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Abstract 

Many non-destructive damage detection problems are presented with the 

challenge where limited sensor sets allow the measurement of fewer degrees of freedom 

than the analytical model. This study utilized damage residual expansion methods to 

determine the overall structural damage locations with reduced sensor sets. The new 

methods presented were the Modified Method of Expanded Dynamic Residuals and the 

Dot Product Damage Residual Expansion Method. Ritz vectors were also used with 

various sensor placement techniques to modify the sensor sets and focus the damage 

detection capabilities towards elements of interest. The results showed that the modified 

damage residual expansion methods were able to locate the damaged elements, while also 

simplifying the selection process, by employing the dot product method and the 

elemental disassembly. Additionally, the sensor set variations effectively focused the 

damage detection results towards elements of interest by modifying the Ritz vector 

loadings.  
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1 Introduction 

Structural damage detection is a valuable tool for studying the integrity of 

structures that undergo regular fatigue such as buildings, bridges, vehicles, and aircrafts. 

Non-destructive damage detection methods have received attention for their simplicity 

and autonomous monitoring capabilities. Detecting damage would allow repairs or 

replacements to be made when required rather than relying on time-based maintenance 

schedules.  

Most damage detection methods approach structural damage detection as a finite 

element model (FEM) updating problem, by either updating a structural stiffness matrix 

or by physical parameter updating. Without a priori knowledge of the damage location, 

physical parameter updates require manual interaction and reliance on engineering 

experience. Damage detection of large scale structures utilizing techniques that examine 

changes in the dynamic properties or response of structures have been areas of extensive 

research and reviews [1]-[3]. 

Frequency based methods rely on the fact that changes in the structural properties 

cause variations in the vibration frequencies, this observation became the motivation for 

using modal methods for damage identification and health monitoring. The earliest 

known journal article to propose damage detection via vibration measurements was by 

Lifshitz and Rotem, where the change in dynamic moduli was examined for damage in 

particle filled elastomers [4]. The limitation of frequency based approaches is the fact that 

natural frequencies are not very sensitive to damage, requiring either very precise 

measurements or large levels of damage, which was a point demonstrated by Farrar et al. 

through tests conducted on the I-40 bridge [5].  



2 
 

Measuring mode shape changes is another widely accepted approach. One of the 

earliest and most influential studies utilizing mode shapes to locate structural damage 

without prior finite element analysis used the modal assurance criteria (MAC) to correlate 

modes from an undamaged Orbiter space shuttle body flap with the modes after it had 

been exposed to acoustic loading [6]. The study was also important since it was likely the 

first to locate damage without the use of a prior FEM. The change in the MAC across the 

modal partitions was used to localize the structural damage.  

A number of other techniques have been developed to locate structural damage as 

discussed in various literature reviews [1]-[3]. Mode shape curvature methods involve 

using the derivatives of mode shapes. The dynamically measured flexibility matrix, 

defined as the inverse of the stiffness matrix, has been used to estimate changes in the 

static behavior of structures. Nonlinear methods attempt to account for damage that can 

cause nonlinearities in beam structures, such as cracks, which may not be detected using 

more traditional methods.  

Another suggested damage identification approach involves the modification of 

structural model matrices such as mass, stiffness, and damping. In these methods, 

updated matrices are compared to the original matrices in order to quantify the location 

and extent of damage. The updated matrices are solved by forming a constrained 

optimization problem based on the structural equations of motion, the nominal model, 

and the measured data. Optimal matrix update methods use closed form solutions to 

compute the damaged matrices. One suggested approach to the optimal matrix update 

problem involved the minimization of the Forbenius norm of the parameter matrix 
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perturbations [7]-[11]. These approaches were initially developed for model correlation 

where small changes are desired through a broad range of structural members.  

Using the observation that damage tends to be of large extent and localized in a 

few structural members, an approach based on the minimization of the rank of the 

perturbation matrix was established. The basic Minimum Rank Perturbation Theory 

(MRPT) algorithm was developed by Kaouk & Zimmerman [12] [13], and has been 

extensively improved and published by the authors. The update to each property matrix is 

of minimum rank, and is equal to the number of basis vectors that the modified model is 

to match. The minimum rank constraint is consistent with the matrix changes in a FEM 

needed to represent many situations of structural damage. The advantage of the MRPT is 

that it is a computationally attractive algorithm that decouples the damage location and 

extent problems. Although the MRPT was originally developed using mode shapes, Cao 

and Zimmerman extended the theory for use with Ritz vectors [14].  

Load-dependent Ritz vectors were proposed by Wilson [15] as an alternative set 

of basis vectors to describe the dynamic response of a structure in place of mode shapes. 

Ritz vectors have since been used in areas of transient response prediction [16], model 

reduction [17], and component mode synthesis [18]. Sohn and Law used Ritz vectors for 

damage detection in a bridge structure [19], and also applied Ritz vectors to a Bayesian 

probabilistic damage detection method [20]. The first Ritz vector is the static deformation 

of the structure due to a particular applied load, and the remaining orthogonal Ritz 

vectors are calculated using inverse iteration and the Gram-Schmidt orthogonalization.  

Ritz vectors have a number of advantages over traditional mode shapes, (1) Ritz 

vectors automatically include the static correction term. (2) Ritz vectors are 
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computationally less expensive than eigenvectors. (3) All of the Ritz vectors generated by 

a load will be excited by that load. (4) Fewer Ritz vectors than mode shapes are typically 

required to achieve the same level of accuracy in transient response and model reduction. 

(5) Ritz vectors may be less sensitive to noise since the Ritz vector extraction process 

depends on the solution of linear algebraic equations as opposed to an eigensolution for 

mode shapes. Ritz vectors were also found to have better damage diagnosis than 

measured mode shapes by Sohn and Law [19].  

The extraction of Ritz vectors from dynamic testing data by Cao and Zimmerman 

[21] was an important step in the development of Ritz vector application. The extraction 

algorithm requires the identification of a state-space system realization using the 

Eigensystem Realization Algorithm (ERA) developed by Juang and Pappa [22]. Sohn and 

Law later presented an alternative method of extraction using a complete flexibility 

matrix constructed from measured vibration test data [23]. Boxoen and Zimmerman [24] 

expanded on [21] by introducing a method to extract test data from damped structures. 

Taylor and Zimmerman [25] also presented an improved Ritz vector extraction procedure 

that was able to extract the non-orthogonalized vectors required for some damage 

detection methods, such as MRPT. 

Most damage detection problems, including the MRPT, assume a full set of 

measurements to accurately locate damage in a system. A common issue that affects all 

damage detection methods when a full measurement set is unavailable is the incomplete 

measurement problem, which consists of measuring: (i) fewer basis vectors than that of 

the analytical model, and (ii) fewer degrees-of-freedom (DOFs) than that of the analytical 

model. The first part is due to the inability to excite the structure above a certain 
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frequency and the corruption of global modes by local modes of vibration, while the 

second part occurs due to the finite number of sensors that can be used. 

The approaches used to address the second part of the problem are either to 

reduce the analytical model to the test DOFs or to expand the measured modal data to all 

DOFs included in the analytical model. Both techniques were evaluated by Zimmerman 

et al. in an attempt to enhance structural health monitoring capability [26]. A problem 

observed with model reduction is that it reduces accuracy when locating damage, causing 

the localized changes in the full model to appear “smeared” throughout the reduced 

model. On the other hand, mode shape expansion will lead to false positive damage 

indications due to errors in the expansion process. 

The Method of Expanded Dynamic Residuals (MEDR) was devised by 

Zimmerman et al. to circumvent the second part of the incomplete measurement problem 

by using structural connectivity information to determine full model damage [27]. MEDR 

extends the theory of MRPT damage residuals with the concept of stiffness matrix 

disassembly [28] to arrive at an expanded damage residual vector using a limited number 

of measurement points. The expanded damage residual is used to determine the structural 

location of damage, which significantly simplifies the task of determining the damage 

extent. Taylor and Zimmerman extended MEDR to include the application of Ritz 

vectors and concluded that Ritz vectors find more consistently correct results compared 

to mode shapes [29]. 

When faced with the second part of the incomplete measurement problem in a 

testing environment, a limited number of sensors and actuators must be placed in a 

configuration to obtain the most important dynamic information. Since sensor and 
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actuator locations strongly influence structural testing, it is important that the selected 

locations be optimized. Pre-test planning methods typically utilize information obtained 

from a baseline FEM to determine optimal sensor placement. Comparative studies on a 

number of the methods have been performed to evaluate the effectiveness of each 

technique [30]-[32]. Yap and Zimmerman put sensor placement methods into two 

categories, first the more commonly used methods that rely on sensor placement metrics 

(SPMs), and second the more elaborate methods referred to as sensor elimination 

algorithms (SEAs) [32].  

Two SPMs of interest include Eigenvector Product (EVP) and Kinetic Energy 

(KE) Product presented by Larson et al. [31]. The EVP uses modal products from the 

reduced FEM eigenvectors to identify potential sensor and actuator locations. The 

eigenvector components over the desired mode range are multiplied and candidate 

locations are chosen based on the idea that maximum values contain high displacement 

while zero values are excluded as they represent node points DOFs. The KE product 

utilizes the modal kinetic energy that is obtained from the FEM mass matrix and target 

modes to place sensors at points of maximum kinetic energy. Nodal points are also 

precluded from this method, as there will be no kinetic energy at those locations. 

Another commonly used method is the QR decomposition, which generates the 

most linearly independent set of sensor DOFs using the same number of sensors as the 

number of modes [33] [34]. The limitation with QR decomposition is that the number of 

sensors placed cannot be greater than the number of target basis vectors, which is why it 

was not considered in this study. In many cases, QR decomposition was used in 
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conjunction with SPMs to compromise between observability and linear independence 

[32]. 

SEAs are defined as a class of more elaborate sensor placement techniques that 

reduce the sensors from an initial set of candidate DOFs to the final sensor set within a 

number of iterations. One such technique is known as Effective Independence (EI), which 

Kammer presented as a method used to select sensor locations from a large candidate set 

[30]. The EI method attempts to maximize the trace and determinant of the Fisher 

information matrix. The reduced sensor set is obtained by removing the sensors that 

contribute the least to the linear independence of the target modes. 

Khoury and Zimmerman extended the EVP, KE, and EI methods for use with Ritz 

vectors [35]. The study showed that the methods could be used to locate sensors for Ritz 

vectors. The key difference is that sensor sets vary when the loading on the structure is 

changed due to the modified Ritz vectors. A number of sensor sets were also found to 

locate both mode shapes and Ritz vectors simultaneously with reasonable accuracy. Since 

the sensor sets change with different load dependent Ritz vectors, the force direction and 

location could be used to optimize the sensor set that would best monitor specific 

locations of a structure. 

The present research examined methods that would mitigate the 2nd part of the 

incomplete measurement problem. Two dynamic residual expansion algorithms were 

developed as modifications to the MEDR. The first is the Modified Method of Expanded 

Dynamic Residuals (MMEDR) where the matrix disassembly was replaced by an 

elemental disassembly in an attempt to combine and reduce the number of columns 

required during the residual selection process. The second method is the Dot Product 
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Damage Residual Expansion Method (DPDREM) which again uses the elemental 

disassembly method and simplifies the selection process by replacing the MEDR 

minimization problem with a maximization problem that utilizes the dot product method. 

Utilizing the fact that varying actuator directions and locations can potentially 

modify the Ritz vectors identified and in turn vary the sensor sets determined using EVP, 

KE, and EI. The MRPT was used to determine the reduced dynamic residual for the 

system with the sensor sets defined. The different sensor sets were also used with the two 

dynamic residual expansion techniques identified above to locate the full system damage 

and also focus the damage detection to selected elements of interest. 

This thesis contains three additional chapters. Chapter 2 introduces the theoretical 

background and presents the sensor placement and damage detection methods applied. 

Chapter 3 contains the analytical examples based on the concepts from Chapter 2. 

