50
0.8943% 25.52%

65.47% 8.118%

−100 −50 0 50
−100

−50

0

50
0.5787% 13.11%

80.03% 6.281%

−100 −50 0 50 100
−100

−50

0

50
0.5681% 14.57%

68.61% 16.25%

(a) #android (b) #ladygaga (c) #marketing (d) #sopa

Figure 4.6: Distribution of ∆r and ∆e. x-axis indicates ∆r and y-axis indicates ∆e.

We calculate ∆r(u) and ∆e(u) for all nodes in our datasets. Those that do

not have any follower or followee will be discarded. Results from Figure 4.6 show

that the majority of users have ∆r > ∆e, which means the mean score of their

followees is higher than that of their followers. This proves the following relationship

in Twitter contain hierarchial information where users tend to follow those who are

more influential. Ideally, most users should have ∆r > 0 > ∆e. But in our result,

the majority of them have 0 > ∆r > ∆e, which could be attributed to several

reasons. First, DI score follows the beta distribution with shaping parameters β > α

as previously illustrated in Figure 4.5. Therefore, more users have DI score less than

the mean score of their communities. Second, removal of users who do not have any

follower or followee can also result the asymmetric ∆r and ∆e distribution.

4.3.5 Homophily

Homophily is a phenomenon where people’s social networks “are homogenous with

regard to many sociodemographic, behavioral, and interpersonal characteristics” [85].

In the context of Twitter, homophily implies that there are stronger connections

between those who are “socially equal”. Understanding homophily can help us build

86

better user models for personalization and recommender systems. Many previous

studies [114] have verified homophily on Twitter along many dimensions, such as

age, location, occupation, topical interest, expertise, etc. In this section, we study

homophily from the perspective of user influenceability.

We test the hypothesis that users with similar influence are likely to be mutual

followers. Let Nre(u) be the set of reciprocal followers of u (those that are both u’s

follower and followee) and Nnre(u) be the rest of u’s followers who are not in Nre(u).

We have Nre(u) = {v|v ∈ Nout(u) ∧ u ∈ Nout} and Nnre(u) = {v|v ∈ Nout(u) ∧ v 6∈

Nre(u)}. Define ∆re(u) and ∆nre(u) as average score distance of u to others in Nre(u)

and Nnre(u), respectively.

∆re(u) =
∑
∀v∈Nre(u)

|DI(u)−DI(v)|
|Nre(u)| and ∆nre(u) =

∑
∀v∈Nnre(u)

|DI(u)−DI(v)|
|Nnre(u)| .

We calculate ∆re and ∆nre for all nodes in dataset and discard those that have

empty Nre or Nnre. Homophily exists if mostly ∆re < ∆nre, indicating that nodes

with similar influence will follow each other. Distributions of ∆re and ∆nre presented

in Figure 4.7 show that the hypothesis is true on Twitter. We notice the portion of

users that have ∆nre > ∆re varies from one community to another, which indicates

that some communities (#marketing, #sopa) have stronger homophily than others

(#android, #ladygaga). This is probably because users have better awareness of

their influence on some particular topics. Once influence is estimated by users,

they will tend to befriend with those who have similar influence. There are many

factors that decide the following relationship between users, our result shows that

influenceability or a socially perceived version of it can be one of them.

87

0 50 100
0

20

40

60

80

100
69.05%

30.95%

0 50 100
0

20

40

60

80

100
68.67%

31.33%

0 50 100
0

20

40

60

80

100
81.98%

18.02%

0 50 100
0

20

40

60

80

100
81.05%

18.95%

(a) #android (b) #ladygaga (c) #marketing (d) #sopa

Figure 4.7: Distribution of ∆re and ∆nre. x-axis indicates ∆re and y-axis indicates ∆nre.

4.3.6 First-influencer diffusion model

4.3.6.1 Introduction

Diffusion models that explain how information is spread or how a product is adopted

can generally be divided into two groups:

General threshold model [96]: each node u in the network has a threshold

θu ∈ (0, 1], typically drawn from some probability distribution, and a monotone

activation function fu : 2V → [0, 1]. An edge from u to v is associated with a weight

wu,v. Nodes that are already active will spread the influence to their direct neighbors.

Node u becomes active at time t+ 1 if fu(S) ≥ θu where S is the set of active nodes

at time t.

Cascade model [71]: when a node u first become active at time t, it has one

chance to influence each inactive neighbor v with probability pu,v. A successful

attempt will cause v to become active at time t + 1. If multiple neighbors of v

become active at time t, their activation attempts are sequenced in a random order,

but assumed to happen within time slot t. The process terminates when there is no

more newly activated node.

88

Among them, the independent cascade (IC) [54] model, where the influence

probability pu,v is a constant, has been widely adopted in literature. Many re-

searchers [106, 14, 86] apply the IC model to Twitter to solve the influence max-

imization problem or to study the spread of information. However, we observe that

Twitter does not advocate such a spreading mechanism. When a twitterer u tweet

a new message m, this message will be visible to his followers. In other words, u

attempts to spread m to all of his followers. We say that m is spread from u to one

of his followers v if v retweets m. The IC model assumes that if the first spread

attempt fails, later attempts can still succeed with constant probabilities. This can

be interpreted in the context of Twitter as follows: u can spread m to v with prob-

ability of success pu,v. Assuming u fails, but m later spread to u′ which is a followee

of v, then m will have another chance to be retweeted by v with probability pu′,v.

We notice that unlike other online social networks like Facebook, the current imple-

mentation of Twitter (both web and mobile platforms) does not promote to the user

a same message again even if it is retweeted by one of his followees. In other words,

v will not be aware of the fact that u′ retweets m and thus, m has no chance to be

retweeted by v if it fails in the first try.

This changes the way we understand influence spread on Twitter, and could have

impact on many application areas, including viral marketing, Twitter trending and

analyzing, etc. To capture such effect, we introduce the first influencer (FI) model.

We will present the model formulation in the next section and experiment results in

the subsequent section.

89

4.3.6.2 Formulation

Define the network G = {V,E}, with V and E are the sets of nodes and edges

respectively. An active node u at time t will attempt to spread the information a

to one of its inactive neighbors v with probability of success pau,v, given that v is yet

to be activated by any other nodes. If v is activated, it will in turn, try to activate

its inactive neighbors in time t + 1. However, if v fails to be influenced at the first

attempt, it will show strong resistance to similar attempts from it neighbors in the

future and set pau′,v = ε with any u′ ∈ Nin(v) and ε is a small number.

4.3.6.3 Experiments

In this section, we conduct experiments to compare our proposed FI model with the

traditional IC model. Since there is no ground truth of the actual diffusion model,

we conduct two sets of experiments on Twitter datasets to show the advantages of

the proposed model. We will run experiments on a variety of communities #android,

#at&t, #family guy, #hiphop, #iphone, #teaparty to see impact of the two models

on different network structures and densities.

Model stability: In the first set of experiments, we assess the stability of each

model. We first extract information cascades from the datasets using the algorithm

in [56] and put them in a log, referred to as the cascade log. Then for each round of

experiment, we randomly shuffle the cascade log and break it into 2 equal parts. A

model is considered more stable should the parameters derived from the two datasets

90

0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

10
6

10
8

Edge propagation probability

N
um

be
r

of
 e

dg
es

#family guy #iphone #android #at&t #hiphop #nfl #teaparty
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Dataset

R
M

S
E

FI model
IC model

#family guy#iphone#android #at&t #hiphop #nfl #teaparty
0.45

0.5

0.55

0.6

0.65

0.7

R
M

S
E

F
I
/
R
M

S
E

I
C

Dataset

(a) Histogram of inferred (b) RMSE on 7 datasets (c) RMSEFI/RMSEIC ratio

probabilities on 7 datasets

Figure 4.8: Model stability comparison. Error bars indicate standard deviation.

are comparable. The parameters that we infer are the information propagation prob-

abilities on the edges. By applying the algorithm described in [56] on both datasets,

we calculate the probability vectors p1,p2 = [pu,v]1×m with any edge (u, v) ∈ E

and m = |E| from the two datasets, respectively. Then we calculate the Root Mean

Square Error [7] between p1 and p2, RMSE(p1,p2) =
√∑m

i=1 (p1(i)−p2(i))2

m
. Denote by

RMSEFI and RMSEIC the value of RMSE calculated from the FI and IC models

respectively. The RMSE indicates how deviated the two set of inferred parame-

ters are. Higher RMSE means the model is less stable. We conduct 100 rounds of

experiments and report the average RMSE and standard deviation.

Figure 4.8(a) shows the aggregated distribution of inferred p1 and p2 on 7 datasets.

From Figure 4.8(b), we see that both RMSEFI and RMSEIC are small in all

datasets, which means both models perform well in practice. However RMSEFI

is always smaller than RMSEIC , showing the superior performance of the FI model.

Figure 4.8(c) shows the ratio between RMSEFI and RMSEIC , datasets are listed

in the increasing density from left to right. On dense networks, the IC model tends

91

0 100 200 300 400 500 600 700
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Node spread

N
um

be
r

of
 n

od
es

#family guy #at&t #nfl #hiphop #iphone #android #teaparty
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dataset

R
M

S
E

FI model
IC model

(a) Histogram of σ on 7 datasets (b) Value of RMSE on 7 datasets

Figure 4.9: Influence spread prediction comparison.

to overestimate the spread probabilities since each active neighbor has a chance to

influence. As a result, we see the larger performance gap between FI and IC when

the network is denser.

Influence spread prediction: The second set of experiments aim to determine

which model is more accurate for influence spread inference. First we need to devise

the propagation probability on edges. The process is similar to devising p1 and p2

above. However, this time we derive the propagation probability from the whole

cascade log instead of splitting it into two parts. Denote by pFI and pIC the prob-

ability vectors determined from the FI and IC models, respectively. We compute

the vectors of expected spread σFI , σIC = [σ(u)]1×n from pFI and pIC for each node

u ∈ V and n = |V | by running 10,000 rounds of Monte Carlo simulations (since exact

calculation of σ from p is #P-complete [70]). To obtain the ground truth σ(u), we

calculate the average size of cascades from a node u.

92

Histogram of σ(u) on 7 datasets is plotted in Figure 4.9(a). The majority of

nodes have σ = 1 which means they can only influence themselves. The mean value

of σ is 1.135. We also calculate the RMSE between the two distributions of σFI and

σIC versus the ground truth σ and present the result in Figure 4.9(b). We see that

the FI model outperforms the IC model in all datasets.

4.4 Budgeted influence maximization in online so-

cial networks

Given a fixed budget and an arbitrary cost for selecting each node, the budgeted

influence maximization (BIM) problem concerns selecting a set of seed nodes to dis-

seminate some information that maximizes the total number of nodes influenced

(termed as influence spread) in social networks at a total cost no more than the

budget. Our proposed seed selection algorithm for the BIM problem guarantees an

approximation ratio of (1−1/
√
e). The seed selection algorithm needs to calculate the

influence spread of candidate seed sets, which is known to be #P-hard. Identifying

the linkage between the computation of marginal probabilities in Bayesian networks

and the influence spread, we devise efficient heuristic algorithms for the latter prob-

lem. Experiments using both large-scale social networks and synthetically generated

networks demonstrate superior performance of the proposed algorithm with moder-

ate computation costs. Moreover, synthetic datasets allow us to vary the network

parameters and gain important insights on the impact of graph structures on the

performance of different algorithms.

93

4.4.1 Motivation

The social network of interactions among a group of individuals plays a fundamen-

tal role in the spread of information, ideas, and influence. Such effects have been

observed in real life, when an idea or an action gains sudden widespread popularity

through “word-of-mouth” or “viral marketing” effects. For example, free e-mail ser-

vices such as Microsoft’s Hotmail, later Google’s Gmail, and most recently Google+

achieved wide usage largely through referrals, rather than direct advertising.

In viral marketing, one important question is given limited advertisement re-

sources, which set of customers should be targeted such that the resulting influenced

population is maximized. Consider a social network modeled as a graph with vertices

representing individuals and edges representing connections or relationship between

two individuals. The influence maximization (IM) problem tries to find a seed set

S with cardinality |S| = k in the graph such that the expected number of nodes

influenced by S is maximized [40, 101, 70]. With the cardinality constraint, the

submodularity nature of the influence spread renders a greedy algorithm with a

(1 − 1/e) approximate ratio that in each round picks the seed with the maximum

influence spread and runs for k rounds. However the assumption of equal costs for

all seed nodes seldom holds in practice. With the proliferation of influence score

services such as Klout and PeerIndex, one can easily measure his influence in the

social sphere and use that to negotiate the price for services he provides. The higher

the influence score of a user, the more costly it is to persuade him.

