FRACTURE MECHANICS OF
FIBER REINFORCED COMPOSITIS

A Thesis
Presented to
the Faculty of the Department of Mechanical Engineering

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanical Engineering

by
Leonard Douglas Power

June 1968

450456



ACKNOWLEDGMENTS

I would like to express appreciation to the following

people whose assistance has made this work possible:

To the National Science Foundation for thelr financial

support.

To my Advisor, Dr. A. C, Nunes for his invaluable sug-

gestions and help.

To my wife, Jeannette, for her patience and

understanding.

iii



FRACTURE MECHANICS OF
FIBER REINFORCED COMPOSITES

An Abstract of a Thesis
Presented to
the Faculty of the Department of lMechanical Engineering

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanical'Engineering

by
Leonard Douglas Power

June 1968

iv



ABSTRACT

The present investigation 1s a study of tne stress fleld
produced by a broken fiber in a {lber reinforced couposite
and the nature of fallure propagation in the conmposite

following such an initial breaX.

The material is simulated by a hexagonal network of
elastically coupled discrete elements, IZqulilibrium of a typ-
lcal element yields a system of first order difference
equations in terms of the displacements of the elements, The
displacements are then found by the method of relaxation, and

stresses obtained from the resulting displacement field,

Results are given for various values of relative elastic
vroperties and fiber volume fractions to show the effect of
these parameters on stress distributions, Where applicable,

results are compared to previous analyses,

A theory 1s offered to explain the general notch insens-
itivity of fiber reinforced composites based on tne distribu-
tion of flaws in fibers, A recommendation Tor future study

is included,
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CHAPTER I

INTRODUCTION

There has recentiy been increasing interest in the de-
velopment of fiber reinforced composite materials for struc-
tural applications. Such composites are formed by imbedding
parallel bundles of strong fibers with large elastic moduli
in a more ductile, low modulus binder which serves to joln
them together, protect them from adventitious damage, and
allow load transfer to the fibers. The principles of fiber
reinrorcemént have been understood in a genseral way for many
years and have been extensively exploited in the production

of commerclal fiberglass,

I. DESCRIFPTION AND CLASSIFICATION
OF FIBER REINFORCED COMP'OSITES

Interest in such composite materials began with the de-
velopment of glass fiber reinforced plastics in the early
1940's. The first fiberglass was made by soaking a woven
glass fiber mesh iIn a thermosetting polymer and allowing it
to harden in the desired shape. Laminated composites were
made by stacking several such sheets and allowing them to
set under pressure. This type of laminate is still in wilde

use, In the intervening years, many improvements have been



made both in the constituent materials and the fabricating
techniques.

The confirmation of the high strength of short fibers
or "Whiskers" by Brennerl* in 1956 and the discovery by

McDanels, Jech and Weeton?

that the properties of fiber re-
inforceq composites were esgentially the same for continuous
and diécontinuous fibers led to the conclusion that very
high strength materials might be produced by whisker rein-
forcement of metals. The mechanical properties of some
reinforcing filamenfs and whiskers are tabulated in Appendix
I. Significant progress has recently been made in the tech-
nology of whisker-strengthened metals, although the labora-
tory techniques used have not been applied on a commercial

scale,

" Fiver réinforced composites may be clasgssified according
to the relative lengths of the fibers used or the manner in
which they are orlented within the composite. In the metals,
common reinforcing elements are whiskers, which are discon-
tinuous due to manufacturing limitations rather than design,
and are generally oriented, as nearly as possible, parallel
to the direction of principal stress. Short fibers also
find wide application as fillers in molded plastic products.

These consist of chopped orgunic fibers which are mixed into

*Superscripts refer to references an end of thesis.



polymers before molding to add rigidity and dimensional
stability. Their orientation within the material is

essentially random.

When the reinforcing fiters are easily produced in con-
tinuous strands, as with glass or steel filaments, the loca-
tion and orientation of the filaments may be controlled so
as to obtain the maximum benefit of composite strengihening
for the particular application. This type of fabrication is
applied in the manufacture of filament-wound tubing and pres-
sure vessels. "hen filament-winding is not applicable, a
degree of selective orientation may still be achieved by the
use of fiber cloth.

IIXI. THE MECHANICS OF FIBER STRENGTHENING

Continuous Fibers

In order to use the high strength of reinforcing fila-
ments in a composite, the filaments must be oriented so that
the worst loud carried by the material will be applied
parallel to the fiber axes. When a composite containing
continuous filaments is loaded parallel to the direction of
the fibers, the fibers and matrix may be expected to undergo
essentially equal strain, which leads to a simple "Law of
Mixturesrdetermination of the mechanical properties of the

composite in terms of the properties of the constituents.



These princirples are developed Iin aAppendix II. With this
assumption of equal strain, it 1s convenient to consider the
behavior of such a composite in terms of strain rather than
stress, If the filaments and the matrix are elastic, the

composite wlll behave elastically according to the Law of

Mixtures.

When a certain value of strain is exceeded, the compo-
site will deviate from elastic behavior and deformation
processes that will ultimately result in fracture will be
initiated in the composite. Four things may produce such
deviatlon: (1) yielding of the reinforcing fibers, (2)
yielding of the matrix, (3) fracture of the matrix, or
(4) fracture of the reinforcing fibers. The first of these
is unlikely since commercially used fibers are highly brit-
tle. The second 1s of little interest in terms of fracture,
although it does produce a change in the over-all elastic
modulus of the composlte, an effect which was noted by
Kelly and Tyson3. The great ductlility of the common matrix
materials precludes the third unless there are volds or
notches in.the matrix, Consequently, tensile fracture of
the fibers i1s the most likely mechanism by which failure is
initiated.

When a fiber has broken, a discontinuity is introduced

which significantly affects the behavior of the composite



wﬁich then enters the discontinuous stage prior to ultimate

fracture.

Discontinuous Fibers

If a composite contains discontinuous fibers, as would
be the case if a composite made with continuous filaments had
been stralned sufficiently to break some of the filaments,
or if the composite were made with discontinuous fibers (or
whiskers) aligned in the direction of principal stress, the
load must be transmitted from one fiber to another through
the matrix. "hen the composite 1s stressed in the direction
of fiver alignment the axlal displacement of the two com~
ponents will be different due to the difference in thelr
elastic modull and shear stresses will be produced in the
direction of the fiber axes¥. These shear stresses are the
mechanism by which load is transferred from the matrix to
the fibers. Any study of mechanical properties or fracture
mechanics of fiber reinforced composites must be centered
around the nature of this load transfer mechanism and the
associated stress distribution, especially in the vicinity

of a fiber end.

