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ABSTRACT 

The Equatorial South Atlantic contains elements of an oblique-rifted margin and a 

sheared margin. The Barreirinhas Basin is a basin on the Brazilian coast located north of 

the shoreward limit of the Romanche Fracture Zone and south of the shoreward limit of 

the Saint Paul’s Fracture Zone. The main characteristic of the Barreirinhas Basin is an 

abrupt transition zone between oceanic and continental crust as a result of being located 

on a transform margin with, consequently, a very narrow and steep continental slope. 

This study focuses on the rift to drift evolution of the Barreirinhas Basin and the 

Barreirinhas Basin deep-water fold-belt, and is the first detailed published local study of 

the tectonic evolution of the Brazilian Equatorial margin.  Complementary structural 

work over most of the Brazilian Equatorial margin provided a framework in which to 

place the tectonic history of the Barreirinhas Basin. 

Regional seismic reflection profiles across the Barreirinhas Basin on the Brazilian 

Equatorial margin reveal two major deep-water fold and thrust belts linked landward to 

extensional fault systems. Thrust faults are interpreted to be products of shortening 

caused by gravity-driven extension on the continental margin that involve rocks at both 

the shelf and the slope. Two main deformation events during the Cretaceous (99.6 to 83.5 

Ma) and the Cenozoic (65.5 to 0 Ma) were distinguished.  The Cretaceous deformation 

affected only a one kilometer thick section but the Cenozoic structural episodes involved 

a thicker (over 4 km) sedimentary sequence of Turonian to Miocene age, and cross-cut 

the pre-existing Cretaceous deformed sequence. Normal faults connect to the thrust faults 

at depth, forming two discrete bowl-shaped fault systems, linked at depth at different 
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stratigraphic levels. Plots of displacement versus time show normal and thrust fault 

movements at the same time intervals, indicating close linkage between extension on the 

continental shelf and shortening on the slope. 

Deformation has increased dramatically during the past ten million years, with 

movement on all earlier and some newly formed faults. The increased deformation 

coincided with regional paleogeographic changes in northern South America in the Late 

Miocene that led to an increase in the sediment supply to the Barreirinhas Basin. 
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CHAPTER 1: INTRODUCTION  

1.1 OVERVIEW AND RESEARCH FOCUS  

Our research focus on the rift to drift evolution of the Barreirinhas Basin and the 

Barreirinhas Basin deep-water foldbelt. The Barreirinhas Basin is one of a set of basins 

on the Equatorial Brazilian margin and it is located north of the onland projection of the 

Romanche Fracture Zone and south of the onland projection of the Saint Paul Fracture 

Zone (Fig. 1).  

The Brazilian Equatorial margin is an oblique-divergent passive margin. Other 

examples of oblique rifts include the Gulf of California, the Gulf of Aden, and the Dead 

Sea among others (Bird, 2001). Oblique rifts have a strong strike-slip component during 

the early rift stages. Oblique rifts start as a complex pattern of pull-apart basins along 

strike-slip fault systems that eventually coalesce into through going systems. Extension 

continues up to the point of continental break-up and formation of oceanic crust. 

The main characteristic of the Barreirinhas Basin is an abrupt transition zone 

between oceanic and continental crust as a result of being located on an oblique margin 

(Fig. 2-1) with, consequently, a very narrow and steep continental slope. The post-rift 

sedimentary sequence of the Barreirinhas Basin is dominated by a series of thrusts and 

folds in deep water that form the Barreirinhas Basin deep-water foldbelt linked to a series 

of normal faults on the continental shelf.  
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1.2 ORGANIZATION OF DISSERTATION  

The dissertation is divided into three chapters. Chapters 2 and 3 represent the 

main body of the research. Because no comprehensive work has been published on the 

tectonic evolution of the Brazilian Equatorial margin, some introductory work extending 

over most of the Brazilian Equatorial margin was necessary in order to establish the 

tectonic history of the Barreirinhas Basin. Chapter 2 therefore is focused on the whole 

margin and chapter 3 is focused on the Barreirinhas Basin. Each of the two chapters 

makes up a manuscript that will be submitted to a peer-reviewed journal for publication.  

Chapter 2 focuses on the rifting of the Brazilian Equatorial margin an oblique 

rifted margin. Chapter 2 describes the Brazilian Equatorial margin as a margin segmented 

by major oceanic transform zones and concentrates on the geometry of the basement 

faults of the margin near the continental oceanic transition zone. The limit between 

continental crust and the oceanic transitional zone (COTZ) has been mapped using 

potential field data that has been compared with the seismic information. The difference 

in the basement fault geometries of the different segments of the margin and its 

implications for the tectonic evolution of the margin and the oblique spreading of the 

Equatorial Atlantic and how spreading direction angles change from oblique at the COTZ 

on the continental margin to orthogonal on the mid-oceanic ridge are also addressed.  

Chapter 3 focuses on the Barreirinhas Basin, one of the larger basins of the 

Brazilian Equatorial margin and describes the geometries of the Barreirinhas foldbelt, a 
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four kilometer thick unit of highly deformed post-rift sediments, with updip normal faults 

linked to downdip thrust faults. The chapter addresses the linkage of normal and thrust 

faults in a quantitative way and discusses the forming mechanisms for the system. 
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CHAPTER 2: THE BRAZILIAN EQUATORIAL MARGIN: FROM 

RIFT TO DRIFT 

ABSTRACT 

Interpretation of seismic reflection profiles (500,000 km of 2D lines) describes a 

transform margin geometry in the Ceará Basin that transitions to oblique in the 

Barreirinhas and Pará-Maranhão Basins to almost orthogonal north of the Foz do 

Amazonas. Analysis of satellite-derived gravity and magnetics are used here to describe a 

history of oblique continental rifting and oblique sea-floor spreading in the Equatorial 

Atlantic.  

The objectives of this work are to: 1) map the basement structures from the 

continental shelf to the abyssal plains, 2) map the continental oceanic transition zone 

(COTZ), 3) describe the structures formed in the continental oceanic transition zone 

(COTZ) of the margin, and 4) discuss implications of the basement structures for the 

tectonic evolution of this transform margin. The geometries associated with oblique-

rifting are described and the possibility of oblique sea-floor spreading is discussed in the 

study area. Detailed mapping of the basement using 500,000 km of 2D seismic lines on a 

16 km by 8 km grid from the continental shelf to the oceanic basin was used to 

characterize the structural aspects of the continental-oceanic transition zone.  
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2.1 INTRODUCTION  

The Brazilian Equatorial continental margin in northeastern South America and 

the eastern part of the Equatorial South Atlantic Ocean has a continental shelf that is 

characterized as very broad in the north and very narrow in the south. The main 

physiographic features of the margin are the Amazon Delta, the Chain, Romanche, Saint 

Paul, and 4
o
N Fracture Zones, and the Ceará Rise which is the counterpart of the West 

African Sierra Leone Rise. The main sedimentary basins along the coast are, from north 

to south, the Foz do Amazonas, Pará-Maranhão, Barreirinhas, Piauí-Ceará, and Potiguar 

Basins (Fig. 2-1). Our study area extends from the Foz do Amazonas to the Piauí-Ceará 

Basin. 

Rifting within Northeast Brazil and the Guinean coast of Africa started with the 

reactivation of old Pan-African faults as strike-slip mega-shear zones (Darros de Matos, 

1999, Greenroyd et al., 2008, Antobreh et al., 2009). The rifting that gave rise to the 

Brazilian Equatorial margin was oblique to the large-scale direction of separation of the 

continents. The term oblique rifted margin was used by Yang and Escalona (2011) to 

describe the Equatorial South Atlantic.  

Oblique rifts are rifts in which the continent ocean transition zone (COTZ) is not 

normal to the direction of spreading and to the oceanic fracture zones. Oblique rifts differ 

from orthogonal-rifts where the COTZ is normal to the direction of spreading and to the 

trend of fracture zones. Oblique-divergent plate boundaries are a much less well 
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understood type of plate boundary than classic rifts with orthogonally divergent plate 

boundaries (Umhoefer et al., 2002). Other examples of oblique-rifted margins include the 

Gulf of California (Lizarralde et al., 2007, Umhoefer et al., 2011), the Gulf of Aden 

(d’Acremont et al., 2006, Fournier et al., 2007, Autin et al., 2010, Daoud et al., 2011), the 

East coast of Madagascar, and the Dead Sea (Cochran, et al., 1983, Bird, 2001).  

Oblique rifts have a strong strike-slip component expressed primarily during the 

early rift stages. Oblique rifts start as a complex pattern of pull-apart basins along strike-

slip fault systems that eventually coalesce into through going systems (Umhoefer et al., 

2002). In the Brazilian Equatorial margin rifting started as a set of strike-slip basins and 

as oceanic crust formed the basins coalesced (Darros de Matos, 1999).  

Extension continues up to the point of continental break-up and formation of 

oceanic crust; oblique rifting is likely followed by oblique sea-floor spreading. According 

to Greenroyd et al. (2008), based on sea-floor spreading anomalies (Mueller et al., 2008) 

the last point of break-up was the continental margin of French Guiana and its conjugate 

Liberian margin in Late Aptian time at 113 Ma. It is likely that oceanic crust started 

forming prior to the first marine incursion, documented by Trosdtorf et al. (2007) at 102 

Ma (Fig. 2-2). 

Oblique sea-floor spreading has been well-documented in the modern Arctic 

Ocean basin. Oblique sea-floor spreading has been associated with slow spreading 

centers and areas characterized by an absence of oceanic crust (Dick et al., 2003). Those 
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authors have speculated that as sea-floor spreading evolves the spreading centers change 

gradually to develop normal orientations to the fracture zones. 

The relationship between obliquity, spreading rate, mantle composition, and 

dynamics has led to recognition of a new class of plate boundaries (Snow et al., 2001), 

termed amagmatic spreading ridges (Dick et al., 2003). The primary mode of accretion 

along the magma-poor segments appears to be the emplacement of mantle peridotite 

directly onto the rift valley floor along the axis of rifting and parallel to the ridge trend, 

with subsequent fault capture and block rotation to form the rift valley walls (Dick et al., 

2003). The fundamental difference between magma-rich and magma-poor accretionary 

plate boundaries is that in magma-rich plate boundaries lithospheric failure starts from 

the top of the lithosphere and in magma-poor plate boundaries lithospheric failure starts 

from the bottom of the lithosphere (Dick et al., 2003). The Brazilian Equatorial margin 

was a magma-poor continental margin, during early stages of rifting. 
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 Figure 2-1. Location map showing onshore surface geology, offshore bathymetry, main 

physiographic features, and offshore basin outlines. Surface geology is based on the 

Geologic Map of South America (Schobbenhaus and Bellizia, 2001) (www.cprm.gov.br). 

Bathymetric data are derived from the ETOPO 1 grid (Amante and Eakins, 2009). 

Offshore basin outlines are from Agência Nacional de Petróleo (www.anp.gov.br). 
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Figure 2-2. South Atlantic in mid-Albian (~105 Ma). Calculated using Paleogis software 

and the University of Texas Institute for Geophysics (UTIG) plates model. Showing 

continents in beige, continental shelves in yellow and, ocean floor in blue. Inset shows 

poles of rotation for South Atlantic for times between ~130 and 70Ma. Continental break-

up of eastern and western Gondwana was associated with oblique rifting in the south 

(Falklands Plateau and South African margin) and in the north (Equatorial Atlantic). 

Continental break-up was orthogonal in the central South Atlantic where mantle plumes 

were present.  
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2.2 DATA AND METHODOLOGY 

2.2.1 Seismic Data 

Several 2D surveys of different vintages were used to map approximately 500,000 km of 

2D seismic data, with an average grid spacing of 8 km over the Brazilian Equatorial 

margin from north of the Foz do Amazonas to the Ceará Basin (Fig. 2-1). Two seismic 

horizons were mapped; the sea-floor (Fig. 2-3) and the basement horizons (Fig. 2-4). The 

mapping was based on seismic character.  
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Figure 2-3. Bathymetry of the Brazilian Equatorial margin, mapped on the water bottom 

signal of ~ 500,000 km of 2D seismic reflection profiles. Offshore basin outlines are from 

Agência Nacional de Petróleo (www.anp.gov.br).  

http://www.anp.gov.br/


12 

 

Figure 2-4. Depth to basement in the study area. Basement faults and fracture zones 

mapped are part of this study. The basement faults mapped are preferentially located 

around the COTZ and the most seaward fault mapped marks the contact with oceanic 

crust in the hanging wall. Faults shown are in the basement which is now overlain by 1 to 

5 seconds of sediments. Basement faults under the Amazon Delta are not mapped as they 

are deeper than the seismic record.  
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2.2.2 GRAVITY DATA 

Gravity is a very important tool for interpreting basins. It maps subtle changes in 

the Earth’s gravitational field caused by variations in the density of the underlying rocks, 

and it provides valuable information on basement topography and the nature of the 

deeper parts of the crust and mantle beneath the basins. Important intra-basin elements 

often have an associated gravity signature indicating that each element is related to a deep 

basement structure.  

In order to interpret the geological source of a gravity anomaly, the data must be 

calibrated. Gravity images show density contrasts within the crust, but the source of the 

contrast is not unique. As a regional tool gravity yields information both on the density of 

bodies within the crust and on differences in mantle depth and composition.  

2.2.2.1 Free-air Gravity Anomalies  

The free-air gravity anomalies dataset (Fig. 2-5) used was the new global satellite 

Free-Air data obtained from the SATELLITE GEODESY gravity data (Version 18.1: 

released April 2009). Composed of free-air anomalies derived from radar altimetry 

measurements of ocean surface, the free-air anomaly grid has a grid cell size of 1-arc 

minute, equivalent to about 2km (Sandwell and Smith, 2009). 

