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Abstract—The emergence of novel wireless networking
paradigms such as small cell and cognitive radio networks s
forever transformed the way in which wireless systems are
operated. In particular, the need for self-organizing soldions
to manage the scarce spectral resources has become a prewdle
theme in many emerging wireless systems. In this paper, therit

o
@] Microcell

comprehensive tutorial on the use of matching theory, a Nobe & Macrocell n ,|
prize winning framework, for resource management in wireless Picocell @ Femtocel '
networks is developed. To cater for the unique features of eerg- lg m ‘Wif3D)
ing wireless networks, a novel, wireless-oriented classfition of comive .} D2D\  picocel

matching theory is proposed. Then, the key solution concept radio |I!\/@

and algorithmic implementations of this framework are expased.
Then, the developed concepts are applied in three important fig 1: A future wireless network with a mixture of small el

wireless networking areas in order to demonstrate the usefness . . .
of this analytical tool. Results show how matching theory ca cognitive radio devices, and heterogeneous spectrum bands

effectively_improve t_he performance of resource allocatin in all  pase stations and even devices can have some intelligence to
three applications discussed. rapidly make resource management decisions.

Indeed, there has been a recent surge in literature that
proposes new mathematical tools for optimizing resourlee al

Smartphones, tablets, and other handheld devices are 0N in many emerging wireless systems. Examples include
ponentially increasing the traffic load in current wireless- Ccéntralized optimization and game theory. Centralized-opt
works. To meet this increasing demand, several new paradigfization techniques can provide optimal solutions to reseu
have emerged such as: a) cognitive radio (CR) networ@',oca“o” problems and their algorithmic implementasion
in which cognitive devices can adaptively opportunistical have matured over the past few years. However, they often

access the wireless spectrum thus improving spectratarli '€duire global network information and centralized cohtro
tion, b) small cell networks that boost wireless capacityl arfus Yielding significant overhead and complexity. This eom

coverage via a viral deployment of low-cost small cell badd€xity can rapidly increase when dealing with combinatri
stations, and c) large-scale device-to-device commuinitat 'Nt€ger programming problems such as channel allocation

that can occur over both cellular and unlicensed bands. TR user association. Moreover, centralized optimizathary
is gradually leading to a future, multi-tiered heterogareo Ot be able to properly handle the challenges of dense and
wireless architecture, as seen in Fijy. 1. heterogeneous wireless environments such as il Fig. 1.

Effectively managing resource allocation in such a com- The_aforem_entioned Iimi?ations of optimization_ have led
plex environment warrants a fundamental shift from tradf® @n interesting body of literature that deals with the use
tional centralized mechanisms toward self-organizingseiti Of noncooperative game theory for wireless resource alloca
optimizing approaches. The need for this shift is motivatdipn [1]. Despite their potential, such approaches presemte
by practical factors such as the increasing density of wagl Shortcomings. First, class!cal game-theoretic algorittsuch
networks and the need for communications with low latenc§S best response will require some form of knowledge on other
Even recent emerging centralized paradigms such as cloRlpyers’ actions, thus I|m|t|ng their d_|str|buted |mplenhat|o_n.
based RAN will still require some form of self-organizatiorP€cond, most game-theoretic solutions, such as the Nash equ
due to country-specific backhaul constraints. In conseu:men“br'um' investigate one-sided (or unilateral) stabilitptions