The distributions of shear and tensile stresses are
illustrated schematically in Figure 1 for three possible

conditions. When the matrix deforms elastically only, the



shear étress is a maximum in the vicinity of the fiber end,
then drops sharply, approaching zero asymptotically as the
fiber tensile stress approaches a value Op. , Which 1is the
stress of an infinitely long fiber under the same loading
conditions, When the matrix or interface yields, the inter-
facial shear again rises to a maximum near the fiber end,
but distributes itself over a much greater portion of the
fiber surface, so transfer of the same load from the matrix
to the fiber now requires a greater fiber length. It 1s also
possible, in a discontinuous composite where fiber strains
may differ, that the fracture strength of the interface bond
may be exceeded before the matrix yield stress is reached.
Such a condition is especially likely to be encountered in
glass fiber reinforced polymers. In this case, a shear
failure will occur at the fiber-matrix interface and a sep-
aration of fiber and matrix will start at the fiber end and
propagate along the length of the fiber. In the region of
such a separation, the fiber-matrix interaction may be con-
sidered to be frictional. Outwater’ assumes that frictional
forces in glass fiber reinforced polymers are proportional
to contact stresses between fiber and matrix, and derives

expressions for their magnitudes,



Elastic

ALANLAGARAEEEEEEGETRTTSESHITST GG R R SRNASSY
AANNAARANARNRANAN S RRNN SRS NRANNNNNNNNNNNNN

o

EFlastic-Plastic

’ctjld_

— x
L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
ANEL EEERRE R RER SRR SRR AARRA SR RN AN RN RN

Gpooe] mmmmmmm — ———

Bond Faillure

U /

=
SOVNNNN NN AN NONON N NN SO

N\
\

Figure 1. Illustration of stress distribution for three
possible cases.,



Short Fibers--Critical Length

The distribution of shear and tensile stresses in the
viecinity of a short fiber wili be similar to that of a semi-
infinite fiber; the principal exception being that symmetry
requires'that the interface shear be zero at the mid-point
of the fiber., Schematically represented in Figure 2 are the
. distributions of interface shear and fiber tension in the
vicinity of a short fiber imbedded in a weaker matrix, as-
suming that tpe integrity of the bond is maintainéd. As was
séen in the case of the semi-infinite fiber (Figure 1), when
the matrix deforms elastlically only, the shear stress builds
up to a maximum value which approaches that of an 1gfinitély
long fiber where end effects are negligible. When the matrix
or interface ylelds, the interface shear again rises rapidly
near the ribef end, but distributes itself over a much
greater portion of the fiber so transfer of the same load
to the fiber now requires a greater fiber length, The mini-
mum fiber length required to reach a maximum tensile stress
that 1s 97 percent of ¢, 18 cailed the oritical transfer
length, L. A short Lg is indicative of efficlient stress
transfer between matrix and fiberé. When the fiber length
is less than the critical length, the load carrying capacity
of the fiber is low, and its value as reinforcement is re-

duced, This ls i1illustrated in Figure 3.
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Modes of Failure

This study will treat the mechanics of tensile failure
of a fibrous composite subsequent to an Iinitial fiber frac-
ture. Brittle fibers have a distribution of flaws or im-
perfections which result in fiber fracture at various stress
levels?, and it has already been pointed out that the frac-
ture process is most likely to begin with a fiber fracture.
When such a break occurs, several possibilities for the

future behavior of the composite exist.

First, the high interface shear stresses could produce
interface failure propaguting away from the break along the
fiber. Such an Interface fallure separates the fiber fron
the matrix over the length of the bond fallure and renders
that portion of the fiber ineffective as a load-carrying
element, but results in no appreciable stress concentration
around the fiber break. The load that had previously been
carried by the broken fiber ;s now distributed among the re-
maining fibers. As the stress increases, more fibers break
and a given cross-section is penetrated by an increasing num-
ber of ineffective fibers. Total composite failure occurs
when the load on a particular cross-section exceeds the
capacity of the remaining effective fibers intersecting it.

At this point the matrix and the remaining fibers fracture.
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The resulting fracture surface contains alternating holes arnd
protruding fibers as illustrated in Figure 4. This type of
composite failure is common to fiber reinforged polymers5

and is usually called a "pull-out"™ failure.

Second, a fiber break may produce high local stresses
that extend to the adjacent fiber, which breaks as a result
of the stress concentration. If the composite is subject to
this type of transverse fracture propagation, the composite
will exhibit a sudden, brittle type failure (or gquasi-brittle
if the matrix is very ductile). The fracture surface is

illustrated in Figure 4.

A third possibility, to be elaborated more fully later,
is that the localized nature of the stresses around a fiber
break, together with the nature of the flaw distributions in
the adjacent fibers may be combined in such a way that fuil-
ure will be arrested at the interface of the adjacent fibers,
This crack-arresting property of composite structures ac-
counts for much of their toughness, and Cooper and Kelly8
héve shown that notch?insensitive composites can even be-
made with constituents that are individually notch-sensitive.
If a composite resists crack propagation either along the
interface, or transverse to adjacent fibers, 1t will be
possible to increase the load, while subsequent breuks occur

at other points of fiber weakness independent of the previous
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break. Increasing the load will then produce an increasing
nunber of randomly located fiber fractures until a sufficient
number of fractures accumulate near some cross section to
produce a weak surface. At the point of inciplent failure,
all the previously mentioned fallure modes may interact to
produce the final fracture. These progressive stages of
fracture were conflirmed by Rosen! who observed initial fiber
fractures in a glass-epoxy specimen at less than 50 percent

of the ultimate load.

Since the fiber stress rises sharply at the end, ap-
proaching Croo asymptotically, 1t 1s likely that at a distance
sufficiently removed from a break, a broken fiber.may break
aéain. This behavior has been confirmed by Rosen7, who
counted more fractures than fibers in a failing model. When
this happens, the composite contains fibers of finite length.
The following section outlines past theoretlcal analyses of
stresses around a fiber of finite length within & reinforced
composite maferial which undergoes a stress parallel to the

direction of the fibers.

ITI. PRELIMINARY STATEMENT OF THE PROBLEM

AND REVIEW OF THE LITERATURE

It was the purpose of this study to treat the initiution

of fracture in a strongly bonded fiber reinforced composite
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by devising an elastic "equivalent model” of such a composite
with one broken fiber and solving for the stresses in the

model by the method of relaxation.

Relevant Theoretlical Analyses

If a bomposite contains only continuous filaments, the
load is applied directly to them so that the stress 1s con-
stant over the length of the fiber, and there 1is no shear at
the fiber-matrix interfuce, In such a case thc proportion of
the applied load carried by the fibers can be calculated from
the "law of mixtures" derived in Appendix II. If, however, a
composite contains discontinuous or short fibvers, an analysis
of the stresses is much more involved, and an exact solution
does not seem possible at this time. However, five approxi-
mate theories based on a cylindrically symmetric model have
been presented and are summarized below in chronological
order, Details of the derivations are presented in Appendix

III.

