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ABSTRACT

A theoretical calculation of Compton profiles and
Compton profile anisotropies in a diatomic molecule using
LCAO-MO-SCF (near-Hartree Fock) wavefunctions is presented.
The different occupied molecular orbitals (MO) give interest-
ing profiles and anisotropies which are indicative of their
roles in the binding of the molecule. The results for the
diatomic molecule are extended to approximate a face-centered-
cubic (FCC) diatomic crystal using a molecular simulated
crystal (MSC) procedure in which the outermost MO's are
modified to match the symmetry of the crystalline environment.
The resulting Compton profiles are called Symmetry Resolved
Profiles (SRP).

This formalism is applied in detail to lithium
fluoride (LiF) at an internuclear separation of 3.55 a.u.,
approximately the crystalline spacing. .The results compare
favorably with previous anisotropy calculations and experiment.
The next crystal studied is lithium hydride (LiH). There is
fair agreement between theory and experiment. There are no
other reported theoretical calculations for LiH. Results for
a number of alkali halides are then presented and trends in
the anisotropies in relation to the ionic or covalent chara-
cter of the molecules are indicated. Spherically-averaged
total Compton profiles are also compared with experiments on
polycrystalline (isotropic) samples. Good agreement is found

in each case considered.
ii
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I. INTRODUCTION AND SURVEY

Compton profile measurement(l'a)

as a method of
probing the electronic structure of atoms, molecules, and
solids has experienced rapid development in the past decade
after a period of inactivity extending from the 1920's (the
year Compton scattering (5) was introduced) until the 1960's.
The recent revival of interest in Compton scattering may be
largely attributed to the introduction of Y-ray sources and
solid-state detectors which improved the acquisition of
experimental data tremendously, and the availability of
highly accurate wavefunctions for atoms, molecules, and
solids which facilitated the rapid calculation (6) of
theoretical Compton profiles. In particular, the measurement
and interpretation of Compton profile anisotropies (7) has
emergéd as a very important probe of the electronic structure
of solids. Some theoretical calculations of anisotropies
have been made.(7-9) The more successful of these have !
utilized either the tight-binding approximation or the free-
electron (OPW) approach. In neither case have results been
readily identifiable with localized orbitals or bonds.

We have developed a new method for calculating and
analyzing Compton profile anisotropies in crystals. Our
approach is based on the assumption that the charge distri-
bution in a diatomic molecule in the gas phase is similar
to that in the solid; thus, we model the crystal by a suitable
orientation of noninteracting diatomic molecules with

appropriate symmetry modifications due to the crystalline
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environment. Self-consistent-field Hartree-Fock (LCAQ-MO-SCF)
diatomic wavefunctions are then used to calculate the
anisotropies. We refer to this as a Molecular Simulated
Crystal (MSC) procedure.

An application of this new procedure to LiF is
presented in detail. Contributions of individual molecular
orbitals to the anisotropies are analyzed and related to
polarization and binding effects in the molecule and crystal.
Even for nearly ionic molecules such as LiF, there is some
covalent character in the bond, this character is evident
in the calculated anisotropies. The computed crystal
.anisotropies are found to agree satisfactorily with
experiment. We then present the results for LiH and other

alkali halide molecules and crystals.

A. Compton Scattering Theory

Before we discuss the MSC theory we shall describe
briefly what Compton scattering is all about and show how
the concept of the Compton profile arises naturally in

Compton scattering.

CLASSICAL PICTURE
Compton scattering (10) is the scattering of a photon
by an electron. Imagine a photon of initial 4-momentum
Ai.z {ﬁz;)ﬁMﬁ) interacting wiEf an electron with initial
4-momentum Z;: (Ié’) E') where /i/(, and F are the initial
linear momenta of the photon and electron respectively, and

ﬁaq and E, are their respective initial total energies.
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If we let /‘?2 and /E be the corresponding final 4-momenta
after the interaction then the scattering process may be
described by a single equation in the classical theory.
This is known as the conservation of 4-momentum equation
given by

La¥4 (o d

hthR = F 1R (1-1)

This equation is equivalent to the conservation of momentum
and energy equations in the non-covariant formulation of the
problem.

In either formulation the change in wavelength of
the scattered photon may be easily derived and yields in the

non-relativistic limit(l)

——

2 me

AA = _2._;’5 sin?8 - 2A4sin > (1-2)

where h is Planck's constant, m is the mass of the electron,
‘R is the initial wavelength of the photon, ¢ is the speed of
light, & is the angle between the initial and final directions
of the photon, andlg is the component of the electron's
initial momentum along the momentum transfer direction which
is chosen as the z-axis (see Figure 1).

The first term in equation (I-1) is the usual Compton
wavelength shift obtained if the initial electron is assumed

to be at rest. The second term may then be interpreted as a |

"Doppler shift" effect resulting from the electron's motion



FIGURE 1

Schematic of Compton Scattering.
The momentum transfer direction,
P, - P, , is shown parallel to the

z-direction.
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6
parallel to the momentum transfer direction. If photons are
then scattered off a material where the electrons are
performing all kinds of motion, the distribution of the final
photons scattered at some angle & should be an excellent
measure of the initial electronic momentum distribution in

the material.

QUANTUM PICTURE

Since we are dealing with a process outside of the
classical domain of physics, Compton scattering has to be
formulated quantum~mechanically. This involves solving
Schroedinger's equation ( in the non-relativistic limit) and
finding the cross-section for photon-electron scattering.
In the more general case the electron will be relativistic.
The final expression for the differential cross-section

relevant to this discussion is given by (1-3)

e, -l fﬁ)lfaf(P) BRE  a

where the function C is given by (2)

e \tuw, _ mc (I-4)
2rme]) @ (W) 20, wy (056)72

C/wuwz)@) 19):

in the non-relativistic limit and the so-called impulse

approximation.

B. Compton Profile Anisotropy

It is the double integral in equation (I-3) that has

been defined as the Compton profile,(6) i.e.,
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where L/D is the electronic density distribution in

momentum space and where the integration is done on an
infinite plane intersecting uﬂ7 at some p . A Compton

3 ' z
profile is therefore a one-dimensional electronic density
distribution in momentum space. It also follows that for a

single electron the Compton profile satisfies the normali-

zation condition
00
[ JR) g = (-6
—od

From equation (I-3) we observe that the Compton
profile is directly obtainable from an experimental measure-

ment of the scattered radiation, i.e.,

JIRp)= dflda/ /((w,wz,p,e) (1-7)

(2-4)

One of course has to make all the necessary corrections
present in any experiment before equation (I-5) is applied.
If the electronic density distribution is not
spherically-symmetric we should expect the measured Compton
profile to vary as the orientation of the material with
respect to the initial radiation is changed. We may then
define a Compton profile anisotropy 7) as the difference

between two Compton profiles associated with two different

\



scattering directions, i.e.

?

Adlg)=J(p)-J (F) (1-8)

This Compton profile anisotropy is a very importanht quantity
in the field of Compton scattering since it contains a wealth
of information regarding the anisotropy in the electronic
distribution of a material. It may also indicate the bonding
characteristics of the electrons. It is the calculation and
interpretation of these Compton profile anisotropies that the

MSC theory discussed in the next chapter focuses on.

C. Previous Calculations

As noted earlier there have been previous theoretical
calculations of Compton profile anisotropies in some crystals.
We describe below some of the more successful ones.

The tight-binding model was used by Berggren,

Martino, Eisenberger, and Reed (7.,9) to calculate the

Compton profile anisotropies in LiF. Basic to this approach
is the assumption that the Lit and F~ ions retain their ionic
.wavefunctions and participate in the crystalline environment
only in the sense that there are overlaps in the wavefunctions
between neighboring ions. If these overlaps are small (which
is true for ionic solids) then the density matrix for the
solid may be calculated as an expansion in terms of these
overlaps. Enough terms are kept until convergence is assured.

Euwema, Wepfer, Surratt, and Wilhite (8) used a !



crystal Hartree-Fock formalism with Gaussian-type orbitals
(GTO) as local basis functions to calculate the anisotropies
in crystalline neon and LiF. We compare our calculations
on LiF with that of Berggren and Euwema in Chapter 3.

A self-consistent LCAO energy-band calculation was
performed by Rath, Wang, Tawil, and Callaway (11) on
- chromium, iron, and nickel to obtain the electronic momentum
distribution and Compton profiles along the various crystalline
directions. The basis consisted of a linear combination of
GTO's in the form given by Wachters.

Snyder and co-workers (12)

employed ab initio
wavefunctions for small molecules to construct a simple model
for the Compton profile of graphite and diamond. Pandey (12,13)
used the pseudopotential or free-electron approach to study

the same two materials. The most salient observation in these
studies is that the localized molecular model predicts the
anisotropy of the Compton profile of graphite about as well

as the pseudopotential approach which is a crystalline

calculation.
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IT. THEORY
Basic to the MSC procedure is the assumption that

observed anisotropies have their origin in local rather than
many-body interactions and can thus be associated almost
entirely with the polar-covalent character of bonds between
nearest-neighbor atoms. It is further assumed that the
polarity and covalency of these bonds is primarily a function

(14)

of the component atoms and not particularly dependent on
the phase, be it liquid, solid or wvapor. As such, bonds in
crystals should be well approximated by bonds in corresponding
diatomic molecules provided appropriate symmetry modifications
are made.

We proceed in the development of the MSC formalism by
deriving equations for calculating Compton profiles in
diatomic molecules along a momentum vector oriented at an
arbitrary angle relative to the bond axis. We then describe
a procedure of orienting the molecules in an array designed
to simulate the momentum density observed in Compton scatter-
ing experiments when scattering along a particular crystal
plane. Finally we modify the momentum density in a manner
consistent with symmetry differences between the vapor and
solid phases.

As a first step in our development we assume that the
ground-state wavefunction for an N- electron system (13) is

given by the single Slater determinant

LA, 2\[’/{/—7— det {%,8y ¢} 1D
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where ¢t represents a molecular spin orbital (MO). A Fourier
transformation of gfyields the corresponding groundstate

momentum wavefunction
> » >, i .Z/_V 3 3
X B)=l)? [dr [ -
exp [i (FL i) WlheR) @

We have set A=/ in the equation above in conformity with the
atomic units used in Compton profile work.

