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Abstract

Multi-source data, either from different sensors or disparate features extracted from the same

sensor, are often valuable for data analysis due to their potential for providing complementary

information. Effective fusion of information from such multi-source data is critical to enhanced

and robust interpretation about the underlying classification problem. Nevertheless, multi-

source data also bring unique challenges for data processing, e.g., high-dimensional features,

lack of compact representation, and insufficient quantity of labeled data. To make the most

use of multi-source data and to address the above challenges, in this research, we develop and

validate data fusion algorithms on multiple datasets in two active research areas — remote

sensing and brain machine interface (BMI).

We develop a mixture-of-kernels approach for data fusion, and demonstrate its efficacy

at fusion of multi-source data in the kernel space. In the proposed approach, each source of

data is represented by a dedicated kernel — one can then learn a classifier (or an “optimal”

feature subspace) by optimizing the kernel parameters for maximum discriminative potential.

A direct related benefit is that this learning framework provides a natural and automated

mechanism to learn weight distributions in the weighted mixture of kernels, that are strongly

indicative of strengths and weaknesses of various sources in the underlying multi-source data

analysis problem. We illustrate the benefit of this property and apply it to infer the relative

importance of different sources of information in a BMI application. Additionally, to save

the labor of labeling a large quantity of samples in real world remote sensing applications,

an ensemble based multiple kernel active learning framework is proposed to effectively select

important unlabeled samples from multi-source data for classification. We also propose a

multi-source feature extraction method based on a composite kernel mapping, to project the

multi-source data to a lower dimensional subspace for effective feature fusion.
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Finally, to effectively represent multi-source data in a compact and robust manner, we

propose a joint sparse representation model with adaptive locality weights for classification.

By adapting the penalty on individual atoms in the dictionary, we show that one can achieve

better signal representation and reduce estimation errors. Further, we also develop a kernel

variant of the proposed fusion framework, which is conceptually consistent and aligned with

the mixture-of-kernels approach developed previously.
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Chapter 1

Introduction

1.1 Multi-source Data Fusion for Classification

Multi-source data, either from different sensors or disparate features extracted from the

same sensor, are valuable for data analysis due to their potential for providing complementary

features. To effectively combine data from multiple sources to improve the interpretation

performances of individual data sources, data fusion has been studied in a variety of fields, e.g.,

signal detection, object recognition, tracking, change detection and classification, for different

applications, e.g., computer vision, remote sensing, medical analysis and defence security.

In general, data fusion techniques can be categorized into three levels [1, 2] — pixel/data

level, feature level and decision level. A more detailed classification of data fusion techniques

was provided by Dasarathy [3] by expending the three level hierarchy into five categories based

on the input and output modes — (1) data in-data out (DI-DO), (2) data in-feature out

(DI-FO), (3) feature in-feature out (FI-FO), (4) feature in-decision out (FI-DO), (5) decision

in-decision out (DI-DO).

The data/pixel level fusion, also known as low level fusion, is the most basic data fusion

method. The raw data are directly provided from multiple sources as input to the data fusion

process, and the output provides a single resolution data, which are expected to be more

informative than each individual input.

In feature fusion, a medium level fusion, features extracted from raw data are fused to obtain

new features that could be employed for further processing. Note that in image processing,

1



such fusion requires a precise (pixel-level) registration of the available images. Methods applied

to extract features usually depend on the characteristics of the individual data streams, and

therefore may have very different properties if the data sets used are heterogeneous. Feature

fusion strategies vary greatly, depending upon properties of the given data and the ultimate

goal.

Decision fusion is a high level fusion approach, which takes symbolic representations as

input and combines them to obtain a more accurate decision output. When the results from

different algorithms are expressed as confidence measures (or scores) rather than decisions,

it is called soft fusion; otherwise, when only label information is used, it is referred to as

hard fusion. Typical decision fusion approaches include voting-based methods, statistical or

probability-based methods and fuzzy logic-based methods.

A problem of particular interest in multi-source data fusion applications is classification,

where the ultimate question is how to take advantage of related information from different

sources representing the same physical quantity to achieve robust classification. A variety of

fusion approaches have been proposed in the literature for classification, and most methods

fall into the categories of feature or decision level fusion, particularly as DI-DO and FI-FO [4].

The focus of this research is to design data fusion algorithms (particularly feature fusion

and decision fusion) for robust multi-source data classification. The underlying assumption

is that following effective fusion, multi-source data would have a better representation in the

feature space and their classification/interpretation performance is improved compared to any

one individual data source. The research are mainly conducted for two specific applications,

i.e., remote sensing (RS) image classification and brain machine interface (BMI).

2



1.2 Applications

1.2.1 Remote Sensing

Applications of multi-source remote sensing data for earth observation and analysis have

been an active research topic in recent years, due to the rapid development of relevant remote

sensing technologies, e.g., very high resolution (VHR) optical, multispectral and hyperspectral

sensors, Synthetic Aperture Radar (SAR), and Light Detection and Ranging (LiDAR) systems.

Remote sensing data fusion aims to integrate the information acquired with different spatial

and spectral resolutions from sensors mounted on satellites, aircraft and ground platforms to

produce fused data that contain more information than each of the sources individually.

Hyperspectral imagery has been increasingly applied for material classification. The hyper-

spectral sensors are designed to capture digital images in hundreds of narrow spectral bands

ranging from the visible to the infrared spectrum [5]. The spatially and spectrally sampled

information in hyperspectral imagery can be considered as a data cube, wherein the spatial co-

ordinates provide image information, and the depth represents intensity as a function of spectral

bands (or wavelength). Consequently, any hyperspectral image has a three-dimensional (3D)

data structure. Each plane (spectral band) of the cube is a grayscale image that represents the

spatial distribution of the scene’s reflectance in the corresponding spectral wavelength. Along

the wavelength dimension, each image pixel provides a spectrum characterizing the materi-

als within the pixel. Different materials typically reflect electromagnetic energy differently at

specific wavelengths, which makes discrimination of materials possible based on the spectral

characteristics.

Nevertheless, using spectral information from hyperspectral images may not provide com-

prehensive information of ground objects for certain applications. Recent studies have shown
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that the spatial information (e.g., textural, contextual and morphological) can be utilized for

a variety of image analysis tasks [6, 7]. Additionally, LiDAR, an active optical remote sens-

ing modality is now becoming increasingly popular for discriminating different ground classes,

particularly where topographic variations are important, and has been used for multiple appli-

cations, e.g., landscape level analysis of salt marsh plant habitats [8] and large area ecosystem

characterization [9]. The fusion of multi-source geospatial data, such as hyperspectral images

with spatial features or LiDAR data, could potentially provide more information than using

either sensor by itself [10, 11].

Many techniques have been developed to process and fuse features from different sources.

Markov random fields (MRF) and its variants have been widely used to model contextual con-

straints and combine multi-source information for remote sensing applications [12–15]. In [10],

the authors investigated the joint use of hyperspectral and LiDAR data for the classification

of complex forest areas, based on support vector machine (SVM) and Gaussian maximum like-

lihood with leave-one-out-covariance algorithm (GML-LOOC) classifiers. In [16], the authors

proposed to fuse spectral, spatial and elevation data by applying morphological attribute pro-

files for urban area classification. In [17], multi-source information was exploited through the

use of composite kernels in SVM. The composite kernel SVM has been demonstrated to be an

effective strategy to combine different sources of data [18].

1.2.2 Brain Machine Interface

Brain Machine Interface (BMI) or Brain Computer Interface (BCI) systems have attracted

extensive attention in the past decade because of their potential in improving human life, espe-

cially for those who are affected by motor disabilities, e.g., stroke, paraplegia, and quadriplegia.

A BMI system is designed to communicate between a subject and the external device without

involving any peripheral and muscular activity [19–22]. Previously, BMI (BCI) systems were

4



mainly employed to control external devices such as computer cursors [23] and robotic pros-

theses/orthoses [24] using invasive methods. In recent studies, BMIs have been used to control

lower-body or upper-body exoskeletons for stroke and paraplegic recovery and rehabilitation

via non-invasive approaches [25, 26]. To control a device via BMI, different brain activity

patterns produced by a user need to be accurately identified by a neural interface system and

translated into appropriate commands. To achieve this goal, the design of high performance

decoding system have become a research focus in recent years.

Electroencephalography (EEG) which records brain signals along the scalp generated by

the concerted action of millions of cortical cells is an attractive method for developing non-

invasive clinical BMI systems. From a machine learning point of view, decoding of EEG signal

is a challenging task for several reasons. First, the EEG signal is non-stationary and commonly

contaminated by artifacts. Artifacts can come from physiological sources, such as eye blinks,

muscle activities, and mechanical sources, such as motion of electrodes or cables during use.

Although advanced signal processing techniques, such as Independent Component Analysis

(ICA), have been employed to remove contaminants, substantial noise still co-exists with the

“pure” signal. EEG signal is also non-stationary since it may vary rapidly over time and more

critically over sessions. In addition, the quality of the data is often affected by the extent of

concentration of the subject, medication or even the mood of the subject during data recording,

which may result in changing of patterns in the data [27]. Secondly, EEG data has low spatial

resolution. It is still unclear which areas of the brain contribute most to a particular response.

Thus, intensive interpretations are required for decoders. Thirdly, the feature space resulting

from EEG data can be potentially high dimensional, while at the same time, the number of

training examples is limited as collecting labelled data is time consuming and a cognitively

demanding process for the subjects. This brings about difficulties in designing a robust and

5



effective classifier, because traditional statistical classifiers are usually sensitive to the quantity

of the labeled data, and easily affected by the “curse of dimensionality.”

As the sensor technology develops, there is a trend to collect different sources of data

simultaneously from the subject with multiple sensors. In [28], a novel protocol was presented

for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)),

and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and

over ground walking tasks. In [29], scalp EEG and Kalman decoders were used to infer both

kinematics and the surface EMG patterns of stroke patients wearing a robotic exoskeleton,

which opens a window of opportunity to combine source signals as well as control variables,

e.g., prediction of movement kinematics could be used to control the robotic exoskeleton while

prediction of sEMG patterns could be used to drive functional electrical stimulation (FES)

system in parallel.

Data fusion can also be developed for effective fusion of multichannel data. It has been

shown that several multichannel fusion models are able to exploit the different but complemen-

tary brain activity information for robust decoding [30, 31]. A parametric weighted decision

fusion model and two parametric weighted data fusion models were introduced for the classi-

fication of averaged multichannel evoked potentials in [30]. In [31], the authors proposed and

compared two multichannel fusion schemes, e.g. multichannel feature fusion and decision fu-

sion to utilize the information extracted from simultaneously recorded multiple EEG channels.

In [32], a framework based on decision fusion was proposed for multimodal neural prosthetic

devices, in which the Kalman filter and ANNs were examined in the context of decoding 2-

dimensional endpoint trajectories of a neural prosthetic arm. Testing results show that both

fusion algorithms successfully fused the individual decoder estimates to produce more accurate

predictions, which suggests an interesting direction for decoding using multimodal neural data
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in the future.

1.3 Research Motivations and Challenges

The aim of this research is to effectively incorporate disparate features from multiple sources

to provide complementary information for accurate classification. Although various fusion

algorithms have been proposed and successfully applied for different types of data, there are

some challenges in relation to remote sensing and BMI applications, which can be summarized

as follows.

1. High Dimensionality

Multi-source data can provide a wealth of complementary information; however, the high-

dimensional data often brings unique challenges for data analysis. Hyperspectral sensors typ-

ically oversample the spectral signal to ensure that any narrow features are adequately repre-

sented, which results in hundreds of spectral bands in hyperspectral data. High dimensionality

is also a concern for EEG signal processing. Feature spaces can be high-dimensional considering

the number of electrodes used in the experiment as well as the number of features extracted

from each channel. For example, if we apply a 200 ms sliding window to extract the EEG

delta-band amplitude modulation information from 64 channels for limb movement decoding,

the resulting features are in a 1280 dimensional space (assuming a sampling frequency of 100

Hz).

The high-dimensional data can bring about difficulties in designing a robust and effective

classifier, because traditional statistical classifiers are usually sensitive to the quantity of the

labeled data, and easily affected by the “curse of dimensionality.” On the other hand, high-

dimensional space is mostly empty, in which data can be projected to a lower dimensional

subspace without losing significant information in terms of separability among the different

statistical classes. Robust feature extraction or dimensionality reduction methods are hence
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necessary to obtain useful information in a much lower dimensional space that allows for the

separation of classes.

2. Effective Representation

Another challenge in the signal processing point of view is how to represent the signal in a

compact way. As most natural signals are inherently sparse in a certain basis or dictionary, they

can be compactly represented by only a few coefficients that carry the most important infor-

mation. In other words, the intrinsic signals in the same class usually lie in a low-dimensional

subspace and the semantic information is often encoded in a sparse representation with respect

to some proper basis.

Many biological findings support sparse representation in the brain, as sparsity of the neural

response has been observed in neurons [33, 34] — a sparse set of neurons only encode specific

concepts rather than responding to every input. In [35], it was found that EEG signals had

a sparse spatial and temporal structure which may be utilized to improve signal classification

for BMIs across multiple subjects and modalities.

In recent years, the compressed sensing and sparse representation theories have emerged as

powerful tools to reconstruct and represent signals by decomposing the sample over a usually

overcomplete dictionary generated by or learned from representative samples. Further, sparse

representation based classification (SRC), which combines the discrimination power with the

reconstruction property and notions of sparsity, has been demonstrated as an effective and

robust method for many pattern recognition applications [35–40].

3. Limited labeled samples

Given sufficient labeled ground reference data, supervised learning methods are effective for

analysis of remote sensing data, for problems including classification, spectral unmixing and

anomaly detection. Unfortunately, the performance of supervised learning models is heavily
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dependent on the availability of representative labeled data for training, which in real-word

applications are usually expensive and time-consuming to obtain. However, manual selection of

training data from imagery, a common practice, is subjective (particularly if accomplished via

visual interpretation) and tends to introduce redundancy into the supervised classifier because

data are selected in spatially contiguous patches, and thus slow the training process. Therefore,

it is important to collect training data that are most informative and useful for the underlying

classification task.

Active learning (AL) was introduced for such tasks in the machine learning community

[41], and has been demonstrated to be useful for classification of remote sensing data [42],

[43]. Unlike traditional passive learning, where labeled data are used to train the classifier

and unlabeled samples are subsequently classified, in AL, users can interact with the classifier,

both providing capability to select the most informative samples and allowing adaptation in

dynamic environments. In the AL framework, classifiers are initially trained on a very limited

set of training samples, but additional informative and representative samples are identified

from the abundant unlabeled data, labeled, and then inducted into this set, thereby growing

the training dataset in a systematic way. The goal of AL is to minimize the cost related to the

sample labeling process while maximizing the discrimination capabilities.

1.4 Dissertation Overview

To make the most use of multi-source data for classification and to address the challenges

stated above, this research proposes advanced fusion methods from two different aspects —

mixture-of-kernels based approaches and sparse representation based approaches. To achieve

enhanced performance for multi-source data fusion, it is important to leverage individual

sources according to their information contribution and assign each source an optimal weight

for fusion. This research investigates different methods to optimize the weights in the proposed
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algorithms.

The dissertation first provides background for this research and gives reviews of basic classi-

fication and multi-source data learning methods in Chapter 2. In Chapter 3, we present meth-

ods to fuse different sources of data in the kernel space through mixture of kernels, where each

kernel is dedicated to a particular type of source/feature. Within this chapter, a composite-

kernel-based feature extraction method is first proposed as a feature fusion method. In the

composite kernel based approach, the weights are optimized by grid search and cross-validation.

Further, the multiple kernel learning (MKL), a more sophisticated method to optimize the ker-

nel weights, is applied for scalp region importance learning in BMI tasks. In this framework,

user’s internal states, such as the gait patterns, can be decoded from the EEG signals and the

relative importance of different scalp brain areas can be simultaneously learned by an MKL op-

timization. In addition, to address the challenge of a limited quantity of labeled samples in real

applications, this chapter presents a multi-source active learning framework based on MKL,

which can be used to iteratively select important unlabeled samples to enlarge the training set

for better classification. In Chapter 4, a data driven joint sparse representation model with

adaptive weights for different sources is proposed. By adapting penalty on different atoms, one

can not only achieve better signal representation but also reduce the estimation errors. The

proposed fusion framework is then extended to the kernel space, which leads to a conceptually

similar framework as the multi-kernel based approach. The proposed works are validated on

multiple datasets in two active research areas — remote sensing and brain machine interface,

for different applications.

Figure 1.1 shows the structure of the dissertation and the proposed methods that are

developed and presented in each chapter.
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Chapter 2

Background and Related Work

2.1 Introduction

Feature extraction and classification are two key aspects of most machine learning systems.

Feature extraction seeks to find features that facilitate optimal discrimination between classes.

This chapter first provides the background for the multi-source data employed in this research,

and descriptions of several types of features extracted from each data source. Then the classi-

fication algorithms related to this research are reviewed. Based on traditional algorithms for

single source data classification, the multi-source data learning and active learning methods

are discussed to provide a sound background for the research.

2.2 Data Acquisition and Feature Extraction

2.2.1 Remote Sensing Datasets

For the remote sensing application, the proposed algorithms are validated on two sets of

multi-source data.

1. University of Pavia Dataset

The first hyperspectral dataset was acquired using the Reflective Optics System Imaging

Spectrometer (ROSIS) sensor over an urban area surrounding the University of Pavia, Italy.

The image has a spatial size of 610× 340 pixels with the spatial resolution of 1.3 m per pixel

and 103 spectral bands. There are 9 classes of interest, and the number of labeled samples

for each class is shown in Table 2.1. The composite image of the hyperspectral data and its
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groundtruth are shown in Figure 2.1. The mean spectral signatures are shown in Fig. 2.2,

and the critical classes are determined as Asphalt, Bitumen, Meadows, Bare Soil, Gravel and

Bricks.

(a) (b)

Figure 2.1: University of Pavia dataset. (a) Composite image of the hyperspectral data; (b)
Groundtruth map.

Figure 2.2: Mean spectral signatures of University of Pavia dataset.
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Table 2.1: Groundtruth classes for the University of Pavia scene and their respective number
of samples

Class Index Name # samples Class Index Name # samples

1 Asphalt 6631 6 Bare Soil 5029
2 Meadows 18649 7 Bitumen 1330
3 Gravel 2099 8 Bricks 3682
4 Trees 3064 9 Shadows 947
5 Metal sheets 1345

2. University of Houston (UH) Dataset

The second dataset is comprised of a hyperspectral image and discrete return LiDAR data.