Chapter 4 summarizes the results and presents the recommendations for future work. 
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2 Theoretical Background 

2.1 Modal Analysis 

2.1.1 Analytical Modal Analysis 

The dynamic equilibrium equation for a discrete n-degree-of-freedom (DOF) 

structure can be expressed as 

         tu  =tx +tx +tx BKCM  , (1) 

where M, C, and K are the  nn  mass, damping and stiffness matrices, respectively, 

 tx  is the  1n  position vector, B is the  mn  force influence matrix, and  tu  is the 

 1m  force input vector. The over-dots represent differentiation with respect to time. 

The standard solution to Equation (1) is found by assuming that 

   λteΨtx  , (2) 

where Ψ  is a  1n  complex vector and  is a complex constant for a general damped 

system. Substituting Equation (2) into (1) yields the eigenvalue problem given by 

   0 =eΨ+λ+ λ λt2 KCM . (3) 

Equation (3) can be written in state-space form as  

 

























  Ψλ

Ψ
λ

Ψλ

Ψ
11 CMKM

I0
, (4) 

where I is the  nn  identity matrix. Equation (4) allows the eigenvalue problem to be 

solved for 2n eigenvalues and eigenvectors, consisting of n complex conjugate pairs. The 

eigenvectors can be solved as 

  2
iiii ζ1jζωλ  , (5) 
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where iω  is the natural frequency, iζ  is the damping ratio of the ith mode shape, and 

1j  . The complex conjugate eigenvectors can be written as 

 iIiRi Ψ jΨΨ  , (6) 

where iRΨ and iIΨ   are the real and complex parts of the ith mode shape, respectively. 

2.1.2 Modal Assurance Criteria 

The Modal Assurance Criteria (MAC) is a common tool used to measure the co-linearity 

between two vectors of equal length. The MAC was originally developed to measure the 

correlation of mode shapes, but can provide a measure of the least square deviation of 

any two vectors. The MAC is computed as 

 

 
  b

T
ba

T
a

2

b
T
a

ΨΨΨΨ

ΨΨ
  MAC   , (7) 

where aΨ and bΨ are the two vectors to be compared. Normally, the MAC is computed 

for all combinations of vectors between the two sets of basis vectors, resulting in a matrix 

of MAC values. For a good correlation, the MAC matrix values will be near unity along 

the diagonal, and near zero off the diagonal. An auto-MAC is a matrix of MAC values 

computed by comparing a vector set to itself, and is a useful tool when assessing the 

quality of experimental mode shapes. 

2.1.3 Ritz Vectors 

2.1.4 Analytical Ritz Vectors 

The dynamic equilibrium equation for a discrete n-degree-of-freedom (DOF) 

structure can be expressed as 

        tu B =tx +tx +tx KCM  , (8) 
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where M, C, and K are the  nn  mass, damping and stiffness matrices, respectively, 

 tx  is the  1n  position vector, B is the  1n  force influence vector, and  tu  is the 

scalar force input signal. The over-dots represent differentiation with respect to time. 

The first Ritz vector, representing the deflection of the structure under a unit static 

load [15], is found from the solution of 

 B =v̂ 1K , (9) 

where 1v̂  is the non-normalized Ritz vector. Although Wilson [15] mass-normalized the 

Ritz vectors, it is more appropriate to unit-normalize the Ritz vectors since the mass 

matrix is unknown in experimental identifications [21] [24]. The first Ritz vector is unit-

normalized as 

 
  1

T
1

1
1

v̂v̂

v̂
v  . (10) 

The subsequent Ritz vectors are found from the solution of 

 1-ii v  =v̂ MK . (11) 

Each Ritz vector is orthogonalized using a Gram-Schmidt orthogonalization process 

 



1-i

1j
jji

*
i vc- v̂=v ,

 
(12) 

where 

 i
T
jj v̂v =c . (13) 

After each Ritz vector is orthogonalized, it is unit-normalized  

 
   *

i

T*
i

*
i

i

vv

v
v  . (14) 



12 
 

2.2 Incomplete Measurement Problem 

The incomplete measurement problem is a well-known issue in damage detection 

problems. One aspect of the incomplete measurement problem occurs when there are 

fewer measured degrees-of-freedom (DOF) than that of the analytical model. Several 

methods have been proposed to correlate a model with an experimental test. The finite 

element model (FEM) may be reduced to the size of the test model, or the test model may 

be expanded to the size of the finite element model. Guyan reduction [36] is a common 

method used to reduce the FEM size, and is presented in Section 2.3.1. Three sensor 

placement techniques for the reduced systems are presented in the sections that follow; 

the Vector Product in Section 2.3.2, the Kinetic Energy Product in Section 2.3.3, and 

Effective Independence in Section 2.3.4. 

2.2.1 Guyan Reduction 

Given  nn  mass and stiffness matrices, M and K respectively, a transformation 

matrix relating the active DOFs to the omitted DOFs can be used to find reduced mass 

and stiffness matrices as 

 
MTTMKTTK T

r
T

r  .
 

(15) 

The matrix T is the transformation matrix that satisfies 

 
aa

o

a xx
x

x
T

G

I


















,
 

(16) 

where ax and ox  refer to the active and omitted DOFs respectively. The stiffness matrix 

can be partitioned into the active and omitted DOFs so that the static solution can be 

written as 
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
























0

0

x

x

o

a

oooa

aoaa

KK

KK
.
 

(17) 

Multiplying out the second row of Equation (17) gives 

 
0xx oooaoa KK ,

 
(18) 

so that the omitted DOFs can be solved as 

 
aoa

1
ooo xx KK  .

 
(19) 

The transformation matrix can be found by inserting the result from Equation (19) into 

(16) such that 

 










 
oa

1
ooKK

I
T .

 
(20) 

The transformation matrix is next rearranged such that the active and omitted DOFs are 

combined and arranged consecutively from 1 to n. 

2.2.2 Basis Vector Product 

This technique is generally referred to as the Eigenvector Product (EVP) 

technique [31]. Since EVP can be applied with basis spaces other than eigenvectors, a 

more general representation, Basis Vector Product (BVP), can be used. The basis vectors 

found from the finite FEM can be used to identify possible sensor or actuator locations. 

The shapes of interest are chosen as shown below 

 

















nmn2n1

1m1211

φφφ

φφφ

 . (21) 

  is the  mn  set of mode shapes, Ritz vectors or a combination of both, where n is the 

number of DOFs and m is the number of basis vectors. The BVP is calculated by 

multiplying the  components, such that 
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 imi2i1i φφφBVP  , (22) 

where subscript i corresponds to the DOF of interest. The total set of vector products, 

BVP, is sorted so that the maximum values are found. A high value of BVPi corresponds 

to nodes with high displacement and thus a candidate location. Vector product will 

exclude node point DOFs of any vector as BVPi will give a value of zero. 

2.2.3 Kinetic Energy Product 

The KE product is used for sensor placement identification using the assumption 

that maximum observability will occur by placing sensors at locations with maximum 

kinetic energy [30] [31]. Using the FEM basis vectors, the kinetic energy is found as 

follows 

  




n

1j
jmijimim φφke M ,  (23) 

where i corresponds to the DOF of interest, m is the target basis vector, and n 

corresponds to the total number of DOFs in the system. Mij, are the corresponding mass 

matrix components. The total kinetic energy matrix is as follows 

 

















nmn2n1

1m1211

kekeke

kekeke

ke .  (24) 

Finally, the KE product is found by multiplying the ke  components 

 imi2i1i kekekeKE  , (25) 

so that the total KE product, KE, can be sorted from highest to lowest. As with BVP, a 

high value of KEi corresponds to a candidate location. The KE product will also negate 

node points associated with a single shape since the product will be zero at that DOF. The 

mass weighting inherent to the KE product causes the sensor and actuator placement to 
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be dependent on the finite element discretization, such that there is a bias against areas 

with fine mesh sizes and thus small masses. 

2.2.4 Effective Independence 

Effective independence was developed as a technique to select sensor locations 

for large space structures [30]. The candidate sensor sets are ranked according to their 

contribution to the linear independence of the target basis vectors. The first step is to find 

the Fisher information matrix 

 




n

1i

iTi
o φφA , (26) 

where iφ  is the ith row of the target basis vector and n is the total number candidate 

sensor locations in the system. Equation (26) demonstrates that information can be added 

to or subtracted from the Fisher information matrix with the inclusion or exclusion of 

DOFs. The number of DOFs in the sensor set can be reduced by eliminating locations 

that do not contribute to the independence of the target basis vectors. 

The analysis starts by solving the eigenvalue equation for oA . 

 
  0Ψ jjo  IA , (27) 

for m,,2,1j  , where m is the total number of basis vectors in the system, and jΨ are 

orthonormal vectors resulting in the relations 

 jjo
T
j ΨΨ A  and 1ΨΨ j

T
j  . (28) 

The EI coefficients of the candidate sensors are computed as 

    ΨΨG  ,  (29) 
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where the symbol   represents term-by-term matrix multiplication, and 

 mΨ,,Ψ,Ψ 21 Ψ . Next, Equation (29) is post-multiplied by the inverse of the matrix 

of eigenvalues, 

 1 ΛGFE ,  (30) 

where FE represents the fractional eigenvalue distribution, and 

   ,,, diag 21 m Λ . Finally, the terms within each row of FE are added to obtain 

 


























n

2

1

EI

E

E

E

F

F

F


. (31) 

Alternatively, EI can be found using the following formulation  

   T1TdiagEI 


. (32) 

The values of EI will range from 0 to 1, with a value of 0 indicating that the DOF does 

not contribute to the observability of the system. The smallest value of the EI vector is 

removed and the above process is repeated iteratively until the desired number of sensors 

is found. 

 Li et al. developed a more computationally efficient method to compute the EI 

utilizing QR decomposition [37]. The method was shown to obtain the same results with 

fewer computational flops. 

2.3 Damage Residual Matrices 

When elements of a structure are affected by damage, the damage residual matrix 

can be found using the basis vectors for the damaged structure and the original finite 

element model matrices. For a full DOF set of basis vectors, the damage residual matrix 
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will show the exact damaged DOF locations. If the damage basis vectors contain fewer 

DOFs than the model, then the damage residual matrix becomes ‘smeared’ such that the 

damaged DOFs cannot be distinguished. 

2.3.1 Modal Dynamic Residual 

The modal dynamic residual is found using the eigenvalue problem presented in 

Section 2.1.1 and has been used to determine the extent of damage on structures. The 

eigenvalue problem can be written without damping as 

   0 =Ψ λ2MK  . (33) 

When damage is present in the system, the measured mode shapes will deviate and the 

relationship will need to be modified such that 

    0 =Ψ λ i
2
i MKK  , (34) 

where iΨ  denotes each measured mode shape and K represents the effect of damage on 

the stiffness matrix K. By rearranging Equation (34), the ith modal dynamic residual 

vector, im,d , is defined as 

   ii
2
iim, Ψ =Ψ λ=d KMK  . (35) 

For the noise-free cases, the dynamic residual vector will only have nonzero terms at the 

DOFs affected by damage. If only p mode shapes are measured, Equation (35) can be 

formulated as a  pn  matrix equation 

 

 
 2

p
2
2

2
1

md,

λ,λ,λ=

 = =

diagD

ΨKDΨMΨKB 
, (36) 

where md,B  is the modal dynamic residual matrix, Ψ  is the  pn  matrix of mode 

shapes, and D is the diagonal matrix of eigenvalues. 
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2.3.2 Ritz Damage Residual 

Ritz vector based damage residual vectors can also be used to determine damage 

location [29]. Equation (11) can be rearranged as follows 

 0 =v v̂ 1-ii MK  . (37) 

If the structure is damaged, the Ritz vectors will change and the relationship in Equation 

(37) will be modified to 

   0 =v  v̂ 1-ii MKK  , (38) 

where K represents the effect of damage on the stiffness matrix K. The elements of the 

Ritz damage residual vector rd can be defined as 

 i1-iiir, v̂ =v  v̂=d KMK  . (39) 

In the noise-free cases, the DOFs affected by damage appear as nonzero elements of the 

dynamic residual vector. If subset p Ritz vectors are measured, Equation (39) can be 

formulated as a  1 pn  matrix equation 

 
 
 1p21

rd,

v,v,v=

ˆ = ˆ=





diagV

VKVMVKB
, (40) 

where rd,B is the Ritz damage residual matrix. 