We consider in this chapter a generalized version of the IM problem, namely,

94

the budgeted influence maximization (BIM) problem: given a fixed budget b and a

random cost function c, to find a seed set S that fits the budget
∑

si∈S c(si) ≤ b

and maximizes the number of influenced nodes. Clearly, BIM is more relevant in

practice as there is typically a price associated with initializing the dissemination of

information. With the budget constraint, we prove that a direct application of the

simple greedy algorithm may result in unbounded performance gap.

In this chapter, we present a seed selection algorithm that can attain an approx-

imation guarantee of (1 − 1/
√
e) (∼ 0.394). One critical component of the seed

selection process is the determination of influence spread of a set of seeds. Exact

computation of influence spread is proven to be #P-complete [70]. Thus, efficient al-

gorithms need to be devised. We first establish the linkage between influence spread

computation and belief propagation on a Bayesian network (modeled as a directed

acyclic graph (DAG)), where the marginal conditional dependency corresponds to

the influence probabilities. Belief propagation has been extensively studied in litera-

tures, and thus many exact or approximation algorithms can be leveraged to estimate

the influence spread. For a general graph that contains loops, we propose two ap-

proximation algorithms that prune some edges in the graph to obtain a DAG that

captures the bulk of influence spread. To reduce the number of candidate seed nodes,

we localize the influence spread region such that in each round, only nodes that are

affected by the previously selected seed need to be evaluated. Empirical study shows

that the proposed algorithms can scale up to large-scale graphs with millions of edges

with high accuracy. On real-world social network graphs, our methods achieve influ-

ence spread comparable to that by the greedy algorithm [70] and incur significant less

95

computation costs. In the unit-cost IM problem, the proposed methods outperform

PMIA [28] in achievable influence spread at the expense of marginal increase in com-

putation time. In the BIM problem, the proposed methods outperform CELF [78]

in term of scalability and performance on dense graphs. We further study the effect

of network structures on the performance of the algorithms.

Our main contributions in this topic can be summarized as follows:

• We propose a greedy algorithm for BIM with a constant approximation ratio.

• We cast the problem of influence spread computation on a DAG as an instance

of belief propagation on a Bayesian network.

• We prove the #P-hardness of inference spread computation on a DAG.

• Two heuristics are proposed to construct DAGs from a general graph that

capture the bulk of influence spread.

• We provide important insights on the impact of graph structures on perfor-

mance of different algorithms.

4.4.2 Related work

Kempe et al. in [70] was the first to formulate the IM problem. The authors proved

the submodularity of the influence spread function and suggested a greedy scheme

(henceforth referred to as Greedy algorithm) with an incremental oracle that iden-

tifies, in each iteration, a new seed that maximizes the incremental spread. The

96

approach was proven to be a (1− 1/e)-approximation of the IM problem. However,

Greedy suffers from two sources of computational deficiency: 1) the need to evaluate

many candidate nodes before selecting a new seed in each round, and 2) the calcula-

tion of the influence spread of any seed set relies on Monte-Carlo simulations. In an

effort to improve Greedy, Leskovec et al. [78] recognized that not all remaining nodes

need to be evaluated in each round and proposed the “Cost-Effective Lazy Forward”

(CELF) scheme. Experimental results demonstrate that CELF optimization could

achieve as much as 700-time speed-up in selecting seeds.

Chen et al. devised several heuristic algorithms for influence spread computa-

tion [29, 28, 30]. In Degree Discount [29], the expected number of additional vertices

influenced by adding a node v in the seed set is estimated based on v’s one-hop neigh-

borhoods. It also assumes that the influence probability is identical on all edges.

In [28] and [30], two approximation algorithms, PMIA and LDAG were proposed to

compute the maximum influence set under the IC and LT models, respectively. In

LDAG, it was proven that under the LT model, computing influence spread in a DAG

has linear time complexity, and a heuristic on local DAG construction is provided

to further reduce the compute time. We have proven in Section 4.4.4 that comput-

ing influence spread in a DAG under the IC model remains #P-hard. The marked

difference between the two results arises from the fact that in the LT model, the

activation of incoming edges is coupled so that in each instance, only one neighbor

can influence the node of interest in an equivalent random graph model.

Literature on epidemiology is also related to the IM problem that identifies nodes

97

that can initiate viral propagation to most parts of the network. Defining the epi-

demic threshold of a network to be the condition that once satisfied, virus propaga-

tion on that network will dies out over time. The authors of [26] proved that the

epidemic threshold for a network is exactly the inverse of the largest eigenvalue of its

adjacency matrix. In a follow-up work [110], the authors used the previously defined

epidemic threshold to quantify the vulnerability of a given network and devised a

fast algorithm to choose the best k nodes to be immunized (removed) so as to min-

imize network vulnerability. [97] considered the immunization problem on dynamic

networks. The key differences between work on viral immunization literatures and

IM lie in the spreading model adopted (e.g.: SIS (susceptible-infected-susceptible)

or SIR (susceptible-infected-recovered) vs. IC or LT) and whether the dynamics in

the evolution of influence are of interest.

Most existing work on the IM problem only considers cardinality constraints.

CELF [78] is the only applicable approach to the BIM problem. We will later show

in evaluation results that the proposed methods outperform CELF in term of running

time (several orders of magnitude faster) and performance on dense networks.

4.4.3 The budgeted influence maximization problem

4.4.3.1 Problem formulation

Consider a network modeled by a directed graph G = (V,E) with |V | = n vertices and

|E| = m edges. For every edge (u, v) ∈ E, p(u, v) denotes the probability of influence

being propagated on the edge. In this section, we adopt the IC model [54]. Note

98

that we don’t use the FI model proposed in Section 4.3.6 as this study is conducted

on general social networks. Whether or not FI is applicable in social networks other

than Twitter is still an open problem. Given a seed set S ⊆ V , the IC model works

as follows. Let St ⊆ V be the set of nodes that are (newly) activated at time t, with

S0 = S and St ∩ St−1 = ∅. In round t + 1, every node u ∈ St tries to activate its

neighbors in v ∈ V \
⋃

0≤i≤t Si independently with probability p(u, v). The influence

spread of S, denoted by σ(S), is the expected number of activated nodes given seed

set S.

Kempe et al. [70] proved two important properties of the σ(·) function: 1) σ(·)

is submodular, namely, σ(S ∪ {v})− σ(S) ≥ σ(T ∪ {v})− σ(T) for all v ∈ V and all

subsets S and T with S ⊆ T ⊆ V ; 2) σ(S) is monotone, i.e. σ(S) ≤ σ(T) for all set

S ≤ T . For any given spread function σ(·) that is both submodular and monotone,

the problem of finding a set S of size k that maximizes σ(S) can be approximated

by a simple greedy approach.

Budgeted Influence Maximization: In BIM, each node u is associated with

an arbitrary cost c(u). The goal is to select a seed set S ⊆ V such that the total

cost of this set is less than a budget b. Denote by c(S) the total cost of a set,

i.e., c(S) =
∑

u∈S c(u). Budgeted IM (BIM) can be formulated as an optimization

problem:

max
S⊆V

σ(S)

s.t. c(S) ≤ b

(4.1)

When c(u) ≡ 1,∀u ∈ S, BIM degenerates to the original IM problem. Thus,

99

Algorithm 3: Naive Greedy

input : G = (V,E), b

1 S = ∅
2 repeat
3 δ(v) = (σ(S ∪ v)− σ(S))/c(v),∀v ∈ V
4 u = arg maxv∈V δ(v)
5 if c(S ∪ u) ≤ b then
6 S = S ∪ u
7 V = V \u

until V = ∅;
output: S

we call IM the unit-cost BIM. Since IM is NP-hard, it is easy to see that BIM is

NP-hard as well.

4.4.3.2 The seed selection algorithm

First, we consider an intuitive greedy strategy that selects at each step a node u

that maximizes the incremental influence spread over cost ratio if the cost of u is

less than the remaining budget. We hereby refer to this scheme as the Naive Greedy

approach. Let r be the number of iterations executed and Sr be the seed set at

step r. Note that |Sr| ≤ r. At step r + 1, Naive Greedy calculates the incremental

influence spread over cost ratio.

δ(v) = (σ(S ∪ v)− σ(S))/c(v), ∀v ∈ V \S. (4.2)

The algorithm chooses u if u = arg maxv∈V,c(sr∪v)≤b δ(v). The algorithm terminates

when no budget remains, or no node can be added to S. Naive Greedy is summarized

in Algorithm 3.

100

Algorithm 4: Improved Greedy

input : G = (V,E), b

1 S1 = result of Naive Greedy
2 smax = arg maxv∈V σ(v)
3 S = arg max (σ(S1), σ(smax))

output: S

We first observe that Naive Greedy can have unbounded approximation ratio.

Consider a network containing l + 1 nodes V = {u, v1, v2, · · · , vl}. Every pair in

v1, v2, · · · , vl is connected by an edge with influence probability one, while u is an

isolated node. Let the cost c(u) = 1 − ε, c(vi) = l,∀i = 1, · · · , l and the budget

b = l. The optimal solution will pick any node vi and achieve an influence spread of

l. In contrast, Naive Greedy picks u since it has the maximum incremental influence

spread over cost ratio 1/1 − ε > 1. The resulting influence spread is 1. Thus, the

approximation ratio for Naive Greedy is l.

Next, we show that Naive Greedy can be modified to achieve a constant approx-

imation ratio. This algorithm is an adaptation of an algorithm first proposed by

Khuller et al. [72]. We assume that there is no node with a cost greater than the

budget b, as it will never be a feasible solution to BIM. Let S1 be the seed set selected

by Naive Greedy, we consider another candidate solution smax, which is the node that

has the largest influence. We compare the spread of S1 and smax, then output the

one with higher influence spread. The process is summarized in Algorithm 4.

Theorem 2 Algorithm 4 provides a (1−1/
√
e)-approximation for the BIM problem.

Proof. First we establish the following lemma. Let r be the number of iterations

101

executed by the repeat loop in Algorithm 3. Let S be the current seed set and S∗ be

the optimal seed set. Without loss of generality, we may renumber nodes that was

added to S follow the chronicle order S = {u1, u2, · · · , ul}. Let Si =
⋃i
j=1 uj and let

ji be the index of the iteration in which ui was considered.

Lemma 7 After each iteration ji, i = 1, · · · , l + 1, the following holds:

σ(Si) ≥

[
1−

i∏
k=1

(
1− c(k)

b

)]
σ(S∗). (4.3)

Proof. The proof of Lemma 7 was first presented by Khuller et al. in [72] for

the budgeted maximum coverage problem, which is a special case of BIM where all

the active edge probabilities are 1. Later, it was extended by Krause et al. (Lemma

3 in [74]) for general submodular functions.

Now we’re in position to prove Theorem 2:

Proof. (Adapted from [72]) We prove Theorem 2 by case analyzing Algorithm 4.

• Case 1: If there exist at lease a node u ∈ V which has spread greater than

1
2
σ(S∗), then u or any other nodes which possess a greater spread, will be

selected as the second candidate S2. Algorithm 4 will therefore guarantee at

least 1
2
σ(S∗).

• Case 2: If there is no such node.

– Case 2.1: If c(S) < 1
2
b, then we have c(u) > 1

2
b,∀u 6∈ S since there is no

more node that can be added to S without violating the budget constrain.

102

W.l.o.g, we assume S 6= S∗. Therefore, S∗\S contains at most 1 node v,

otherwise c(S∗) > b. By submodularity definition we have,

σ(S∗ ∩ S) + σ(v) ≥ σ((S∗ ∩ S) ∪ v) + σ((S∗ ∩ S) ∩ v)

≥ σ(S∗) + σ(∅)

≥ σ(S∗).

By assumption, we have σ(v) < 1
2
σ(S∗), therefore σ(S∗ ∩S) ≥ 1

2
σ(S∗). It

follows that σ(S) ≥ 1
2
σ(S∗).