there is a need for self-organizing systems in which small cé? Which equilibrium deviations are evaluated unilateraier
player. Such unilateral deviations may not be practicalrwhe
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Recently, matching theoryhas emerged as a promisingften different objectives and learned information. Easlkru
technique for wireless resource allocation which can av@e (resource) builds a ranking of the resources (users) using a
some limitations of game theory and optimization [2]—[6]preference relation The concept of a preference represents
Matching theory is a Nobel-prize winning framework thathe individual view that each resource or user has on the
provides mathematically tractable solutions for the carabi other set, based on local information. In its basic form, a
torial problem of matching players in two distinct set$ [7]-preference can simply be defined in terms of an objective
[Q], depending on the individual information and preferen€ utility function that quantifies the QoS achieved by a certai
each player. The advantages of matching theory for wirelegsource-user matching. However, a preference is moregigene
resource management include: 1) suitable models for chtlvan a utility function in that it can incorporate additibna
acterizing interactions between heterogeneous nodels, dacqualitative measures extracted from the information atdd
which has its own type, objective, and information, 2) apili to users and resources.
to define general “preferences” that can handle heterogsneo A matching is essentially an allocation between resources
and complex considerations related to wireless quality-and users. The basic solution concept for a matching problem
service (QoS), 3) suitable solutions, in terms of stabitihd is the so-calledwo-sided stable matching matching is said
optimality, that accurately reflect different system ohijexs, to be two-sidedstable if and only if there is ndlocking pair
and 4) efficient algorithmic implementations that are iemély (BP). A BP for a stable marriage case is defined as a pair of
self-organizing and amenable to fast implementation. user and resourcéu,r), wherew prefersr to its currently

However, reaping the benefits of matching theory for wirenatched userj, and r prefers« to its currently matched
less networks requires advancing this framework to handiesource:. Thus,u will leavei to be matched te andr would
their intrinsic properties such as interference and ddlm prefer being matched to userthan userk. The implication
spite the surge in research that applies matching theory fir stability in a wireless network will be further discussed
wireless, most existing works are restricted to very lihitein Section[TII-B. This definition of stability can extend tdl a
aspects of resource allocation. This is mainly due to thgpes of matching problems.
sparsity of tutorials that tackle matching theory from a
engineering perspective. For instance, most referencels s
as U]_E] focus on matching prob|ems in microeconomics. In The classical classification of matching problems is based
addition, although([Z0] provides an interesting introdoictto 0N the values of the player quotas as follows:
matching theory for engineering, it does not explicitly kxp « One-to-one matchingtach player can be matched to at
the challenges of future wireless systems. most one member of the opposite set. The most prominent

In this tutorial, we aim to provide a unified treatment of  example is the stable marriage problem in which men and
matching theory oriented towards engineering application  women need to be matched for marriage.
in general, and wireless networking, in particular. Thelgoa « Many-to-one matchingtere, in one of the sets, at least
is to gather the state-of-the-art contributions that askire one player can be matched to multiple players of the
the major opportunities and challenges in applying matghin ~ opposing set, while in the other set, every player has
theory to the understanding of emerging wireless networks, exactly one match. One example is the college admissions
with emphasis on both new analytical techniques and novel problem in which one student can be matched to one
application scenarios. Beyond providing a self-contaituto- university while a university can recruit multiple student
rial on classical matching concepts, we will introduce a new « Many-to-many matchingAt least one player within each
classification that is oriented towards next-generatioeless of the two sets could be matched to more than one
systems. For each class of matching problems, we provide the member in the other set. Many-to-many matching is
basic challenges, solution concepts, and potential atjgits. the most general type of problems and it admits many
Then, we conclude by summarizing the potential of matching examples such as creating partnerships in peer-to-peer
theory as a tool for resource management in wireless neswork  networks.

II. MATCHING THEORY: FUNDAMENTALS AND There exists other classifications for matching problems,
CONVENTIONAL CLASSIFICATION such as based on the partitioning of players, and the prefere
requirement for players. However, such classes can be often

A. Basic Matching Definitions derived as special cases of the above matching problems.
The basic wireless resource management problem can be

posed as amatching problembetween resources and user<. Basic Algorithmic Solution: Deferred Acceptance
Depending on the scenario, the resources can be of differenThe seminal result in matching theory shows thaieast
abstraction levels, representing base stations, tintpsfnrecy one stable matching exist®r general preferences in con-
chunks, power, or others. Users can be devices, statiomsntional one-to-one and one-to-many game$ [11]. This work
or smartphone applications. Each user and resource haalso introduced an efficient algorithm, known as teferred
qguota that defines the maximum number of players witicceptance (DAplgorithm (polynomial time for one-to-one
which it can be matched. The main goal of matching is ®nd empirically very fast for one-to-many) which can find
optimally match resources and users, given their indididuauch a matching. DA is an iterative procedure, shown in Fig.