Using the orthonormality property of the MO'S,
2 X > ~
fdl X gé //\’) 5? /X/-—g/}‘ - (II-3)

equation (II-2) may be cast in the form

X/Ez/f"‘/—’;) - ﬁ det {x, X, Xy } (11-4)

where

% (51 = () [ €77 x)

A

(II-5)

e £/ .
is the 4« £n momentum MO associated with the g

Since the )(,g are also orthonormal wavefunctions
£

position MO.

the total one-electron momentum density of the system

obtained by squaring equation (II-4) and integrating over

N-1 coordinates reduces to a sum over the probabilf&y densities
of being in each allowed state. If we let‘jo denote the

total one-electron momentum density, then
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N
f[/;} = § ﬂ (/5’) (II-6)

where

- t /o =g
ﬂ./ﬁ):;{‘. //0)%/"@ : (11-7)

is the momentum density due to thelzéé MO.
If we define a particular direction in momentum space
-

/
ﬁ; and integrateLf9 over planes perpendicular to this

direction, the resultant one-dimensional momentum distribution

o o0
J/@’):// a//;/a/’?//f/ﬁ) (II-8)
—al =00 -
is what we have defined as the Compton profile in Chapter I,
appropriate when the momentum-transfer vector is parallel to
/Z’ . Differences in the profiles corresponding to
different orientations of Zg’ are what we have defined as
Compton profile anisotropies.
A transformation is necessary to express the momentum
density, 0/9<;?) as a function of the primed coordinates. If
£ and/g are the polar and azimuthal coordinates, respectively,

.+ -
of the/D’ axis with respect to the unprimed axes that define
z

the momentum density‘be , the transformation has the form

/
f, = cosd 505/3 /;(’—-5/72/3 /;’ £ Sind cos/é@’ (I1-9a)

p = cosdsing gtospp! +simasingp’ (119

'

A= —f/ﬂa’&/ # cosd p (1I-9¢)
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This transformation (see Figure 2) is most easily obtained
by .a rotation by the angle/5 about the A axis followed by
a rotation by the angle « about the new f; axis. The
inverse transformation then yields equations (II-9a) to (II-9c¢)
immediately. By using different values of « and '/3 we are
effectively changing the momentum-transfer direction relative
to the bond-axis (in the case of a diatomic molecule)direction.
The double integral indicated in equation (II-8) will then
yield the Compton profile for any chosen direction. While
this double integral cannot in general be done analytically
it is a straightforward matter to do this numerically using
Gauss-Legendre quadrature (we leave the details of this
procedure to Appendix A).

For a diatomic molecule (AB)theiééolecular orbital is

assumed expressible as
@4' (¥) = ?}/Af;) 7 92'//\;2) (II-10)

~»
where %%/%h) are linear combinations of Slater type orbitals
centered on nucleus A; a corresponding description applies

to gé /,Y—;)

The momentum-transform of this MO is given by

‘(> >
/ 3/ 3, 7/9'/" > >
X (B) =(5) Z/O/)sf’ [¢05)+¢ B0g)]
If we let the origin of ;'coincide with }; the following
result is obtained

xp) = 27z,

A

(p) (1I-12)
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FIGURE 2

The primed and unprimed momentum
coordinate systems. The angles
& and B are also shown with the plane
of integration normal to pf

Z
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where > >

3 # P
A (1 )72 (3, =
A (p) :/27) fd’{// ¢ % (%) (11-13)

-p

and R is a radius vector from nucleus A to nucleus B whose
magnitude is the inter-nuclear separation of the diatomic
system.

To proceed further we require momentum transforms of

the Slater orbitals,

¢ /X)-/”nfﬁrrﬁl}/ /

i (% ¢/ (II-14)
where /?n = /2}") [(ZN)./J is the normalization factor and
n, 1, and m are the usual atomic quaﬁtum numbers. To get the
Fourier transform we use the plane wave expansion (16)

RS m J i), Jter) AL ) i

,-0 /77"’_/(

where J& is a spherical Bessel function of the first kind and
m
X} is a spherical harmonic. The following result is obtain-
m
ed after using the orthonormality of the §' 3 and integrating

over the angles,

M’m ) (4) /2 /‘d’”rm/ f],e Pr),/);zm(/ﬁ)(n-le)

We note that for an STO the angular dependence is the same in
both the position and momentum representations. The integral
over r may be evaluated analytically for different n and 1

values with the use of the following recursion formulas,
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ni| -Tr . 2V
[ drr e 1 (Pr}: —d—df) /W),m/,zm (II-17)

o
x

[arr” g m)- /df) awf‘)“”fz”"'(”'”)

Jans (pr) = (2911) /;)/f?r)__ Gy (p1) )K= 4200 11D
In Table I we show the results of these calculations for s,
p, d, and £ STO's. 1In Appendix B we show, as an example, the
evaluation of equation (II-16) for a 3d STO.

For diatomic molecules the angular momentum component
parallel to the bond-axis is a conserved quantity. This
means that the constituent STO's for an MO (e.g., sigma or pi)
will all have the same dependence on ¢ (m is a '"good"
quantum number). With this in mind and assuming that only
s, p, d, and £ STO's are used in the basis set, the

momentum MO may be written as

)}‘(F)r fe[)g//b’)] F A Im [ (/57] (II-20)

where the real and imaginary parts are given by
,S70 > s
(Pl = 7) + coS (P >
Re 2 (pA]= 22 (P) + cos(FR) 2 % G3) +
sin (CEiA?)‘ZZ ;(Sn?“7
B 8 ‘F

(I1-21)

and

In [3(p)]= 2, 9;70(; )-s (3RS % ~"05) 4
/éi)‘zf 570

(11-22)
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ELECTRON POSITION STC MGHMENTU STO
— = ..
is = /]"‘{3 e Yr YOO (Q) X = o';r (Yl './p?\z YOO (Qp)
5% .
Y Ay o [eyS Eyr-2nt )
23 ¢ \ 3 re YOO (Q) X 37 (Y2+p2 ) X loTe] (Q}J)
8Y7 257V . fieyT 24(y*-yo?) o
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In both of these expressions the sums are over all the STO's
with the given angular momentum.

) +th
The momentum density for the £ MO is then

NATIE /?@2['2;- (p)] + Imz[z;/,f’)] , (I1-23)

From this expression and equations (II-21) and (II-22) we see
that for certain momentum-transfer directions there will be
enhancement in the momentum densities and therefore also in
the directional Compton profiles. For the simplified case of
one s-type STO centered on each atom the oscillations in the
density are clearly seen to be due to the overlap between the
STO's (see Appendix C). We also note that the momentum
density\JO has cylindrical symmetry about the internuclear
axis which we choose to be the Pz-axis. This means that the
Compton profile will be independent of.the angle é of the
scattering vector. For a diatomic molecule the two most
important momentum-transfer directions are the ones parallel
and normal to the internuclear axis; these directions are
equivalent to d=00 and<x=7oo, respectively. The anisotropy
of the Compton profiles in the molecule between these two
directions, d@ (};) - L@w /Z;) should be a good measure

of the anisotropy in the electronic motion parallel and normal
to the bond.

In the MSC procedure we choose 2@:’ vectors with angles

appropriate to a particular crystal and plane. To simulate
Compton profiles along 100, 110, and 111 planes in a face

centered cubic lattice with a basis of two unlike atoms one at
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(000) and one at (%00), we need four momentum transfer
directions corresponding to o = 0° , 45° , 54.70 and 900

(See Figure 3) 1In terms of these angles we can write

Joo (/D/) = M o (@/) 7‘3'2' J?a (/:;’) _ (I1I-24a)
A /

Jito (/7/) ‘770 (B') 7‘% \7;5//2’) (II-24D)

J/// ) 5%7 //) (II-24¢)

where(ikfmfers to a symmetry unresolved profile (SUP) along a
particular plane. In this form the,f represents the direct-
ional Compton profile for a crystal simulateq by noninteract-
ing diatomic molecules whose charge symmetry.is appropriate

to gas phase molecules. To write these equations we have
taken cognizance of the fact that‘jDOB)is symmetric for,i}?.
Thus the polarity of the molecule (e.g., Li-T vs. F-Li) docs
not matter as far as the Compton profile is concerned. To
obtain a realistic simulation of the crystal environment it is
necessary to break down the 4y symmetry of the diatomic
molecule and assume that the charge surrounding each atom is
appropriate to the symmetry of the crystal lattice. This
modification yields symmetry resolved profiles (SRP). Thus
for example a symmetry resolved MSC profile Uaéf for LiF is
that profile associated with the three non-interacting LiF
molecules placed at right angles relative to each other, each.
having three equivalent 402 orbitals emanating at right angles

from the fluorine atom.
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FIGURE 3

FCC geometry showing the three important
crystallographic directions.
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The anisotropy in the Compton profiles is giwven by

AT p) = JUp ) -, (f) (1I-25)

which is just the difference between two Compton profiles
associated with any two scattering directions. For an FCC

crystal the three most important anisotropies are

Ad, //}/) = J/oo (/?) = dyo (/}I) (I1-26a)
A, /@/) = J/oo (/?/) - J/// //f_/) (II-26Db)

and
A J; (fz‘/) - ‘j}lo /@/) B J/// //fg/) (II-26c¢)

In terms of the molecular Compton profiles these three

anisotropies are given by

27, =5 (Fo-dy,) + £ (,~dps) (11-27a)
L (T, - 217 -
AJZ = 5 [JO (75—.",.7) +3 (J% ‘Zs“-%?) (I1-27b)

Ad; = 3'/" (J?o"qu) t5 /J%"‘@N) (I11-27¢)

We may also get an approximate spherically-averaged
Compton profile from the MSC-SRP results for comparison to
experimental results in polycrystalline samples. For FCC

(9)

crystals this average is given by

3 Jipet 6Tyt 49 (II-28)

<J7 = /3
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III. APPLICATION TO LITHIUM FLUORIDE

A system that is particularly well suited for testing
the procedures developed in the previous section and for
obtaining an analysis of Compton profile anisotropies and
their relationship to valence and core electvrons is LiF,.

Near Hartree-Fock wavefunctions are available for this system
(15) and experimental measurements and theoretical calculations
of Compton profile anisotropies in the crystal have recently

been reported.(7’ &, 9

A. Molecular Compton Profile Anisotropies

To begin we investigate anisotropies'parallel and
perpendicular to the bond axis in the molecule performing
calculations at an inter-nuclear separation of 3;55 a.u. (A
wave function at the crystal separation of 3.798 a.u. was not
readily available). The electronic configuration is
10720 30 47 11*  All of the allowed molecular orbitals are

(18) and

fully occupied and on the basis of position density
momentum density (19) calculations some total anisotropy should
be evident.

In Figs. 4 and 5 we have plotted the Compton profiles
for each occupied MO at the two angles «= 0° and = 900
corresponding to momentum vectors parallel and normal to the
bond, respectively. The plots are symmetric with respect to
the vertical axis, i.e., \f/ﬁ?): JYZK?) . The Compton profilés
per MO are normalized to

- , , (III-1)
/ d@ J(@} = 1,

—ob
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FIGURE 4

Contribution of the occupied MO's of
LiF to the Compton profile with the
scattering axis parallel to the bonding
direction. Each plot is normalized to
one electron.
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FIGURE 5

Contribution of the occupied MO's of
LiF to the Compton profile with the
scattering axis normal to the bonding
direction. Each plot is normalized
to one electron.
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Thus, for any interval /?Z( and /"ZI+A/)’_,I the area under the curve
is the probability of finding an electron whose momentum
vector has its component along the vector defined by «£ in
this range of é/.
Examination of the calculated Compton Profiles
provides insight into electron momenta in a particular MO.
The relative widths of profiles for various orbitals are
indicative of the relative tightness of the binding of the MO.
The 1T, 20, and 3¢ MO which correspond to the most tightly-
bound electrons in LiF have very extended Compton profiles
at both «= 0° and «= 90° . This is not unexpected since the
17 and the 39 MO's are basically the 1ls and 2s AO's of
fluorine, respectively, and the 29 MO is the 1ls AO of lithium.
More interesting results are found in the 49 and 1w MO

which correspond to the 2%_ and Zﬁt orbitals of fluorine,
respectively. The momentum density of that orbital has lobes
similar to the lobes of the coordinate space electron density
for the orbital. The lobes lie along the bond axis direction.