The gradient of the free-air gravity delineates the boundary of the gravity 

anomalies by amplifying the high frequency component of the spectrum. Noise is also 
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enhanced in this process. We calculated the gradient of the free-air anomaly (Fig. 2-6) 

using the dip function algorithm on Geoframe (Schlumberger software), and using the 

free-air gravity grid (Fig. 2-5). Because it delineates the shapes of the gravity sources, the 

gradient of the free-air gravity is an efficient tool to map the main tectonic features in the 

area (Fig. 2-6). 
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Figure 2-5. Free-air gravity anomaly map (mgals). Free-air gravity anomaly map was 

used to map the main bathymetric features of the study area. Fracture zones correspond to 

negative anomalies (-70 to -40 mgals). Free-air gravity anomalies have positive high 

amplitudes on the edge of the continental margin (20 to 80 mgals) and negative high 

amplitudes on the oceanic crust (-20 to -70 mgals). The slope is narrow (15 to 35 km 

wide), with the exception of the area under the Amazon Delta and corresponds to low 

amplitude positive and negative gravity anomalies (+20 to -20 mgals).  
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Figure 2-6. Gradient of free-air gravity map, shows many tectonic features including the 

continental margin, Ceará Rise, fracture zones, and seamounts.   
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2.2.2.2 Bouguer Gravity Anomalies  

Free-air gravity data is reduced to Bouguer gravity by the calculation and removal 

of the effects topography (rock/water or rock/air interface) on the gravity anomaly. The 

Bouguer anomaly grid (Fig. 2-7) was calculated by subtracting the Bouguer correction 

from the free-air anomaly grid from Sandwell and Smith (2009).  

Fbouguer=Fair- ∆G 

∆G = Bouguer correction 

The Bouguer correction ∆G was calculated using the slab equation, in which we 

have used densities of 2.65 for the crust and 1.03 for the water: 

∆G = 0.04185 ∆ρ H, 

H= bathymetry 

∆ρ= density contrast 

∆ρ = ρ crust – ρ water, 

ρ crust = density of the crust=2.65 

ρ water= density of the water=1.03 

The ocean floor interpreted on the seismic grid was gridded and depth converted 

using a velocity of 1500 m/s for the water and extended into the oceanic basins using the 
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Etopo1 grid (Amante and Eakins, 2009). The result is the grid on figure 2-4. The 

ETOPO1 is a 1 arc-minute, equivalent to about 2km, global bathymetric grid. 

Bouguer gravity anomalies (Fig. 2-7) are associated to changes in density and 

therefore are used to understand the crustal nature of the basement. The gradient of the 

Bouguer gravity (Fig. 2-8) enhances near surface contrasts in density by amplifying the 

high frequency component of the spectrum. Noise is also enhanced in this process. 

We calculated the gradient of the Bouguer anomaly using the dip function 

algorithm on Geoframe (Schlumberger software), and calculated a Bouguer gravity 

gradient grid (Fig. 2-8). Because it enhances the difference in density contrast, the 

gradient of the Bouguer gravity is an efficient tool to map the contact between oceanic 

crust and transitional crust.  
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Figure 2-7. Bouguer gravity anomaly map of the Brazilian Equatorial margin. The 

Bouguer correction was calculated using a water bottom map generated by a merger of 

two grids. A depth-converted water-bottom grid based on the seismic interpretation on 

the shelf and slope, infilled in the area without seismic coverage with an Etopo1 grid 

(Amante and Eakins, 2009). The Bouguer correction was applied to the free-air anomaly 

map (Fig. 2-5) to calculate the Bouguer gravity anomaly map. 
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Figure 2-8. Gradient of the Bouguer anomaly map. Continental-oceanic transition zone is 

shown in a dashed line. 
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2.2.3 Magnetic Data 

We have used the global Earth Magnetic Anomaly Grid (EMAG2), a total 

magnetic intensity grid at an altitude of 4 km above mean sea-level of 2-arc minute 

resolution (approximately 4 km) (Maus et al., 2009). The data (Total Magnetic Intensity) 

anomalies were used in the form published by Maus et al. (2009), with no corrections 

applied (Fig. 2-9). The TMI is the measurement of total magnetic field at a location with 

the International Geomagnetic Reference Field (IGRF) removed. Magnetic data measure 

variations in the Earth’s magnetic field caused by variations in the magnetic susceptibility 

of the underlying rocks. It provides information on the structure and composition of 

magnetic basement and intra-sedimentary magnetic units, if present. Most bodies within 

the basement have a distinct magnetic signature characterized by the magnitude, 

heterogeneity, and fabric of the magnetic signal. 
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Figure 2-9. Total magnetic intensity anomaly map of the Equatorial margin of Brazil 

data from the global magnetic anomaly grid (Maus et al., 2009). The continent-ocean 

transition zone separates NE-trending Proterozoic (Birimian, ~2.1Ga) magnetic 

anomalies from N-S-trending anomalies of the Cretaceous ocean floor rocks. The 

boundary is shown as a dashed line and corresponds approximately to the COTZ 

boundary, but is not as sharply defined as on the first derivative of the Bouguer anomaly 

map (Fig. 2-8). 
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2.3 SEISMIC DATA INTERPRETATION  

Two seismic horizons were mapped in the area to describe the geometries of the 

continental margin and the COTZ; the water bottom and the basement. Mapping of the 

water bottom horizon describes a very broad continental shelf in the north of the study 

area (over 300 km) in the Foz do Amazonas (Fig. 2-1). Here interpreted to be a result of 

the extreme progradation that took place in the Late Miocene on the Brazilian Equatorial 

margin (Morais Neto et al., 2006 and 2009, Figueiredo et al., 2009). In the south, away 

from the sediment sources, the continental margin is narrower (less than 100 km) in the 

Ceará Basin (Fig. 2-1).  

The interpreted basement horizon in the continental shelf corresponds to a 

combination of the crystalline basement and the top of the pre-rift mega-sequence, where 

present. The pre-rift mega-sequence was described by Trosdtorf et al. (2007) and is not 

discussed in this work. Basinward in the continental slope and in the ocean basin it 

corresponds to the top of transitional and oceanic crust as defined seismically, discussed 

in chapter 3 (Figs. 3-7 to 3-10). The basement structural map (Fig. 2-4) is less than 3000 

ms deep under the continental shelf and is more than 6000 ms deep on the toe of slope. 

This abrupt transition occurs in an extent of less than 20 km, and is here interpreted to be 

the Continent Ocean Transition Zone (COTZ). The basement faults mapped are mostly 

located around this boundary. Basement faults under the Amazon Delta could not be 

mapped on the seismic as they are deeper than the seismic record. 
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2.4 POTENTIAL FIELD DATA INTERPRETATION  

Marine gravity anomalies derived from radar altimetry measurements.of ocean 

surface slope (Sandwell and Smith, 2009) are the primary data for investigating global 

tectonics and continental margin structure. The free-air gravity anomaly map (Fig.2-5) 

was used to map the main tectonic features of the study area. Free-air gravity anomalies 

have positive high amplitudes on the edge of the continental margin (20 to 80 mgals) and 

negative high amplitudes in the abyssal plains (-20 to -70 mgals) (Fig. 2-5). 

The Continental Oceanic Transition Zone (COTZ) is interpreted based in the free-

air gravity anomalies as a transition zone between the positive anomalies in the margin to 

the negative anomalies in the ocean basins. It is a narrow zone (15 to 35 km wide), with 

the exception of the area under the Amazon Delta. The Amazon Delta sits on the 

continental slope. Gravity anomalies in the area, firstly described by Cochran (1973), 

have low positive and negative amplitudes (+20 to -20 mgals) and large wavelength (Fig. 

2-5). Fracture zones correspond to negative anomalies (-70 to -40 mgals) and stop 

abruptly east of the positive amplitude free-air anomalies in the continental slope. 

Seamounts correspond to positive free-air anomalies. The geometries of the observed 

bathymetric features are enhanced using the gradient of free-air anomalies gravity map 

(Fig. 2-6).   

Bouguer gravity anomalies are negative on the ocean basins and positive on the 

continental margin (Fig. 2-7). The Bouguer correction creates a boundary of high positive 
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amplitudes at the continental slope traditionally interpreted as the continental/oceanic 

boundary. The high amplitude boundary is enhanced by the gradient of the Bouguer 

anomalies (Fig. 2-7) and can be followed under the Amazon Delta. Because it enhances 

the difference in density contrast, the gradient of the Bouguer gravity is an efficient tool 

to map the contact between oceanic crust and transitional crust.  

Two main directional trends are observed in the total magnetic intensity anomaly 

map (Fig. 2-9); a NE-SW trend in the continental margin here interpreted to be caused by 

Proterozoic (Birimian, ~2.1Ga) rocks, and a N-S-trend in the ocean basin, here 

interpreted to be Cretaceous ocean floor rocks. The nature of the ocean floor rocks cannot 

be evaluated with magnetic data alone (Sibuet et al., 2007). Sibuet et al. (2007) 

demonstrated that serpentinization of exhumed mantle rocks can cause magnetic 

anomalies similar to oceanic crust and therefore can be used to date the age of the ocean 

floor, but not to distinguish crustal nature. The continent-ocean boundary, interpreted 

using the gradient of Bouguer anomalies, is shown as a dashed line at the top of the total 

magnetic anomalies map (Fig. 2-9). It shows a very good fit, as the boundary between the 

N-S and NE-SW anomalies corresponds approximately to the COTZ boundary 

interpreted using the gradient of the Bouguer anomaly map (Fig. 2-8).  
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2.5 MAPPING OF THE OCEAN CONTINENT TRANSITION ZONE (COTZ)  

We use the continent ocean transition zone (COTZ) defininition from Direen et al. 

(2012); i.e. a region of highly attenuated continental crust on the continental margin that 

lies between the outboard edge of unequivocal continental crust, and the inboard edge of 

unequivocal oceanic crust. The COTZ includes both sedimentary and magmatic 

components in proportions that vary both along and across the margin, and may include 

areas of failed sea-floor spreading (Direen et al., 2012). Note that this definition is 

similar, but not identical, to the term ocean–continent transition (OCT) as used by 

Manatschal (2004) and Reston (2007) for the transition from the distal continental margin 

to the first oceanic crust. We use the term continent–ocean boundary (COB) for the 

inboard edge of unequivocal oceanic crust (Direen et al., 2012). 

We interpreted the continent ocean transition zone (COTZ) using the basement 

map (Fig. 2-4) in combination with the first derivative of the Bouguer gravity anomalies 

(Fig. 2-8) and the world magnetic (total magnetic intensity) map (Fig. 2-9). The continent 

ocean transition zone (COTZ) geophysical characteristic is a high continuous gravity 

gradient anomaly (Fig. 2-8) that parallels the shelf and separates a pattern of NE-SW 

magnetic anomalies generated by continental crust from N-S sea-floor spreading 

magnetic anomalies (Fig. 2-9). 

In the basement structural map (Fig. 2-4) the transition from continental crust to 

oceanic crust corresponds to a change from basement depths of less than 3000 ms on the 
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continental shelf to depths of more than 6000 ms on the toe of slope in less than 20 km. 

This area is interpreted to be the COTZ.  Basement is overlain by 1 to 5 seconds of 

sediments. The basement faults mapped are mostly located within the COTZ and the 

most seaward faults mapped mark the contact with oceanic crust in the hanging wall. 

Basement faults under the Amazon Delta could not be mapped as they are deeper than the 

seismic record. Under the Amazon Delta the location of the COTZ is based only on 

potential field data. In our interpretation the Amazon Delta covers the COTZ and 

progrades onto the oceanic crust. 
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2.6 BASEMENT GEOMETRY AND MARGIN SEGMENTATION 

Four main segments based on fault geometry are described in the study area: 1) 

Piauí-Ceará, 2) Barreirinhas, 3) Pará-Maranhão-Foz do Amazonas, and 4) Amapá.  

2.6.1 Piauí-Ceará Margin 

The continental margin is narrow, only 90 kilometers in the segment of the 

Northeast Brazilian margin occupied by the Piauí-Ceará Basin (Fig. 2-10). The 

continental margin on the Piauí-Ceará segment is composed of a series of large, mostly 

over 200 km long E-W faults that trace to the Romanche Fracture Zone on the oceanic 

crust (Fig. 2-10). Basement faults are represented on the rose diagram (Fig. 2-10).  

In this area the transition between continental and oceanic crust is extremely 

sharp. The transition from the continental crust to the abyssal basin oceanic crust involves 

two main low angle (~15 degrees ±5) and large displacement (> 5 km) E-W-trending 

fault zones. The rose diagram on figure 2-10 indicates the prevalence of E-W-trending 

faults in the Piauí-Ceará Basin. The cross section in figure 2-10 represents the geometry 

of the COTZ in the Piauí-Ceará Basin. Represented in the cross-section is a low angle 

(~15
 o
) and large displacement (4 seconds) basement fault that separates continental crust 

from the continental oceanic transition zone (COTZ). Sedimentary rocks are represented 

in yellow, basement rocks are represented in brown, and water is represented in blue in 

the cross section. 
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Figure 2-10. Basement map of the Piauí-Ceará Basin. Two E-W trending fault zones, 

each above 100 km long at ~2
 o
 S, extend from 39

 o
40’W to 42

o
30’W. The gray areas 

represent fault heaves. Insets: 1) Rose diagram normalized to fault lengths, represents 

prevalent strike direction of basement faults in the map. Mean direction calculated was 

278
o
. Red line in the rose diagram represents the main spreading direction at 105 Ma, 

measured on the Romanche Fracture Zone and calculated on the flow lines on Figure 

2.15. 2) Cross section, vertical scale in seconds and horizontal scale in kilometers, 

sedimentary rocks are represented in yellow, basement rocks in brown, and water in blue.  
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2.6.2 Barreirinhas Margin 

The Barreirinhas continental margin is narrow (160 kilometers), and the transition 

between continental and oceanic crust is sharp (~20 kilometers) (Fig. 2-11). Barreirinhas 

Basin basement faults trend close to E-W in the southern part of the basin, adjacent to the 

Piauí-Ceará Basin and trend NW-SE in rest of the basin. The contact between NW-SE 

and E-W-trending faults forms a basement low with the shape of half a rhombohedron. 