E. Conventional Classification



L Users’ preforemes lsts (PL); } depends solely on the information available at this re-
source (user) and on the users (resources) to which it is

Resources’ PLs;

L seeking to match. This is useful to study resource man-
[ Each user proposes to its most favorite } agement within a single cell or for allocating orthogonal
resource; and delete it from its PL; spectrum resources. This is particularly applicable, for
7 U 7 example, to CR networks, in which one must allocate
[ ach resource e tavorite users ) orthogonal, licensed channels to a number of unlicensed
regarding its quota and PL among the proposals; users.
v o 2) Class Il: Matching with externalitiesThis class allows
B 2 _No finding desirable matchings when the problem exhibits
{ If all user(s::?';kr;watched? \ﬁ>[ If all users’csfsd:re empty? J “externalities” which translate into interdependencies b
ves O V7 ves tween the players’ preferences. For example, in a small
Terminate: cell network, whenever a user is associated to a resource,
[ A stable matehing between } the preference of other users will automatically change,

since this allocated resource can create interference at
other resources using the same frequency. Thus, the
preferences of any player depend not only on the in-
formation available at this player, but also on the entire
matching of the others. We distinguish between two
types of externalities: conventional externalities andrpe
effects. In the former, the dependence of the preferences
is between players matched to different players in the
other set, such as in the interference example. In the latter
the preference of a user on a resource will depend on the
identity and number of other users that are matched to
the same resource. Such peer effects are abundant in a
wireless environment due to factors such as delay.

Class lll: Matching with dynamicsThe third class,
matching with dynamics, is suitable for scenarios in
which one must adapt the matching processes to dynam-
ics of the environment such as fast fading, mobility, or
time-varying traffic. Here, at each time, the preferences
of the players might change and, thus, the time dimension
must be accounted for in the matching solution. However,
for a given time, the matching problem can be of either
class | or class Il.

Fig. 2: Deferred acceptance algorithm.

[2, in which players in one set make proposals to the other
set, whose players, in turn, decide to accept or reject these
proposals, respecting their quota. Users and resources mak
their decisions based on their individual preferences.,(e.g
available information or QoS metric). This process admits
many distributed implementationsrhich do not require the
players to know each other’'s preferencés] [11]. When the
preferences are strict (no indifference), the stable niadcis

also Pareto optimal for the proposing playérs [11]. Exiemsi
that balance the roles of proposing and receiving players or
which handle many-to-many cases have been developed sugl;u
as in [10] and[[1P].

From an information exchange point of view, even though
DA requires players to submit proposals to one another,dgsdo
not require a centralized controller. During the inforroati
exchange (proposals), each player is required to only aolle
information on the players they are interested in from the
opposite set to perform a ranking according to its prefezsnc
The players need not observe the actions or preferences of
other players. After building preference lists, the play&ke ) ) )
actions based on the local information they collected withoMathematically, the formulation of problems in all three
requiring any synchronization in time. The convergence Af pclasses will follow the basics of Sectl Il. For class I, the
to a stable matching is guaranteed irrespective of the mtlerPreferences of one player set simply depend on the other
play and without any synchronization. Therefore, a DA-das®layer set. However, for class II, the preferences will now
approach can be implemented in a distributed manner with&l&Pend not only on the matched user, but also on the entire
requiring a central information collection center. For lsucmatching, due to externalities. For class Ill, one can ohiae
distributed implementations, the results on the polyndmi@ time-dependent state variable in the matching. Subséguen
time convergence of one-to-one matching would still hold 8¢ preferences will now be time and state dependent, if the

corroborated by some recent studies [B]J[13] problem has both dynamics and externalities. The tramsitio
between states depends on the application being studied. Fo
I1l. M ATCHING IN WIRELESSNETWORKS: example, if the state represents the activity pattern afembed
FUNDAMENTALS user, the transition would follow a classical Markov model.
A. Wireless-Oriented Classification In contrast, if the state represents a dynamically varyasj f

fading channel, one can use differential equations to sgmite

To capture the various wireless resource management ffhae- state transition

tures, we condense the rich matching literature into these n _ _ _ _
proposed classes of problems, illustrated in Fig. 3, anéhigav B- Matching Theory in Wireless: Discussions