J; (f?z=0) is the integral of the momentum density over
a plane normal to the bond axis and cutting the pz -axis
between the two lobes. Thus for the 2pZ orbital alone this
quantity vanishes. The deviation from zero at P, = 0 for the
4T orbital with p; along p, (seen in Fig. 4) is due to the
s-type contributions to the MO, and is a measure of the charge
shared in the bond. For p; # 0 the plane cuts through one of

the lobes opr (;) along the pz—axis and the integrals, J(p;),
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increase to a maximum at p;x 1 a.u. and gradually drop off at
higher values of p;. Comparison of the 4T profiles in Figs.

4 and 5 points out the difference between integrating the
momentum density over planes perpendicular to the bond axis

as discussed above, and integrating over planes parallel to
the bond axis which cut through both lobes 05/9(35. As
expected, the maximum value of J(p;)/x = 90° occurs for pé = 0,
for which the plane of integration lies on the bond axis.

The 1% orbital has a great deal of 2px-like character,
and the 1% Compton profiles in Figs. 4 and 5 exhibit that
character. The px—like contributions have a directionally-
dependent modulation factor forJD(;) which is a figure eight
rotated about the p, axis. Figure 4 gives QT(VQU L =0°.
Here the planes of corstant p; are normal to the ?, axis,
and the result is that J(p;)/x =0° for tle 1% 110 has its
maximum at p; = 0. J(p;)lx = 90° involves planes which cut
the rotated figure eight parallel to the p,-axis, producing

values of J(p;)lx== 90° which start with a nonzero value at

. p; = 0, increase to a maximum at about p; = 0.5 a.u., and then

drop off more slowly than the values of J(p;) [d= 0° in Fig. 4.
This behavior from the px-like contributions dominates the 1 &

profile in Fig. 5.

B. Crystalline Compton Profiles

Having discussed the shapes and genesis of anisotropies
in the gas phase we can now proceed with a systematic analysis

of anisotropies in crystals in terms of a molecular orbital
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picture. Using Egqs. (II-24a) - (II-24c) we have computed
symmetry unresolved profiles for LiF along the 100, 110 and
111 planes and plotted AB’; and Ajz anisotropies in Figs. 6
and 7, respectively. Contributions from each molecular
orbital are shown. The dotted line corresponds to the
experimentally observed anisotropy. These values are present-
ed in Tables 2 and 3. These figures clearly illustrate the
factors which contribute to t+he observed wvalue. Consider
Fig. 6. 1In the high momentum region the anisotropy associated
with the 4T orbital predominates. In this region the ex-
perimental curve has an intensity approximately three times
that associated with the latter. This strongly suggests that
each fluorine atom in the crystal is surrounded by six
equivalent bonds having approximately 4T molecular character.
The peaks in the long range momentum region correspond almost
totally to peaks in the sigma bonding orbital. At P, = 0,
the experimental anisotropy is slightly above zero. The lﬁfq
anisotropy is large and positive. This anisotropy largely
vanishes in the crystal since the 1T electrons correlate
with bonding sigma electrons. The anisotropy associated with
the 3T orbital reflects some polarization and hybridization
of the 2s atomic orbital on fluorine. This 3T anisotropy
should be decreased in the crystal because the polarization
decreases with inter-atomic spacing and because the symmetry
of the crystal leads to less polarization.
In Fig. 7, where we have plotted Aj; anisotropies,

a situation similar to that appearing in Fig. 6 is evident.
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FIGURE 6

Contribution of the MO's of LiF to the
100-110 anisotropy. The dotted curve
is the experimental result (Ref. 9).
The 19 MO has neglible anisotropy.
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TABLE II

CONTRIBUTION OF EACH MO TO
.THE JlOO__,JllO ANISOTROPY IN LiF

P, ,a.u. 27 3q : 4« 17m™ EXP(a)
0.0 .0021 -.0151 .0049 .0409 .028
.1 .0021 -.0137 .0023 .0363 .018
.2 .0019 -.0098 -.0045 L0244 .003
.3 .0015 -.0043 -.0131 .0093 -.011
A .0010 .0015 -.0201 -.0041 -.019
.5 .0002 .0065 -.0224 -.0137 -.022
.6 -.0004 .0097 -.0187 -.0188 -.019
.7 -.0011 .0107 -.0094 -.0196 -.011
.8 -.0016 .0098 .002% -.0180 .002
.9 -.0019 .0077 .0135 -.0147 .018
1.0 -.0018 .0047 .0216 -.0105 .030
.2 -.0014 -.0005 .0245 -.0031 .038
A -.0005 -.0031 .0139 .0012 .030
.6 .0001 -.0029 -.0001 .0031 .003
.8 .0004 -.0015 -.0096 .0027 -.021
2.0 .0005 -.0001 -.0119 .0017 -.033
2 .0005 .0004 -.0087 .0009 -.033
A .0003 .0004 -.0033 .0003 -.015
.6 .0002 .0001 ,0015 .000 .008
.8 -.0001 .0001 .0039 -.0003 .017
3.0 -.0001 .0001 .0039 -.0001 .010
.2 -.0002 .0002 .0023 .0000 .002
A -.0001 .0002 .0003 -.0001 -.006

(a) Total anisotropy (ref. 9)
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FIGURE 7

Contribution of the MO's of LiF to the
100-111 anisotropy. The dotted curve
is the cxperimental result (Ref. 9).
The 1d MO has negligible anisotropy.
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TABLE III

CONTRIBUTION OF EACH MO TO
THE JlOO_Jlll ANISOTROPY IN LiF

P,,a.u. 249 3@ La 1< - EXP(a)
0.0 .0023 -.0155 -.0025 .0451 .002
.1 .0023 -.0141 -.0043 . 0407 -.002
.2 .0020 -.0101 -.0098 .0285 -.012
.3 .0017 -.0043 -.0163 .0125 -.024
A .0011 .0019 -.0213 -.0029 -.032
.5 .0001 .0071 -.0223 -.0144 -.035
.6 -.0005 .0103 -.0173 -.0208 -.029
.7 -.0012 .0115 -.0075 -.0228 -.015
.8 -.0017 .0105 .0049 -.0208 .008
.9 -.0021 .0083 .0163 -.0175 .036
1.0 -.0020 .0051 .0241 -.0127 .059
.2 -.0015 -.0007 .0265 -.0039 .067
A -.0005 -.0035 .0148 .0011 .031
.6 .0001 -.0031 .0000 .0031 -.015
.8 .0005 -.0018 -.0099 .0027 -.037
2.0 .0006 -.0001 -.0125 .0023 -.033
.2 .0005 .0004% -.0092 .0011 -.018
ya .0004 .0005 -.0037 .0001 -.005
.6 .0001 .0004 .0013 -.0001 .008
.8 -.0001 .0005 .0037 -.0003 .012
3.0 -.0002 .0003 .0036 .0001 .006
.2 -.0003 . 0005 .0021 .0001 .002
A -.0001 .0004 .0001 .0000 -.002

(a) Total anisotropy (ref. 9)



The long range component of the anisotropy can clearly be
associated with electrons in 4T orbitals., The experimental
anisotropy at P, = 0 is fairly large and positive. This

- result reflects a corresponding 49 anisotropy. The magnitude
of the experimental anisotropy in the high momentum region
corresponds closely to that expected for a fluorine ion
possessing six singly occupied 49 bonds at right angles to
each other with charge distributions similar to that found
in the pas phase. As a reflection of this fact we thus
construct total profiles by ignoring the wvalence shell 1R
contributions and multiplying 4G ? contributions by a factor
of three. The resultant profiles we refer to as symmetry

resblved profiles (SRP).

C. Comparison with Experiment.

We are now in a position to compare our calculated
anisotropies with experimental curves and with other theoret-
ical curves. This is done in Figs. 8 and 9 where we plot
AJ} and AQ& . Included in the figures are MSC-SRP aniso-
tropies at approximately the crystal spacing with the 3q°
polarization contributions neglected for the crystalline
environment, the experimental curve, and the theoretical
curves of Berggren, Martino, Eisenberger and Reed (9) obtained
in the tight binding approximation and of Euwema, Wepfer, '
Surratt, and Wilhite (8) based on a crystalline SCF calculation
using a Gaussian basis set. Our curves compare favorably

with both the experimental curve and the two theoretical

curves. The MSC-SRP results are presented in Table 4. The
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FIGURE 8

Experimental result and resolution-
broadened theoretical 100~110 aniso-
tropies in LiF. The solid curve 1is
the experimental result (Ref. 9).
The dotted curve is from Euwema (Ref. 8).
The short dashed curve is from Berggren
(Ref. 9). The long-dashed curve is

the MSC-SRP result.



40

0.08 —

0.06 —

(cinr-one

PZ, q. U.



41

FIGURE 9

Experimental result and resolution-
broadened theoretical 100-111 aniso-
tropies in LiF. The solid curve is
the experimental result (Ref. 9).
The dotted curve is from Euwema (Ref. 8).
The short-dashed curve is from Berggren
(Ref. 9). The long-dashed curve is

the MSC-SRP result.
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TABLE IV

MSC-SRP Theoretical Results for AJ, and AJ,

43

J -J J ~-J
. J100-9110  Comveluted  ujgo-3;,;  com¥Biute

with with

Resolution Resolution

Function . Function
0.0 +0.0166 -0.0046 -0.0052 -0.0207
0.1 +0.0091 -0.008&3 -0.0107 -0.0235
0.2 -0.0117 -0.0180 ~-0.0274 -0.0307
0.3 -0.0380 -0.0298 -0.0472 -0.0390
0.4 -0.0592 -0.0387 -0.0630 -0.0440
0.5 -0.0670 -0.0403 -0.0667 -0.0432
0.6 -0.0564 -0.0327 -0.0524 -0.0339
0.7 -0.0292 -0.0166 -0.0236 -0.0169
0.8 +0.0056 +0.0045 -0.0129 +0.0050
0.9 +0.0385 +0.0257 +0.0466 +0.0275
1.0 +0.0630 +0.0427 +0.0702 +0.0459
1.1 +0.0740 +0.0522 4+0.0808 +0.0564
1.2 +3.0720 +0.0534 +0.0779 +0.0530
1.3 +0.0596 +0.0469 +0.0636 +0.0506
1.4 +0.0410 +0.0348 +0.0438 +0.0375
1.5 +0.0197 +0.0199 +0.0209 +0.0215
1.6 -0.0003 +0.0047 +0.0001 +0.0053
1.7 -0.0167 -0.0087 -0.0175 -0.C088
1.8 -0.0284 -0.0188 -0.0293 -0.0195
1.9 -0.0342 -0.0250 -0.0355 -0.026
2.0 -0.0354 -0.0271 -0.0371 -0.0284
2.2 -0.0253 -0.0216 -0.0267 -0.0231
2.4 -0.0091 -0.0095 -0.0101 -0.0109
2.6 +0.0049 +0.0020 +0.0043 +0.0003
2.8 +0.0119 +0.0085 0.0113 +0.0076
3.0 +0.0115 +0.0094 0.0109 +0.0087
3.2 +0.0068 +0.0062 0.0064 +0.0057
3.4 +0.0011 +0.0016 0.0007 +0.0012
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major shortcoming in our results vis-a-vis the experimental
results is our apparent over estimation of the peak intensity
at pz = 1.2 and 0.5 in the (100-110) anisotropy. We are not
certain about the source of this discrepancy.