– Case 2.2: If c(S) ≥ 1
2
b. We first observe that for a1, · · · an ∈ R and∑n

i=1 ai ≥ αA, the function,
n∏
i=1

(
1− ai

A

)
is maximized when ai = αA

n
. By Lemma 7, we have,

σ(Si) ≥

[
1−

i∏
k=1

(
1− c(k)

b

)]
σ(S∗)

≥

[
1−

(
1− 1

2i

)i]
σ(S∗)

≥
(

1− 1√
e

)
σ(S∗).

Thus, in the worst case, Algorithm 4 provides a (1−1/
√
e)-approximation.

By considering the candidate solution with the maximum influence spread, Algo-

rithm 4 guarantees the approximation ratio within a constant factor, while Algorithm

103

1 is unbounded. Note that Algorithm 4 is different from CELF proposed by Leskovec

et al. in [78]. CELF runs Naive Greedy on the budgeted and the unit-cost (by set-

ting all costs to one) versions of the problem, and selects the set with the maximum

influence spread. While finding the seed set to maximize IM consumes more time

than what it takes to select a single node with the largest spread, CELF can only

guarantee a looser bound of 1
2
(1− 1/e) (∼ 0.316).

Complexity: Let T be the maximum time needed to calculate the value of σ(S),∀S ⊆

V . Algorithm 3 runs in O(n2T) time where n is the number of nodes (i.e. n = |V |).

Finding S1 costs O(n2T). smax can be determined in in O(nT) time. Therefore,

Algorithm 4 runs in O(n2T) time. Note that in [72], Greedy with partial enumer-

ation heuristic can achieve an approximation guarantee of (1 − 1/e). However, the

improvement is attained at the expense of much higher computation complexity of

O(n4d) [27].

An Illustrative Example: Here we present an example to illustrate our seed

selection process. Given a network with 5 nodes V = {A,B,C,D,E} as depicted in

Figure 4.10(a). Assuming we have the budget B = 2 and all nodal costs are 1, the

problem becomes selecting two seed nodes to maximize network influence. In the first

step, we have S =. The algorithm will first evaluate δ(v),∀v ∈ V . If A is selected as

the first seed, it will be able to influence C,D, and E with probabilities of success

104

A

C D

E

B

0.
5

0.40.3
0.4

0.
5

0.4

0.5

A

C D

E

B

0.
5

0.40.3
0.4

0.
5

0.4

0.5

1.0

0.5 0.55

0.405

(a) The original network (b) A is selected as the first seed

A

C D

E

B

0.
5

0.40.3
0.4

0.
5

0.4

0.5

1.0

0.3 0.49

0.323

A

C D

E

B

0.
5

0.40.3
0.4

0.
5

0.4

0.5

1.0

0.65 0.757

0.5319

1.0

(c) B is selected as the first seed (d) A and B are selected as seeds

Figure 4.10: An illustrative example of the seed selection algorithm. Edge propaga-
tion probabilities are in gray. Node active probabilities are in bold font.

0.5, 0.55, and 0.405, respectively (Figure 4.10(b)). Therefore, δ(A) = σ(A) = 2.455.

Similarly, we have δ(B) = 2.113, δ(C) = 2.05, δ(D) = 1.5, and δ(E) = 1. A will

selected as the first seed since its incremental spread is largest. To select the second

seed, we re-evaluate δ(v),∀v ∈ V \{A}. If B is selected as the second seed, total

spread on the network is increased to 3.9389 (Figure 4.10(d)), therefore δ(B) =

1.4839. Similarly, we have δ(C) = 0.855, δ(D) = 0.645, and δ(E) = 0.595. Having

the largest incremental spread, B will be selected as the second seed. The algorithm

105

terminates since there is no more budget.

Algorithm 4 uses σ(.) as a subroutine. The efficiency of σ(.) computation is thus

critical to the overall running time of the algorithm. In the following sections, we

develop efficient algorithms for approximating the spread function σ(.). We first

consider the special case when the network is a directed acyclic graph (DAG). Then,

we provide two DAG construction algorithms from a general network graph. Finally,

some techniques to further optimize the execution of Algorithm 4 is presented.

4.4.4 Determining influence spread on DAGs

Given a seed set, estimating the value of σ(.) from the seed set was proven to be a

#P-complete problem [70]. We show in this section that under the IC model, the

calculation of σ(.) remains #P-complete even when the underlying network graph is

a DAG. Then we establish the equivalence between computing σ(.) on a DAG and

the computation of marginal probabilities in a Bayesian network.

4.4.4.1 Hardness of computing influence spread on DAGs

In [70], Kempe et al. proposed an equivalent process of influence spread under the

IC model, where at the initial stage, an edge (u, v) in G is declared to be live with

probability p(u, v) resulting in a subgraph of G. A node u is active if and only if

there is at least one path from some node in S to u consisting entirely of live edges.

In general graphs, the influencer-influencee relationship may differ in one realization

to another for bi-directed edges. In a DAG, on the other hand, such relationship is

106

fixed and is independent of the outcome of the coin flips at the initial stage (other

than the fact that some of the edges may not be present). Let xu, u ∈ V denotes

the binary random variable of the active state of node u, namely, P (xu = 1) = p(u).

For each node v in S, P (xv = 1) = 1. If a node u 6∈ S does not have any parent in

G then P (xu = 1) = 0. From G, the conditional probability p(xu|xPar(u)) is uniquely

determined by the edge probability, where xPar(u) denotes the states of the parents

of node u. In other words, influence spread can be modeled by a Bayesian network.

If node u does not have any parent, p(xu|xPar(xu)) = p(xu). The joint distribution is

thus given by,

p(x1, x2, . . . , xn) =
n∏
i=1

p(xi|xPar(xi)). (4.4)

Given the outcome of coin flips C, σC(S) =
∑

u∈V xu. Therefore,

σ(S) = E(σC(S)) =
∑
u∈V

E(xu) =
∑
u∈V

p(u). (4.5)

The second equality is due to the linearity of expectations. To compute p(u), we

can sum (4.4) over all possible configurations for xv, v ∈ V \u. Clearly, such a

naive approach has complexity that is exponential in the network’s treewidth. In

fact, the marginalization problem is known to be #P-complete on a DAG. However,

since computing influence spread on a DAG can be reduced to a special instance

of the marginalization problem, it remains to be shown if the former problem is

#P-complete. The main result is summarized in the following theorem.

Theorem 3 Computing the influence spread σ(S) on a DAG given a seed set S is

#P-complete.

107

Proof. The proof is an adaption of the proof in [28] and Valiant’s original proofs

of the #P-completeness of the s-t connectedness in a direct graph [112]. First, we

define a few problems that are known or to be proven to be #P-complete.

Definition 1 (SAT’)

Input: F = c1 ∧ c2 ∧ . . . cr, where ci = (yi1 ∨ yi2) and yij ∈ X,

Output: |{(x, t)|t = (t1, t2, . . . , tn) ∈ {1, 2}n; for 1 ≤ i ≤ r, x make yi,k true for

k = ti.

Definition 2 (S-SET CONNECTEDNESS on DAG)

Input: A DAG D = (V,E); s ∈ V ;V ′ ∈ V .

Output: Number of subgraphs of D in which for each u ∈ V ′, there is a (directed)

path from s to u.

Definition 3 (S-T CONNECTEDNESS on DAG)

Input: A DAG D = (V,E); s, t ∈ V .

Output: Number of subgraphs of D in which there is a directed path from s to t.

To prove Theorem 3, we first establish the following lemma.

Lemma 8 SAT ′ �p S-T CONNECTEDNESS on DAG.

108

Proof. Given F construct a DAGD = (V,E1∪E2) where V = {c1, c2, . . . , cr+1, x1, . . . , xn, x̄1, . . . , x̄n, s},

E1 = {(xi, cj)|xi appears in clause cj in F}
⋃
{(xn, cr+1), (x̄n, cr+1)}, and E2 = {(xi, xi+1), (x̄i, xi+1), (x̄i, x̄i+1), (xi, x̄i+1)|1 ≤

i ≤ n}
⋃
{(s, x1), (s, x̄1)}. The direction of each edge follows the order of the pairs.

D is a DAG as edges only go from x’s of smaller index to larger ones, and from x’s

to c’s. Note the D is multi-connected. The rest of the proof follows that in [112].

Theorem 3 can then be proved using the same argument as in [28] with the exception

that the reduction is from the S-T CONNECTEDNESS on DAGs due to Lemma 8.

4.4.4.2 Belief propagation

Belief propagation (BP) is a message passing algorithm for performing inference on

graphical models, such as Bayesian networks and Markov random fields. It calculates

the marginal distribution for each unobserved node, conditional on any observed

nodes [117]. For singly-connected DAGs, where between any two vertices there is only

one simple path, BP algorithm computes the exact solution with O(n) complexity.

For multi-connected DAGs, where multiple simple paths may exist between two

vertices, belief propagation and many of its variants [117, 77, 90] have been shown to

work well in general. Exact solutions such as junction tree [77] may incur the worst

case complexity exponential to the number of vertices due to the need to enumerate

all cliques in the DAG.

BP algorithms take as input a factor graph or a description of the underlying

Bayesian Network. For each factor in the graph or a Bayesian node, a conditional

probability table (CPT) is constructed. For a node v with the parent set Par(v) =

109

S1

A B

C

S2 S1

A B

C

S2

0.
5

0.40.3 0.4

0.
5

0.4

0.5

Figure 4.11: Converting a DAG into a factor graph.

States of C
A B 0 1

0 0 1 0
0 1 0.5 0.5
1 0 0.6 0.4
1 1 0.3 0.7

Figure 4.12: CPT of C with two parents A, B

{par1, par2, . . . , park}, its CPT consists of one column for each state and one row for

each set of states its parents may assume. In the context of influence spread, each

node only has two states: active (1) and inactive (0). Thus the number of rows in

a CPT is 2k. σ(.) can then be determined by summing up the probability of nodes

being active. An illustrative example of a factor graph and one of its CPT’s is given

in Figure 4.11 and 4.12.

Loopy belief propagation: The complexity of σ(·) calculation is dominated by

the execution of the BP algorithm. A variety of BP algorithms exist. In this work,

we adopt the Loopy Belief Propagation (LBP) algorithm, which has been shown to

perform well for various problems [49, 84]. LBP takes O(Md) to estimate the active

probability of a node, where M is the number of possible labels (states) for each

110

variable (M = 2), and d is the maximum in-degree. We denote by n0 the number of

vertices in a DAG. Thus, the complexity of LBP is O(n02d).

Single-pass belief propagation: Calculating σ(·) with LBP produces highly ac-

curate results, but the computation time remains to be high when the graph is

multi-connected. The main complexity arises from the fact that the activation of the

parents of a node may be correlated in a multi-connected graph. Thus, in computing

the activation probability of the node, one needs to account for the joint distribu-

tion of its parent nodes. Next, we propose a single pass belief propagation (SPBP)

algorithm that ignores such correlation in determining σ(·). Note that the heuristic

is exact when the graph is singly-connected.

Let D(·) be the input DAG. Consider a node v ∈ D(·). Given the activation

probabilities of its parents Par(v), we approximate p(v) as,

p(v) = 1−
∏

u∈Par(v)

(1− p(u)p(u, v)). (4.6)

The algorithm is summarized in Algorithm 5. It starts with the seed nodes and

proceeds with the topological sorting order. The total complexity is O(n0d). Clearly,

SPBP is much faster than LBP.

4.4.5 DAG construction

In general, real social networks are not DAGs (with the exception of advisor-advisee

and parent-child relationships, for instance, which exhibit a natural hierarchy). To

apply the BP algorithm in computing influence spread, one needs to selectively prune

111

Algorithm 5: Single-Pass Belief Propagation (SPBP)

input : D(S)

1 σ(S) = 0;
2 foreach v ∈ D(S) do
3 if v ∈ S then
4 p(v) = 1

else
5 p(v) = 1−

∏
u∈Par(v)(1− p(u)p(u, v))

6 σ(S) = σ(S) + p(v)

output: σ(S)

edges and reduce the graph to a DAG. Clearly, there are many ways to do so. The

challenge is to find a DAG that approximates well the original graph in influence

spread. In this section, we introduce two DAG construction algorithms, both retain-

ing important edges where influences are likely to travel.

4.4.5.1 Localizing the influence spread region

One important observation in [28] is that the influence of a seed node diminishes

quickly along a path away from the seed node. In other words, the “perimeter” of

influence or the influence region of a seed node is in fact very small. One way to

characterize the influence region of a node v is through the union of the maximum

influence paths defined next.