In 1952, H. L. Coxh presented a theory for the case of
an elastic fiber in a completely elastic matrix, assumlng a
perfect bond between fiber and matrix, e@ual lateral stiff-
ness of fiber and matrix, and negligible locad transfer
through the end of the fiber. To obtain expressions for

stress distribution, he assumed that the matrix 1s strained
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homogeneously, but the stress and strain 1s locally perturbed
by the transfer of load to the more rigid fibers. This per-

turbation is assumed to be governed by the equation:
dP
g = H(u-v) (1)

where x 1s the distance from the fiber end, P is the local

load carried by the fiber, w 1s the local displacement, v is
the displacement the same point would have if the Tiber were

not present, and H 1is a constant*. Solution of the above

differential equation with boundary conditions yields:

£
- = (£ =Em)Ta ;- coshB(z -%) (2)
P E.n CO&/)/;?—ég

(EF "-Em)OZz p Sinh B (ﬁ:::g _%)

“TTE, 4 T cosnpd )

In 1956, J. Ogden Outwater, Jr.5 presented a theory for
the specific case of reinforced plastics. Since the bond
strength in plaétics is low, he assumed that the interaction
between fiber and matrix was through friction at the inter-
face. He further assumed that load is carried entirely by
the fibers, and that the fibers are connected to the matrix

material by a thin film of matrix material whose thickness

*See Appendix III for definitions of constants in this
section.
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is negligible compared to the other dimensions of the system
and thus does not deflect in shear. The friction at the
fiber-matrix interface is assumed to arise from the shrinkage
of the matrix onto the fiber during production., The thin
£ilm of matrix material is then treated as a thin cylinder
with hoop stress equal to the yield stress of the plastic.
The result is a constant shear stress and a linear flber

stress distribution:

a, L ¥
o = MO (4
% .

up to a distance «, from the end, given by

_ Eert
Ko = T £ (5)
and for «>%,,

In 1963, N. F. Dow? presented a theory for the case of
an elastic fiber in a completely elastic matrix with perfect
bonding between fiber and matrix. The load was assuned
applied at one end to the matrix alons. At the other end,
both fiber and matrix were assumed loaded so that the strain
in each was the same, simulating the midplane of a symmetri-
cally loaded short fiber. It was further assumed thut the

matrix deformed in such a way that straight radial lines
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remained straight as the matrix deformed in shear. These

assumptions yield, for the shear at the interface:

\P, Sinh [%(‘Zg - “)]

Am En AL
4‘(A,c+ E; )COSh-Z—d;

(7)

and for the tensile stress in the fiber:

V4
o= —f |, cohglz =) (8)
f A; + AmEEm cosh 2’,\—.,{;
f

In 1964, B, Walter Rosen7 produced a modification of
Dow's theory. Rosen's model differs from Dow's in that Rosen
considers the fiber to be surrounded by a matrix which in
turn is surrounded by a material having the average proper-
ties of the composite. In Rosen's model, he assumes perfect
bonding at the fiber-matrix interface, no load transferred
through the ends of the fiber, and that the fiber and average
material carry only tensile stresses, while the matrix mater-
f1al carries only shear stresses, With these assumptions, an

equilibrium equation is solved to obtain:

26, o.d’ sinhn(d-x)

T
C T TN E (=) -d] cosh 7 (9)

and,

2 4
¢ Ya (z-4
O,} — Je z‘é;' [I_Mi_] (10)

E, (di-dy )+ E,df cosh £
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In 1965, Xelly and Tyson3 produced an analysis for the
case of the matrix in the plastic state. They assume that
the whole of the matrix yields plastically and flows past
the fiber which is stretched by the shear acting at the Inter-
face. Applying the Tresca yield criterion, this interface
shear stress 1s the yield stress in shear of the matrix and
is a constant. The equilibrium equation for the fiber inte-
grates to give:

_ ZTLI (E’g—%)
g =
f rf ' (11)

Relevant Experimental Results

In 1965, Tyson and Daviest®

carried out photoelastic
experimenté on a two-dimensional model and compared the re-
sults to the theorles of Cox and Dow. Their results indicate
reasonable agreement at a distance more than one fiber diame-
ter from the end, but the interface shear was found to be
more than twice that predicted by the theories at polnts very
near the ends. Also in 1965, Schuster and Scalatl carried
out photoelastic studies on a three-dimensional model and
compared the results to Dow's theory. Their results indicate
reasonable agreement with the theory at distunces of more

than two fiver dlameters from the ends of the fiber. At

oints near the ends, they measured interface shears which
]
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.were higher than those predicted by theory, although the
discrepancy was not nearly so pronounced as in the experi-

ments of Tyson and Davies.

Limitations of Previous Studies

In the three theorles which use a model consisting of
an elastic fiber in an elastic matrix (Cox, Dow, and Rosen),
the results are similar in form. The stresses are in all
cases expressed in terms of hyperbolic functions of ¥, the
only differences being in the coefficients involved. The
theoretical results from the three analyses are generally
in closer agreement with each other than with experimental
evldence, so that there is no experimental justification for
favoring one particular analysis above the others. These
theories have been applied to the problem of determining the
elastic properties of fibrous composites containing discon-
tinuous fibers, and have produced reasonable results’/, The
fact that the photoelastic measurements of interface shear
mentioned in the preceding section indicated much higher
values than were predicted by the theories would cast some
doubt on the theories. However, it should be noted that
approximations are involved in both the theoretical and ex-
perimental models. The fact that the theoretical and experi-
mental results agree well at polnts more than four fiver

diameters from the end suggests that the discrepancy is
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related to end conditions such as (1) load transfer and/or
(2) stress concentration factor at the fiber ends. The first

10

effect was considered by Tyson and Davies who found that

interface shear was Iincreased by end bonding. The second

effect was considered by Schuster and Soala11

who confirmed
the exlistence of a high stress concentration effect for a

blunt ended filber.

The "friction" model does not actually apply to the case
being considered, but is hentioned since it 1s so closely re-
lated to the above three. It might have some application to
pull-out faillure of weakly bonded composites,

The theoretlical model proposed by Kelly and Tyson was
accompanied by extensive experimental work on their part

which tended to confirm the plastic matrix failure mechanism,

A shortcoming which all the theories have in common 1is
the assumption of cylindrical symmetry around the fiber in
question. Thls assumption always involves the radial dis-
tance from the fiber-matrix interface to another such inter-
face. Since this varies with direction, some sort of average
must be used, This yields an average shear stress, while the
maximum may be of more interest in terms of fallure.

Another significant limitation is that while all the
theories treat the effect of a fiber fracture on the fiber
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itself, they are not adaptable to an estimate of the influ-

ence of a fiber fracture on the stresses in adjacent flbers.