The dataset were acquired over the University of Houston campus and the neighboring urban

area. The hyperspectral data were acquired with the ITRES-CASI 1500 sensor, on June 23,

2012 between 17:37:10 and 17:39:50 UTC. The average altitude of the sensor was 5500 ft, which

resulted in 2.5 m spatial resolution data. The hyperspectral imagery consists of 144 spectral

bands ranging from 380 nm to 1050 nm, and was processed (radiometric correction, attitude

processing, GPS processing, geo-correction etc.) to yield the final geo-corrected image cube

representing at-sensor spectral radiance, SRU = µW/(cm2 sr nm). A true color composite of

the hyperspectral signatures is shown in Figure 2.4 (a).

The LiDAR data were acquired using an Optech Gemini sensor on June 22, 2012 between

14:37:55 and 15:38:10 UTC. The 167 kHz laser operates at 1064 nm and records up to four

returns. The average height of the sensor at the time of acquisition was 2000 ft above ground

level, which resulted in an average point density of 35.38 points/m2 on the ground. The digi-

tal surface model (DSM) and pseudo-waveform data were generated from the original LiDAR

point cloud as described in Section 2.2.2 and are shown in Figure 2.4 (b) and (c), respectively.

The pseudo-waveform data are represented in 80 bins, which correspond to the LiDAR aggre-

gated discrete returns within pre-defined voxels at predetermined elevations above/below the

ground. The quantization unit of elevation spacing is 1 m, and the first band corresponds to 9
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m below ground elevation, so the 80-th band corresponds to 70 m above ground elevation. For

this urban area, most objects are located in the range of 0−20 m, so some bands are “empty”.

From Figure 2.4 (c), we can see most of the objects are in the green color range, which means

that they are close to the ground. The mid-elevation objects are represented as blue, and taller

objects are in red. All images are comprised of a 349 × 1905 grid at 2.5 m spatial resolution.

The ground reference map is shown in Figure 2.4 (d). The total number of ground reference

samples is 15,029, covering 15 classes of interest. The number of labeled samples for each class

is shown in Table 2.2. The classes include several vegetation classes, different types of roads,

as well as some urban classes. We identify Road, Highway, Railway, Parking Lot 1 and Parking

Lot 2, as critical classes, because of their similar spectral signatures as shown in Fig. 2.3. In

particular, parking lots are categorized based on whether they have cars, i.e. Parking Lot 1 is

empty, and Parking Lot 2 is filled with cars.

Figure 2.3: Mean spectral signatures of UH dataset.
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(a)

(b)

(c)

(d)

Figure 2.4: UH dataset. (a) True-color composite of the hyperspectral data; (b) LiDAR DSM
data; (c) False-color composite of the pseudo-waveform data; (d) Groundtruth
map.

Table 2.2: Groundtruth classes for the UH scene and their respective number of samples

Class Index Name # samples Class Index Name # samples

1 Healthy grass 1251 9 Road 1252
2 Stressed grass 1254 10 Highway 1227
3 Synthetic grass 697 11 Railway 1235
4 Trees 1244 12 Parking Lot 1 1233
5 Soil 1242 13 Parking Lot 2 469
6 Water 325 14 Tennis Court 428
7 Residential 1268 15 Running Track 660
8 Commercial 1244
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2.2.2 Remote Sensing Multi-source Feature Extraction

We use the terminology multi-source to loosely refer to data obtained via different sensors,

or different feature-types derived from the same sensor. For multi-sensor fusion, both hyper-

spectral and LiDAR data are used as the testbed. DSM and pseudo-waveforms were generated

as feature streams for LiDAR data. For multi-feature fusion scenario, the raw spectral data

and spatial features derived from the hyperspectral image are utilized. Two potentially diverse

spatial features are considered in this research, which are object-based textural features and

extended morphological attribute profiles (EMAPs). A brief description of each type of feature

set is presented in the following sections.

2.2.2.1 Features from LiDAR Data

Among several data products that can be extracted from discrete return LiDAR data, DSM

and pseudo-waveforms are considered in this research. A DSM is one of the most popular and

simple data products that can be generated from the discrete return LiDAR data. In addition

to the DSM, we also generate pseudo-waveforms over the same grid structure as used in the

DSM and the hyperspectral data by stacking voxels with 1 m vertical dimension on the grid and

accumulating points within every voxel. We refer readers to [44] for a detailed description of

the pseudo-waveform generation process. Although the pseudo-waveform generation approach

is adopted in this study since only discrete return LiDAR data are available over the study area,

LiDAR data from advanced full waveform LiDAR systems could be used instead by applying

waveform decomposition [45].

2.2.2.2 Object-based Texture Features

Spatial features are usually extracted by considering a window-based approach, which, how-

ever, suffers from the “border-effect” — an issue where the neighborhood includes pixels from

multiple objects/thematic classes. This problem can be mitigated by following an object-based
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approach, in which the neighborhood system is defined in an adaptive way. The approach en-

tails three key steps — (1) The original data are subdivided into spatially homogeneous regions

using the HSeg algorithm [46]. HSeg is a segmentation approach that combines region growing,

which produces spatially connected regions, with clustering, which results in groupings based

on spectral similarity from spatially disjoint regions. Two main factors influence the merging

process: the dissimilarity criterion (DC) and the weighting factor Swght, which ranges from 0

to 1 and sets the relative importance of spatially adjacent regions with respect to those that

are nonadjacent. The output is a hierarchy of segmentation maps at different levels of detail;

(2) Following this, an unsupervised strategy of pruning is applied to remove subtrees of the

hierarchy that are homogeneous with respect to a given homogeneity criterion. In this way, the

final segmentation does not represent one of the actual levels of the hierarchy, but incorporates

regions potentially selected from different levels. This is accomplished by characterizing each

region of the hierarchy in terms of second order statistics (standard deviation is considered in

our specific case). The homogeneity criterion is calculated adaptively for each pixel by com-

puting the standard deviation in a window with size W = [wx, wy]; (3) Finally texture features

(mean and standard deviation are considered in our work) are extracted from the object-based

detected regions.

2.2.2.3 Extended Multi-attribute Profiles

Morphological attribute filters have been applied to extract morphological features in many

recent remote sensing applications [47], [48]. Profiles are computed by removing the connected

components that do not fulfill a specified criterion. The value of an arbitrary attribute attr mea-

sured on a component is compared to a given reference value λ, e.g., T (Com) = attr(Com) > λ.

If the criterion is satisfied, then the regions are kept intact; otherwise, they are set to the gray

level of a darker or brighter surrounding region. Such attributes can be geometric (e.g. area,
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shape, length of the perimeter, image moments), or textural (e.g. range, standard deviation,

entropy), etc. Attribute profiles (APs) are an extension of the widely used morphological pro-

files (MPs). Analogous to the definition of the MPs, APs consist of n morphological attribute

thickening (φT ) and n attribute thinning (γT ) operators as given by

AP(f) = {φTn (f), ..., φT1 (f), f, γT1 (f), ..., γTn (f)} , (2.1)

where f is the input image. Each AP can be computed on one of the features from a multi-

variate image (e.g., the first c principal components of a hyperspectral image), and different

APs can be combined as an extended attribute profile (EAP). Also, according to the attributes

considered, different morphological information can be extracted from the image, and merged

into a single data structure denoted as EMAP

EMAP =
{
EAP1,EAP′2, ...,EAP′n

}
, (2.2)

where each EAP corresponds to a specific attribute and EAP′ consists of all thickening and

thinning operators, excluding the multiple presence of the input image f or the c principle

components which have already been included in EAP1.

2.2.2.4 Parameter Setting

We retain original features (hyperspectral signatures and pseudo-waveforms) in our set of

features. In order to extract textural features, the HSeg algorithm was applied to LiDAR

pseudo-waveform and hyperspectral data by adopting four-neighborhood connectivity. For

both cases, we considered a Spectral Angle Mapper (SAM) based dissimilarity criterion (DC)

and fixed the parameter Swght to 0.1. The strategy of segmentation hierarchy pruning was

applied by setting the parameter W = [wx, wy] equal to [3, 3]. The number of segments ob-

tained after pruning LiDAR pseudo-waveform and hyperspectral data were 67,735 and 55,802,

respectively.
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EMAPs were extracted from LiDAR DSM data and hyperspectral signatures. While EMAP

features can be computed directly from the single band LiDAR DSM data, for hyperspectral

signatures they were extracted from the first four principal components which contain 99% of

the total variance of the original data. Three APs were computed for both LiDAR DSM and

hyperspectral data considering different attributes related to the geometry of a region. The AP

associated with area is a surrogate for the scale of the structures in the scene, which is related

to the size of the regions. The length of the diagonal of the bounding box is a different measure

of the size and geometrical properties of region. The moment of inertia attribute, which models

the elongation of the regions, is a measure of the noncompactness of the objects. As in [48],

the values of λ used in each EAP are: 1) area of the regions, λa = [100, 500, 1000, 5000]; 2)

length of the diagonal of the box bounding the region, λd = [10, 25, 50, 100]; and 3) moment of

inertia, λd = [0.2, 0.3, 0.4, 0.5]. Note that the range of optimal parameters are expected to be

data dependent. In this work, we experimentally determined these values to be appropriate.

Thus, for the LiDAR DSM (hyperspectral) data, each EAP is 9 (36)-dimensional, i.e., it is

composed of one (four) APs with nine levels computed on each component. The final EMAP

is obtained by stacking the three EAPs into a single data structure and by considering the

original LiDAR DSM (principal components) just one time.

2.2.3 EEG Data Acquisition

The restoration and rehabilitation of gait are of great interest to the field of BMIs, i.e. de-

vices that utilize neural activity to control virtual or physical exoskeletons or prostheses. Since

gait deficits are commonly associated with spinal cord injury, limb loss, and neurodegenerative

diseases, there is a need to investigate innovative therapies to restore gait in such patients. In

this research, the specific aim is to classify gait patterns (gait motions or gait phases in a gait

cycle) into different classes using non-invasive EEG signals. The gait data employed in this
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study were acquired for two applications.

1. BMI system for lower-limb exoskeleton control

This experimental protocols were approved by Institutional Review Board of the University

of Houston. After giving the informed consent, subjects were asked to follow and complete a

path marked on the ground while a robotic exoskeleton (REX, REX Bionics Ltd.) is controlled

by an operator remotely. The robot motions in this study included walking forward, turning

right, turning left and stop.

A 64 Channel electrode cap (actiCap system, Brain Products GmbH, Germany) was placed

on the subject’s head according to the international 10 − 20 system having FCz as reference

and AFz as ground. A wireless interface (MOVE system, Brain Products GmbH, Germany)

was used to transmit data (sampled at 100Hz) to the host PC. Data were then filtered in

the (0.1 − 2 Hz) range using a 2nd order Butterworth filter and standardized (z-score) in a

preprocessing step. Figure 2.5 illustrates a standard closed-loop BMI system for lower-body

exoskeleton control, in which the feature extraction and classification are important compo-

nents for the entire decoding system.

Figure 2.5: Illustrating a closed-loop BMI system being used to control a lower-limb exoskele-
ton.
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2. BMI system for virtual reality application

Five healthy subjects with no history of neurological disease or gait pathology participated

in this study for four sessions after each of them submitted a consent form. The experimental

protocol was approved by the Institutional Review Board at the University of Houston, USA.

At the beginning of each trial, the subject was instructed to stand still for 2 minutes on a

treadmill while minimizing eye blinks. The treadmill was then slowly sped up to 1 mph by an

experimenter and the subject kept this walking speed for 10 minutes.

Figure 2.6: Experimental setup. Each subject was instructed to walk on a treadmill at 1 mile
per hour (1 mph). EEG, lower limb joint angles, and accelerations of head, left
and right heel were recorded.

Multichannel EEG (64 channels) was recorded by combining two 32-channel amplifiers

(actiCap system, Brain Products GmbH, Germany). The electrodes were placed and labeled

in accordance with the extended 10-20 international system. EEG data were referenced to FCz
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channel and sampled at 100 Hz. Lower limb joint angles (hip, knee, and ankle) were recorded

by goniometer sensors (SG150 & SG110/A Gonio, Biometrics Ltd, UK) at 100 Hz. Kinematic

data (accelerations) were sampled at 128 Hz by using three wireless OPAL sensors (OPAL,

APDM Inc., Portland, OR) placed at the forehead, left and right heel of the subject. Kinematic

data of the heel would be used to segment all the data into gait cycles. Recording of EEG

data, goniometer data, and OPAL data were synchronized using our custom C++ program.

A raster plot (Figure 2.6) illustrates all the recorded data during standing and walking phase.

2.2.4 EEG Feature Extraction

The EEG is an electrical waveform that varies in time, and it contains frequency compo-

nents that can be measured and analyzed. EEG features commonly used for decoding can be

extracted in the time domain, the frequency domain, or the time-frequency domain.

2.2.4.1 Time-domain Feature

Signal amplitude modulations are the simplest and most commonly measured time-domain

features for EEG data. To capture the amplitudes of a signal, a window of fixed length is

often chosen and shifted in time — data captured within the window is then embedded into a

feature space of the same dimensionality as the length of the window [25].

2.2.4.2 Frequency-Domain Feature

EEG signals can be analyzed in the frequency domain by giving a description of the signal

energy as a function of frequency. Spectral estimation is a typical way to describe the frequency

distribution of the power contained in a signal. The classical non-parametric approach is to

estimate the power at carefully chosen frequency bands in a Fourier transform (e.g. DFT or

FFT) generated spectra. The Fourier spectral features are computed with the Welch’s method

using windowed Fourier transforms of EEG signal segments.
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2.2.4.3 Time-Frequency Feature

The EEG contains frequency components that can be measured and analyzed, and these

frequency components have interesting and valuable properties. There are many ways to

understand brainwaves. Clinicians view them for diagnostic purposes, seeking to identify

patterns that associate with specific pathologies or conditions. Psychologists also study them

in association with mental states, mental processing, and to test concepts of how the brain

processes information. The basic EEG rhythms for clinical practice are summarized briefly in

Table 2.3, with regard to their typical distribution on the scalp, mental states and spectral

power changes during walking. Brain states may exist, and be correlated with the presence

or absence of various frequencies, in time and space, rather than just one frequency. A direct

approach to analyze signal at different frequencies is to decompose the signal in the time-

frequency domain.

Table 2.3: EEG frequency bands in clinical practice

Band Frequency Location Mental states Spectral power during walking

Delta 0.1Hz - 3Hz frontal regions in adults deep, dreamless sleep no noticeable changes

parietal in children unconscious

Theta 4Hz - 7Hz varies deep relaxation, meditation, no noticeable changes

problem solving

Alpha 8Hz - 12Hz occipital/parietal regions relaxed, calm, meditation, suppressed compared to standing

creative visualisation increased during heel strike

Beta 12Hz - 30Hz typlically frontal regions awake, normal alert, suppressed compared to standing

consciousness increased during heel strike

Gamma > 32Hz somatosensory cortex thinking, integrated thought increased compared to standing
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A direct way to extend the Fourier transform from the frequency domain to the time-

frequency domain is the short-time Fourier transform (STFT). However, there exists a limi-

tation with STFT — the size of the window is fixed considering the fact that high-frequency

signals typically require shorter time windows than low-frequency signals. A flexible approach

in which the window size can vary across different frequencies is more desirable.

Discrete wavelet transform (DWT) based feature extraction has been found to be useful in

EEG signal classification studies [49–51]. The basic idea of DWT is to represent a signal as a

linear combination of a particular set of basis functions which can be obtained by shifting and

dilating a mother wavelet. The computed wavelet coefficients provide a compact representation

that shows the energy distribution of the signal in time and frequency domain.

In this study, we investigate a variant of DWT to extract time-frequency domain features.

Redundant discrete wavelet transform (RDWT), also known as stationary wavelet transform,

is designed to overcome the lack of translation-invariance of DWT [52]. Unlike DWT which has

a compact representation, the implementation of RDWT removes the downsampling operator

from the critically sampled DWT and instead upsamples the filter coefficients.

To implement the RDWT, let h and g be the scaling and wavelet filters in an orthonormal

DWT, respectively, which at scale j + 1 are defined recursively as

hj+1[n] = hj [n] ↑ 2,

gj+1[n] = gj [n] ↑ 2,

(2.3)

where h0[n] = h[n], g0[n] = g[n] and ↑ denotes the upsampling operator.

The approximation and detail coefficients in the multiscale decomposition of a signal x can

be derived via the recursive filter bank operations as

cj+1[n] = hj [−n] ∗ cj [n],

dj+1[n] = gj [−n] ∗ cj [n],

(2.4)
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where c0 = x and j is the scale from 0 to J − 1, J is the ending scale.

An example of the implementation of RDWT to get multiscale representation of a signal

x is shown in Figure 2.7. The example only shows when the signal is decomposed into three

levels. After the decomposition, the length of the wavelet coefficients for each scale is the same

as the original signal. In SRC, the wavelet coefficients in the same scale are used as basis to

build the sub-dictionary, and the final dictionary is a combination of all sub-dictionaries.

Figure 2.7: Block diagram of RDWT implementation.

2.3 Related Classification Algorithms

Generally, the most commonly used classification algorithms include Linear Discriminant

Analysis (LDA), Nearest Neighbor (NN) classifiers, Bayesian classifiers, Hidden Markov Models

(HMMs), Logistic Regression (LR), Sparse Representation Classifier (SRC), Artificial Neural

Networks (ANNs), and kernel-based classifiers. A large proportion of classification algorithms

are based on statistical models that operate by predicting the class for a new sample using sta-

tistical knowledge of a given set of training samples. These approaches represented by Bayesian

classifiers are often easy to implement, however, are sensitive to the high dimensionality. In

this section, we review two basic classifiers that are generally robust to high dimensional data

and are directly related to this research.
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2.3.1 Support Vector Machine

Support vector machine [53], one of the most popular kernel-based classifier, is originally

designed as a linear classifier which discriminates classes by constructing a linear hyperplane

similar to LDA. The decision function can be expressed as

y(x) = wTx + w0. (2.5)

The underlying principle of linear SVM is to simultaneously minimize the empirical classifica-

tion error and maximize the geometric margin of the linear separation surface. The optimiza-

tion problem for SVM classification is formulated as

min
w,ξi,b

J(w, ξi, b) = 1
2‖w‖

2 + C
N∑
i=1

ξi

s.t.


yi (〈w,xi〉+ b) ≥ 1− ξi

ξi ≥ 0, ∀i = 1, 2, · · · , N
,

(2.6)

where C is a constant which controls the balance between the margin and empirical loss, ξi are

slack variables which measure the degree of misclassification, and ‖w‖2 is is inversely related

to the margin to the hyperplane.

Although SVM achieves good performance in many linear applications, the reason for its

popularity is that it can be easily extended as a nonlinear classifier for classes with nonlinear

decision surfaces using the “kernel trick” [54]. Given an input data set X = {x1,x2, ...,xN}

in the original data space Rd, define a nonlinear mapping Φ(·) from input space to a higher

dimensional RKHS H as

Φ : Rd → H,x→ Φ(x). (2.7)

Then the so called “kernel trick” is used to involve a nonlinear kernel function in the input

space. The mapping is defined as

K(xi,xj) = 〈Φ(xi),Φ(xj)〉 , (2.8)
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where 〈·, ·〉 is the inner product of two vectors.