Definition 4 (Path Propagation Probability)

For a given path P (u, v) = {u1, u2, . . . , ul} of length l from a vertex u to v, with

u1 = u, ul = v and u2, . . . , ul−1 are intermediate vertices, define the propagation

112

probability of the path, p(P), as:

p(P (u, v)) =
l−1∏
i=1

p(u1, ui+1). (4.7)

p(P (u, v)) can be thought as the probability that u will influence v if u is selected as

a seed node.

Definition 5 (Maximum Influence Path)

Denote by P(G, u, v) the set of all paths from u to v in G. The maximum influence

path MIP (G, u, v) from u to v is defined as:

MIP (G, u, v) = arg max
P
{p(P)|P ∈ P(G, u, v)}. (4.8)

Ties are broken in a predetermined and consistent way such that MIP (G, u, v) is al-

ways unique, and every sub-path in MIP (G, u, v) from x to y is also in the MIP (G, x, y).

Definition 6 (Maximum Influence Out-Arborescence)

For a graph G, an influence threshold θ, the maximum influence out-arborescence of

a node u ∈ V,MIOA(G, u, θ), is defined as:

MIOA(G, u, θ) =
⋃

v∈V,p(MIP (G,u,v))≥θ

MIP (G, u, v). (4.9)

MIOA(G, u, θ) is defined as the union of MIP ’s from u to all other nodes in V .

MIP ’s with propagation probabilities less than a threshold θ are not included to

reduce the size of MIOA. One can think of MIOA(G, u, θ) as a local region where

u can spread its influence to. MIOA(G, u, θ) can be computed by first finding the

Dijkstra tree rooted at u with edge weight − log(p(u, v)) for edge (u, v), and then

113

removing the paths whose cumulative weights are too high. By tuning the parameter

θ, influence regions of different sizes can be obtained. For a single node, its MIOA

is clearly a tree. For multiple seed nodes, we build upon the idea of local influence

region and propose two algorithms.

4.4.5.2 Building DAGs from a seed set

DAG model 1: We observe that any DAG has at least one topological ordering.

Conversely, given a topological ordering, if only edges going from a node of low rank

to one with high rank are allowed, the resulting graph is a DAG.

To obtain the topological ordering given seed set S, we first introduce a (virtual)

super root node R that is connected to all seed nodes with edge probability 1. Let

GR = (VGR , EGR) where VGR = V ∪ {R} and EGR = E ∪ {(R, Sk)|∀Sk ∈ S}. We build

MIOA(GR, R, θ) by calculating a Dijkstra tree from R. After removing R and its

edges from MIOA(GR, R, θ), we obtain a singly connected DAG D1 = (VD1 , ED1)

on which BP algorithms can be directly applied and used to estimate the influence

spread from S. However, D1(·) is very sparse (with n − k edges) since many edges

are removed.

We then augment D1(·) with additional edges. Note that MIOA(GR, R, θ) pro-

vides a topology ordering. More specifically, let the rank of node v be the sum weight

of the shortest path from R, namely,

r(v) = min(− log(p(P (s, v)))),∀s ∈ S. (4.10)

114

Algorithm 6: Calculate D1(S) from a seed set S
input : G, S, θ

1 Build GR = (VGR , EGR)
2 D1(S) = MIOA(GR, R, θ)\R
3 Calculate r(v),∀v ∈ VD1 (Eq. (4.10))
4 foreach (u, v) ∈ VGR do
5 if r(u) < r(v) and (u, v) ∈ E then
6 D1(S) = D1(S) ∪ (u, v)

output: D1(S)

Rank grows as the node is further away from R. We include in D1(·) all edges

in G whose end points are in D1(·) and go from a node with lower rank to one with

higher rank. Clearly, the resulting graph is a DAG. The DAG constructing procedure

is illustrated in Figure 4.13 and summarized in Algorithm 6.

S1

A B

C

S2 S1

A B

C

0.
5

0.40.3 0.4

0.5
0.4

0.5

R

S2

p
=

1 p = 1

Node S1 S2 A B C
r(Node) 0 0 0.301 0.398 0.699

Figure 4.13: DAG due to Algorithm 6. S1 and S2 are seed nodes. Edges in
MIOA(GR, R, θ) are in bold. (S1, B), (S2, A), (A,B), and (B,C) are added into
D1(S) to improve inference accuracy. θ = 0.0001.

DAG model 2: In the second DAG model, we first compute the MIOA from each

seed node and take the union of MIOA(G, s, θ),∀s ∈ S. Denote the resulting graph

115

Algorithm 7: Calculate D2(S) from a seed set S

input : G, S,MIOA(G, v, θ),∀v ∈ V
1 D2(S) =

⋃
∀s∈S MIOA(G, s, θ)

2 Calculate r(v),∀v ∈ VD2
(Eq. (4.10))

3 foreach (u, v) ∈ D2(S) do
4 if r(u) ≥ r(v) then
5 D2(S) = D2(S)\(u, v)

output: D2(S)

D2(S) = (VD2 , ED2). Note that D2(S) is not necessary a DAG as there could be

cycles. To break the cycles, certain edges need to be removed. We adopt a similar

approach as in Algorithm 6. A node v is associated with a rank r(v) as in (4.10).

Only edges that connect a lower ranked node to higher ranked node are retained.

Clearly, the resulting graph is a DAG. The approach is summarized in Algorithm 7.

S1

A B

C

S2 S1

A B

C

S2

0.
5

0.40.3 0.4

0.
5

0.4

0.5

Node S1 S2 A B C
r(Node) 0 0 0.301 0.398 0.699

Figure 4.14: DAG due to Algorithm 7. S1 and S2 are seed nodes. D2(S) is the union
of MIOA(G, S1, θ) (solid edges) and MIOA(G, S2, θ) (dashed edges). θ = 0.0001.

The next proposition provides the relationship between DAGs constructed by

Algorithm 6 and 7.

Proposition 1 Given a fixed influence threshold θ, let D1(·) = (VD1 , ED1) and

116

D2(·) = (VD2 , ED2) be the DAGs constructed by Algorithm 6 and Algorithm 7. Then,

VD1 = VD2 and ED2 ⊆ ED1.

Proof. In both algorithms, a node v is not included in the DAG if and only if

r(v) > θ. Thus, VD1 = VD2 .

To show ED2 ⊆ ED1 , it suffices to show that ∀(u, v) ∈ ED2 , (u, v) ∈ ED1 . Since

(u, v) ∈ ED2 , (u, v) ∈ E and r(u) ≤ r(v). Therefore, according to Algorithm 2,

(u, v) ∈ ED2 . Clearly, the converse is not true as some edges in ED1 may not be part

of the MIOA from any seed node.

Computation complexity: Building the Dijkstra tree from a source node takes

O(n0 log n0), where n0 is the maximum number of vertices in the resulting DAG.

Calculating the node rank r(·) takes O(n0). The union operation in DAG 2 takes

O(n0− 1) and the edge augmenting and pruning in DAG 1 and DAG 2 takes O(m0)

and O(min(m0, k(n0− 1))), respectively, where m0 is the maximum number of edges

in a DAG and k is the seed set cardinality.

Therefore, the running time of DAG 1 and DAG 2 are O(n0 log n0) and O(n0), re-

spectively. Note that DAG 2 calculation requires the availability ofMIOA(G, v, θ),∀v ∈

V first, which can be built at the initialization stage at the cost of O(nn0 log n0).

Assuming that k is small and θ is properly selected, we have n0 � n.

117

4.4.6 Acceleration of seed selection algorithm

In each round of Naive Greedy, a seed node with the maximum incremental spread-

cost ratio is selected, namely, v = maxv∈V \S δ(v). Recall that δ(v) = (σ(S ∪ v) −

σ(S))/c(v) is the spread increment ratio of v under S. Initially, when S = ∅, δ(v) =

σ(v)/c(v). Evaluating δ(v) at each iteration for all v ∈ V dominates the overall

computation complexity.

To accelerate the execution of Naive Greedy, one can try to improve on two

aspects, namely, 1) limiting the candidate set of nodes to pick from for the next

seed, and 2) reducing the complexity of computing the spread increments. CELF

algorithm [78] eliminates many nodes from being evaluated. We focus on the second

aspect. The proposed mechanism can be used in conjunction with the idea from

CELF.

Recall in Section 4.4.5.1, we use MIOA to localize the influence region of a node.

Consider for now that influence from a node can only reach nodes in its MIOA.

Then, we make the following claim.

Proposition 2 Given the current seed set S, adding u to S will not change the

spread increment of v, namely, δS(v) = δS∪u(v) if MIOA(G, u, θ) and MIOA(G, v, θ)

have no common vertex.

Proof. It is easy to see that by limiting the spread from u in MIOA(G, u, θ), then

p(w),∀w ∈MIOA(G, v, θ) will not be affected by the inclusion of u in the seed set.

118

DAG Construction
Influence Spread

Estimation on DAG

Naive Greedy Algorithm

SPBPLBP DAG2DAG1

Improved Greedy Algorithm

Figure 4.15: The building blocks of our proposed algorithm. Details are presented
in the previous sections.

As a result of Proposition 2, each time we select a new seed, only the influence

increments of nodes that have overlapping influence regions with the newly selected

seed need to be re-evaluated. Formally, we define the set of Peer Seeds (PS) of a

vertex v ∈ V as follow:

PS(G, v, θ) = {s ∈ V |MIOA(G, s, θ) ∩MIOA(G, v, θ) 6= ∅} . (4.11)

PS(G, v, θ) can be computed efficiently just once at the beginning when all

MIOA(G, v, θ)’s are available.

Combining the ideas of 1) limiting the region to be re-evaluated using PS, 2)

limiting the set of nodes to pick from (adopted from CELF), and 3) picking nodes

w.r.t its cost and the remaining budget (Algorithm 4), we have the complete proce-

dure to determine the optimal seed set in Algorithm 8. Figure 4.15 gives the block

diagram of the proposed algorithm.

The seed selection algorithm proceed as follow: In the initialization phase (lines

119

Algorithm 8: The Proposed Algorithm
input : network graph G(V,E) and budget b

1 S = S1 = smax = ∅, σ0 = 0, θ = influence threshold
2 foreach v ∈ V do
3 build MIOA(G, v, θ)
4 D(v) = MIOA(G, v, θ)
5 calculate σ(v) (LBP or Algorithm 5)
6 δ(v) = σ(v)/c(v)
7 δold(v) = 0

8 build PS(G, v, θ), ∀v ∈ V
9 smax = arg maxv∈V σ(v)

10 while true do
11 u = arg maxv∈V \S(δ(v))

12 if c(S1 ∪ u) ≤ B then
13 S1 = S1 ∪ {u}
14 σ0 = σ(S)
15 δold(v) = δ(v),∀v ∈ V \S1

16 b = b− c(u)
17 δmax = 0
18 foreach v ∈ PS(G, u, θ)\S1 do
19 if δold(v) > δmax then
20 build D(S1 ∪ {v}) (Algorithm 6 and 7)
21 calculate σ(S1 ∪ {v}) (LBP or Algorithm 5)
22 δ(v) = (σ(S1 ∪ {v})− σ0)/c(v)
23 if δ(v) > δmax then
24 δmax = δ(v)

25 V = V \u
26 if V = ∅ or b = 0 then

break

27 S = arg max (σ(S1), σ(smax))

output: selected seed set S

1 – 8), MIOA’s and PS’es are constructed. The second candidate solution smax can

be determined in O(n) time (line 9). S1 is computed by executing the loop in lines

10 – 26. Each node in V is ranked by its incremental spread-cost ratio and can be

added to S1 just once. The node with the highest ratio is included in S1 if it does

not violate the budget b (line 12), and the corresponding nodes will be re-evaluated

(lines 18 – 24). The procedure terminates once all nodes were considered, or no more

budget remains (line 26). Finally, the algorithm compares the spread of S1, smax and

returns the solution with the larger spread.

120

Computation complexity: Recall that we denoted by n0 the largest number of

vertices, and by d the largest in-degree of a node in a DAG. For each node v ∈ V in the

initialization phase, building MIOA(G, v, θ) takes O(n0 log n0), and estimating σ(v)

takes O(n0d) using SPBP and O(n02d) using LBP, respectively. Thus, depending

on the algorithm used, the running time of initialization is O(nn0(log n0 + d)) or

O(nn0(log n0 + 2d)).