CHAPTER I1I
THE PROBLEM

It was the purpose of this study to estimate the fiber
tensile stresses and interface shear stresses resulting from
a flber break in.a strongly bonded composite subjected to a

stress parallel to the reinforcing fibers,
I. METHOD OF SOLUTION

For the purpose of analysis, the material is approxi-
mated by the discrete model shown in Figure 5. In the model,
each element is connected along the axis of the fiber through
an elastic coupling'chargcterized by a tension spring con-
stant, /(T . It is also connected to a corresponding element
in an adjaéent fiber through an elastic coupling character-
ized by a shear spring constant, K, . A fiber break is then

simulated by a broken tension spring.

Equilibrium conditions require that the net force acting
on any element of the model be zero, If the spring constants
are known, the net force, Fij' acting on the (i,J) element
can be treated as a discrepancy, or residual at that point
and is expressible as a first-order difference equation in
terms of the displacements, LQJ. This is sufficient to set

» up a numerical solution for the displacement field by the
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method of relaxation.15 The procedure used is described in

the following paragraph.,

First, an initial displacement field was assumeqd. The
displacement fleld which would result if there were no miss-
ing spring is'an easily calculated, reasonable first assump-
tion, and was used in this study. With these starting

values, an iterative procedure was instituted as follows:

1. Find the largest |7y4]-

2. Correct U;,; so that Fij = O.

3. Repeat until the maximum lFijl is
less than some predetermined limit..

II. ANALYSIS OF THE MODEL

For this analysis, a fiber reinforced composite 1is
assumed to have the fibers arranged in a hexagonal pattern,
as shown in Figure 6. The model is taken to be composed of
"unit cells"™, each of which consists of a fiber with the
matfix material included in the hexagonal region associated
with that fiber. A length AX of such a "unit cell" is then
taken as the typlcal composite element. The e;ement is shown

in Figure 7.

Each element 1s elastically coupled to its elght adja-

cent elements, The coupling between ad jacent elements within



Figure 6., Idealized model of a fiber reinforced composite
as a network of hexagonal unit cells,



Figure 7.

27

A typlcal element.
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the same cell is characterized by a "tension spring constant,"
A}, and the coupling between corresponding elements in adja-

oent cells is characterized by a "shear spring constant,” Ks.

To evaluate K,, consider two adjacent polnts within the'
JE0 unit cell, (1,j) and (i+1,j). These points are a dis-
tance Ax apart, .so the "tension spring" connecting them is
the elastic element shown in Figure 7. If u,,,J and ‘LQ,,’J- are
.the respective displacements, then the tensile force in this
elastic element is given by:

F= Ghp+ G A, = K (w,, -W,;) (12)

Since the thickness of the matrix layer in most composites
is thin compared to the fiber diameter and Ep 1s small com-
pared to Ep, we can dssume, with small error, that the strain
in the fiber is equal to the strain in the matrix. Also
assuming that both fiber and matrix are linearly elastic,

g =E€  aw C,=E,e€ (13)

Strain and displacements are related by:

_ 4u Ui = Uiy
€ = 2% JAz , (14)

then substituting equations (13) and (14) into (12):

=' A;E‘ + AmEm

Kr- Ax

(15)
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To evaluate K¢, consider the influence of the (1,j+1)

element on the.tgj) element (Figure 8), If u; and U; are

4J ilyj
not equal, there is a shear force acting on the interface be-

tween the two elements is given by:

Frmk (W =ty ) = Gup A (16)

where 7 1s an average shear straln at the cell interface,
Since for most composites G >> G, 1t is assumed that the shear

strain in the fiber material is negligible, and:

y = ui;i” - u"'l':
7 e (17)

where A 1s the mean distance between the fibers normal to the
cell interface. Then substituting equation (17) into (18) and

solving for Ky , we have:

K, = -Q;_—”-*L - (18)



Figure 8., Shear reaction between corresponding elements
in adjacent fibders.,
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CHAPTER III
RESULTS

Numerical calculations were made on the model described
in Chapter II using typical elastic constants for three dif-
ferent fiber-matrix combinations, and varying volume frac-

tions for each case.

Interface shear stresses and tenslle stresses along the
broken fiber are compared with values obtained from Cox's
model in Figures 9 through 12. It should be noted that in
~the discrete model the shear stress varles around the fiber
due to the variation of interface distance with direction.

In the relaxation procedure, an average shear was used to
determine equilibrium of fiber segments, while the maximum is
displayed in the result. Cox's model only glves the average
shear, the maximum shear being somewhat larger. The disagree-
ment with Cox seen in Figure 11 is typlcal of low volume

‘ fraétions, irrespective of elastlc properties. The discrete
model may be expected to be better than Cox's model at high
volume frgctions;. The croséover of shear stresses in Figure
11 might indicate breakdown at volume fractions below about
0.75, but a proper choice of parameters in Cox's model 1is
difficult at high volume fraotions, and the error may lie in
the Cox theory here.
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The effect of volume fraction on the stress distribution

is 1llustrated in Figures 13 through 18,

The effect of a flber break on the tensile stresses in
the adjacent fiber (fiber 2, Figure 6) is shown in Figures 19
through 21. Although the relaxation procedure was continued
until the residuals were less than 0.5 percent of the total
fiber load, the fiber break produced no perturbation of ten-
silé stress ig fivers béyond the ones immediately adjacent

to the broken filbdber.
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.6
+5 LiEn = a5
Grm
V, = .75
b - —_— Cox's Theory
T \ — Discrete Model

Figure 9. Interface shear stress along a broken fiber,
comparing results from relaxation method to results
based on Cox's theory.



34

os-&

\ fLEﬂ. = /3.5
G,
\
\ Vf == |63
ol ‘ ——— - —— (Cox's Theory
T \ ———— Discrete Model
Ca
o3
o2 -
ol|-

Figure 10. Interface shear stress along a broken fibver,
comparing results from relaxation method to results
based on Cox's theory.
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Figure 11. Tensile stress in a broken fiber, comparing

results from relaxation method to results based on
Cox's Theory.
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Figure 12. Tensile stresses in a broken fiber, comparing
results from relaxation method to results based on
Cox's Theory.



Figure 13. Interface shear stress near the end of a
broken fiber.
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Figure 14. Interface shear stress near the end of a
broken fibver.
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Figure 15. Interface shear stress near the end of a
broken fiber. )



Figure 16.
Tfiver.

Distribution of tensile stress along a broken
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Figure 17. Distribution of tensile stress along a broken
fiver,



42

l.o [—
V‘_r 5
v = .58
08—
Vf‘=-' .403
06-‘
Ee—Em 32.3
G, *
%
AR
b=
R
] ] i | |
1 2 3 L 5
x
d;

. Figure 18. Distribution of tensile stress along a broken
fiver.
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Figure 19. Perturbation of stress in fiber immediately
ad jacent to a fiber break. :
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Figure 20, Perturbation of stress in fiber immediately
ad Jacent to a fiber break.
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Figure 21. Perturbation of stress in fiber immediately
ad Jacent to a fiber break.
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CHAPTER IV
CONCIUSIONS

Although no claim of great precision can be offered for
the results herein presented, they do indicate reasonable

agreement with previous analyses of the same problem.