2.4 Minimum Rank Perturbation Theory 

The Minimum Rank Perturbation Theory (MRPT) is a model updating technique 

used for model refinement and damage detection [12] [13]. The MRPT can use either the 

modal dynamic residual matrix or Ritz damage residual matrix to determine damage 

extent by solving for the stiffness perturbation matrix, K  

   T
d

1T
dd BZBBK


 , (41) 
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where Z is the basis vector used. For modal analysis, Z will be equivalent to the  pn  

matrix of mode shapes, Ψ . For Ritz vector analysis, Z will be equivalent to the  1 pn  

non-normalized Ritz vector, V̂ . 

 The maximum rank of the stiffness perturbation matrix obtained in Equation (41) 

is limited to the number of mode shapes measured. If the effects of damage change the 

stiffness by a rank greater than the number of mode shapes measured, the stiffness 

perturbation matrix obtained will not be exact even when the data is noise free. It has 

been observed that when the number of modes are less than the true rank of the stiffness 

perturbation matrix, the largest elements of dK  are typically identified. 

If the matrix to be inverted in Equation (41) is not well conditioned, or if the 

number of measured basis vectors exceeds the number required to determine the extent of 

damage, then the subspace selection algorithm can be used to extract the maximum 

information from all available residual vectors. Singular value decomposition (SVD) 

provides a method to extract the consistent information from each column of the damage 

residual, which will be 

    T2121d || VV
00

0Σ
UUB 








 , (42) 

where U and V are the left and right singular vectors, respectively, and Σ  is a  pp  

diagonal matrix of singular values. When dB  is rank deficient, its range is spanned by the 

p columns of 1U . The matrix  21 |  UUU   is a unitary matrix, so a well-conditioned 

problem is obtained if 

 1d UYB  , (43) 
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where matrix Y can be approximately calculated using the pseudoinverse of dB  as 

 
1

11
T
1

1
11d

  ΣVUUΣVUBY . (44) 

The extent of damage can be calculated from Equation (41) as 

   T
d

T1T
d

T
d BYZYBYYBK


 . (45) 

2.5 Dynamic Residual Expansion Techniques 

Dynamic residual expansion techniques extend the damage residuals found using 

the MRPT coupled with matrix disassembly to determine an expanded dynamic residual 

and determine the structural damage location. This section presents three dynamic 

residual expansion techniques, which are based on the concepts devised by Zimmerman 

et al. in [27]. 

2.5.1 Method of Expanded Dynamic Residuals 

The Method of Expanded Dynamic Residuals (MEDR) is used to circumvent the 

problems associated with basis vector expansion. The damage residual vector indicates 

the exact damage location when using the full DOF measurements; however, when only 

reduced measurements may be used, the damage location may become “smeared” 

throughout the model. The MEDR uses the physical connectivity of the structure to create 

a database of “smear” patterns by projecting each of the structure’s connectivity vectors 

onto the space of reduced measurement points. The reduced connectivity vectors are 

compared to the measured damage residual vectors. The connectivity vector with a 

projection onto the measurement space that is most collinear with the measured damage 

residual vector indicates the damaged DOFs. If the damage case has a rank greater than 

one, the process may be repeated until the required connectivity vectors are found to span 

the space needed to reproduce the measured damage residual vector. 
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2.5.1.1 Matrix Disassembly 

Matrix disassembly is a process that decomposes a structural matrix into a matrix 

representation of the connectivity between DOFs and a matrix containing the magnitude 

information [28]. Advanced stiffness matrix disassembly techniques use a method that 

disassembles each elemental stiffness matrix. However, the method used in this work 

disassembles the entire structure into a set of equivalent springs. As a result, the 

disassembly is exact for truss structures, but inexact for more complicated systems. The 

advantage of this general technique is that it can be applied to any model without detailed 

knowledge of the actual elements used in the assembly. The formulation for the stiffness 

matrix is as follows 

 TCPCK  , (46) 

where K is the stiffness matrix, C is a sparse matrix containing all the connectivity 

information, and P is a diagonal matrix containing all magnitude information. Matrix C 

has  mn  elements, where n is the matrix dimensions of K, and m is equal to the total 

number of unique entries in K, which consists of the non-zero entries in the upper 

triangular portion for symmetric stiffness matrices. Therefore, if the stiffness matrix is 

symmetric, m amounts to the number of nonzero entries in the upper triangular portion of 

K. The diagonal matrix P is calculated as 

 
   

    mn

n
n

:1ikj,ii,

:1iji,ii,
1j






KP

KP
. (47) 

The equations above indicate that the first n diagonal elements of P are the row sums of 

the stiffness matrix, while the remaining diagonal elements of P are the opposites of the 
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nonzero off-diagonal elements of K. The nonzero off-diagonal elements of K play an 

important role in generating the connectivity matrix, C. 

 The connectivity matrix, C, can be written as [C1 C2], where C1 is the  nn  

identity matrix. C2 is a  nmn   matrix with the entries defined according to the element 

locations of the unique nonzero off-diagonal entries in matrix K. For each element 

 kj,K  used to define the element  ii,P  for the index mn :1i  , the ith column of C is 

given as 

 
 
  mn

mn

:1i0.1ik,

:1i0.1ij,




C

C
. (48) 

The expanded dynamic residual only requires the formulation of C. 

2.5.1.2 MEDR Development 

Using the model reduction transformation matrix relating the reduced system 

DOFs to the full system DOFs, T, found in Equation (20), the Ritz damage residual 

matrix in Equation (40) can be rewritten as 

    rrd
ˆ VTMVTKB  . (49) 

Guyan static reduction is utilized for this application of MEDR. Pre-multiplying by TT , 

Equation (49) becomes 

    r
T

r
T

d
T ˆ VTMTVTKTBT  . (50) 

The reduced damage residual is then defined as 

      rrrrrd
ˆ VMVKB  , (51) 

where rK and rM  are the reduced stiffness and mass matrices defined in Equation (15). 

By combining Equations (50) and (51), the relationship between the reduced and full 

damage residual matrices is given as 
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   d
T

rd BTB  . (52) 

If the connectivity information is assumed to be unaffected by damage, the 

changes in the stiffness would be contained in the diagonal magnitude matrix P. 

Therefore, the connectivity matrix would be invariant and can be used as a linearly 

dependent set of basis vectors to approximate the target damage vector. The target vector, 

denoted taru , is chosen as the first left singular vector of the reduced damage residual 

matrix. It is assumed that the target vector is related to the unknown “full target” vector 

by Equation (52), 

 full
T

tar uu T . (53) 

The unknown “full target” vector is approximated as a linear combination of the columns 

of the connectivity matrix C 

 Cfullu , (54) 

where   is a vector of constants defining the contribution of each individual column of 

C. The number of columns of C will exceed the rank of matrix C, therefore a subset of 

the columns must be selected for use in Equation (54), resulting in 

 selfullu C . (55) 

The reduced target vector can be approximated using Equations (53) and (55) 

 sel
T

taru CT . (56) 

 The reason for selecting the “best” columns of C is known as the problem of 

subset selection, but the current problem differs from the standard problem. In the 

standard subset selection problem, the concept is to choose the columns of C that are 

most linearly independent, whereas in MEDR the columns that best represent the reduced 
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target vector are chosen. The combinatorial optimization problem that arises is not 

feasible for even modestly sized models, so a reasonable sub-optimal solution strategy 

must be implemented. The “best subspace” algorithm [34] poses the following 

minimization problem for each column of C 

    i
T

tar

T

i
T

tari
wrt

cβucβuεmin
β

TT  , (57) 

yielding the solution 

    iTT

i
T

i
T

tar*

cc

cu
β

TT

T
 . (58) 

The next step of the “best subspace” algorithm is to define a new target vector as 

 *
i

T1-i
tar

i
tar cβuu T , (59) 

where *
ic  represents the first column selected and the superscript i is equal to two. 

Essentially, the new target vector has no component in the first selected “reduced” 

column direction. The next step is to determine that column of C that minimizes Equation 

(57) using the target vector defined in Equation (59). The process can be repeated a 

predetermined number of times or until the error defined in Equation (57) meets a user-

specified criteria. All identified columns of C can be grouped in a matrix denoted Csel, 

these columns are used to indicate which DOFs of the full model have been affected by 

damage. Additionally, the full damage vector can be estimated by solving 

  *
selfullu C , (60) 

where * represents the least squares solution to Equation (56). 
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2.5.1.3 Identical Signatures 

Since the MEDR process involves a projection from one vector space onto one of 

its subspaces, the possibility exists for a particular measured damage residual vector to be 

equally expressible by multiple columns of the connectivity matrix. If two linearly 

independent columns of the connectivity matrix have collinear projections on the 

subspace of measured DOFs, the corresponding full DOF damage residual vectors will 

have identical damage signatures. These vectors will be indicated by identical values of 

iε  in Equation (57). When multiple columns of the connectivity matrix produce the same 

minimum value of iε  the actual damage location might be indicated by any of those 

columns. In practice, identical damage signatures are found in structures with repetitive 

substructures, such as trusses, conventional buildings, and bridges. 

2.5.2 Modified Method of Expanded Dynamic Residuals 

The MEDR method above has been determined to be a good tool for detecting 

damage when only reduced measurements are available. The Modified Method of 

Expanded Dynamic Residuals (MMEDR) utilizes the same concepts as those discussed 

above with some modifications to the inputs used. While the MEDR uses the Matrix 

Disassembly method presented above to determine the DOF connectivity, the aim of the 

MMEDR is to exploit the structural information when it is available to determine the 

actual elemental connectivity. 

As discussed in Section 2.6.1.1, the Matrix Disassembly method divides a 

structural matrix into a set of equivalent springs. A more advanced and robust method 

would be to disassemble the stiffness matrix into individual elements. The main 

advantage of the Matrix Disassembly method is that it requires only the stiffness matrix 
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of the structure; however, if the elemental connectivity information is available, then a 

more accurate disassembly is possible.  

2.5.2.1 Elemental Disassembly 

The sparse matrix containing the elemental information, Uda, will be a  pn  

matrix where n corresponds to the matrix dimensions of the stiffness matrix K, and p 

equals the number of elements in the structure. The connectivity can be found by 

simulating damage to each element of the full FEM and determining the singular vector 

for each damage case such that 

 dii KKK   = , (61) 

where Kdi is the simulated damage stiffness matrix for each element, and iK  indicates 

the simulated effects of damage on the stiffness matrix. Next, the SVD process is used to 

determine the simulated singular vectors and singular values 

    Tdididi vsuK  i . (62) 

In the above equation, udi are the left singular vectors, sdi are the singular values, and vdi 

the right singular vectors. If the damage is simulated on a single element basis, then the 

damage will be of rank one and only the first left singular vector is required to indicate 

the damaged DOFs. The matrix consisting of the elemental information is next 

constructed as follows. 

  dpd2d1 ||| u...uuU  . (63) 

The U matrix inherently contains a number of advantages over the C matrix 

presented in Section 2.6.1.1. First, the U matrix will have fewer columns than C when 

there are diagonal elements in the structure. This is due to the fact that diagonal elements 

in the C matrix are represented by two or three columns while the U matrix will have 
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them combined in a single column. This will help in avoiding any false positives that may 

occur when the columns are reduced to the measured DOFs. Secondly, since the columns 

of the U matrix correspond to the structural elements, it is easier to remove any elements 

that are known not to be damaged and therefore not required.  