We also do not fare particularly well in predicting
the non-bonding 110-111 anisotropy. In contrast, the other
methods are normally most successful in predicting non-bond-
ing anisotropies. The reason for this is probably due to the
fact that our approach concentrates on the anisotropy
associated with nearest neighbor bonds. Slight distortions
due to second nearest neighbor interactions are expected.

It is these distortions which contribute primarily to the
110-111 anisotropies. A crystal perturbation calculation
with symmetric ions as the zeroth order state is capable of
describing second nearest neighbor interactions as a first
order perturbation correction. However, the description is

general and difficult to associate with particular bonds.

IV. APPLICATION TO LITHIUM HYDRIDE

We shall apply the MSC formalism next to the lithium
hydride molecule and crystal. LiH is a more covalent molecule
than LiF, so this study should provide a good basis for the
comparison of Compton profile anisotropies in diatomic crystals
vis-a-vis the ionicity of the corresponding molecules. Also,
experimental results for LiH Compton profile anisotropies
are available for comparison to our theory. Unfortunately

no other theoretical calculations of the anisotropies in Likh
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crystal are available for comparison. One reason for this is
maybe the fact that since LiH is more covalent than LiF the
tight-binding approximation may not be as accurate since the
overlap term in the density matrix for LiH is much larger than
in LiF and thus has to be carried to higher order.before it

converges.

A. Molecular Anisotropies.

Molecular bonding nature is most clearly seen in the
comparison of profiles calculated for p, parallel, and
perpendicular to the bond axis, Jo(pz) and Jgo(Pz) respec-
tively. 1In Fig. 10 we present the difference profile
Z&J(pz) = Jo(pz) - Jgo(pz) for the LiH moledﬁle calculated
using the SCF-LCAO-MO wavefunction of Cade and Huo (20) ,¢
R, = 3.015 a.u.. We also present the corresponding aniso-
tropy for the LiF molecule at the equilibrium spacing,

R, = 2.9877 a.u.. Differences between the LiF and the LiH
figures are closely related to differences between the polar-
ities and covalent characters of these bonds. For example, |
the more polar the bond, the less spreadout is the charge
distribution. This leads to a low uncertainty in the bonding
electrons' locations and a high uncertainty as to their
energies and momenta. It appears that the further spreadout
the major peaks in the AJ figure, the more polar and less
covalent the bond.

Of particular interest is AJ(0), the difference profile

at p, = 0. For LiF is positive, while for LiH it is
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FIGURE 10

The 0 - 90 anisotropy in LiH and LiF. The
curves correspond to LiF at the molecular

equilibrium spacing of 2.9877 a.u. and LiH
at 3.015 a.u.
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negative and of larger magnitude. To understand this it is
necessary to examine the changes occurring In the bounding
molecular orbital when a positive and a negative ion combine
to form a polar molecule.

Consider first LiF. Bonding in this molecule can be
viewed as resulting from a partial transfer of a p, electron
on F~ to an orbital on LiT having both s and P, character.
Since s electrons have equal probabilities of moving 1 and !
to the bond while pz electrons have considerably greater
probability of moving !/l to the bond, the result of charge
transfer is to decrease /| motion and increase L motion.
Since JO (0) and Jgo(O) are respectively measures of the <L
and {| motions, Jp(0) - Jgp(0) is positive in LiF.

Now consider LiH. This bond can be viewed as forming
from the partial transfer of an s electron on EH™ to an orbital
on Lit having both s and p, character. The result of this
transfer is to decrease the 1 motion and increase the !l
motion of the bonding electron. Consequently JO(O) - J90(O)
is negative. We thus have the seemingly paradoxical situation
that the more covalent the bond in alkali hydrides the more

negative should be Jy - J while the more covalent the bond"

90’
in alkali halides the more positive should be Jp(0) - J9O(O).
The relative positions of the intercepts should be an excellent

measure of the relative polarity of the bonds.

B. Molecular Simulated LiH Crystal

Using our MSC procedure, we have calculated Compton
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profiles for the principal crystallographic directions in LiE.
In an LiH crystal, enhancement of the bonds by revnlacement
of crystal-symmetry violating # bonds does not occur, as it
does in LiF.

Calculations of MSC Compton profile anisotropies for
a LiH crystal were made using two sets of molecular orbitals
at the molecular equilibrium spacing. The MO's of Cade and
Huo (20) have a larger set of basis Slater type orbitals than
that of R. Sahni et gl.(Zl) Cade and Huo have taken better
account of polarization by their inclusion of d and f STO's
in their calculation. However, the two sets of MO's yield
orbital energies which agree to three decimal figures. As
seen in Figs. 11 and 12, the two sets of molecular orbitals
give very similar results for the 100-110 and 100-111
anisotropies.

Experimental data points from Phillips and Weiss (22)
are indicated in Fig. 1l1. This early experiment stressed the
total profile rather than anisotropies, and its counting
statistics were not sufficient to measure the anisotropies
accurately. An experimental anisotropy is the difference
between two measurements, thus having the errors of both,
and the maximum anisotropy calculated for the crystal is
approximately 2% of the maximum profile height, so extremely
accurate measurements are necessary. The data points shown
are differences between two points, each with an estimated

error of ¥ .02. General agreement between our theoretical
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FIGURE 11

The 100 - 110 anisotropy in LiH. The full
curve 1s the MSC result using Cade-Huo's MO's
(Ref. 20); the dashed curve is MSC using
Sahni's MO's (Ref. 21); the x's are the
experimental results from Phillips (Ref. 22).
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FIGURE 12

MSC results for the 100 - 111 anisotropy in
LiH. The full curve is obtained using

Cade-Huo's MO's (Ref. 20); the dashed curve
is obtained when Sahni's MO's are used

(Ref. 21); no experimental data are available.
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calculations and the data is seen with the exception of the
point at p, = 0. From the discussion above it is clear that
this point is crucial to the interpretation of our theoretical
results. Our calculations suggest that this experimental
point is in error, and that a more accurate measurement over
the entire range of interest is needed for comparison to
theory. There is no experimental data for comparison to our
results in Fig. 12.

Our averaged Compton profile, the averaged experi-
mental results, (22) and theoretical results of Brandt (23)
are presented in Fig. 13. The theoretical results, based on
molecular orbital wavefunctions for a LiH moliecule, are in
better agreement with the data than are results of theories
based on free Li and H neutral atoms, and free Lit and H-
ions.(24) Our fit is not as good as that of Berggren and
Martino (25) who used a tight-binding wavefunction and
included overlép between hydrogen atoms. The theoretical
results of Brandt,(23) who used self-consistent electron
wavefunctions for the LiH crystal in the cell approximation,
are in better agreement with our results than either the
experimental data or the results of Berggren and Martino(25).
In light of recent discoveries of the importance of secondary
scattering effects in work on samples with low phtoelectric
‘absorption coefficients, (26,27,28) the experimental LiH
profile may be too wide and therefore too low at p, = 0. Our
results and those of Brandt(23) indicate that the profile may

be higher at pz = 0. A measurement of the profile of
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FIGURE 13

Spherically averaged Compton profile for

LiH: short-dashed curve is from a
calculation by Brandt (Ref. 7), full curve

is the MSC result using MO's from Ref. 20,
and the long-dashed curve is the experimental
data (Ref. 7).
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polycrystalline LiH using Am-241 gamma rays also has J(0)
quite low,(29) probably because of multiple scattering
effects.

Our theoretical calculations with two different sets
of moleccular orbitals for Lill molccules indicate that the
100-110 Compton profile anisotropy in Lill is large and
negative at P, = 0. These results suggest that another
experimental measurement of Compton profiles in LiH should
be made with emphasis on the anisotropies, using one of the
new techniques for removal of multiple scattering effects in
the data.

It is interesting to note a fundamental difference
between the MSC representations of LiH and LiF crystals. 1In
LiF the MSC procedure changes the 1% electronic orbitals to
oriented 4T -like orbitals, and this modifies the crystalline
anisotropies, enhancing the anisotropies, particularly for
P, 7 1.0 a.u. For LiH no such enhancement should occur; there
are no loosely bound electrons available to build enhancing
bonding orbitals in the crystal. Although the anisotropy per
bonding electron is greater in LiH, our calculations for LiH
crystals predict that anisotropies measured in LiH will be
smaller in magnitude than those in LiF. This is because the
MSC-SRP for LiF have six electrons in 4T -like orbitals while
the MSC-SRP for LiH has only two electrons available to build
resonant covalent bonds between any Li and its nearest neighbor

H atoms.
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V. APPLICATION TO OTHER ALKALI HALIDES

We have also applied the MSC-SRP method developed in
Chapter 2 to other alkali halides. 1In Table 5 we show the
alkali halides studied, the internuclear separation at which
the Ccmpton profile anisotropies were calculated,(lS) the
actual crystal separation,(3o) and the fractional ionic
character (31) of each of the molecules. Aside from LiF
thgre are no experimental anisotropies availab.e for
comparison to our results.

In all of the alkali halides studied, the major
contribution to the anisotropies came from the outermost
MO's, i.e., the two least-bound sigma MO's aund the least-bound
pi MO. This is expected since the more tightly-bound, closed-
shell MO's are not appreciably perturbed from their spherically-
symmetric states and thus yield negligible anisotropies.
Polarization effects are most evident in the anisotropies due
to the next least-tightly bound sigma MO which corresponds to
the valence s-electron in the halide atom. The outermost sigma
orbital is the bonding orbital and is thus most affected by
the molecular and crystalline environments. As expected it is
this MO that determines the character of the total anisotropy.
Total anisotropies, i.e., contributions from all the MO's are

included, are plotted in Figs. l4-16.

A. Molecular Anisotropies.

The JO‘J9O

is plotted in Fig. 14. As stated in Chapter 4 this anisotropy

anisotropy for the alkali halide molecules
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TABLE V
CHARACTERISTICS OF THE ALKALI HALIDES ANWALIZED BY
MSC - SRP
(b) '
(a) ACTUAL (c)
ALKALT MOLECULAR CRYSTAL FRACTIONAL
HALIDE SEPARATION SEPARATION JONICITY
_(afu.)A S (a.u.) (£)
LiF 3.55 3.306 . 840
LiCl 4.55 4,857 .815
LiBr 4,85 5.199 .795
NaF 4.35 4.378 . 888
NaCl 5.00 5.329 .863
KF 4,80 5.053 ~ .933
KC1 5.65 5.947 .908

'(a) reference 15
(b) reference 30

(¢c) reference 31
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FIGURE 14

The J, - J anisotropy in the alkali halides;
all curves’were calculated at an internuclear
separation given by the second column in Table V.
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" is the difference in the Compton profiles with the scattering
axis parallel and normal to the molecular bond. There are
some trends in these anisotropies that may be related to the
polarity, size, and ionic character of these molecules.

The magnitude of Jo~Jgp at P, = 0 has been discussed
in some detail for LiF and LiH in the previous chapter. As
mentioned in Chapter 4 this anisotropy becomes more positive
as the alkali halide becomes more covalént. We may also view
this as an increasing shift from pz- to s-character in the
bonding sigma MO as the molecule becomes more covalent; this
is probably a good measure of the charge shared in the bond.
The trend discussed above is most evident in the LiF, LiCl,
LiBr sequence in which the molecule becomes more covalent.
However NaF -+ NaCl are reversed in this plot and KF is nega-
tive so a complete generalization may not be truly possible.

