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Abstract

Hexahedral meshes are a preferred volumetric representation in a wide range of sci-

entific and engineering applications that require solving partial differential equations

(PDEs) and fitting tensor product/trivariate splines, such as mechanical analysis,

kinematic and dynamic analysis of mechanisms, bio-mechanical engineering, compu-

tational fluid dynamics, and physically-based simulations. Recently, the generation

of a high quality all-hex mesh of a given volume has gained much attention, where

a hex-mesh should have high surface conformity, regular element shapes, and simple

global structure. This dissertation investigates the problem of obtaining a high qual-

ity hex-mesh with respect to the above quality requirements and makes the following

contributions:

Firstly, I introduce a volumetric partitioning strategy based on a generalized

sweeping framework to seamlessly partition the volume enclosed by an input triangle

mesh into a small number of deformed cube-like components. This is achieved by

a user-designed volumetric harmonic function that guides the decomposition of the

input volume into a skeletal structure aligning with features of the input object. This

pipeline has been applied to a variety of 3D objects to demonstrate its utility.

Secondly, I present a first and complete pipeline to reduce the complexity of the

global structure of an input hex-mesh by aligning mis-matched singularities. Specifi-

cally, I first remove redundant cube-like components to reduce the complexity of the

structure while maintaining singularities unchanged, and then perform a structure-

aware optimization to improve the geometric fidelity of the resulting hex-mesh.

Thirdly, I propose the first practical framework to simplify the global structure of

any valid all-hex meshes. My simplification was achieved by procedurally removing
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base complex sheets and base complex chords that constitute the base complex of a

hex-mesh. To maintain the surface geometric features, I introduced a parameteri-

zation based collapsing strategy for the removal operations. Given a user-specified

level of simplicity, I identified the inversion-free hex-mesh with the optimal simpli-

fied structure using a binary search strategy from the obtained all-hex structure

hierarchy.

Finally, given that there currently does not exist a widely accepted guideline

for the selection of proper element quality metrics for hex-meshes, I performed the

first comprehensive study on the correlation among available quality metrics for

hex-meshes. My analysis first computed the linear correlation coefficients between

pairs of metrics. Then, the most relevant metrics were identified for three selected

applications – the linear elasticity, Poisson, and Stoke problems, respectively. To

address the need of a large set of sampled meshes well-distributed in the metric

space, I proposed a two-level noise insertion strategy. Results of this work can be

used as preliminary yet practical guidelines for the development of effective hex-mesh

generation and optimization techniques.
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Chapter 1

Introduction

In a variety of scientific and engineering applications that require solving partial

differential equations and fitting tensor product/high-order smoothness functions,

such as mechanical analysis, kinematic and dynamic analysis of mechanisms, bio-

mechanical engineering, computational fluid dynamics, and physically-based simu-

lations, volumetric representations (e.g., tetrahedral/hexahedral/hybrid/T- meshes)

are often required. There are automatic and open source libraries for producing

good quality tet-meshes. While tetrahedral-mesh representation is simple and linear,

(semi-) structured representations, e.g., hexahedral meshes, are often preferred over

unstructured representations [71] because of the better convergence properties [14],

less numerical stiffness, and more space efficiency [90]. The tensor product nature

of a structured representation allows the convenient imposition of a simulation ba-

sis with a higher derivative smoothness between elements of the volumetric mesh.
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This means that each individual basis function spans smoothly across multiple ele-

ments with visually smoother results. Finite element representations, which possess

these properties can yield better numerical results for a variety of applications in

engineering (e.g., see Ringleb-flow simulation in [41]).

Automatically decomposing a 3D volume domain with complex boundary into

a high-quality hex-mesh remains a challenging task. A high-quality hex-mesh usu-

ally has low geometric distortion (a benefit for stable numerical simulations) and a

simple global structure (ideal for high-order volumetric B-spline-fitting). Geomet-

ric distortion measures the preservation of the boundary of the 3D volume and the

shape similarity of each contained hexahedral element to a cube. While Hausdorff

distance can be employed to quantitatively measure the conformity to the surface

features [75], it is generally acknowledged that there should be non-inverted elements

in a hex-mesh, i.e., the Jacobian determinants for all the corners of all the elements

should be positive. On the other hand, the global structure of a hex-mesh can be

obtained by merging neighboring elements without crossing extraordinary (or irreg-

ular) edges (i.e., edges that have other than 4 hex-elements adjacent to it) and the

separation surfaces starting from these edges. These irregular edges are singularities.

Intuitively, the singularities as well as the separation structure starting from them

partition the domain into smaller regions. Figure 1.1 provides examples of such par-

titions for the bunny hex-meshes. Each sub-volume, referred to as a component (i.e.,

the colored regions shown in Figure 1.1) of a partition can be topologically mapped

to a regular cube. These components compose a global structure, which is referred

to as the base-complex in this dissertation. The base-complex is the coarsest version
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of the hex-mesh, which should be as simple as possible (i.e., with as few components

as possible) to facilitate the subsequent spline-fitting.

Consequently, this dissertation focuses on pushing the hex-meshing research for-

ward from two aspects. On the one hand, while the majority of techniques in hex-

meshing focus on improving the surface geometric fidelity and minimizing the irregu-

larity of element shapes of the resultant hex-meshes, I endeavor to improve the quality

of the global structure of the hex-meshes. On the other hand, although maintaining

a positive minimum Jacobian is necessary for most applications, to what degree that

scaled Jacobian provides an effective indication to the quality of the subsequent ap-

plications has largely been understudied. Especially considering that there are nearly

40 quality metrics for hex-meshes, only a few metrics, including scaled Jacobian, are

commonly used by hex-mesh generation techniques. I perform a first comprehensive

evaluation of existing quality metrics in the hope to discover a general guidance for

the development of hex-mesh generation and optimization techniques. Details of our

contributions in these two directions are summarized as follows.

1.1 Hex-meshing with Simple Structure

Large number of components may pose challenges to the subsequent computations on

the corresponding hex-meshes, such as high order spline-fitting [18] or using higher

order smoothness simulation bases. This is because in applications that use higher

order representations, a C2 B-spline basis can be fitted to each component (not

each element). However, in general, only C0 continuity can be achieved across the
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(a) (b) (c)

Figure 1.1: The hex-mesh in (a) has only 18 hexahedral components, while the hex-
meshes in (b) and (c) have 259 and 422 components, respectively. The corresponding
base-complexes of these meshes are shown in the inset images, respectively. Green
dots are the corners of the individual components and the black lines are their edges.
Note that some of the cuboid corners are extraordinary points, others are regular
and introduced to avoid T-junctions.

boundaries of neighboring components. More components means that the extent of

each C2 continuous region is diminished. In addition, for a hex-mesh with too many

components, it may contain some quite small or narrow components. Each of the

small components will need to be subdivided multiple times (e.g., see a component

near the boundary highlighted by an ellipse in Figure 1.1c) to get enough number

of samples along each of the three parameterization directions, so that the higher-

order basis function can be fitted. However, doing so will mean that its neighboring

components have to be subdivided accordingly, leading to a very fine mesh with

many elements if T-junctions should be avoided. This up-sampling process increases

the number of elements in multiples of the original size of the hex-mesh, which makes

a fast computation more difficult to achieve. Therefore, fewer components (i.e., a

simpler base-complex) are desired for the task of spline-fitting.

After introducing the global structure concepts for a hex-mesh, i.e., singularity-

structure and base-complex, in Chapter 2, as the first attempt, this dissertation makes
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three contributions [30, 27, 31] in obtaining a hex-mesh with simple global structure

while maintaining its geometric quality (to some extend).

First, in Chapter 4, I introduce a volumetric-partitioning strategy based on a gen-

eralized sweeping framework to seamlessly partition the volume of an input triangle

mesh into a collection of deformed cuboids [30]. This is achieved by a user-designed

volumetric-harmonic function that guides the decomposition of the input volume

into a sequence of 2-manifold-level sets. A skeletal structure whose corners corre-

spond to corner vertices of a 2D parameterization is extracted for each level set.

Corners are placed so that the skeletal structure aligns with features of the input

object. Then, a skeletal surface is constructed by matching the skeletal structures

of adjacent-level sets. The surface sheets of this skeletal surface partition the input

volume into the deformed cuboids. The collection of cuboids does not exhibit T-

junctions, significantly simplifying the hexahedral mesh generation process, and in

particular, it simplifies fitting trivariate B-splines to the deformed cuboids. Intersec-

tions of the surface sheets of the skeletal surface correspond to the singular edges of

the generated hex-meshes. I applied our technique to a variety of 3D objects and

demonstrate the benefit of the structure decomposition in data fitting.

Second, in Chapter 5, I present a first and complete pipeline to optimize the

global structure of a hex-mesh [27]. Specifically, I first extract the base-complex of a

hex-mesh and study the misalignments among its singularities by adapting the previ-

ously introduced hexahedral sheets to the base-complex. Second, I identify the valid

removal base-complex sheets from the base-complex that contain misaligned singu-

larities. I then propose an effective algorithm to remove these valid removal sheets
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in order. Finally, I present a structure-aware optimization strategy to improve the

geometric quality of the resulting hex-mesh after fixing the misalignments. Our

experimental results demonstrate that our pipeline can significantly reduce the num-

ber of components of a variety of hex-meshes generated by state-of-the-art methods,

while maintaining high geometric quality.

Third, in Chapter 6, I introduce an effective framework to simplify the global

structure (i.e., the base-complex) of valid all-hex-meshes [31]. Our simplification was

achieved by decomposing the base-complex of an input hex-mesh into a number of

base-complex sheets and base-complex chords. By collapsing them, the structure was

simplified. I provide detailed discussions on the configurations of sheets and chords,

upon which different removal operations are proposed. I also propose a ranking

metric to sort the sheets and chords to achieve efficient reduction of the structure

complexity while preserving important surface features. To reduce the geometric

distortion induced by simplification, I introduced a parameterization-based collapsing

strategy for the removal operations. Given a user-specified level of simplicity, I choose

the optimal simplified structure of a hex-mesh without a negative Jacobian using a

binary search strategy from the obtained all-hex structure hierarchy. I have applied

our simplification framework to a number of hex-meshes generated by state-of-the-

arts hex-meshing techniques to demonstrate its effectiveness.
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1.2 Element Quality Metrics Evaluation

Compared to the well-understood quality metrics for tet-meshes and their relation to

the conditioning of finite element stiffness matrices and the accuracy of interpolation

functions [81], most hex-meshing approaches often rely on the average and minimal

scaled Jacobian metrics to measure the quality of the generated hex-meshes. That is,

the meshes with larger scaled Jacobians are considered better. Although maintain-

ing a positive minimum Jacobian is necessary for most applications, to what degree

that scaled Jacobian provides an effective indication to the quality of the subsequent

applications carried out on the corresponding hex-meshes has largely been under-

studied. Does a hex-mesh with good Jacobians (especially a high minimum-scaled

Jacobian) always lead to accurate and stable computations for applications that in-

volve with the solving of elliptical PDEs (e.g., linear-elasticity, Poisson and Stoke

problems)? Figure 1.2 provides an example that the quality of the Poisson equation

solving measured by its largest eigenvalue–indicator of the stability of the system (see

Section 7.2.2.4 for more details), need not be improved with the improving minimum-

scaled Jacobian. In addition to the scaled Jacobian, there are many other quality

metrics [86] (see Table 3.1). However, there does not exist a guideline for the selec-

tion of proper metrics for the effective measurement of hex-mesh quality in practice.