2.5.2.2 MMEDR Development 

The MEDR development shown in Equations (49) through (53) will also apply to 

the MMEDR. However, the “full target” vector in Equation (54) is modified to replace C 

with U such that 

 1ufull U , (64) 

where 1  is a vector of constants defining the contribution of each individual column of 

U. Since the number of columns of U exceed the rank of the U matrix, a subset of the 

columns must be selected for use in Equation (64), resulting in 

 1u selfull U . (65) 

The reduced target vector can be approximated using Equations (53) and (65) 

 1u sel
T

tar UT . (66) 

 As in Section 2.6.1.2, the “best” columns of U are selected that represent the 

reduced target vector best. The “best subspace” algorithm presents the following 

minimization problem for each column of U 

    di
T

tar

T

di
T

tari
wrt

uβ1uuβ1uε1min
β1

TT  , (67) 

yielding the solution 

    di
TT

di
T

di
T

tar*

uu

uu
β1

TT

T
 . (68) 
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The next step of the “best subspace” algorithm is to define a new target vector as 

 *
di

T1-i
tar

i
tar uβ1uu T , (69) 

where *
diu  represents the first column selected and the superscript i is equal to two. 

Again, the new target vector has no component in the first selected “reduced” column 

direction. The next step is to determine that column of U that minimizes Equation (67) 

using the target vector defined in Equation (69). The process can be repeated a 

predetermined number of times or until the error defined in Equation (67) meets a user-

specified criteria. All identified columns of U can be grouped in a matrix denoted Usel, 

these columns are used to indicate which DOFs of the full model have been affected by 

damage. Additionally, the full damage vector can be estimated by solving 

  *
selfull 1u U , (70) 

where *1 represents the least squares solution to Equation (66). 

2.5.3 Dot Product Damage Residual Expansion Method 

The Dot Product Damage Residual Expansion Method (DPDREM) uses the same 

principles as the MEDR and MMEDR presented above, where the full DOF damage 

vector cases are reduced to the target damage vector DOFs and compared to determine 

the full DOF vector that would represent the damage location. Unlike the two methods 

above, the DPDREM uses the dot product method in an attempt to simplify the subset 

selection method. 

To begin, the DPDREM uses the same disassembly method presented for the 

MMEDR in Section 2.6.2.1. After determining the elemental information matrix, U, the 

target vector is noted to be related to the unknown “full target” vector by Equation (52) 
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 2u selfull U . (71) 

The reduced target vector can be approximated using Equations (53) and (71) 

 2u sel
T

tar UT . (72) 

Additionally, Equation (72) can be modified as follows 

 2u sel
T

tar UT , (73) 

where the bars represent absolute values for each side of the equation. This helps avoid 

sign mismatches when determining the “best” columns of U to represent the reduced 

target vector. Next, the following maximization problem is presented for each column of 

U 

 di
T

tari uuε2max T . (74) 

The value of iε2  closest to one will determine the selected column of U. For damage 

affecting multiple elements, a new target vector can be defined  

   *
di

T
i

1-i
tar

i
tar uε2maxuu T , (75) 

where *
diu  represents the first column selected and the superscript i is equal to two. The 

new target vector has no component in the first selected “reduced” column direction. The 

next step is to determine that column of U that maximizes Equation (74) using the target 

vector defined in Equation (75). The process can be repeated a predetermined number of 

times or until the error defined in Equation (74) meets a user-specified criteria, keeping in 

mind that the process will not require repetition for single elemental damage as each 

column of U denotes the selected element. For multiple elemental damage, all identified 

columns of U can be grouped in a matrix denoted Usel, these columns are used to indicate 
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which DOFs of the full model have been affected by damage. The full damage vector can 

be estimated by solving 

  *
selfull 2u U , (76) 

where *2 represents the least squares solution to Equation (72). The advantage of the 

DPDREM method lies in the simplicity of the dot product as compared to the previous 

methods. 

2.6 Health Monitoring for Critical Structural Areas 

Considering that Ritz vectors are constructed using a recursive process based on 

the applied load, a different set of orthogonal Ritz vectors will be generated when the 

loading location or angle is changed. The varying Ritz vector sets will produce different 

sensor sets using the sensor placement techniques discussed in Section 2.3. With different 

sensor sets the damage residual matrix may vary, which in turn can help improve the 

damage vector selection process.  

Therefore, changing the loading case gives the flexibility to optimize the sensor 

set when attempting to monitor certain areas of the structure. This would be most 

advantageous in complex structures where relatively few sensors can be placed compared 

to the full model DOFs. 
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3 Analytical Examples 

This chapter presents examples of the methods introduced in the previous chapter. 

Section 3.1 introduces the basic concept of singular vector projections and dot products 

using a simple spring-mass system for both mode shapes and Ritz vectors. Section 3.2 is 

used to show the Modified Method of Expanded Dynamic Residual (MMEDR) and Dot 

Product Damage Residual Expansion Method (DPDREM) results for a simple 7-degree-

of-freedom (DOF) truss system with reduced sensor sets. The NASA eight-bay truss, 

discussed in Section 3.3, is used to demonstrate the methods for a more complex system. 

3.1 Example 1: Spring-Mass System 

A three-DOF spring-mass system was used as a simple example and to verify the 

basic concepts employed. The section presents the use of the damage residual singular 

vectors and values for damage detection in a visual manner. The system consists of three 

springs placed in-line with equal masses attached at each end. One end of the 1st spring is 

fixed. Figure 1 shows a depiction of the system. The 1st and 3rd spring constants were 

1x108 N/m, the 2nd spring constant was 2x108 N/m and the three masses were 100 kg 

each. 

 

 

The healthy and damaged stiffness matrices were obtained using simple FEM. 

Damage was simulated by reducing the selected spring stiffness constant by 50%. Noise 

was also simulated by reducing the selected stiffness constant by 10%. The noise-free 

damage cases, dKNF, were found by subtracting the healthy and damaged stiffness 

Spring 1 Spring 2 Mass 1 Spring 3 Mass 2 Mass 3 

 
Figure 1: Three degree of freedom spring-mass system 
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matrices. The actual noise induced damage cases, dKN, were found by subtracting the 

healthy stiffness matrix from the noise induced damage stiffness matrices. The three 

DOFs were measured when using the Ritz vectors and mode shapes to simulate the 

damaged test structure. Additionally, the Ritz vectors were found by forcing the three 

masses with 10 N in the direction of the arrow shown in Figure 1. 

The first case includes damage to Spring 1 and noise in Spring 3. The actual 

absolute values of the noise-free and noise induced damage matrices (dK) are shown in 

Figure 2. 

 

Figure 2: Spring 1 Damage Matrix 

As can be seen in the figure above, all the DOFs affected by noise were separate 

from the damaged DOF. The Minimum Rank Perturbation Theory (MRPT) was applied 

to the noise induced damaged Ritz vectors and mode shapes to find the analytical damage 

results. Figure 3 shows the normalized damage residual singular values obtained to select 

the damage rank in MRPT. 
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Figure 3: Spring 1 Damage Residual Singular Values 

The second normalized singular value for the mode shape damage residual was 

found to be 40% the magnitude of the first singular value, which is significant and should 

be considered in the MRPT calculation. On the other hand, the second damage residual 

singular value obtained using the Ritz vectors was 7% of the first singular value.  

The first damage residual singular vectors for the mode shapes (uM) and Ritz 

vectors (uR) were next inspected and compared to the first noise free singular vector taken 

from dKNF in Figure 1 (uNF). Figure 4 shows the singular vectors plotted as 3-dimensional 

projections where each axis represents a degree of freedom. The dot product between uM 

and uNF was used to find the angle between the two vectors (AngleM), similarly (AngleR) 

was found with the dot product between uR and uNF. This was the basis for the sensitivity 

analysis performed to determine the effect of noise on each method. 
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Figure 4: Damaged Residual Singular Vector Projections 

The figure above shows that for the first singular vector, both uM and uR 

accurately replicate uNF. Although the Ritz vectors did display a slight angle of 2.9º, 

which would again be attributed to the coupling inherent in the Ritz vector calculation, it 

is important to note that the Ritz vectors still obtained better overall results as the rank of 

damage was correctly found to be one. 

The second case includes damage to the 3rd spring and noise in the 2nd spring. 

Figure 5 shows the dKNF and dKN matrices. Note that the noise in this case also affected a 

damaged DOF. The damage residual singular values of the noise induced Ritz vectors 

and mode shapes are shown in Figure 6. 
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Figure 5: Spring 3 Damage Matrix 

 

Figure 6: Spring 3 Damage Residual Singular Values 

The second normalized singular value of the mode shape damage residual was 

23% of the first singular value, while second normalized singular value of the Ritz vector 
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damage residual was 8% of the first singular value. In this case, it is clearer that the 

damage is of single rank for both basis vectors. 

The first singular vector for each of the mode shapes (uM) and Ritz vectors (uR) 

were again inspected and compared to the first noise free singular vector taken from dKNF 

(uNF). AngleM and AngleR were found using the dot product as in the previous example. 

The results are shown in Figure 7. 

 

Figure 7: Damaged Residual Singular Vector Projections 

The singular vector projections in Figure 7 clearly show the Ritz vector results to 

be closer to the noise free damage singular vector, with an angle of 6.2º compared to the 

11.7º angle for the mode shape singular vector. 

The results above aid in confirming the higher accuracy of Ritz vectors compared 

to mode shapes. Figures 3 and 6 indicate that Ritz vector damage residuals are less 
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susceptible to falsely identifying higher ranks of damage due to noise. This is due to the 

fact that each Ritz vector describes behavior across a range of frequencies whereas each 

mode correlates to a single frequency. The inherent coupling in the Ritz vectors aid in 

analyzing multiple frequency responses for a damage case when calculating the damage 

residuals. 

Figures 4 and 7 show that both the Ritz vectors and mode shapes identify damage 

projections that closely match the actual noise-free damage using the singular vectors. 

For the second case, the Ritz vector singular vector projection showed a smaller angle 

when compared to the actual damage. For the first case, even though the Ritz vector 

singular projection angle was higher, the damage residual showed a rank one damage 

scenario more clearly than the mode shape damage residual. Overall, the Ritz vector 

results were slightly better compared to the mode shapes for this example. 

3.2 Example 2: Simple Truss System 

The second example consists of a simple truss system used to illustrate the 

Modified Method of Expanded Dynamic Residual (MMEDR) and Dot Product Damage 

Residual Expansion Method (DPDREM) presented in Sections 2.6.2 and 2.6.3 

respectively. The effect of varying actuator locations on the damage detection results is 

also demonstrated in this example using the Basis Vector Product (BVP), Kinetic Energy 

Product (KE), and Effective Independence (EI) shown in Sections 2.3.2 through 2.3.4. 

The 7-DOF truss system shown in Figure 8 consists of seven elements with cross 

sectional areas of 1 cm2, an elastic modulus of 210 GPa, and a density of 7850 kg/m3. 

Damage was simulated by reducing the elastic modulus of the element of interest by 

50%. The range of noise on the system was ±10% of the elastic modulus. 
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3.2.1 Case 1: EI sensor set with force at node 4 

For the first case, the EI method was used with a 141 N force placed at node 4 

with a 45º angle. The EI method was utilized to determine the four most linearly 

independent DOFs for the first three full undamaged Ritz vectors. The sensor set included 

DOFs 1, 4, 5, and 6 as shown in Figure 9. 
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Figure 8: Simple Truss System 

 
Figure 9: Case 1 Actuator and Sensor Set 
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The DPDREM and MMEDR were next used to determine the damaged elements 

for all single damaged element cases with the sensor set found above. Tables 1 and 2 

show the DPDREM and MMEDR results respectively for all seven damage cases. 