The key advantage of a SVM with a nonlinear kernel is that it can map the data which is

not linearly separable in the input space to a high dimensional feature space, where the data

are linearly separable, making the hyperplane decision surface of traditional SVM a reasonable

choice.

2.3.2 Sparse Representation-based Classification

Sparse representation-based classification (SRC) is a recently developed classification method.

In the sparse representation theory, it is assumed that the training samples from the same class

lie on a low-dimensional subspace, and a new test sample will approximately lie in the linear

subspace spanned by the training samples in the associated class. Mathematically, a test

sample x ∈ Rd can be represented as a sparse linear combination of all training samples as

x = As + n, (2.9)

where A = [A1,A2, ...,AC ] ∈ Rd×n is a dictionary representing C classes, s ∈ Rn is the sparse

coefficient vector, and n ∈ Rd represents the noise vector.

In order to obtain the sparse solution s, it is natural to model a `0-norm minimization

algorithm, however, it is an NP-hard problem because of the non-differentiability and non-

convex nature of the `0-norm. An alternative approach is to solve a `1-regularized convex

programming problem also known as LASSO, which can be expressed as

ŝ = arg min
s

‖x−As‖22 + λ‖s‖1, (2.10)

where λ is a positive regularization parameter.

After the sparse coefficient ŝ is obtained, the class label of x is determined by the minimum

residual between x and its approximation from each class-wise sub-dictionary as
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class(x) = arg min
c=1,2,...,C

‖x−Acŝc‖2, (2.11)

where ŝc is the subset of the sparse coefficient vector ŝ associated with class c, and Ac is the

corresponding sub-dictionary.

2.4 Multi-source Data Learning

Multi-source data learning is sometimes referred to as multi-view/multi-task learning in the

related fields such as computer vision, in which views are obtained from multiple sources or

multiple feature subsets. A simple and conventional way to apply machine learning algorithms

on multi-source data is to concatenate multiple sources/features into a “single source” and

adapt to the learning setting. Although this approach is straightforward, the concatenation

usually results in a very high dimensional input space and may cause overfitting in the case of a

small size of training set. Multi-view learning algorithms can be classified into three categories

as: (1) co-training, (2) multiple kernel learning, and (3) subspace learning [55].

Co-training is one of the earliest methods for multi-view learning, which alternately trains

on distinct views to maximize the mutual agreement. Different variants of co-training include

generalized expectation-maximization [56], a combination with active learning [57], employ-

ment of Bayesian graphical model [58], and application of co-regularization [59]. Generally,

co-training algorithms should satisfy three assumptions: (1) conditional independence — given

the class, views should be conditionally independent; (2) sufficiency — each view should be

sufficient for classification on its own; (c) compatibility — the prediction from different views

should have a high probability for a given class.

Multiple kernel learning (MKL) is another approach to learn multi-source data for clas-

sification, which can be viewed as a generalization of SVM. MKL is based on a combination
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(typically linear) of different base kernels, where each kernel is dedicated to a particular type

of feature (e.g., a unique source). The goal of MKL is to simultaneously learn a kernel and

associated prediction in a supervised learning setting. MKL was first formulated as a semi-

definite programming problem by Lanckriet et al. [60], and was then developed by Bach et

al. as an SMO algorithm to solve the medium-scale problem [61]. Further, Sonnenburg et

al. developed an efficient semi-infinite linear program (SILP) and made MKL applicable to

large scale problems [62]. In 2008, Rakotomamonjy et al. [63] proposed an efficient algorithm,

named simpleMKL, by exploring an adaptive `2-norm regularization formulation. In addition,

some research [64], [65] found the consistency and established a connection between MKL and

group-LASSO for dealing with the group structure of data.

The aim of subspace learning on multi-source data is to obtain a latent subspace shared

by multiple features. This approach is directly related to dimensionality reduction (e.g. via

manifold learning), which aims to explore the lower dimensional intrinsic space of data. For

single source data, the simplest and most widely used technique to exploit the subspace is prin-

cipal component analysis (PCA). For multi-source data learning, the corresponding method is

the canonical correlation analysis (CCA) [66]. CCA aims to maximize the correlation between

different sources in the subspace and outputs the optimal projection for each source. Similar to

PCA, CCA exploits the subspace in an unsupervised way without utilizing the label informa-

tion. In order to make the use of class information, a generalized Fisher’s discriminant analysis

[67] was proposed to explore the latent subspace spanned by multi-source data. Through sub-

space learning, data from different sources result in a latent low dimensional subspace, and

this avoids the overfitting problem, alleviating the “Hughes phenomenon.”

The above multi-source data learning algorithms can be considered as feature fusion ap-

proaches. As stated in the first chapter, decision fusion is also widely applied for multi-source
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data analysis. Ensemble learning is a representative decision fusion based learning framework

for multi-source data classification, which constructs a set of classifiers and makes decisions

based on their individual predictions in some way.

Bagging and boosting are two classical ensemble learning algorithms. The bagging algo-

rithm constructs a ensemble of classifiers from different datasets and makes predictions through

uniform averaging or weighted voting over predicted labels [68]. Theoretical results show that

the expected error of bagging has the same bias component as a single bootstrap replicate,

while the variance component is reduced. Boosting is structurally similar to bagging, except

that it adaptively trains a new model to compensate for the errors made by earlier models

through the learning process [69].

In this research, we investigate the feature and decision fusion methods from various aspects

and propose several algorithms extending the basic methods in the above categories.

2.5 Active Learning

Active learning (AL) is a machine learning approach that allows users to interact with

the classifier, both providing capability to select the most informative samples and allowing

adaptation in dynamic environments. The goal of AL is to minimize the cost related to the

sample labeling process while maximizing the discrimination capabilities.

In recent years, many AL strategies have been proposed for remote sensing data classifica-

tion. One group is specific to margin-based classification approaches, such as SVM classifiers.

In this context, margin sampling (MS) represents a simple but powerful strategy [70], [71],

where the importance of samples is based on the distance to the hyperplane, which indicates

the level of uncertainty and its importance towards learning the decision boundary. Samples

whose distance to the hyperplane is small are likely to be support vectors, and thus more

important for learning the classifier. In [72], instead of using the distance to the hyperplane as
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selection measure, the original classification problem is reformulated into a new binary prob-

lem where the goal is to discriminate between significant and nonsignificant samples. While

exploiting the kernel space induced by spectral features has been demonstrated as a successful

framework for MS, an enhanced kernel space can be constructed by including multiple fea-

tures or sources within a multiple kernel learning (MKL) framework, as demonstrated in our

preliminary work reported in [73]. Although MS is effective in many AL problems, limitations

include — (1) It can only be applied to margin-based methods, in which decisions are made

on the distance to a separating hyperplane; and (2) It is not suitable when multiple classifiers

are involved in the learning process, since no inter-classifier-information among the samples is

considered.

Another popular family of AL strategies quantifies the uncertainty of samples by considering

a committee of learners [74]. Each member of the committee builds its own learning model,

and consequently labels the samples in the candidate pool. The algorithm then selects the

samples which have the maximum disagreement for the different classification models in the

committee. Among the strategies that can be utilized to construct committees, a recently

proposed approach for hyperspectral imagery utilizes feature subsets as a proxy for multiple

views (each view being a member in this ensemble/committee) [75].

Other methods are based on posterior probabilities. In [76], using a maximum-likelihood

classifier, the samples whose inclusion in the training set maximizes changes in the posterior

distribution are selected. In [77], samples are selected as a function of entropy of the corre-

sponding class label. Another strategy is represented by the breaking-ties criterion [78], in

which the difference between the two largest posterior probabilities is considered. More re-

cently, researchers have incorporated spatial information [79], [80], and have incorporated the

AL framework in practical operational scenarios [81], [82]. Moreover, while the number of
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samples is an appealing way to formulate the labeling cost, the time spent for labeling or the

distance traveled in the field can be more appropriate for certain applications [83].

Although several AL strategies have been proposed in the literature, they have been applied

mostly for single-sensor remote sensing data. Little research has been conducted in multi-sensor

scenarios. In this research, one of our goals is to develop a robust multi-source AL framework

that can be applied to select important samples for labeling across multiple inputs.
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Chapter 3

Multi-source Data Fusion via Opti-

mization of Mixture of kernels

3.1 Introduction

In most kernel-based learning methods, performance is greatly affected by the choice of

kernel function and related kernel hyper-parameters. The standard SVM only utilizes a single

kernel function with fixed parameters, which necessitates model selection for good classification

performance. Besides, using a fixed kernel may introduce bias, since different sources of data

may have different representations of the phenomena of interest, and hence the similarity should

not be measured via the same kernel function. For such situations, mixture-of-kernels methods

have been recently rising as an efficient approach to learn multi-source data for classification.

This type of approaches represented by the multiple kernel learning (composite kernel learning)

is based on a combination (typically linear) of different base kernels, where each kernel is

dedicated to a particular type of feature (e.g., a unique source).

Based on the concept of composite kernel, we propose a joint feature extraction method

to obtain useful information from multi-source data in a much lower dimensional space. In

this framework, features from different sources are first fused via a weighted composite kernel

mapping, and then projected to a lower dimensional subspace in which a kernel local Fisher

discriminant analysis (KLFDA) is used to extract the most discriminative information. We
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hypothesize that after such a projection, multi-source data would have better class separabil-

ity between classes, and an efficient linear classification model, such as multinomial logistic

regression (MLR), would be suitable for classification.

In the composite kernel based approach, since it usually involves two sources, the weights

are typically optimized by grid search and cross-validation. Even though this approach is

simple and easy to implement, the exhaustive search over the entire parameter space may not be

optimal when the number of sources are more than two. We need a more sophisticated method

to optimize the weights. Multiple kernel learning (MKL) have been shown to outperform

traditional single-kernel machines in different applications [18, 62, 84–88]. The advantage of

using MKL over SVM is that MKL can simultaneously learn the classifier and the optimal

weights for base kernels. To investigate this property, we conduct a research making use of the

optimized weights to simultaneously decode different patterns from the EEG signals and learn

the relative importance of different scalp brain areas.

In addition, to solve the problem of insufficient labeled samples for classification in real

application, this chapter also presents a robust multiple kernel AL framework that can be

applied in a multi-source environment to select important samples for labeling. In particular,

we propose a novel ensemble multiple kernel active learning (EnsembleMKL-AL) system based

on the maximum disagreement query strategy that incorporates different types of features and

fuses them for robust classification.

The remainder of this chapter is organized as follows. Section 3.2 introduces the CKLFDA

as a feature extraction method and validates its performance using two sets of multi-source data

for geospatial classification. In section 3.3, the MKL algorithm is applied to simultaneously

decode the pattern of user’s internal states from the EEG signals and learn the relative impor-

tance of different scalp brain areas. In Section 3.4, the EnsembleMKL-AL framework based on
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the maximum disagreement query strategy is presented and compared with SimpleMKL-AL

to investigate the benefit of using such framework for multi-source data classification. At the

end of this chapter, Section 3.5 summarizes the results and contribution.

3.2 Composite Kernel Local Fisher Discriminant Analysis

3.2.1 Proposed Framework

In this section, we present a composite kernel based feature extraction method that is effi-

cient to jointly extract features from multi-source data for classification. The work is based on

the KLFDA algorithm, with a composite kernel replacing the single kernel in KLFDA. We hy-

pothesize that composite kernels would facilitate an “optimized” feature space for multi-source

data analysis. The proposed CKLFDA algorithm for multi-source data fusion is described in

detail below.

Given a training data set D = {xi, yi}ni=1, where n is the number of samples, xi ∈ Rp is

the input vector with p features and yi ∈ {1, 2, ..., q} is the class index of sample i. Let nl be

the number of training samples in the lth class, and
∑q

l=1 nl = n. The affinity between xi and

xj is defined as

Ai,j = exp

(
−‖xi − xj‖2

γiγj

)
, (3.1)

where γi =
∥∥xi − xi

(knn)
∥∥ is the local scaling of samples in the neighborhood of xi, and xi

(knn)

is the knn-nearest neighbor of xi. Ai,j ∈ [0, 1] measures the distance among samples.

With the data projected in RKHS, the local between-class scatter matrix Slb and within-

class scatter matrix Slw in KLFDA are defined as

Slb =
1

2

n∑
i,j=1

W
(lb)
i,j (Φ(xi)− Φ(xj))(Φ(xi)− Φ(xj))

T and (3.2)

Slw =
1

2

n∑
i,j=1

W
(lw)
i,j (Φ(xi)− Φ(xj))(Φ(xi)− Φ(xj))

T , (3.3)
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where W (lb) and W (lw) are n× n weight matrices defined as

Wi,j
(lb) =


Ai,j(1/n− 1/nl), if yi = yj = l

1/n, if yi 6= yj

and (3.4)

Wi,j
(lw) =


Ai,j/nl, if yi = yj = l

0, if yi 6= yj .

(3.5)

The transformation matrix TKLFDA is then given by maximizing the local Fisher’s ratio

(T TSlwT )−1T TSlbT as

TKLFDA = arg max
T

tr[(T TSlwT )−1T TSlbT ], (3.6)

where any solution T can be expressed as linear combinations of Φ(xj) with coefficients αj

T =
n∑
j=1

αjΦ(xj). (3.7)

Since T is in the RKHS and cannot be directly computed, the kernel trick [54] can be applied

as

T TΦ(xi) =

n∑
j=1

αjK(xi,xj) = αTK. (3.8)

Following this, Eq. (8) can be rewritten using coefficient α as

αopt = arg max
α

tr[(αTSlwα)−1αTSlbα]. (3.9)

Finally, samples in the lower-dimensional feature space can be represented as

z = αoptK, where z ∈ Rr, r � p. (3.10)

With this notion of composite kernels, we extend KLFDA to CKLFDA. For multi-source

data, a weighted summation kernel is employed to balance different data sources (for example

the hyperspectral and LiDAR data), as

K(xi,xj) = dKhy(x
h
i ,x

h
j ) + (1− d)Kli(x

l
i,x

l
j), (3.11)
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where Khy and Kli are hyperspectral and LiDAR basis kernels, respectively; d is the weight

of hyperspectral kernel — varying d provides different composite kernels. The CKLFDA al-

gorithm can be derived by replacing the single kernel in KLFDA by a composite kernel. We

hypothesize that such a composite-kernel extension of KLFDA (which has been shown previ-

ously to outperform KDA) can yield feature spaces that best represent multi-sensor datasets

in a reduced dimensional subspace.

In order to highlight the benefit of CKLFDA for multi-source feature extraction and its

separability between different classes after data projection, we present an example of dimen-

sionality reduction using synthetic multi-source two-class multimodal data. The two-class syn-

thetic multimodal data are shown in Figure 3.2.1, where synthetic data from each source forms

a different input space (source 1 in this example is in a 3-dimensional space, while source 2 is in

a 2-dimensional space) with different distributions. Following this, different feature extraction

methods, including LDA, LFDA, KLFDA, and CKLFDA, are applied to project multi-source

data onto a 1-dimensional subspace, and the histograms of the data in the projected subspaces

are shown in Figure 3.2.
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Figure 3.1: Synthetic 3-dimensional and 2-dimensional multimodal data
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Figure 3.2: Histograms of the synthetic data when projected onto a 1-dimensional subspace
using (a) LDA; (b) LFDA; (c) KLFDA; (d) CKLFDA.

It is observed that the distributions of two-class data completely overlap with each other in

the LDA subspace, while for LFDA and KLFDA, data is less overlapped, because LFDA and

KLFDA can preserve the multimodal structure of the data in the projected subspace. Further,

by building a composite kernel for different sources, two-class data are well separated in the

subspace, which demonstrates that data have better separability after CKLFDA projection,

and are indeed linearly separable as would be expected owing to the nonlinear kernel projection.

Motivated by the above observations, we contend that in the resulting feature space, a

simple linear classifier would suffice for classification. Previous work with MKLFDA utilized

a nearest neighbor (NN) classifier [89], which is highly local and does not utilize intrinsic

statistical information about the data. Our results above demonstrate that a traditional MLR
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(or even a quadratic Gaussian maximum likelihood classifier) would be appropriate after a

CKLFDA projection, even in multi-source remote sensing settings.

The logistic regression (LR) model is typically used for prediction of occurrence of an event

by fitting data to a logistic curve. The standard LR is a linear, supervised classifier used for

binary classification. However, in many real world applications, we are dealing with multi-class

problems. The MLR is an extension of binomial logistic regression and has been found to work

well for multi-class classification. For a given training data set D = {xi, yi}ni=1, the probability

that a given training sample xi belongs to class m is given by the MLR model as

p(yi = m|wi) =
exp(wm

i )∑q
m=1 exp(wm

i )
, (3.12)

where wm
i = vmxi. The parameters (regressors) of the logistic regression model v = [v1,v2, ...,vm]

can be obtained by calculating a maximum a posteriori (MAP) estimate as

vMAP = arg max
v

[l(v) + log p(v)], (3.13)

where p(v) is a Laplacian prior on v which is independent from the observation x. In order

to control the sparsity of v, a regularization parameter λ is defined, and v is modeled as a

random vector with Laplacian density p(v) ∝ exp(−λ‖v‖1). p(v) forces many components of

to be zero, and thus controls the complexity of the MLR classifier.

In (3.13), l(v) is the log-likelihood function given by

l(v) = log
n∏
i=1

p(yi|xi,v)

=
n∑
i=1

(
(vyi)Txi − log

q∑
m=1

exp
(

(vm)Txi

))
.

(3.14)

The optimization problem in (3.13) can be solved by sparse MLR (SMLR) method proposed

in [90].
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3.2.2 Experimental Settings and Results

3.2.2.1 Experiment Setting

The efficacy of the proposed method is demonstrated via experiments using two different

sets of multi-source geospatial data. For feature fusion, the raw spectral data and EMAPs

derived from the hyperspectral image are used as a testbed for multi-source image analysis.

The second multi-source testbed used for validation involves sensor fusion, in which the hyper-

spectral and LiDAR data are utilized. In the experiments, composite kernels for training and

testing were computed using hyperspectral and LiDAR (or spectral and spatial) basis kernels

with different weights. We randomly chose 30, 50, 80 samples from each class to build the train-

ing kernels and then used them to obtain the CKLFDA transformation matrix. In this case,

the testing kernels were projected to the feature space via the same CKLFDA transformation

matrix.