The discrete model and numerical analysis used in this
study offers a distinct advantage in that it affords a means
of evaluating stresses in the flbers adjacent to a broken
riﬁer,,while earlier analyses only deal with the stresses in

and along the broken fiber itself.

The stress distribution iIn the fibers adjacent to a
broken fiber is seen to be highly localized (Figures 19-21),
the stress being raised within a zone less than one fiber
diameter either side of the plane of the break. This, to-
gether with the fact that no stress disturbance is detected
beyond the immediately adjacent fiber shows the localized
nature of a fiber fracture in a reinforced composite, and
leads to an explanation of the general toughness and lack
of notch sensitivity found in fiber reinforoed composite

materials.

It has been shown that the breakage of a well bonded
fiber results in only a small inorease (< 8%, Figures 19-21)
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in stress over a length & (<d;) of the fibers immediately

ad jacent to the broken fiber. Over the remainder of the ad-
jacent fiver (x>§), the fiﬁer break produces a decrease in’
stress; Considering the small increment of stress, and the

| small region over which it acts, the probabllity that the
stress increase will coincide with a flaw of sufficient mag-
nitude to cause that fiber to break would be quite low for
most fibers. The probability that a fracture will appear at
some #4>§ 1s essentially zero, since the stress has dropped
there. The composite will, then, stabilize under the applied
lbad. When the applied load 1s increased by some small
amount, the probability of a break at some point far away
from the initial break may be expected to be much greater
than the probability that a break will appear in the vicinity
of the initial break.l



CHAPTER V
BICOMIMTITDATIONS @POR FIJRTHIR ATSHIARCH

The results ovtained 1n this study, when coupared to
previous theoretical rcoults shbws sufficient agreemeat to
justify the wodel, As with any model of a pnysical systen,
however, application of the model must rest upon experimental
evidence, TUnfortunately, experimental values for stresses in
a material of this type is lacking, since the only photo-
elastic evaluations available to date have been periormed on
isolated fibers. Attempts were made to extend the results of
these experimental programs to the case of a discontinuous
fiber in the near proximity of other fibers by making some
approximations, but such extensions are themselves subject to
question, "This model, like those of Cox, Dow, and Rosen 1s
sensitive to the method used to estimate mean distance be-
tween flbers, and more realistic results might be obtained if

experimental results were availlable,

Photoelastic studies on a realistic model of the mater-
1al treated here could be performed uslng stress freezing
techniques, The application of such techniques would be
tedlous in terms of model preparation, which probably accounts
for fact that 1t has not been done, but it is suprested that

such an experimental program would be most beneficial at

this time,
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The model used herein might also be extended to a study
of other packing configurations. such as square or layered.
Modifications could also be made to include bond failure in
the model. |
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APPENDIX I
MECHANICAL PROPERTIES OF FIBERS

Tables I and II contain selected representative values
for some available reinforcing fibers., Values shown were
compiled from Scalalz', Hollister and Thomasl3 and sutton

14

and Chorne"™, .



TABIE I

THE PROPERTIES OF WHISKERS

) Ultimate Elastic Specific '
Material Tensile Modulus Gravity, UTS/g E/g Melting
Stgength E, g Point
100 psi. 106 psi. " 10% psi. 106 psi. oc
Graphite 2.8 98 2.2 12.7 45 3000
Al,0 whisker 2.2 60 4.0 5.5 15 2050
Al,03 large crystal 1.0 60 4.0 2.5 15 2050
Bel 2 59 3.0 6.7 20 2550
Si4Ny, 2 55 3.1 6.5 18 1900
Fe 1.9 29 7.8 2.4 3.7 1540
SicC 1.6 70 3.2 5.0 2.2 2690
Cr 1.3 35 7.2 1.8 L.9 1890
Si 1.1 26 2.3 L.3 11 1450
B,C .96 66 2.5 3.8 26 24,50
Ni .56 31 9.0 .62 3.4 1455
Cu 43 18 8.9 .48 2.0 1083

£g



TABLE II

THE PROPERTIES OF CONTINUOUS FILAMENTS

Ultimate Elastic Specific TUTS/g E/g Melting
Material Tensile Modulus  Gravity, Point
Strength E, g oC
106 psi. 106 psi. 105 psi. 106 psi.
Asbestos 0.85 27 2.5 3.4 11 Loses water
(Crocidolite) : ~at 500
Mica O.L5 L6 2.7 1.67 17 Loses water
at 40O
Etched Soda Glass 0.4 mean 9.8 2.5 1.6 3.9
0.5 max 9.8 2.5 2.0 3.9
Drawn Silica (SiOz) 0.86 10.5 2.5 3.5 L .2 1660
E-Glass 0.25 10.5 2.5 1.0 4.2 8L0
Boron Glass .35 64 2.3 1.5 27 "
Cc .18 6 1.9 .97 3.2 3700
w .58 59 19 .30 3.1 3400
Mo 32 52 10 «32 5.2 2622
Steel 060 29 7.8 077 307
Be .18 - 35 1.8 1.0 19.0 1284

s
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APPENDIX II
LAW OF MIXTURES FOR CONTINUOUS FILAMENT REINFORCEMENT

‘Nhen a composite contains reinforcing fibers which are
" continuous throughout the specimen, the fibers and the matrix
are assumed to strain equally when a load is applied in the

direction of the fibers.

Consider an element of composite of unlt area and unit
length subjected to an average composite stress Oco The

element then undergoes a straln €.
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For a unit cross-section:

Af + Am = [ (A2.1)
where A; = Total cross sectional area of fibers
A,,, = Total cross sectional area of matrix

Applying Hooke's Law to matrix and fibers:
oy (o
€ =-£ == (A2.2)
E} E,, .
The total load on the unit cross-section is:

0. = GA + A, (A2.3)

For this configuration, the area fraction is equal to the

volume fraction:

A; = V, = Fiver Volume Fraction (A2.4)
| Then,,from (1)
Ap= 1-Y | (A2.5)
" Substituting {4) and (5) into (3):
0 = GV, + 0, (1-V) (A2.6)

Which is a Law of Mixtures for composite stress.
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Then we may obtain a Composite Elastic Modulus by dividing

(6) by €:
=%y + B(1-)

)
and applying Hooke's Law:

(A2.7)

(A2.8)

which 1s a Law of Mixtures formulation for the Composite

Elastic Modulus in terms of the properties of the comnstituents.
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APPENDIX III

THEORETICAL EVALUATIONS OF STRESS DISTRIBUTION IN AND AROUND

AN ELASTIC FIBER IN AN ELASTIC MATRIX WITH A STRONG BOND

STRESSED IN THE DIRECTION OF THE FIBER AXIS

Three theories have been offered. The models, assump-

tions, and derivations appear below in chronological order.