Table 1: Case 1 Damaged Simple Truss DPDREM results 
T'*ufa

Element  1  2 3 4 5 6  7

udr 

1  0.99  0.69 1.00 0.57 0.56 0.15  0.10

2  0.65  1.00 0.66 0.88 0.57 0.54  0.41

3  0.99  0.69 1.00 0.57 0.56 0.15  0.10

4  0.45  0.87 0.53 1.00 0.19 0.40  0.26

5  0.60  0.57 0.55 0.27 1.00 0.77  0.77

6  0.12  0.39 0.12 0.30 0.78 0.99  1.00

7  0.12  0.39 0.12 0.30 0.78 0.99  1.00

 
Table 2: Case 1 Damaged Simple Truss MMEDR results 

T'*ufa

Element  1  2 3 4 5 6  7

udr 

1  0.01  0.99 0.00 0.77 0.68 1.00  1.00

2  0.98  0.00 0.99 0.95 0.72 0.90  0.99

3  0.01  0.99 0.00 0.77 0.68 1.00  1.00

4  0.79  0.95 0.72 0.00 0.96 0.93  0.94

5  0.64  0.72 0.70 0.97 0.00 0.79  0.64

6  1.00  0.98 1.00 0.91 0.61 0.05  0.00

7  1.00  0.98 1.00 0.91 0.61 0.05  0.00

 
Tables 1 and 2 show the actual damage cases along the diagonal of the table and 

the selected damage cases highlighted in gray. Note that while the DPDREM locates the 

damage by finding the maximum dot product, the MMEDR determines the damage 

locations by finding the minimum ‘error’ value. In this case, the two methods identified 

the exact same DOFs. The difference is that the DPDREM uses the simpler method for 

comparison whereas the more complex subset selection algorithm is used in the 

MMEDR. The tables show that all seven damage cases were correctly identified using 
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either method, however reduced cases 1 and 3 and cases 6 and 7 were indistinguishable 

with the defined sensor set. 

The selected full DOF damage residual singular vectors using DPDREM and 

MMEDR were next plotted as shown in Figure 10. The darker color bars indicate the 

actual damaged residual singular vectors while the lighter color bars indicate the selected 

singular vector results. In the cases where two singular vectors could not be 

distinguished, the vectors were combined and normalized for visual simplicity. As can be 

seen in Figure 10, all the damage locations were identified correctly. 

 

Figure 10: Case 1 Damaged Simple Truss DPDREM and MMEDR Singular Vectors 

3.2.2 Case 2: BVP and KE sensor sets with force at node 4 

The second case is used to illustrate how the results may differ using the BVP or 

KE methods from the EI method presented in case 1 with the same force input of 141 N 

placed at node 4 with a 45º angle. As mentioned previously, the BVP and KE methods 
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identify DOFs that display the highest displacement and kinetic energy, respectively. For 

this system, the two methods obtain very similar sensor set results since the mass matrix 

is nearly uniform. In Case 2, the sensor set determined included DOFs 1, 2, 4, and 6 as 

shown in Figure 11. The DPDREM was again used for all seven single element damage 

cases with the new sensor set. The results are shown in Table 3. 

 

 
 

Table 3: Case 2 Damaged Simple Truss DPDREM results 
T'*ufa

Element  1  2 3 4 5 6  7

udr 

1  1.00  0.81 0.68 0.46 0.25 0.49  0.25

2  0.91  0.98 0.76 0.77 0.52 0.81  0.43

3  0.72  0.70 0.99 0.71 0.55 0.53  0.26

4  0.43  0.72 0.90 0.93 0.77 0.78  0.41

5  0.18  0.38 0.60 0.60 0.96 0.53  0.83

6  0.20  0.31 0.23 0.32 0.84 0.44  0.99

7  0.20  0.31 0.23 0.32 0.84 0.44  0.99

 
As can be seen in Table 3, the case 2 sensor set improved in some instances and 

deteriorated in others. Damaged elements 1 and 3 were clearly identified using the second 

sensor set, whereas element 6 was incorrectly identified as element 2, and once again 
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Figure 11: Case 2 Actuator and Sensor Set 
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element 7 could not be distinguished from element 6. The reason for this change in the 

damage identification result is due to the sensor set variation with the replacement of 

DOF 5 with DOF 2. The sensor set variation basically shifted the focus towards the left 

of the structure improving the detectability of elements 1 and 2, and diminishing the 

detectability of element 6. Figure 12 shows the selected DPDREM damage residual 

singular vectors compared to the actual singular vectors. 

 

Figure 12: Case 2 Damaged Simple Truss DPDREM Singular Vectors 

  Figure 12 reiterates the discussion above. It should be noted that while element 6 

was not determined exactly, the reduced sensor set was still capable of finding one of the 

two DOFs affected by the damage. When examining the reduced singular vectors for 

element 6, it should be noted that none of the cases obtain high dot product results due to 

the fact that the vectors don’t compare well. This should prompt the experimenter to 

further examine the sensor set used for that element. 
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 Next, the MMEDR ‘error’ values were determined and shown in Table 4. The 

selected MMEDR damage residual singular vector plots are shown in Figure 13. 

Table 4: Case 2 Damaged Simple Truss MMEDR results 
T'*ufa

Element  1  2 3 4 5 6  7

udr 

1  0.00  1.00 0.88 0.94 0.94 0.88  0.94

2  0.95  0.04 0.42 0.42 0.92 0.38  0.96

3  0.82  0.52 0.02 0.49 0.91 0.72  0.98

4  0.87  0.98 0.73 0.98 0.41 0.97  1.00

5  0.98  1.00 0.79 0.91 0.09 0.97  0.56

6  0.96  0.98 0.98 0.91 0.63 0.82  0.02

7  0.96  0.98 0.98 0.91 0.63 0.82  0.02

 

 

Figure 13: Case 2 Damaged Simple Truss MMEDR Singular Vectors 

The MMEDR results mostly correlate with the DPDREM results. The difference 

was in element 4 where the MMEDR determined the damage to be at element 2 instead. 

The reason for this incorrect identification is due to the fact that the MMEDR takes into 
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account the sign differences, while the DPDREM circumvents such issues by taking the 

absolute values of the singular vectors. When comparing the MMEDR results in Figure 

13 to the DPDREM results in Figure 12, it can be seen that the DPDREM more 

accurately identified the damage for element 4 while all other cases were identified 

identically. Once again the relatively high ‘error’ values for elements 4 and 6 indicate 

that the singular vectors do not match well and need further examination. 

3.2.3 Case 3: EI sensor set with force at node 2 

The third case returns to the EI method with the 141 N force placed at node 2 with 

a 45º angle as shown in Figure 14. The resulting sensor set is at DOFs 1, 2, 4, and 5. The 

DPDREM and MMEDR results are shown in Tables 5 and 6, respectively. 

The sensor set obtained improved the DPDREM and MMEDR damage detection 

results for elements 1 and 2 using the EI sensor set but deteriorated detection in elements 

5, 6, and 7. This is due to the fact that the sensors were shifted towards left side of the 

structure, which in turn diminished the detectability for the elements on the right-hand 

side. 
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Figure 14: Case 3 Actuator and Sensor Set 
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Table 5: Case 3 Damaged Simple Truss DPDREM results 
T'*ufa

Element  1  2 3 4 5 6  7

udr 

1  1.00  0.78 0.65 0.35 0.18 0.08  0.18

2  0.79  1.00 0.61 0.71 0.55 0.42  0.49

3  0.73  0.65 1.00 0.35 0.74 0.71  0.77

4  0.32  0.69 0.28 1.00 0.42 0.39  0.38

5  0.24  0.58 0.78 0.53 1.00 0.98  0.99

6  0.24  0.58 0.78 0.53 1.00 0.98  0.99

7  0.24  0.58 0.78 0.53 1.00 0.98  0.99

 

Table 6: Case 3 Damaged Simple Truss MMEDR results 

T'*ufa

Element  1  2 3 4 5 6  7

udr 

1  0.00  0.79 0.85 0.91 0.98 1.00  0.98

2  0.76  0.00 0.77 0.97 0.97 0.90  0.99

3  0.83  0.70 0.00 0.94 0.46 0.64  0.40

4  0.90  0.97 0.92 0.01 0.82 0.91  0.86

5  0.99  0.97 0.40 0.82 0.00 0.10  0.02

6  0.99  0.97 0.40 0.82 0.00 0.10  0.02

7  0.99  0.97 0.40 0.82 0.00 0.10  0.02

 

Figure 15 shows the resulting damage residual singular vectors for both the 

DPDREM and MMEDR compared to the actual damage cases. The results in Figure 15 

agree with the findings in Tables 5 and 6. This case shows the force locations can affect 

the sensor sets obtained using the EI sensor placement method. 
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Figure 15: Case 3 Damaged Simple Truss DPDREM and MMEDR Singular Vectors 

3.2.4 Case 4: BVP, KE, and EI sensor sets with force at nodes 4 and 5 

The final case is used to show the improvement in detecting damage on the right side of 

the structure with force F1 located at node 4 (141 N with a 45º angle) and force F2 at 

node 5 (100 N with a 0º angle). The resulting sensor set using BVP, KE, and EI is at 

DOFs 1, 4, 6, and 7. The forces and sensor sets are shown in Figure 16. The DPDREM 

and MMEDR results are shown in Tables 7 and 8 respectively. 

In this example case, elements 6 and 7 are clearly identified whereas elements 1 

and 2 are indistinguishable from one another using both the DPDREM and MMEDR 

methods. Note that element 4 shows a fairly high MMEDR ‘error’ value even though the 

damaged element is properly identified. This can once again be mostly attributed to the 

sign differences in the damage residual singular vector sign differences. Figure 17 shows 

the damage residual singular vectors for both method results. 
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Table 7: Case 4 Damaged Simple Truss DPDREM results 
T'*ufa

Element  1  2 3 4 5 6  7

udr 

1  1.00  0.43 1.00 0.81 0.69 0.38  0.41

2  0.40  1.00 0.41 0.57 0.45 0.99  0.68

3  1.00  0.43 1.00 0.81 0.69 0.38  0.41

4  0.94  0.68 0.93 0.86 0.64 0.65  0.48

5  0.68  0.48 0.67 0.67 1.00 0.31  0.80

6  0.37  1.00 0.37 0.57 0.40 0.99  0.64

7  0.38  0.72 0.41 0.34 0.82 0.60  1.00

 

Table 8: Case 4 Damaged Simple Truss MMEDR results 
T'*ufa

Element  1  2 3 4 5 6  7

udr 

1  0.00  0.99 0.01 0.57 0.90 0.88  0.83

2  1.00  0.00 1.00 0.88 0.91 0.53  0.77

3  0.00  0.99 0.01 0.57 0.90 0.88  0.83

4  1.00  0.96 0.99 0.53 0.68 0.60  0.87

5  0.88  0.91 0.91 0.64 0.00 0.90  0.69

6  0.96  0.56 0.96 0.75 0.84 0.02  0.98

7  0.86  0.70 0.83 1.00 0.66 0.93  0.00
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Figure 16: Case 4 Actuator and Sensor Set 



48 
 

 

Figure 17: Case 4 Damaged Simple Truss DPDREM and MMEDR Singular Vectors 

3.2.5 Discussion 

The four cases above show the capability of the DPDREM and MMEDR methods 

in locating the full DOF damaged elements with reduced sensor sets. Both methods use 

the same inputs and obtained similar results. It could be argued that the DPDREM results 

are slightly better due to the simplicity of the method. The DPDREM method simplifies 

the selection process by comparing the absolute values and utilizing the dot product 

function rather than the “best subspace” algorithm. The DPDREM also seems less prone 

to errors that may occur with sign differences in the damage residual singular vectors 

since the absolute value is taken for those vectors. 

The second item to note from the results is that the BVP, KE, and EI sensor sets 

can be tailored to focus on certain elements by shifting the actuator locations for the load 

dependent Ritz vectors. It is important to note that this does not take place with mode 
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shapes as they are not altered by the actuator location as with the Ritz vectors. The Ritz 

vectors can be adjusted to focus on selected elements of interest using an optimization 

method. This would be useful for complex structures where certain elements need to be 

monitored with a limited sensor set. 