Kernel alignment is a reasonable approach to measure the similarity between a candidate

kernel and the “ideal” kernel built by class labels [91], and can be used to choose appropriate

kernel parameters. Given a kernel matrix Kσ, and a vector of labels y = [y1, y2, ..., yn], the

alignment between two kernels can be defined as

A(Kideal,Kσ) =
〈Kσ,Kideal〉F√

〈Kσ,Kσ〉F 〈Kideal,Kideal〉F
, (3.15)

where 〈·, ·〉F is the Frobenius distance between matrices defined as 〈K1,K2〉F =
∑
i,j
K1(xi,xj)K2(xi,xj).

The ideal kernel Kideal can be computed by inner product of labels for a binary classifier, as

Kideal = yyT . For multiclass classification, the ideal kernel is computed as

K(xi,xj) =


0, yi 6= yj

1, yi = yj .

(3.16)
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Figure 3.3: Overall accuracy versus reduced dimension, and kernel weight d in CKLFDA-MLR
method for (a) University of Pavia dataset and (b) UH dataset.

In this research, all basis kernels are RBF kernels with the optimal parameter σ chosen by

maximizing the alignment of each candidate kernel with the output vector. For spectral-spatial

classification, the parameters were σspec = 0.5, σspat = 1, and for multi-sensor classification
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σhy = σli = 0.5.

We compare the proposed CKLFDA-MLR method with several state-of-the-art feature ex-

traction and classification algorithms. The Gaussian maximum likelihood (ML) classifier, a

popular linear classification method in remote sensing applications, is chosen for comparison.

We then compare the results of MLR and ML classifier combined with different feature ex-

traction methods, including PCA, LDA, KPCA, KLFDA. Since the first two methods (PCA

and LDA) are not kernel-based methods, the multi-source features are stacked together in the

original data space prior to feature reduction. KPCA and KLFDA are standard kernel-based

feature extraction algorithms with stacked features, utilizing a single kernel.

In CKLFDA experiments, we varied the weight d for each basis kernel, such that we

can determine a proper balance between the kernels. The other parameters that need to

be tuned in CKLFDA are the reduced dimension and the value of knn. All parameters

d, reduced dimension (r), knn were tuned using a grid search. Based on our experimen-

tal observations, both ML and MLR classifiers are not sensitive to the knn value if it is in a

reasonable range, e.g. 5 to 41 in this experiment. Figure 3.3 depicts the overall accuracy of

CKLFDA-MLR as a function of reduced dimension and kernel weight d. The kernel weight

d was tuned in the range [0,1] with a step size of 0.1. From Figure 3.3 we observe that the

classification results are not sensitive to the parameter d when a composite kernel is used (when

d ∈ [0.1, 0.9]). The OA is much lower when only a single data source is used (when d = 0 or

d = 1), in which case the composite kernel becomes a traditional single kernel. This observa-

tion justifies our hypothesis that the mixture of kernel built by multi-source data would help

to enhance the classification of hyperspectral images. We also note that dimensionality has

little influence on the overall accuracy of MLR classifier if it is larger than 10 for University of
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Pavia dataset and 15 for UH dataset, indicating that CKLFDA is a very effective dimensional-

ity reduction approach. However, for the ML classifier, the reduced dimensionality should be

smaller than the number of training samples, otherwise the estimated scatter matrix is badly

conditioned and the data are poorly classified. Based on the experimental results, the highest

accuracy was achieved when the dimensionality is reduced to 20 for the ML classifier.

3.2.2.2 Spectral and Spatial Classification Results

Table 3.1 lists average overall accuracies and standard deviation for different methods from

10 repeated randomly subsampled experimental runs.

Table 3.1: Overall accuracies (OA) and standard deviation (%) of Pavia dataset

Method Number of training samples for each class
30 50 80

LDA-ML 83.63 (2.62) 85.87 (2.57) 88.24 (2.02)
PCA-ML 84.55 (2.37) 85.75 (3.34) 87.53 (1.40)

KPCA-ML 84.44 (4.18) 87.19 (1.65) 88.51 (2.21)
KLFDA-ML 86.02 (3.51) 89.55 (1.99) 91.93 (1.47)

CKLFDA-ML 88.67 (2.42) 91.83 (1.55) 94.62 (1.23)
LDA-MLR 77.87 (3.80) 93.25 (1.73) 93.87 (1.60)
PCA-MLR 70.06 (3.44) 74.34 (3.36) 75.43 (2.82)

KPCA-MLR 81.58 (1.85) 84.07 (3.37) 84.55 (2.78)
KLFDA-MLR 92.93 (1.43) 95.50 (1.31) 96.65 (1.05)

CKLFDA-MLR 93.24 (1.74) 96.73 (0.95) 97.17 (0.92)

From the above results, the kernel feature extraction methods achieve higher classification

accuracies than standard PCA and LDA methods. Moreover, KLFDA has better performance

than KPCA. For example, when 80 training samples are used, the OA for KLFDA-ML is 91.93%

compared to 88.51% for KPCA-ML, while for KLFDA-MLR the OA is 96.65% compared to

84.55% for KPCA-MLR. Compared with the results of KLFDA using a single kernel, CKLFDA

with a composite kernel achieves better class separability. The OA of CKLFDA for both ML

and MLR classifiers are higher than those of KLFDA, and the increase of the accuracy can be

as much as 2.69%. In general, the CKLFDA-MLR method outperforms all the other methods
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in terms of the OA. The lower standard deviation implies that CKLFDA-MLR is not only an

efficient but also a robust algorithm.

3.2.2.3 Hyperspectral and LiDAR Classification Results

The overall accuracies and standard deviation for the UH multi-source data are shown

in Table 3.2. By observing the results of this multi-sensor dataset, we can derive similar

conclusions to those of spatial-spectral classification. The standard PCA-MLR method has

the lowest OA, while the kernel-based approaches improve the classification performance by

fusing different data effectively through kernel mapping. CKLFDA performs the best among

all methods with the OA of 94.81% for MLR classifier and 93.59% for ML classifier with 80

samples per class.

Table 3.2: Overall accuracies (OA) and standard deviation (%) of UH dataset

Method Number of training samples for each class
30 50 80

LDA-ML 75.85 (1.53) 85.26 (1.18) 89.36 (1.10)
PCA-ML 76.48 (2.03) 86.26 (1.19) 89.39 (1.10)

KPCA-ML 77.32 (1.47) 85.69 (1.14) 89.43 (1.05)
KLFDA-ML 81.53 (1.36) 86.74 (1.13) 89.82 (0.88)

CKLFDA-ML 86.06 (1.33) 90.35 (0.85) 93.59 (0.73)
LDA-MLR 76.87 (1.48) 79.39 (1.14) 84.44 (1.07)
PCA-MLR 62.36 (4.51) 63.59 (3.89) 64.41 (3.43)

KPCA-MLR 68.45 (1.03) 70.22 (0.93) 73.53 (0.88)
KLFDA-MLR 88.16 (1.23) 90.11 (0.56) 92.77 (0.48)

CKLFDA-MLR 91.10 (0.91) 92.22 (0.78) 94.81 (0.61)

3.2.2.4 Computational Cost

All the experiments were implemented in Matlab R2012a on a Linux system with twelve

3.2GHz Intel(R) cores and 32GB RAM. We compare the feature extraction and classification

time of different methods using the University of Pavia dataset with 80 training samples per

class. Including the time required for parameter selection, the mean processing time for learning

the CKLFDA projection was 2.71s compared to 1.26s for KLFDA and 1.89s for KPCA. The
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baseline linear methods, LDA and PCA, have relatively shorter computational time (0.18s and

0.08s, respectively).

3.3 Multiple Kernel Based Region Importance Learning

3.3.1 Proposed Framework

In BMI applications, the main goal is decoding EEG signals to predict and translate user’s

intention to the external device. Most machine learning methods serve as a “black box” in

that we do not know what happens in the human brain and how the brain regions contribute

to the decoding while people perform different tasks. The human brain consists of over a 100

billion cells, typically divided into regions by neuroanatomists. Different regions may have their

specific functionalities while coordinating together to achieve normal operations. Therefore, at

any time and particular location, the brain may have different functionalities, and variations

in time, and in space (observed as different places on the scalp) are important to understand.

In that context, the assumption of this research is that different brain regions contribute

differently to control lower-limb movements and we are interested in learning such information.

MKL is based on the automatic optimization of a linear combination of multiple kernels, in

which each basis kernel can be represented by a group of electrodes corresponding to regions

of interest (ROIs), and consequently contribute unique biophysical information. In this work,

the goal is to decode the pattern of user’s internal gait states (e.g., stop, walk, turn left, turn

right) from the EEG signals and simultaneously learn the relative importance of different brain

regions.

Generally, the brain consists of identifiable areas, i.e., frontal (motor and sensory cortex),

parietal, occipital (visual), temporal (hearing, language). Different brain functions are thought

to be associated with the particular involved area. A summary of brain regions and their
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associated functions in a normal or injured brain is shown in Table 3.3. We investigate the

importance of these brain areas in the lower-limb movement decoding task. Specifically, the

scalp is further divided into 13 topographical regions of interest (ROIs) adapted from the

previous definition in [92], [93], which are anterior frontal (AF), left frontal-central (LFC),

midline frontal (MF), right frontal-central (RFC), left centro-parietal (LCP), midline central

(MC), right centro-parietal (RCP), left parietal (LP), middle parietal (MP) right parietal (RP),

Left Temporal (LT), Right Temporal (RF) and Occipital (O). Figure 3.4 and Table 3.4 show

the partition of the scalp and the names for each ROI.

Figure 3.4: Scalp regions of interest (ROIs).
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Table 3.3: Brain regions, normal brain functions and problems with brain injury [94–96]

Brain region Function Injured brain

Frontal lobe

Personality / emotions Changes in behavior and personality

Intelligence Mood swings, irritablity

Attention / concentration Unable to focus on a task

Judgement Repetition of a single thought

Body movement Loss of movement (paralysis)

Problem Solving Difficulty with problem solving

Speech (speak & write) Difficulty with language

Temporal lobe

Speech (understanding language) Difficulty understanding language

Memory Problems with memory

Hearing Difficulty identifying objects

Sequencing Difficulty recoginizing faces

Organization Increased aggressive behavior

Parietal lobe

Sense of touch, pain and temperature Lack of awareness of body parts

Distinguishing size, shape and color Difficulty with eye-hand coordination

Spatial perception Difficulty distinguishing left from right

Visual perception Problems with reading, writing, naming

Occipital lobe Vision

Defects in vision or blind spots

Blurred vision

Visual illusions

Difficulty reading and writing
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Table 3.4: Scalp ROI names

Index ROI Name Index ROI Name

1 Anterior Frontal (AF) 8 Left Parietal (LP)
2 Left Fronto-Central (LFC) 9 Middle Parietal (MP)
3 Midline Frontal (MF) 10 Right Parietal (RP)
4 Right Fronto-Central (RFC) 11 Left Temporal (LT)
5 Left Centro-Parietal (LCP) 12 Right Temporal (RT)
6 Midline Central (MC) 13 Occipital (O)
7 Right Centro-Parietal (RCP)

We use MKL to infer information about electrode relevance by identifying the kernel weights

learned from training the machine for classification. Each “group” of features is assigned a base

kernel, and the linear combination of all base kernels is optimized through gradient descent on

the SVM objective function. The optimization of multiple kernels works as a feature selector

providing a weighted ranking of the importance of its components. The MKL algorithm is

described in detail below.

In the multi-source scenario, for a specific source p, the combined kernel function K between

two pixels xpi and xpj can be represented as

K(xpi ,x
p
j ) =

M∑
m=1

dmKm(xpi ,x
p
j )

s.t. dm ≥ 0, and
M∑
m=1

dm = 1 ,

(3.17)

where M is the number of candidate basis kernels representing different kernel parameters,

Km is the m-th basis kernel and dm is the weight for it. Weights can be estimated through

cross-validation, which is computationally demanding when the number of basis kernels (i.e.,

feature sets or data sources) is large. An alternative strategy, which we adopt in this work, is

based on the SimpleMKL algorithm [63]. It optimizes the weights automatically in a learning

problem by utilizing a gradient descent approach. Based on the SVM optimization problem,
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the SimpleMKL learning problem is expressed as

min
d
J(d), s.t.dm ≥ 0, and

M∑
m=1

dm = 1

J(d) =



min
w,b,ξ

1
2

M∑
m=1

1
dm
‖wm‖2 + C

N∑
i=1

ξi

s.t. yi

(
M∑
m=1
〈wm,Φm(xpi )〉+ b

)
≥ 1− ξi

ξi ≥ 0, ∀i = 1, 2, · · · , N ,

(3.18)

where Φm(xpi ) is the kernel mapping function of xpi , wm is the weight vector of the mth decision

hyperplane, C is the regularization parameter controlling the generalization capabilities of the

classifier, and ξi is a positive slack variable.

Similar to the standard SVM, the above MKL algorithm can also be represented in a dual

form as

max

{
L(αi, αj) =

N∑
i=1

αi −1
2

N∑
i=1

N∑
j=1

αiαjyiyj
M∑
m=1

dmKm(xpi ,x
p
j )

}

s.t.



N∑
i=1

αiyi = 0

αi, αj ∈ [0, C], ∀i, j = 1, 2, · · · , N

dm ≥ 0, and
M∑
m=1

dm = 1 ,

(3.19)

where αi and αj are Lagrange multipliers. The kernel weight dm can be optimized by updating

it along the gradient descent direction of L(αi, αj). The gradient of the objective function can

be computed as

∂L

∂dm
= −1

2

N∑
i=1

N∑
j=1

αiαjKm(xpi ,x
p
j ),m = 1, 2, · · · ,M. (3.20)

Then d is updated by using a search scheme as

d← d + γD , (3.21)

where γ is the step length, D is the descent direction of L(αi, αj), and d = [d1, d2, · · · , dM ]T

is the kernel weight vector.
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Following this optimization, SimpleMKL provides a predicted label for each test sample.

However, many applications require a posterior class probability instead of a specific label.

Platt proposed an approach to approximate the posterior class probabilities P (y = 1|x) by a

sigmoid function which is commonly used in single-kernel SVM implementations [97], [98]. In

this research, we implement this approach for our MKL framework in a similar way.

3.3.2 Experimental Settings and Results

Filter by 2-order 
Butterworth filter 

in [0.1,2] Hz

Concatenate all windows
 to create a feature matrix

Randomly select 
samples in 1st 

half for training 

2nd half for 
test

Classify by SimpleMKL,
find the most important ROI

Standardize by 
channel

Raw EEG
(64 channels)

Apply a 400ms sliding window 
with 1 shift (10 ms) each time

Divide scalp into 
13 ROIs

Figure 3.5: Flowchart of the region importance learning framework.

We conduct two experiments to interpret the use of kernel weights in MKL as an indicator

of the region importance in decoding of user’s movement intention from EEG signals recorded

from an able-bodied and a paraplegic subject (who had been trained over multiple sessions to

control a robotic exoskeleton (NeuroRex)). In the experiments, data were acquired (100 Hz; 64

channel electrode cap), and filtered (2nd order Butterworth filter in the 0.1-2 Hz range). After

standardization, 64 channels were divided into 13 ROIs as described above. The features were
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then extracted by applying a 400ms sliding window on each channel with 1 shift (10 ms) each

time to acquire the amplitude modulations and concatenated as a feature matrix. To simulate

a real-time decoding environment, we randomly select 500 samples from the first half of the

labeled samples for training, and the remaining half were used for testing and evaluation. The

testing process was repeated 10 times and the metric for evaluating the results of decoding is

the average overall accuracy. The flowchart of the proposed framework is shown in Figure 3.5.

In this work, RBF kernels were used with the optimal kernel parameter γ chosen by cross-

validation. All the experiments were implemented in Matlab using the SimpleMKL toolbox.

1. Four-class, single session classification

First, we compare the kernel weights optimized by SimpleMKL algorithm for different ROIs

from an able-bodied subject and a spinal cord injury (SCI) patient. The four motion classes

for decoding are walking forward, turning left, turning right and stop. The plots of optimized

kernel weights for different ROIs are shown in Figure 3.6.

(a) (b)

Figure 3.6: Comparison of kernel weights for different ROIs from (a) able-bodied subject and
(b) SCI patient.

From the results, it is observed that the frontal scalp regions (MF, RF) have the highest

weight among all ROIs, which is consistent with the brain regions (frontal lobe) thought to be
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involved in the control of lower-limb movements. Moreover, LFC, MC and RFC also have rela-

tive high weights, while the other ROIs have low weights, which can be explained corresponding

to different importance of the brain regions for movement. In a further experiment, we found

that the most important EEG channel in MF region is F1, and in RF is F4. These results

demonstrate that MKL can be efficiently used to infer the importance of different groups of

features and thus suggest different roles in the representation of gait for different scalp brain

areas.

2. Two-class, multiple sessions classification

Second, we conduct a longitudinal experiment from the subjects for a two-class (i.e., walk

and stop) classification problem. We quantify electrode relevance changes across sessions to

examine neural signatures that may indicate the cortical plasticity triggered by the BMI use.

We first plot the weight changes along 9 sessions over a period of 30 days for the SCI patient

and able-bodied subject in Figure 3.7 and Figure 3.8, respectively. From the results, we see

that the weights change dramatically in the first several sessions, while becoming more stable

in the later sessions. Similar to the previous results, the frontal scalp regions (ROI 4 or ROI

3) get the highest weight among all ROIs after training the user to control the exoskeleton for

movements for several sessions.

s1 s2 s3 s4 s5

s6 s7 s8 s9

Figure 3.7: Scalp maps of weights along 9 sessions for the SCI patient.
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s1 s2 s3 s4 s5

s6 s7 s8 s9

Figure 3.8: Scalp maps of weights along 9 sessions for the able-bodied subject.

(a) (b)

Figure 3.9: Plots of overall accuracy and kernel weight for ROI 4 as a function of session for
the SCI patient.

(a) (b)

Figure 3.10: Plots of overall accuracy and kernel weight for ROI 3 as a function of session for
the able-bodied subject.
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As we know that ROI 4 (ROI 3) is the most significant region for the SCI patient (able-

bodied subject) performing lower-limb movements. We further evaluate the overall accuracy

and kernel weight for ROI 4 (ROI 3) as a function of session. The linear fit of the relations

between OA (weight for the selected ROI) and sessions are shown in Figure 3.9 and Figure

3.10 for SCI patient and able-bodied subject, respectively.

From the longitudinal experiment results, we can see the classification accuracy generally

increases as a function of session. At the same time, the weight for ROI 4 (ROI 3) also has

the trend of increasing along the session over a period of 30 days. The results demonstrate the

cortical plasticity triggered by the BMI use.