This has hampered the development of effective hex-mesh generation and optimiza-

tion techniques [47] that can produce hex-meshes with properties suitable for specific

downstream applications. This motivates our work presented in Chapter 7 [28, 29].

To address the above challenge, I conducted a first comprehensive study on the cor-

relation among various hex-mesh quality metrics. I demonstrated that our analysis
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framework can be effectively applied to reduce the number of quality metrics and

identify the most reliable metric given a specific application. I applied the proposed

analysis techniques to three different applications – the linear-elasticity problem,

Poisson’s equation-solving and Stoke equation-solving, respectively, on which I con-

ducted a first study to understand the effectiveness of all existing hex-mesh quality

metrics. I observed that average metrics greatly affect the accuracy of those appli-

cations, while minimum and maximum metrics have more influences on the stability

of these applications. To the best of our knowledge, this work is the first step to

quantitatively understand the correlation characteristics of a large number of ex-

isting hex-mesh quality metrics and their effectiveness to downstream applications.

The encouraging results from our study can be used as practical guidelines for the

development of effective hex-mesh generation and optimization techniques as well as

the cornerstone for future research studies along this line.
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Figure 1.2: Minimum scaled Jacobian is not a good indicator for the convergence
rate of Poisson equation solving, as the maximal eigenvalues of the systems do not
decrease with the improvement of the minimum-scaled Jacobian as seen for all three
test models.
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Chapter 2

Global Structures of Hex-meshes

Consider a hex-mesh H = (V,E, F,H), where V is a set of vertices, E is a set of

edges, F is a set of faces, and H is a set of hexahedral elements. Assume H is a valid

manifold all-hex-mesh, where each edge has a neighborhood that is homeomorphic

to a cylinder or a half-cylinder, and each vertex has a neighborhood that is home-

omorphic to a sphere or a half-sphere. Edges with half-cylinder neighborhoods and

vertices with half-sphere neighborhoods are on the boundary. The boundary of a

manifold hex-mesh is a closed two-manifold mesh. Throughout the dissertation, I

define the valence of a vertex or an edge with respect to the number of its neighboring

hexahedral elements. An edge is said to be irregular if its valence is not 2 (on the

boundary) or not 4 (in the interior). A vertex is called regular if its valence is 4 (on

the boundary) or 8 (in the interior); otherwise, it is an irregular vertex.

In the following, I first review the singularity-structure of hex-meshes. Then,

I extend the base-complex concept from 2D quad-meshes to 3D hex-meshes, and
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introduce a robust algorithm to extract it.

2.1 singularity-structure

(a) (b)

(c)

(d)

Figure 2.1: The singularity-structure (a) and base-complex (b) of a Fandisk hex-
mesh. The singular nodes and singular edges of both the singularity-structure and
the base-complex are in red, while the non-singular nodes and regular edges of the
base-complex are in blue. (c) shows four closed singular edges in the interior of a
Torus hex-mesh, while (d) shows four closed singular edges on the boundary.

The singularity-structure of H, denoted by S, consists of a set of singular nodes

and singular edges. A singular edge is a 1D curve composed of a sequence of con-

nected irregular edges with the same valence, either in the interior (Figure 2.1(c)) or

on the boundary (Figure 2.1(d)) of the hex-mesh. The singular edges can be clas-

sified into two types: open or closed (Figure 2.1(c-d)). Specifically, the end points

of an open singular edge are singular nodes (i.e., the intersections of some singular

edges or their intersections with the boundary). It cannot simply start or end in the

interior of the volume; instead, it either hits the boundary or connects with other

open singular edges via a singular node. By contrast, no singular node exists on a

closed singular edge, and it is completely either on the boundary or contained in the
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volume. Note that a singular node can be either regular or irregular.

The above definition of the singularity-structure also self-describes an automatic

algorithm to identify it. Figure 2.1(a) shows an example of the singularity-structure

of a Fandisk hex-mesh.

2.2 Base-complex

After extracting the singularity-structure, I now describe the definition and com-

putation of the base-complex of a hex-mesh. Analogous to the base-complex of a

quad-mesh [8], the base-complex of a hex-mesh is an all-hexahedral structure.

Similar to the curve separatrices in 2D [89], which consist of edges in a quad-mesh,

the surface-separation structures starting from any singular edge are needed to define

the base-complex of a hex-mesh. I refer to these surface-separation structures as the

separation surfaces. Each separation surface consists of a set of connected quads in

the hex-mesh. For a singular edge with valence n, there are n separation surfaces

originating from it. All the separation surfaces from singular edges form a surface

graph network embedded in the hex-mesh, describing its topological structure.

I denote the base-complex of a hex-mesh H as B = (BV ,BE,BF ,BC) (Fig-

ure 2.1(b)). BE is the set of the intersections of the separation surfaces. Each

base-complex edge in BE, either singular or regular, consists of a sequence of con-

nected hex edges of H. The singular base-complex edges in B are illustrated as red

curves in Figure 2.1(b), while the regular edges are illustrated as blue curves. BV is
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the set of the end points of the base-complex edges in BE, which are either singu-

lar (red nodes in Figure 2.1(b)) or non-singular (blue nodes in Figure 2.1(b)). The

reason to include non-singular nodes and regular base-complex edges is to remove

T-junction configurations. BF is a set of base-complex faces, each of which has four

edges in BE. BF partitions the domain of H into a set of components in BC . Each

component is a cuboid-like sub-volume.

Algorithm 1 describes the pseudo code for extracting the base-complex B from a

given hex-mesh H. It is important to note that our defined base-complex is distinct

from the one mentioned in [55] which is actually a polycube structure.

Algorithm 1: Pseudo code of extracting B from H

Input : H
Output: B
Extract S from H;
foreach singular edge sei of S do

if sei is open then
Trace n separatrices for each of the two singular nodes of sei, where n
is the valence of sei;

if sei is closed then
Trace n separatrices for every irregular vertex on sei;

Trace n separation surfaces for sei, which is guided by the separatrices;

Extract BV and BE from the intersections of all separation surfaces;
Extract BF by decomposing separation surfaces into patches based on their
intersections, i.e., BE;

Extract BC by labeling hex elements that fall in different cuboid regions
separated by BF using a flooding algorithm.
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Chapter 3

Previous Work

3.1 Hex-mesh Generation

Various methods exist to generate hexahedral meshes. Early non-parameterization

based hex-mesh generation techniques include the paving and sweeping techniques as

surveyed by Shepherd and Johnson [79] and the octree-based method [57]. They typ-

ically produce hex-meshes with excessive singularities and complex structure (e.g.,

3-torus in Figure 6.15). Recent parameterization-based approaches, including poly-

cube based methods [32, 55, 38] and frame-field based methods [69, 39, 52, 43],

and skeleton guided sweeping techniques [83, 98] have better control on singularities

and typically generate hex-meshes with simpler structures while having a high local

element quality. In the following, I focus on such methods.
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Polycubes: Polycubes allow the decomposition of an object into a set of larger

hexahedral pieces. However, the quality of the resulting hexahedral representation

strongly depends on the placement of polycube corners on the input triangle mesh.

This challenging process has received a lot of attention recently [32, 94]. Automatic

methods are usually difficult to control. Livesu et al. [55] and Huang et al. [38]

introduced Polycuts and L1-Polycubes to improve the corner configuration of the

conventional polycube. However, control of the interior structure of the volume

is still missing. Recently, Li et al. [51] extended the conventional polycube to a

generalized polycube (or GPC), which enables the curved cuboid representation of

the elementary sub-volumes decomposed via shape analysis. While this enables the

polycube map approach to be applied to more complex objects, the corners of the

GPC are located on the surface, leading to degenerate elements (negative Jacobian)

around the corners. The sub-volumes decomposed using our framework are curved

cuboids, which is similar to GPC. I address the boundary degeneracy by finding

the correspondence of the boundary corners of these cuboids in the interior of the

volume.

Cross-field guided approaches: Cross-fields (or frame-fields) have been proven

useful to assist the placement of quadrilateral elements when quadrangulating a

triangular mesh [9, 13, 7, 72], as it provides consistent local frame information every-

where in the domain to guide the orientation of parameterization. Nevertheless, it is

not clear on how to extend these methods from quadrangulation to hexahedraliza-

tion. Huang et al. [39] proposed a first solution to creating a boundary-conformal 3D
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cross-field via an expensive optimization. Due to insufficient control on the types of

the singularities in the cross-field, their approach cannot be guaranteed to generate

an all-hex-mesh. Nieser et al. [69] pointed out that only 10 types of singularities can

lead to a valid all-hex-mesh. Recently, Li et al. [52] introduced the Singularity Re-

stricted Field (SRF) that converts a general 3D cross-field to one that contains only

these 10 types of singularities. After regularizing the SRF and fixing degeneracies,

high-quality hex-meshes can then be generated using the CubeCover technique [69].

A similar work by Jiang et al. [43] also aims to derive a restricted cross-field from

some initial cross-field using similar singularity operations as in [52]. The obtained

cross-field was then used to compute a parameterization by solving a mixed-integer

problem.

Both Polycubes and cross-field approaches may generate hex-meshes with degen-

erate boundary points (i.e., zero Jacobian). They apply an additional step, called

padding, to relocate the degenerate boundary points into the interior of the volume.

However, this was achieved by simply adding an additional layer of hex-elements,

which may introduce additional small hexahedral components to the structure. This

limits the order of splines that can be fitted in this layer.

Sweeping strategy and mid-structure for hex-meshing: There are other hex-

meshing techniques that are based on sweeping and paving, such as the unconstrained

paving and plastering [83] and a skeleton-based sweeping [98]. However, those tech-

niques require the cross sections to be planar, and the structure of the obtained

hex-meshes is uncontrollable. Therefore, they are typically suitable for the meshing
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of CAD models rather than more organic appealing 3D models. And the introduced

skeletal surface provides a means for explicit control on the structure of the generated

mesh. The idea of utilizing a simplified mid-structure of an input model to assist the

generation of hexahedral meshes has been explored by [59, 76].

3.2 Structure Optimization

Structure alignment: In 2D cases, the misalignment of singularities in the global

structure can be greedily tackled by the methods introduced in [66, 8, 89]. Myles et

al. [66] introduced T-mesh to simplify the patch domain by allowing the existence

of T-junctions. While [8] aligns the base-complex by removing helical configura-

tions, [89] simplifies the patch domain by optimizing the connectivity of separatrices

originated from singularities. For hex-meshes, existing methods either simplify (or

coarsen) the hex-meshes via local modifications of some hex sheets [78, 49] or alter

the local hex-mesh structure via a hexahedral dual [91]. Both methods do not need

to reduce the number of hexahedral components. To the best of our knowledge, our

work presented in Chapter 5 is the first reported approach to fix the misalignment

of singularities in 3D hex-meshes.