3.3 Example 3: NASA Eight-Bay Truss 

 

Figure 18: NASA Eight-Bay Truss with damage cases 

The third example investigates the eight-bay hybrid-scaled truss structure 

designed for research in a dynamic scale model ground testing of large space structures at 

the NASA Langley Research Center [38]. The truss was modeled as an un-damped 

cantilevered 96-DOF structure. Each truss strut was modeled as a rod element. 

Concentrated masses were attached at each node to represent joint and instrumentation 

mass properties. The structure has been used in a complete analytical and experimental 

analysis to generate a realistic test-bed for structural damage location and extent 

1 
2 
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algorithms [39]. A schematic of the truss with the first four node numbers and different 

damage cases highlighted is shown in Figure 18. 

Damage cases A through N, as shown in Figure 18, consist of the full removal of 

one member from the truss. Damage case O consists of the full removal of two members 

and damage case P consists of a buckled member to illustrate a partial damage scenario. 

The examples presented in this work are based on the analytical models rather 

than the experimental results. This is due to the fact that only modal information was 

available from the test-bed. The analytical stiffness matrices were utilized to determine 

the Ritz vectors with selected force locations. Since the DPDREM and MMEDR results 

were determined to be very similar, only the DPDREM was used for these examples. The 

sensor locations were determined using the EI method. 

3.3.1 Damage Case L Detection with DPDREM using EI Sensor Set 

 

Figure 19: EI sensor set with force at node 1  

Damage case L includes the full removal of element 21 at DOFs 44 and 56. The 

Ritz vectors were found by placing a force on node 1 with an 80º angle in the x-z plane, 

xy 
z 

Legend: 
     X sensor 
     Z sensor 
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shown as an arrow in Figure 19. The EI method located five sensors at DOFs 3, 4, 12, 33, 

and 54.  

Using the reduced sensor set, the DPDREM results determined two potential 

damage locations at element 22 between DOFs 44 and 56 as well as element 31 between 

DOFs 56 and 68. As can be seen in Figure 20 below, the damage was correctly identified, 

however further investigation would be required to differentiate the identical signatures 

of elements 22 and 33. 

 

Figure 20: Damage Case L DPDREM using EI sensor set with force at node 1 

In the top portion of Figure 20, the damaged element is shown with circles at the 

associated DOFs, and the elements found with DPDREM are shown in thick lines. In the 

bottom portion, the damaged DOFs are identified by stars, and the selected damage 
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residual singular vectors found are shown as bars. To further investigate the two selected 

elements the reduced singular vectors were plotted and are shown in Figure 21. 

 

Figure 21: Reduced singular vectors for elements 22, 31 at DOFs 3, 4, 12, 33, 54 

Figure 21 above shows the actual damage residual singular vectors as stars and 

the reduced singular vectors from elements 22 and 31 as bars. As expected, both reduced 

singular vectors from the two elements are nearly identical to the reduced damage 

residual singular vectors. Most of the contribution to the damage detection comes from 

the bar on the far right, which corresponds to element 54, while the least contribution 

comes from the first bar on the far left corresponding to DOF 3. Since both elements 

contain DOF 56, it would make a good sensor location for the damage case. In this case, 

it would be best to replace the sensor at DOF 3 with one at DOF 56. The reduced singular 

value results with the revised sensor set are shown in Figure 22. 
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Figure 22: Reduced singular vectors for elements 22, 31 at DOFs 4, 12, 33, 54, 56 

As expected, the singular vector bar on the far right of Figure 22, corresponding 

to DOF 56, was found to be much higher than the rest. Additionally, the new sensor set 

clearly distinguished the reduced damage residual singular vector results between the two 

elements with the bars for element 22 found to be nearly identical to the stars 

representing the actual singular vectors. On the other hand, the element 31 damage 

residual singular vectors deviated from the actual damage. Figure 23 shows the 

DPDREM results for damage case L with the new sensor set. 

The results in Figure 23 show the damage detection correctly identified the 

damaged element for case L with the revised sensor set. This confirms the singular value 

results from Figure 22. 



54 
 

 

Figure 23: Damage Case L with DPDREM using the revised sensor set 

3.3.2 Damage Case I Detection with DPDREM using EI Sensor Set 

Damage case I consists of the full removal of element 99 at DOFs 68, 69, 74, and 

75. The damage case is used to illustrate the difference in results when the actuator 

location is changed. Initially, the Ritz vectors were found by placing a force at node 1 

with an 80º angle in the x-z plane as done in the case L example. The EI method located 

the five sensors at DOFs 3, 4, 12, 33, and 54 as shown in Figure 19. The DPDREM 

damage detection results are shown in Figure 24, which shows the DPDREM results 

using the EI sensor set determined using a force at node 1 does not correctly locate the 

damaged element. 
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Figure 24: Damage Case I with DPDREM using EI sensor set with force at node 1 

In an attempt to improve the results, the force location was moved to node 23 with 

an 80º angle in the x-z plane. With the new force location, the EI method placed the 

sensors at DOFs 6, 7, 9, 48, and 69 as shown in Figure 25. Note that the sensor at DOF 

69 falls directly on one of the damaged element DOFs. The DPDREM results are shown 

in Figure 26. 

As shown in Figure 26, the damaged element was located exactly using the new 

sensor set determined with the force at node 23. The findings confirm the sensor set 

variations obtained by modifying the force locations can attain different results, which in 

this case helped improve the detectability of case I. 

 

xy 
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Figure 25: EI sensor set with force at node 23  

 

 

Figure 26: Damage Case I with DPDREM using EI sensor set and force at node 23  
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3.3.3 Discussion 

The results above show that the DPDREM is capable of determining the damage 

locations for complex and repetitive structures, like the NASA eight-bay truss, with 

measurements from a relatively smaller number of sensors than the total present in the 

finite element model. The method was capable of locating the damage for both horizontal 

elements with two DOFs affected and diagonal elements where four DOFs were affected. 

Most damage cases presented in Figure 18 of this example can be determined using the 

same techniques as shown in Sections 3.3.1 and 3.3.2.  

As shown in the Section 3.2 simple truss example, the selected actuator location 

plays a major role in finding different Ritz vector sensor sets, which can help improve 

damage detection results. Additionally, the example for damage case L shows that, by 

examining the reduced singular vectors, the sensor sets can be manually modified to 

better locate damaged elements and avoid identical signatures. When examining the 

reduced damage residual singular vectors, the DOFs with the lowest magnitudes 

corresponded to sensors with the least contribution. Replacing the low contributing 

sensors with DOFs found from the initial DPDREM run improved the detection results. 

Most cases for the eight-bay truss had identical signatures for two elements that were 

generally connected by a DOF. The exact damaged element can be found by replacing a 

low contributing sensor with the connected DOF and re-performing the DPDREM. 

The cases that could not be determined as presented above were E, F, P, and O. 

For cases E, F, and P, the reduced basis vectors were not excited as a result of their 

removal. Of course, since only five sensors were used in these examples, additional 

sensors would undoubtedly improve the results. It should be noted that case F could not 
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be found using the MEDR or MMEDR even with a full sensor set because the singular 

vectors of the target and damaged vectors cancel each other out in equations (58) and 

(68) reducing to a near-negligible value. The DPDREM is capable of determining the 

damage since absolute values are taken in equation (73). 

Damage case O includes two affected elements, which is essentially an equal 

combination of cases H and I as shown in Figure 18. Since the two elements are 

connected by DOF 68, the damage detection becomes more complex because the 

damaged singular vectors are combined and normalized. The first diagonal element at 

DOFs 68, 69, 74, and 75 was found with a 5 DOF sensor set. However, once the new 

target vector was defined, the reduced sensor set could not detect a contribution from 

DOF 62, which in turn led to an inability to find the second element correctly. The 

second element could be found when additional sensors were used.  

The damage detection results could be further improved by using optimization 

methods that would determine the best Ritz vector forcing functions and subsequent 

sensor locations. In that case, it may be possible to locate the damaged elements with 

fewer sensors. This would be especially useful for the more difficult cases such as E, F, 

P, and O. 
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4 Conclusions and Suggestions for Future Work 

This study investigates pre-test planning when faced with the second part of the 

incomplete measurement problem where fewer degrees-of-freedom (DOFs) are measured 

than that of the analytical model. Sensor and actuator placement techniques were used 

with two variations of the Method of Expanded Dynamic Residuals (MEDR) designated 

as the Modified Method of Expanded Dynamic Residuals (MMEDR) and the Dot Product 

Damage Residual Expansion Method (DPDREM). 

The damage residual singular vectors obtained using mode shapes and load 

dependent Ritz vectors were first compared using a simple spring mass system model. 

While both basis vectors obtained good representations of the actual damage residual 

projection, the Ritz vector damage residuals were found to be slightly less susceptible to 

noise that would falsely identify damage compared to the mode shape damage residuals.  

The simple truss structure example demonstrated that the different sensor 

placement techniques could be used to vary the sensor sets. Additionally, the Ritz vectors 

could be modified by changing the load locations, angles, or both. This in turn altered the 

subsequent sensor sets and reduced damage residuals in a manner that could focus the 

damage detection results for different elements of interest. 

The MMEDR and DPDREM were determined to be effective methods to locate 

the structural damage using reduced sensor sets. The elemental disassembly improved the 

damage detection results by using a set of vectors that better represent each structural 

element. The dot product method helped simplify the damaged element selection process 

from the elemental information matrix. Both the DPDREM and MMEDR obtained 

similar results, but it could be argued that the DPDREM was less susceptible to incorrect 
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damage identification since the absolute values of the damage residual singular vectors 

are utilized. The study also showed that identical signatures can be mitigated by either 

moving sensors with low contributions or varying the system forcing to find better Ritz 

vector sensor sets. 

Optimization techniques, such as Genetic Algorithms (GAs), can be used in future 

studies to improve the forcing direction and magnitude determination, which will aid in 

focusing the MMEDR and DPDREM results to selected elements of interest. GAs are a 

form of directed random search first introduced by Holland [40]. GAs combine the 

survival of the fittest with a structured yet randomized search. GAs efficiently exploit 

historical information to speculate on new search points. Each new generation will 

introduce a set of ‘offspring’ using information from the fittest ‘parents’, while an 

occasional new part is also introduced to the generations for good measure. Goldberg 

later presented GAs as search algorithms based on the mathematics of natural selection 

and natural genetics in his work [41].  

GAs have been used in numerous applications and studies. A study by 

Zimmerman investigated the use of GAs to optimize the placement of actuators by 

developing an algorithm that would cycle through candidate configurations [42]. The 

method was capable of incorporating the effects of actuator mass in the system. 