The position and the spacing of the crossing-points
in the JO-J9O anisotropy are very sensitive functions of the
interﬁuclear separation of the atoms. As shown in Appendix C
for the simple case of two s-STO's the term in the momentum
density that leads to the anisotropies is proportional to
COoS (ﬁzﬁ.) (eq. C-4). Thus, the larger R becomes, the closer
are the spacings in the crossing-points and the peaks of the
anisotropy. This is clearly evident in the LiF->»LiBr sequence
where R is getting bigger.

The extent of the JO-J anisotropy, although sensi-

90
tive to the value of R used in the calculation, may also
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indicate the ionic or covalent character of the molecule.

Again, consider the LiF -+ LiBr sequence. All three curves
start at some positive value then oscillate about the
horizontal. Note that the LiF anisotropy is damped out most
slowly followed by LiCl then LiBr. This indicates that the
valence MO's in LiBr are the most localized in momentum space
and therefore the least localized in position space among

the three molecules; this is true since the outer MO's of
LiBr are the least tightly bound. Of course the value of

R is not the same in all three molecules. Consider then two
molecules with approximately the same R (cee Table 6), e.g.,
LiBr and KF. From Table 6 we see that K% is-about 23% ionic
and LiBr about 80% ionic. 1In Fig. 14 note that KF exhibits
appreciable anisotropy even at p, = 3.5 a.u. while the
anisotropy in LiBr is negligible beyond p, = 2.5 a.u. It
seems that the more ionic the molecule the less localized

are the electrons in momentum space and the more spreadout the

JO_J9O anisotropy.

B. Crystalline Anisotropies

In Figures 15-16 and Tables 6-7 the MSC-SRP results
for J10079110 and J;q are shown. Since these crystal aniso-
tropies involve two more angles than JO-J90 (see Egs. II-27a
and II-27b), trends in these anisotropies may be harder to
explain.

The spreading out of the anisotropy in the molecule

as it becomes more ionic and thus less covalent seems to apply
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FIGURE 15

MSC-SRP results for the 100 - 110 anisotropy
in the alkali halides.
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TABLE VI

MSC-SRP RESULTS FOR JlOO"JllO ANISOTROPY OF THE ALKALI HALIDES

z,a. 1. LiF LiCl LiBr NaF NaCl KF KC1
.0 .0015 .0849 -.1242 -.0063 -.0700 .0921 .0242
.1 -.0046 .0779 -.1026 -.0058 ~-.0597 .0799 .0244
.2 -.0215 -.0625 -.0618 -.0087 -.0384 .0433 .0060
.3 -.0423 .0480 -.0343 -.0187 -.0243 -.0167 -.0546
b -.0577 .0339 -.0135 -.0335 -.0218 -.0826 -.1264
.5 -.0605 .0084 .0206 -.0451 -.0177 -.1269 -.1478
.6 -.0467 .0307 L0671 -.0458 -.0048 -.1285 -.0876
.7 -.0185 .0715 .1029 -.0330 .0203 -.0873 L0242
.8 .0154 .0968 .1081 -.0093 .0483 -.0194 .1272
.9 .0462 .0969 .0820 .0182 .0670 .0515 .1762

1.0 .0677 .0740 .0393 .0427 .0713 .1031 .1598

1.2 L0715 .0025 -.0307 .0637 .0353 .1083 .0222

1.4 .0379 .0400 -.0385 .0411 -.0180 .0206 -.0726

1.6 -.0032 .0363 -.0141 -.0027 -.0390 -.0506 -.0626

1.8 -.0299 .0137 .0017 -.0349 -.0257 -.0577 -.0138

2.0 -.0354 .0028 .0019 -.0409 -.0035 -.0266 .0132

2.2 -.0253 .0055 -.0037 -.0251 .0058 .0022 .0136

2.4 -.0091 .0017 -.00338 -.0027 .0030 .0124 .0052

2.6 .0049 -.0010 .0009 .0124 -.0015 .0093 -.0006

2.8 .0019 .0007 .0046 .0149 -.0021 .0039 -.0022

3.0 .0115 .0007 .0036 .0077 .0001 .0007 -.0008

3.2 .0068 .0006 -.0001 -.0015 .0017 -.0012 -.0004

3.4 .0011 .0007 -.0031 -.0076 .0009 -.0020 0

3.6 -.0037 .0018 -.0029 -.0081 -.0021 -.0023 -.0004

99



FIGURE 16

MSC-SRP results for the 100-111 anisotropy
of the alkali halides.
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MSC-SRP

RESULTS FOR

TABLE VII
Ji00-J9111 ANISOTROPY OF THE ALKALI EALIDES

s a.u. LiF LiCl LiBr NaF NaCl KF KC1
.0 -.0207 -.1322 -.1811 -.0318 -.1187 .0907 -.0048
.1 -.0248 -.1176 ~-.1472 -.0296 -.1000 .0779 .0115
.2 -.0375 -.0843 -.0800 -.0275 -.0599 .0398 -.0055
.3 -.0515 -.0494 -.0277 -.0304 -.0256 -.0229 -.0544
iy -.0611 -.0218 .0051 -.0379 -.0105 -.0904 -.1200
.5 -.0596 .0085 .0431 -.0435 -.0017 -.1342 -.1385
.6 -.0421 .0473 .0878 -.0401 .0102 -.1314 -.0768
.7 -.0121 .0863 .1204 -.0247 .0326 -.0847 .0356
.8 .0234 .1087 .1209 -.0009 .0585 -.0123 .1372
.9 .0549 .1056 .0900 .0263 .0754 .0613 .1825

1.0 .0753 .0799 .0427 .0511 .0775 .1123 .1608

1.2 .0772 .0029 -.0323 .0684 .0370 .1119 .0162

1.4 .0403 -.0419 -.0414 .0419 -.0195 .0185 -.0781

1.6 -.0030 -.0390 -.0170 -.0050 -.0429 -.0557 -.0629

1.8 -.0311 -.0173 -.0012 -.0401 | -.0307 -.0623 -.0112

2.0 -.0371 -.0002 -.0008 -.0469 -.0087 -.0301 .0159

2.2 -.0267 .0026 -.0055 -.0309 .0014 -.0008 .0145

2.4 -.0101 -.0006 -.0047 -.0079 -.0007 .0103 .0039

2.6 .0043 -.0025 .0005 .0089 -.0032 .0071 -.0034

2.8 .0113 -.0017 .0051 .0130 -.0028 .0019 -.0049

3.0 .0109 .0003 .0045 .0070 .0001 -.0006 -.0026

3.2 .0064 .0005 .0002 -.0015 .0016 -.0014 -.0003

3.4 .0007 -.0009 -.0027 -.0076 .0004 -.0027 .0004

3.6 -.0034 -.0017 -.0027 -.00381 -.0014 -.0021 0
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also to the crystalline anisotropies. This is evident in
Figs. 15-16 where the more ionic crystals like KF and KCl
exhibit relatively large anisotropies even at P, = 3.5 a.u.
while the more covalent LiBr crystal has practically zero
anisotropy beyond p, = 2.5 a.u.

The position and the spacing of the anisotropies are
again largely a function of R. However, as we found out in
the molecular case, the crossing points in KF are more
spreadout than LiBr although they have the same R. Thus, even
in the crystal it seems that the less ionic the crystal (e.g.,
LiBr) the more localired are its wavefunctions ir momentum
space and the closer are the crossing poaints.

The magnitude of the crystal anisotropies at p, = 0
for these alkali halides is harder to explain than the
JO;J9O anisotropy. The complexity of these anisotropies
should be evident from Eq. (II-27). It is interesting to
note that the anisotropy at p, = 0 seems to become more
negative as the crystal becomes less ionic; this is true in
all cases except LiF. Whether this trend is still there at
the correct crystal spacing remains to be seen since MO's at

these values of R are not presently available.

C. Total Compton Profiles.

In Figure 17 we show the results of the MSC-SRP
calculation for the averaged total Compton profile (Eq. II-28)
for some of the alkali halides. The experimental results(32)

onpolycrystalline (isotropic) samples are also indicated.
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FIGURE 17

MSC-SRP results for the average total
Compton profiles of the alkali halides.
The experimental results on polycrystalline

samples (Ref. 32) are indicated as circles
or triangles.
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MSC-SRP AVERAGED COMPTON PROFILE FOR
ALKALI HALIDE CRYSTALS AND EXPT. RESULTS
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Each of the Compton profiles is normalized to the total
number of electrons in the diatomic. Thus, LiF is normalized
to 12 electrons while NaF is normalized to 20 electrons.
Taking into consideration the multiple scattering and
resolution corrections that must~be made on the ddta the
MSC-SRP results are all in good agreement with the experiment.
It is interesting to note that MSC-SRP is consistently higher
than the experiment at very low P, - This is expected since
solid-state effects not accounted for by the nearest neighbor
approximation inherent in MSC-SRP should tend to locélize
the elzctrons more in position space end thus spr=ad out the

Compton profiles to higher p, and decrease them at low p,.
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VI. CONCLUSION

What are the implications of these calculations?

First of all, as pointed out by Berggre, Martino, Eisenberger
and Reed, (9) the most recent conclusion known from an analysis
of elastic X-ray scattering measurements (33’34) that the
charge density is spherically symmetric about each ion (35

is incorrect. That they are anisotropic is evident from
Compton profile measurements and from our calculations.
Furthermore the fact that we have obtained good agreement with
experiment by modeling a crystal using bonds closely related to
those in the diatomic molecule implies that the bond polarity
and covalency on the crystal’ and the partial charges on each
ion are nearly the same as in the diatomic molecule.(l4’36)

What are the advantages of our method over alternate
theoretical approaches? First of all, we obtain a clear
indication of the influence of various molecular orbitals
and localized bonds on the Compton profile anisotropies. Our
calculations coupled with perturbation theory and with
Compton measurements should constitute a reliable method for
analyzing charge distributions in crystals.

A second advantage is the fact that our approach
preserves the nature of molecular bonds. Thus we expect it to
be superior to other approaches in rredicting anisotropies
ir. more covalently bonded crystals such as diamond and LiH
There is some evidence that this will be the case. For

example Snyder and coworkers(lz) were able to obtain the right

number of crossings in anisotropies between Compton profiles
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parallel and perpendicular to the Cg axis for crystalline
graphite by modeling a carbon atom on a fragment obtained
from a selected piece of a butadiene molecule. 1In fact, the
anisotropy curve predicted by this simple model was closer

to the experimental curve than that obtained using the pseudo
potential or OPW approach.(l3)

Ab initio calculations on LiF dimers and LiF chains
should be made to further substantiate some of the hypotheses
made in this work. The effects of anisotropies due to next-
nearest neighbors should also be investigated. The method
can be extended to body-centered-cubic (BCC) crystals but
the symmetrization of the MO's might not be as evident as in
the FCC case.

The MSC-SRP approach should provide a fresh approach
to the study of more covalent diatomic molecules like the

hydrides and more covalent FCC crystals like MgO.