Structure simplification: Many methods have been proposed to produce level-of-

details (LOD) quad-meshes by applying local operators, global operators, or their

combinations to quad-meshes. Local operators affect only a small neighborhood of
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a quad or a vertex, while a global operator can be arbitrarily large, and a single

operation can affect the entire mesh. By interleaving the global and local operators,

Daniel et al. [20] managed to produce a much coarse (or simplified) quad-mesh.

Later, Daniels et al. [19] generate an all-quad mesh with a simple base domain while

maintaining geometric fidelity through a keyframe-mapping technique. By adapting

the simplification pipeline in [20] and using purely local operators, approaches in [21,

88, 11] can greatly simplify a quad-mesh while maintaining good element quality to

some extent. For hex-meshes, existing methods either simplify (or coarsen) the hex-

meshes via local modifications of some hexahedral sheets [10] or alter the local areas

of the hex-meshes via hexahedral duals [91]. Neither method can guarantee to reduce

the number of singularities and components in the base-complexes. In contrast, our

work focuses on simplifying the global structures of 3D hex-meshes. Our technique

described in Chapter 6 can efficiently reduce both singularities and components in

the base-complex, and coarsen the hex-meshes much faster.

3.3 Hex-mesh Evaluation

Quality Metrics: Given a triangle/tetrahedral mesh input, generating an all-hex-

mesh composed of hexahedral elements (topologically identical to cubes) has been

studied for decades. As reviewed above, all these techniques are designed to generate

hex-meshes consisting of hexahedra as close as possible to cubes. However, because of

the arbitrary shapes of the boundaries of the input objects, it is generally impossible

to maintain all the elements regular. Therefore, many metrics for evaluating the
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quality of hex-meshes have been proposed, as summarized in Table 3.1. The Metric,

Abbr., and Range columns of Table 3.1 stand for the indices, names, abbreviations,

and valid value spaces of the metrics, respectively. Note that, I consider the left value

of the range listed in Table 3.1 of a metric as its lower bound, while the right value

of the range as its upper bound only when it is not +∞. For the Trend column, ↑

means the higher value of the corresponding metric is preferred, while ↓ means the

opposite.

For the calculations of the listed metrics, please refer to [86]. However, in most

cases, the metrics for measuring hex-mesh quality are application-specific; users often

have to balance the requirements of specific applications. For example, a highly

inhomogeneous anisotropic problem may want some elements in “ugly shapes”. The

efficiency and robustness of some direct solvers (e.g. Cholesky decomposition) are

less-dependent on the global structure and spectral features (eigenvalues) than some

iterative solvers (especially Krylov space methods [33] and multi-grid methods [93]).

To better understand the relationships among these characteristics, which can be

further used to guide the development of specific hex-mesh optimization algorithms,

in this dissertation, I investigate the correlation among these metrics for the first

time.

Metric Evaluations: Over the past decades, intensive studies on the compar-

isons of tet-meshes and hex-meshes show that simulations using hex-meshes generally

have a higher accuracy, a faster convergency rate, and more stable results [6, 87, 74].

However, to date, there exist few studies on hex-meshes with different properties.
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Earlier, Muller et al. [64] investigated the effect of the scaled Jacobian and the num-

ber of hex-mesh elements on the simulation results, respectively. They concluded

that the number of hex-mesh elements is important to the simulation quality. How-

ever, their experimental results suggested that with the minimum-scaled Jacobian

above 0.1, the average scaled Jacobian did not have a notable impact on the accu-

racy of the solution. Since they only used a simple cylinder-like model throughout

their experiments, it is difficult to judge the generality of their study. By perform-

ing FMA on electromagnetic, Motooka et al. [63] compared the accuracy and the

computational time using meshes with different qualities. The quality is evaluated

based on orthogonality, facet planarity, diagonal length ratio, and volume ratio of

each hex element in the hex-mesh. However, these metrics are correlated; it’s hard to

tell which metric is most effective for the measurement of the convergence property.

Knupp [47] evaluated a number of objective functions for hex-mesh optimization

based on the local Jacobian matrix. Different from the work of [47] that evaluates

their optimization framework using existing quality metrics, our work presented in

Chapter 7 concentrates on evaluating the relationships among quality metrics. In

additions, I applied our correlation analysis framework to study the relation of the

existing metrics with the quality of three important hex-mesh applications, includ-

ing the linear-elasticity problem [67], Poisson’s equation-solving [45, 36] and Stoke

equation-solving [3, 99], respectively.
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Table 3.1: Statistics of hex-mesh quality metrics in [86]. Range columns with and
without ? represents the actual and user-specified bounds.

Metric Abbr. Range Range? Trend

minimum diagonal Min. D. [0, 1] [0, 1] ↑
average diagonal Ave. D. [0, 1] [0, 1] ↑

maximum dimension Max. DM. [0, +∞] [0, +∞] ↓
mean dimension mean DM. [0, +∞] [0, +∞] ↑

minimum distortion Min. DIS. [-∞, +∞] [0, 1] ↑
average distortion Ave. DIS. [-∞, +∞] [0, 1] ↑

maximum edge ratio Max. ER. [1, +∞] [1, +∞] ↓
average edge ratio Ave. ER. [1, +∞] [1, +∞] ↓
minimum Jacobian Min. J. [-∞, +∞] [0, +∞] ↑
average Jacobian Ave. J. [-∞, +∞] [0, +∞] ↑

maximum maximum-edge-ratio Max. MER. [1, +∞] [1, +∞] ↓
average maximum-edge-ratio Ave. MER. [1, +∞] [1, +∞] ↓
maximum aspect Frobenius Max. AF. [1, +∞] [1, +∞] ↓
average aspect Frobenius Ave. AF. [1, +∞] [1, +∞] ↓

maximum mean-aspect-Frobenius Max. MAF. [1, +∞] [1, +∞] ↓
average mean-aspect-Frobenius Ave. MAF. [1, +∞] [1, +∞] ↓

maximum Oddy Max. O. [0, +∞] [0, +∞] ↓
average Oddy Ave. O. [0, +∞] [0, +∞] ↓

smallest relative size squared Min. RSS. [0, 1] [0, 1] ↑
average relative size squared Ave. RSS. [0, 1] [0, 1] ↑
minimum Scaled Jacobian Min. S. J. [-1, 1] [0, 1] ↑
average Scaled Jacobian Ave. S. J. [-1, 1] [0, 1] ↑

smallest shape Min. S. [0, 1] [0, 1] ↑
average shape Ave. S. [0, 1] [0, 1] ↑

smallest shape size Min. SS. [0, 1] [0, 1] ↑
average shape size Ave. SS. [0, 1] [0, 1] ↑

smallest shear Min. SE. [0, 1] [0, 1] ↑
average shear Ave. SE. [0, 1] [0, 1] ↑

smallest shear size Min. SES. [0, 1] [0, 1] ↑
average shear size Ave. SES. [0, 1] [0, 1] ↑

largest skew L. SK. [0, 1] [0, 1] ↓
average skew Ave. SK. [0, 1] [0, 1] ↓

smallest stretch Min. ST. [0, 1] [0, 1] ↑
average stretch Ave. ST. [0, 1] [0, 1] ↑
largest taper L. T. [0, +∞] [0, +∞] ↓
average taper Ave. T. [0, +∞] [0, +∞] ↓

smallest volume Min. V. [-∞, +∞] [0, +∞] ↑
largest volume L. V. [-∞, +∞] [0, +∞] ↓21



Chapter 4

Generating Simple Global

Structures for Hex-meshing

As mentioned in Chapter 1.1, fewer components (i.e., a simpler base-complex) are

desired for the task of spline-fitting. However, existing methods [52, 32, 51, 69, 43,

83, 98] cannot guarantee that a hex-mesh with simple structure is generated. Besides

the importance of the simplicity of the global structure, given a set of simulation con-

straints, users may prefer a meshing orientation that is aligned with the anisotropic

property of the simulation [81]. However, to date none of the existing techniques in

the literature allows practitioners to efficiently generate a hex-mesh with controllable

orientation.

In this chapter, I introduce a new volumetric decomposition technique for the

generation of a simple and predictable structured hex-mesh. In our representation,

I emphasize the creation of as few as possible hexahedral components to reduce the
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number of extraordinary edges (Figure 1.1a), while allowing the orientation of the

structure to follow a user-desired direction (kitten and bunny in Figure 4.10). Given

an input surface/tetrahedral model, our pipeline employs a generalized sweeping

strategy to decompose the volume enclosed by the input polygonal surface into a

sequence of 2-manifold-level sets based on a user-specified 3D harmonic function.

This effectively reduces the complex 3D spatial partitioning problem to a simpler

partitioning problem in 2D. The final 3D partitioning strategy is constructed via

matching the 2D solutions over the adjacent-level sets. The obtained level sets in our

method are typically curved, which differentiates our method from planar sweeping

strategies [83, 98]. Note that global structures of all the hex-meshes generated using

our approach are well aligned. This property is guaranteed, since the global structure

of a hex-mesh produced by our approach is controlled by the 3D skeletal structure

without any misalignment through our sweeping strategy.

In particular, I make the following contributions.

1. I introduce the concept of a 2D skeletal structure. This structure has a simple

quadrilateral configuration that reflects the primary characteristic of the 2D region.

Figure 4.14a provides an example of such a structure (highlighted by different color

components) in the cross section of a deformed torus.

2. I present a robust and automatic algorithm to extract the four corners of a

2D shape based on its medial axis. In comparison with corner placements found by

following gradient lines of the surface harmonic function [51], our corner extraction

can better align the hex-mesh structure with the surface features along the sweeping

direction.
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(a) Design harmonic function
Extract 2D level sets. (b) Extract corners of 

Compute inner structure    . (c) Construct skeletal
surface    . (d) Generate all-hex meshes

Figure 4.1: The pipeline of the proposed method. (a) A generalized sweep guided
by a user-specified harmonic function; (b) corner extraction and inner structure con-
struction in 2D parameter space; (c) the skeletal surface constructed by matching the
2D structure; (d) the multi-resolution hex-meshes generated based on the structured
decomposition.

3. I introduce a skeletal surface to compute a structured volumetric decomposi-

tion. It is constructed by matching and connecting the 2D skeletal structures through

adjacent-level sets with special attention paid to bifurcations. The resulting surface

(Figure 1.1a) not only provides a valid all hexahedral partitioning strategy for the

volume, but also serves as a user-controllable representation of the extraordinary

structure for the subsequent 3D global parameterization.

4.1 Overview

Before presenting our method, I define the notation used in this chapter. I use

calligraphic letters for objects in R3, for example, L denotes a 3D-level set generated

by our sweeping process (see below), T denotes a set of triangles in 3D space, and

P denotes a 3D point. Superscripts refer to level set identifications, while subscripts

refer to the identifications of the geometric objects at a certain level set. For instance,
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P ij represents the jth point on the ith level set. Regular letters, such as L, Q, and p,

represent objects in R2.