3.4 Ensemble Multiple Kernel Active Learning

3.4.1 Proposed Framework

Based on the MKL algorithm, we propose an EnsembleMKL-AL framework for robust

classification of multi-source remote sensing data. The flowchart of the proposed framework

is shown in Figure 3.11. Consider an initial small set of labeled samples extracted from var-

ious sources, noted as L = {(x1
i ,x

2
i , ...,x

P
i ), yi}Ni=1, where yi is the label of multi-source data

(x1
i ,x

2
i , ...,x

P
i ), P is the number of sources, and N is the total number of labeled samples. The

goal is to select a series of examples from a set of unlabeled samples U = {x1
i ,x

2
i , ...,x

P
i }

Q
i=1

and add them to the training set after labeling (in a practical framework, this labeling would

typically be undertaken by a human analyst, for example, via photo-interpretation or collection

of ground reference information). It is desired to obtain good system performance by inducting

as few training samples as possible that add the most information. Q is the total number of

unlabeled samples, and satisfies Q � N . The proposed framework can be subdivided into

four steps: (1) multiple features are extracted from multi-source data; (2) an ensemble of

probabilistic MKL classifiers is implemented to optimize the kernel for each source or feature
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set; (3) a maximum disagreement-based AL strategy is used to select the most informative

samples; (4) after the learning is accomplished, a decision fusion strategy is applied to the

posterior probabilities computed by the MKL classifiers to obtain a final classification map. In

this work, a soft fusion strategy — a linear opinion pool (LOP) [99] is studied, and compared

with the widely used majority voting (MV) method. The multiple feature extraction and the

probabilistic MKL algorithm have been described in previous section 2.2.2 and section 3.3, re-

spectively. So in this section, we only give the description of the maximum disagreement-based

AL rule and the decision fusion strategies.
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Figure 3.11: Flowchart of EnsembleMKL framework.

Maximum Disagreement Based Ensemble Active Learning

Ensemble AL is based on a committee of learners, in which each member of the committee

is learned on a subset of the samples or of the feature space. Diversity is important for building

a robust ensemble [75], [57], as it ensures that each subset contains additional information to

improve the learner relative to the other subsets. In previous work with hyperspectral imagery,

these conditions were created via a multi-view approach, in which the original set of spectral

features was partitioned into disjoint subsets, i.e., different views [75]. A similar approach can
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be adopted in our case, in which different sources or different types of features can be assigned

to a different view of the data.

In an AL framework, the choice of criterion function used to select samples from the

unlabeled set is crucial. In the context of ensemble AL we adopt the maximum disagreement

criterion, which demonstrated its capabilities in identifying the most informative samples across

multiple views [75]. It is based on two successive steps.

Let us suppose that the estimated label of a sample xpi ∈ U from source/feature-set p is

obtained by learning a classification function, and ŷpi = f(xpi ). For each sample i, we define

a symmetric matrix Di, which measures the disagreement between each pair of predictions

(ŷ1i , ŷ
2
i , ..., ŷ

P
i ). Each element of the matrix is defined as

Di(p, n) =


∆(ŷpi , ŷ

n
i ), if p 6= n

0, if p = n,

(3.22)

where

∆(ŷpi , ŷ
n
i ) =


1, if ŷpi 6= ŷni

0, if ŷpi = ŷni .

(3.23)

p, n ∈ {1, 2, ...P}. Then, the disagreement level of sample i over all sources can be expressed

as

DLi =
P∑
p=1

P∑
n=1

Di(p, n). (3.24)

The maximum disagreement contention set PMD is constructed by selecting unlabeled

samples with the maximum uncertainty, i.e., the maximum disagreement level. If the number

of samples with the highest disagreement level is less than the batch size, i.e., the number

of samples to select, more samples having the maximum disagreement levels are included in
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PMD. In this way, PMD is always larger than the batch size. Note that because we want to

keep the size of the training set small, a small fixed number of samples should be carefully

selected in each learning step. However, the samples belonging to the maximum disagreement

set are usually characterized by strong redundancy. To limit this, and to select non-redundant

samples, a pruning strategy is applied on PMD.

We use weighted voting entropy (WVE) [100] to quantitatively measure the uncertainty

of votes over labels provided by each source. For this purpose, we define a P ×Nc weighting

matrix W (where Nc is the number of classes), in which W(p, c) is the class-specific accuracy

for source p and class c. The WVE value of zi ∈ PMD at the τ th query is defined as

WVEτ (zi) = − 1

log$τ

Nc∑
c=1

στc (zi)

$τ
log

(
στc (zi)

$τ

)
, (3.25)

where

$τ =

P∑
p=1

Nc∑
c=1

Wτ−1(p, c) , (3.26)

στc (zi) =
P∑
p=1

Wτ−1(p, c)× δ (f(zpi )) , and (3.27)

δ (f(zpi )) = δ(ŷpi ) =


1, if ŷpi = yi

0, if ŷpi 6= yi ,

(3.28)

Wτ−1 is the weighting matrix from the last query. Following this, only samples with the

highest entropy values are selected and inserted into the final set of informative samples

P τWV E =
{
z1j , z

2
j , ..., zj

P : maxWVEτ (zj)
}
. (3.29)

The combination of the maximum disagreement method with the pruning strategy based

on WVE allows us to select samples having the highest disagreement level while simultaneously

exhibiting poor classification performance.
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Decision Fusion Strategy

After the learning is accomplished, each source specific MKL classifier can output the

predicted labels as well as their corresponding posterior probabilities for all samples. Following

this, a decision fusion strategy is applied to perform classification per pixel. Decision fusion

can occur either at the class label level, known as hard fusion, or at the posterior probability

level, known as soft fusion.

Majority voting — a popular approach to conduct hard decision fusion, achieves the final

classification decision based on a vote over individual class labels from each classifier in the

ensemble. A simple majority voting is given by

w = arg max
i∈{1,2,...,Nc}

N(i) , (3.30)

where w is the class label from one of the Nc possible classes for the test sample, and N(i) is

the number of times that the class i predicted by the ensemble of classifiers.

Soft decision fusion makes the use of posterior probabilities for making the final decision.

A popular soft decision fusion scheme is a linear opinion pool, which makes the final classi-

fication decision by constructing a global membership function by using individual posterior

probabilities pj(wi|x) of each classifier

P (wi|x) =

P∑
j=1

αjpj(wi|x) and (3.31)

w = arg max
i∈{1,2,...,Nc}

P (wi|x) , (3.32)

where αj (j = 1, 2, ..., P ), is the classifier weight, which can either be uniformly distributed

over all classifiers, or can be assigned based on the “confidence score” of each classifier. In this

work, we use the uniformly distributed weight for each source classifier.
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3.4.2 Experiment Settings and Results

3.4.2.1 Experimental Setting

We present experimental results using UH multi-sensor datasets to demonstrate the efficacy

of the EnsembleMKL-AL approach. First, we compare SimpleMKL-AL with standard single

kernel SVM-AL and verify that MKL is a suitable classifier for multiple feature AL. In the

second set of experiments, we compare the proposed EnsembleMKL-AL system to SimpleMKL-

AL to investigate the benefit of using ensemble classifiers. Finally, we quantify the efficacy of

multiple features, especially the morphological and textual features, utilized in AL.

From the available labeled data, half of the samples were selected randomly as our query

set. The remaining pixels constituted the test set. Ten randomly sampled splits were used,

and the average results over these random splits are reported in all experiments. The initial

training set contained 20 samples for each class randomly selected from the query set. At

each learning step, 5 samples were selected from the candidate pool and added to the training

set based on learning system specific query criteria. For the single-classifier learning system,

the criterion was margin sampling (MS) and the baseline was random sampling (RS). For the

ensemble classifier learning system, we employed maximum disagreement (MD) for AL, and a

final decision was made based on majority voting (MV) or linear opinion pool (LOP) fusion.

All experiments were conducted using an RBF kernel function with relative width param-

eter σ. For the standard SVM, this parameter was estimated before the learning process by

applying kernel alignment [101] to the initial training set. Starting from 0.05 and with a step

size of 0.05, the alignment of the kernel was maximized for σ = 0.9. For the MKL-based

experiments, we did not select a specific kernel parameter; instead, we defined a set of different

values as candidate input parameters. In a multi-source scenario, we can build several basis

kernels with different values of σ for each source, however, the number of parameters should be
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kept small to reduce the computational complexity and memory requirements. In particular,

four base kernels with σ = [0.2, 0.5, 1, 1.5] were considered for all sources. This range of values

was found to be reasonable after applying kernel alignment to the initial training set of each

source. For all classifiers (i.e., standard SVM and MKL), the penalty parameter C was selected

by cross-validation in the range of [2−1, ..., 215].

3.4.2.2 Comparison of SimpleMKL-AL and SVM-AL

The first experiment compares results obtained by the SimpleMKL-AL and SVM-AL al-

gorithms, to investigate the potential of MKL-AL in processing a large number of features

obtained from different sensors using different spatial feature extraction strategies. The learn-

ing curves of the different AL methods are shown in Figure 3.12.

Figure 3.12: OA achieved on the UH dataset for SimpleMKL and SVM methods. RS: random
sampling; MS: margin sampling.

In general, the SimpleMKL-AL methods are superior to the standard SVM-AL methods

for both MS and RS query criteria throughout the learning processes. Initially, when the

training samples are randomly selected and the number is the same for each class, the benefit

of SimpleMKL-AL learners is not obvious. For the SimpleMKL-AL learners, the overall average

accuracy is 84.24%, compared to 82.92% of SVM-AL learners. With increasing learning steps,

SimpleMKL learners start to show advantage, especially for the MS strategy. This is because
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SimpleMKL is able to optimize a combination of kernels that jointly maximize the sum of

margins, which are crucial to determine the hyperplane between classes. At the 200th learning

step, the overall accuracies for SimpleMKL-MS and SimpleMKL-RS are 96.90% and 93.35%

respectively, compared to 93.37% and 90.55% for SVM-MS and SVM-RS, respectively. We can

hence conclude that SimpleMKL has greater potential for handling a larger number of features

extracted from different sources than standard SVM.

3.4.2.3 Comparison of Ensemble and Single AL system

In order to adapt a classifier specific for each data source and improve the total performance

of AL, we develop a source-specific MKL-AL algorithm using ensemble classifiers. As noted

previously, MS is a good strategy for single-classifier AL system, but it is not suitable for an

ensemble system, because it cannot exploit the potentially diverse information across different

sources. In the second part of the experiments, the proposed MD-based EnsembleMKL method

is compared with the single-classifier MS-based SimpleMKL method. For EnsembleMKL, two

decision fusion strategies (i.e., MV and LOP) are applied after each learning step to generate the

classification map and assess the classification accuracies. For completeness, the RS criterion

is also considered. The obtained results are reported in Figure 3.13 (a) and (b).

In Figure 3.13 (a), results from the EnsembleMKL-MD methods are compared to those

from the single-classifier based SimpleMKL-AL methods. The proposed method achieved

higher overall accuracies in general. Among all learning strategies, the EnsembleMKL-MD-

LOP performs the best with an overall accuracy of 86.13% at the beginning with 20 samples

each class and 98.38% after 200 iterations. EnsembleMKL-MD-MV learns no better than the

SimpleMKL-MS learner at the first 5 steps, but it starts to improve after that. Both ensemble

methods show significant improvements compared to the baseline SimpleMKL-RS, the increase
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of the accuracy is 5.00% and 3.95% respectively for LOP and MV at the final step. Further-

more, it is much faster for EnsembleMKL learners to reach a high accuracy and converge than

SimpleMKL learner. In Figure 3.13 (b), we compare the MD and RS criteria in conjunction

with EnsembleMKL method. It is evident for both decision fusion strategies (i.e., MV and

LOP), the MD-based AL strategy produces higher accuracies than RS. Therefore, the MD

criterion, which has previously been shown to work well as a multi-view method for single-

source hyperspectral data [75], has been demonstrated to be also suitable for this multi-source

scenario.

(a) (b)

Figure 3.13: OA achieved on the UH dataset for (a) SimpleMKL and EnsembleMKL and (b)
EnsembleMKL-RS and EnsembleMKL-MD methods. RS: random sampling; MS:
margin sampling; MD: maximum disagreement.

3.4.2.4 Class specific analysis

The class accuracies and statistical number of samples selected from each class by different

MKL-AL strategies are shown in Figure 3.14 and 3.15. From the results in Figure 3.14, most

of the samples selected by SimpleMKL-MS are from the classes with low accuracies at the

beginning, such as Class 9: Road, Class 10: Highway, and Class 12: Parking Lot 1. When

samples from these classes are added to the training set, there is an obvious increase of accuracy
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during the learning. For example, in Figure 3.14, the accuracy of Class 9 is 74.49% at the

beginning when only 20 randomly selected samples are used. As the learning progresses, the

accuracy increases to 84.47% and 95.59% after 100 and 200 iterations, and the corresponding

number of selected samples from Class 9 is 98 and 208 respectively. For EnsembleMKL-AL

in Figure 3.15, the selection of samples from different classes seems to be more uniform than

in SimpleMKL-AL. As a result, it increases the accuracies of most classes and thus overall

accuracy as well.

Comparing class-specific accuracies in Figure 3.14 and 3.15, it is clear that the ensemble

system with multiple features can improve the accuracies of most classes. The most significant

effect of bringing multiple features in this ensemble system is the improvement in discrimination

between the residential and commercial area as well as different types of roads. This is due to

different morphological and textures present in these urban structures. To be more specific, the

residential and commercial buildings are typically differentiated by their shapes and sizes, and

these properties may be directly related to different scales of structuring elements in EMAPs.

The railway and highway classes are morphologically similar, but are constructed with different

materials and thus texture features can help to differentiate these classes to some extent. Table

3.4.2.4 summarizes the class specific accuracies, overall accuracy and standard deviations for

different AL approaches at the final learning step. Classification maps obtained at the final

step of SimpleMKL-MS and EnsembleMKL-MD-LOP are reported in Figure 3.16.
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Figure 3.14: Class specific accuracies (left) and cumulative number of selected samples (right)
at different learning steps for SimpleMKL-MS.

Figure 3.15: Class specific accuracies (left) and cumulative number of selected samples (right)
at different learning steps for EnsembleMKL-MD-LOP.

(a)

(b)

Figure 3.16: Classification maps obtained at the final AL step. (a) SimpleMKL-MS; (b)
EnsembleMKL-MD-LOP.
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Table 3.5: Class accuracies (%), overall accuracy (OA%), and standard deviations (Std.%) for
different AL methods

Class SVM SVM SimpleMKL SimpleMKL-MS Ensemble MKL
Index RS MS RS MS LOP

1 97.27 98.80 98.10 99.22 98.12
2 97.45 97.37 98.87 98.14 99.69
3 98.23 99.39 98.27 99.38 100
4 96.21 96.16 97.24 94.29 98.04
5 97.15 98.63 98.41 98.72 99.52
6 93.15 95.36 93.21 95.51 99.36
7 90.11 92.83 90.31 92.41 99.84
8 90.77 90.94 94.31 99.68 97.94
9 88.59 93.53 91.17 94.18 96.28
10 93.05 96.12 92.28 97.30 99.68
11 90.74 92.16 91.95 93.28 98.66
12 75.06 77.39 73.19 95.59 98.14
13 78.18 83.31 79.77 65.52 87.92
14 97.56 98.73 96.62 96.68 99.53
15 96.55 96.01 98.93 97.97 99.71
OA 90.55 93.37; 93.35 96.9 98.38
Std. 0.27 0.24 0.58 0.6 0.15

3.4.2.5 Computational Cost

We conclude the experimental analysis by empirically evaluating the computational com-

plexity associated with the different methods investigated in this paper. All the experiments

were implemented in Matlab R2012a on a Linux system with twelve 3.2GHz Intel(R) pro-

cessors and 32GB RAM. The SimpleMKL toolbox [102] was adopted for implementing single

kernel SVM and MKL approaches. The total processing time, which includes model selection,

training phase and sample selection, for running the 200 steps of the AL process and by con-

sidering the six different sources was 9.35× 103 s, 7.88× 103 s and 8.19× 103 s for SVM-MS,

SimpleMKL-MS, and EnsembleMKL-MD-LOP, respectively.

3.4.3 Application on Seagrass Mapping

We apply the proposed EnsembleMKL-AL framework for the mapping of seagrass in the

Redfish Bay, Texas (27◦54′47.01′′N 97◦6′25.73′′W) by using airborne hyperspectal radiance
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data (acquired by CASI-500 hyperspectral sensor) and bathymetric LiDAR data (acquired by

Optech Aquarius sensor). The hyperspectral image has 72 bands over the wavelength range

from 366 nm to 1043 nm at a spatial resolution of 1.5 m. The LiDAR data was acquired

at a wavelength of 532 nm — high resolution discrete return and full-waveform data were

acquired. The Aquarius sensor head is a single frequency shallow water bathymetric LiDAR

with a pulse energy of 30 µJ (at 70 kHz), and a beam divergence of 0.8 mrad. The pseudo-

waveform data were then generated from the original LiDAR point cloud and used as a second

source for fusion. The Coastal and Marine Geospatial Lab of the Harte Research Institute

for Gulf of Mexico Studies at Texas A&M University-Corpus Christi conducted a coordinated

ground survey using an airboat to collect field measurements of benthic coverage within the

mapped area of Redfish Bay. The ground survey identified three different types of seagrass

within the study area, which are Halodule, Syringodium, Thalassia. Halodule and Thalassia

had a much higher presence in the study area compared to Syringodium. Drift algae was also

commonly observed in the study area. The composite image of the hyperspectral data and its

groundtruth are shown in Figure 3.17.

(a) (b)

Figure 3.17: Corpus Christi (CC) dataset. (a) Composite image of the hyperspectral data; (b)
Groundtruth map.

67



Acquiring ground reference data, particularly over a bay is a very challenging task. To

expand the size of the spectral library for a robust classification of the Hyperspectral and

LiDAR data, we grew the area via spatial-spectral segmentation through HSeg. Then we

employed the photo-interpretation using very high resolution (5 cm) color images to remove

incorrectly labeled pixels. Following this strategy, we created a spectral reference library, and

added additional background class — water.

Further, we apply the active learning methods to assist us in identifying the “most informa-

tive” samples in the datasets that when labeled and added to the reference library, substantially

enhance the classification mapping performance. We conduct similar experiments as stated in

the previous sections. The AL experiments started with 30 labeled samples per class randomly

selected from the query set, and in each iteration, 5 samples were selected from the candidate

pool based on the proposed query criteria. The AL learning curves comparing different methods

are shown in Figure 3.18. Particularly, we first compare the single source classification results

with the multi-source fusion results, and then compare the proposed EnsembleMKL-AL with

the SimpleMKL-AL. Similar to the results acquired from UH data, EnsembleMKL-MD-LOP

achieves the best performance than the baseline AL algorithms.

We also show the class specific accuracies and the classification maps in Figure 3.19 and

Figure 3.20, respectively. From the results, the Thalassia and Water have relative low accu-

racies at the beginning when the number of training samples is small. However, after several

steps, the accuracies increase quickly, especially when EnsembleMKL-MD-LOP is used for AL.