H., i. Coxh

(1952)

l. Assumptions:

2,

(a)o

(b).
(o).
(a).

Method:

The matrix is strained homogeneously, but the
state of uniform stress and strain is locally

perturbed by the transfer of load to the

(more rigid) fiver.,

Lateral stiffness of the fiber and matrix-

are equal.

Perfect bond exlists between the fiber and

the matrix at the lateral interface,

No load is transferred through the ends of
the fiber.

Cox assumed that the load 1s transferred
from the matrix to the fiber according to

the equation:



gg = H (u-v)
Where X = Disté.nce from the fiber end
p = Load carried by the fiber at «
= Displacement with flber present
= Displacement of same point with
fiber absent,

H = A constant to be determined,

Equat.’;bn (1) is Differentiated:

d’p _ Ju
dxz )

Applying the Definition of Strain:

d

8% = Matrix Straln = €

du = Flber Strain Difference = -E
dx AE

Where E = (& -E,,)
Sub.stituti'ng (3) and (&) into (2):
dzz =H (A,E €)
The Solution to Equation (5) is:

P = A;EG + C',Ca:A/Ax + Gnhdx

Where : /3 LI H

A E

59

(A3.3)

(A3.4)

(A3.5)

(43.6)
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Assumiﬁg the Boundary Conditlons:
P=0 at x=0 and x:=.4

and Evaluating C, and C,, Equation (6) ylelds

£_
P=AEe| 1- ”"5”"’(27“) (A3.7)
(’osb/ai
Dividing by AF’ the fiber stress is obtalned:
| A
O; = (B~ E,,) 8 [1 -""—”’M)} (43.8)
. m Co:h/d§

Assuming that the fiber 1s of circular cross section, the
interface shear T; may be related to the fiber load P by
considering the Equilibrium of a Flber Element:

P~ - prdP

a— dx —



Equilibrium Conditions Yield

or, Assuming that P=0iA; = g G -

Differentiating (8) and Substituting it into (10):

(E,~E) 0 d , sinhS(%-%)
- e _—mi Va ~f
= &, 4/6 cbsﬁfgg

The Constant H.for this Model is Defined as

2w G,
H= ——"7,
4 ()
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(A3.9)

(A3.10)

(43,11)

(A3.12)

Where T, = Mean center distaﬁce between fibers,

N.F, Dow? (1963)

1, Assumptions

(a). No matrix at the end of the fiber, load is

. applied at one end to the matrix alone,

(b). A perfect bond exists between fiber and

matrix at the lateral interface,

(6). Straight radial lines before deformation

remain strailght after deformation,
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2. Method : The Model is shown below:

MATRIX

1N
o

FIBER |

RIIEIY

]
DU J—

——;Z

N

ANy

(a), - Interface shear stress 1s obtained in terms
of the change of force in the fiber and

matrix as in Equatlion (A3.9).

8—L dr
(] ey d—z-f : (A3.13)
- L dRy

Where F; and F, are the forces in fiber
and matrix, respectively, At z=0, there

1s no shear displacement, so



Where

f“'n.-:

(b).

(e},

63

dug 2
I _ Im
Jz A E. (A3.15)
dug £

= L A3,16
J7 LE (A3.16)

Distance of centroid of matrix from

interface,

Distance of centroid of fiber fronm

interface,

Dlsplacement in the X~-Direction

Shear straln in the fiber and matrlix are

given by:
Yo = I = U = Uz (43.17)
rm
. U - Up
T s Rl (A3.18)
e T
Solving for U; .
¢ = G G (A3.19)
2f 3 m
e T

Differentiating Equations (15) and (16)
and Substituting into (13) and (14):



64

"
A En Uz,
T o= — wdy (A3.20)
ull .
7o Aebe R (A3.21)
Tr d;

(d), Substituting Equations (20) and (21)
into (17) and (18):

Uz -U; - 'QmEmuZ':.'
G,,,[ 3 ] = ) (43.22)
[u,-.. Uz A E Ur

ge). Solving Equations (19), (22) and (23)

ylelds:
(up - u,-;') - K} (U - Uz) = © (A3.24)
Where
2 F,,,F;- ]
= A3,2
K ‘_%+§_£J[,.s.. A,q] (43.25)
P R

the Solution of Equation, (24) is:

(U;m-b(p;)‘ = C,coshKz + C, Sinh Kz (A3.26)
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(f)., The Boundary Conditions are

Z2=0, uFm-.-u,; =0 (A3.27)
’ A
'L(; =
z=4 Am Er (43.28)
2 . 0
Up =
hence,
C' - O <A3029)
Cu ——tn (43.30)
t AmEMKC’OSh k:Z!
then
(u_ - u_ = F')nSI‘")})l(z A . 1
n- U7 ) Am Epy K Cosh k4 (43.51)
from Equations (20), (21'), (22), (23), and
(31):
" GuG
T = AR“ GFm B | sinhKz . (A3.32)
mem —E”.+9r;‘f KCOSh/(:zg ’

Defining

A= K (A3.24)
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Ny

and Z=%5-% , (A3.25)

Equation (32) becomes

AR Smhar_ "'"1()

A, E, )Y
4()4‘: *-—ME:L) Cosh E?f

(g). Substituting Equation (25) into (10) and

solving:
, X A
0, = L S 1-.2":&..‘12__’" (A3.26)
d A¢+ .ﬂm_gm Cosh A—d

B,W, Rosen’ .(196W4)

1, Assumptions

(a), ' Perfect bonding at the lateral interface,

(b)., No load transferred through the ends of the
fiber,

(c); Flber and average materlal only carry tenslle

stresses,

- (d). Matrix only carrics shear stresses,
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2. Method : The model is shown below:

Fi1BER
/

|~ BINDER

N

L ]

] dyofe

e AVERAGK

L‘-— dq v —

(a).