Let (T ,VT , CT ) be a closed 2-manifold in 3D space represented by a triangle mesh,

where T is the set of triangles, VT is the set of vertices, and CT is the connectivity

of the mesh. The volume enclosed by T is filled with tetrahedral elements using

an automatic tet-meshing method, such as Tetgen [82]. In Tetgen I use 0.5% of

the diagonal of the bounding box of the model to create tetrahedral elements whose

boundary triangles have similar sizes as the re-meshed input. Let (H,VH, CH) define

a tetrahedral mesh, where H is the set of tetrahedra, VH is the set of vertices defining

the tetrahedra, and CH is the connectivity of the tetmesh.

Figure 5.8 illustrates our pipeline that generates the structured mesh from the

given input triangle mesh T , by executing:

1. Compute a harmonic function hu(x, y, z) on H based on user-specified con-

straints (Figure 5.8a). Decompose H into a sequence of non-planar level sets Li

(Figure 5.8b). Li is flattened to a 2D level set using least-square conformal map-

ping (LSCM) [50]. Let fi : Li → Li be the resulting bijective mapping function

(Sections 4.1.1 and 4.1.2).

2. Extract four corners for each level set Li and align them with the adjacent-

level sets. A skeletal 2D structure Qi of Li is constructed by projecting each of these

corners to the interior (Section 4.2). The inner structure Qi of Li is obtained via

f−1
i (Qi) (Figure 5.8b).

3. Iteratively match Qi through adjacent level sets and connect them to form a
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3D skeletal surface S (Figure 5.8c) (Section 4.3).

4. Compute the 3D parameterization induced by the volumetric partitioning

provided by S. This parameterization can be used to generate structured all hex-

meshes (Figure 5.8d) without T-junctions.

Note that there are four user-specified parameters in our pipeline: The resolutions

along U , V , W directions (Section 4.4) and the number of level sets for the sweeping

(Section 4.1.2). The remaining parameters mentioned in this chapter are set as either

constant values or constant ratios, and do not require model specific tuning. In the

following two sections, I describe the first step in this pipeline. Then, the remainder

of the chapter is fully dedicated to the subsequent steps.

4.1.1 Computing 3D Harmonic Field

A scalar function u(x, y, z) (in the remainder of this chapter, denote as u for sim-

plicity), defined on H, is harmonic if it satisfies Laplace’s equation, i.e., ∇2u = 0.

Here, u satisfies the maximum principle, i.e., it only exhibits maxima and minima

at user-specified locations on H. This makes it a convenient and highly controllable

tool to guide a meshing process. It has been used in a variety of mesh generation

and volumetric-parameterization methods [23, 60], as well as in skeleton-extraction

methods such as [35].

In this work, the harmonic function u is computed by first discretizing Laplace’s

equation using Galerkin’s formulation [40]. The set of vertices VH is decomposed into

a set of constrained vertices VB, and a set of free vertices VF for which a solution is
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sought.

In our framework, the user has full control over u by defining VB through vertex

selections directly made on H. As an example, Figure 4.10 illustrates two harmonic

functions on the genus-1 kitten and bunny models, respectively, which creates two

different yet valid structured hex-mesh representations. u is seen as a sweeping

strategy as it is used to decompose the object into a set of slices, where a slice is a

level set of u. This step is discussed in more detail in the following section. Note

that if the resulted slices contain holes (non-multi-disk type), the user is prompted

by our system to specify a different set of critical points to compute a new harmonic

function.

4.1.2 Decomposition of H

Given the harmonic function u, the object is decomposed into a set of slices Li. A

slice Li (Figure 5.8b), at value ui ∈ R is the level set satisfying u = ui. Li is extracted

using marching tetrahedra [16]. Depending on the choice of VB and resulting saddle

points [68], Li can consist of multiple disjoint non-planar 2-manifolds represented as

triangle meshes with boundaries [80].

If slices are placed such that every triangle in T is intersected by at least one

slice, all features will be guaranteed to be present in T . However, in this work, ui is

a uniform sample on the range of the harmonic function u. This uniform-sampling

strategy allows the user to control the number of slices more conveniently. Except

for some simple models, a dense cutting with about 500 slices is typically used for
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Figure 4.2: 2D structure extraction. (a) Flattened level set Li with its bounding
box guided by its medial axis M i and boundary corners pj. This bounding box is
different from the one (the light green box) obtained by performing PCA on Li. (b)
The corners of Qi are found on the iso-contour by the one-to-one mapping between
pj and qj. The offset distance d = dm/3, where dm is the maximum scalar value of
a distance field computed from Bi.

the examples shown in this chapter. This high number of slices assures capturing

all the features present in T . A more advanced slicing approach could be adopted

(e.g., [58]). While it may improve accuracy to certain extent, it is computationally

more expensive.

Finally, each slice Li is flattened using the CGAL [1] implementation of LSCM [50].

The boundary of the flattened Li is approximated with a periodic B-spline curve us-

ing the method proposed in [60].

4.2 Constructing 2D Skeletal Structure

In this section, I provide the definition and computation of the inner structure of a

planar level set Li.

Consider a 2D region Li with closed boundary Bi = ∂Li. A segmentation strategy
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⋃N−1
j=0 Sij of Bi partitions Bi into N segments separated by N boundary points,

pij ∈ Bi. An inner structure Qi is defined as a polygon with N vertices in the

interior of Li whose corners qij map one-to-one to the boundary separating points

pij. Q
i represents the characteristic of Bi, e.g., the primary orientation or curvature

extrema with controllable complexity. For simplicity of the subsequent matching and

the requirement to produce an all-hex configuration, in this work, I set N = 4.

As described previously, the most challenging part of extracting Qi is to determine

the locations of its corners. I adopt a two-stage approach to determine the corners of

Qi. First, I determine the locations of the corners on Bi based on its configuration.

Second, I project the obtained corners on Bi to the interior of Li without ambiguities

in the gradient direction of a distance field computed with Bi being the zero level

set. Figure 4.2 illustrates this process.

4.2.1 Corner Point Extraction

Given Li I follow the approach in [58] to compute its medial axis. The medial

axis is the locus of centers of maximally inscribed circles that are tangent to the

boundary. The contact points of each maximal circle with the boundary curve are

called foot points. The computed medial axis for Li is effectively denoised because it

is computed from a smoothed curve. It can be further simplified with an area based

filtering. Figure 4.3a shows a slice of a twisted U-shape model and its simplified

medial axis. For each branch of the medial axis, if the area (for example, the dotted

area in Figure 4.3a) bounded by its branch point, corresponding foot points and
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the boundary between foot points is smaller than 1/10 of the area of the slice,

then I remove this branch. At this moment, if the simplified medial axis has only

two end points, then I trace from the end points to the internal points, until the

separation angle between the foot points of the current medial axis point is larger

than a predefined value (I use 120◦ in this work). The corner points are the foot

points of the traced medial axis points.

Otherwise there are more than two end points in the medial axis, and in this

case we compute a principal component analysis (PCA) of the medial axis curves,

to obtain the dominant direction from which to extract the bounding box. Once the

bounding box is computed and the corners are mapped onto the flattened slices, the

corner points are inversely mapped onto the original (non-planar) slices. Note that

the bounding box of the medial axis may not produce desirable corners. In addition,

for more symmetrical slices (e.g. circular shape), the orientation given by the PCA is

less reliable. The corners of both situations will be adjusted by a smoothing process

discussed next.

4.2.2 Corner Point Matching Over Level Sets

After the corner points at individual level sets are extracted, they are matched be-

tween adjacent 3D-level sets for the construction of a 3D inner-skeletal surface (Sec-

tion 4.3). To determine the correspondence between corners at adjacent-level sets, I

employ a distance-based greedy algorithm, modified by using the ratio of the eigen-

values of the PCA on the medial axis. If the ratio (λi in Algorithm 2) is larger
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Figure 4.3: Corner extraction and matching. (a) illustrates the corners (i.e., green
dots) extraction using a simplified medial axis (the dark red curve) of a slice of a
twisted U shape. The simplified medial axis consists of one branch point (blue dot)
and three end points (orange dots). Foot points of the branch point are shown as
black dots. (b) shows the matching of the corners between two adjacent-level sets
with a splitting bifurcation. The shaded area shows a highly distorted quad.

than a specified ε, each corner is matched to its nearest corner in the previous slice.

Otherwise, the corners are recalculated by finding the points on the current slice

that are closest to the corner points in the previous slice. Doing so enables us to

avoid big matching jumps, by skipping the nearly symmetric slices with the ratio

of eigenvalues close to one. In some symmetric slices, e.g., the slices crossing the

pectoral fins of the dolphin model, by changing ε, users may control whether to put

corner points close to shape features or away from them to get smoother results.

Figure 4.4a shows the corners on the surface of a dolphin model with ε = 1.5 and 2,

respectively. For all models shown in this work, ε = 1.5 was used.

Algorithm 2 provides pseudo-code for the extraction of the corner points on each

level set and their matching over adjacent slices. Four or more chains can be com-

puted in this way. Each chain that is formed by the matched corners is shown in

the same color in Figure 4.4. When a bifurcation occurs, emphasis is placed on the
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Algorithm 2: Pseudo code of corner point extraction and matching

Input : a set of slices {Li}, ε, n
Output: corner points {P ij}
foreach L in {Li} do
{mj} ← simplified medial axis of L;
CM ← covariance matrix of {mj};
λ1, λ2 ← eigenvalues of CM (λ1 is the larger eigenvalue);
v ← the eigenvector associated with λ1;
if there are two end points in {mj} then

trace from end points to m1 and m2 with the separation angle > 120◦;
pi1,p

i
2,p

i
3,p

i
4 ← foot points of m1 and m2;

else
Bx ← bounding box of L in direction v;
pi1,p

i
2,p

i
3,p

i
4 ← the four closest points on ∂L to four corners of Bx;

λi ←
√
λ1/λ2 ;

map {Li} and {pij} back to original space of Li;
foreach L in {Li} do

if λi < ε then
P i ← closest point on ∂Li to P i−1;

match {P ij} across the slices and use them as the control points {Pcj i} to

generate B-spline curves {γ0
i };

for j=1 to n do

({P i}, {γji })← SVDSA({Li}, {γj−1
i })
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continuity of the adjacent chains from the previous levels wherever possible to main-

tain good spacing of the corners. For example, in Figure 4.3b, the invalid match

(shown by the red dash line segment) loses the continuity. The adjacent chain in

the previous slice becomes non-adjacent after bifurcation. The correct matching is

shown by the cyan line segments. However, forcing continuity of chains can lead to

distortion. As shown in Figure 4.3b, the matching line segments in the right are

almost tangent to Li+1. Thus, the quad-region (shaded) formed by these four cor-

ners is skewed, leading to distortion in the subsequent hex-mesh. This is due to the

independent nature of the extraction of the corners at their individual level sets and

the rapid change of the surface features along the gradient of the harmonic function.

I introduce a smoothing process to remove this noise and reduce distortion.