These results demonstrate that the proposed EnsembleMKL-AL is an effective approach to

select select important samples for wetland seagrass mapping.
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(a) (b)

Figure 3.18: AL learning curves on the CC dataset for (a) SimpleMKL-based single source AL
and multi-source AL and (b) multi-source fusion results using SimpleMKL and
EnsembleMKL.

(a) (b) (c)

Figure 3.19: Class specific accuracies achieved on the CC dataset for (a) SimpleMKL-RS, (b)
SimpleMKL-MS and (c) EnsembleMKL-MD-LOP.
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(a) (b) (c)

Figure 3.20: Classification maps obtained at the final AL steps for (a) SimpleMKL-RS, (b)
SimpleMKL-MS and (c) EnsembleMKL-MD-LOP.

3.5 Summary

In this chapter, mixture-of-kernels based methods have been developed as an effective

approach to fuse multi-source data for classification from various aspects. First, we pro-

pose a composite-kernel-based feature extraction method for multi-source data classification.

CKLFDA is built upon the foundations of KLFDA, replacing the single kernel in KLFDA

by a weighted composite kernel, which can be viewed as an effective feature fusion strat-

egy. To demonstrate the benefits of CKLFDA, we conduct experiments on both multi-

feature and multi-sensor remote sensing data. The experimental results validate the hypothesis

that CKLFDA serves as an effective and robust feature extraction tool for linear classifiers.

CKLFDA-MLR outperforms all the other traditional methods in terms of overall classification

accuracy.

MKL has the advantage of learning the classifier and the optimal kernel weights simultane-

ously. In this chapter, we investigate this property and apply it to infer the relative importance

of different groups of features (different sources of information) in a BMI application to decode
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one’s motion intention from the EEG signals. The experimental results demonstrate that the

frontal/frontal-central regions are the most important regions for movement decoding, which

is consistent with the brain regions hypothesised to be involved in the control of lower-limb

movements. In addition, we demonstrate the cortical plasticity triggered by the BMI use, as

the decoding accuracy and the weights for important regions generally increase while the user

learns to control the exoskeleton for movement for sessions.

In addition, we present an ensemble multiple kernel based AL system to incrementally se-

lect informative samples across multi-views for labelling. Data from different sources provide

the necessary diversity which is a crucial point for constructing the classifier committee in

AL. This framework provides a new way to exploit multi-sensor, multi-feature remote sens-

ing datasets for image classification. The experiments validated the efficacy of the proposed

framework and provided the following conclusions — (1) MKL is a more effective and appro-

priate classifier for multi-source AL compared to the standard SVM classifier; (2) Ensemble

classifiers improve the performance of traditional AL substantially for this multi-source data.

The proposed EnsembleMKL-AL system greatly outperforms the SimpleMKL-AL approach in

terms of overall and class-specific accuracies.
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Chapter 4

Multi-source Data Fusion via Local-

ity Driven Joint Sparse Representa-

tion

4.1 Introduction

From a signal processing point of view, a challenge for multi-source data analysis is how to

effectively combine different features and represent them in a compact way. As most natural

signals are inherently sparse in a certain basis or dictionary, they can be compactly represented

by only a few coefficients that carry the most important information. In other words, the

intrinsic signals in the same class typically lie in a low-dimensional subspace and the semantic

information is often encoded in a sparse representation with respect to an appropriate basis.

In recent years, the compressed sensing and sparse representation theories have emerged as

powerful tools to reconstruct and represent signals by decomposing the sample over a usually

overcomplete dictionary generated by or learned from representative samples. Further, sparse

representation based classification (SRC), which combines the discrimination power with the

reconstruction property and notions of sparsity, has been demonstrated as an effective and

robust method for many pattern recognition applications including hyperspectral imgae clas-

sification and BCI [35–40, 103–105].
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To combine disparate features for better classification performance while utilizing the prop-

erties of SR, a simple strategy is to concatenate the features and obtain a unified sparse repre-

sentation by a conventional sparse representation classifier. Although this method is straight-

forward, the resulting input space may be high dimensional, and can also cause overfitting.

Inspired by the study of sparsity in multi-task learning [106], [107], Yuan et al. proposed a

multi-task joint sparse representation based classification method (MTJ-SRC), which treats

recognition with multiple features as a multi-task learning problem [108]. It is assumed that

the coefficients share the same sparsity pattern among all features, and a class-level joint

sparsity-inducing regularizer is used to combine features for classification. Shekhar et al. ex-

tended the MTJ-SRC work to a more general case that can be used for both multi-task and

multivariate sparse representation by imposing an `1/`q regularization on the concatenated

sparse coefficient matrix [109]. Zheng et al. proposed a framework based on MTJ-SRC with

spatial filtering post-processing for large-scale satellite-image annotation and achieved higher

classification accuracies [110]. Along a similar direction, Li et al. proposed a joint collaborative

representation classification method with multitask learning (JCRC-MTL) and incorporated

contextual neighborhood information for hyperspectral image classification [111].

In this chapter, we propose a joint sparse representation model with an adaptive locality

weight to jointly represent multi-source data while adapting the weights to constrain the sparse

coefficients for better signal representation. Different from the previous works that either fail to

consider the difference between sources or only consider locality structure within one source,

we adapt the locality information for each source of data in an iterative way to reduce the

estimation bias. To solve the optimization problem, we apply an efficient alternative direction

method. The effectiveness of the proposed weight structures for joint sparse representation is

validated on the multi-source remote sensing data and the multiscale EEG data.
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4.2 Limitations with the Previous Works

In MTJ-SRC, data from multiple sources are jointly represented by a sparse linear com-

bination of the training data, based on the assumption that samples from different sources

belonging to the same class have unified sparse support distributions on their coefficient vec-

tors. To learn the joint sparsity of coefficients, the goal is to obtain a row-sparse coefficient

matrix which can be modeled as an `1/`q-regularized least square problem. For a test sample

x = [x1,x2, ...,xD] from D sources, given the dictionary {Ai}Di=1, the joint sparse coefficient

matrix S = [s1, s2, ..., sD] ∈ Rn×D can be estimated by

Ŝ = arg min
S

1

2

D∑
i=1

∥∥xi −Aisi
∥∥2
2

+ λ‖S‖1,q, (4.1)

where λ is a positive regularization parameter, and ‖S‖1,q is the `1/`q norm defined as ‖S‖1,q =∑n
k=1

∥∥s̃k∥∥
q
, where each s̃k ∈ RD is a row vector of S. To make the function convex, q

is commonly set to be larger than 1 (usually as 2). By solving the `1/`q optimization, the

solution of the sparse coefficient matrix has common support at the column level.

It has been demonstrated that for multi-source data MTJ-SRC and its extensions can

achieve better classification results than the classical SRC [108], [109]. However, the assump-

tions made in this approach leads to a few limitations. First, the MTJ-SRC treats different

sources equally and hence does not consider the intrinsic value of each dictionary to the un-

derlying task. In other words, all atoms from multiple sources share the same regularization

for signal representation, which in reality may be too restrictive for classification and may lead

to sub-optimal performance. To address this problem, a natural approach is to use a weighted

regularizer to penalize sources and atoms differently for sparse representation. Ideally, if there

is some prior information on the importance of each source, the weight can be adapted from

prior knowledge. However, in many situations, the prior knowledge is not available or is not
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accurate — thus it can be helpful to automatically estimate such a weight from the dictionary

itself.

Second, as in the standard SRC, MTJ-SRC makes the assumption that there are sufficient

training samples in the dictionary such that all possible variations can be covered when rep-

resenting each class. Thus, such a method may fail when the dictionary has a small number

of samples [112]. Additionally, for hyperspectral data, since the samples are typically highly

correlated, `1-induced SRC may have unstable estimations of the representation coefficients.

This problem has been illustrated in [113] wherein similar test samples (or even the same

test sample) have very different representations due to such instability (i.e., non-uniqueness

of the sparse coefficients) of sparse decompositions. The instability of sparse decompositions

contributes to incorrect classification. To solve the problem of unstable estimation in SR, pre-

vious works have shown that locality information among samples is effective and crucial for

addressing this issue and enhancing the classification performance [113–117]. In [113], for ex-

ample, local structure of the test samples is enforced based on manifold learning for smoothing

the sparse representations. Locality information has also been incorporated into linear coding

[114], sparse and group sparse representation [115], [116] by calculating the similarity between

the test sample and distinct classes.

Different from the previous works that either fail to consider the difference between sources

or only consider locality structure within one source, we adapt the locality information for each

source of data in an iterative way to reduce the estimation bias.

4.3 Proposed Method

4.3.1 Multi-source Joint Sparse Representation for Classification

Motivated by the success of MTJ-SRC, we develop a related framework for classification of

multi-source data. In this work, each task is actually a specific source of disparate features from
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the same or different sensors. We propose that this framework must be modified suitably to

best address some of its key limitations — we provide such a modification and develop related

algorithms that solve the minimization problem. The block diagram providing an overview

of the proposed framework is shown in Figure 4.1 using the EEG multiscale signals for a gait

phases decoding problem.

In MTJ-SRC, by employing the `1/`2 norm, all the atoms in the dictionary are treated

equally for signal representation, which ignores the data differences within each source and

among different sources. The regularization parameter λ in equation (4.1) that controls the

sparsity level of joint sparse coefficients is uniform for all atoms in the dictionary. This condition

may be too restrictive for multi-source data sparse representation, because it does not consider

the differences among sources and fails to preserve the information of data locality between

the test sample and training samples.

To address these problems, we impose an adaptive source-specific weight on the joint sparse

regularization term. Similar to the weighted `1-minimization problem, MTJ-SRC can be mod-

ified by imposing a weight on the `1/`2 regularization as

Ŝ = arg min
S

1
2

D∑
i=1

∥∥xi −Aisi
∥∥2
2

+ λ‖W � S‖1,2

= arg min
S

1
2

D∑
i=1

∥∥xi −Aisi
∥∥2
2

+ λ
n∑
j=1
‖wj � sj‖2

, (4.2)

where � denotes the element-wise multiplication. W is the weighting matrix, and wj is the

source-specific weight for atom j (j = 1, ..., n), which can be expressed as wj = [w1
j , w

2
j , ..., w

D
j ]

for D sources.
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Figure 4.1: Block diagram of the proposed ALWMJ-SRC framework.

The locality or contextual information has been shown to have great importance to the

classification performance, due to the fact that samples close to the input test sample are more

likely to be in the same class. On the other hand, it has been pointed out that enforcing

a locality constraint may promote sparsity in the standard SR [114], since only the training

samples that are similar to the test sample would be selected for signal reconstruction. To

preserve data locality information while reconstructing the multi-source data, we introduce a

locality weight on the regularization term. Suppose dij is the locality adaptor for source i that

gives the measurement of similarity between xi and each atom aij in its dictionary Ai. dij can
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be expressed as

dij = exp


∥∥∥xi − aij

∥∥∥2
σ

 , (4.3)

where σ > 0 is a parameter that determines the decay rate of the weight. From Equation (4.3),

it is clear that a smaller dij indicate xi is more similar to the atom aij , and vice versa.

Although adding the source-specific locality weight can bring in data locality information

for classification, the estimation bias can be large due to the property that `1/`2 minimization

in general is inconsistent in variable selection (also known as lack of oracle property) [118]. To

reduce the estimation bias, for traditional Lasso (`1 minimization) problem, Zou et al. proposed

an adaptive Lasso method, in which the adaptive weights are used to penalize coefficients in the

`1 penalty [118]. A similar idea was also presented by Candes et al. known as reweighted `1-

minimization [119]. Inspired by the reweigthed `1-minimization or adaptive Lasso, we propose

to reweight the locality constrained `1/`2 regularization term in an iterative process. The

idea behind this is to have better estimation of nonzero coefficients, which can be achieved

by allowing a relatively higher penalty for zero coefficients and lower penalty for nonzero

coefficients. Thus, in each iteration, the adaptive weight w̃ij can be computed as inversely

proportional to the sparse coefficient in the previous iteration as

w̃ij =
(∣∣sij,t+1

∣∣+ ε
)−1

. (4.4)

Further, combining Equation (4.4) and Equation (4.3), we obtain the adaptive locality weight

defined as

wij =
w̃ijd

i
j

max w̃ijd
i
j

. (4.5)

Note that the weight is adapted for each source, and then combined for a unified sparse

representation.
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(a)

(b)

(c)

Figure 4.2: An example of sparse coefficients for MTJ-SRC methods with (a) no weight, (b)
locality weight, and (c) adaptive locality weight. The class label of the test sample
from Class 2 is estimated as (a) Class 4, (b) Class 2, and (c) Class 2.

Figure 4.2 gives an instance of sparse coefficients to demonstrate the benefit of using adap-

tive locality weight to improve the sparsity and achieve more accurate signal representation.

The test sample in the example is selected from the hyperspectral dataset acquired over Uni-

versity of Pavia, and is represented by training samples in the dictionary. The dictionary is

composed of 90 samples, which are randomly selected from 9 classes with 10 samples each

class. The training samples are indexed class by class, i.e., the first 10 samples are from class

1, and the next 10 samples are from class 2 and so on. We compare the joint sparse coefficients
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(defined as ‖S‖2) for MTJ-SRC methods in three conditions — (1) no weight is used, (2) the

locality weight is introduced, and (3) the adaptive locality weight is introduced. By applying

the MTJ-SRC without any weights on the sparse coefficients, we can see from Figure 4.2 (a)

that class 4 has larger coefficients which indicates the test sample is mostly represented by the

samples from class 4. However, this would cause classification errors because the test sample is

actually selected from class 2. In contrast, when the locality weight is added to constrain the

coefficients, we observe that the coefficients from class 2 are promoted while the coefficients

from class 4 are suppressed as demonstrated in Figure 4.2 (b) . This is because some atoms

in class 2 are more similar to the test sample than others, which leads to smaller weights and

larger coefficients on these atoms. The estimated label of the test sample is thus determined

as class 2 rather than class 4. Even though the coefficients of class 4 are decreased because

of the locality measurement, the difference of coefficients between class 2 and class 4 are not

obvious. By implementing the adaptive weight, we can further increase the large coefficients in

the desired class and decrease the small coefficients to zero. With the adaptive locality weight,

not only is the locality information in the dictionary preserved, but also the estimation bias is

reduced.

4.3.2 Optimization Algorithm

Compared to MTJ-SRC, adding the adaptive locality weight, which is pre-computed before

the optimization of sparse coefficients S at each iteration, does not change the convexity of the

optimization problem. Since Equation (4.2) is a convex optimization problem, it does not suffer

the multiple local minimal issue. However, the `1/`2-regularization makes the problem non-

smooth and generally considered difficult to solve. Previous work with MTJ-SRC [108], [110]

used the Accelerated Proximal Gradient (APG) method to solve the optimization problem in

Equation (4.1). In this research, to solve Equation (4.2), we apply the approach of alternating
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direction methods of multipliers (ADMM), which has been shown to be more efficient [109],

[120]. ADMM, which is based on the variable splitting technique combined with the augmented

Lagrangian method, has been successfully applied to a variety of convex but non-smooth

problems [121].

To apply the ADMM algorithm on Equation (4.2), the first step is to decouple the variable

S into two convex functions by introducing a new variable V as

min
S,V

L(S) + λ‖V‖1,2 s.t. W � S = V, (4.6)

where L(S) =
∑D

i=1

∥∥xi −Aisi
∥∥2
2
, S = [s1, s2, ..., sD], W = [w1,w2, ...,wD], and define Wi =

diag(wi). We then reformulate this constrained problem as an unconstrained counterpart by

introducing the augmented Lagrangian function as

min
S,V

F (S,V; B,W) = L(S) + λ‖V‖1,2

+ 〈B,W � S−V〉+ β
2 ‖W � S−V‖2F

= L(S) + λ‖V‖1,2 + β
2

∥∥∥W � S−V + 1
βB
∥∥∥2
F
,

(4.7)

where B is the multiplier of the linear constraint, and β is the positive penalty parameter.

To solve Equation (4.7), with respect to each variable (i.e., S,V,B,W), we keep the other

variables fixed, and update the variables sequentially. In each sub-optimization problem, we

can derive a closed-form solution. The derivation steps are similar to those in [109], while our

solution includes the weight matrices for different sources in each variable update step. At

the end of each iteration, we update the weight matrices based on the new solution of S. The

iterative process will be executed until an appropriate stopping criterion is met, i.e., the change

of objective function is smaller than a pre-defined threshold. The proposed algorithm using

ADMM is summarized in Algorithm 1 with the closed-form solutions for each sub-optimization

problem. Note that (·)+ is defined as (x)+ = max(x, 0), and τ is the stopping threshold which

is set as a small positive value.
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Algorithm 1: ADMM for ALWMJ-SRC

1: Input: Test sample xi, dictionary Ai, for source i = 1, 2, ..., D

2: Initialize: S0,V0,B0,W0, and choose parameter λ, β

3: while not converged and t < Tmax do

4: Update S: For source i, sit+1 ←[
(Ai)

T
Ai + β(Wi

t)
T
Wi

t)
]−1 [

(Ai)
T
xi + β(Wi

t)
T

(vit − bit)
]

5: Update V: For row j, vj,t+1 ←
(

1− λ
β

1
‖wj,t�sj,t+1+bj,t/β‖2

)
+

(wj,t � sj,t+1 + bj,t/β)

6: Update B: For source i, bit+1 ← bit + β(Wi
ts
i
t+1 − vit+1)

7: Update W: For source i, row j, wij,t+1 ←(∣∣∣sij,t+1

∣∣∣+ ε
)−1

dij

/
max
j

{(∣∣∣sij,t+1

∣∣∣+ ε
)−1

dij

}
8: if |F (St+1,Vt+1; Bt+1,Wt+1)− F (St,Vt; Bt,Wt)| ≤ τ then break

9: t← t+ 1

10: end while

11: Return: Ŝ

12: Output: class(x) = arg min
c=1,2,...,C

D∑
i=1

∥∥xi −Ai
cŝ
i
c

∥∥2
F

4.3.3 Multiscale Decision Fusion Strategy

For EEG multiscale signals, after the joint sparse coefficient Ŝ is obtained, we propose a

fusion strategy to combine the representation from different scales of features and estimate

the class label for the test data. As different scales of features are not equally important for

decoding, the goal is to assign them weights based on their discriminative ability. In this work,

we adopt a weight motivated by the Fisher’s ratio. We first calculate the within-class and
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between-class reconstruction error from each sub-dictionary as

Riw =
C∑
c=1

∑
j∈class{c}

∥∥∥aij −Ai
cŝ
i
c

∥∥∥2
Rib = 1

C−1

C∑
c=1

∑
j∈class{c}

∑
m 6=c

∥∥∥aij −Ai
mŝim

∥∥∥2. (4.8)

Then the weight can be calculated as the ratio of Rib and Riw

pi = Rib/R
i
w. (4.9)

In this way, the scale of features that is more discriminative will be assigned a higher weight

in the final decision function. Then the class label of test sample x will be determined as

class(x) = arg min
c=1,2,...,C

D∑
i=1

pi
∥∥xi −Ai

cŝ
i
c

∥∥2
2
. (4.10)

4.3.4 Fusion in the Kernel Space

In the previous section, we present the ALWMJ-SRC algorithm in the original data space.