the following properties: In wireless resource management, the matching stability no
1) Class I: Canonical matchingThis constitutes the base-tion discussed in Sectidn I[}A implies robustness to déwiet
line class in which the preference of any resource (usé¢hat can benefit both the resource owners and the users. In



| -
) \ / V™ N . { \
B 3
7 Environment
change
Exfernality: Pegr effect @ @ {9
@ @ Time axis R
L4
Class | - Canonical Matching Games: Class Il - Matching with Externalities: Class Il - Matching with Dynamics:
- Example application: Allocation of - Example application: Proactive cell - Example application: Resource
orthogonal spectrum in cognitive radio  association, context-aware allocation, management with environmental
networks interference management, and load variations

balancing
Fig. 3: Novel, wireless-oriented classification of matchtheory.

fact, an unstable matching can for example lead to unddsiratiarying changes and are stable over time. The basic idea is
cases in which a base station can swap its least prefertecast the matching problem as a stochastic game and, then,
user with another since this swap is beneficial to both tlexplore the rich literature on dynamic game theaoty [1] toseol
resource and the user. Having such network-wide deviatioihés problem while ensuring that the solution will converge
ultimately leads to an unstable network operation. Rentdyka to a two-sided stable matchintather than a classical Nash
a recent result’]2] has shown that classical schemes suchegailibrium. The solution would now essentially be a dynami
proportional fair often yield unstable matchings, whichtiier and stochastic version of DA.
motivates the need to analyze and optimize stable matching®lthough the above discussed matching solutions could
for self-organizing wireless systems. This concept is veprovide stable matchings, they also have some limitations:
useful in matching problems and is broadly applicable to all) Similar to game theory, matching problems can admit
classed]. multiple stable solutions and, thus, the selection of ardbk

While the existence of a stable matching is guaranteed f@iatching is a key design issue, 2) the optimality of the stabl
canonical games in the one-to-one and one-to-many casgsution may not be always guaranteed, however, one can
such results do not readily map to many-to-many nor igilize known techniques, such as pricing or optimizeditytil
classes Il and Ill. However, although DA and its variantsaveriesigns, to drive the matching solution towards an optimel a
originally conceived for canonical matching, one can alse ustable point, 3) the exchange of proposals during DA reguire
them as the nexus of new matching algorithms, tailored &mlditional signaling in a wireless network, however, one ca
the nature of wireless networks. Such algorithms can be ussloit some structure of the problem to reduce the number
to establish existence of stable matchings for classesdl af proposals as done inl[3].
Il as well as for finding outcomes with desirable efficiency
properties. V. MATCHING THEORY IN WIRELESSNETWORKS:

Here, we note that no general existence result for sta- APPLICATIONS
ble matching with externalities exists. However, to handle
externalities, one can utilize an iterative DA process WwhicA. Cognitive Radio Networks

continuously updates the preferences based on the CMrenthognitive radio networks present a primary application of

pe rce_ived matching. By exploiting the structure of extéties atching theory due to: 1) necessity of decentralized oper-
via ereless_ concepts such as interference graphs (e.g, V\gii n, 2) need for dynamic spectrum access which requires
mterfgres with Whom), one can analyze the convergence atg\ﬁ?:ient resource management solutions, and 3) the twedsid
stability of the resulting matching. Naturally, by bungmn nature of CR in which licensed, primary users (PUs) own the
such methods one can gxpand the realm O_f matchlng theBWannels that must be accessed by the unlicensed, secondary
o handlc_e external_mes. S'm'lf”‘rly’ by Integrating “F’WO”T users (SUs). Indeed, in CR networks, centralized optintinat
stocr;)astéc g_amdes mt;_) rgatchlnr?, prac:llcal, dynamic ailgr;m solutions are undesirable since PUs and SUs often belong to
can be devised, to find matchings that can cope with iMggte e operators and cannot be centrally controlled.tidn

1This concept can also be connected to other stronger or wegkiaility Other hand, in some (?R problems, such as PU-SU asso-czlatlo.n,
notions (e.g., setwise or Nash stability) which have vasitnerpretations.  USing a noncooperative game can lead to stable solutions in