ε=1.5 ε=2

(a)

before after 

(b)

Figure 4.4: The corners of the dolphin model (left) with ε = 1.5 and ε = 2, re-
spectively. The corners of the kitten model (right) before and after 100 smoothing
steps. Corners are represented as colored dots. The harmonic function for kitten is
designed by cutting the handle, where the vertices of the (two) cutting areas are set
to minimum (w = 0) and maximum (w = 1), respectively.

For each chain, I use the corresponding vertices on each Li to define a Schoen-

berg Variation diminishing-spline approximation (SVDSA) [17], γ0
i (t). I then find

the closest points on each slice to the curve. Next, I use the new points to define
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the control points of the next iterated SVDSA, γji (t). If there is significant noise

that results in sudden zig-zags in the original corner curves, this acts as a low-pass

smoothing filter to the chains. The new set of control points have reduced wiggles.

Here, the upper index indicates the number of iterations of this process. This process

is fast and can be carried out as necessary to create smoothed corner curves, suitable

for offsetting inwardly to create the inner volume structure. Algorithm 3 provides

the pseudo-code of this smoothing process. Figure 4.4b shows the chains of corners

of the kitten model before and after smoothing.

Algorithm 3: SVDSA

Input : {Li}, {γi}
Output: {P i}, {γi}
foreach γ in {γi} do

γ′ ← new B-spline curve;
foreach control point P ic in γ.{control points} do

s← evaluate γ at the node value related to P ic;
P i ← closest point on ∂Li to s;
γ′.{control points} ← P i;

γ ← γ′

4.2.3 Computing the Corners of the Interior Structure

To obtain the corners of the inner structure Qi, I first compute a distance field with

the distance value as 0 for boundary vertices. Next, I compute an iso-contour in the

interior of Li corresponding to a distance value, d, based on the obtained distance

field. The one-to-one mapping between the boundary and the interior contour is

guaranteed because 1) I can always locate the four interior corners by following the
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Figure 4.5: Bifurcation handling for the sculpture model. (a) shows the bifurcation
of the sculpture model (zoom-in view shows the separatrix crosses the saddle point),
(b) visualizes the obtained hex-mesh with the line structure being highlighted. The
red nodes are the extraordinary nodes in the generated hex-mesh.

gradient directions of the distance field on Li; 2) boundary and interior contour

are partitioned into four pieces by the four corners. For each piece of the interior

contour, the to be matched interior points can be found by accumulating chord length

parameterization using the same ratios as boundary curve.

As Li is the flattening of Li via the bijective mapping fi, Qi can be recovered

from Qi via f−1
i .

4.3 Extracting 3D Skeletal Surface

After constructing the inner structure Qi for each individual level set Li, I now

describe how to match the inner structure Qi through adjacent-level sets to form a
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Figure 4.6: Illustration of bifurcation handling. (a) illustrates that a level set Li
splits into two components in Li+1, so does the corresponding inner structure. (b)
demonstrates the two unmatched patches (i.e., the shaded regions) are mapped to
a saddle patch formed by the separatrix segment at Li, (c) shows the connection
between Qi and Qi+1,0 and the hex element formed by the last level set and the
surface, i.e. the cap. Note that P0P1 has been pushed down along the inverse gradient
of harmonics function to eliminate the degeneracy, (d) illustrates the matching of the
parameterizations of Li−1, Li, and Li+1 guided by the inner structure.

partitioning surface S (in 3D) (see Figure 4.8 for examples), which is referred to as

the inner-skeletal surface. Based on the matched corners determined by Algorithm 2,

I identify the corresponding matched edges of Qi and Qi+1, which are connected to

construct a quadrilateral face.

The configuration of the boundary surface and the selection of the harmonic

function may cause bifurcations that split a preceding level set Li into multiple con-

nected components in the current level set Li+1, or vice versa, e.g., at the base of
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the two branches of the sculpture model (Figure 4.5a). These bifurcations corre-

spond to the saddle points in the harmonic function, and their identification can be

performed automatically and robustly. Consequently, following the sweeping direc-

tion, the structure of Qi also undergoes splitting or merging to accommodate such

topological changes. Section 4.3.1 details the handling of the splitting scenario. The

merging case is handled analogously. n-way bifurcations are divided into a sequence

of 2-bifurcations and are handled individually.

4.3.1 Matching of Qi Across Bifurcations

Figure 4.6a depicts a case of splitting a level set. During this change, Qi of Li splits

into two components, Qi+1,0 and Qi+1,1 in Li+1. There is no one-to-one mapping

between the sub-regions of Li and Li+1 partitioned by Qi, Qi+1,0 and Qi+1,1, respec-

tively. Specifically, an interior edge, P0P1 (the red line segment in Figure 4.6b) that

splits Qi into two components must be mapped to two respective edges of Qi+1,0

and Qi+1,1. In addition, if mapping different components of the two level sets as

indicated by the colors shown in Figure 4.6a, two unshaded regions of Li+1 do not

have a correspondence. This is addressed by performing the following steps:

First, computing a small segment on the surface that crosses the saddle point and

intersects with Li at R0 and R1, respectively (i.e., the red curved segment in Fig-

ure 4.6b). A new section, referred to as a saddle patch and formed by the curveR0R1

and the edges P0P1, R0P0, and P1R1 can then be mapped to the two unmatched

components (the shaded regions in Figure 4.6c). In practice, a short segment across
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the saddle point on the surface can be obtained by computing two separatrices start-

ing from the saddle point along the incoming (outgoing) gradient flow direction for a

splitting (merging) bifurcation. The computation of these separatrices is terminated

when they reach the level set Li (Li+2 for merging).

Second, pushing down P0P1 along the negative-harmonic gradient direction as

long as P0P1 is still above Li−1 (Figure 4.6c), since P0P1R1R0 is a degenerate element

as the four corners are almost collinear.

Third, by creating a saddle patch, computing the mapping between Qi and Qi+1.

However, this solution leads to a T-junction configuration when considering Qi and

Qi−1 since Qi has been split into two components in the previous process. See

Figure 4.6d for an illustration. Specifically, if a line segment enclosed by the shaded

ellipse is not added in Li−1, a T-junction configuration occurs. More discussions are

provided on this issue in Section 4.4.

Figure 4.5b shows the generated hex-mesh for the sculpture model at the bifur-

cation. The structure of this mesh formed by the irregular edges is highlighted in

blue. The colored dots are the intersections of the irregular edges with the cutting

planes.

Bifurcation improvement The above basic bifurcation handling introduces a valence-

6 extraordinary node at each side of the bifurcation on the boundary quad mesh

(orange dot in the left figure of Figure 4.7b). This may lead to large distortion in
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Figure 4.7: Improvement at bifurcations. (a) illustrates the process that splits the
line segment across the saddle into two. Three hexahedral components are generated
instead of two. Different colored lines indicate their correspondence relation. (b)
shows the result of the kitten model before and after the bifurcation improvement
process.

elements at bifurcations whose neighborhood is relatively flat. To lessen the distor-

tion, instead of associating the two unmatched components to a section across the

saddle point as shown in Figure 4.6c, I map them to two sections as shown in Fig-

ure 4.7a. This splits the valence-6 (the number of neighboring hexahedral elements)

extraordinary point into two valence-5 nodes (Figure 4.7b). This adds an additional

component at the bifurcation (e.g., the purple region in Figure 4.7a). Since the

gradient of the harmonic field is curl-free, by transferring this configuration down

(splitting bifurcation) or up (merging bifurcation) following the sweeping direction,

T-junction configurations can be avoided. Note that this improvement is not required

and can be selected by the user according to the surface characteristics around the

bifurcations. I have applied this improvement to the kitten, fertility, blade, and

rocker arm models in our experiments.

39



4.3.2 Properties of the Skeletal Surface S

Figure 4.8 (top row) shows the skeletal surfaces S of a variety of 3D objects computed

using the aforementioned framework. As explained earlier, the corners of the inner

structureQi correspond to the extraordinary points of a 2D parameterization derived

by Qi. By matching Qi over adjacent-level sets to construct S, the extraordinary

points in 2D now form line structures in 3D as indicated by the intersections of

different surface sheets (with dark blue and red in Figure 4.8) of S. These line

structures, referred to as the extraordinary edges, correspond to the irregular edges

(or singular edges by Nieser et al. [69]) with valence not equal to four in the obtained

hexahedral mesh.

The extraordinary edges in S can start and end at either some extraordinary

nodes in the interior of the volume or on the exterior surface. Specifically, the ex-

traordinary lines start and end on the boundary surface when a component of the

level set either is born or vanishes (e.g., the four red points on the top of the shaded

surface in Figure 4.6d). In the meantime, the extraordinary lines meet at the ex-

traordinary nodes at the bifurcations. Figure 4.6f illustrates this. The two red

points (corresponding to P0 and P1 in the previous steps) are valence-5 extraordi-

nary nodes (i.e., there are five edges incident to each of them) in the hex-mesh. In

the meantime, the two orange points (corresponding to R0 and R1) are valence-6

extraordinary nodes on the boundary quad-mesh.

The base-complex CB of the subsequent hex-mesh can be derived from the skeletal

surface S. Specifically, if the sweeping does not involve bifurcations, S and CB have
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(a) (b) (c) 

Figure 4.8: Inner skeletal surfaces S and base-complexes CB of the twisted U (a),
kitten (b), and hand (c). The top row shows the skeletal surfaces with the singular
line structure being highlighted (i.e., black curves). Red sheets show the interior
surfaces, while blue sheets are the separation surfaces connecting the interior surfaces
and the exterior boundary surfaces. The bottom row shows their corresponding base-
complexes. Nodes and edges are the corners and edges of the cuboids, respectively.

a one-to-one mapping (Figure 4.8a). If bifurcations exist, the skeletal surfaces may

contain T-junctions because of the way bifurcations are handled(see Figure 4.6 and

Section 4.3.1). Nonetheless, their corresponding base-complexes do not contain T-

junctions (Figure 4.8b and 4.8c) as a separation surface will be added at T-junctions

to enforce an all-hex configuration in the base-complex structure. Therefore, the

nodes in the base-complexes (green dots) consist of both, extraordinary points and

regular points.
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4.4 Multi-resolution Hex-Meshing

This section describes how to compute a seamless 3D parameterization and induce

hex-meshes with large hexahedral components, after constructing S.

Parameterization: Similar to computing S, one parameterization direction w is

provided by harmonic function u(x, y, z). The computation of a 3D parameterization

can be simplified by two steps: 1) compute a 2D parameterization f i of Li based on

its Qi; and 2) match f i and f i+1 to obtain a 3D parameterization F .

p
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Figure 4.9: Iso-lines for 2D parameterization.

The 2D parameterization, f i =
⋃
j f

i
j of Li, consists of five patches. Each

patch Lij is triangulated and can be mapped to a rectangular region via f ij : Lij →

[0, n]× [0,m] ⊂ R2. To compute f ij , I applied Floater’s mean-value coordinates [24]

to calculate the u and v values for each vertex of Lij. To guarantee a continuous

parameterization across the boundaries of different patches, I classify the parame-

terization directions into three groups, i.e., the red, green, and blue dotted curves,

respectively, as shown in Figure 4.9.