However, the multi-source data may not be linearly separable in the input space. In this case,

we extend the ALWMJ-SRC fusion framework to a kernel space.

Given the input data x in the original data space Rd, define a nonlinear mapping Φ(·) from

the input space to a higher dimensional Reproducing Kernel Hilbert Space (RKHS) H as

Φ : Rd → H,x→ Φ(x). (4.11)

Then by employing the “kernel trick”, a kernel function K is defined as

K(xi,xj) = 〈Φ(xi),Φ(xj)〉 , (4.12)

where 〈·, ·〉 is the inner product of two vectors.

As the data mapping and kernel function in the RKHS space are defined as (4.11) and

(4.12), the generalized local distance between the test sample xi and each atom aij in the
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feature space can be calculated as

$i
j =

∥∥Φ(xi)− Φ(aij)
∥∥2. (4.13)

Using the kernel trick, the generalized local distance can be computed as

$i
j = K(xi,xi) +K(aij ,a

i
j)− 2K(xi,aij). (4.14)

Then the adaptive locality weight in the kernel space can be expressed similarly to Equation

(4.4) and (4.5) as

ϕij =
ϕ̃ij$

i
j

max ϕ̃ij$
i
j

, and ϕ̃ij =
(∣∣pij∣∣)−1, (4.15)

where pij is the sparse coefficient associated with atom aij in the kernel space.

With the adaptive locality weight defined in the kernel space, the objective function (4.2)

can be modified using the mapping function as

P̂ = arg min
P

1

2

D∑
i=1

∥∥Φ(xi)− Φ(Ai)pi
∥∥2
F

+ λ‖Ψ�P‖1,2, (4.16)

where Ψ is the weighting matrix, and P = [p1,p2, ...,pD] is the sparse coefficient matrix in

the kernel space. Equation (4.16) can also be written in terms of kernel matrices as

P̂ =
D∑
i=1

[
Tr
(

(pi)
T
Ki

a,ap
i
)
− 2Tr

(
Ki

a,xpi
)]

+ λ‖Ψ�P‖1,2, (4.17)

where the kernel matrices are defined as Ki
a,a(aim,a

i
n) =

〈
Φ(aim),Φ(ain)

〉
, Ki

a,x(aim,x
i
n) =〈

Φ(aim),Φ(xin)
〉
, and Tr(·) is the trace of the matrix.

Similar to the linear fusion algorithm, the problem in the kernel space can also be solved by

ADMM method. Once the sparse coefficient P̂ is obtained, the class label of the test sample

x can be determined by

class(x)= arg min
c=1,2,...,C

D∑
i=1

∥∥Φ(xi)− Φ(Ai
c)p̂

i
c

∥∥2
2
, (4.18)
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or in terms of kernel matrices as

class(x)= arg min
c=1,2,...,C

D∑
i=1

 Tr
(
Ki

x,x

)
− 2Tr

(
(p̂ic)

T
Ki

ac,xp̂ic

)
+Tr

(
(p̂ic)

T
Ki

ac,ac
p̂ic

)
, (4.19)

where p̂ic is the subset of the sparse coefficient vector p̂i associated with class c, and aic is the

atom in the corresponding sub-dictionary.

4.4 Experimental Results

4.4.1 Multi-Source Geospatial Data Fusion

4.4.1.1 Experimental Settings

In the experiments, the raw spectral data and EMAPs from hyperspectral data (or LiDAR

pesudo-waveform data) were used as the multi-source input for spectral-spatial feature fusion

(or sensor fusion). The efficacy of the proposed fusion algorithm (ALWMJ-SRC) was evaluated

and compared with some state-of-the-art algorithms, including the linear SVM, the standard

SRC with stacking features, the MTJ-SRC without weight implementation and the recently

proposed JCRC-MTL [111]. We also tested the performance of the proposed kernel fusion

algorithm (ALWMJ-KSRC), and compared with the corresponding kernel fusion baselines,

i.e., the composite-kernel SVM, the KSRC with stacking features, and the MTJ-KSRC. Note

that the composite-kernel is defined as a weighted summation kernel to balance data from

different sources (e.g., spectral and spatial) as

K(xi,xj) = dKspec(x
1
i ,x

1
j ) + (1− d)Kspa(x

2
i ,x

2
j ), (4.20)

where Kspec and Kspa are spectral and spatial basis kernels, respectively. d is the weight for

spectral kernel — varying d provides different composite kernels. In this work, the kernel

weight was optimized in the range [0,1] with a step size of 0.1 through cross-validation, and

the optimal value of d was 0.3 for both datasets in the feature fusion. For the sensor fusion, d
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was selected as 0.7 for hyperspectral data. We note that the proposed algorithm in the kernel

space is conceptually consistent with the composite kernel approach, because both methods

make the use of a linear combination of basis kernels from different sources, and thus effectively

fuse spectral and spatial information — our method is able to do so by exploiting the sparsity

structure in the representation in the composite kernel space.

For SRC-based classification methods, the optimizations (both `1 and `1/`2 problems) were

based on ADMM algorithm. The JCRC-MTL approach was implemented using the demo codes

provided by the authors, and the parameters were optimized according to the paper [111]. For

SVM-based classification methods, we used LIBSVM toolbox to run the experiments. In

the kernel fusion experiments, RBF kernels were used with the optimal parameter γ chosen

by cross-validation. In this work, the optimal σ is 0.5 for hyperspectral and LiDAR data,

and 1.0 for spatial data. Other parameters in ALWMJ-SRC, i.e., regularization parameter λ

and penalty parameter β were set as 10−2, 10−2, respectively, through cross-validation. The

stopping threshold τ was set as 10−5.

4.4.1.2 Spectral and Spatial Classification

First, we evaluate the proposed algorithm as well as the baseline algorithms as a function

of the number of training samples versus overall classification accuracies. We randomly select

10, 20, 40, 60, 80 samples per class to build the dictionary, and the remaining samples are

used for testing. Each experiment was repeated for 10 times and the average overall accuracies

(OA) and standard deviations are shown in Figure 4.3 and 4.4 for UH and Pavia datasets,

respectively.
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(a) (b)

Figure 4.3: Overall accuracies achieved on the UH dataset using spectral and spatial features
for (a) linear fusion and (b) kernel fusion.

(a) (b)

Figure 4.4: Overall accuracies achieved on the Pavia dataset using spectral and spatial features
for (a) linear fusion and (b) kernel fusion.

Considering the proposed ALWMJ-SRC and ALWMJ-KSRC, the results outperform all

other methods, including the baseline experiments using linear and composite kernel SVMs.

All the kernel fusion methods outperform their linear fusion counterparts by about 2% − 3%

generally, which indicates a non-linear classifier in the kernel space is more suitable to classify

the spectral-spatial data. Compared to the MTJ-SRC, which does not use any weight for the

`1/`2 penalty, by incorporating the locality weight, the ALWMJ-SRC clearly outperforms the

MTJ-SRC with higher OA and lower standard deviation, especially when the dictionary size
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is small. For example, when the dictionary is composed of 10 training samples per class, the

increase of OA by ALWMJ-SRC is 15.08% for Pavia dataset and 7.21% for UH dataset. This

indicates when the size of dictionary is not large enough, the locality constraint is important to

penalize different coefficients in the `1/`2 regularization. The similar atoms in the dictionary

are penalized less heavily than those atoms dissimilar to the test sample, and thus result in

larger sparse coefficients. However, when the size of dictionary becomes large, the locality

information is less important considering the abundant atoms in each class for representation,

and thus the benefit of locality weight is less obvious. In addition, by adding an adaptive weight

that is inversely proportional to the previous solution, smaller coefficients will be penalized

more in the subsequent iteration and encouraged to be more close to zero. This can reduce

the estimation bias, and achieve more accurate signal representation.

4.4.1.3 Hyperspectral and LiDAR Classification

Similar experiments were implemented on UH multi-sensor data for sensor fusion. The

overall accuracies and standard deviations for hyperspectral and LiDAR fusion are shown in

Figure 4.5.

By observing the results of this multi-sensor dataset, we can reach similar conclusions

to those of spatial-spectral classification — the proposed ALWMJ-SRC and ALWMJ-KSRC

algorithms perform the best among all fusion methods. When a small number of training

samples (e.g., 10 per class) are used, the improvement of average classification accuracies by

ALWMJ-SRC are substantial, i.e., 12.32%, 9.69%, 5.70%, 3.98% compared to JCRC-MTL,

MTJ-SRC, the standard SRC and the linear SVM, respectively. In addition, the kernel fusion

methods improve the classification results significantly compared to the linear fusion methods.

This means when the data are acquired from different sensors, it would be more efficient to

map the heterogeneous data to a high dimensional kernel space for joint classification.
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(a) (b)

Figure 4.5: Overall accuracies achieved on the UH multi-source dataset using hyperspectral
and LiDAR pseudo-waveform data for (a) linear fusion and (b) kernel fusion.

4.4.1.4 Class Specific Analysis

Here we consider the situation where the size of dictionary is small, and illustrate the

results using 20 training samples per class for spectral-spatial classification. The class-specific

accuracies for different SRC-based fusion algorithms are listed in Table 4.1 and 4.2 for UH

and Pavia datasets, respectively. The critical classes are marked bold in the table, and are

determined based on their similar spectral signatures.

First, we compare the fusion results with the single source classification results using spec-

tral and spatial data separately. For all classes, we can see clear improvements when incor-

porating both spectral and spatial features, which demonstrates the benefit of data fusion for

classification. For most classes, ALWMJ-SRC has the best classification performances. In

particular, for those critical classes which are not easily classified by single source spectral or

spatial data, the accuracy enhancement by fusion is significant. For example, in the UH dataset,

Highway and Railway have similar spectral signatures, and class accuracies are both less than

40% classified by raw spectral data. While after fusion by ALWMJ-SRC the accuracies are

91.24%, 89.48% compared to the baseline results of MTJ-SRC, which are 81.55%, 81.54%
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respectively. The reason for accuracy improvement by fusion is that even though these classes

are spectrally similar, they are either constructed with different materials or have different

shapes and sizes, which makes the EMAPs with morphological and textual features useful to

differentiate these classes. Further, by using adaptive locality weight to constrain the coeffi-

cients, the test sample is only represented by its nearest neighbors adaptively, and thus the

classification error is reduced. Similar results can also be found in other critical classes from

Pavia dataset, e.g., Gravel vs Bricks, Asphalt vs Bitumen.

To visualize the classification performance, we provide the classification maps generated

using 80 training samples per class as shown in Figure 4.6 for Pavia dataset. By comparing

the maps, we can see a much smoother and more accurate map for ALWMJ-SRC than other

approaches.

4.4.1.5 Computational Complexity

By using the ADMM algorithm to solve the proposed objective function, the variables

are updated alternatively, and the optimization problem can be divided into sub-optimization

problems. The solution for each sub-optimization problem is in closed-form and thus the

calculation is efficient. Compared to MTJ-SRC, ALWMJ-SRC adds a weight update step,

which however only involves matrix computations. Therefore the time complexity is the same

for MTJ-SRC and ALWMJ-SRC.
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Table 4.1: Class-specific accuracies and overall accuracies (%) for the University of Houston
dataset.

Class Single Source Linear Fusion Kernel Fusion

Index spectral spatial SVM MTJ JCRC ALWMJ SVM MTJ ALWMJ

1 85.09 91.90 97.02 95.21 92.83 98.32 98.08 97.28 98.36
2 91.72 90.52 91.36 95.44 93.58 98.05 98.45 97.87 98.59
3 99.80 99.61 97.21 97.28 98.44 98.14 100 98.88 100
4 98.12 91.31 98.25 98.05 98.72 98.75 97.79 97.15 98.04
5 65.53 82.31 91.56 88.17 100 91.24 91.65 92.24 93.15
6 100 98.78 98.56 97.20 72.97 100 100 98.98 100
7 67.39 88.76 80.59 94.22 69.18 87.58 87.62 89.28 91.11
8 51.21 54.08 61.23 77.45 70.58 92.40 80.25 81.55 92.51
9 23.53 48.38 65.27 66.68 69.02 86.21 81.46 78.77 86.87
10 36.91 70.65 86.76 80.48 95.02 90.44 89.78 91.08 94.66
11 36.52 60.63 85.24 80.46 88.56 88.23 87.12 80.25 90.56
12 24.85 46.68 72.68 75.22 87.40 83.16 82.78 83.40 90.74
13 50.89 67.98 71.26 85.32 87.17 89.56 80.24 87.14 89.92
14 97.05 94.61 94.56 96.02 100 94.48 95.28 95.39 98.58
15 85.45 99.41 98.08 97.85 99.57 97.90 97.02 97.32 98.14
OA 66.19 78.96 85.02 87.08 88.87 90.83 90.25 90.16 92.45

Table 4.2: Class-specific accuracies and overall accuracies (%) for the University of Pavia
dataset

Class Single Source Linear Fusion Kernel Fusion

Index spectral spatial SVM MTJ JCRC ALWMJ SVM MTJ ALWMJ

1 27.76 72.66 84.14 76.60 72.55 92.38 90.52 90.32 94.13
2 53.10 69.44 85.12 75.56 87.14 89.42 90.21 85.24 91.21
3 41.70 82.36 71.29 80.02 88.38 91.86 90.24 85.13 94.74
4 83.55 74.36 85.08 82.14 62.60 81.30 88.55 86.69 87.25
5 98.10 97.42 94.28 96.57 98.90 99.08 98.42 98.26 98.68
6 46.28 79.08 86.14 84.26 87.89 94.43 90.53 90.04 94.22
7 48.93 86.31 85.65 86.58 85.26 90.58 90.02 81.57 91.65
8 23.61 67.97 84.34 65.24 67.14 87.06 88.38 87.46 90.18
9 98.25 87.82 97.81 91.78 90.14 97.42 98.05 99.82 99.28

OA 59.29 78.78 87.54 80.09 84.09 90.16 90.14 88.48 91.77
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Classification maps of Pavia dataset using (a) SRC-spectral (b) SRC-spatial (c)
Linear-SVM (d) MTJ-SRC (e) ALWMJ-SRC (f) Composite-SVM (g) MTJ-KSRC
(h) ALWMJ-KSRC.

4.4.2 Gait Phase Decoding from EEG signals

Over the past years, gait phase detection has been extensively studied using foot pressure,

kinematic and electromyography (EMG) data [122–129]. However, gait phase decoding through

Brain Computer Interface (BCI) from electroencephalography (EEG) signals has just emerged

as a new research problem in recent years. BCI systems have been successfully used to help

patients that lose motor ability (e.g., stroke, paraplegia, and quadriplegia) to relearn and

recover walking ability. Previous research [130] has shown the feasibility of decoding human

gait into two successive phases of stance and swing using time-domain features from EEG
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signals in low delta band (0.1-2 Hz). Classification was performed using a Linear Discriminant

Analysis (LDA) classifier with selected EEG channels and achieved high decoding accuracy.

However, in this study, only the features from delta band were used for decoding, which

may neglect important information from other frequency bands. In fact, many studies have

demonstrated that spectral power changes in different frequency bands during different phases

of a gait cycle. Severens et al. found two types of modulations in spectral power [131] during

walking, i.e., inter-stride and intra-stride modulations. First, an overall power decrease was

observed in the mu and beta bands along the whole period during walking. Furthermore,

gait event related spectral perturbations (ERSPs) in mu, beta and gamma band were found

that are coupled to the gait cycle. In addition, Gwin et al. found that alpha- and beta-band

spectral power increases during the heel strike and approximately in the middle of the double

support phases, and the intra-stride high-gamma spectral power changes in anterior cingulate,

posterior parietal, and sensorimotor cortex [132]. Motivated by the above findings, in [133],

walking and no-working states in both actual walking and imaginary walking are classified

using ERSPs from different frequency bands, i.e., mu (8-12 Hz), beta (12-25 Hz) and mu-beta

(8-25Hz). The experimental results consistently show that the combined mu and beta bands

were complementary and gave better performances than taking them separately. Previous

research results motivate our hypothesis that it would be promising to systematically integrate

EEG features from different frequency bands to improve the decoding accuracy of various

phases of gait.

Different from previous works that only extracted features from limited frequency bands

[130, 131], we build an over-complete dictionary covering different frequency bands from low
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delta to gamma. We hypothesize that features from different frequency bands are complemen-

tary and it would be effective to combine their information to enhance the decoding perfor-

mance. To effectively fuse different scales of features, ALWMJ-SRC algorithm is validated on

multiple sessions of EEG data recorded from five healthy subjects walking on a treadmill in a

BCI virtual reality application.

4.4.2.1 Data Recording and Gait Segmentation

Five healthy subjects with no history of neurological disease or gait pathology participated

in this study for four sessions after each of them submitted a consent form. The experimental

protocol was approved by the Institutional Review Board at the University of Houston, USA.

At the beginning of each trial, the subject was instructed to stand still for 2 minutes on a

treadmill while minimizing eye blinks. The treadmill was then slowly sped up to 1 mph by an

experimenter and the subject kept this walking speed for 10 minutes.

Multichannel EEG (64 channels) was recorded by combining two 32-channel amplifiers

(actiCap system, Brain Products GmbH, Germany). The electrodes were placed and labeled

in accordance with the extended 10-20 international system. EEG data were referenced to

FCz channel and sampled at 100 Hz. Lower limb joint angles (hip, knee, and ankle) were

recorded by goniometer sensors (SG150 & SG110/A Gonio, Biometrics Ltd, UK) at 100 Hz.

Kinematic data (accelerations) were sampled at 128 Hz by using three wireless OPAL sensors

(OPAL, APDM Inc., Portland, OR) placed at the forehead, left and right heel of the subject.

Kinematic data of the heel would be used to segment all the data into gait cycles. Recording

of EEG data, goniometer data, and OPAL data were synchronized using our custom C++

program.

Gait segmentation was accomplished by identifying heel strike and toe off events of both

the right and left leg. These events were identified using acceleration data from the Opal IMUs
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including the acceleration in the directions parallel to the foot’s sagittal plane of motion —

anterior/posterior and proximal/distal. Specific parameters were used to identify peaks based

on individual metrics tuned for each subject including minimum peak thresholds and minimum

spacing between peaks. The timing of these events was compared to synchronized joint angle

positions measured with goniometers as shown in Figure 4.7, closely matching published data

regarding the relative location of heel strike and toe off in the gait cycle as determined with

alternative instrumentation [134], [135]. A secondary validation method was to compare the

number of gait cycles in which the right and left leg events occurred in the correct sequence to

the number of gait cycles counted by large knee angle peaks. The segmentation accuracy was

over 99% for all subjects. The identified timing of gait events were then used as class labels

for supervised learning in the decoding experiments.