Future studies could also focus on the investigation of multiple elemental damage 

cases. The current methods presented in this work determine a new target vector after 

finding the first damaged element. When reducing the actual damage residual singular 

vectors to the sensor set DOFs, it can be difficult to replicate the experimental damage 

residual singular vectors, especially when the damaged elements are connected. One 
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suggestion would be to keep the target vector unchanged and combine the selected 

damage residual singular vectors as they are selected in a way to add up to the target 

vector. These two improvements would further advance and enhance pre-test planning 

methodologies using Ritz vectors. 
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Appendix 

Appendix A: Ritz Vector M-file 

function [X,Xn] = ritz(M,K,f,n) 
% 
% function [X,Xn] = ritz(M,K,f,n) 
% 
% Generates orthogonal Ritz vectors [X] 
% 
% Updated 7/1/10 changed mass orthogonalization to unit 
orthogonalization 
% 
% Input: 
% M = Mass Matrix 
% K = Stiffness Matrix 
% f = load vector 
% n = Number of Ritz Vectors to output 
% 
% Output: 
% X  = Orthogonlized Ritz Vectors 
% Xn = Non-Orthogonlized Ritz Vectors 
% 
% Reference: Dynamic Analysis by Direct Superposition of Ritz Vectors 
%            Earthquake Engineering and Structural Dynamics, Vol 10, 
%            813-821 (1982) 
if n==[] 
    n=length(K); 
end 
  
x(:,1) = K\f;                     %First Ritz Vector - Static response 
to f. 
xn(:,1)=x(:,1); 
  
d = x(:,1)'*x(:,1);               %Unit Normalization 
x(:,1) = (x(:,1)/sqrt(d)); 
  
for i = 2:n 
    x(:,i) = K\(M*x(:,i-1));      %In experimentation, Ritz vectors are 
found without the mass matrix. 
     
    xn(:,i) = x(:,i); 
     
    m=0;                          %Unit Orthogonalization 
    for y = 1:i-1 
    c(y) = (x(:,y)'*x(:,i))/(x(:,y)'*x(:,y)); 
    m = m + c(y)*x(:,y); 
    end 
    x(:,i) = x(:,i) - m;        
     
    d = x(:,i)'*x(:,i);            %Unit Normalization 
    x(:,i) = (x(:,i)/sqrt(d)); 
  
end 
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 X = x; 
 Xn = xn;   
 
Appendix B: Basis Vector Product 

function [P,I] = evp(v,dim,num) 
% 
% function [P,I] = evp(v,dim,num) 
% 
% Generates the optimal sensor/actuator locations 
% using the Vector Product 
% Updated on 4/21/10 - see notes 
% 
% Input: 
% v = Eigenvector or Ritz Vector 
% dim = 2 for 2D, 3 for 3D 
% num = select number or range of vectors to use. For all vectors use: 
0. 
% 
% Output: In descending order from best to worst locations 
% P = Basis Vector Products 
% I = Degrees of freedom 
  
% Select the Basis Vectors to use 
if length(num)==1 
if num == 0 % To use all basis vectors 
     n = 1:length(v(1,:)); 
else n = 1:num; % To use a selected number of basis vectors 
end 
else n = num; % To use a range of basis vectors 
end 
  
% Multiply the Basis Vector components 
P = (v(:,n(1)).*v(:,n(2)));  
P = P/sqrt(P'*P); 
for ii = n(3:end) 
    P = (P.*v(:,ii)); 
    P = P/sqrt(P'*P); 
end 
  
% Sort the Basis Vector Products 
[P,I] = sort(abs(P),1,'descend'); 
 
Appendix C: Kinetic Energy Product 

function [ke,I] = ken(v,M,dim,N,num) 
% 
% function [ke,I] = ken(v,M,dim,N,num) 
% 
% Generates the optimal sensor/actuator locations 
% using the Kenetic Energy Method 
%  
% Input: 
% v   = Eigenvector or Ritz Vector 
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% M   = Mass Matrix 
% dim = 2 for 2D  
%       3 for 3D 
% N   = 1 for Kinetic Energy 
%       2 for Average Kinetic Energy 
% num = Select number or range of vectors to use. For all vectors use: 
0. 
% 
% Output: In descending order from best to worst locations 
% ke  = Kenetic Energy Product 
% I   = Degrees of freedom 
  
% Select the Basis Vectors to use 
if length(num)==1 
if num == 0 % To use all basis vectors 
     n = 1:length(v(1,:)); 
else n = 1:num; % To use a selected number of basis vectors 
end 
else n = num; % To use a range of basis vectors 
end 
  
k=1; 
for l = n(1:end)% Determine the System Kinetic Energy 
KE(:,k)=v(:,l).*(M*v(:,l)); 
k=k+1; 
end 
  
if N == 1 % To obtain the Kinetic Energy Product 
ke = (KE(:,1).*KE(:,2)); 
ke = ke/sqrt(ke'*ke); 
for ii = 3:length(n) 
    ke = (ke.*KE(:,ii)); 
    ke = ke/sqrt(ke'*ke); 
end 
end 
  
if N == 2 % To obtain the Average Kinetic Energy Product (not used) 
 for ii = 1:length(n) 
     ke(ii,:) = sum(KE(ii,:))/length(n); 
 end 
end 
  
% Sort the Kinetic Energy Product 
[ke,I] = sort(abs(ke),1,'descend'); 
 
Appendix D: Effective Independence Product 

function [E,I] = efi2(v,dim,num,N) 
% 
% function [E,I] = efi2(v,dim,num,N) 
% 
% Generates the optimal sensor/actuator locations 
% using the Effective Independence Method - Method C from Ref. 
% Ref: A Note on Fast Computation of Effective 
%      Independence through QR Downdating for Sensor Placement 
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% 
% Input: 
% v   = Eigenvector or Ritz Vector 
% dim = 2 for 2D  
%       3 for 3D 
% num = select number or range of vectors to use. For all vectors use: 
0. 
% N   = select number of sensor locations to obtain. 
%       Generally, N > num. Will be badly scaled if N < num. See QR 
%       decomposition limitations. 
% 
% Output: In descending order from best to worst locations 
% E  = Effective Independence Product  
%      0 = the sensor can be deleted with no impact to the target 
modes. 
%      1 = the sensor is vital to the independence of the target modes. 
% I   = Degrees of freedom 
  
% Select the Basis Vectors to use 
if length(num)==1 
if num == 0 % To use all basis vectors 
     n = 1:length(v(1,:)); 
else n = 1:num; % To use a selected number of basis vectors 
end 
else n = num; % To use a range of basis vectors 
end 
  
%Find the Fisher Information Matrix 
[Q1,R1] = qr(v(:,n)); 
Q = Q1(:,n); 
  
%Solve for the Effective Independence 
E = diag(Q*Q'); 
  
[E,I1] = sort(abs(E),1,'descend'); 
j=1; 
I = 1:length(v);I=I'; 
I1x=I1; 
  
%Iterative loop to remove least useful sensor locations 
while length(E) > N 
     
    E3(1:length(E),j) = E(:,1); 
    I3(1:length(I),j) = I1x(:,1); 
    k(j) = I1(end); 
    clear E I1 
     
I(k(j))=[]; 
v(k(j),:) = []; 
j = j+1; 
  
%Find the Fisher Information Matrix 
[Q1,R1] = qr(v(:,n)); 
Q = Q1(:,n); 
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%Solve for the Effective Independence 
E = diag(Q*Q'); 
[E,I1] = sort(abs(E),1,'descend'); 
I1x = I(I1,:); 
  
end 
I = I(I1,:); 
 
Appendix E: Minimum Rank Perturbation Theory 

function [dk,B,u,s] = mrpt(K,M,z,e,rank,option) 
%  
% function [dk,B,u,s] = mrpt(K,M,z,e,rank,option) 
% 
% Minimum Rank Perturbation Theory 
% 
% Input: 
% K      = Healthy Stiffness Matrix 
% M      = Healthy Mass Matrix 
% z      = Damaged Modeshapes / Ritz Vectors (i=1:n-1) 
% e      = Damaged Natrual Frequencies (in rad/sec) diagonalized and 
squared / Non-orthogonalized Ritz Vectors (i=2:n) 
% rank   = Rank of the update 
% option = 1 for Mode Shapes / 2 for Ritz Vectors 
% 
% Output: 
% df     = Stiffness perturbation matrix 
% B      = Damage residuals 
% u      = Damage residual singular vectors 
% s      = Singular values (used to find the rank input) 
  
if option == 1 
    B = K*z-M*z*e; 
elseif option == 2 
    z = z(:,1:end-1); 
    e = e(:,2:end); 
    B = K*e-M*z; 
end 
  
[u,s,c] = svd(B); 
u = u(:,[1:rank]); 
Y = pinv(B)*u; 
  
if option == 1     % Using Mode Shapes 
dk = B*Y*inv(Y'*B'*z*Y)*Y'*B'; 
elseif option == 2 % Using Ritz Vectors 
dk = B*Y*inv(Y'*B'*e*Y)*Y'*B'; 
end 
 
Appendix F: Modified Method of Expanded Dynamic Residuals (MMEDR) 

function [uf,Usel,utar,e,I,ddof,su,npr] = mmedr(ut,ufa,T,mpass,plot) 
%  
% function [uf,Usel,utar,e,I,ddof,su,npr] = mmedr(ut,ufa,T,mpass,plot) 
% 
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% Modified Method of Expanded Dynamic Residuals: 
% Performs the final process involved in completing the MMEDR.  
% Identifies important columns of ufa and estimates the full damage 
vector. 
%  
% Input: 
% ut   = Target vector  
% ufa  = Actual Full damage vectors 
% T    = Transformation matrix 
% mpass= Maximum number of iterations allowed (i.e. max rank of damage) 
% plot = select 1 to plot damage locations 
% 
% Output: 
% uf   = Full damage vector for the required number of passes 
% Usel = Full damage vectors for each pass 
% utar = Reduced damage residual target vectors 
% e    = Sorted Dot Product Values (Max to Min) for each pass 
% I    = Index Matrix of sorted dot product values for each pass 
% ddof = Selected Damaged location DOFs for each pass 
% su   = Summary of results with a matrix for each pass. First columns 
are  
%        normalized e values, second columns are the e values, 
remaining  
%        columns are the corresponding DOFs. 
% npr  = Number of passes required 
  
%% Identify Important Columns of ufa 
alpha = []; 
ex = zeros(1,1); 
utar=ut(:,1); 
pass=1;lpass = 1;upass = 1;%Needed to determine the number of passes 
required. 
for iv=1:mpass 
j=1; 
tc = (T'*ufa); % Reduced actual damage residual vectors 
for i = 1:length(ufa(1,:)) % "Best subspace" algorithm 
    if abs(tc(:,i))<eps 
        B(i)=0;               %Keep B from going to NAN 
    else 
        tc(:,i) = tc(:,i)/norm(tc(:,i)); 
        B(i) = (utar(:,iv)'*tc(:,i))/(tc(:,i)'*tc(:,i)); 
    end 
er(iv,i) = (utar(:,iv)-B(i)*tc(:,i))'*(utar(:,iv)-B(i)*tc(:,i)); 
end 
[en(iv,:),In(iv,:)] = sort(abs(er(iv,:))); % Sort the 'error' values 
e(:,iv)=en(iv,:)';I(:,iv)=In(iv,:)'; % Switch from rows to columns 
  
% Display the top columns of ufa 
if length(ufa(:,1))>10 
n=10; % Limits the number of columns to 10 
else 
n = min(length(ufa(:,1)),length(ufa(1,:))); 
end 
e1(:,iv) = e(:,iv)/min(e(:,iv)); % Sets the min error value at 1 
  
% Display the top damage locations 
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ddof(:,:,iv) = zeros(6,n); 
for iii=1:n 
k1(iii,iv) = length(find(ufa(:,I(iii,iv)))); 
ddof(j:j-1+k1(iii,iv),iii,iv) = find(ufa(:,I(iii,iv))); 
end 
j=max(k1(:,iv))+1; 
su(:,:,iv) = [e1(1:n,iv),e(1:n,iv),ddof(:,:,iv)']; 
  
% Find important columns of ufa based on e. Loop will combine values of 
e that are very similar. 
clear Usel1 
k(iv) = 0; 
    while abs(e(1,iv)-e(k(iv)+1,iv))<1e-10; 
        k(iv) = k(iv)+1; 
        Usel1(:,k(iv)) = ufa(:,I(k(iv),iv)); 
    end 
   Usel{iv}=Usel1; 
  
% Show the 'error' for each selected column of ufa 
ex(end+1:end+k(iv)) = e(1:k(iv),iv); 
% Remove first value of ex (always equals 0) 
if ex(1)==0 
ex(1)=[]; 
end 
ef(iv) = ex(end); 
  
% Update and normalize the target vector based on the selected column 
of ufa 
utar(:,iv+1) = utar(:,1)-B(I(1,iv))*tc(:,I(1,iv)); 
utar(:,iv+1) = utar(:,iv+1)/norm(utar(:,iv+1)); 
  
%% Estimate Full Damage Vector 
la = length(alpha); 
for ii = 1:k(iv) 
alpha(:,ii+la) = pinv(T'*Usel1(:,ii))*utar(:,iv); 
uf(:,ii+la) = Usel1(:,ii)*alpha(:,ii+la); 
end 
  