Given the 2D parameterizations for all level sets, a 3D-volumetric-parameterization

can be constructed accordingly. For the adjacent-level sets without bifurcation, the
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correspondence of their 2D parameterizations is one-to-one. When a bifurcation

occurs, I match f i−1, f i, and f i+1 via the correspondences between their inner struc-

tures obtained in Section 4.3.1 as illustrated by Figure 4.6e. In this case, the bifur-

cation occurs between level sets Li and Li+1. To build the correspondence between

f i and f i+1 (composed of f i+1,0 and f i+1,1), I make use of the two sides of the sad-

dle patch, which splits the inner structure Qi (and f i) into two components. The

segment crossing the saddle is mapped to the line segment P0P1 parallel to the pa-

rameterization direction V (red). Its perpendicular direction is denoted as U (blue),

and the integer value of P0P1 is uP . To avoid a T-junction configuration, I set the

numbers of isolines parallel to the U direction to be the same for both f i+1,0 and

f i+1,1. That is, I use the same number of samples along the six red segments (i.e.,

along V parameterization direction) in both level sets Li and Li+1, as illustrated by

the intersections of the blue isolines with the six red segments (Figure 4.6e). The

matching between f i−1 with f i can be coordinated after the above process to avoid

a T-junction configuration. Fortunately, the split of Qi does not introduce a new

singular structure at the splitting edge P0P1, i.e., both P0 and P1 are still valence-4

nodes. Therefore, T-junctions can be avoided by enforcing an isoline to be included

in the parameterization f i−1 that has the same integer value uP to the one that

corresponds to P0P1 in f i. This iso-line is highlighted by the shaded ellipse in level

set Li−1 in Figure 4.6e.

Hex-meshing: The hex-mesh is constructed in two steps. First, an all-quad

mesh is obtained by following the iso-lines of the integer values of the 2D parame-

terization for each level set. Second, all the quad meshes are matched in the same
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fashion as the construction of the 3D parameterization. The numbers of samples,

nU , nV , and nW , are user-provided parameters that control the resolution of the

hex-mesh.

Since I cut densely in the first step, when a coarse hex-mesh is preferred, I merge

hex elements that are in two neighboring levels to keep an approximate regular aspect

ratio of edge length in three parameterization directions. To improve the quality of

the obtained mesh, I perform Laplacian smoothing on both the interior and exterior

vertices and then optimize the mesh using the technique by Knupp [48]. Note that

since the boundary extraordinary points are explicitly placed on the surface regions

that correspond to the first and last slices (see the four red dots at the top of the

surface in Figure 4.6c), a process similar to the padding [77] may be carried out to

offset these extraordinary points to the interior. However, this process is optional

and only used to improve the element quality in those regions if needed. Although

all the hex-meshes tested in this work have positive Jacobians, I cannot guarantee

that our pipeline can always generate hex-meshes without inverted elements.

4.5 Results

I have applied our proposed approach to various models. All the obtained hex-meshes

have large hexahedral structure. Figure 4.10 provides the hex-meshes of a variety of

3D objects with three different resolutions. Hexahedral elements that belong to the

same components of the structure of the mesh are shown in the same colors. For

all the models shown in this chapter, at most 600 slices are used for the cutting,
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Figure 4.10: Different resolutions of the hex-meshes generated for a variety of 3D
models. Note that the components with white colors are in the interior, while the
others with different colors are at the exterior.

which takes up to 2 minutes to compute. The corner extraction (including medial

axis computation) takes one min per slice. The time spent on the generation of hex-

meshes ranges from 5 seconds to 2 minutes, depending on the mesh resolution. All

timings are obtained on a PC with Intel i7 2670QM 2.2GHz CPU and 8GB RAM. In

the following, I discuss our results with respect to control, comparison with existing

methods, element quality, and volumetric B-spline-fitting.

In Figure 4.10, the kitten model is meshed from two different choices of harmonic

functions, one with bifurcation and one without bifurcation. The blue arrows indicate

the directions of the harmonic functions. Similarly, for the bunny model, both meshes

have their maxima at the tips of the ears (in green). While the upper bunny has

its single minimum at the tail (in red), the lower bunny has its whole base fixed

as minimum (not visible from the given view). These examples demonstrate that
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our pipeline outputs valid meshes for different user-specified harmonic functions.

The choice of harmonic functions is mostly application-specific. For instance, the

problem of establishing continuity among elements given the kitten model without

bifurcation is significantly reduced, as one does not have to deal with a bifurcation

point during a higher-order spline fitting process. A sweeping strategy could be

derived automatically based on shape analysis of the input object. However, this is

beyond the scope of this work.

Higher genus models: I applied our method to the fertility model (Fig-

ure 4.11) to demonstrate that our pipeline can be used for higher genus models. The

left-most image is the base-complex of these meshes, while the right most shows the

Jacobian visualization and histogram of the Jacobian distribution. This object is

meshed based on a harmonic function with two critical points: One minimum (at

the back of the mother), and one maximum (at the base opposite to the minimum).

This harmonic function results in a sweeping that generates 3-way bifurcations in

the level sets, which are handled by splitting 3-way bifurcations to two consecutive

2-way bifurcations (Section 4.4).

CAD models: Methods that output hex-meshes with large structure are often

challenged by the complexity of input models. In this context, CAD models are

especially difficult to mesh. To demonstrate that our method can be used to mesh a

certain class of CAD models, I applied it to the blade and the rocker arm. Figure 4.12

shows the results. Note that the sharp features of these CAD models are properly

preserved by our corner extractions. The element quality of the meshed rocker arm is

comparable to those generated by existing methods. Even so, distorted elements can
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Figure 4.11: The hex-meshing result of the fertility model. The left-most image
shows the base-complex; the middle three images show generated hex-meshes with
decreasing resolution; and the right-most one shows the Jacobian visualization and
the histogram of the Jacobian distribution.

be observed in the areas that the surface normal is almost parallel to the gradient

direction of the harmonic field (e.g., the flat region of the blade as highlighted in

Figure 4.12b). This may be addressed by inserting additional extraordinary points in

this area in a similar fashion to the extended bifurcation handling shown in Figure 4.7.

4.5.1 Comparison With Existing Methods

Comparison with cross-field based methods: Figure 1.1 compares our method

with the SRF approach [52]. The structure of the hex-mesh with SRF is guided by the

structure of SRF (i.e., the singular graph). However, as pointed out by its authors,

the structure of the obtained hex-mesh may not match the structure of SRF due to

the parameterization. Furthermore, the extraordinary (or singularity) points are not

always aligned, leading to many small components in the structure. For instance,

there are 259 components in the hex-mesh of the bunny using SRF (Figure 1.1b)

while ours has only 18 components (Figure 1.1a).
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(a) (b)

Figure 4.12: Results of two CAD models with our method: (a) the rocker arm and
(b) the blade. The circle highlights the area with distorted elements in the blade
mesh.

Figure 4.13 shows a deformed-rabbit model. While this frame-field based method

fails to find a valid all-hex mesh for this model due to certain global degeneracies in

the parameterization [43], our method successfully computes valid hex-meshes with

various resolutions.

Compare to Polycube based methods: Figure 1.1 compares our method with

the L1-Polycube method [38]. In order to remove polycube corners from the exterior,

they are pushed into the interior of the object by adding one boundary layer. While

it might be possible to apply this method to a wider range of input models, this

offsetting process cannot guarantee to preserve the large polycube structure, and

may result in additional T-junctions. Removing them leads to additional smaller

hexahedral components. For instance, the bunny model meshed by the L1-Polycube

approach has 422 components (Figure 1.1b) and 580 components with Polycut, which

makes it difficult to establish a smooth basis almost everywhere in the model. In
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contrast, the structure of the hex-meshes produced with our method is simpler,

predictable and controllable.

(b)(a)

Figure 4.13: A rabbit model where the frame-field based method fails and our method
succeeds. (a) Demonstrates the global degeneracy, resulting in a invalid hex-mesh.
Red lines are inner singularities and cyan lines are surface singularities, they are
processed by using the method proposed in [43], black rectangle shows a global
degeneration; (b) our all-hex-mesh and base-complex.

Compare to GPC: With Generalized PolyCubes (GPC) [51], the faces of each

cuboid can be curved, which is similar to our representation. However, an important

difference is that the edges of the GPC cuboid are obtained by tracing along the

gradient of a harmonic field, which may follow surface features only by coincidence.

Figure 4.14 shows a comparison of the placement of the corners for the deformed

torus with the proposed extraction technique guided by the medial axis of the 2D

level sets (a) and the one (b) that aligns the corners by following the gradient of a

harmonic function. From the comparison, I see that the one generated by following

the harmonic field fails to capture the transition of the surface configuration, leading

to the improper orientation of the structure of the obtained hex-mesh, i.e., the struc-

ture is not aligned with the anisotropy property of the cross section. Note that the
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first four corners of the first slice for the harmonic field based approach are extracted

using our proposed algorithm. This indicates that only focusing on obtaining the

optimal corners at the initial slice is typically insufficient. Furthermore, for all the

models, GPC places corners on the boundary rather than in the interior. This is gen-

erally avoided by most hex-meshing techniques, especially when dealing with natural

shape models, since degenerate elements arise quite often around singularities on the

boundary.

(a) (b)

Figure 4.14: The issue of misalignment of the hex-mesh structure with the surface
feature induced by tracing gradient line along the surface harmonic field (b) is ad-
dressed by our method (a). Meshes in (a) and (b) are cut to show the interior.

4.5.2 Element Quality

Figure 4.15 provides the visualization of the scaled Jacobian values [28] of the meshes

shown in Figure 4.10 with blue denoting Jacobians close to one and red close to zero.

The histograms show the distribution of Jacobians for the finest versions of the

meshes with x-axis representing the Jacobian values (increasing from left to right)

and y-axis being the number of hex-elements. For all histograms, the majority of our

hex-elements have large Jacobians, i.e., the histograms have larger y-values close to

the right, which is desired. The left value of the script below each histogram is the
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Figure 4.15: Visualizations and histograms of the Jacobian value distribution of a
number of hex-meshes. The red-white-blue color coding is used with red indicating
smaller Jacobian values. The numbers show the minimum and average Jacobian
values.

minimum Jacobian of the corresponding mesh, while the right provides the average.

Table 4.1 provides the component numbers and scaled Jacobians of a number of

hex-meshes generated by our method and those produced by other methods. More

results and statistics are provided in the supplemental material.

Based on the results and comparison shown above, the meshes generated by our

method have much smaller numbers of components. Their average Jacobian are

comparable to SRF, PolyCube and Polycut methods, while their minimum Jaco-

bians may not be as good for more complex objects. This is especially the case near

bifurcation areas and surface areas whose normals and the sweeping direction have
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similar angles. This can be seen in the highlighted area of the blade model (Fig-

ure 4.12b). Ideally, their angle should be close to 90 degrees. This can be alleviated,

to some extent, by refining the structure of the mesh (i.e., introducing additional ex-

traordinary points). However, this refinement process needs in-depth investigation,

which I plan to study in a future work.