76
APPENDIX A GAUSS-LEGENDRE QUADRATURE

In Chapter. 1 we found that the Compton profile is
obtained from the momentum density distribution through the

double integral (see eq. II-8)

&S o0

Jlg') = J / AR (4-1)

—b = b

From the expression foru/7 (eq. II-23) it is clear that
analytical solutions to eq. (A-1) will not be easy to obtain.
However by a suitable change of variables eq. (A-1) can be
easily transformed to an integral solvable by the Gauss-
Legendre quadrature method.

In any quadrature solution the function to be inte-
grated is approximated by a polynomial (Hermite, Laguerre,
Legendre, etc.) that is well-defined in the region of inte-
gration and which converges fast enough so that computer time
is kept to a minimum. Since Legendre polynomials are defined
only in the inverval [—l,+l] we need a change of wvariables
for the infinite integrals in eq. (A-1).

First, con81der the single integral

f dx §(x) (A-2)
By the change of varlables X = log(/x’*l) i1, the interval
[O)abj and X = + loug (f%;l ) in he irterval [:d,oj the

limits are changed to EJ)f/] and the integral takes the form

& t X' Mg XELY
ff}:)d)(:f £ty )+ £ 29 T o (A-3)

/
7, ey,

ol
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The right-hand side of equation (A-3) is now in a form suit-

able for Gauss-Legendre quadrature.

If we let X, represent the ith root of the approximate

N-th order Legendre polynomial, Py(x), and wj

; the correspond-

ing weight factor, the integral is transformed to 'a sum over

these N terms,
w N i .
Frards - 5 e £0952) 1 Aty 520

X F (A-4)

-0 A=l

These weights and roots are tabulated, for example, in
Abramowitz and Stegun.(38)
This result, eq. (A-4), may easily be extended to a

double integral, thus,

[f fuj)a’xa’y -

% o

e 8 R

N | ‘ oy _/
Z W Wy (et (gt )

1 LVR

+f (fog Xt ~pog Ytt )+ f (~Rog B =g 1711 )]

Equation (A-5) is used in evaluating eq. (A-1) with appropriate

simplifications due to the symmetry oﬁjo .
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APPENDIX B MOMENTUM TRANSFORM OF A 3d STO

As an example of the use of the recursion relations
(Eqs. II-17 to II-19) let us calculate the momentum transform
of a 3d STO. FTFor a 3d STC we set n = 3 and 1 = 2 in equation
(II~- 16)

(p) (x)fk fa’rré’ J/p/)]

(B-1)
where ﬁ} = /2]7 /6/) | . From equation (II-19)
L(pr) = 3 F _ 5 (op)
J2 7 S o/ (B-2)
so the radial integral in (B- l) becomes
Car e oy = 2 (dr 12 ) -
jarrtetyon= 2/ W) .

4 -
fc//fr € j (pr)
By equation (II-18) the first integral on the right

is given by

o 3 —-f},.' _
J; Cf?i* r e Jl(ff) = (/fzf/z)z) (B-4)
- a"j’P
(£217%)2

and from equation (II-17) /
ad i Z/_'.f"/j' B "_ﬁ’/_. 2 _
delre dlo(/yr)—/df) /fzfpz_>
24 (77~ £p*)

(1%p*)7

(B-5)

1
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Substituting (B-4) and (B-5) in (B-3) we obtain

g - r P 2
f drre Jo (pr) = 78 TP (B-6)
o [t p%)*

From (B-6) and the expression for ks we get the final result

S0 oy _ _[l6F7 BIPE L m, 4
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APPENDIX C OVERLAP TERM IN THE MOMENTUM DENSITY

We have shown that the momentum wavefunction for a
diatomic molecule may be written as (Eq. I1-12)
‘> >
= Ay *X/Vye 8
X(p7) = XNP) + (5
where %}A>5 are the STO's centered on atoms A and B,

respectively. The momentum density for the ith MO is then
2 -l 77 2
/ﬁ'(,f):/lz'//f’)/ = [277) + ¢ /?/?/f‘g//?)/ (C-2)
which.is easily shown to be
—> *_/-yA >1)2 2'5 - 2 // 4 ﬁ;*'i;zé>
S (Bl= 1 (B + ]2 (7)) 22 fe (3 2" ¢ (c-3)

The first two terms are the momentum densities due to the STO's
centered on each atom and the third term is what we shall call
the overlap term in the momentum density.

Let us consider };-A) /}’/.5 to be s-type STO's. Since
s-type STO's are spherically symmetric the anisotropy in the
momentum density would be purely associated with the overlap

term, i.e.,

Lo, (7)) = a7z 1.50p) cos( 777) (c-4)
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In this simple case we clearly see the oscillatory character
. . - >
in the density as a function of p-g£,
In the actual MO's we used in this work, it is also
possible to break down the anisotropies into the different
overlap contributions and find out their effect on the total

anisotropy, but this is in general a tedious affair when you

have 40 STO's as a basis set.
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APPENDIX D COMPUTER PROGRAMS

The calculation of the MSC-SRP crystalline anisotropies
involves two steps: first, the molecular Compton profiles for
each MO of the diatomic are calculated and stored in a file;
second, from the data on this file for the different MO's the
required anisotropies are then computed with the proper
occupation numbers of each MO being accounted for.

The MAIN program reads in the MO data and calculates
the Compton profiles through a FUNCTION subprogram CHISQ which
calculates the momentum density as a sum of the constituent
STO densities. The auxiliary program ANIS then completes the

calculation of the anisotropies and the average Compton profile.
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THIS IS THE MAIN PROGPRAM THAT WILL CALCULATE THE CO‘PT”“ PROFILE
FOR EACH MOLECULAR CRR2ITAL FOP ANY DIATOMIC MCOLECULFE. THIS with
BF DONE FOF DIFFERENMT ANGLES TO 3SFE THE ARISOTROPY IN TRE
PRCFILESe GAUSS-LEGENDRE QUADRATURE LTLL ©C USED IN THE DoypyDLE
INTEGRATION. THIS PPOGRAM CALLS FUNCTION CHISC WHICH EVALUATES
THE MOMENTUM DENSITY QF EACH MC ON A PLANE
e e e s s 3 sk A R AR e ol oK s Xl o e R o T et 6t ot o o o e 7 s s s ok s
DATE P1/3.2141592651/
W ) IS THE ARRAY COF WEIGHTS AND Z2¢( ) THE ROOTS FOR THE
GALUSSTAN INTEGRATION. ANGLE IS THE ARRAY OF ANGLES NEEDED,
C PZ IS THE ARRAY OF PZ'S AT WHICH J(PZ) IS CALCULATED.
DIMENSION ANGLE(LID),PZ{100)
DOUELE PRECISION COLLI(INC)Y,CcOL2(010C)Y,COL30100),COLL4CL00)
*,COLS(1G0)
DOURLE PRECTISTION W((l00),20100
DOUBLE PRECTSTOM XX,YYyZZ1,FUN,SUMIPZ2Z,CHISQ -
COMMON STATEMENTS
ALPHA IS THE ANGLE AT WPICH J(PZ) IS CALCULATED
RAD IS THE DRISTANCE IN AU RETWEFN ATOMS A AND B
NTYPEZ]1 MEANS SIGMA CORBITAL, =2 MEANS FI ORRBRITAL
COMMON ALPHAPADGNTYPE
N1S,C1S( },G1S¢ ) REFER 7O THE NUMBER CF 1S STO'®*S ON ATC™ A,
C1S IS THE ARRAY OF COEFFICIENTS,y AND C1S THE ARRAY OF
EXPONENTS FCOR THIS STOLIT IS ASSUMED THAT ONLY 15-45,
2P=-4P, 3D, AND 4F STO'S ARE USED IN THE BASIS SET CF THE ™“C.
M1S,01S AND HIS REFER TC PARAMYETERS FOR 1S ON ATCOM B
COVMON NI1IS,yClS(5)4G1S(5),N2S,C25(5).G2S(5),N3S,C35¢(5},C25¢(5)
COMMON NY4S,CUS(5),6LS5(5),N .,C2P(5),oZP(5),N3P CIP{3}).,C2P(5)
COMMON NUP,CH4P(E) yGUP (5]} 4NIDLC3INI(H CIDU(S )y NUFLCUF(3),GLF{5)
COMMCN MlS,ClS(S),HlS(S),MZS,DZS(S)-HZS(S)yNZS'DSS(SP,hSS(S)
COMYMON M4S,0US{5) ,HUS(5) M2P,D2F(5),H2P(5)+M3P,03P(SIyHIP(5)
COMMON MUD,DUP(5) 4HUP(5),MIN ,D3D(S)},HID(SY MyFyDuF{5)htF(5)

a0 OO0 000

OO0

OO0

C SET UP THE ARRAY F(OP GAUSS-LEGENDRE CQUADRATURE. NWINUMBER

C OF ROOTS REQUIRED FOR THE INTEGRALSONLY THE POSITIVE ROOTS ARE REAC
C IN +AND THEIR CORRESPONDING WEIGHTS. THESE ARFE FOUND IN ABRAMOLITZ
C

END STECUN.
REAC 100,NW
100 FORYAT ()
NWWINW/2
READ 1CC, (W(I?yTZ1,NWW) 4(Z(T),IT1,NWK)
C THE NEGATIVE ROOTS HAVE THE SAME WEIGHTS AS THE POSITIVE SO
DO £8 IZ1,NWW
WOI+NWW)TW T
ZUI+NWW)IZ=Z (1)
C READ THE PZ ARRAY
‘REAT 1UC, NP7, (PZ(I1),I=1,NPZ)
RFAD THE ANGLE APRAY IN DEGREES
FOR At FCC CRYSTAL WE NTED 0,45,55,AND 00 DEGREES PROFILES.
READ 1CTWNANG, (ANGLE(I),IZ1,NANG)
C THE NAME OF THE MOLECULE
READ 1C1,TITLE!
161 FORPAT(AG)
C THE SEPARATION BETWEEN ATOMS IN AU'S
READ 100,RAD
C NSIG AND NPI WILL CCUNT THE NUMBER OF SIGMA AND PI ORGBITALS
C IF EITHER IS GREATE® THAN 1 ONLY THE COEFFICIFNTS OF THE NEXT

g5
(W)