4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ (given time-varying PU activity).
= = = Random channel allocation (3 PUs)
== Deferred acceptance algorithm (3 PU.
Proposed algorithm (3 PUs)

B. Heterogeneous Small Cell-based Networks
= © = Random channel allocation (4 PUs)

/=0~ Deferred acceptance algorithm (4 PUY) - 1 Heterogeneous small cell-based wireless networks (Het-
+P“""’““'g""‘hm(“_ﬁ?j)____ 5 Nets) present an important application of matching theory
‘ due to their heterogeneity and scale. Also, there has been
an increased recent interest in developing context-aware o
user-centric HetNets that can exploit new dimensions sgch a
social metrics to improve resource allocation. Such cdnatex
awareness further motivates the need for distributed isolsit
‘ ‘ ‘ ‘ ‘ ‘ ‘ that account for the individual context available at eacteno
°% 3 4 5 mber Sisus vt 8 0 10 — similar to how matching captures individual preferences.
Fig. 4: Example result showing how matching improveg;iven this striking ana!ogy between matching theory and
channel allocation in cognitive radio networks. resource management |n-HetNets, the proposgd classgs can
be used to address a variety of problems that include: inter-
which matching PUs and SUs is done without requiring thgrence management, handover management, caching, and cel
two-sided consent of both PUs and SUs. association.

The suitability of matching theory for CR has been corrob- Here, matching is preferred over optimization due to: 1) the
orated by a number of recent works such [as [3] dnd [4]. Hensity and scale of HetNets which motivate self-orgauizin
particular, [3] presented one of the first works in this aregolutions, 2) need to account for the context present at each
In this work, a one-to-one matching problem is formulatedBS and device instead of a single, global utility function,
between a number of SUs and a number of PUs (channelgd 3) the centralized optimization approach will gengrall
The channels are assumed to be orthogonal and, thus, the ggi@iel a combinatorial problem, particularly, in the presen
is a canonical matching game. The preferences of both usgfsheterogeneous context, which limits its applicabiligré.
and channels are based on the same utiIity function Whiﬁ)[breover, although a noncooperative game is also appécabl
primarily captures the rate of transmission. Under this ehod here, it will have a number of limitations that include theede
it is shown that: a) a unique stable matching exists and bx& observe (at least partially) all players preferences taed
modified version of the DA algorithm can be used to find th@ct that the solution concepts would not account for tvetedi
stable allocation in a time efficient manner. This work wastability as previously explained.
extended in[[4] to account for energy efficiency. In [14], we studied the problem of cell association in the

Recently, we also studied a one-to-one matching probleiplink of a HetNet. The basic model here is an uplink HetNet
between SUs and PUs in which the SUs rank the PUs basaddel in which each user needs to decide on which small
on their confidence in sensing the PUs’ channels. In pagticulcell base station (SBS) to be assigned to. The problem is
using a soft-decision Bayesian framework, we quantified tfiermulated as a one-to-many matching model in which a user
accuracy of the sensing of each channel and we incorporatesh be associated with only one small cell base station (3CBS
this metric in the SUs preferences. Prior to matching, eaahd an SCBS can admit a certain quota of users. The users’
SU evaluates its appreciation of the PU channel by capturipgeferences over SBSs capture the bit error rate and delay
the effect of confidence in sensing as well as rate. Tharadeoff that they can achieve while the SBSs’ preferences
the PUs actively participate in the association processasavor load balancing by pushing users to the smaller cells,
on two cases: a) when inactive, the PU prefers to grant iithout jeopardizing QoS. Such a load balancing is esdgntia
band to the SU with the highest sensing detection and rat€orm of cell biasing in which an SBS would offload some
to better exploit the channel and b) when active, the Plkers from the macrocell and service them directly. Here, we
prefers to protect its band, and, thus, will attempt to limiiso consider the delay at each SBS due to the increasing load
or deny association. Here, we show that the matching asd the limited capacity of the backhaul that connects th®’' SB
canonical and we adopt a modified DA algorithm that allows the core network. Therefore, although orthogonal spettr
the PUs to handle the aforementioned property. As showni#nconsidered, due to the delay, the matching problem is show
Fig.[4, for the studied scenario, the matching-based alguri to havepeer effectsand, thus, it belongs to class Il, matching
yields significant performance gains, in terms of the SUs-sumith externalities.
rate, when compared to classical, random channel allatatio Due to peer effects, applying DA and its variants will
schemes. Moreover, the modified DA algorithm also presenist yield a stable matching. Instead, we developed a new
sum-rate improvements over classical DA (similar gains caifgorithm that starts with a distributed DA-based processsgi
be seen in terms of convergence time). initial preferences based on the worst-case delay. Then, as