The rose diagram on figure 2-11 represents the most prevalent strike direction for the 

faults in the area.  

The south Barreirinhas basement faults belong to the same fault set as those on 

the Piauí-Ceará Basin described in the previous section, and therefore are plotted in the 

rose diagram on figure 2-10. Basement faults in the rest of the basin belong to a NW-SE 

fault system, plotted on the rose diagram on figure 2-11, a very similar trend extends 

north and covers most of the neighboring Pará-Maranhão Basin, described on the next 

section and plotted on the rose diagram on figure 2-12. Here we refer to the Barreirinhas 

Basin basement faults as the NW-SE trend in figure 2-11. Basement faults in the 

Barreirinhas Basin have lengths from 5 to 50 km, low angle (~15
 o
), and large 

displacement (3 seconds) (Fig. 2-11).  



31 

 

Figure 2-11. Basement map of the Barreirinhas Basin. Basement faults have lengths from 

5 to 50 km and a NW-SE trend. The gray areas represent fault heaves. Insets: 1) Rose 

diagram for basement faults, normalized to fault lengths. Mean direction calculated was 

337
o
. Red line in the rose diagram represents the main spreading direction at 105 Ma, 

measured on the Saint Paul Fracture Zone and calculated on the flow lines on Figure 

2.15. 2) Cross section, vertical scale in seconds and horizontal scale in kilometers, 

sedimentary rocks are yellow, basement rocks are brown, and water is blue.  
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2.6.3 Pará-Maranhão to Foz do Amazonas Margin 

The continental margin is wider (~220 kilometers) in the Pará-Maranhão Basin. 

The Pará-Maranhão Basin is more heavily faulted than the Piauí-Ceará Basin; faults are 

smaller, and have smaller displacements, but similar dip angles (15
o
 to 20

 o
) (Fig. 2-12). 

Basement faults have lengths of 5 to 50 km, and NW-SE direction (see rose diagram 

insert to Fig. 2-12). 

 The transition from the continental margin to the abyssal basin (COTZ) is more 

gradual, being accommodated by many fault sets. The COTZ in this margin segment 

correspond to a series of normal fault zones. Two fault zones are represented in the cross 

section, (Fig. 2-12) the total displacement accommodated by the sum of both faults is 4 

seconds in 20 kilometers, the same as observed in the other segments of the margin. The 

difference is that in this area it is distributed in a larger number of smaller fault zones. 
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Figure 2-12. Basement map of the Pará-Maranhão Basin. Basement faults have lengths 

of 5 to 50 km and NW-SE direction. The gray areas represent fault heaves. Insets: 1) 

Rose diagram for basement faults normalized to fault lengths. Mean direction calculated 

was 304
 o
. Red line in the rose diagram represents the main spreading direction at 105 

Ma, measured on the Saint Paul Fracture Zone and calculated on the flow lines on Figure 

2.15. 2) Cross section, vertical scale in seconds and horizontal scale in kilometers, 

sedimentary rocks are yellow, basement rocks are brown, and water is blue.  
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2.6.4 Amapá Margin  

The Amapá continental margin is very wide, 330 kilometers. Basement faults 

have lengths of 40 to 180 km and trend NW-SE, as can be seen on the basement map 

(Fig. 2-13). The COTZ is characterized by faults with approximately 15
o
 dip angles and 1 

second displacements. The continental crust basement is 2 seconds (twt) deep and 

transitions to 7 seconds (twt) deep, where composed of oceanic crust. The transition 

occurs in 90 kilometers in the strike direction, making it the broadest COTZ on the 

Brazilian Equatorial margin. The COTZ in the margin corresponds to a series of normal 

fault zones. Three fault zones are represented in the cross section (inset Fig. 2-13) ; the 

total displacement accommodated by the sum of both faults is six seconds in 100 

kilometers, which results in a less steep basement slope than the observed in the other 

segments of the margin. Fault dip angles are similar 15
o
 to 20

 o
, but have a smaller 

displacement (Fig. 2-13). 
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Figure 2-13. Basement map of the Amapá margin. Basement faults have lengths of 40 to 

180 km and NW-SE direction. The gray areas represent fault heaves. Insets: 1) Rose 

diagram for basement faults has been normalized to fault lengths. Mean direction 

calculated is 345
o
. Red line in the rose diagram represents the main spreading direction at 

105 Ma, calculated on the flow lines on Figure 2.15. 2) Cross section, vertical scale in 

seconds and horizontal scale in kilometers, sedimentary rocks are yellow, basement rocks 

are brown, and water is blue.  
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2.7 DISCUSSION 

2.7.1 Segmentation of the Brazilian Continental Margin. 

The geometry of the continental oceanic transition zone (COTZ) gets locked at 

the time of intrusive contact that is the emplacement of the oceanic crust. Prior to the 

emplacement of oceanic crust, the rift faults are formed and grow, but fault movement 

ceases as soon as oceanic crust is emplaced. Therefore the COTZ geometry gives a 

snapshot in time for the geometry of the fault system at the time of the rifting. In the 

Brazilian Equatorial margin that is very significant as most of basement faults are limited 

to the COTZ (Fig. 3-7) as a result of being located along a transform margin to oblique-

rifted margin. (Fig. 3-1).  

Rift geometries are more complex than described by the classic models 

(McKenzie, 1978 and Wernicke, 1985).  Rifting can involve different processes of 

extension operating simultaneously in different segments of the margin and can involve 

multiple phases of subsidence, uplift, and volcanism (Autin et al., 2010). Several 

mechanisms exist that are thought to facilitate rifting, here discussed in the context of the 

Brazilian Equatorial margin; 

1.  Inherited weak zones originate from the amalgamation of distinct tectonic 

plates that are reactivated by the rift process (Ziegler and Cloetingh, 2004). 

This causes stress to focus in weaker points, first causing break-up to 
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propagate in a certain direction, as was the case for the opening of the South 

Atlantic (Torsvik et al., 2009).  

2. Melt generation and magma transport weaken the lithosphere both by efficient 

heating, and by mechanical strength reduction (Buck, 2007). It is caused by 

mantle plumes which play an important role in triggering continental break-up 

on magma-rich margins (Ziegler and Cloetingh, 2004). It is mostly absent in 

magma-poor margins, as in the case of the Equatorial Atlantic.  

3. Most recently Brune et al. (2012), focusing on magma-poor rift settings, 

showed that oblique extension significantly facilitates the rift process, because 

oblique deformation requires less force in order to reach the plastic yield limit 

than rift-perpendicular extension. This factor can be significant in magma-

poor regions, like the Brazilian Equatorial margin. 

The earlier rifting stages of the Equatorial Atlantic had an intra-continental 

dextral shear component, described in the onshore basins of northeast Brazil (Magnavita, 

1992, Darros de Mattos, 1999, Destro et al., 2003), in the South American margin 

between Northeast Brazil and the Guinean coast of Africa (Greenroyd et al., 2008), and 

in the counterpart Guinean coast of Africa (Antobreh et al., 2009). The fault geometries 

associated to the earlier stages of the rift have been described in detail in the onshore 

basins of northeast Brazil (e.g. the Recôncavo-Tucano-Jatobá Basins and the Cariri-

Potiguar Basins) (Magnavita, 1992, Darros de Mattos, 1999, Destro et al., 2003). The 

geometry of these intra-cratonic basins consist of asymmetric half grabens separated by 
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basement highs, transfer faults, and/or accommodation zones with a spectrum of normal 

and strike-slip basement-involved faults (Darros de Matos, 1999).  

This work was the first attempt to describe in detail the geometries of the rift 

faults in the Brazilian Equatorial margin, as opposed to the work from Greenroyd et al., 

(2008) and Antobreh et al. (2009) that focused on the mapping of the COTZ regionally 

and not detail mapping of the faults that comprise the COTZ. Greenroyd et al., (2008) 

described internal deformation on the South American margin, from the French Guiana to 

northeast Brazil margin, during the earlier stages of rifting. The authors were the first to 

describe the segmentation of the margin as a series of rift-dominated and transform-

dominated segments, that they named rifted and sheared segments respectively. Antobreh 

et al. (2009) described similar segmentation in the counterpart Guinean coast of Africa 

and used the same nomenclature. Antobreh et al. (2009) used the term sheared margin to 

describe the segments of the Ghanaian margin that are parallel to the main fracture zone 

traces, and rifted margins to describe the segments in between. Sheared margins trace and 

are parallel to major oceanic fracture zones that offset the Mid-Atlantic Ridge up to 

several hundreds of kilometers.  

Here we used the same terminology used by Greenroyd et al. (2008) and 

Antobreh et al. (2009) to describe the Brazilian margin. Segments with basement faults 

parallel to the basinward fracture zones, correspond to sheared segments (Greenroyd et 

al., 2008, Antobreh et al., 2009) and segments with basement faults oblique to the 
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direction of sea-floor spreading correspond to rifted segments (Greenroyd et al., 2008, 

Antobreh et al., 2009). From south to north, from the Piauí-Ceará to offshore Amapá, 

shear-dominated and rift-dominated segments of the margin alternate. We describe the 

Piauí-Ceará margin and the southern portion of the Barreirinhas margin as a sheared 

segment and the Barreirinhas, Pará-Maranhão, and Amapá as rifted margins. The East-

West geometry of the COTZ under the Foz do Amazonas, suggests the possibility of a 

buried sheared segment between Pará-Maranhão and the Amapá margin. The continental 

margin is wider, and the basement is heavily faulted in the rifted segments and is narrow 

with fewer faults on the sheared segments.  

The Piauí-Ceará shear segment of the margin has been described by Bird (2001) 

as a transform margin; that segment is particularly well developed as it is bounded by the 

Romanche Fracture Zone.  The shear segments of the margin (Piauí-Ceará Basin and 

possibly a buried segment between Pará-Maranhão and the Amapá North Rift) are large 

scale features of what has been described by McClay and White (1995) as 

accommodation zones separating rifted segments.  

The rifted segments of the Brazilian Equatorial margin are oblique rifts composed 

by shorter, segmented border faults with major rift faults forming en-echelon arrays 

parallel to the underlying zone of extension as described by Umhoefer et al. (2002). 

Basement fault dips are similar in all segments, but displacement and strike varies. 

Characteristics of faults per segment are represented in the table below. 
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Segment Mean fault 

strike 

direction 

(azimuth) 

Faults mean 

dip 

Faults mean 

displacement 

Faults length 

Piauí-Ceará ~278
o
 ~15

 o 
to 20

 o
 4 seconds 180 to 210 km 

Barreirinhas ~337
o
 ~15

 o 
to 20

 o
 3 seconds 5 to 50 km 

Pará-

Maranhão 

~304
o
 ~15

 o 
to 20

 o
 1.5 to 2.5 seconds  5 to 50 km 

Amapá ~345
o
 ~15

 o 
to 20

 o
 1 second 40 to 180 km 

Table 2-1 geometries of the basement faults in the Brazilian equatorial margin. 

  



41 

2.7.2 Basement Fault Geometry and Obliquity of the Rift 

The geometric distribution of the sheared segment faults arranged between rifted 

segments in the Brazilian Equatorial margin is similar to what was described as 

accommodation zones by McClay and White (1995). The authors proposed that 

accommodation zones consisting of systems of conjugate extensional faults 

accommodate the polarity reversals between rift segments in oblique rifts. Because of the 

strong strike-slip component on oblique divergent passive margins, many characteristics 

of strike-slip basins are observed in oblique rifts: 1) widespread structural segmentation 

with a possible alternating vergence in the segmentation (Umhoefer et al., 2002); and 2) 

episodic development of the plate boundary with progressive concentration of plate 

motion onto the main boundary (Hayward and Ebinger, 1996), stress rotation (Bergerat, 

1989), and en-echelon arrangements of normal faults and rhombohedric arrangements of 

horsts (Bergerat, 1989) in which elongation is controlled by the displacement along 

strike-slip faults (Bergerat, 1989).  

The Barreirinhas Basin has the shape of half a rhombohedron that indicates a role 

for a strike-slip component active during the earlier stages of rifting, as described by 

Bergerat (1989) in the Pannonian Basin.  

In the whole Brazilian Equatorial margin the edge of the continental crust 

corresponds to a series of normal fault zones. The difference is that in the transform 

segment of the margin the total displacement (sum of the displacement in the dip 
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direction of all faults) which adds to approximately 4 seconds is distributed by fewer fault 

zones than in the rest of the margin. Basement fault dip angles range between 15
o
 to 20

 o
 

(table 2-1) in all segments of the margin, but fault displacement differs and are higher (4 

seconds) in the transform segment of the margin (table 2-1), intermediate on the oblique 

segments (1.5 to 3 seconds), and smaller (1 second) on the more orthogonal segment of 

the margin. 

The Amapá margin is very wide, consistent with a higher crustal stretching on the 

rifted segments, as opposed to the sheared segments, as shown by the Greenroyd et al. 

(2008) crustal models. Greenroyd et al. (2008) made two 2D magnetic models, one on the 

rifted margin and one on the transform margin of French Guiana. The rifted segment 

model shows that the crust thins from 37 km to 7.5 km over a distance of 317 km, and on 

the transform segment model, the crust thins from 37 km to 7.5 km over a distance of 70 

km (Greenroyd et al., 2008). 