Let k be the number of seeds selected in the main loop (lines 10 – 26) and v0 be the

cardinality of the largest set of peer seeds, namely, v0 = max∀v∈V {|PS(G, v, θ)|} =

O(n0). Therefore, nodal influence spread is updated O(kn0) times. Note that this

is much less than the number of updates required by Algorithm 1 (O(n2)) as we do

not naively re-evaluate every node. Each time when the influence spread is updated,

we need to rebuild the DAG (line 20 – takes O(n0 log n0) with DAG 1 or O(n0) with

DAG 2) and calculate the influence spread (line 21 – takes O(n02d) with LBP or

O(n0d) with SPBP). The total computation complexity for different combinations of

algorithms is summarized as follows:

DAG 1 DAG 2

LBP n0(n+ kn0)(log n0 + 2d) n0(2d(kn0 + n) + n log n0)

SPBP n0(n+ kn0)(log n0 + d) n0(n(log n0 + d) + kn0(1 + d))

Clearly, combining DAG 1 and LBP incurs the highest complexity while the

combination of DAG 2 and SPBP is the fastest. From the analysis, it is easy to see

that the computation complexity depends on n0 and d. The proposed approach is

more efficient with smaller n0 and d; that is, when the graph is sparse and the edge

121

propagation probabilities are small, both are likely true in social networks.

4.4.7 Evaluation

In this section, we evaluate the performance of the proposed framework. First,

implementation details and experimental setup are introduced. Then, we present the

results on 1) performance on real-world social networks and 2) impact of network

structures using synthetic graphs.

4.4.7.1 Experiment setup

The algorithms and implementation: In addition to the two DAG models

and two methods to compute influence spread (a total of 4 combinations DAG1–

LBP, DAG1–SPBP, DAG2–LBP, and DAG2–SPBP), we make comparison with the

following algorithms:

• PMIA(θ) [28]: a fast heuristic algorithm that builds a tree-like structure model

on which influence is spread. θ is the influence threshold. We will set θ =

1/160 in all experiments as it was reported to yield the best performance. The

PMIA implementation provided by the authors is optimized for IM, and thus

its performance for BIM is excluded.

• Greedy/CELF: The greedy approach from [70] with CELF optimization in [78].

The number of simulation rounds for each σ(·) estimation is 10,000.

122

• Weighted Degree: The simple heuristic that selects k seeds that have maximum

total out-connection weight. Weighted Degree has been reported to be working

very well in practice.

We do not compare with other heuristics such as SP1M, SPM [73], PageRank [17],

Random, DegreeDiscountIC [29] or Betweenness centrality [48] since they have been

reported in previous studies [70, 28] to be either unscalable or have poorer perfor-

mance.

We have implemented the proposed algorithms in C++. All experiments are con-

ducted on a workstation running Ubuntu 11.04 with an Intel Core i5 CPU and 2GB

memory. In order to implement LBP algorithm, we use libDAI [89] and Boost [1] li-

braries. We find out through the implementation that running LBP on networks with

high in-degree nodes is very costly. Therefore when running LBP, we prune incoming

edges on high in-degree nodes such that only ten edges with the highest propaga-

tion probabilities are retained. The implementation of PMIA is obtained from its

authors. Note that with code optimization, the running time of our algorithms can

be further reduced.

Datasets: We use four real-world network datasets from [9] and [115] to compare

performance of different algorithms. The four datasets were selected so as they are

representative of the structural features of large-scale social networks, and are of

different scales – from several thousands to millions of edges. The first one is an

email exchange network in a research lab, denoted by Email. Each researcher is

a vertex and an email from a researcher u to v constitutes an edge. The second

123

Table 4.4: Network datasets

Name Nodes Edges Description

Email communication within
Email 447 5,731

a research lab during a year
Gnutella peer to peer

p2p-Gnutella 6,301 20,777
network from August 8 2002

Slashdot social network
soc-Slashdot 82,168 948,464

from February 2009
Amazon product co-purchasing

Amazon 262,111 1,234,877
network from March 2 2003

network, denoted by p2p-Gnutella is a snapshot of the Gnutella peer-to-peer file

sharing network from August 2002. Nodes represent hosts in the Gnutella network

and edges represent connections between the Gnutella hosts. The third network

comes from Slashdot.org, a technology-related news website, denoted by soc-Slashdot.

In 2002, Slashdot introduced the Slashdot Zoo feature that allows users to tag each

other as friends or foes. The network contains friend/foe links between Slashdot users

obtained in February 2009. Finally, Amazon dataset is the product co-purchasing

network collected by crawling Amazon website on March 2, 2003. Details of the

datasets are summarized in Table 4.4.

In addition to real social networks, we modified DIGG [39] source code and gener-

ated scale-free networks with different network densities and node out-degree distri-

butions. It allows us to study the impact of graph structures and network property

on the algorithm performance.

Probability generation models: Two models that have been used in previous

work [70, 28] are: 1) the Weighted Cascade (WC) model where p(u, v) = 1/d(v)

124

0 10 20 30 40 50

140

150

160

170

180

190

200

Seed Size

In
fl
u
e
n
c
e
 S

p
re

a
d

Greedy/DAG1−LBP
DAG1−SPBP
DAG2−LBP/SPBP
PMIA
Weighted Degree

0 10 20 30 40 50
0

50

100

150

200

250

Seed Size

In
fl
u
e
n
c
e
 S

p
re

a
d

Greedy/DAG1/2−LBP/SPBP
PMIA/Weighted Degree

0 10 20 30 40 50
0

100

200

300

400

500

Seed Size

In
fl
u
e
n
c
e
 S

p
re

a
d

DAG1/2−LBP/SPBP
PMIA/Weighted Degree

0 10 20 30 40 50
0

20

40

60

80

100

120

Seed Size

In
fl
u
e
n
c
e
 S

p
re

a
d

DAG1/2−LBP/SPBP
PMIA
Weighted Degree

(a) Email (b) p2p-Gnutella (c) soc-Slashdot (d) Amazon

Figure 4.16: Influence spread with node unit-cost on 4 datasets. DAG 1 results are in red
curves, DAG 2 are in blue curves, and other methods are in black curves.

where d(v) is the in-degree of v and 2) the Trivalency (TV) model where p(u, v)

is assigned a small value for any (u, v) ∈ E. We argue that both models are not

truthful reflections of the probability model in practice. The WC model assign a

very high probability for a connections to nodes with small number of incoming

connections while the TV model assigns a similar probability to all edges. In the

evaluation, we consider two additional models: 1) Random (RA) where p(u, v) is

randomly selected in the range [0.001, 0.2]. RA is useful when no prior information

regarding the influence is available; and 2) Power Law (PL) where p(u, v) follows

the power law distribution with the density function p(x) = α/xβ, with x be the

propagation probability between two random edges p(u, v). Parameters α = 0.05

and β = 0.9 are selected so that p(u, v) has the mean value 0.1 in the range [0.001,

0.2].

4.4.7.2 Real social networks

Unit-cost version of BIM: BIM with unit-cost is the traditional IM problem

where the seed set size k is fixed. In this experiment, we run 7 algorithms: Greedy,

PMIA, Weighted Degree, and the 4 proposed methods on 4 datasets presented in

125

0 10 20 30 40 50

10
−2

10
0

10
2

10
4

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Seed Size

Greedy
DAG1−LBP
DAG1−SPBP

DAG2−LBP
DAG2−SPBP

PMIA
Weighted Degree

0 10 20 30 40 50

10
−2

10
0

10
2

10
4

10
6

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Seed Size

Greedy
DAG1−LBP
DAG1−SPBP

DAG2−LBP
DAG2−SPBP

PMIA
Weighted Degree

0 10 20 30 40 50

10
0

10
2

10
4

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Seed Size

DAG1−LBP
DAG1−SPBP
DAG2−LBP

DAG2−SPBP/PMIA
Weighted Degree

0 10 20 30 40 50

10
0

10
2

10
4

10
6

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Seed Size

DAG1−LBP
DAG1−SPBP
DAG2−LBP

DAG2−SPBP/PMIA
Weighted Degree

(a) Email (b) p2p-Gnutella (c) soc-Slashdot (d) Amazon

Figure 4.17: Computation time with node unit-cost on 4 datasets.

Table II. k varies from 1 to 50, and we adopt the RA probability generation model.

Figure 4.16 shows the influence spread generated by the best seed sets in different

algorithms as the seed size changes. Since Greedy does not scale with large datasets,

we only run Greedy on Email and p2p-Gnutella. The influence spread from the

seed set selected by each algorithm is determined by 10,000 rounds of Monte Carlo

simulations on the original graphs.

In Figure 4.16(a), the performance of DAG1–LBP and Greedy (known to be

within a constant ratio of the optimal) are not distinguishable (and thus are repre-

sented in one curve). The influence spread of DAG1–SPBP and DAG2–LBP/SPBP

are slightly behind, all outperforming PMIA and Weighted Degree. We observe on

Email dataset (a small but dense network) that both the structure of the DAG (DAG

1 vs. DAG 2) as well as the BP algorithm used (LBP vs. SPBP) affect performance

of the proposed methods. In contrast, as shown in Figure 4.16(b) – (d), the influ-

ence spreads of the four approaches DAG1/2–LBP/SPBP are identical for sparser

networks, and is the same as Greedy in p2p-Gnutella dataset.

In terms of running time, Weighted Degree is the fastest. Among the four

proposed approaches, DAG2–SPBP is the fastest, followed by DAG2–LBP, DAG1–

SPBP, and finally DAG1–LBP. DAG2–SPBP and PMIA have comparable order in

126

10 15 25 40 60 100

200

210

220

230

240

250

260

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

DAG2−SPBP
DAG1−SPBP
CELF
Weighted Degree

10 15 25 40 60 100

50

100

150

200

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

DAG2−SPBP
DAG1−SPBP
CELF
Weighted Degree

10 15 25 40 60 100

400

600

800

1000

1200

1400

Budget

In
fl
u
e
n
c
e
 S

p
re

a
d

DAG2−SPBP
DAG1−SPBP
Weighted Degree

10 15 25 40 60 100

20

40

60

80

100

120

140

160

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

DAG2−SPBP
DAG1−SPBP
Weighted Degree

(a) Email (b) p2p-Gnutella (c) soc-Slashdot (d) Amazon

Figure 4.18: Influence spread with random node costs on 4 datasets.

running time with DAG2–SPBP being 30-40% slower than PMIA in most cases.

Again, this may be primarily attributed to the lack of code optimization in our

proposed methods.

Interestingly, influence spread on Amazon grows linearly with the seed size. Our

result matches with that in [28]. This can be explained by the sheer scale of the net-

work, and thus the small number of selected seeds are likely to have non-overlapping

influence regions.

General cost version of BIM: In this set of experiments, we compare only 4 al-

gorithms: Greedy/CELF, Weighted Degree, and DAG1/DAG2–SPBP on 4 datasets

presented in Table II. We also omit the two methods that use LBP (DAG1/DAG2–

LBP) from the results since they have comparable performance as the SPBP ap-

proaches. The budget b = {10, 15, 25, 40, 60, 100}, and the RA probability generation

model is chosen. Nodal costs are set uniformly in [1.0, 3.0].

Results in Figure 4.18 are similar to that in Figure 4.16. In most cases, DAG1

has better performance compared to DAG2. Notably, DAG1–SPBP outperforms

Greedy/CELF on p2p-Gnutella dataset. Results on running time (omitted due to

space limit) show that the proposed methods are several orders of magnitude faster

than Greedy/CELF. Weighted Degree while being the fastest algorithm, does not

127

perform nearly as well as the others on the dense graph (Email).

4.4.7.3 Synthetic networks

In this section, we conduct three sets of experiment with 5 methods: CELF, PMIA,

Weighted Degree, and DAG1/2–SPBP. Synthetically generated networks are used

to study the impact of network structures and probability generation models on

performance of the algorithms. To isolate the effects of network properties, we only

consider the unit cost BIM problem.

Impact of network density: Results from Figure 4.16 and 4.18 indicate that

our proposed methods perform best on dense networks (Email and p2p-Guntella).