The forces acting on an element of fiber
are the same as in Dow's theory:
d; do;

T =293 03

< 5 (43.27)

(b)., For Equilibrium of the composite in the

axial direction:

3
i
N

2 AL -
(&) o + Lo (13.26)

Where

Oa Stress in the average material

0. = Applled stress

(c). The shear strain in the matrix 1s given by:



68

UQ"' UF
(dp-d,)

-~
]

(A3.29)

(d). Differentiating Equation (29) twice and

using Hooke's Law:

JLdw _ | dg _ du-d; d'x
Ea d¥ & ix ”‘44», 7t (43.30)

where E, Modulus of average materlal

(e), Differentiating Equation (28) and substitut-
ing the Results, with Equation (27) into
Equation (30) ylelds:

diy e
where’
86 g, d}
nt = i [ +_-—£_L] A3.32
E el T g WP

- The Solution of Equation (31) is"

T = c, s:M-;??Z + 02. COSA"]ZI (A3.33)

(f).' The Boundary Conditions are

T =0 AT Z=

Nl)‘,. 0

g; =0 AT  Z=

from which



(g)

g:F—
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o= 2 G Gida
’ - nEa(dm-o})(d:—d,:)aos/;n{

(A3.34)
C,= O

Denoting ze’—g-x , the expresslions for T

and 0; are:

2 oimbh (.
2 G, Gz de_Sinh q(5-4) (43.35)

i = NE, (du-d (-2 ) cosh 7

0. &' E; Cosh 7 (% -4)
- - i—_— A O 6
Ea(d:‘d,f,)i-E#d;[i C’osh'v].;_f ] (A3.36)



APPENDIX IV

THE COMPUTER PROGRAM
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COMPUTER FORTRAN STATEMENTS

NDIMFNSION SIGMAF(100,10),TAU(100410)s MESSAG(20)

RFEAL*8 1J(100,10)s SAVEF({100s10)sFs FLOADs BIGFs KTy KS

COMMON /7 RL / Us KTs KSs FLOADs STRAT(12)

COMMON / INT / IMAX s JMAX

FORMAT (1H14//8Xs'TFNSTLF STRFSSES IN FIRFRS '//)

FORMAT ( 8Xoe G(VSIGMAF( vy T2419t 1241) = ty G1l346s 3X) )

FORMAT ( BXse 4GU'TAU( ' 9I24%9'912et) = 1ty Gl3eb6y 6X) )

FORMAT (1H1s//7 BX+'RATIO OF LOCAL FIBER STRESS TO FIBER STRESS AT

TINFINITY '//10Xs'Z/D'93Xe4( 9Xs 'FIBER('y I1ly t)1)/)

6 FORMAT ( 8Xys G1l3ebs (5( 4Xy Gl346))) '

7 FORMAT (//8%s 'TAU(Os1)y FXTRAPOLATED 'y G1l3s6s 10Xs 'TAU(341l)y E
IXTRAPOLATEFD 'y G13,6)

B FORMAT (1H1//710Xs 'RATIO OF INTFRFACE SHFAR STRESS TO APPLIED STRE
188 '/ 10X, *Z2/Dty 10Xs 'INTERFACE(1+2)ty 10Xs 'INTERFACE(2+3)'/)

9 FORMAT (5Xs 3(5Xs G13.6))

10 FORMAT (3F1043s 4F10e4s 215)

11 FORMAT (1H14//710Xs10( "% ) DATA ',10(*#1v)//10Xs*FIBER ELASTIC MOD
TULUS = 14,G1548/7/10X, .
2'MATRTIX FLASTIC MODULUS = 'y G1548//10Xs *MATRIX SHEAR MODULUS = 1t
AG1548/7/710Xs 'FIBER DIAMETFR = 'y G1346//10Xs 'INCREMENTs DELTA Z =
4 'y G134,6/710Xs 'DISTANCFE BETWEEN FIBERSe T = 'y G13.6//10X,
SY'AVERAGF OF APPLIED STRESS = 'y G1548//10Xxs 'IMAYX = 4 I3, 15X,
6VIMAX = ¢t 4 T3//710Xse 40(V¥0)//) ‘

12 FORMAT ( 10Xs '"FLOAD = t5 Gl548s 3Xs 'KT = *43G1548s 3Xs 'KS = 1,
1615.8//10Xs*RATIO OF MINIMUM FIBER DISTANCE TO FIBER DIAMETER ',
2613.6/7/710Xs 'WOLUME FRACTION = 'y Gl346//71 Xos 'RATIO OF ELASTIC MO
3NULIT = vy G13.,69'RATIO OF FIBER TENSILE MODULUS TO MATRIX SHEAR M
4annuLysS = 'y G13.67/7)

14 FORMAT (10X 4('U{'5T124t9"74124%) = ty G13,6s 3X) )

16 FORMAT (/10X+'EXIT ON SIZE OF RESIDUE AFTER'sI4st* ITERATIONSy BIG
1IF = 'y G15.6/) . ,

17 FORMAT (1H1s// 8Xs 'SHEAR STRESSES IN MATRIX '//)

19 FORMAT (1H1l, // 10Xs 'CORRECTED DISPLACEMENT FIELD '//)

21 FORMAT (//10Xs 'ESTIMATED FRROR ='3F543s ' PERCENT'4/) :

31 FORMAT (//710Xs 'EXIT ON MAXIMUM NUMBER OF CORRECTIONS'»10Xs 'BIGF
1= vy G15,6/77) .

22 FORMAT (20A4)

34 FORMAT (/7 10Xse 10(t%0v), 20A4//) .

50 RFAD (5410,FND=2000) EFys EMs GMsDIAFsDELTAZ, Ts SIGAPs IMAXs JMAX
WRITE (64,11) EF, EMs GMs DIAFs DELTAZs Ty SIGAPs IMAXs JMAX
READ (54 33) (MESSAGIIYs I = 1s 20)

WRITE (Ay34) (MESSAG(IYs T = 14 20)
AF = 2,14150%(DIAF*%2) /4,

AC = ((DTAF + TI¥¥2)%#S5QRT(3e)/2,
KTz {AF#(EF=FM) + AC*FM)/DFLTAZ

TSN
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FLOAD = SIGAP*AC :
IF (T oLFe «732051%DIAF) TBAR = DIAF + T = .866025%DIAF*(ATAN( (1.
1+ T/DIAF)/SQRT(3e=(1+T/DIAF)*%2))/(1le+T/DIAF)+ SORT(3e = (leo+
2 T/DIAF)%%2)/3,)
IF (T oGFe o732051%#NDIAF) TBAR = DIAF+T=,7853982%SQRT(3e) *DIAF%%2
1 /(DIAF4+T)
'$S GM% (DTAF+T)Y%DELTAZ/(1.732051*TBAR)
\VIF AF/AC
TDR = T/DIAF
FFFMR = FF/FM
FFGMR = FF/GM
WRITF (6s 12) FLOADWKTsKSs TDRs VFs EFEMRs EFGMR
CALL COX (FFy EMy GMy DIAF, DELTAZs TBARs SIGAPs IMAXs VF)
KOUNT = n
NO 150 J = JMAXs 12
150 STRAT (J) = 0.
NO 250 J = 1, JMAX
250 STRAT (J) = 1.
PO 200 I = 14 IMAX
DO 200 J=1,10