Clifton and Schlische (2001), using scaled physical models, demonstrated that 

there is a geometric upper limit to fault length in oblique rift zones causing fault length to 

be inversely proportional to obliquity. That relationship is observed in the basement fault 

geometries of the Brazilian Equatorial margin. There is a correlation between obliquity 

and strike length basement faults in the Brazilian Equatorial margin. Offshore Piauí-

Ceará is a transform margin and basement faults strike-lengths are very long from 180 to 

210 km (table 2-1) (Fig. 2-14). In the oblique-rifted segments of the Barreirinhas and 
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Pará-Maranhão fault strike lengths range from 5 to 50 km (Fig. 2-14). Offshore Amapá 

the rifting geometry was less oblique, than in the Barreirinhas and Pará-Maranhão 

segments and basement faults strike lengths are as long as 180 km (table 2-1) (Fig. 2-14). 

Because basement faults formed and grew during the rifting process, their geometries 

represent the geometry at the time of rifting and an argument can be made that there is an 

observed upper limit of ~ 50 km to fault length in the oblique-rifted segments of the 

Brazilian Equatorial margin.  
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Figure 2-14. Structural map of the Brazilian Equatorial margin and adjoining oceanic 

basins, depicting the structure of the ocean floor between the mid-oceanic ridge and the 

continent-ocean transition zone. Map shows depth to basement in miliseconds mapped on 

the seismic data set superimposed on the free-air gravity anomalies data set (Sandwell 

and Smith, 2009). Fracture zones and mid-ocean ridge displacements are interpreted 

based on the free-air gravity anomalies. Basement faults on the continental margin and 

slope are interpreted on the seismic data set. Map shows that the continent-oceanic 

transition zone (COTZ) is highly segmented and faulted, and that segmentation is 

observed at the present day boundary at the mid-oceanic ridge. 
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2.7.3 The Geometry of the COTZ to the Opening of the Equatorial Spreading 

In oblique-rifted margins, like the Brazilian Equatorial margin, the COTZ is not 

normal to the direction of spreading and to the fracture zones. The COTZ forms an 

oblique angle with the fracture zones, and the angles between COTZ and the fracture 

zones vary among different segments of the margin.  

We used the free-air map (Fig. 2-5) together with free-air gradient map (Fig. 2-6) 

to map the main fracture zones in the area, and the mid-ocean ridge displacements (Fig. 

2-14). The free-air gravity anomaly map proved very useful in mapping seabed 

topography in areas beyond seismic coverage, and in appreciating the relationship of the 

structures on the continental margins to those on the adjacent abyssal plain from the 

northern Brazilian margin offshore Amapá to the Piauí-Ceará Basin (Fig. 2-14).  

The angle between the continent ocean transition zone (COTZ) and Saint Paul 

Fracture Zone is 40
o
 in the north branch and 45

 o 
in the southern branch. The angle 

between the COTZ and the Romanche Fracture Zone is 35
 o
 (Fig. 2-14). Oblique rifting is 

followed by oblique sea-floor spreading, but the angle between the fracture zones and the 

mid-oceanic ridge is orthogonal, indicating present day orthogonal spreading. Due to the 

thick sedimentary sequence associated to the prograding Amazon Delta, it was not 

possible to map the extension of the 4
o
N Fracture Zone west of the Ceará Rise using the 

potential fields data. In the Amazon Delta area, in the absence of mapped fracture zones, 

we used flow lines to estimate the obliquity (Fig 2-15). Flow lines were calculated using 
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poles of rotation from (Bird and Hall, 2010) using Bird Geophysical software that uses 

the methodology from Cox and Hart (1986). 

The fracture zones in the Equatorial Atlantic (Fig. 2-15) have an unusual 

geometry. They are perfectly parallel to each other close to the mid-Atlantic ridge, but 

diverge from each other as they extend in direction of the margin, a consequence of the 

oblique spreading in the Equatorial Atlantic. In oblique spreading the angle between 

oceanic fracture zones and mid-oceanic ridge is oblique at a regional scale, but is scale 

dependent. In order to spread with a regionally oblique angle, the mid-oceanic ridge is 

interpreted to break into numerous short segments (Fig. 2-15); in the Equatorial Atlantic 

these segments are as short as 50 km (Fig. 2-15). When the segments are examined at a 

larger scale, the mid-oceanic ridges appear to be oriented normal to transform faults that 

bound them, though the mid-ocean ridge system of small segments trends oblique to the 

main fracture zones. 
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2.8 SUMMARY AND CONCLUSIONS 

The segmentation of the margin is a combination of perpendicular rifting and 

dextral shear at the time of the rifting, and the basement fault geometry provides a 

snapshot in time to the geometry of the margin at the time of rifting.  

The study area can be divided into four segments: 1) the Piauí-Ceará segment 

(Fig. 2-10); 2) the Barreirinhas segment (Fig. 2-11); 3) Pará-Maranhão segment (Fig. 2-

12); and 4) the Amapá segment (Fig. 2-13). The COTZ in the Piauí-Ceará Basin segment 

corresponds to the Romanche Fracture Zone and therefore constitutes a transform margin. 

The Barreirinhas and Pará-Maranhão segments constitute oblique-rifted margins, faults 

are more segmented and there is an observed upper limit of ~ 50 km to fault length in the 

basement faults.  
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CHAPTER 3: DEPOSITION AND DEFORMATION IN DEEP-

WATER SEDIMENTS OF THE OFFSHORE BARREIRINHAS 

BASIN 

ABSTRACT 

Regional seismic reflection profiles across the Barreirinhas Basin on the Brazilian 

Equatorial margin reveal two major deep-water fold and thrust belts linked landward to 

extensional fault systems. Thrust faults are interpreted to be products of shortening 

caused by gravity-driven extension on the continental margin that involve rocks at both 

the shelf and the slope. Results show two main deformation events during the Cretaceous 

(99.6 to 83.5 Ma) and the Cenozoic (65.5 to 0 Ma). Both events were characterized by 

displacement along a detachment fault linking a landward system of normal faults to a 

basinward system of folds and thrust faults. The Cretaceous deformation involved a thin 

sequence, less than 1.5 km thick, deformed in a 30 km wide set of listric normal faults 

(extensional domain) on the outer continental shelf and top of slope that merge into a 

bed-parallel detachment surface, forming a 30 km wide translational domain, that is 

linked to a 30 km wide zone of imbricate thrust faults (compressional domain) on the toe 

of slope. The Tertiary structural system has a different geometry involving thick (over 

4km) sedimentary sequence of Turonian to Miocene age, and cross-cuts the pre-existing 

Cretaceous deformed sequence. Normal faults connect to the thrust faults at depth, 

forming two discrete bowl-shaped fault systems, linked at depth at different stratigraphic 
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levels. Plots of displacement versus time show normal and thrust faults growth in the 

same time intervals, supporting linkage between extensional stress on the continental 

shelf with compressional stress on the continental slope. 

Deformation has increased dramatically during the last ten million years, with 

movement in all earlier and some newly formed faults. The increased deformation 

coincided to paleogeographic changes in the north South America in the Late Miocene 

that led to an increase in the sediment supply in the Barreirinhas Basin. 
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3.1 INTRODUCTION  

Gravity gliding covers a wide range of temporal and spatial scales, from 

geologically instantaneous, small (up to hundreds of square meters in area), shallow 

slides associated with mass wasting on land, to giant submarine slides that can cover 

hundreds of square kilometers (Morley et al., 2011). These slides are commonly triggered 

by catastrophic events such as storms, earthquakes, high rainfall, and contrast with 

gravity gliding systems on passive margins that extend for tens of kilometers and develop 

as a result of long term geological processes that can develop over up to tens of millions 

of years (Morley et al., 2011). 

The presence of large-scale compressional provinces linked to shelf extensional 

provinces, also known as deep-water foldbelts, at the toe of the slope according to Morley 

et al. (2011) can be described in terms of the critical taper angle model (Davis et al., 

1983; Dahlen, 1984). A combination of a steep surface slope with a low-angle oceanward 

or landward basal slope in the presence of an efficient detachment will reduce basal 

friction and allow for gliding and compression at the toe of the slope. The detachment is 

usually on evaporites or thick shales (Rowan et al., 2004). 

Shale detachments are normally associated with overpressure: examples are the 

Amazon Delta (Cobbold et al., 2004), the Niger Delta (Corredor et al., 2005; Billotti and 

Shaw, 2005), and the Mexican ridges (Weimer and Buffler, 1992).  Fluid overpressures 

carry part of the weight and reduce the frictional resistance at the base of sediments 
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(Mourgues et al., 2009). That is the most likely case for the Barreirinhas Basin, but we 

have no data that would demonstrate overpressure in the sediments to be modeled.  

The Barreirinhas Basin is located in a transform margin (Fig.3-1) with, 

consequently, a very narrow and steep slope. The zone of highly thinned continental 

transitional crust underlying the slope is locally as narrow as 12 kilometers. We consider 

the steep gradient in the slope to be the main cause for instability on the margin and a key 

factor for generating the down slope mass transport flows. In the Barreirinhas Basin the 

conditions are ideal for the formation of deep-water foldbelts. Two episodes of 

compressional deformation in the Cretaceous (~89.3 Ma to 83.5 Ma) and Cenozoic 

(~65.5 Ma to 0 Ma) have been identified. 

In areas of very thick sediments, as in the Amazon Delta (Araujo et al., 2009; 

Perovano et al., 2009) and Niger Delta (Corredor et al., 2005; Billoti and Shaw, 2005), 

the weight of the sediments has depressed the lithosphere (Morley et al., 2011) so that the 

basal slope of the sediments dips landward. Bending of the lithosphere by sediment 

loading is minor in the Barreirinhas Basin, because the sedimentary sequence is not thick 

enough. The observed landward dipping basal slope of 0.5 degrees seems to be more of a 

feature of the thinned oceanic crust topography.  

All the deformation by thrusting and folding has taken place during the deposition 

of the sequence (89.3 to 0 Ma), and post-dates intra-cratonic rifting of the basin. The 

gradient of the top of the sedimentary basement on the continental slope is very steep at 
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the transform boundary and shallow at the toe of the slope. After oceanic crust 

emplacement, sediments prograded into the basin, sedimentation rate varied in discrete 

episodes. During rapid progradation the surface slope has become sufficiently steep to 

form a critically tapered wedge, with sufficient shear stress along the basal detachment to 

initiate thrusting. The Barreirinhas Basin archives two main shelf collapse events, an 

early collapse during the late Mesozoic (~ 99.6 to 83.5 Ma) and a later event in the 

Cenozoic (42 to 0 Ma). These two events led to the formation of the Barreirinhas Basin 

deep-water fold and thrust belts on the toe of slope. Both events are shale-detached, but 

are quite different in terms of geometry (Fig. 3-2). 

The post-rift geology of this part of the Barreirinhas Basin can be viewed as 

consisting of two shale-detached collapse systems. All mapped faults in this study are 

listric detachment faults of those two systems. Similar shale-detached systems have been 

described from many basins worldwide, such as; Niger Delta (Damuth, 1994; Rowan et 

a., 2004; Krueger and Gilbert, 2006 and 2009; Sultan et al., 2007), Pará-Maranhão 

(Zalan, 2005), and Namibia (Butler and Payton, 2010) (Fig. 3-3).  
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Figure 3-1. Location map in the northeastern margin of Brazil depicting onshore surface 

geology, offshore bathymetry, main physiographic features, and offshore basin outlines. 

Detail box depicts work area with available wells, and seismic lines. Surface geology is 

based on the Geologic Map of South America (Schobbenhaus and Bellizia, 2001) 

(www.cprm.gov.br). Bathymetric data are derived from ETOPO 1 grid (Amante and 

Eakins, 2009). Well locations and offshore basin limits are from Agência Nacional de 

Petróleo (www.anp.gov.br). 

http://www.cprm.gov.br/
http://www.anp.gov.br/
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Figure 3-2. Geometry of the two fault-linked systems that form the Barreirinhas fold and 

thrust belt located in the study area. A. Cenozoic age fault system. Normal faults on the 

continental shelf link at depth with thrust faults on the continental slope forming a 

concave detachment fault. The detachment fault cross-cuts stratigraphy and has normal 

displacement updip and reverse displacement down dip. B. Cretaceous fault system. 

Normal and thrust faults detach at a parallel to bed detachment.  
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Figure 3-3. A prograding continental shelf offshore Namibia caused slope instability that 

generated a set of normal listric faults on the continental shelf linked by a translational 

domain to thrust faults on the toe of slope (Butler and Payton, 2010). 
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3.2 REGIONAL TECTONICS AND STRATIGRAPHY  

The Barreirinhas Basin is one of a set of basins on the Equatorial Brazilian margin 

and the Amazon Delta, and west of the onland projection of the Romanche Fracture Zone 

(Fig. 3-1). The Barreirinhas Basin on the south is separated from the Ceará Basin by the 

Tutóia High, but the limit to the north with the Pará-Maranhão Basin is arbitrary. In this 

paper we consider the Barreirinhas and Pará-Maranhão Basins as one basin. 