Models #Hex Scal. Jac. #Comp
Bunny[our method] 69984 0.891/0.108 18

Bunny[SRF] 133632 0.940/0.293 259
Bunny[Volumetric Polycube] 81637 0.953/0.138 1745

Bunny[L1-Polycube] 37734 0.926/0.382 422
Bunny[Polycut] 74084 0.958/0.274 580

Kitten[our method] 3445 0.866/0.257 5
Kitten[L1-Polycube] 7083 0.910/0.424 233

Fertility+[our method] 20240 0.828/0.182 300
Fertility[SRF] 13584 0.911/0.351 1352

Fertility[Volumetric Polycube] 19870 0.949/0.196 635
Fertility[Polycut] 53702 0.900/0.259 693

Rocker-arm+[our method] 11368 0.826/0.110 82
Rocker-arm[SRF] 10600 0.866/0.209 1149

Rocker-arm[L1-Polycube] 24346 0.920/0.439 686
Rocker-arm[Polycut] 56667 0.912/0.370 664

Table 4.1: Comparison of hex-meshes produced by our approach with those by SRF,
Volumetric Polycube, Polycut and L1-Polycube methods.

4.5.3 Spline Fitting

Our method imposes constraints during the volumetric decomposition stage, result-

ing in a volume parameterization free of T-junctions. Because of this, a volumetric

B-spline patch can be fit to each of the cuboids individually using standard fitting

methods as used in [17]. The union of these patches resembles an approximation of
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Figure 4.16: Spline fitting of a rabbit (a) and deformed torus (b).

the input object.

In the standard case, a volumetric B-spline patch is C0 at its boundary, but has

higher continuity properties (e.g., C2) in its interior. Coarse structure as generated

by our method may result in distorted elements, which may be seen as a disadvantage.

However, points in the resulting union of volumetric B-spline patches are C2 almost

everywhere. The predictable and simple structure of our output potentially increases

the continuity by reducing the number of boundaries between patches. This is a

direction that I are actively investigating. Methods producing a hex-mesh lacking

large structure such as SRF and Polycube methods, do not allow many regions to

have smooth-basis functions across multiple elements.

The corner placement strategy proposed in Section 4.2 reduces distortion of the

elements, which in turn reduces the distortion of the resulting volumetric B-spline

representation. Figure 4.16 visualizes smoothly fitted spline of a rabbit (Figure 4.13b)
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and deformed torus (Figure 4.14a) based on the obtained meshes. Compared to

the rabbit and deformed torus hex-meshes, both, the average and minimum-scaled

Jacobians are improved after B-spline-fitting.

4.5.4 Limitations

A number of limitations exist in the current method. First, the current algorithm

cannot extract the 2D skeletal structure from a level set with interior holes, so do

the skeletal surface from 3D models with interior boundaries. However, this may

be addressed by properly splitting an object into several parts such that each part

has a disk-topology. Second, one single sweeping direction may not be sufficient for

complex objects, such as objects that have large scale change (e.g., the blade Fig-

ure 4.12b) over the sweeping direction and objects that have n-way symmetry. While

this may be addressed by decomposing the complex objects into several components,

each of which can be meshed separately, stitching the hex-meshes of the individual

components together will need to take care of the transition of the topology change

of hex-mesh structures. This is beyond the scope of the work in this chapter.

Third, the current pipeline places only four corners on the boundary of each 2D

slice. This may not be sufficient for models whose cross sections possess more than

four feature points, e.g., the fandisk.

Fourth, the manual design of a harmonic field for a complex object can be chal-

lenging. If extrema are not well placed, the induced harmonic functions will lead to

highly distorted hex-meshes (Figure 4.17). Combining the information from shape
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(a) (b) (c)

Figure 4.17: For a bunny model, harmonic functions that with extrema at (a) a
point and (b) a curve connecting two ears, will result in hex-meshes with much
larger distortions, comparing to the hex-mesh (Figure 4.10) guided by a harmonic
function (c) that place extrema at the two ear tips.

analysis may help. Nonetheless, this information should only be used to assist the

user selection of the harmonic field rather than providing an optimal answer, as the

optimal-harmonic field direction may not be desired for the specific application.

4.6 Conclusion

In this chapter, I introduced a volumetric spatial partitioning strategy based on the

construction of an inner-skeletal surface. This skeletal surface was computed via

a sweeping strategy which was determined by a user-specified harmonic field. The

gradient of this harmonic field provided the direction of the subsequent parameteriza-

tion and hexahedral elements. A number of 2-manifold-level sets were extracted from

this 3D harmonic field. A 2D inner-skeletal structure was extracted for each level

set. These 2D inner structures were then matched over adjacent-level sets to form
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the inner-skeletal surface which partitions the volumetric space into cuboids. Conse-

quently, a 3D parameterization with large structure was derived. We demonstrated

our method on a variety of 3D objects.

Compared to existing methods, the hex-meshes generated by our method typically

had simpler structure, which was helpful in applications in graphics and engineering

(e.g., [41]). However, achieving coarse structure typically results in parameterizations

with distortions. This can be addressed by refining the structure locally as needed

using the techniques presented in [51]. In our opinion, refining a coarse structure to

achieve the tradeoff between the number of singularities and distortion of elements is

easier to control than coarsening a fine structure to achieve the desirable structure.

Another unique characteristic of our method was that it offers the user to specify the

orientation of the generated hex-meshes globally, while existing methods provided

only local control [52]. I believe our method enriches the existing tool box for hex-

meshing.

In addition, the computational time was a major bottleneck of our pipeline. In

the future, I plan to exploit parallel computing to speed up the computation of our

algorithm. I also plan to extend our framework to handle CAD models whose 2D cut

planes possess more than four sharp corners as well as determining more advanced

decomposition strategies for objects that a single sweeping is not sufficient. I will

develop techniques for locally refining the structure of the mesh, i.e., systematically

introducing extraordinary points as needed, to reduce distortion in a controllable way.

Finally, research into guiding the user to select the appropriate harmonic functions

for the given application is important.
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Chapter 5

Correcting Structure

Misalignments for Hex Re-meshing

Although the criteria for evaluating the quality of hex-meshes are application depen-

dent, hex-meshes that conform to boundary surface, preserve surface features, have

regular distribution of parameterization lines, and have low element distortion, are

generally preferred [63, 28]. It is noteworthy that hex-meshes with the above desired

characteristics usually require a certain number of well-placed singularities that are

distributed on either the boundary or in the interior of the volume [69, 39, 52, 43].

Given the same set of singularities, without careful control, it can often result

in a partition with a large number of components (Figure 5.1(a)). A similar issue

has been discussed in quadrangulation applications [66, 8, 89], and is attributed to

the misalignment of singularities. [52] also pointed out a similar issue in hex-meshes.

To the best of our knowledge, an effective and automatic pipeline has not yet been
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(a) (b) (c)

Figure 5.1: (a) An input hex-mesh [52]: The image on the left shows its base-complex
that partitions the hexahedral mesh into different large components, illustrated with
different colors on the right. Due to the misalignments between singularities, many
(typically small) components arise. For instance, a strip of small components near
the sharp feature is highlighted. (b) Our alignment algorithm reduces the complexity
of the base-complex but leads to a hex-mesh with a large distortion. (c) Both the
singularity placement and the element quality of the resulting hex-mesh are improved
by our structure-aware optimization algorithm.

proposed to reduce the number of components by fixing the misalignment issue of

hex-meshes.

In this chapter, I propose the first solution to reduce the number of hexahedral

components in a given hex-mesh by procedurally removing the misalignments from

its base-complex. Given an initial semi-structured hex-mesh as the input, I first ex-

tract its singularity-structure, that is the union of all the singularities, and compute

its base-complex based on the algorithm in Chapter 2(Figure 5.1(a)). Second, I iden-

tify the misalignment candidates from the obtained base-complex. Each misalign-

ment candidate characterizes a pair of misaligned singularities based on a concept,

called component sheet that is adapted from the previously introduced hexahedral

sheet [10]. These misalignment candidates are a subset of all the misalignments in the

base-complex. I then develop an effective and automatic framework to procedurally

remove these misalignment candidates in order. Since the obtained hex-mesh after

fixing the misalignments could be highly distorted (Figure 5.1(b)), I then extend
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the parameterization-based optimization from quad domain [89] to hex-meshes to

further optimize the placement of singularities and reduce distortion (Figure 5.1(c)).

The main contributions of the work in this chapter are:

1. I define misalignments in 3D base-complex. From them, I define misalign-

ment candidates for subsequent fixing based on the component sheets. Note that

misalignment candidates are a subset of all the misalignments in a base-complex.

2. To remove a misalignment candidate, I propose a zig-zagged sheet extraction

technique and enumerate all the possible configurations for this extraction. I propose

a metric to rank the misalignment candidates, and devise an effective algorithm to

remove them in order.

3. Finally, I extend the reparameterization-based optimization for 2D quad-mesh

to 3D to improve the quality of the resulting hex-mesh.

5.1 Misalignments in Hex-meshes

In the following, I will first define the misalignments in 3D base-complex, and then

introduce an misalignment candidate concept for the subsequent removal of them.

5.1.1 Misalignment Problem

The misalignment problem of quad-meshes is defined in terms of the mismatch of the

separatrices of extraordinary (i.e., singular) nodes in surface domain, as illustrated
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(a) (b)

Figure 5.2: A misaligned singularity pair on surface (a) and in volume domain (b),
respectively. Other than the singular nodes and edges (both in red), other intersec-
tions shown in these two images are regular elements, i.e., regular nodes and regular
edges.

in Figure 5.2(a). Analogously, the misalignment problem of volumetric hex-meshes

is defined as the mismatch of the separation sheets of singular edges, as illustrated in

Figure 5.2(b). From Figure 5.2 I can see that, the two singularities are not directly

connected by a separatrix in 2D or a separation sheet in 3D, resulting in the crossing

of two separation structures starting from these two singularities, respectively. This

crossing results in non-singular elements (at the intersections of the two separation

structures) in the base-complex, creating additional components in B. In other words,

misalignments have a close relation to the existence of non-singular elements in B.

Thus, reducing the number of components in B can be achieved by removing the non-

singular elements in B. For 3D, while it is beneficial to achieve fewer components

in B, a certain number of regular edges are needed to maintain the element quality

and geometric fidelity of hex-meshes, for example, the regular edge (black) on the

boundary of the model as shown in Figure 5.2(b). In this example, this regular

edge (pointed by the black arrow) is the intersection of the surface boundary and
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a separation sheet starting from a singularity edge inside the volume. Keeping this

regular edge results in a more regular component at the boundary.

To the best of our knowledge, none of previously reported techniques can effec-

tively remove all the misalignments in hex-meshes. In the following, I introduce a

concept that enables us to effectively remove a subset of misalignments, referred to

as misalignment candidate in this chapter.