Clearly, CR networks present an important avenue féine nodes measure externalities, they modify their prafere
matching theory. Many extensions to the existing works camd change their choices by transferring to other SBSs. ,Then
be envisioned, particularly by exploring matching witheaxt we show that, due to the presence of transfers in the model,
nalities (under interference constraints) and dynamichiag the delay sensitive users will tradeoff two-sided stapifir

Sum of SUSs' rates, bits/s/Hz
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Fig. 5: Example result showing how matching theory can If#g. 6: Example result showing how cheating further impsove
used to improve uplink cell association in HetNets. both DU and system utilities.

a weaker stability which achieves a better quality-of-&ar information collection at the BS from all possible D2D pairs

Fig.[3 shows simulation results for 2 macrocells and 10 SBSs., . : . X

. ut will also need to deal with an increased computation
We can see that the matching-based approach outperforrg;;:n lexity at the BS level. Formulating the D2D oproblem
the benchmark best neighbor scheme that is often adopied piexity ’ 9 P

in classical cellular systems, with up 23% of improvement as a noncooperative game will be limited by the fact that it

in the average user utility. Fig] 5 also shows a reasonangl still rely on individual stability and the need for D2D

convergence time that grows slowly with the network size. users to observe the preferences of other players. To aounte

One can extend this framework of matching with peetpese limitations, it is of interest to develop matchingdtetic

. models for D2D communications. To this end, we observe
effects or, more generally, externalities to many otheasire . . )
. 4 . that D2D typically involves two types of users: cellular tse
in HetNets. For example, in][5], the framework is extended
. . . Us) and D2D users (DUs). In the underlay mode of D2D
account for interference and perform downlink cell asstomia

for a context-aware network in which preferences captureogerat'on’ the CUs are exclusively assigned licensed spact

palette of information that include application type, haade Svitl:]nfefrggsthe BSs, while the DUs must share the spectrum

size, and physical layer metrics. In addition, as shown in In _ _
[13], one can explore canonical matching models to studty, nlc% Here, we formulate a two-sided matching problem. bgtwgen
e CUs and DUs. Each CU and DU starts by building its

only the association at the radio level, but also at the lefel t X ) > )
operators preference list by observing the necessary informatiog, €.

In a nutshell, matching-theoretic models, in all three s the channel condition, the transmission power, and specific

can serve as a fundamental analytical tool for future cailul@0S requirements, on the other type of players. Here, the
systems. Beyond the examples discussed above, one pigferences of CUs over DUs are defined as monetary payment
envision several new models such as many-to-many matchfﬁ%m the_DUs or the incurred interference on CUs. The DUs

models for caching, dynamic matching models for handli ild their preferences over CUs based on the channel con-

mobility, and stochastic matching models that smartly cioeb J1tions or achievable transmission rate. A CU-DU matching
matching with stochastic geometry. is said to be unacceptable if the system’s QoS requirements

is violated. Players that are unacceptable are then removed
C. Device-to-Device Communications from each others preferences. Then, each player (CU or DU)

One promising technology to overcome the ever-increasifgrts the acceptable players in the descending order of its
wireless capacity crunch is device-to-device (D2D) commurpreferences. After setting up the preferences, properhimac
cations. Using D2D, mobile users can communicate direc@ygorithms must be developed to achieve the required system
over cellular spectrum bands while bypassing the base sghjectives such as maximizing the throughput. For example,
tions (BSs). As D2D users may share spectral bands with offgen using the DA algorithm, as explained in Fig. 2, DUs
another as well as with the cellular network, the introdurctf ~ Will propose to the CUs who, in turn, will accept or reject the
D2D in cellular networks will lead to new challenges in termgeceived applications. The complexity of this iterativeqess
of interference management and resource allocation. Thusjlepends on the total number of the acceptable pajra/hich
will provide an important application for matching theory. is O(m) [8].