OO

83
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C M0 WILL RE READ.
NSICZO
NPIZO
READ THE TYFE OF MOLECULAR OQORPRITAL
READ (5,10U,END=ZY9) NTYPE
TYPE OF MOLECULAR ORBITAL
READ 1G61,TITLR2
IF (NTYPELEOQOL1IINSIG=NSIC+]
IFINTYPECEQ.2INPIZNPI+]
IF(NSIG.GTe1ANDJNPILEQ.O)GO TO 2
IF(NPIWGTL1IGO TO 2
READ THE EXPONENTS FOR SIGMA AND PI MO*'S
READ 100
=<~NlS,(flS(I),I'—'l.«'\.’lS),NZS,(G2S(I)yI:l,I\.ZS),
ENISH(G3S(IY,I=Z14N3S)yNLGSH{GLS(TI),IZ1,NUS),
ANZP L {GZ2 (1), 121 ,N2P) N3P, (G3P(I)IZ1,N3IP),
FNUPL(CUP{(T), 1 —L'RQP),N3D,(G7D(I),I 1,N3D), ¢
*NQF,(GQF(T)yI:lyNuF),
AMIS,(HIS(T) 11,4818y M2S 4 (HZ2S(I)Y,IZ1,M25),
HM3S g (HZS(IY aIZ1eM3S) o MUS,(HUS{I),IZ1,M4S]),
wM2P G {HZP(I),IZ1,M2P)yM3P,{H3P(I),I=1,M3P),
EMUP L (HU4P(T),I21,M4P ) M3D,(HZD(I),IZ1,M3D),
MMOF , (HYF (1) ,IT1,M4F) .
C NOW READ TRHE COEFFICIENTS OF THE STF'S
2 READ 1C0,
“N1S,(CLSCTY,IZ14NISI,NZS;(C25(T),TIZ1.N2S),
HNISH(C3SET) s IT1yNISYTINGS,(CBS{I)TIZ14NUS),
WNZ2P g (CZPUI) g IZ1,NZP)yN3IPS{CIP(I)yIZ1 N3P},
ANUP L (C4P(T) 4 IZ1,NUP)yN3DL,(C3ID(I),IZ14,N3ID?,
HNGF  (CEF (I, IZ1,NUF ), ,
MMISy(DLSII) 11 4M1S) M2S,(D2S(I),TZ1,M2S5),
HMISZ(D3S(TI) Il 4M3S),MUS,(DUS(I),IZ1,M4%),
#MZ2P S (N2P(T) 4 IZ1yM2P}yM3PL(D3P(I)4I=1,4M3IP),
¥MEP L (DGP(T) ,I=Z1,M5P),M3D,(D3D(1),IZ1,VM3D},
#¥MLF 4 {D&F(T),IT1,MUF)
C PPINT THE STF PARAMETERS
P2INT 103
103 FORMAT("1*,1X,*THE STF COEFFICIENTS AND EXYPONENTS'//)
"PRINT IOU,NIS,(ClQ(T),I'l,NlS),(GIS(I),I'I N1S)
PRINT 1CO,N2S,(C2S{I),IZ1,N28),1G62S(1),I= NZS)
PRINT 100sNZSe(C3StTYaIZ14N3SY(G35(1),1Iz 1 NZ
PRINT lCOyNQS,(C4S(I),I:l,NQS),(GQS(I),I:l,NQS)
PRINT I1COsyNZ2Py{C2P (I} 4 IZ14yNZP) 4 (G2FP(I)4yIZ1,N2P)
PRINT 1CO4NIZIPL{C3P(I)yIZ14yNZP)H(GIP(I),IZ1,N3P)
PRINT 1CO,NUP,(CH4P(TI),IZ1,NUP),(CUP(I),IZ1,N4P)
PRINT 10G4N30,(C3D(I)yIZ14NZD),(C30(1),I=1,N3D)
PRINT 1COeNLF 4 (CUF(T) g IZIyNGF)a(OUF(I)yIZ1,N4F)
PRINT 190,»‘"‘.15,(015(1)yIII,Mls),(HlS(I),I:].,MlS)
PRINT 1CQOsM2S, 102501 ,1214M2S),(H2S(I},TIz1,M25}
PRPINT 120,MZS,(D3S(I)IT14M2S),(HIS{I)IZ1,M3S)
PRINT 100.,M4S,(D4S{T)yIT2yMUSY,{(HUS(I),IZ1,M45)
PRINT 1004M2P4(N27{T1)4yIZ1yM2PJ,(h2P(I)IZ1,M2P)
PETMNT 1CT4M3IP(D3P(T), TT1 4 MZP,lHIP(I},IZ1,M3P)
PRINT lCC,HQP.(ﬂuP(I),I:l,VQP),(HQP(I),I'I,”QD)
PPINMT 1CCaM3IDLUD3IND(T)yIZ1,M20), tHID(T),I=1,M3D
PRINT 1T0«MUF{(D4F(T},1I=1 MQF),(qu(I),I 1, V“F)
C PRINT THE HEADEPR
PRINT 1C04,TITLE1,RAD, TITLEZ

(@ e
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1C4 FORMAT(*1",//,1X,"DIATOMIC MOLECULE = YWAEs /7,
*IXCEQUILIRRIUM SEPARATION =  *,Fl2.6," AU',//,
21X, "COMPTON PROFILE FOR THE 426, Y OFBITAL",//)

C NO& DO THE INTEGRATTION

C THIS OC WILL READ THE ALPHA NEEDED FOR THE INTEGRATION

C NANG =NO. OF ANGLES AT WHICH C. P. IS NEEDED.

C IF NAANGZ4 IT'S AN FCC CRYSTAL,IF =5 BCC.,

DO 1071 KZ1,NANG
ALPHATANGLE (XK)%PI/180.
C DO LOOP FOR DIFFERENT PZ*S IN JI(PZ)
0O 1702 L=1,NPZ
PZZ=PZ (L) ' .
C SUM1 WILL CONTAIN THE INTEGRAL DESIRED = J(PZ)
SUM1z=G.0D0 '

C START OF THE INTEGRATION RCUTINE

C DO LOOP TO CALCULATS THE INTEGRAL BY GAUSS~LEGENORE QUAD-

C RATURE. NUxNW TERMS ARE SUMMED

DO 1003 I=1,NW
C CHANGE VARIABLES TO MAKE LIMITS OF INTEGRATION (-1,1)
C DLCG IS DOURLE PRECISICN LOGARITHM
XXZDLOG((Z(TI)I+1a)/2)
DC 1004 JT14NW
YYZOLOG((Z(JI+14)/24)
C CALCULATE THE VALUZ OF THE INTEGRAND
IF(KeZ0s1eO0RWKeEQWSIZZ1Z2%CHISC(XX,YY,PZ2)
IF (Ko EQo4 s ANDONANGEQe 43 ZZ1ZCHISQUIXX,YY PZZ) %2
IF (KeEQol e ANDeNANG4EQe5)ZZ21=CHISO(XX yYYPZZ)+CHISQ{~XX,YY,PZ
IF(KeEOe2e0ReKeEQa3)ZZIZCHISQGIXXyYYPZZ)+CHISQ(=XX,YY,PZ2Z)
CFUNZZ2 %M II)RW(II/(Z(I)+1a)/(20d)+14)

1004 SUMISSUMI+FUN®ZZ1

1063 CONTINUE ,

C THE INTEGRALS ARE STORED PER ANGLE FOR PRINTOUT LATER

1C

IF{X.EQ.1) CCLI(LIZSUM]

IF (K.E0.2) COL2(L)Yz=SUMI

IFtrk.EQ.3)COL3LYZSUMT

IF{KLEQ.L) CcOLLG(L)YZSUMI

IF(K.EQ,5) COLS(L}=SUM] |
G2 CONTINUE

1231 CONTINUE

122 PRINT 110,P2{1),COLI(T),COL2(TI),COL3(I),COLU(T)

IF(NMANGLEQSB5IGO TO 126

PRINT 125

FORMATULIXy*PZIAUYT5X, " J(B)"49X,,*JlU5)",7X,
#TI(SY . TY s TX,J(S0YY /7))

00 122 I=Z1,NPZ

[$2]

118 FORMAT(IX3F5,2,4{(5X,F8.61)

C

DATA IS ALSC PRINTED IN A FILE = 7 FOR FUTURE USE,
WRITE(7,111) TITLEL,TITLEZ,RAD

111 FORMAT (A641XyA545X4"RZ",F846)

— [

[N

m

[y

N RO

, WRITC(7,188) NP7
& FOEMATI(IZ)
DO 123 I=Z1,MPZ

3 WRITZ (7,128) PZ(I),COLI(I),COL2(T),COL3(I),COLY(T)
4 FORMAT(FS542,4{(2X,F8.041)) ’
GO 70 1
S PRINT 127
7 FORMAT(IX"PZ{AUIT35X, " JID) 99Xy U(35.3)°,7Xy"J{45) ",

®TXy "ILECY T, TXL,"J(90)Y Y/ /)
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11

)
o

no 128 Iz21,MP2

PRINT 11k, P71
FOLMATIIX,F G,

T ,CO0L1(T)Y,COL2(T),COL3(T),COLU(T),CCLE(T)
29y5(5%x,FB8.61))

C DATA IS ALSO PRINTLPD IN A FILE = 7 FOR FUTURE USE.

99

N
£ W

WRITE(T7,111)
WRITE(T7,188)

TITLCY,TITLEZ,4RAD
NPZ

DO 13Z Iz=1,MPZ

WRITE(T7,134)

PZ(I),CCL1(I),COL2(T),COLZ(I),COLL(I),COLS(I

FORPMATI(FS42,5(2XsF8e41))

GO 70 1
STOP
END
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THIS IS A FUNCTTON SUFPROGRAM THAT CALCULATES THE SCU/RFE OF TH
MOLECULAR ORBITAL MOMENTUM WAVE FUNCTION FOP A DIATOMIC
MOLECULF. THE POSTTION WAVE FUNCTION IS A COMPINATION
OF SLATIR TYPT FUALTIONS (STF) ON B80TH ATQOMS.
Aol sl e el e e e e o e o e sl o e i vk T sie e e e ok e ek A Fe e o ik Pk A e e e S e sip g e g e R B g I e o e Se Sk A A e o e e A
DEFINE THE FUNCTION CHISOQ
GCUPLE FRECTSION FUNCTIOGN CHISQIPX,PY,PZ)
DOURLE PRECISICOM PI,XN1,XN2,XN3,XN4,RISsR2S4sR2I5,RULS
*9R2p7 Q1P7QQP7QZD, P“F,YOG,YIO,YZG,YIIyYZl,Y317
HRRePI 4P X ePY  PYsPZ3PZRyA4RXHRY
DATA PI/3.,14156265358979320C/
DEFINE STATEMENT FUNCTIONS
THZ NOARMALIZATION CNEFFICTENTS
XNI(GIZDSQRT(Q.0%Cx%x3/PT)
XN2(G)=DSORT(BXGE%xS5/PI/3,)
TXNZIGIZDSORT (1oxb%xT/45,./P1)
XNU(GIZOSORT(8X%G%%9/315/PT)
FFINE THE R?ADIAL MOMENTUM FUNC1IONS
RE S-TYPES
RISIP,BITXNI{G)I M2 404G/ (G2 +P%ox2 Vokx?
R2S(P4BIZXN2 (G (6%GXH2=2%P%%k2) / {G*%x2+ Pk )%%3
RISIP,GIZIXNIUGI 22Uk (Gux3=GRP%%2) /{ Gx%2+Pici2 ) x%kb
RUSIPL,CITXNY(G) X285k (SuGHA =] Do kB 2%PHAE2+PH4G )/ (GHk2+P%H2) %%5
- THE P-TYPES.
RZP({P ,GY==XN2(G)*ERGXP / {GRAD+P %% ) %% 3
RIPUPyGIT=XNI{EI R { U0 Chx2uP =B 4PAkT) /(GAk2+Poa2) kY
RUP (P yGIT=XNULG) R (240 %Guen3uP-14buBxPk%x3 )/ (Pk%2+G%x%k2) %%5
D-TYPE
RIDUIP,GIZT=XN3(GI#UB xGXPHR%2/ (GR¥2+Piok2 ) kil
F-TYPE ,
RUF (P yGYZXNUA(G ) #Z8UXGuPxur3/ Gk 24P dk2)u%k§
THE SPHERICAL HARMCNICS W/0 THE PHI DEPENDENCE
YOO (X)IZ1o/DSORT(G.TOHPT ) +X%0.0
YICIXIZDSGRT(34/44/PT) %Y
YZ2CUXYZDSORT{S4/44/PI )% {1eS%Xkk2=,5)
YZC(X)IOSORT(T74/4/PI )25 %x3=1,5%X)
YI1(X)Z-DSQRT(3./R/PI)*DSORT (1=X%#2)
Y21(X)IZ-DSORT(15.,/8/PI)%X%#DSORT (1-X%%2)
Y3IM(XIZ~DSQORT(Z21./4/PT I %0SQRT (I -Xtkk2 )% (SuXkx2=-1)/4
END QOF FUNCTION STATEMENTS DEFINITION
e g e weodle o e e A e e e o3 e eoale 3 3l dje %k 3 e e e vk s 3k e e s e e v e B 3k ok Be Ko ae e v o e ok i X s 3 % e o v Kook e ol e e X 3ok
COMMON STATENMENTS
ALFHA IS THE ANGLE AT WHICH J(PZ) IS CALCULATED
RAD IS THE DISTANCE IN £U SETWEEN ATOMS A AND B
NTYPEZ1 MEANS SIGMA ORBITAL, =2 MEANS PI CREBITAL
COMMON ALPHARADSNTYPEC
ISINUMRED GF 1S STF OM ATO¥ A C1S4I}=1S STF COEFFICIERTS
1S(I}=1S STF EXPONENTS.
THERS ARE SIMILARLY DEFINED.
COMION N1S,C1IS{B)Y4G1S(5),N28,C25(5),02S(5)4yN2S,C3S5(5),G25(5)
COMMON N4S,L45({%),04S5(5),N2P,C2P(5),C2P (51 ,M32,C3P(5),5ZP(5)
COVMYON NUP,CLP(S) 4GUPIS) yNZD,C30{5),G30{5),NUF{CLF(5)4CU4F(S}
M1S301S,H1S ARE DEFINED AS PEFORE BUT FOR ATCM B
COMMON M1S,01S({58),HIS{E)Y,M2S8,N2S(C),H2S{S)yM3S5:03S(5),HIS(3)
COMNMON MUS,DUS(5) ¢HUS{5) yM2P,02P(5),H2F (5)4M3IP, D3P {5} ,HIP(E)
COMMON MUP TLP{S) jHUP(5)4M3N,03D(5),HXU(5),M4F,D4F (5),HUF(S)
3 e B e e e e 3 s 3k e N e i 3K 3 3 s e afe sl 3k e o X e e s steale de B o o e e a3 i e e X W o e e A e e g o 3k e 3 e 3 e s sl 3 X e 3 3