To further validate this observation, we generate 4 networks with 20k, 50k, 100k,

and 200k edges using DIGG [39]. The number of vertices is fixed at 5,000. We

choose seed set size k = 50 and RA probability model. We evaluate the spread

ratio of various algorithms, defined as the ratio of the spread attained to that by

Greedy/CELF algorithm. From Figure 4.19(a), as the network density increases, the

performance gap between the proposed algorithms and existing algorithms including

CELF increases. CELF relies on many rounds of simulations to determine the spread.

For dense networks, more rounds of simulations are needed to produce a spread

estimation that is close enough to the ground truth. As a result, with a fixed number

of simulation rounds, CELF has worse performance at high network densities. We

also observe that PMIA, which was designed to take advantage of network sparsity;

and Weighted Degree, which only uses local node information, do not perform well

on densely connected graphs.

128

20k 50k 100k 200k
90

95

100

105

110

115

Edges

S
p

re
a

d
 R

a
ti
o

 (
%

)

DAG2−SPBP
DAG1−SPBP
CELF
PMIA
Weighted Degree

RA TV PL WC
60

70

80

90

100

110

Model

S
p

re
a

d
 R

a
ti
o

 (
%

)

DAG2−SPBP
DAG1−SPBP
CELF
PMIA
Weighted Degree

0.5 1.0 1.5 2.0
90

92

94

96

98

100

102

Beta

S
p

re
a

d
 R

a
ti
o

 (
%

)

DAG2−SPBP
DAG1−SPBP
CELF
PMIA
Weighted Degree

(a) Varying network densities (b) Varying prob. gen. models (c) Varying out-deg. distributions

Figure 4.19: Algorithm performance on different network conditions.

Impact of probability generation model: In this set of experiments, we run 5

algorithms on a synthetic network with 5,000 nodes and 50,000 edges. Each algorithm

selects a seed set with size k = 50 under 4 propagation probability models: RA, TV,

PL and WC. All models give similar performance except Weighted Degree on WC

model. Recall that WC generates the propagation probabilities based on the in-

degree of nodes, thus strong connections are established between nodes with low

in-degree. Weighted Degree cannot “see” those strong ties beyond the local edges,

and therefore, has the worst performance.

Impact of node out-degree distribution: It is known that node out-degree in

real social networks follows the power-law distribution [34]. Let y be the percentage

of nodes with degree x, then we have y ∼ α/xβ. α and β can be seen as the intercept

and the (negative) slope when the sequence of nodes’ degree is plotted on a log-log

scale. While varying α only scales the distribution up or down, changing β alters

the “shape” of the distribution. More specifically, a high value of β means the node

out-degree distribution exhibits larger skew. The network in this case contains few

“hubs” that are connected to many other nodes. On the other hand, a small β

129

means that the distribution is fat-tailed and the max out-degree in the network is

not much larger than the average out-degree. We run 5 algorithms to solve the unit-

cost BIM problem on 4 generated networks with β = {0.5, 1.0, 1.5, 2.0}. The network

size is 5,000 and α is adjusted accordingly such that the total number of edges is

roughly 50,000. We see from Figure 4.19(c) that the performance gap among the

algorithms reduces with larger β. This is because with a large degree distribution

skewness, nodes with high out-degree (hub) will almost certainly be one of the best

seed candidates (unless their costs are too high, which is not this case). Simple

algorithms such as Weighted Degree can easily identify such hub nodes. On the

other hand, when the network is more “flattened”, more sophisticated algorithms

are necessary.

4.4.7.4 Remarks

From the experiments results, we observe that Weighted Degree gives the best ef-

ficiency in terms of spread/complexity. However, its performance degrades signif-

icantly on dense networks or more heavy-tail distributed graphs. The same con-

clusion can be drawn for PMIA. Though faster than our algorithms, PMIA shows

little improvement in term of attainable spread compared to Weighted Degree, ex-

cept under the WC model. Our proposed schemes surpass the others in all the

experimented datasets. They also offer more flexibility: one would apply the best

performed algorithm (DAG1–LBP) on static networks (e.g.: network of connections

between co-workers) to identify the most influential nodes, or apply the fastest algo-

rithm (DAG2–SPBP) on rapidly changing communities (e.g.: network of connections

130

between people in a social group) to obtain immediate result.

4.5 Summary

In this chapter, we first studied inference problems from interaction traces on so-

cial networks. Many key observations regarding the network properties from user

influence perspective were made, including strong reciprocity, homophily and hier-

archy in following relationships. Most importantly, we realized that the information

adoption of a twitterer depends heavily on the influenceability of his first neighbor

who spread that information. The FI diffusion model was therefore proposed and

verified on many Twitter communities. Those findings are important in many ap-

plication domains like viral marketing and building recommender systems since they

change some of the basic assumptions regarding influence propagation in online social

networks that were adopted in the past.

In the second part, we focused on the BIM problem, which is a generalization of

the traditional IM problem. The study on real world datasets and synthetic datasets

with controllable network parameters demonstrated that the proposed algorithms

have superior performance. Furthermore, we gained some insights on the choice of

algorithms in trading computation complexity with performance given the network

structure.

131

Chapter 5

Conclusion

5.1 Summary of contributions

We presented in this thesis our work towards obtaining a better understanding of

the complex network hidden property and behavior. Our work is a combination

of methodologies research through designing new analytical techniques for complex

network, and applications of these techniques in real world communication and online

social networks. A basic premise behind our study is that mining interactions on

the network leads to understanding its underlying structure and dynamics. We

collected a large amount of network interaction data, performed extensive analysis

and devised inference solutions. The key contributions that we made can be divided

into two parts.

132

Part 1. On communication networks: We studied the inference problems

from interaction traces on communication networks. We found a family of inference

problems on networking domain that can be abstracted as functional relation in a

bipartite graph where two separated set of nodes communicate with each other. We

devised the binary independent component analysis with OR mixtures algorithm

(bICA) to solve those problems. Given a set of data from the set of observable nodes

and the assumption that hidden source nodes are statistical independent, bICA infers

the connections between the two set of nodes and activities at each time slot of the

source nodes. Furthermore, we proposed several optimization techniques to reduce

the complexity of bICA. Finally, we demonstrated the usage of bICA through a wide

range of networking applications, including monitoring in wireless networks, primary

user separation in cognitive radio networks, multicast tree topology inference, and

wireless transmission technology identification.

• Optimal monitoring in multichannel wireless networks: By assuming

user activities are independent, we could apply bICA to find the best way to

assign sniffers to channels so as the amount of observed data is maximized.

• Primary user separation in cognitive radio networks: We showed that

the PU separation problem can be solved by gathering observations from all

the SUs and applying bICA on top of the observation dataset.

• Multicast tree topology inference: We devised a variation of bICA, named

seqBICA, which is specialized in inferring the hidden multicast topology from

network end-points.

133

• Binary blind identification of wireless transmission technologies: We

formulated a new and interesting problem of identifying transmissions technolo-

gies just by observing the spectrum sensing data. Experiment results showed

that bICA can identify those hidden wireless transmissions with high accuracy,

albeit the observation data are noisy.

Part 2. On social networks: The main contribution of this part is two-fold. We

first conducted an extensive analysis on Twitter and influence measurement services

and made several observations on the network characteristics from user influence

perspective, including strong reciprocity, homophily and hierarchy in following rela-

tionships, and first-influencer diffusion model.

• Strong reciprocity between users in a community: showing that users

that share similar interests do not randomly follow each other, but know each

other well enough to form strongly connected network components.

• Hierarchy in following relationship: Following relationship encodes the

hierarchial information on Twitter, where less influential users tend to follow

those with higher influence.

• Homophily in following relationship: Homophily exists on Twitter from

the user influence perspective, indicated by the fact that users with equal in-

fluence tend to be mutual friends.

134

• First-influencer diffusion model: We first observed that the success of

information propagation on Twitter depends on the influence of the first in-

formation source. Then we proposed the FI model to formulate the spreading

process on Twitter.

Additionally, we investigated the influence maximization (IM) problem. We intro-

duced the budgeted influence maximization (BIM) problem, which is a generalization

of the IM problem. We first showed that the problem is NP-Hard and a naively greedy

approach does not work like on the IM problem. Then we proposed our improved

greedy algorithm and proved that it provides a (1 − 1/
√
e)-approximation for the

BIM problem. Furthermore, we presented several techniques that can improve the

seed selection and expedite the spread computation process. Combining everything

together, we have a general framework in which many different belief-propagation

algorithms and DAG models can be plugged-in to solve the BIM problem. Experi-

ment results on both real-world social networks and synthetically generated networks

showed the superior performance of the proposed solutions over state-of-the-art al-

gorithms.

5.2 Future work

Next, we discuss several future research directions. Most of these problems arise

during the course of research, but are yet to be investigated due to time limitation.

135

Practical implementation of bICA in wireless monitoring systems: In Sec-

tion 3.6.1, we discussed the optimal solution for sniffer-channel assignment given fixed

sniffer locations. Implementation of such a system should incorporate the learning

procedure proposed in [12]. The time granularity of channel assignment should be

sufficiently long to amortize the cost due to channel switching. To allow a consis-

tent view of the channel at different locations, clock synchronization across multiple

sniffers is needed. While clock synchronization can be performed offline using the

frame traces collected [32], the accuracy of clock synchronization directly affects the

inference accuracy of the ICA based methods in the sniffer-centric model. The choice

of the slot of the binary measurements shall be made that takes into account the

persistence of user transmission activities.

The channel assignment in its current form is computed in a centralized manner.

This is reasonable since the sniffers are likely operated by a single administrative

domain. An alternative distributed implementation has been considered in [13] for

the user-centric model based on the annealed Gibbs sampler. However, parameters

of the distributed algorithm need to be properly tuned for fast convergence (and

hence less message exchanges). The sniffer-centric model is not immediately amiable

to distributed implementation. It is therefore interesting to see if we can combine all

existing components into a complete functional system.

bICA algorithm improvement: Even though bICA has been shown to perform

very well on various networking problem, its complexity is still high with regard of

the network size. Direct application of bICA in its current form to solve inference

problems on large-scale networks is not feasible. We present in [91] the technique of

136

grouping similar rows in the mixing matrix G, which was shown to greatly improve

the efficiency of bICA. However, this technique can not be applied to other appli-

cations since rows on the mixing matrix are different in general. Another direction

is modify bICA so as to easily incorporate a priori knowledge of the structure or

active probabilities of latent variables. Examples of a priori knowledge of structural

properties include small-diameter, scale-free, and community structure on complex

networks. Furthermore, it is of intent to apply bICA on dynamic networks, where

the set of nodes and edges “slightly” change after each time slot.

Application of the FI model on Twitter: In this dissertation, we made several

discoveries on Twitter, including a new information diffusion model (FI). For the

next step, we plan to apply the FI model to infer the edge propagation probabilities

and solve the BIM problem on Twitter. We also believe that the following factors

strongly affect the spread probability between two Twitter nodes, which warrants

more investigation:

• Mutual topical interest: If two nodes share many topical interest, a message

from one node will have more chance to be retweeted by the other. Topical

interest of a user can be extracted from the content of its tweets. Such technique

has been proposed in literature [114].

• Tweet content quality: A tweet with high quality and interesting contents

generally has more chance to spread on the network. However, assessing the

content quality is an open problem by itself. A naive solution would be to

count the amount of favorites a tweet can get (similar to “like” on Facebook).

137

• Past activities: Two users with close offline relationship tend to stimulate

online interactions and information spread. Although the offline relationship

is hard to obtain, it can be inferred from online interactions [108, 53].

We yet to verify the correctness of those findings and how much impact they

have on edge propagation probability. We first need to collect more data to conduct

the study with high confidence. We believe that the new study will reveal more

interesting findings that are very useful in the edge probability inference problem

and many other application domains.

138

Appendix A

List of Publications and

Manuscripts

A portion of the research presented in this thesis has appeared (or will appear)

in refereed conferences and journals or currently in preparation. Here, we list the

relevant publications and manuscripts associated with each topics

Inference on communication networks

• Huy Nguyen and R. Zheng, “A Binary Independent Component Analysis Ap-

proach to Tree Topology Inference”, IEEE Transactions on Signal Processing

(TSP), accepted for publication.

139

• Huy Nguyen, G. Scalosub, and R. Zheng, “On Quality of Monitoring for Multi-

channel Wireless Infrastructure Networks”, IEEE Transactions on Mobile Com-

puting (TMC), accepted for publication.