Figure 4.7: Gait segmentation determined by acceleration data with comparison to the joint
angle positions in a single gait cycle of the right leg.

4.4.2.2 Feature Extraction and Selection

Before building the RDWT-based dictionary and decoding the gait phases using ALWMJ-

SRC, the recorded EEG data were first preprocessed. The EEG signals were high pass filtered

at 0.1 Hz with a zero-phase 2nd order Butterworth filter, and then standardized by channel

by subtracting the mean and dividing by the standard deviation. The preprocessed EEG data
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synchronized with the segmented gait events are shown in Figure 4.8 for selected channels.

Figure 4.8: Preprocessed EEG data synchronized with four gait events. RH, LT, LH, RT
represents four classes for decoding, i.e., right heel strike, left toe off, left heel
strike and right toe off.

From the preprocessed EEG data, the detail and approximation wavelet coefficients were

calculated from the RDWT decomposition and used to build a multiscale dictionary. The

length of wavelet coefficients for all scales are the same as the original signal length. Selection

of the appropriate wavelet type and the number of decomposition levels is very important

for signal analysis and decoding. The Daubechies family of wavelets has been shown to have

advantages over other types of wavelet for multiple EEG signal classification problems [50],

[51], [136]. We experimentally determined that Daubechies wavelet 4 (db4) wavelet, which is

effective to detect small changes of the EEG signals, is suitable for this research. The selection
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of the decomposition levels depends on the sampling frequency and the frequency bands of

interest. In this study, since the EEG signals were sampled at 100 Hz, the highest frequency

that the signal could contain would be 50 Hz based on the Nyquist theorem. We decomposed

the signal into five levels, so each level of coefficients would encompass the information from the

frequency bands we are interested in. Frequency bands corresponding to five decomposition

levels are listed in Table 4.3. The final dictionary is thus comprised of six sub-dictionaries

respect to the decomposition levels — Approximation (A), Detail 1-5 (D5, D4, D3, D2 and

D1).

Table 4.3: RDWT decomposition scales and the corresponding frequency bands.

Level Frequency (Hz) Band Name

D1 25 - 50 gamma
D2 12.5 - 25 beta
D3 6.25 - 12.5 alpha
D4 3.12 - 6.25 theta
D5 1.06 - 3.12 delta
A 0.1 - 1.06 low delta

The decomposed multiscale EEG signals were then segmented into pre-movement epochs of

200 ms duration using a rectangular window of size 20 based on the gait segmentation results.

Each epoch is consisted of data from 50 ms before a gait event happened. The epochs from the

same scale was then concatenated into a single time series containing different gait events in

all gait cycles. The concatenated EEG epochs were then formed as a four-class classification

problem for each trail, in which each epoch is labeled as 1 to 4 corresponding to right heel

strike (RH), left toe off (LT), left heel strike (LH) and right toe off (RT), respectively.

To build the dictionary for decoding, each epoch was transformed to a feature vector which

represented a data point in the feature space. The feature vector was formed by concatenating

20 lags for all 64 channels into a single vector of length 20× 64. Therefore, each trail contains
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six scales of features, and each scale is a feature matrix of size N × 1280, where N is the

number of epochs in a trail. To avoid the overfitting problem in classification, we further

reduced the dimensionality of the feature matrix. Many techniques have been proposed for

dimensionality reduction. It is commonly known that not all EEG channels contain useful

information for decoding. So in this research, we reduced the number of features by selecting

the best combination of channels based on the Differential Evolution Feature Selection (DEFS)

approach [137]. DEFS employs a variation of differential evolution (DE) as the search engine,

and we developed the fitness function using the classification error rate based on the SRC

classifier. The population size and the number of iterations were both set as 50. We changed

the number of channels used for decoding from 1 to 63 and ran the DEFS for 10 times to

find the best sets with the highest channel occurrence for each scale of features and for each

subject. Following this, the sub-dictionaries was comprised of the features from the selected

channels, and the final dictionary was a combination of all six sub-dictionaries.

By changing the number of channels selected from 1 to 63, we experimentally determined

that the optimal number of channels is between 18 and 25 for all subjects. By referring to

“optimal”, we imply that the decoding accuracy reaches its peak and either drops or saturates

afterwards. Following this, we fixed the number of optimal selected channels for each trial and

ran the DEFS for 10 times. 100 samples were randomly selected from each class to train the

SRC classifier. We calculated the number of times that each channel was selected within 10

runs, in which case the maximum selected time is 10 and the minimum is 0. The channels

with the highest occurrences implies that the corresponding regions may contain the most

discriminative information for decoding. We ran the DEFS on all 20 trails, and found that

the channel selection results were different for different trails. We compare the results from

the best trial with the highest decoding accuracy and the worst trial with the lowest decoding
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accuracy in Figure 4.9.

From the results in the best trial, we observed that multiple central channels (e.g., Cz, C1,

C2, C4, Cp1) were selected more times than the others, which indicates information that is

useful for decoding mainly concentrated on the midline central area of the scalp. In addition,

for different scales of signals, the selected important areas are complementary in the best trial.

In contrast, when the important information are not centralized in the midline central area

and the important areas are identical and limited across different frequency bands, the decod-

ing accuracy is much lower. For all the trials, although the selected important channels are

different, we found the most commonly selected channels are centered on the midline central

area, and among which Cz is the most selected channel.

A D5 D4 D3 D2 D1

Figure 4.9: Scalp maps showing the occurrence of selected channels in ten different runs for
different scales of features. The first row shows the results in the best trail, and
the second row shows the results in the worst trail.

4.4.2.3 Classification and Fusion

After feature extraction and selection, for each trail, we built a dictionary based on the

selected features for different scales. To simulate a real-time decoding environment, in each

trail, the first half of the labeled samples (epochs) were used to build the dictionary for training,

and the remaining half were used for testing and evaluation. The testing process was repeated

10 times for each trial of data and the metric for evaluation is the average overall accuracy,

99



where the overall accuracy is defined as the number of correctly classified samples divide by

the total number of samples in the experiment. In all the experiments, the parameters, i.e.,

regularization parameter and penalty parameter, were set as 10−2, 10−2, respectively, through

cross-validation. The stopping threshold was set as 10−5.

1. Comparison of Single Scale and Multiscale Classification

First, we compare the classification results using each separate scale of features to the

fusion results using all scales of features. The results for each subject are averaged over all

trials are shown in Figure 4.10.

As the scale of features goes from Approximation to Detail (the frequency increases), it

is observed that the decoding accuracy decreases for all subjects. The overall accuracy is

around 55% - 70% for the approximation scale which corresponds to the low delta band.

This result indicates that the low delta band EEG signals carries the most discriminative

information for different gait phases. At scale D5, the accuracies are 15% - 20% lower than the

approximation scale. As the scale becomes finer, the individual accuracies at the scale continue

to decrease, implying that the higher frequencies contain less discriminative information than

lower frequencies for gait phases decoding. However, we note that even the most fine-scale

dictionary in 25 − 50 Hz range has a decoding accuracies over 30% which are higher than

the chance level (25%). This indicates that there is some discriminative information in higher

frequency bands.

The results of fusion further validates our hypothesis that different scales of EEG features

can be used to provide complementary information for decoding. The average decoding ac-

curacies increase by around 6.5% compared to those where only the approximation scale is

used.
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2. Comparison of Weighted and Non-weighed Fusion Algorithm

To demonstrate the effectiveness of the proposed weighted algorithm for combining different

scales of features for decoding, we compare the weighted fusion algorithm (ALWMJ-SRC) with

the non-weighted fusion algorithm (MTJSRC). The average decoding accuracies and standard

deviations are shown in Figure 4.11.

First, we note that both fusion algorithms are effective at improving the decoding ac-

curacies compared to the single scale features. For MTJSRC, which does not consider the

different importance of different scales of features for decoding, the improvement of decoding

accuracies is around 2% compared to the approximation scale. In contrast, by implementing

an adaptive weight considering the locality, the discriminative ability, and the stability of the

estimation, the decoding accuracies are further improved by 5%. The results demonstrate

that the proposed adaptive weight multiscale sparse representation algorithm is more effec-

tive at combining different scales of features while considering the difference of each scale for

improving the decoding accuracy.

3. Class-wise Accuracy

Next, we give some insight on the classification results regarding different gait phases. We

show the confusion matrices in terms of class-wise decoding accuracies and misclassification

rate. Generally, four classes have similar decoding accuracies. The ALWMJ-SRC algorithm

does not favor one class over the others.

It is observed that the off-diagonal values of the confusion matrix are generally lower than

others, implying that misclassification rates between heel strike and toe off events for the same

foot are generally lower than those for different feet. In particular, LT and LH are observed

as the least confused class pairs among all subjects, while RH and LH have a relatively high

misclassification rate. This observation indicates that the heel strike and toe off have rather
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distinct features to be differentiate, while the same event (heel strike or toe off) has similar

features and is difficult to classify between different feet.

In addition, we show the results of simulated real-time decoding of gait phases for subject

5 in Figure 4.13. The classifier was trained on the first half of the recorded EEG trial and

tested on the consecutive 106 seconds of the trial to simulate the real-time decoding decisions.

The decoding accuracy for this period was 75 %. The results also indicate that the heel strike

and toe off are the most misclassified classes.

Figure 4.10: A comparison of classification overall accuracies using different scales of features
and a combination of all features. Fuse represents the fusion results, and A, D1-D5
represents the results by approximation and five detail scales.

Figure 4.11: Average decoding accuracies (%) and standard deviations (%) for different meth-
ods and subjects.
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(a) S1 (b) S2 (c) S3

(d) S4 (e) S5

Figure 4.12: Confusion matrices (%) for subject 1 to 5. RH, LT, LH, RT represents four classes
for decoding, i.e., right heel strike, left toe off, left heel strike and right toe off.

Figure 4.13: Simulation of real-time decoding of gait phases for one subject. The figure con-
tains a time series of simulated real-time classification decisions from the consec-
utive 106 seconds of the trial.

4.5 Summary

In this chapter, the ALWMJ-SRC algorithm is proposed for multi-source data fusion, which

is based on multi-task joint sparse representation framework and incorporates an adaptive

locality constrained weight. The proposed algorithm is designed to overcome the limitation that

differences between atoms and sources are ignored in previous works. By adding the adaptive

locality constraint weight, it considers the locality information between the test sample and
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the atoms in the dictionary, and adapts it by penalizing different coefficients for better signal

reconstruction. The efficacy of the proposed algorithm is validated on two different applications

— multi-source geospatial data classification and gait phases decoding from multiscale EEG

signals.

For multi-source geospatial data classification, the overall classification accuracies of ALWMJ-

SRC exhibit consistently better performance than state-of-the-art algorithms for both sensor

and feature fusion, especially when the dictionary size is small. The class-specific accuracies

demonstrate that ALWMJ-SRC is particularly efficient for discriminating critical classes with

similar spectral signatures. For gait phases decoding, EEG signals were first decomposed into

multiple scales of features based on RDWT decomposition to build an overcomplete dictionary,

following which a joint sparse representation framework was applied to fuse different scales of

features for compact representation. By selecting the important channels for decoding, we

determined that useful information for decoding the gait phases mainly concentrated on the

midline central area of the scalp. The experimental results using independent scale of features

indicate that the most discriminative information for gait phases are contained in the approxi-

mation scale of features (i.e., low frequency). For the higher frequency sub-bands, the decoding

accuracies decreased compared to the low frequency (coarse) sub-bands, however, they clearly

possess discriminative information useful for decoding. Results with the proposed approach

for “optimal” fusion using all scales of features validate our hypothesis that different scales of

EEG features can be used in a complementary manner for highly accurate decoding.
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Chapter 5

Summary and Conclusions
Incorporating disparate features from multiple sources can provide valuable diverse infor-

mation for data analysis in many applications. In this dissertation, we develop and demonstrate

the value of multi-source information fusion techniques for robust classification. The proposed

algorithms are categorized under two broad categories — a mixture of kernels approach and a

joint sparse representation approach. The joint sparse representation in the kernel space makes

the use of a linear combination of base kernels which expends the mixture of kernel ideas into

a sparse representation framework. In this chapter, we first summarize the main contributions

of the dissertation and then give the possible directions for future work.

5.1 Dissertation Contribution

The key contributions of this dissertation are summarized as follows:

1. Locality Preserving Composite Kernel Feature Extraction

A composite-kernel-based feature extraction algorithm (CKLFDA) is proposed to efficiently

fuse the multi-source data in a lower dimensional subspace, which results in features derived

from the multiple sources that possess optimal class separability. To demonstrate the benefits

of CKLFDA, we conduct experiments on both multi-feature and multi-sensor remote sensing

data. The experimental results validate the hypothesis that CKLFDA serves as a very effective

and robust feature extraction tool for various classifiers, such as Gaussian ML and MLR — we

note that the composite kernel projection results in a feature space wherein data are linearly

separable, making it feasible to utilize a simple classifier such as ML or MLR at the backend.
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CKLFDA-MLR outperforms all the other traditional methods in terms of overall classification

accuracy while with similar computational cost.

2. Multiple Kernel Based Region Importance Learning

MKL has the advantage of learning the classifier and the optimal kernel weights simulta-

neously. In this dissertation, the MKL algorithm is successfully applied to infer the relative

importance of different scalp brain regions while decoding user’s gait movement intention from

EEG signals. The experimental results demonstrate that the frontal/frontal-central regions

are the most important regions for movement decoding, which is consistent with the brain

regions believed to be involved in the control of lower-limb movements. In addition, from the

longitudinal experiment results, we conclude that the decoding accuracy generally increases

while the user learns to control the exoskeleton for movement and the important regions get

increasing weights along sessions for decoding. The results demonstrate the cortical plasticity

triggered by the BMI use.

3. Ensemble Multiple Kernel Active Learning

The ensemble multiple kernel active learning (EnsembleMKL-AL) framework provides a

novel approach to exploit multi-sensor, multi-feature remote sensing datasets with limited

number of labeled samples for image classification. The experiments validate the efficacy of

the proposed framework and provide the following conclusions — (a) MKL is a more effective

and appropriate classifier for multi-source AL compared to the standard SVM classifier; (b)

Ensemble classifiers improve the performance of traditional AL substantially for the multi-

source data. The proposed EnsembleMKL-AL system greatly outperforms the SimpleMKL-

AL approach in terms of overall and class-specific accuracies. The computational time for

EnsembleMKL-MD-LOP is slightly higher than SimpleMKL-Ms, but is much more efficient

than the SVM-MS approach.
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4. Locality Driven Joint Sparse Representation

A locality (as measured in the feature space) driven joint sparse representation model is

proposed for effective multi-source data fusion. The proposed algorithm, built on the notion

of multi-task joint sparse representation, incorporates an adaptive locality weight to overcome

the key shortcomings (e.g., uniform weights, unstable estimation of coefficients) in prior re-

lated work. By adding the adaptive locality weight, we not only take into consideration the

locality information between the test sample and the dictionary, but also adaptively penalize

the coefficients to reduce estimation bias. This algorithm is also “kernelized” in the disserta-

tion. The proposed algorithm is validated through feature and sensor fusion of multi-source

geospatial data. The efficacy of the proposed algorithm is validated via experiments for two

fusion scenarios — spectral-spatial classification and hyperspectral-LiDAR sensor fusion. The

overall classification accuracies of ALWMJ-SRC exhibit consistently better performance than

the baseline algorithms, especially when the dictionary size is small. The class-specific accura-

cies demonstrate that ALWMJ-SRC is particularly efficient for discriminating critical classes

with similar spectral signatures.

5. Multiscale Joint Sparse Representation for Gait Phases Decoding

As a novel application of data fusion, we apply the proposed weighted joint sparse repre-

sentation algorithm to analyze the gait patterns from EEG signals for brain machine interface.

EEG signals were first decomposed into multiple scales of features based on RDWT decom-

position to build an overcomplete dictionary, following which a joint sparse representation

framework was proposed to fuse different scales of features for compact representation for de-

coding. The experimental results confirm that the important information for decoding the

gait phase primarily centralize in the midline central area of the scalp, and that low frequency
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features carry the most discriminative information. Although the higher frequency dictionar-

ies are less effective for classification by themselves, they provide complementary information

and improve the decoding performance when optimally combined with dictionaries from other

frequency regions through the proposed data fusion strategy.

5.2 Future Work

Based on the results and findings of the current work, we give some promising directions

for the future research.

1. Multi-source Active Learning

Up to now, the majority of AL algorithms are developed for single source classification and

based on a certain type of classifier, such as SVM. In this dissertation, we provide a new way to

exploit multi-sensor, multi-feature remote sensing datasets through ensemble active learning

for image classification. A future direction for AL is to develop a multi-source AL framework

based on the sparse representation based classification.

In [138], the authors developed an AL framework based on convex programming which can

be used on SRC. The principles of sample section are classifier uncertainty and sample diversity.

In [139, 140], the construction errors and sparse representation based classification errors are

used as query criteria in the AL. An interesting research direction for multi-source AL is to

build a query strategy selecting important samples given consideration to both uncertainty of

each source and disagreement over different sources based on the MTJ-SRC algorithm.

2. Combine Data Fusion with Domain Adaptation

In the current work, a key assumption is that the training and test data are drawn from the

same feature space and have the same distribution. However, in real-world applications, the

assumption is sometimes not satisfied. For remote sensing data analysis, take the hyperspectral

imagery as an example, there usually exists some shift in the spectral distribution due to
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different illumination or atmospheric conditions between disjoint areas. To solve this problem,

domain adaptation or transfer learning can be incorporated into the fusion framework to

overcome the influence of distribution bias between the source and target domains. For BMI

applications, insofar as the problem of effectively utilizing training samples and existing models

from one subject towards effectively decoding other subjects, the field of transfer learning is also

pertinent. In this sense, methods that combine domain transfer with efficient fusion algorithms

(e.g., multiple kernel learning) need be explored for information fusion in the future research.

3. Combine Joint Sparse Representation with Manifold Learning

This dissertation has demonstrate the feasibility of utilizing joint sparse representation for

robust multi-source data classification, however, the data still reside in the high dimensional

space which may cause inefficient computation. Dimensionality reduction via manifold learn-

ing offers an elegant representation of data whereby the high dimensional feature space is

parameterized by a lower dimensional space where the data resides. A further improvement

for multi-source data classification could incorporate manifold learning and jointly optimize it

with the sparse representation. We may make use of the Laplacian graph embedding method

and add it as a regularization term in the SRC objective function to reduce the dimension of

the dictionary.
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