[0

v
T

N
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=3 C RR WILL STOFE THE REAL PART OF CHI
59 C RI WILL STORE THE IMAGINARY PART OF CHI
60 RRZIC. 000
61 RIzC.0CLC
62 C THE MAGMITUDE OF THE MOMENTUM
63 PZUSQRT(PYXkx2+PYRHD2+PZ7%%42)
ol C THE COSINE OF THE ANGLE BETWEEN P AND R (FROM ATOM A TO B)
05 XZT(~SIN(ALPHAY®PX+PZxCOS(ALPHA))/P
b6 C DOT PROZUCT OF P AND R
67 PZRIP*RAD%X
58 C TES5T THE TYPE OF MOLECULAR ORRBRITAL REING OONE
€9 : IF (NTYPE LEQ. 2) GO TO 838
79 C THE CONTRIBUTIOM OF ATOM A TO REAL({CHI)
71 IF(NIS.FQ.D)GO TO 2
72 DO 1 IzZ1,MN1S
73 1 RRZRR+CIS(IINRIS(P,G1S(1))
74 2 IF (N2S.E2.C) GO TO 4
75 D0 3 Iz1,N2S
76 3 RRZRR+C2SIIIHRIS(P,G2S(I)
77 4 IF (N3S.EQ.C) CO TO 6 .
78 DO %5 IZ1,N3S
79 5 RRZIRR+C3IS(I}#*RIS(P,G3S(T))
85 6 IF (N4S.E0.0) C6G TO 8
&1 OO0 7 IZ1,N4S
g2 7 RRZRR+CUS(TII%RYUS{P,G4S(TI))
83 8 RR=ZPR*YCO(X)
sS4 58 IF (N30.E0Q.0) CO TO 10
&5 AZ0.0ND
56 DO 9 IZ1,4N3D
57 9 AZL+C3D(IY%P3IN(PLG3IN(I))
g3 IF (NTYPELEQ.L1) RRZRR+AxY20(X) i
59 IF (NTYPELEQe2) RRIRR+A%Y21(X)
55 C CONTRIRUTICN OF ATOM A TO IMAGINARY(CHI)
91 10 IF (N2P.EQ.T) GO TO 12
52 DO 11 IzZ1,N2P
93 11 RIZPI+C2P(I)*R2P(P,G2P(I})
4 12 IF (N3P.EQ.2) GO TO 14
5 DO 13 I=-1,NZP
.5 13 RIZRI+C3IP(I)I%R3IP(P,G3P(I)}
57 14 IF (N4P,Z0Q.2) GO TO 161
G2 DG 15 IZi,NyP
GG 15 RIZRI+CUP{I)*RPYP(P,C4P(I))
3 161 IF (NTYPELEQ,1) RIZFI =#Y10(X)
o1 IF INTYPELEQ.2Z) RIZRI %Y11(X)
o IF (N4FEQ.0) GO TO 16
23 AZS.0ONG
o4 DO 1562 IzZ1,N4F
V) 152 AZA+CUF(IYPUF(P,GUF (T ))
Z6 TIF (NTYPE.ZQel) RIZRI+A%XYZIT(X)
o7 IF (NTYPE.£0.2) RTZPI+A%Y31(X)
oK C NOW SUM THE CONTRIZUTION OF ATOM B
Lo C RX WILL BF THE REAL PART,I+FeyS AND D TYPES.
e C RY WILL BEZ P AND F TYPES.
11 16 RX=r.00C
12 RY=C. 00T
17 IF {(NTYPELED.2) 50 TO 241
ih IF (M1S.EQ.0) GO TO 18
15 ‘00 17 IzZ1,M1S
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17 RXZRX+D1S(II%RPIS(P,HIS(TI))
19 IF (M2S.E0.0) GO TO 20
DO 19 IzZ1,M2¢
19 RXZAX+N2S (I HR2S(P,H2S (1))
20 IF (M3S.EQ.0) GO TO 22
DO 21 IzZ14M3S
RXZRX+D3S(II*RIS{P,LHISI(T))
IF (MUS.E0.C) GO TO 24
DO 23 Iz1,Mu4S
RXTREX+DU4S (1Y xPYS{P,HLES(TI))
RXZIRXXYLO(X)
IF (M2I0.EQ.C) GO TO 26
A=G.20D0
D0 25 Iz=1,M3D
25 AZA+D2D{IYRRIND(PL,HIN{T))
IF INTYPE«£0a1) RXZRX+A%Y20(X)
IF (NTYPEWLEQ.2) RXZRAX+AXY21(X)
IF (M2P.EQ.0) GO 70 28
DO 27 I=z1,M2P
RYZDY+O22P{I)%RZP(P,H2Z2P (1))
IF (MZPLEQ.O) GO TO 33
DC 29 IzZ1i,M3°P
25 RYZPY+DIP(I)#RIP(PLHIP(I))
3~ JF (M4P.EQ.C) GO TO 32
DO 31 Izl,™4p
31 RYZRY+DLPUI)%RYP(P,HEP (1))
IF (NTYPE LEG.1) RYZRY *Y13(X)
IF{NTYPELED.2) RYZRYAY11(X)
lugy IF (MEF.EQ.0) GO TO 34
148 A=Q.200
‘DO 23 Iz1,MuF
33 AZA+DLF(IYXPUF(PLHLF{I))
IF (NTYPEEQe1) RYZRY+AXY3T({X)
IF INTYPELEQ.Z) RYZRY+AXYZIL1(X)
C CONTRIFUTION OF ATOM B TO REAL(CHID
4 RRZRR+RX*DCOS(PZR)I+RY*DSIN(PZR)
C CONTRIFUTIUN TO IMAG(CHI)
RIZRI=-RY*NSIN(PZR)+RY*DCOS(PZR)
C NOw CHISO IS GCIVEN BY
CHISQZRRM¥2+RT %2
RETURN
END
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THIS FROGRAM YUILL CALCULATE THE TOTAL MOLECULAR COMPTON
PRGFILES AND TdFf CRYSTALLINE PROFILES FOR AN FCC CRYSTAL.
THE ANISQTROPIELS ARE THEN CALCULATEDR. CATA IS READ FROM
A PREVIOQUS FILE CPLCATED BY THE MAIN PROGRAM,.
INC IS THE OCCUPATION NUMRER OF THE MO,
ale e e sl el Wl sl e sl a3 Ke a3l A i e ol sfe s o afe oje e ol 3 e e e e e e e e e e e ol ol e ale e e e e e o e ofe e g Ke g o g Sl TR
REAL INC
DIMENSION PZ{(5C)yX00(5G)4X45(50),4X55{(50),X9C(5C
00 11 Iz=1,50
Xo0eir=o
X45(I1=g
X55(11=0
Xee(1y=c
READ 1U0,NC
NO TS THE NUMRER QF MO*S
Do 1 J-1,4,NO
READ 100,NTYPE, TNC
NPZ IS THE NUMEER OF PZ*S USED IN THE CALCULATION. ~
READ 200 4,NPZ

£g FORMAT( )

FORMAT(/,13)

IF (J.GE.NO)Y PRINT 400
¥1 IS THE 0-90 ANISOTROPY.
Y2 IS ThHE J(1Q3) CP, Y3 IS THE J(113) CP, X55 IS J(1l11)
Y4 TO Y6 ERE THE CRYSTALLINE ANISOTROPIES.
YC IS THE AVERACE COMPTON PROFILE.

RESULTS ARE PRINTED FOR EACH MO

OO 2 IzZ1,NPZ

READ 30C,PZ2(1),4,B,C,D

XCCUII=X00(I)+INCHA

Xa5(I3zX48(I)+INC*R

XS55(I1ZX55(T)+INC*C

X9SLIN=X9O{IN+INC*D

IF(JsLT«NOYGO TO 2

YIi=XGO(I)=X90(1)

YD (2%XQT(IN+XCN(I)}I/ 3.

Y3Z(24X45(1)+X90(I))/ 3.

YUZYZ-Y3

YHZY2-X55(I)

YGIYZI-AES(I)

YOS (3%Y2+460Y3+0%X55(1))/13, | :

PRINT SCO¢PZ(T)YysY2,Y3,4X55(I),Y0 X00(I)X45(T),X90(1:,
% Y1loYL,Y5,Y6,PZ(1)

CONTINUE

CONTINUE

FORMATL LYo/ /42X PPZ%,TX 4100y 7X,"110%,7X, %112 ,7X,
HYAVC® 3 TX 3 "00DT 3 TX " 550 Y, TX Y900 46Xy 'C=-G0"y5X,*100-11C",
®3Xg YING=111",3%s"210-111",2X4"PZ2"/)

FORVAT(FSe2,4{2XsF&a441))

FORMATOIX yFhals11(2X3FB8.04)42X,Flal)

sSTOP

END

(@]
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