Optimizing resources for D2D communication using cen- However, beyond considering a global utility, in some
tralized optimization can result in more overhead due &renarios, one is interested in optimizing the performanice
information exchange and centralized computation. Inigartone of the two sets of players, such as the DUs. Based on our
ular, centralized optimization will require not only dynim work in [15], we proposed the idea of incorporating a form of



“cheating” in the preferences in an effort to improve the DUs[8] D. F. Manlove, Algorithmics of Matching Under Preferences World
utilities. Cheating is done by enabling the DUs to smartly  Scientific, 2013.

h hei f " n[gle R. W. Irving, P. Leather, and D. Gusfield, “An efficient alghm for
change their preferences, so as to reap more performa the optimal stable marriageJournal of the ACMvol. 34, no. 3, pp.

gains. As shown in our result in Figl. 6, the use of such chgatin  532-543, Jul. 1987. .
strategies can improve the DUs’ utility while simultanelgus [10] H. Xu and B. Li, “Seen as stable marriages,” Rroc. of the IEEE

. . - . : International Conference on Computer Communications (OM
improving the system utility, compared with a DA algorithm.  gpanghai, China, Mar. 2011. P )

In addition, as done i [6], one can extend such D2D mod€ig] D. Gale and L. S. Shapley, “College admissions and tlilitty of

to cases in which D2D communication must explore, beyond ma”iagggAmefica” Mathematical Monthlyvol. 69, no. 1, pp. 9-15,
. Ll Jan. 1962.
physical layer parameters, the social ties of the userse,H8r 151 « iamidouche, W. Saad, and M. Debbah, “Many-to-manytaiag

shown in [6], one can cast the problem as a class Il problem games for proactive social-caching in wireless small cetivorks,” in

to capture peer effects which reflect how socially connected Proc. 12th International Symposium on Modeling and Optathin in
e L . Mobile, Ad Hoc, and Wireless Networks (WiQ@fammamet, Tunisia,
are the users who utilize D2D communication with an anchor s,y 2014,

device (i.e., used for content distribution or caching bg th13] S. Bayat, R. H. Y. Louie, Z. Han, Y. Li, and B. Vucetic, “Miple

BSS). For such a model, one can enhance the DA algorithm operator and mu_ItipIe femtocell networks: Distri_butgdbi&anatching,”

to account for peer effects and show its convergence to a two- in IEEE International Conference on Communications (ICOjtawa,
p g Canada, Jun. 2012.

sided stable matching. [14] W. Saad, Z. Han, R. Zheng, M. Debbah, and H. V. Poor, “Aleys

D2D is undoubtedly an important application area for @admissions game for uplink user association in wirelessllsoed
networks,” in Proc. 33rd Annual IEEE International Conference on

matching theory with a promising set of future problems. Computer Communications (INFOCOMJoronto, Canada, Apr.-May
2014.
V. CONCLUSION [15] Y. Gu, Y. Zhang, M. Pan, and Z. Han, “Cheating in matchofglevice

) ) ) ) . to device pairs in cellular networks,” ifProc. of the IEEE Global
In this article, we have provided the first comprehensive Communications Conference (GLOBECQMJistin, Dec. 2014.

tutorial on using matching theory for developing innovativ
resource management mechanisms in wireless networks. Firs
we have provided the fundamental concepts of matching
theory and discussed a variety of properties that allow the
definition of several classes of matching scenarios. Then, w
proposed three, new, engineering-oriented classes ohingtc
theory, that can be adopted in wireless networking environ-
ments. For each class, we have developed the basic concepts
and solutions that can be used to address related problems.
We then provided a detailed treatment on how to use such
matching-theoretic tools in specific wireless applicagioim a
nutshell, this paper is expected to provide an accessilide an
holistic tutorial on the use of new techniques from matching
theory for addressing pertinent problems in emerging wil
systems.
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