The Barreirinhas Basin has a tectonic history distinct from the more familiar 

basins of the Southeastern Brazilian margin. The initial Aptian rifting phase of the 

Equatorial Atlantic margin had a dextral shear component that led to the creation of small 

pull-apart basins filled by thick, unnamed continental sedimentary sequences (Trosdtorf 

et al., 2007) (Fig. 3-4). Following the deposition of this continental sequence, a shallow 

ocean invaded the basin in the Late Aptian from north to south and a lagoonal anoxic 

sequence was deposited, the Codó Formation (Trosdtorf et al., 2007) (Fig. 3-4), followed 

by the marine Canárias and Cajú Groups (Fig. 3) in Albian time (112-99.6 Ma). Above 

the Canárias Group is the break-up unconformity above which the Cajú Group continued 

to be deposited as the drift section. Oceanic crust accretion initiated around Late Aptian-

Early Albian (102 Ma) time (Trosdtorf et al., 2007). By Late-Albian (102 Ma), Brazil had 

finally broken away from West Africa, ending the dextral shear in the margin (Antobreh 

et al., 2009). The oceanic connection between Central Atlantic and South Atlantic was 

established during Cenomanian/Turonian time (~99.6 to 89.3 Ma) (Antobreh et al., 

2009).  
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Above the Cajú Group is the Turonian to Oligocene Humberto de Campos Group, 

with proximal deposition of the Areinhas formation, the Ilha de Santana Formation on the 

platform, and distal deposition of the deep-water Travossas Formation (Trosdtorf et al., 

2007) (Fig. 3-4). The Travossas Formation is locally highly deformed, and understanding 

the deformation of the Travossas Formation is one of the main objectives of this study. 

The Brazilian Equatorial margin went through extreme progradation starting at 

Late Miocene (~5.5 Ma) causing high sedimentation rates at the Amazon Delta and in the 

much smaller São Luís Delta. The progradation lead to a very broad continental shelf 

(over 300 km) in the Foz do Amazonas in a transform margin that is very narrow (less 

than 100 km) in the Ceará Basin away from the sediment sources (Fig. 3-1). The extreme 

progradation that took place in the Late Miocene on the Brazilian Equatorial margin 

seems to be a product of not only the global cooling, but also rearrangements on the 

drainage system due to an Andean tectonic event (Altamira-Areyan, 2009).  

Figueiredo et al. (2009) compared biostratigraphic data with isotopic data to 

establish provenances and times of erosion and re-deposition of sediments on the 

Amazon Delta and constructed paleogeographic maps for the Miocene (Fig. 3-5). 

Figueiredo et al. (2009) Miocene paleogeographic maps show a change of drainage 

direction from the Western Amazonia wetlands to the Amazon Delta as well as the São 

Luís fan (Figueiredo et al., 2009) (Fig 3-5).  
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Figure 3-5. Paleogeography for northern South America (Figueiredo et al., 2009) and 

Amazonian geochronological provinces (Almeida et al., 2007). A. During the Middle 

Miocene (~14 Ma) the Purus Arch worked as a drainage continental divide for east and 

west Amazonia. Rivers west of the Purus Arch used to flow to the Pebas wetlands and 

rivers east of the Purus Arch used to flow to the Atlantic Ocean (Figueiredo et al., 2009). 

B. Starting at Late Miocene (~6 Ma) a drainage rearrangement caused all rivers as far 

west as the Andes to flow east, causing the Pebas wetlands to dry and the birth of the 

Amazon River in its modern shape (Figueiredo et al., 2009). This drainage rearrangement 

is also the probable cause for the formation of the Sao Luis Delta and increased 

sedimentation on the Barreirinhas Basin. The Amazon Delta in the Foz do Amazonas 

Basin is labeled in the figure with an F and the Sao Luiz Delta in the Barreirinhas Basin 

is labeled with a B. 
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3.3 DATA AND METHODOLOGY 

Our dataset consists of four 2D pre-stack time migrated sections provided by 

WesternGeco, three dip lines with a line spacing of 4 km between lines and one strike 

line (Figs. 3-6, 3-7, 3-8, 3-9, and 3-10). The seismic lines are pre-stack time migrated. 

These lines are part of a larger 4x8 km grid of 2D seismic lines covering the whole 

deformational system that was also interpreted courtesy of Devon and is part of our 

dataset.  

Ten regional seismic stratigraphic horizons roughly corresponding to the main 

sequences described by Trosdtorf et al. (2007) (Fig. 3-4) are tied to wells on the shelf and 

one in deep- water are mapped throughout the area (Fig. 3-1). Interpreted horizons are: 1) 

basement, 2) Albian (~100 Ma), 3) Turonian (~89 Ma), 4) Santonian (~84 Ma), 5) 

Campanian (~78 Ma), 6) Maastrichtian (~66 Ma), 7) Eocene (~42 Ma), 8) Oligocene 

(~27 Ma), 9) Miocene (~10 Ma), and 10) Sea-floor. 

One regional cross section 130 km long was depth converted using constant 

average interval velocities for each layer. This cross-section was restored using Lithotect, 

(Geo-Logic Systems Inc., Halliburton), assuming plane-strain deformation.  
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Figure 3-6. Location of the seismic lines and bathymetry of the study area. 
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3.4 SEISMIC INTERPRETATION OF THE BARRERINHAS BASIN  

3.4.1 Basement 

The interpreted basement horizon is a combination of the pre-rift mega-sequence 

on the continental margin, described by Trosdtorf et al. (2007) (Fig. 3-4) but not 

discussed in this work, and the top of oceanic crust as defined seismically (Figs. 3-7, 3-8, 

3-9, and 3-10). The transitional zone between oceanic and continental crust in this basin 

is very narrow (10 to 20 km) (Fig. 3-7), as a result of being located along a transform 

margin (Fig. 3-1). In the basement structural map (Fig. 3-11), the transition from 

continental crust to oceanic crust corresponds to a change from basement depths of less 

than 3000 ms on the continental shelf to depths of more than 6000 ms on the toe of slope 

in less than 20 km. 
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Figure 3-11. Basement structural map. Basement structural map depicts a narrow 

continental slope with depths changing from 2500 ms in the continental margin to 7000 

ms in the abyssal plains in a distance of less than 20 km. 

  



75 

3.4.2 Albian (112 to 99.6 Ma) 

The Albian age (~100 Ma) structural map (Fig. 3-12) (deeper yellow horizon on 

the seismic lines, Figs. 3-7, 3-8, 3-9 and 3-10) marks the beginning of the drift sequence, 

and is the first truly time-correlative sequence in both the shelf and deep-water (Fig 3-2). 

It also corresponds to the top of the rift sequence on the shelf. 

 

Figure 3-12. Albian age (~100 Ma) structural map 
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3.4.3 Cenomanian/Turonian (99.6 to 89.3 Ma) 

The Turonian age horizon (~89 Ma) (Fig. 3-13) (purple horizon on the seismic 

lines, Figs. 3-7, 3-8, 3-9 and 3-10) corresponds to a maximum flooding surface and 

anoxic event that has a very characteristic high-amplitude seismic character, and can be 

easily correlated throughout the Equatorial margin. Lithologically this sequence is 

composed mainly of mudstones and marls (Trosdtorf et al., 2007) (Fig. 3-4). The 

Turonian mapped surface is the detachment surface beneath the Cretaceous deformed 

unit. The surface follows the abrupt changes in morphology of the transform margin with 

a difference in total depth of approximately 3000 ms between the continental shelf and 

the toe of slope being accommodated very abruptly in less than 20 km (Fig. 3-13). 
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Figure 3-13. Turonian age (~89 Ma) structural map. 
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3.4.4 Coniacian/Santonian (89.3 to 83.5 Ma) 

Two horizons were interpreted on this sequence: 1) top of the 

Cretaceous deformed sequence (cyan horizon on the seismic sections, Figs. 3-

7, 3-8, 3-9, and 3-10), and 2) top of Santonian age rocks (~84 to 83.5Ma) (Fig. 

3-14) (pink horizon on the seismic sections, Figs. 3-7, 3-8, 3-9, and 3-10). The 

deformed Cretaceous rock age is uncertain, but resides below our interpreted 

top of Santonian horizon and above the Cenomanian/Turonian sequence (Figs. 

3-7, 3-8, 3-9, and 3-10) implying a probable age for the deformed sequence 

younger than 89.3 and older than 83.5 Ma. 
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Figure 3-14. Santonian age (~84 Ma) structural map.  
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3.4.5 Campanian/Maastrichtian (83.5 to 65.5 Ma) 

During the Campanian (~78 Ma) the sea level dropped, marking the change from 

mainly transgressive to mainly regressive sequences (Trosdtorf et al., 2007 after Haq et 

al., 1987) (Fig. 3-4). The base of this regressive sequence is the Campanian horizon (~78 

Ma) (Fig. 3-15) (yellow horizon on the seismic sections, Figs. 3-7, 3-8, 3-9, and 3-10) 

and the top of the sequence is the Maastrichtian horizon (~66 Ma) (Fig. 3-16) (green 

horizon on the seismic sections, Figs. 3-7, 3-8, 3-9, and 3-10). In our seismic lines that 

change is characterized by the progradation of the hinge of the shelf break from the 

yellow horizon to the dark green horizon (Figs. 3-7, 3-8, 3-9, and 3-10).  

The Campanian sequence onlaps the top of the Santonian deformed sequence 

(Fig. 3-7). The Maastrichtian is a time of tectonic quiescence on the basin, and the 

Maastrichtian sequence buries the Campanian ponded mini-basins (Fig. 3-7). The top of 

Maastrichtian/ top of Cretaceous (~66 Ma) (Fig. 3-16), is the closest mapped horizon to 

the top of the rocks that were deposited prior to the Cenozoic folding and faulting, and is 

identified in the seismic lines as a sequence without growth (Fig. 3-7). 
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Figure 3-15.  Campanian age (~78 Ma) structural map. 
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Figure 3-16.  Maastrichtian age (~66 Ma) structural map.  
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3.4.6 Paleocene/Eocene (65.5 to 37.2 Ma) 

The Eocene age (~42 Ma) structural map (Fig. 3-17) (light green horizon on the seismic 

sections, Figs. 3-7, 3-8, 3-9, and 3-10) corresponds to the base of the first sequence we 

can identify as a structural growth sequence for the Cenozoic fault movement.

 

Figure 3-17. Eocene age (~42 Ma) structural map.
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3.4.7 Oligocene (33.9 to 23.03 Ma) 

The Oligocene age (~27 Ma) horizon (Fig. 3-18) (orange horizon on the seismic 

sections) (Figs. 3-7, 3-8, 3-9, and 3-10) corresponds to the Rupelian-Chattian boundary 

(28.4 Ma) unconformity (Trosdtorf et al., 2007) (Fig. 3-4). During the Oligocene 

conditions changed from regressive in the Rupelian (33.9 to 28.4 Ma) to transgressive in 

the Chattian (28.4 to ~23.0 Ma), and formed the Oligocene unconformity (Fig. 3-4) 

(Trosdtorf et al., 2007 after Haq et al., 1987).  

 

Figure 3-18. Oligocene age (~27 Ma) structural map. 
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3.4.8 Miocene (~23.0 to ~5.3 Ma) 

The Miocene age horizon (~10 Ma) (Fig. 3-19) (cyan horizon on the seismic 

sections) (Figs. 3-7, 3-8, 3-9, and 3-10) corresponds to the top of a large transgressive 

event on the whole Brazilian Equatorial margin that gave origin to a large carbonate ramp 

(Trosdtorf et al., 2007). 

 

Figure 3-19. Miocene age (~10 Ma) structural map. 
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3.4.9 Upper Miocene to Present (~11.6 To 0 Ma) 

The sequence above the Miocene age horizon (Fig. 3-19) is a prograding deep-

water unconsolidated ponded basin mud and clay sequence that fills accommodation 

spaces created by folds (Fig. 3-7). Present day sea floor is a highly eroded surface cut by 

canyons (Fig. 3-20). 

 

Figure 3-20. Sea-floor structural map 
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3.5 SEDIMENTATION RATES OF THE BARRERINHAS BASIN 

Sedimentation rates were calculated for the deep-water well location using the 

ages and thicknesses of the horizons on the depth converted line, tied to the only deep-

water well in the study area. The calculated sedimentation rates are summarized in Table 

1 and plotted on Figure 3-21.  

The higher sedimentation rate occurred at the earlier stages of the drift phase on 

the basin with a sedimentation rate as high as 226 m/my (Table 1) during the Coniacian 

(89 to 84.6 Ma) (Fig. 3-21). These high rates of sedimentation coincided with the 

Cretaceous deformation of the Travossas Formation (89.3 to 83.5 Ma). The deformed 

Coniacian-Santonian interval is a mud-dominated interval with a very high sedimentation 

rate, similar to the Amazon Delta today (Nancy Engelhardt-Moore, personal 

communication). Fossil recovery from well cuttings is poor, consistent with an 

environment of rapid deposition. 

Campanian to Maastrichtian (70 to 67 Ma) sedimentation rates were also high (86 

m/my) (Table 1) (Fig. 10), and could be associated with tectonic uplift that affected the 

whole Brazilian Equatorial Margin, as described by Zalan (2004).  

Two more pulses of high sedimentation are observed in the Cenozoic during 

Oligocene and Miocene times, with sedimentation rates of 45 m/my during the Oligocene 

(34 to 23 Ma) and 37.5 m/my from Miocene to present (10 to 0 Ma) (Table 1). However, 
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the calculated sedimentation rates for the Cenozoic are dependent on our seismic 

stratigraphic model and our time-depth model, since no biostratigraphic data was 

available for the interval. The Miocene high sedimentation pulse coincides with the time 

of rearrangement of the drainage system east of the Andes, and the birth of the Amazon 

River (Figueiredo et al., 2009) (Fig. 3-5), suggesting the Miocene drainage rearrangement 

affected areas farther south than previously recognized. 
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Stage name Age (my) Time of 
deposition 

Rate of deposition 
(m/my) 

Miocene to Present 10 to 0 10 my 37.5 

Oligocene to Miocene 23 to 10 13 my 30.7 

Eocene to Oligocene 34 to 23 11 my 45.5 

Top Paleocene to Eocene 55 to 34 21 my 24.8 

Maastrichtian to Top Paleocene 67 to 55 12 my 7.5 

Campanian to Maastrichtian 70 to 67 3 my 86 

Upper Santonian to Campanian 83.5 to 70 6.5 my 13.5 

Lower Santonian to Upper Santonian 84.6 to 83.5 1.1 my 92.72 

Turonian/Cenomanian to Lower 
Santonian/Coniacian 

89 to 84.6 4.4 my 226 

Albian to Turonian/Cenomanian 102 to 89 3 my 19 

 

Table 1. Sedimentation rate Barreirinhas Basin. Sedimentation rates are in meters/million 

years and are calculated for a point at the toe of slope in the middle of the study area. 