• Huy Nguyen, G. Zheng, Z. Han, and R. Zheng, “Binary Inference for Primary

User Separation in Cognitive Radio Networks”, In IEEE Transactions on Wire-

less Communications (TWC), accepted for publication.

• Huy Nguyen, and R. Zheng, “Binary Independent Component Analysis with

OR Mixtures”, In IEEE Transactions on Signal Processing (TSP), Vol 59,

Issue 7, July 2011.

• Huy Nguyen, N. Nguyen, Z. Han and R. Zheng, “Binary Blind Identification

of Wireless Transmission Technologies for Wide-band Spectrum Monitoring”,

In Proc. of the 54th IEEE Global Communication Conf. (GLOBECOM),

December 5-9, Houston, Texas, USA, 2011.

• A. Chhetri, Huy Nguyen, G. Scalosub, and R. Zheng, “On Quality of Monitor-

ing for Multi-channel Wireless Infrastructure Networks”, In Proc. of the 11th

ACM Int. Symp. on Mobile Ad Hoc Networking and Computing (MOBIHOC),

September 20-24, Chicago, Illinois, USA, 2010.

• Huy Nguyen, R. Zheng, and Z. Han, “Binary is Good: A Binary Inference

Framework for Primary User Separation in Cognitive Radio Networks”, In

Proc. of the 5th Int. Conf. on Cog. Radio Oriented Wireless Networks and

Comm. (CrownCom), June 9-11, Cannes, France, 2010.

140

Inference on social networks

• Huy Nguyen and R. Zheng, “On Budgeted Influence Maximization in Social

Networks”, IEEE Journal on Selected Areas in Communications - Special Series

on Network Science (JSAC NS), accepted for publication.

• Huy Nguyen, and R. Zheng, “Influence Spread in Large-Scale Social Networks

– A Belief Propagation Approach”, In Proc. of the 23rd European Conf.

on Machine Learning and Principles and Practice of Knowledge Discovery in

Databases (ECML-PKDD), September 24-28, Bristol, UK, 2012.

• Huy Nguyen and R. Zheng, “Social Influence Score: Towards a Standardized

Influence Measurement”, In preparation.

Miscellaneous

• Y. Huang, M. Esmalifalak, Huy Nguyen, R. Zheng, Z. Han, H. Li, and L. Song,

“Bad Data Injection in Smart Grid: Attack and Defense Mechanisms”, In IEEE

Communications Magazine (ComMag), Vol 51, Issue 1, January 2013.

• M. Esmalifalak, Huy Nguyen, R. Zheng, and Z. Han, “Stealth False Data In-

jection using Independent Component Analysis in Smart Grid”, In Proc. of the

2nd IEEE Int. Conf. on Smart Grid Communications (SmartGridComm),

October 17-20, Brussels, Belgium, 2011.

• M. Esmalifalak, Huy Nguyen, R. Zheng, L. Xie, L. Song, and Z. Han, “Stealthy

Attack Against Electricity Market Using Independent Component Analysis”,

Submitted to IEEE Transactions on Smart Grid.

141

Bibliography

[1] Boost c++ libraries, http://http://www.boost.org/.

[2] Clean tweets, https://addons.mozilla.org/en-us/firefox/addon/clean-tweets/.

[3] Community resource for archiving wireless data at dartmouth,
http://crawdad.cs.dartmouth.edu/.

[4] Klout, http://klout.com/home.

[5] The official klout blog, http://corp.klout.com/blog/.

[6] Peerindex, http://www.peerindex.com.

[7] Root-mean-square deviation, http://en.wikipedia.org/wiki/root-mean-square-
deviation.

[8] Social computing data repository at asu,
http://socialcomputing.asu.edu/pages/datasets.

[9] Stanford large network dataset collection, http://snap.stanford.edu/data/.

[10] Traceroute, http://www.caida.org/tools/.

[11] Twitter kills the api whitelist: What it means for developers and innovation,
http://readwrite.com/2011/02/11/twitter kills the api whitelist what it means for.

[12] P. Arora, C. Szepesvri, and R. Zheng. Sequential learning for optimal mon-
itoring of multi-channel wireless networks. In INFOCOM, pages 1152–1160.
IEEE, 2011.

[13] P. Arora, N. Xia, and R. Zheng. A gibbs sampler approach for optimal dis-
tributed monitoring of multi-channel wireless networks. In Global Telecommu-
nications Conference (GLOBECOM 2011), 2011 IEEE, pages 1–6, 2011.

142

[14] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone’s an
influencer: quantifying influence on twitter. In Proceedings of the Fourth ACM
International Conference on Web Search and Data Mining, WSDM ’11, pages
65–74, New York, NY, USA, 2011. ACM.

[15] M. Barthélemy and N. L. A. Amaral. Small-world networks: Evidence for a
crossover picture. Physical Review Letters, 82:3180–3183, 1999.

[16] R. Belohlavek and V. Vychodil. Discovery of optimal factors in binary data
via a novel method of matrix decomposition. J. Comput. Syst. Sci., 76:3–20,
February 2010.

[17] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. Comput. Netw. ISDN Syst., 30:107–117, April 1998.

[18] B. Businessweek. Facebook: The making of 1 billion users,
http://www.businessweek.com/articles/2012-10-04/facebook-the-making-
of-1-billion-users, 2012.

[19] R. Cáceres, N. Duffield, J. Horowitz, F. L. Presti, and D. Towsley. Loss-based
inference of multicast network topology. In Proceedings 1999 IEEE Conference
on Decision and Control, pages 3065–3070, 1999.

[20] R. Cáceres, N. G. Duffield, J. Horowitz, F. L. Presti, and D. Towsley. Statistical
inference of internal network loss and topology. SIGMETRICS Perform. Eval.
Rev., 27(3):5–6, 1999.

[21] J. Cao, A. Chen, and P. Lee. Modeling time correlation in passive network loss
tomography. In Dependable Systems Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on, pages 550 –561, june 2011.

[22] J. Cao, S. V. Wiel, B. Yu, and Z. Zhu. A scalable method for estimating
network traffic matrices from link counts. Technical report, Bell Labs, 2000.

[23] K. M. Carley, J. Diesner, J. Reminga, and M. Tsvetovat. Toward an interop-
erable dynamic network analysis toolkit. Decis. Support Syst., 43:1324–1347,
August 2007.

[24] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network tomography:
recent developments. Statistical Science, 19:499–517, 2004.

[25] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring user
influence in twitter: The million follower fallacy. In ICWSM 10: Proceedings
of International AAAI Conference on Weblogs and Social, pages 121–130, 2010.

143

[26] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. Epidemic
thresholds in real networks. ACM Trans. Inf. Syst. Secur., 10(4):1:1–1:26, Jan.
2008.

[27] C. Chekuri and A. Kumar. Maximum coverage problem with group budget
constraints and applications. In Proceedings of the 7th APPROX, pages 72–83,
2004.

[28] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for preva-
lent viral marketing in large-scale social networks. In Proceedings of the KDD
’10, pages 1029–1038, New York, NY, USA, 2010. ACM.

[29] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social
networks. In Proceedings of the KDD ’09, pages 199–208, New York, NY, USA,
2009. ACM.

[30] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social
networks under the linear threshold model. In Proceedings of the 2010 IEEE
ICDM ’10, pages 88–97, 2010.

[31] A. Chhetri, H. Nguyen, G. Scalosub, and R. Zheng. On quality of moni-
toring for multi-channel wireless infrastructure networks. In Proceedings of
the Eleventh ACM International Symposium on Mobile ad-hoc Networking and
Computing, MobiHoc ’10, pages 111–120, New York, NY, USA, 2010. ACM.

[32] A. Chhetri and R. Zheng. WiserAnalyzer: A passive monitoring framework
for wlans. In Proceedings of the 5th International Conference on Mobile ad-hoc
and Sensor Networks (MSN), 2009.

[33] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies
in networks. In Proceedings of the 2006 Conference on Statistical Network
Analysis, ICML’06, pages 1–13, Berlin, Heidelberg, 2007. Springer-Verlag.

[34] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in
empirical data. SIAM Rev., 51(4):661–703, Nov. 2009.

[35] R. Cohen and S. Havlin. Scale-free networks are ultrasmall. Phys. Rev. Lett.,
90:058701:1–4, Feb 2003.

[36] R. Cohen, S. Havlin, and D. ben Avraham. Handbook of Graphs and Networks,
chapter Structural Properties of Scale-free Networks, pages 85–110. Wiley-
VCH Verlag GmbH & Co. KGaA, 2005.

144

[37] F. W. Computer and F. Wood. A non-parametric bayesian method for inferring
hidden causes. In Proceedings of the Twenty-Second Conference on Uncertainty
in Artificial Intelligence (UAI), pages 536–543. AUAI Press, 2006.

[38] K. Diamantaras and T. Papadimitriou. Blind deconvolution of multi-input
single-output systems with binary sources. Signal Processing, IEEE Transac-
tions on, 54(10):3720 –3731, October 2006.

[39] L. Dignan. Dynamic graph generator, http://digg.cs.tufts.edu/, 2006.

[40] P. Domingos and M. Richardson. Mining the network value of customers. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’01, pages 57–66, New York, NY, USA,
2001. ACM.

[41] Z.-B. Dong, G.-J. Song, K.-Q. Xie, and J.-Y. Wang. An experimental study
of large-scale mobile social network. In Proceedings of the 18th International
Conference on World Wide Web, WWW ’09, pages 1175–1176, New York, NY,
USA, 2009. ACM.

[42] N. Duffield. Network tomography of binary network performance character-
istics. Information Theory, IEEE Transactions on, 52(12):5373 –5388, dec.
2006.

[43] N. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Multicast topology
inference from measured end-to-end loss. Information Theory, IEEE Transac-
tions on, 48(1):26 –45, jan 2002.

[44] N. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Multicast topology
inference from measured end-to-end loss. Information Theory, IEEE Transac-
tions on, 48(1):26–45, 2002.

[45] N. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Inferring link loss using
striped unicast probes. In INFOCOM 2001. Twentieth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 2, pages 915 –923 vol.2, 2001.

[46] N. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Network loss tomogra-
phy using striped unicast probes. Networking, IEEE/ACM Transactions on,
14(4):697 –710, Aug. 2006.

[47] Federal Communications Commission. Spectrum policy task force report. Re-
port ET Docket no. 02-135, Nov. 2002.

145

[48] L. Freeman. Centrality in social networks conceptual clarification. Social Net-
works, 1(3):215–239, 1979.

[49] B. J. Frey, R. Koetter, and N. Petrovic. Neural Information Processing Sys-
tems, volume 14, chapter Very loopy belief propagation for unwrapping phase
images, pages 737–743. MIT Press, 2001.

[50] A. A. Frolov, D. Húsek, I. P. Muraviev, and P. Y. Polyakov. Boolean factor
analysis by attractor neural network. IEEE Transactions on Neural Networks,
18(3):698–707, 2007.

[51] D. Ghita, H. Nguyen, M. Kurant, A. Argyraki, and P. Thiran. Netscope: Prac-
tical Network Loss Tomography. In Proceedings of the 29th IEEE Conference
on Computer Communications (INFOCOM), pages 1262–1270, 2010.

[52] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
2002.

[53] J. Golbeck and J. Hendler. Inferring binary trust relationships in web-based
social networks. ACM Trans. Internet Technol., 6(4):497–529, Nov. 2006.

[54] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex
systems look at the underlying process of word-of-mouth. Marketing Letters,
12:211–223, 2001.

[55] M. Gomez Rodriguez, J. Leskovec, and A. Krause. Inferring networks of dif-
fusion and influence. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 1019–
1028, New York, NY, USA, 2010. ACM.

[56] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence probabilities
in social networks. In Proceedings of the Third ACM International Conference
on Web Search and Data Mining, WSDM ’10, pages 241–250, New York, NY,
USA, 2010. ACM.

[57] M. Granovetter. Threshold Models of Collective Behavior. American Journal
of Sociology, 83(6):1420–1443, 1978.

[58] T. Griffiths and Z. Ghahramani. Infinite latent feature models and the indian
buffet process. SciencesNew York, 18(GCNU TR 2005-001):475–500, 2005.

[59] I. Griva, S. G. Nash, and A. Sofer. Linear and Nonlinear Optimization, Second
Edition. Society for Industrial Mathematics, 2nd edition, December 2008.