200 M(TeJ) = FLOAD*(I=0e5)/KT
PO 300 1 = 1, IMAX
no 200 J = 1y JMAX

300 SAVEF(I4J) = F(I,J)

400 BIGF = 0,
KOUNT = KOUNT + 1
PO 500 T = 1, IMAX
DO 800 J = 1y JUMAX
IF (DABS(SAVEF(1+J)) «LTe DABS(BIGF)) GO TO 500

BIGF = SAVEF(I,J)
IBIG = 1
JBIG = J

500 CONTINUF
IF (DABS(BIGF) «GTe FLOAD/200.) GO TO 600
WRITE (6y 16) KOUNTs "BIGF
GO TO 80N
600 UITFMP WIIRTGsJRIG)
FTEMP FIOIBIGsJUBIG)
PELU = N S5*DELTAZ
UCIBIGsJRIG) = U(IBIGYJBIG) + DELU
DELF = F(IBIGs+JBIG) ~ FTEMP
ULIBIGsJ+IG) = UTEMP = FTEMP*DFLU/DELF
SAVFF(IBIGsJBIG) = F(IBIGyJBIG)
IF (IBTG «LTe IMAX) SAVFF(IBIG+19JRIG) = F(IBIG+1sJBIG)
IF (IBIG +GTe 1) SAVEF(IBIG=19JBIG) = F(IBIG-1,JBIG)
IF (JBIG oLTe JUMAX) SAVEF(IBIGsJBIG+1) FI(IBIGsJBIG+1)
TF (JBIG «GTe 1) SAVEF (IRIGyJBIG=1) = F(IBIG,JBIG-1)
ITF (KOUNT oLTe 1800) GO 70O 400
WRITE (6s 31) BIGF



800

900

1000
1100

1200

1300

1400
1500

1600
1700

2000

FRR = 100e¥BIGF/FLOAD

WRITE (64 21) FRR

WRITE (64 19) :
PN 9Nn I = 1, IMAX !
WRITF (hy 14) ( Te Js Ullsd)s J=149JIMAX)

PO 1100 J = 1, JMAX

NO 1100 T = 1, IMAX

IF (I «GTe 1) GO TO 1000

IF (J «6GTe 1) SIGMAF(1,4J) = EF*2.%U(I4J)/DELTAZ
IF (J «FQe 1) SIGMAF(14J) = O

GO 70 1100

SIGMAF (1,4J) = EF*¥(U(TsJ) = UlI=1,J))/DELTAZ
TAU (TeJ) = GM¥(U(TsJ) = U(TeJ+1))/T

WRITE (6Ky 2)

PO 1200 T = 1s IMAX

WRITE (69 3) (I+JsSIGMAF(1sJ)s J=1sJIMAX)
WRITE (64 17) )

PO 1300 T = 1 IMAX

WRTITE (6 4) ( TeJdsTAU(TsJd)s J= 19JMAX)
TAUFND = TAU(141)%SQRT(TAU(1+1)/TAU(2,1))

TCHKR = ((TAU(2491))%%2) /TAU(L141)

WRITE (6y 7) TAUEND, CHK3

WRITE (64 5) (Js J = 1y JIMAX)

PO 1500 1 = 1, IMAX

ZR = (1=1)*DFLTAZ/DIAF

PO 1400 J = 1,4 JMAX

SIGMAF (T4J) = SIGMAF(I4J)/SIGMAF(IMAX s JMAX )
WRITF (6s 6) (ZRs(SIGMAF(IeJ)y J = 1y JUMAX))
WRITE (64 8)

NO 1700 I = 1, IMAX

ZR = (1 = 045)*DELTAZ/DIAF

RO 1600 J = 142

TAU(I4J) = TAU(I+J)/SIGAP

WRITE (649) ZRs TAU(I41)s TAU(I2)

GO TO 50 C '

sTOP

FND
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e o o RFSIDUF SUBROUTINE o o o o o

REAL FUNCTINN F%B(I1,J)

REAL¥8 U(100410)y K9 Dy FTFNSNs FSHEARs FLOAD
COMMON / RL / Us Ks Ds FLOADs STRAT(12)
COMMON 7 INT / IMAXs JMAX

Ijwp =1 + 1
IRACK = 1 - 1
Jup = J 4+ 1
JRACK = J =1

TE(TeNFo1eANDGTeNFaIMAX) FTENSN=K*¥(U(TUPsJ)+U(IBACK sJ) =2e¢*%U(l9sJ})
TF (I «FNe IMAX) FTFNSN = K¥(U(IBACKsJ)=U(TsJ))+FLOAD ‘
TF (I «FQe 1 oANDe J oeNEe 1) FTENSN = K*¥(U(IUPsJ)=34%U(IsJ))
IF (I «FQe 1 «ANDe J oFQe 1) FTENSN = K*(U(IUP»J)=U(IsJ))
IF (J «FQe 1) GO TO 10
IF (J «FQe 2) GO TO 20
IF (J «F0Qe 3) GO TO 30
IF (J «F0e 4) GO TO 40
WRITE (64 3)
2 FORMAT (/7 10X+30('%1),9FRROR *%* J IS TOO LARGE'y 30(1%1)y)
GO TN 500
10 FSHEAR = 64%#D¥(U(142)~U(1+1))
GO TO 500
20 FSHEAR = D*(U(T+s1)=U(T92)1+2e%STRAT(3)*(U(T1+3)=U(1,2)) +
1 STRAT(4)*(U(T44) = U(I42)))
GO TO 500
3N FSHEAR = 24%D*(U(142)=U(T+3)+STRAT(4)*(U(Ts4)-U(I,3)) +
1 STRAT(5)%(U(1,5) ~ U(I143)))
GO TO 500 '
40 FSHEAR = D*{U(T92)+ 2e%U(I193) = 3e*%U(I94) + 24%STRAT(5)*(U(I45)~
1 U(Te4)) + STRAT(6)* (U(196) = U(ls4)))
500 CONTINUE :
F = FTENSN + FSHEAR
RETURN
FND
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SURROUTINE COX(FEFy FMy GMy DIAF, DELTAZ, Ty SIGAPs IMAXs VF)
RETA = SQRT(84*GM/((EF=EM)*ALOG(1le + T/DIAF)))/DIAF
FC = (FF=EM)*VF + EM
K1 = SIGAP#FF/EC
K1P = K1%#BETA*DIAF /4,
WRITF (6 10)
10 FORMAT (1H1//20Xs'STRESSFS ACTING ON CENTER FIBER ACCORDING TO COX
1v/77 25Xy 'Z/D'y 16Xy 'SHEAR' 16Xs 'TENSION'//)
TLIMIT = IMAX+1
PO 50 T = 1, ILIMIT
Z = (1 - 1) % DELTAZ
IR = Z/DIAF
TAU = K1P*EXP(-RETA*2)
STGMA = K1%({1, — FXP(=RFTA%Z))
50 WRITF (6y 66) 2ZRs TAUs SIGMA
66 FORMAT ( 10Xs 3(10Xy G1346))
RFTURN
FND