Sedimentation rates for the Cretaceous stratigraphy were calculated using biostratigraphic 

data from a deep-water well in the area. Cenozoic sedimentation rates were calculated 

using the age and thickness of the seismically defined units. The result of the different 

resolutions of the methodology is a higher frequency curve for the cretaceous and lower 

frequency curve for the Cenozoic. 
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Figure 3-21. Rate of deposition plot for two locations: 1) deep-water well location (gray 

curve), and, 2) a location on the shelf (black curve). Points in black correspond to depth 

of measured horizons in meters versus their age in million years. Points in red correspond 

to rock samples depths on the well and interpreted ages based on the biostratigraphy. 

Points are plotted for their age in millions of years versus their current depth in meters. 

The shallowest point is the present day sea-floor (1279 m in deep-water and 50 m on the 

shelf) and the deeper point, the Turonian (detachment surface). Steep slopes correspond 

to high sedimentation rates and low angle slopes correspond to low sedimentation rates. 
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3.6 STRUCTURAL HISTORY OF THE BARREIRINHAS BASIN 

3.6.1 Cretaceous Structural History 

This wide system of folds and thrusts generated significant topographic relief at 

the sea-floor during deformation.  On the continental shelf rotated blocks created 

topography at the sea-floor that caused preferential erosion of the footwall. Some of the 

sediments filled the accommodation space at the hanging wall (Fig. 3-22 and 3-23), but 

most of the sediments bypassed the shelf and were deposited at the toe of the slope (Fig. 

3-23). On the toe of the slope folds created anticlines at the sea-floor that were buried by 

sediments coming from the shelf (fig. 3-25). Because deformation occurred within a very 

brief interval, the sequence deposited on the top of the rotated blocks on the shelf and on 

the top of the folds at the toe of slope onlaps the cyan horizon (Figs. 3-26, 3-27, and 3-

28). The top of this onlapping sequence was mapped as the pink horizon (Fig. 3-22) at the 

top of the Santonian (~84 Ma) sequence. The paleo-sea-floor topography controlled the 

deposition of the upper part of the Santonian sequences on the toe of the slope (Fig. 3-

23).
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Figure 3-22. A. Detail of pre-stack time migrated dip seismic line C-C’. Vertical scale is 

in seconds and horizontal scale is in kilometers, average vertical exaggeration is 

approximately 1:5.  Line shows accommodation space was being created on the paleo 

sea-floor, and infilled by the purple sequence during the Santonian. B. Cyan sequence 

corresponds to the Coniacian/Santonian deformed sequence. Sequence in pink was 



93 

probably deposited during a deformational hiatus and onlaps the cyan sequence, forming 

a series of ponded mini-basins filling the accommodation space created by faulting and 

folding. Sequence in yellow corresponds to Lower Campanian sediments and infills 

remaining paleo water-bottom topography. Campanian sequence was deposited post-

deformation of Coniacian/Santonian sequences in cyan and pink. Notice that sediments 

landward of the last fold on the bottom of the sequence represented in yellow onlaps the 

pink sequence, but not basinward suggesting movement on the folds continued longer 

landward. 
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Figure 3-23. Schematic depiction of erosion and deposition on the Cretaceous deformed 

sequence. A. On the continental shelf rotated blocks created topography at the sea-floor, 

with structural highs on the footwalls and lows on the hanging walls. Sediments were 

eroded from the footwall and deposited on the hanging wall. As erosion of the shelf 

proceeded sediments bypassed the shelf and were deposited at the toe of the slope. B. On 

the toe of the slope folds created anticlines at the sea-floor that were buried by sediments 

coming from the shelf, forming an onlapping sequence in the back limbs of the folds.  
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Figure 3-26. Detail on ponded mini-basin, box A on figure 3-25. Vertical scale is in 

seconds and horizontal scale is in kilometers, average vertical exaggeration is 

approximately 1:5. A- Line shows accommodation space was being created on the paleo 

sea-floor, and infilled by the purple sequence during the Santonian. Cyan corresponds to 

the Coniacian/Santonian deformed sequence. Sequence in pink was deposited during a 

deformational hiatus and onlaps the cyan sequence, forming a series of ponded mini-

basins filling the accommodation space created by faulting and folding. Sequence in 

yellow corresponds to Lower Campanian sediments and infills remaining paleo water-

bottom topography during Campanian time. B- Same as A without color. 
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Figure 3-27. Detail of ponded mini-basin, box B on figure 3-25. Vertical scale is in 

seconds and horizontal scale is in kilometers, average vertical exaggeration is 

approximately 1:5.  Line shows syn-deformation thrusting with duplicate sections of 

sequences represented in cyan Coniacian/Santonian age and pink of Santonian age. But 

pre-dating deposition of the Sequence in yellow of Campanian age.  
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Figure 3-28. Detail of ponded mini-basin. Vertical scale is in seconds and horizontal 

scale is in kilometers, average vertical exaggeration is approximately 1:5.  Line shows 

deposition of Campanian mini-basin represented by the sequence in yellow. Campanian 

sequence was deposited post-deformation of Coniacian/Santonian sequences in cyan and 

purple.  
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3.6.1.1 Aptian/Albian (125 to 99.6 Ma) 

The Albian horizon represents the top of the rift sequence on the shelf and the 

beginning of the marine influx in the deep-water. Rift-related basement faults formed 

horsts and grabens on what is now the continental shelf (Fig. 3-11). Rift faults cut 

through the top basement surface (red surface) and mostly die out upward below the top 

of the rift sequence (yellow horizon, Fig. 3-8). The rift sequence, mapped as the interval 

between the basement and the Albian horizons, is not very thick in the study area, less 

than 1000 ms (Fig. 3-29).The main characteristic of the Barreirinhas Basin is an abrupt 

transition zone between oceanic and continental crust as a result of being located on a 

transform margin (Fig. 3-1). The transition between oceanic and continental crust takes 

place over a distance of 10 to 20 km, resulting in a slope of 10 to 15 degrees measured on 

the basement level (Fig. 3-9). 
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Figure 3-29. The isochron from basement to top of Albian age (~100 Ma) horizon 

represents the thickness of the rift sequence on the shelf and thickness of first marine 

sediments on the slope and oceanic basin. 
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3.6.1.2 Cenomanian/Turonian (99.6 to 89.3 Ma) 

The Cenomanian/Turonian (Fig. 3-13) was a time of deep-water deposition of 

shales and marls in the area (Fig. 3-4). The Turonian consists in well-section of 1100 

meters of mudstones interbedded with thin layers of sandstone, siltstones, limestones, and 

marls. The Cenomanian/Turonian sequence corresponds to continuous, parallel-bedded 

horizons on the seismic that cover the whole study area (Fig 3-30). Turonian rocks form 

the detachment surface for the Santonian deformed rocks (85.8 to 83.5 Ma) (Fig. 3-25). 

 

Figure 3-30. Isochron map between the Albian (~100 Ma) and Turonian age (~89 Ma) 

horizons.  
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3.6.1.3 Coniacian/Santonian (89.3 to 83.5 Ma) 

The combination of a steep basal slope (10 to 15 degrees) due to a narrow 

transition zone (10 to 20 km) (Fig. 3-7) with intervals of high sedimentation (Fig. 3-21), 

and consequently steep surface-slope led to instability of the overlying sediments, making 

them prone to gravity-driven slumps and slides (Fig. 3-22). During the Santonian (85.8 to 

83.5 Ma) a prograding shelf and a high sedimentation rate (226 m/my) (Fig. 3-21) in 

deep-water caused slope instability that generated a set of linked listric normal faults on 

the shelf and thrust faults on the toe of slope (Fig. 3-7). On the shelf a thin deformed 

sequence is characterized by listric normal faults detached on a discrete stratigraphic 

horizon within the sequence of Cenomanian to Turonian shales (96 to 91.5 Ma) (Fig. 3-

22). The faults form basinward-dipping rotated blocks over a distance of ~30 km in the 

dip direction (Fig. 3-7). The extensional domain on the shelf is linked by a 30 km wide 

translational domain without visible faults to a compressional domain at the toe of slope 

(Fig. 6). On the toe of the slope the sequence is deformed by a set of landward-dipping 

thrust faults, forming a 30 km long and 30 km wide belt of folded imbricates with 

duplicated sections (Fig. 3-7).  

The sequence deposited on the top of the rotated blocks on the shelf and on the 

top of the folds at the toe of slope onlaps the deformed sequence (Figs. 3-26, 3-27, and 3-

28). The onlapping sequence is highlighted in pink in figure 3-22, the top of the 

onlapping sequence corresponds to the top of the Santonian (~84 Ma) (Fig. 3-14). The 

paleo-sea-floor topography controlled deposition of this upper part of the Santonian 
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sequences on the toe of the slope and the sequence infills the spaces created by the 

normal faults on the continental shelf and the thrust folds on the toe of slope (Fig. 3-32). 

The isochron map between the Turonian and the Santonian horizons (Fig. 3-31) 

shows the thickness of the Cretaceous syn-deformational sequence and part of the post-

deformational sequence. Most of the sediments, up to 1000 ms (Fig. 3-31), accumulated 

on the slope on pocket mini-basins (Fig. 3-32). 

 

Figure 3-31. Isochron map between Turonian (~89 Ma) and Santonian age (~84 Ma) 

horizons. 
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Figure 3-32. Depositional environments from ~89 to ~84 Ma. 
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3.6.1.4 Campanian/Maastrichtian (83.5 to 65.6Ma) 

The Campanian sediments infill the space created by normal faults on the shelf 

and thrusted folds in the toe of slope (Fig. 3-33); and is a growth sequence (Fig. 3-8). The 

isochron map between the Santonian and Campanian (Fig. 3-33) shows depositional 

thicks forming Campanian ponded mini-basins (Fig. 3-34). Mini-basins (Fig. 3-34) are 

wider than the Santonian mini-basins (Fig. 3-32), represented on the Turonian to 

Santonian isochron (Fig. 3-31). Santonian ponded mini-basins coalesced into larger 

basins during Campanian time (Fig 3-34). The isochron map (Fig. 3-33) between the 

Campanian horizon (Fig. 3-15) and the Maastrichtian horizon (Fig. 3-16) shows burial of 

the multiple ponded mini-basins (Fig. 3-22). Depositional thicks are observed in deep-

water, suggesting sediments also bypassed the area into deep-water (Fig. 3-33).  
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Figure 3-33. Isochron map between the Santonian (~84 Ma) and Campanian age (~78 

Ma) horizons. 
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Figure 3-34. Depositional environments from ~84 to ~78 Ma.  
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3.6.2 Cenozoic Structural History 

The Cenozoic sequences, from Turonian to Pleistocene were subjected to a 

second phase of deformation (Fig. 3-35). Sequences from Cenomanian (99.6 Ma) to 

Paleocene (55.8) ages (Fig. 3-4) were deposited before Cenozoic deformation, while 

sequences from Eocene to present (55.8 to 0 Ma) (Fig. 3-4) were deposited during 

deformation (Fig. 3-35). On the continental shelf, sediments were eroded from the 

footwalls and deposited on the hanging walls of normal faults (Fig. 3-36). On the toe of 

the slope thrust faults created anticlines at the sea-floor that were partially eroded (Fig.3-

36). 
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Figure 3-35. Detail of the pre-stack time migrated dip seismic line B-B’. Vertical scale is 

in seconds and horizontal scale is in kilometers, average vertical exaggeration is 

approximately 1:5. Cenozoic deformation is highlighted, the pre-growth sequences in 

green and growth sequences in yellow and blue. 
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Figure 3-36. Erosion and deposition on the Cenozoic deformed sequence. A. On the 

continental shelf listric faults created accommodation space on the hanging wall, 

sediments were eroded from the footwall and deposited on the hanging wall as faults 

moved through time. B. On the toe of the slope thrust faults created anticlines at the sea-

floor that were partially eroded and material re-deposited around the anticlines.  
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3.6.2.1 Paleocene/Eocene (65.5 to ~42 Ma) 

The isochron map between the Eocene and the Maastrichtian horizons (Fig. 3-37) 

show thicks and thins over the Paleocene/Eocene sequence top (65.5 to 37.2 Ma). On the 

shelf break sediments were eroded from the footwall and re-deposited on the hanging 

wall of the normal faults, forming elongated depocenters parallel to the shelf break (Fig. 