% Finds the number of passes required based on the percent difference 
from the consecutive error values obtained. 
percent_req = 70; 
if length(ef)>1 
lpass = lpass+1; 
for iiv=lpass:upass 
per(iiv) = abs(ef(iiv)-ef(1))/max(ef(1),ef(iiv)); 
    if per(iiv) < percent_req/100; 
       pass=pass+1; 
    end 
end 
end 
upass = upass+1; 
  
% Keep only required values based on above loop 
len = sum(k(1:pass)); 
uf = uf(:,1:len);uf = (abs(uf));% Full damage residual 
em = ex(1:len); 
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% Loop combines all columns of uf and normalizes 
if length(uf(1,:))>1 
    for ik = 1:length(uf(1,:)) 
    temp(ik)=norm(uf(:,ik)); 
    uf(:,ik)=uf(:,ik)/temp(ik); 
    end 
else 
    uf = uf/norm(uf);  
end 
end 
if plot == 1 % Optional bar plot of uf 
figure 
bar(abs(uf)) 
end 
  
utar(:,iv+1:end) = []; % Remove last column of reduced damage residual 
target vector 
npr = pass; 
  
%Display only the damage residuals based on number of passes needed. 
uf = uf(:,1:len); 
 
Appendix G: Dot Product Damage Residual Expansion Method (DPDREM) 

function [uf,Usel,utar,e,I,ddof,su,npr] = dpdrem(ut,ufa,T,mpass,plot) 
% 
% function [uf,Usel,utar,e,I,ddof,su,npr] = dpdrem(ut,ufa,T,mpass,plot) 
% 
% Dot Product Damage Residual Expansion Method (DPDREM) 
% Determines the important columns of ufa and estimates the full target 
% vector. 
% 
% Input: 
% ut    = Target vector  
% ufa   = Actual Full damage vectors 
% T     = Transformation matrix 
% mpass = Maximum number of iterations allowed (i.e. max rank of 
damage) 
% plot  = select 1 to plot damage locations 
% 
% Output: 
% uf   = Full damage vector 
% Usel = Full damage vectors for each pass 
% utar = Reduced damage residual target vectors 
% e    = Sorted Dot Product Values (Max to Min) 
% I    = Index Matrix of sorted dot product values 
% ddof = Selected Damaged location DOFs 
% su   = Summary of results with a matrix for each pass. First columns 
are  
%        normalized e values, second columns are the e values, 
remaining  
%        columns are the corresponding DOFs. 
% npr  = Number of passes required 
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alpha = []; 
ex = zeros(1,1); 
utar=ut(:,1); 
pass=1;lpass = 1;upass = 1;%Needed to determine the number of passes 
required. 
for iv=1:mpass 
j=1; 
udar = T'*ufa; % Reduced actual damage residual vectors 
for i = 1:length(ufa(1,:)) % Dot Product maximization problem loop 
    if abs(udar(:,i))<eps 
     udar(:,i)=0; % Keeps udar from going to NAN 
     else 
    udar(:,i)=udar(:,i)/norm(udar(:,i)); 
    end 
    d(iv,i) = abs(dot(abs(utar(:,iv)),abs(udar(:,i)))); 
end 
[en(iv,:),In(iv,:)]=sort(d(iv,:),'descend'); 
e(:,iv)=en(iv,:)';I(:,iv)=In(iv,:)'; % Switch from rows to columns 
  
% Display the top columns of ufa 
if length(ufa(:,1))>10 
n=10; % Limits the number of columns to 10 
else 
n = min(length(ufa(:,1)),length(ufa(1,:))); 
end 
e1(:,iv) = e(:,iv)/max(e(:,iv)); % Sets the max dot product value at 1 
  
% Display the top damage locations 
ddof(:,:,iv) = zeros(6,n); 
for iii=1:n 
k1(iii,iv) = length(find(ufa(:,I(iii,iv)))); 
ddof(j:j-1+k1(iii,iv),iii,iv) = find(ufa(:,I(iii,iv))); 
end 
j=max(k1(:,iv))+1; 
su(:,:,iv) = [e1(1:n,iv),e(1:n,iv),ddof(:,:,iv)']; 
  
% Find important columns of ufa based on e. Loop will combine values of 
e that are similar. 
clear Usel1 
k(iv) = 0; 
    while abs(e(1,iv)-e(k(iv)+1,iv))<1e-10; 
        k(iv) = k(iv)+1; 
        Usel1(:,k(iv)) = ufa(:,I(k(iv),iv)); 
    end 
     Usel{iv}=Usel1; 
  
% Show the top dot product for each selected column of ufa 
ex(end+1:end+k(iv)) = e(1:k(iv),iv); 
% Remove first value of ex (always equals 0) 
if ex(1)==0 
ex(1)=[]; 
end 
ef(iv) = ex(end); 
  
% Update and normalize the target vector based on the selected columns 
of ufa 
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utar(:,iv+1)=abs(utar(:,iv))-abs(e(1,iv)*udar(:,I(1,iv))); 
utar(:,iv+1) = utar(:,iv+1)/norm(utar(:,iv+1)); 
% Estimate Full Damage Vector 
la = length(alpha); 
for ii = 1:k(iv) 
alpha(:,ii+la) = pinv(T'*Usel1(:,ii))*utar(:,iv); 
uf(:,ii+la) = Usel1(:,ii).*alpha(:,ii+la)'; 
end 
  
% Finds the number of passes required based on the percent difference 
from the consecutive dot product values obtained. 
percent_req = 10; 
if length(ef)>1 
    lpass = lpass+1; 
for iiv=lpass:upass 
per(iiv) = abs(ef(iiv)-ef(1))/max(ef(1),ef(iiv)); 
    if per(iiv) < percent_req/100; 
       pass=pass+1; 
    end 
end 
end 
upass = upass+1; 
  
% Keep only required values based on above loop 
len = sum(k(1:pass)); 
uf = uf(:,1:len);uf = (abs(uf));% Full damage residual 
em = ex(1:len); 
  
% Loop normalizes uf columns 
if length(uf(1,:))>1 
    for ik = 1:length(uf(1,:)) 
    temp(ik)=norm(uf(:,ik)); 
    uf(:,ik)=uf(:,ik)/temp(ik); 
    end 
else 
    uf = uf/norm(uf);         
end 
end 
if plot == 1 % Optional bar plot of uf 
figure 
bar(abs(uf)) 
end 
utar(:,end) = []; % Remove last column of reduced damage residual 
target vector 
npr = pass; 
  
%Display only the damage residuals based on number of passes needed. 
uf = uf(:,1:len); 
 
Appendix H: Example 2, Case 1, Element 3 Damage Scenario 

% Example 2, Case 1, Element 3 Damage 
  
clc 
clear 
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close all 
  
delem = '3'; % Damaged element number 
set = 3; % Select 1 for VP, 2 for KE, 3 for EI. 
  
ndof = 4; % Number of sensors used. 
nritz= 3; % Number of ritz vectors used in VP, KE, or EI 
rank = 1; % Rank of damage used 
f = [0 0 0 0 100 100 0]'; % Forcing funciton 
  
% Load stiffness and mass matrices obtained using dtruss3d 
 
% Healthy stiffness matrix 
kh = [5702637.68087986,0,-751318.840439929,1502637.68087986,... 
-4200000,0,0;0,6010550.72351943,1502637.68087986,... 
-3005275.36175972,0,0,0;-751318.840439929,1502637.68087986,... 
9902637.68087986,0,-751318.840439929,-1502637.68087986,... 
-4200000;1502637.68087986, -3005275.36175972,0,6010550.72351943,... 
-1502637.68087986,-3005275.36175972, 0;-4200000,0,-751318.840439929,... 
-1502637.68087986,5702637.68087986,0,-751318.840439929;0,0,... 
-1502637.68087986,-3005275.36175972,0,6010550.72351943,... 
1502637.68087986;0,0,-4200000,0,-751318.840439929,1502637.68087986,... 
4951318.84043993;]; 
 
% Mass matrix 
mh = [6.35078340584334,0,0,0,0,0,0;... 
      0,6.35078340584334,0,0,0,0,0;... 
      0,0,8.31328340584334,0,0,0,0;... 
      0,0,0,8.31328340584334,0,0,0;... 
      0,0,0,0,6.35078340584334,0,0;... 
      0,0,0,0,0,6.35078340584334,0;... 
      0,0,0,0,0,0,4.15664170292167;]; 
 
% Elemental Stiffness Information Matrix 
uca = [-0.447213595499958,0,-0.316227766016838,-0.707106781186547,... 
0,0,0;-0.894427190999916,0,0.632455532033676,0,0,0,0;... 
0,1, 0.316227766016838,0,-0.316227766016838,-0.707106781186547,0;... 
0,0,-0.632455532033676,0,-0.632455532033676,0,0;0,0,0,... 
0.707106781186547,0.316227766016838,0,-0.408248290463863;0,0,0,0,... 
0.632455532033676,0,0.816496580927725;0,0,0,0,0,0.707106781186547,... 
0.408248290463864]; 
 
% Damaged stiffness matrix (with noise) 
kdn = [5053116.15922250,728779.275226731,-349363.260804567,... 
698726.521609134,-3990000,0,0;728779.275226731,4252464.63689000,... 
698726.521609134,-1397453.04321827,0,0,0;-349363.260804567,... 
698726.521609134,9485655.72443570,773858.405653127,... 
-736292.463631131,-1472584.92726226,-3906000;698726.521609134,... 
-1397453.04321827,773858.405653127,4342622.89774279,... 
-1472584.92726226,-2945169.85452452,0;-3990000,0,-736292.463631131,... 
-1472584.92726226,5515177.24609306,-105184.637661590,... 
-788884.782461926;0,0,-1472584.92726226,-2945169.85452452,... 
-105184.637661590,6100708.98437223,1577769.56492385;... 
0,0,-3906000,0,-788884.782461926,1577769.56492385,4694884.78246193]; 
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[rh,rhn] = ritz(mh,kh,f,nritz); 
if set == 1 % Basis Vector Product 
[Ps,Is] = evp(rh,2,nritz); 
elseif set == 2% Kenetic Energy Product 
[Ps,Is] = ken(rh,mh,2,1,nritz); 
elseif set == 3% Effective Independence 
[Ps,Is] = efi2(rh,2,nritz,ndof); 
end 
dofkeep = sort(Is(1:ndof))'; % Sensor set used 
  
%Obtain the reduced damage residual signular vector. 
[rd,rdn] = ritz(mh,kdn,f,length(mh)); % Full Damage Ritz vectors 
rdr = rd(dofkeep',1:ndof);rdnr = rdn(dofkeep',1:ndof); % Reduced damage 
Ritz vectors 
[khr,mhr,Dh,dofrm]=guyanmr(kh,mh,dofkeep); % Reduce healthy mass and 
stiffness matrix to use in mrpt 
[dkr,Br] = mrpt(khr,mhr,rdr,rdnr,rank,2); % Obtain the reduced damage 
residual 
[ur,sr]=svd(Br); % Find the damage residual singular vectors and values 
  
% Create Transformation Matrix 
T=zeros(length(mh),length(dofkeep)); 
T(dofkeep,:)=eye(length(dofkeep)); % Set ones at DOFs where sensors are 
located 
T(dofrm,:)=Dh; % Set the transformed values where there are no sensors 
  
[uf,Usel,utar,e,I,ddof,su] = dpdrem(abs(ur),uca,T,rank,0); 
[ufm,Uselm,utarm,em,Im,ddofm,sum] = mmedr(ur,uca,T,rank,0); 
  
% Re-sort e values to show in DOF order  
for i = 1:7 
e1(I(i))=e(i); 
em1(Im(i))=em(i); 
end 
e1=e1';em1=em1'; 
  
% Plot Results 
figure(1) 
bar(abs(uca(:,str2num(delem))),'stacked','b') 
hold on 
bar(uf,.4) 
colormap spring 
hold off 
  
figure(2) 
bar(abs(uca(:,str2num(delem))),'stacked','b') 
hold on 
bar(ufm,.4) 
colormap spring 
hold off 
su 
sum 



 
 

 