146

[60] Y. Gu, G. Jiang, V. Singh, and Y. Zhang. Optimal probing for unicast network
delay tomography. In INFOCOM, 2010 Proceedings IEEE, pages 1–9, March
2010.

[61] M. Gupte, P. Shankar, J. Li, S. Muthukrishnan, and L. Iftode. Finding hierar-
chy in directed online social networks. In Proceedings of the 20th International
Conference on World Wide Web, WWW ’11, pages 557–566, New York, NY,
USA, 2011. ACM.

[62] S. Haykin. Cognitive radio: brain-empowered wireless communications. IEEE
JSAC, 23:201–220, Feb. 2005.

[63] D. Húsek, P. Moravec, V. Snásel, A. A. Frolov, H. Rezanková, and P. Polyakov.
Comparison of neural network boolean factor analysis method with some other
dimension reduction methods on bars problem. In International Conference on
Pattern Recognition and Machine Intelligence, pages 235–243, 2007.

[64] D. Húsek, H. Rezanková, V. Snásel, A. A. Frolov, and P. Polyakov. Neu-
ral network nonlinear factor analysis of high dimensional binary signals. In
The International Conference on Signal-Image Technology and Internet-based
Systems, pages 86–89, 2005.

[65] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and
applications. Neural Netw., 13(4-5):411–430, 2000.

[66] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding
microblogging usage and communities. In Proceedings of the 9th WebKDD and
1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis,
WebKDD/SNA-KDD ’07, pages 56–65, New York, NY, USA, 2007. ACM.

[67] D. Jin, B. Yang, C. Baquero, D. Liu, D. He, and J. Liu. A markov ran-
dom walk under constraint for discovering overlapping communities in com-
plex networks. Journal of Statistical Mechanics: Theory and Experiment,
2011(05):P05031+22, 2011.

[68] JobStock. Social media statistics 2013 facebook vs twitter vs pinterest,
http://www.jobstock.com/blog/social-media-statistics-2013/, 2012.

[69] A. Kabn and E. Bingham. Factorisation and denoising of 0-1 data: a variational
approach. Neurocomputing, special, 71(10-12), 2009.

147

[70] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the 9th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’03, pages
137–146, New York, NY, USA, 2003. ACM.

[71] D. Kempe, J. Kleinberg, and E. Tardos. Influential nodes in a diffusion model
for social networks. In Proceedings of the 32nd International Conference on
Automata, Languages and Programming, ICALP’05, pages 1127–1138, Berlin,
Heidelberg, 2005. Springer-Verlag.

[72] S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum coverage problem.
in Infor. Proc. Letters, 70(1):39 – 45, 1999.

[73] M. Kimura and K. Saito. Tractable models for information diffusion in social
networks. In Knowledge Discovery in Databases: PKDD 2006, volume 4213,
pages 259–271. 2006.

[74] A. Krause and C. Guestrin. A note on the budgeted maximization of sub-
modular functions. Technical Report CMU-CALD-05-103, Carnegie Mellon
University - School of Computer Science, June 2005.

[75] B. Krishnamurthy, P. Gill, and M. Arlitt. A few chirps about twitter. In
Proceedings of the 1st Workshop on Online Social Networks, WOSN ’08, pages
19–24, New York, NY, USA, 2008. ACM.

[76] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or
a news media? In Proceedings of the 19th International Conference on World
Wide Web, WWW ’10, pages 591–600, New York, NY, USA, 2010. ACM.

[77] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of the
Royal Statistical Society. Series B (Methodological), 50(2):157–224, 1988.

[78] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance. Cost-effective outbreak detection in networks. In Proceedings of
the 13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’07, pages 420–429, New York, NY, USA, 2007. ACM.

[79] K. Lewis, J. Kaufman, M. Gonzalez, A. Wimmer, and N. Christakis. Tastes,
ties, and time: A new social network dataset using facebook.com. Social Net-
works, 30(4):330–342, 2008.

148

[80] Y. Li, A. Cichocki, and L. Zhang. Blind separation and extraction of bi-
nary sources. IEICE Trans. Fund. Electron. Commun. Comput. Sci., E86-
A(3):580589, 2003.

[81] G. Liang and B. Yu. Maximum pseudo likelihood estimation in network to-
mography. Signal Processing, IEEE Transactions on, 51(8):2043–2053, 2003.

[82] A. S. Maiya and T. Y. Berger-Wolf. Inferring the maximum likelihood hierarchy
in social networks. In Proceedings of the 2009 International Conference on
Computational Science and Engineering - Volume 04, CSE ’09, pages 245–250,
Washington, DC, USA, 2009. IEEE Computer Society.

[83] Y. Mao, H. Jamjoom, S. Tao, and J. M. Smith. Networkmd: topology inference
and failure diagnosis in the last mile. In IMC ’07: Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, pages 189–202, New York,
NY, USA, 2007. ACM.

[84] R. McEliece, D. MacKay, and J.-F. Cheng. Turbo decoding as an instance of
pearl’s belief propagation algorithm. JSAC, 16(2):140 –152, Feb. 1998.

[85] M. McPherson, L. S. Lovin, and J. M. Cook. Birds of a feather: Homophily in
social networks. Annual Review of Sociology, 27(1):415–444, 2001.

[86] B. Meeder, B. Karrer, A. Sayedi, R. Ravi, C. Borgs, and J. Chayes. We know
who you followed last summer: inferring social link creation times in twitter. In
Proceedings of the 20th International Conference on World Wide Web, WWW
’11, pages 517–526, New York, NY, USA, 2011. ACM.

[87] S. Milgram. The small world problem. Psychology Today, 1(1):60–67, 1967.

[88] J. Mitola and G. Q. Maguire. Cognitive radio: Making software radios more
personal. IEEE Pers. Commun., 6:13–18, Aug. 1999.

[89] J. M. Mooij. libDAI: A free and open source C++ library for discrete approx-
imate inference in graphical models. Journal of Machine Learning Research,
11:2169–2173, Aug. 2010.

[90] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for
approximate inference: An empirical study. In Proceedings of Uncertainty in
AI, pages 467–475, 1999.

149

[91] H. Nguyen, N. Nguyen, G. Zheng, Z. Han, and R. Zheng. Binary blind iden-
tification of wireless transmission technologies for wide-band spectrum moni-
toring. In Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE, pages 1–6, 2011.

[92] H. Nguyen and P. Thiran. The boolean solution to the congested ip link location
problem: Theory and practice. In INFOCOM 2007. 26th IEEE International
Conference on Computer Communications. IEEE, pages 2117 –2125, may 2007.

[93] H. Nguyen, G. Zheng, Z. Han, and R. Zheng. Binary inference for primary
user separation in cognitive radio networks. IEEE Transactions of Wireless
Communications. to be appeared.

[94] H. Nguyen and R. Zheng. A binary independent component analysis approach
to tree topology inference. IEEE Transactions of Signal Processing. to be
appeared.

[95] H. X. Nguyen and P. Thiran. Network loss inference with second order statistics
of end-to-end flows. In IMC ’07: Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, pages 227–240, New York, NY, USA,
2007. ACM.

[96] N. Pathak, A. Banerjee, and J. Srivastava. A generalized linear threshold model
for multiple cascades. In Data Mining (ICDM), 2010 IEEE 10th International
Conference on, pages 965–970, 2010.

[97] B. A. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos. Virus
propagation on time-varying networks: theory and immunization algorithms.
In Proceedings of the 2010 ECML PKDD: Part III, pages 99–114, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[98] M. Rabbat, M. Coates, and R. Nowak. Multiple-source internet tomography.
Selected Areas in Communications, IEEE Journal on, 24(12):2221–2234, Dec.
2006.

[99] M. Rabbat, R. Nowak, and M. Coates. Multiple source, multiple destination
network tomography. In INFOCOM 2004. Twenty-third Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, volume 3, pages
1628–1639, March 2004.

[100] S. Ratnasamy and S. McCanne. Inference of multicast routing trees and bot-
tleneck bandwidths using end-to-end measurements. In INFOCOM ’99. Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, volume 1, pages 353–360, 1999.

150

[101] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral
marketing. In Proceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’02, pages 61–70, New York,
NY, USA, 2002. ACM.

[102] R. Rowe, G. Creamer, S. Hershkop, and S. J. Stolfo. Automated social hi-
erarchy detection through email network analysis. In Proceedings of the 9th
WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Net-
work Analysis, WebKDD/SNA-KDD ’07, pages 109–117, New York, NY, USA,
2007. ACM.

[103] E. Sadikov, M. Medina, J. Leskovec, and H. Garcia-Molina. Correcting for
missing data in information cascades. In Proceedings of the 4th ACM Interna-
tional Conference on Web Search and Data Mining, WSDM ’11, pages 55–64,
New York, NY, USA, 2011. ACM.

[104] K. Saito, R. Nakano, and M. Kimura. Prediction of information diffusion prob-
abilities for independent cascade model. In I. Lovrek, R. Howlett, and L. Jain,
editors, Knowledge-based Intelligent Information and Engineering Systems, vol-
ume 5179 of Lecture Notes in Computer Science, pages 67–75. Springer Berlin
Heidelberg, 2008.

[105] G. R. M. A. A. L. Sales-Pardo, M. Extracting the hierarchical organization of
complex systems. Proc. Natl. Acad. Sci. U. S. A., 104:15224–15229, Sep. 2007.

[106] Y. Singer. How to win friends and influence people, truthfully: influence max-
imization mechanisms for social networks. In Proceedings of the 5th ACM
International Conference on Web Search and Data Mining, WSDM ’12, pages
733–742, New York, NY, USA, 2012. ACM.

[107] A. P. Streich, M. Frank, D. Basin, and J. M. Buhmann. Multi-assignment
clustering for boolean data. In ICML ’09: Proceedings of the 26th Annual
International Conference on Machine Learning, pages 969–976, New York, NY,
USA, 2009. ACM.

[108] W. Tang, H. Zhuang, and J. Tang. Learning to infer social ties in large net-
works. In Proceedings of the 2011 European Conference on Machine Learning
and Knowledge Discovery in Databases - Volume Part III, ECML PKDD’11,
pages 381–397, Berlin, Heidelberg, 2011. Springer-Verlag.

[109] H. Tian and H. Shen. Multicast-based inference for topology and network-
internal loss performance from end-to-end measurements. Computer Commu-
nications, 29(11):1936 – 1947, 2006.

151

[110] H. Tong, B. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, and
D. Chau. On the vulnerability of large graphs. In IEEE 10th ICDM, pages
1091 –1096, Dec. 2010.

[111] Twitter. Twitter 2012 trends, https://2012.twitter.com/en/trends.html, 2012.

[112] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

[113] T. Šingliar and M. Hauskrecht. Noisy-or component analysis and its application
to link analysis. J. Mach. Learn. Res., 7:2189–2213, December 2006.

[114] J. Weng, E.-P. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive
influential twitterers. In Proceedings of the 3rd ACM International Conference
on Web Search and Data Mining, WSDM ’10, pages 261–270, New York, NY,
USA, 2010. ACM.

[115] I. Wiki. Social network generation, http://www.infovis-
wiki.net/index.php/social network generation.

[116] J. Yang and J. Leskovec. Modeling information diffusion in implicit networks.
In Proceedings of the 2010 IEEE International Conference on Data Mining,
ICDM ’10, pages 599–608, Washington, DC, USA, 2010. IEEE Computer So-
ciety.

[117] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Exploring artificial intelligence in
the new millennium, chapter Understanding belief propagation and its gener-
alizations, pages 239–269. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

[118] A. Yeredor. Ica in boolean xor mixtures. In Proceedings of the 7th Interna-
tional Conference on Independent Component Analysis and Signal Separation,
ICA’07, pages 827–835, Berlin, Heidelberg, 2007. Springer-Verlag.

[119] B. Yu, J. Cao, D. Davis, and S. Vander Wiel. Time-varying network tomog-
raphy: router link data. In Information Theory, 2000. Proceedings. IEEE
International Symposium on, pages 79–89, 2000.

[120] D. Zhao and M. B. Rosson. How and why people twitter: the role that micro-
blogging plays in informal communication at work. In Proceedings of the ACM
2009 International Conference on Supporting Group Work, GROUP ’09, pages
243–252, New York, NY, USA, 2009. ACM.

152