3-38). On the continental slope sediments were deposited as thrust faults moved, resulting 

in a growth sequence (Fig. 3-37). Sediments deposited on the hanging-wall of the thrust 

faults formed ponded-mini-basins (Fig. 3-38). Thrust fault movement formed folds on the 

hanging wall that created anticlines at the Paleocene/Eocene sea-floor. These anticlines 

were partially eroded and sediments were locally re-deposited on the thrust faults 

footwalls (Fig. 3-36).  
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Figure 3-37. Isochron map between the Eocene (~42 Ma) and Maastrichtian age (~66 

Ma) horizons. 
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Figure 3-38. Depositional environments from ~66 to 42 Ma. 
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3.6.2.2 Upper Eocene/Lower Oligocene (~42 to28.4 Ma) 

The isochron map (Fig. 3-39) between the Lower Eocene top (Fig. 3-17) and the 

Oligocene (Fig. 3-18) horizons represents thickness of the Upper Eocene/Lower 

Oligocene sequence (42 to 28.4 Ma) (Fig. 3-39). Because of an Oligocene regression 

most of the sediments are trapped on the continental shelf and on the continental slope 

(Fig. 3-40). On the continental slope sediments continued to be trapped in space created 

by normal and thrust faults forming ponded mini-basins (Fig. 3-40). Erosion and gulling 

of the ponded mini-basins also occurs and the larger fold is partially breached causing 

sediments to bypass to the abyssal plain (Fig. 3-40). 
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Figure 3-39. Isochron map between the Eocene (~42 Ma) and Oligocene age (~27 Ma) 

horizons. 
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Figure 3-40. Depositional environments from ~42 to 27 Ma. 
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3.6.2.3 Upper Oligocene/Lower Miocene (28.4 to 11.608 Ma) 

The isochron map (Fig. 3-41) between the Oligocene unconformity (~27 Ma) and 

the Mid-Miocene unconformity horizons (~10 Ma) (Fig. 3-19) represents thicks and thins 

of the Upper Oligocene/Lower Oligocene sequence (28.4 to 11.608 Ma). This was a time 

of erosion on the shelf and deposition in deep water, gulling and channeling are observed 

on the continental shelf and slope, and depositional fairways are observed in the abyssal 

plains (Fig. 3-42). The isochron map For the Upper Oligocene/Lower Miocene sequence 

(Fig. 3-41) shows that sediments continued to be trapped in the continental shelf and on 

the ponded mini-basins of the continental slope. The larger fold on the toe of the slope 

continued to be breached allowing sediments to reach the abyssal plains (Fig. 3-42). 
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Figure 3-41. Isochron map between the Oligocene (~27 Ma) and the Miocene age (~10 

Ma). 



121 

 

Figure 3-42. Depositional environments from ~27 to 10 Ma. 
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3.6.2.4 Upper Miocene to Present (11.608 to 0 Ma) 

The Upper Miocene to present unit, highlighted in blue in figure 3-35, is a 

progradational sequence deposited above the mid-Miocene unconformity and is a time of 

increased sedimentation on the margin. The isochron map between the mid-Miocene 

unconformity and the sea-floor (Fig. 3-43) represents the sediment accumulation from the 

Mid-Miocene unconformity until present day. The Upper Miocene to present day is the 

thicker sequence deposited on the ponded mini-basins, causing all the mini-basins in the 

study area to coalesce into a large ponded mini-basin (Fig. 3-44). Depocenters are thicker 

in the hanging walls of the normal faults at the edge of the continental platform and in the 

hanging walls of the thrust faults at the toe of slope (Fig. 3-43). The fold at the toe of the 

slope has been eroded at Upper Miocene time and continues to be eroded until present 

day allowing sediments to be deposited in the abyssal plain (Fig. 3-44). 
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Figure 3-43. Isochron map between the Miocene age (~ 10 Ma) and the sea-floor. 
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Figure 3-44. Depositional environment of the past 10 Ma. 
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3.7 STRUCTURAL ANALYSIS 

The post-rift geology of this part of the Barreirinhas Basin can be viewed as 

consisting of a series of shale-detached collapse systems and all mapped faults in this 

study are listric detachment faults of those systems. In order to understand deformation 

rates on the faults, fault propagation and fault linkage between normal and thrust faults 

we have performed structural palinspastic restorations and kinematic analysis of the 

faults at different times. 

3.7.1 Structural Palinspastic Restorations 

The present-day deformed state section (Fig. 3-45) was restored to four earlier 

configurations in (1) Miocene (~10 Ma), (2) Oligocene (~27 Ma), (3) Eocene (~ 42 Ma), 

and (4) Santonian (~ 84 Ma) times. Restorations were constructed preserving bed-lengths 

and assuming flexural slip/flow kinematics. The sections are sub-perpendicular to the 

axial trends of folds, and the strike of thrust and normal faults.  

Other fold structures comparable to those analyzed in this study are known in the 

Barreirinhas and Pará-Maranhão Basins, and each is a highly complex three-dimensional 

system. Variations in the exact timing of fault movement within the various basins seem 

likely. Our work focuses on one representative set of structures, and more work will be 

necessary to identify the timing of deformation in other systems within the Barreirinhas 

and Pará-Maranhão Basins. 
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3.7.1.1 Present (0 Ma) 

At present day most of the deformation in the study area is distributed among four 

normal faults and two large thrust faults. There is also a smaller back-thrust fault 

associated with a minor fold collapse feature. The present day shortening measured on 

our representative cross-section is ~2170 meters and the present extension is ~1495 

meters (Fig. 3-45). 

3.7.1.2 Miocene (10 Ma) 

Displacement on all four normal faults was restored to the paleogeometry of 10 

million years ago and resulted in an extension of ~425 meters. Restoration of the thrust 

faults for the same interval resulted in a shortening of ~535 meters. This restoration time 

step resolved 75 % of the shortening and 72% of the extension on the cross-section (Fig. 

3-45). 

3.7.1.3 Oligocene (27 Ma) 

Displacement on the four normal faults and the two thrust faults was restored to 

the paleogeometry of 27 million years ago and resulted in an extension of ~180 meters 

and a shortening of ~430 meters. After this second restoration time-step 80% of the 

shortening and 89% of the extension has being resolved. 

 



127 

3.7.1.4 Eocene (42 Ma) 

Displacement on the four normal faults and the two thrust faults was restored to 

the paleogeometry of 42 million years ago and resulted in no change from the previous 

time-step at 27 Ma, an extension of ~180 meters and a shortening of ~430 meters (Fig. 3-

45).  

3.7.1.5 Santonian (83.5 Ma) 

During the Coniacian-Santonian (Fig. 3-45) a prograding shelf and a high 

sedimentation rate in deep water (226 m/my) (Fig. 3-21) caused slope instability and 

triggered the formation of a series of normal listric faults at the shelf and thrust faults at 

the toe of slope. This wide linked extensional-compressional system developed very 

rapidly, all the deformation and the infilling of the deformed sea-floor took place during 

Santonian (85.8 to 83.5 Ma) within the sequences represented in blue and pink in 

Figure3-45. Because of limited stratigraphic resolution within this interval, and poor 

seismic imaging due to subsequent deformation by a younger fault system (Fig. 3-22) 

detailed interpretation and restoration of individual faults is not possible. Depiction is 

schematic for this event (Fig. 3-45). 
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Figure 3-45. Palinspastic restorations. During the Santonian (83.5 Ma) a prograding shelf 

and a high sedimentation rate in deep water (226 m/my) caused slope instability and 

triggered the formation of a series of normal listric faults at the shelf and thrust faults at 

the toe of slope. During the Eocene (~42 Ma) a second deformation event started to 

develop as the shelf margin collapsed. Deformation continued during the Oligocene (27 
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Ma) with motion on both normal and thrust faults, but deformation rates were slow. 

During the Miocene after 10 Ma deformation rates increased significantly, with major 

normal growth faulting on the shelf margin, and uplift of folds at the toe of the slope at 0 

Ma. Additional normal faults developed in the footwall of preexisting normal faults. 

Major canyon systems were subsequently incised into the shelf margin, cutting both 

normal faults and growth folds. 
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3.7.2 Cenozoic Deformation: Fault Analysis 

Cenozoic deformation involved a thick (>4km) sedimentary sequence and it 

cross-cuts the pre-existing Cretaceous deformed sequence (Fig. 3-45). The Cenozoic fault 

and fold system is 30 km long and 40 km wide, bounded by a normal fault system along 

the shelf and a fold and thrust belt at the toe of the slope (Fig. 3-46). A detachment 

connecting the two systems is not clear on the seismic reflection profiles (Figs. 3-7, 3-8, 

3-9, and 3-10). However, the normal and thrust fault systems project towards one 

another, at a similar stratigraphic level and delineate a bowl-shaped, through-going basal 

detachment (Fig. 3-35).  

Interpretation of the seismic reflection data demonstrated the presence of two 

linked extensional and contractional fault systems of Cenozoic age. The Cenozoic system 

represented on the seismic line in figure 3-35A is color coded on figure 3-35B. The 

sequence in green was deposited prior to deformation and sequences highlighted in 

yellow and blue were deposited during deformation. Normal faults (FN-1, FN-2, FN-3, 

and FN-4) and thrust faults (FR-1 and FR-2) used for the quantitative analysis are labeled 

in figure 3-35. 

To further assess the linkage of the normal and thrust fault systems and estimate 

the deformation rates involved we used the palinspastic restoration time-steps to measure 

fault-parallel displacement through time (Fig. 3-45). The fault linkage is analyzed in 

terms of deformation rate timing relationships.  
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Displacement, throw, and heave were measured for a representative pre-growth 

section, the top of Cretaceous (Fig. 3-46) on fault cut-offs for the following time-steps; 1) 

0 Ma, 2) ~10 Ma, 3) ~27 Ma, and 4) ~42 Ma (Fig 3-45). Measured cumulative net 

displacement is plotted versus time for the present configuration (0 Ma), and for the 

restored time steps (~10 Ma, ~27 Ma, and ~42 Ma) (Figs. 3-47, 3-48, and 3-49). 

The displacement versus time plot (Fig. 3-47) demonstrates the changing 

deformation rate through time. Deformation that began in the Eocene (~42 Ma) continued 

during the Oligocene with motion on both normal and thrust faults, but deformation rates 

were slow, (Fig. 3-47). Deformation rates increased significantly in the Miocene as 

indicated by expanded Miocene section on the downthrown side of shelf-margin normal 

faults (Fig. 3-35). In post-Miocene time deformation rates continued to increase (Fig. 3-

47), with major normal growth faulting forming synclines on the shelf margin, and fold 

crests rising toward the sea bed at the toe of slope (Fig. 3-35). Additional normal faults 

(FN-3 and FN-4) developed in the footwall of pre-existing normal faults (FN-1 and FN-

2) (Fig. 3-46).  
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Figure 3-46. Detail on the Maastrichtian age (~66 Ma) Structural map. Structural map of 

the top of pre-growth section showing the location of seismic lines used in this study. 

White dashed line represents updip and downdip limits of the earlier Turonian-Santonian 

deformation system. The thrust faults (FR-1 and FR-2) and normal faults (FN-1, FN-2, 

FN-3, FN-4) used in our structural analysis are labeled on the map.  
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Figure 3-47. Displacement versus time plot. Displacement was measured and plotted for 

a representative pre-growth section, the top of Cretaceous (Fig. 16) on fault cut-offs for 

the following time-steps; 1) 0 Ma, 2) ~10 Ma, 3) ~27 Ma, 4) ~42 Ma (Fig. 3.45). The plot 

depicts the changing deformation rate through time. Deformation began in the Eocene 

(~42 Ma) continued during the Oligocene with motion on both normal and thrust faults, 

but deformation rates were slow. Deformation rates increased significantly in the 

Miocene as indicated by expanded Miocene section on the downthrown side of shelf-

margin normal faults (Fig. 3-35). In post-Miocene time deformation rates continued to 
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increase, with major normal growth faulting forming synclines on the shelf margin, and 

fold crests rising toward the sea bed at the toe of slope (Fig. 3-35). Additional normal 

faults (FN-3 and FN-4) developed in the footwall of preexisting normal faults (FN-1 and 

FN-2) (Fig. 16). Total fault displacement plotted as a function of time for linked normal 

faults (negative values) and reverse faults (positive values) in the Barreirinhas Basin. 

Note how most faults initiate early in the process of deformation, while some normal 

faults are younger. All faults remain active until near present time. Note also the abrupt 

increase in displacement in the last ten million years. 
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Figure 3-48. Total throw (vertical component of the displacement) plotted as a function 

of time for linked normal faults (negative values) and thrust faults (positive values) in the 

Barreirinhas Basin. The same observations made on figure 3-47 can be seen in this figure. 
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Figure 3-49. Heave (horizontal component of the displacement) plotted as a function of 

time for linked normal faults (negative values) and thrust faults (positive values) in the 

Barreirinhas Basin. The heave pattern suggests the same linkage between normal faults 

and thrust faults observed in figures 3-47 and 3-48. Comparison to figure 3-48 depicts 

relative dominance of downslope transport. 
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3.8 DISCUSSION 

Shale-detached systems similar to the Barreirinhas Basin have been described 

from many basins worldwide, such as Niger Delta (Damuth, 1994; Rowan et al., 2004; 

Krueger and Gilbert, 2006 and 2009; Sultan et al., 2007), Pará-Maranhão (Zalan, 2005), 

and Namibia (Butler and Paton, 2010). In deep-water fold belts structural deformation is 

driven by sediment progradation that may be linked to sea-level drop or tectonic events. 

In the Barreirinhas a steep continental slope combined with sediment progradation 

generated a surface slope sufficient to create instability on the shelf edge/upper slope and 

caused collapse structures which lowered the sea-floor slope. In the Barreirinhas collapse 

structures kept sea-floor slope below 5 degrees. The evolution of the sedimentary wedge 

through time was measured on the seismic and on the structural restorations; 1) 5
o
 at 0 

Ma-, 2) 3.8
o
 at Miocene (10 Ma), 3) 3.6

o
 at Oligocene (27 Ma), 4) 3.3

o
 at Eocene (~42 

Ma), and 5) 4
o
 at Santonian (Fig. 3-45). 

The compression on the toe of slope is caused by friction at the detachment level 

and cohesion of the sliding rocks. Zalan (1998) associated compression at the toe of slope 

to a slowdown in the gravity-driven movement of the sediments due to either (1) change 

in the gradient of the detachment layer or (2) the buttressing effect of a more rigid body 

(such as an igneous intrusion, an ancient volcano, or a protruding rift-phase domino-type 

fault block). In the absence of any of the latter features, we identify the change in the 

gradient as the causative factor. Where observed, buttressing effects are relatively 
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isolated, and have the localized effect of forming imbricate fans, and locally deflecting 

the trend of the fold belt (Fig. 3-10). 

Compressional deformation by thrusting and folding in the Barreirinhas Basin 

occurs at the edge of the oceanic crust for all deformed sequences, due to a change in the 

gradient of the basal slope (Fig. 3-7). On the oceanic crust the basal slope of the sediment 

pile is close to zero, creating conditions appropriate for the formation of a critical taper 

angle sufficient to initiate thrusting (Davis and Kusznir, 2004; Dahlen, 1984).  

Deformation created anticlines and synclines across the depositional fairways 

(Fig. 3-46), providing a template across which submarine flows were focused (Figs. 3-50, 

3-51 and 3-52). Sediments deposited in ponded mini-basins (Figs. 3-50, 3-51 and 3-52), 

onlapping deformed sediments (Fig. 3-35), as described in Nigeria by Hooper et al. 

(2002). In the down-dip shortened domain it is not always possible to determine whether 

onlap geometry on the ponded mini-basins indicates deformation has stopped, or that the 

rate of deformation slowed as a result of: (1) deformation continuing on some faults, but 

not on all; and (2) because of erosion and extensive canyon reaping to the sea-floor 

outcropping faults do not necessarily indicate active movement. 
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3.8.1 Differences and Similarities between Cretaceous and Cenozoic Deformed 

sequences 

Both Cretaceous and Cenozoic deformed sequences are characterized by a 

landward system of normal faults linked through a detachment fault to a basinward 

system of folds and thrust faults. The Cretaceous deformed sequence has a Coniacian to 

Santonian age (89.3 to 83.5 Ma) and is less than 1.5 km thick. The geometry of the 

Cretaceous deformed sequence involves a 30 km wide set of listric normal faults 

(extensional domain) on the outer continental shelf and top of slope that merge into a 

bed-parallel detachment surface, forming a 30 km wide translational domain, that is 

linked to a 30 km wide zone of imbricate thrust faults (compressional domain) on the 

continental slope.  The Cenozoic deformed sequence has a different geometry involving 

4km sedimentary sequence of  Cretaceous and Cenozoic rocks (Turonian to present day 

age), and cross-cuts the pre-existing Cretaceous deformed sequence. Normal faults 

connect to the thrust faults at depth, forming two discrete bowl-shaped fault detachment 

layers, linked at depth at different stratigraphic levels.  
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3.8.2 Cretaceous Deformation 

The Cretaceous deformed section is cut by Cenozoic faults (Fig. 3-45), and 

polyphase deformation creates a complex set of structures (Fig. 3-22). Once the section is 

restored to its Cretaceous configuration (Fig. 3-45) it becomes possible to identify a 

single bed-parallel detachment in Turonian marls and shales. All normal and thrust faults 

associated with this deformational event sole into the Turonian surface (Fig. 3-7). 

Cretaceous deformation has a similar geometry to deep-water deformed sequences 

observed in Nigeria (Damuth, 1994; Corredor et al., 2005; Sultan et al., 2007) and 

Namibia (Butler and Paton, 2010).  

The Cretaceous allochthon is approximately one kilometer thick (Fig. 3-22) and 

elongate, approximately 70 km in down-dip extent (Fig. 3-46). The elongate geometry of 

the allochthon suggests sediments experienced enough friction to form imbricates, but 

low enough for it to spread over a large area. That was probably a combination of a low 

basal slope with very high pore pressures in the Turonian shales. Because the detachment 

is parallel to bedding (Fig. 3-9), bed confined overpressure within the Turonian shales is 

a likely explanation (Cobbold et al., 2004). 

We estimate the age of deformation to be Coniacian/Santonian (~89 to 83.5Ma, 

duration ~5.5 Ma), a period of eustatic sea-level fall and associated high sedimentation 

rate (Trosdtorf et al., 2007 after Haq et al., 1987) (Fig. 3-4), but also Andean tectonism 
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(Wilson and Burke, 1972; Zalan, 1998; Figueiredo, 2009). Andean tectonism affects 

sedimentation rates locally in the continental margin due to drainage rearrangements. 

The Barreirinhas Basin during the Coniacian/Santonian (~89 to 83.5Ma) was a 

mud dominated system. Sedimentation rates were very high (226 m/my) during the 

Santonian and (93 m/my) during the Coniacian (Table 1) (Fig. 3-21).Suggesting a 

depositional system with a very high sedimentation rate similar to that observed today, 

just north of Barreirinhas on the Amazon Delta (Nancy Engelhardt-Moore, personal 

communication) (Table 1) (Fig. 3-21). 

As the prograding sedimentary pile became unstable, normal listric faults 

developed, linked to a bed-parallel gliding surface and to imbricates downslope (Fig. 3-

8). The Coniacian/Santonian deformed sequence was later buried in the Upper Santonian 

and Campanian. Santonian sediments filled anticlines created by the deformation (Fig. 3-

50). This post-deformational sequence formed ponded mini-basins (Fig. 3-50) similar to 

those described by Hooper et al. (2002) and Corredor et al. (2005) in the Niger Delta. 
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3.8.3 Cenozoic Deformation 

Gravity-driven systems are catastrophic in nature, but on and off deformation in 

the Cenozoic system has lasted for at least 40 my, from Eocene to present. The long 

period of syn-depositional deformation combined with less spreading has allowed for an 

accumulation of over 5 kms of deformed rocks (Fig. 3-35). The Cenozoic deformed area 

is less extensive (~ 30 km) both down-dip and along strike (Fig. 3-46), then the 

Cretaceous deformed area, so the allochthon is both thicker and less extensive than the 

Cretaceous (Fig. 3-22).  

Two detachment faults associated with this system were mapped, both cross-

cutting bedding and older Cretaceous structures (Fig. 3-35). The detachment faults form 

bowl-shaped fault systems at two different depths (Fig. 3-35). The geometry is different 

to the classic shale-detached DW-FTB as observed in Nigeria (Corredor et al., 2005) and 

described in this work on the Cretaceous system (Fig. 3-22). 
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3.8.4 Structural Restorations 

3.8.4.1 Eocene (42 Ma) 

During the Lower Eocene the shelf margin collapsed, developing two normal 

faults (FN-1 and FN-2) and one thrust fault (FR-2) (Fig. 3-45). The two normal faults 

linked to each other at depth and to the thrust fault (Fig. 3-10) forming a concave 

detachment fault with normal displacement downdip and reverse displacement updip 

(Fig. 3-45). 

3.8.4.2 Oligocene (27 Ma) 

Deformation continued during the Oligocene with motion on two normal faults 

(FN-1 and FN-2) and on one thrust fault (FR-2), but shortening was only 20% and 

extension only 12% of the present day deformation (Fig. 3-45).  

3.8.4.3 Miocene (10 Ma) 

Most of the deformation took place post 10 Ma with major normal growth 

faulting on the shelf margin, and uplift of folds at the toe of the slope (Fig. 3-45). 

Additional normal faults developed in the footwall of preexisting normal faults (Fig. 3-

45) (FN-1 and FN-2). An additional thrust fault (FR-1) developed in the hanging wall of 

the pre-existing thrust fault. The two younger normal (FN-1 and FN-2) and thrust (FR-2) 

faults linked at depth to the pre-existing concave detachment (Fig. 3-35). During the 
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Miocene fault displacement increased significantly as indicated by expanded Miocene 

section on the downthrown side of shelf-margin normal faults (Fig. 3-45).  

Major canyon systems were subsequently incised into the shelf margin, cutting 

both normal faults and growth folds (Figs. 3-51 and 3-52). The three-dimensional effects 

of the deformation can be seen on the Miocene (10 Ma) to present day isochron (Fig. 13), 

that shows development of a thick ponded mini-basin bounded by normal faults landward 

and thrust faults basinward. 
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Figure 3-51. Cenozoic isochrons and interpreted sedimentary features for the Top of 

Maastrichtian (65.5 Ma) to Eocene (42 Ma), Eocene (42 Ma) to Oligocene (28 Ma), and 

Oligocene (28 Ma) to Miocene (10 Ma) lithounits. Isochron maps show thicks and thins 

that spatially correlate with the Cenozoic fault systems.  
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Figure 3-52. Cenozoic depositional systems Barreirinhas Basin, representing 

depositional fairways, and sediment ponded associated to fault growth. 
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3.8.4.4 Results of the fault analysis 

1) Linked fault systems 

Cumulative net displacement time plots (Fig. 3-47) depict changing deformation 

rate through time. The displacement versus time plot show that movement on both 

normal and thrust faults began at the same time on normal and thrust faults, and 

shortening and extension increased in the area at the same time intervals. The cumulative 

net displacement through time plot thus depict the expected linkage between normal and 

thrust faults, in terms of deformation rate, supporting the idea that the extensional 

deformation on the shelf is accommodated by shortening on the toe of slope.  

2) Landward fault propagation 

According to the fault deformation plots (Figs. 3-47, 3-48, and 3-49) normal 

faults 1 and 2 (Fig. 3-35) start to displace sometime in the Eocene prior to 42 Ma, but 

normal faults 3 and 4 (Fig. 3-35) did not form until Miocene (10 Ma).That implies the 

extensional province propagated landward through time (Fig. 3-46). The same is 

observed for thrust faults in the compressional province, thrust fault 2 (Fig. 3-35) 

displacement starts sometime in the Eocene prior to 42 Ma (Figs. 3-47, 3-48, and 3-49), 

but thrust fault 1 (Fig. 3-35) did not start moving until Miocene (10 Ma) (Figs. 3-47, 3-

48, and 3-49). Therefore younger faults are located landward, and the deformation 

propagated landward on the shelf, changing the location of the shelf break and keeping 

the gradient of the slope below 5 degrees (Fig. 3-35).  
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3) Miocene deformation 

The mid-Miocene unconformity is characterized by a transition from carbonate 

ramp to progradational clastic systems on the whole Brazilian Equatorial margin. This 

coincided with a major drainage reorganization described by Figueiredo et al. (2009) that 

diverted the Amazon River into the Atlantic Ocean introducing more clastics. The paleo-

drainage rearrangement coincides with higher deformation rates on the faults in the study 

area, and to uplifts described in the Camamu Basin by Cobbold et al. (2010). Effects of 

this reorganization affected not only the Amazon River, but extended south, causing the 

sedimentation rates in the Barreirinhas Basin to increase during the late Miocene. 

Deformation has increased dramatically during the last ten million years, with movement 

in all earlier and some newly formed faults (Figs. 3-47, 3-48, and 3-49). Thrust fault 1 

and normal faults 3 and 4 (Fig. 3-45) accommodate approximately 80% of the 

extensional and compressional deformation that took place in the last ten million years. 

3.8.4.5 Driving Mechanism 

The Tertiary event was likely triggered by increased sedimentation in the area, as 

shelf progradation increased the surface slope and caused shelf collapse events. Shelf 

collapse events decreased the surface slope to less than five degrees. Sediment 

progradation and shelf collapse created a feedback process that kept surface slopes close 

to equilibrium through time with multiple episodes of disequilibrium. Deformation rates 

in Eocene and Miocene times correspond to shelf instability at those times. 



151 

3.9 SUMMARY AND CONCLUSIONS 

1) Cretaceous and Cenozoic faults and folds have different geometries 

Two major deep-water fold and thrust belts linked landward to extensional fault 

systems are mapped in the Barreirinhas. Cretaceous and Cenozoic faults and folds have 

different geometries (Fig. 3-2). The Cretaceous deformed sequence is less than 1.5 km 

thick, involves a 30 km wide set of listric normal faults (extensional domain) on the outer 

continental shelf and top of slope that merge into a bed-parallel detachment surface, 

forming a 30 km wide translational domain linked to a 30 km wide zone of imbricate 

thrust faults (compressional domain) on the continental slope.  The Cenozoic faults cut 

4km of Cretaceous and Cenozoic sedimentary rocks (Turonian to present day age), and 

cross-cuts the pre-existing Cretaceous deformed sequence. Normal faults connect to the 

thrust faults at depth, forming a bowl-shaped fault detachment linked to large folds at the 

continental slope (Fig. 3-2). 

2) Driving mechanism is increased sedimentation.  

Gravity gliding is the driving mechanism for both Cretaceous and Cenozoic 

deformation. Loading and steepening of the shelf margin created by increased 

sedimentation rates caused extension on the shelf and compression at the slope. Sediment 

progradation and shelf collapse created a feedback process, in which sediment 

progradation increased the surface slope and shelf collapse decreased it, keeping surface 

slopes close to equilibrium through time. 
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3) Landward propagation of normal and thrust faults. 

As more faults were introduced to the system younger faults were emplaced 

landward of the older faults. The deformed area in both extensional and compressional 

domains propagated landward on the shelf changing the location of the shelf break and 

keeping the gradient of the slope below 5 degrees (Fig. 3-45).  

4) Deformation rates suggest linkage between extension and shortening. 

The cumulative net displacement through time plot depict the expected linkage 

between normal and thrust faults, as extension and compression began at the same time 

and deformation rate increased at the same time intervals in both normal and thrust faults. 

This supports the theory that the extensional deformation on the shelf is accommodated 

by shortening on the toe of slope.  

5)  Increased deformation rates at 10 Ma, likely related to changes in the 

paleogeography at Late Miocene. 

It is possible that the high deformation rates observed in the Barreirinhas Basin at 

Late Miocene are a consequence of large drainage reorganization in the whole Brazilian 

Equatorial margin. Drainage reorganization in northern South America was initiated 

between 11.8 and 11.3 Ma ago, and diverted the drainage west of the Purus arch into the 

present day Amazon Basin (Figueiredo et al., 2009). A consequence of this drainage 

reorganization is that localized deep-water fold and thrust structures are observed 
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continuously on the Brazilian Equatorial margin from the Amazon Cone (Araujo et al., 

2009; Perovano et al., 2009) to the Barreirinhas Basin (Zalan, 1998; 2004; 2005).  
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