5.1.2 Misalignment Candidate Detection

Similar to a hexahedral sheet [10] that is composed of hex-elements sharing parallel

edges, a set of components in BC that have parallel base-complex edges form a

component sheet. The difference between the component sheet and the hexahedral

sheet is that: the former is defined over the base-complex, while the latter is defined

in terms of the hex-elements in H. Figure 5.3(a) shows a component sheet extracted

from the base-complex of a Fandisk model. A component sheet consists of a set of

nodes, edges, faces, and components of B. The set of components, i.e., the middle

part shown in Figure 5.3(b), are sandwiched by two face sheets (the left and right

surfaces in Figure 5.3(b)). In addition to those properties possessed by conventional

hexahedral sheets, a component sheet has the following properties: 1) each of its

two face sheets must contain at least one singular edge (the red line segments in

Figure 5.3) unless it is at the boundary, and 2) some edges in the volume part

may be parts of singular edges, e.g., the red line segments in the middle volume of

Figure 5.3(b). A limited number of component sheets can be constructed from B by
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grouping sets of parallel base-complex edges (the blue and red edges in the middle

of Figure 5.3(b)).

(a) (b)

Left - Fl Right - FrMiddle

Figure 5.3: A component sheet (a) extracted from the B of a Fandisk hex-mesh
consists of three parts (b): a left face sheet (Fl), a middle volume, and a right face
sheet (Fr). Regular and singular edges of the base-complex are shown in blue and
red, respectively.

Based on the above component sheet, I define the adjacency among singular edges

in S. I call two singular edges neighboring to each other if there is a component sheet

containing both of them. Any two singular edges are aligned only when there is a

separation sheet directly connecting them. In this case, all the singular edges that

are contained in the same face sheet are well aligned. Let’s assume that the two face

sheets, Fl and Fr, of a component sheet have a set of singular edges Cl and Cr (the

red edges in the left and right surfaces of Figure 5.3(b)), respectively. Then, all the

singular edges in Cl are well aligned (Figure 5.3), so do the singular edges in Cr.

A misalignment candidate is defined in terms of the two singular edge sets Cl and
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Cr. If none of the singular edges in Cl is aligned with a singular edge in Cr, then I

say the component sheet containing sets of Cl and Cr is a misalignment candidate. A

component sheet is a misalignment candidate, as long as for every base-complex edge

in the volume part of the component sheet: 1) if it is regular, its two end nodes cannot

be both on Fl and Fr at the same time; 2) if it is singular, it must be part of a singular

edge (not the entire singular edge). I can easily find all the misalignment candidates

in B by performing this check. The leftmost image of iteration 1 in Figure 5.5 shows

all the detected-misalignment candidates for a Bone hex-mesh. When I visualize the

misalignment candidates, I only show the interior parallel edges. Edges belonging to

the same candidate are illustrated with the same color.

(a) (b) (c)

Figure 5.4: (a) A single entangled (crossing components in green) misalignment
candidate (singular nodes and regular nodes in B are in red and blue, respectively),
(b) original Fertility hex-mesh embedded with the entangled-misalignment candidate
(black), and (c) the optimized Fertility hex-mesh with simplified base-complex.

Note that, the misalignment candidates may be entangled with themselves to form
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complicated scenarios; Figure 5.4(a) shows such an example. For simplicity I explain

our algorithm using a scenario where the misalignment candidates are not entangled.

Entangled-misalignment candidates can also be removed by our alignment algorithm

in a similar manner. As an example, Figure 5.4(c) shows the optimized hex-mesh of

Fertility that removes the entangled-misalignments existing in Figure 5.4(b).

5.2 Alignment Algorithm

Given an input hex-mesh, I propose to solve the misalignment problem of S to

obtain a simplified base-complex B′ (reducing the number of components in B while

preserving the singularity-structure S).

5.2.1 Pipeline of Alignment Algorithm

Figure 5.5: Alignment of singularity-structure algorithm is applied to a hex-mesh of
Bone. Input: the singularity-structure (red) and constructed base-complex. Within
each iteration, execute the following four steps: step 1, detect all misalignment
candidates, where every misalignment candidate is represented by parallel edges in
the same color; step 2, choose the top-ranked candidate based on the designed metric
(green); step 3, the misalignment of singularity chosen at step 2 has been eliminated
(sheets) and a new base-complex is constructed; step 4, evaluate the simplified base-
complex (the simplified base-complex is valid at all the iterations). Output: the
constructed aligned base-complex.
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Given H and its extracted B, our alignment algorithm corrects misalignments

via the removal of misalignment candidates–an extension of the previous hexahedral

sheet removal process [10], in a greedy fashion as described below:

1. Detect all the misalignment candidates in B (Section 5.1.2);

2. Rank all the misalignment candidates based on the induced geometric dis-

tortion and the reduced number of components via the removal of individual

candidates (Section 5.2.2);

3. Correct the top-ranked misalignment candidate to obtain B′ (Section 5.2.3);

4. Verify whether B′ is valid or not (Section 2.2). If it is valid, assign B′ to B and

go to Step 1. Otherwise, re-parameterize H guided by B (Section 5.3.1) and

go to Step 1.

The above process is repeated until no more misalignments can be found or the

number of corrected misalignments meets p, where p is the number of misalignments

that users want to remove.

At the above step 4, the resulting B′ may not be valid because only a limited

number of hexhedral element layers exist in the volume part of the component sheet

of the misalignment candidate. This can be addressed by a re-parameterization step.

Explanations will be provided in detail in the topology preservation Section 5.2.3.2.

Figure 5.5 shows a pipeline overview of our alignment.
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(a) (b)

Candidate-2

Candidate-1

Candidate-2

Candidate-1

Figure 5.6: Removing one misalignment candidate eliminates the other one as well:
(a) two parallel-misalignment candidates, and (b) two orthogonal-misalignment can-
didates.

5.2.2 Misalignment Candidate Ranking

Since I remove misalignment candidates sequentially, it is important to rank the

candidates based on their priorities. The priority value of a misalignment candidate

is determined based on the geometric quality of the affected mesh region and the

number of reduced components.

In this work, the geometric quality is determined by two factors: the size of one

of the two face sheets (Fl has the same number of quads as Fr) and the width of

bc, i.e., the length of any one base-complex edge in the volume part. I introduce a

metric, Gm, to measure the geometric quality of a misalignment candidate, m, as

follows:

Gm = Am + βTm
2, (5.1)

where Am is the number of quad elements in one of the two side face sheets

(Figure 5.3(b)), and Tm is the number of hexahedral edges of any one base-complex

edge in the volume part of m. Here β balances the importance of Am and Tm.
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The removal of different misalignment candidates may reduce various number of

components. When two or more misalignment candidates are parallel (sharing one

face sheet, Figure 5.6(a)) or orthogonal (having crossing face sheets, Figure 5.6(b))

to each other, removing these candidates in different orders may lead to distinct

numbers of components in B′. This is because in either a parallel or an orthogonal

case, correcting one misalignment candidate would align some singular edges at the

two face sheets of the other candidate. In other words, eliminating one candidate

may remove some other candidates at the same time. Therefore, it is natural to

rank the candidate that achieves larger number of component reduction higher to

expedite the alignment process. Considering this and combining with the geometric

quality metric, I introduce the priority metric for a given misalignment candidate m:

Wm = αGm +NB′ , (5.2)

where NB′ is the number of components of the base-complex after correcting m.

Here α balances the importance of the geometric deficiency of H and the simplicity

of its base-complex. I use α = 1 and β = 6 for all our experiments.

5.2.3 Misalignment Candidate Correction

The removal of a misalignment candidate is performed by merging its two side face

sheets into one, which turns a component sheet into a face sheet. In this way, the two

singular edge sets in the misalignment candidate can be aligned. This can be achieved

by simply averaging the two face sheets of the misalignment candidate to obtain a
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(a) (b)

Figure 5.7: Aligned hex-meshes by (a) simply averaging the left- and right-face
sheets of misalignment candidates without preserving the surface features, and (b)
our approach.

(a)

Original Diagonal Trigonal

(b) (c)

Figure 5.8: (a) A misalignment candidate for Bone (top) and Rockerarm (bottom)
hex-meshes, respectively; (b) computed-patch configurations; and (c) the extracted-
surface sheets.

single face sheet. While this interpolation procedure is ideal for some circumstances,

it could result in hex-meshes with missing geometric features on boundary areas

(Figure 5.7(a)), which will be difficult to recover by optimization.

To 1) preserve the boundary geometry of the hex-meshes after alignment and 2)

ease the subsequent structure-based global optimization (see Section 5.3), I introduce

a novel strategy to remove a misalignment candidate by directly connecting its two

sets of singularities using a face sheet in a zig-zag manner. The resulting face sheet

will traverse through the involved components of the misalignment candidate. To

determine the patch of this surface sheet within each component, I proceed as follows
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(Figure 5.8). First, for each component, I determine its configuration for the patch

extraction (Section 5.2.3.1, Figure 5.8(b)). Second, based on this configuration, I

further extract the patch using the elements of H (Section 5.2.3.1, Figure 5.8(c)).

As shown in the component at the left-top corner of Figure 5.2.3.1, let’s assume

a component of B has three principal directions, i.e., i, j, k. Its nodes, edges, and

faces are in the form of vi,j,k, εi,j, and τi, where εi,j connects nodes vi,j,k and vi,j,k+1,

and τi denotes the face on the i-th plane.

5.2.3.1 Face Sheet Configurations

τ̂1 τ2
^ τ3

^
τ4
^

τ1
~

τ2
~

τ3
~

τ4
~

τ5
~

τ6
~

τ7
~ τ8

~

i

jk

vi, j, k

vi+1, j+1, k+1

τj+1τj

Original Diagonal

Trigonal

Figure 5.9: A patch at the left-top corner can be extracted from a component in
three distinct cases: original (two configurations), diagonal (four configurations),
and trigonal (eight configurations).

To extract the face sheet, F ′m, from m, the following constraints are enforced: 1)

if one or more edges of a patch of F ′m are singular, then these edges should remain

unchanged; otherwise, the aligned base-complex would not sit in the original hex-

mesh any more, and 2) any two neighboring patches of F ′m are connected via only

one base-complex edge. Conditions 1 and 2 are needed to achieve a valid B′.

For a component bc in m, as shown in the left-top corner of Figure 5.9, I assume
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the base-complex faces τj and τj+1 belong to the two face sheets, Fl and Fr, respec-

tively. A patch of F ′m can be extracted from bc in three topologically distinct cases:

original (6 in total), i.e., four nodes are on the same face of bc, diagonal (6 in total),

i.e., two nodes on one face and the other two nodes on another face, and trigonal

(24 in total), i.e., three nodes on one face and the fourth node on another face. For

each of the three cases, I need to filter out those configurations that containing the

base-complex edges of bc that belong to the volume part of m (e.g., the parallel

edges in Figure 5.3(b), middle). Otherwise, the subsequent B′ will not be valid after

a collapse process described in Section 5.2.3.2. As shown in Figure 5.9, the valid

configurations (14 total) are: two original faces (τj and τj+1), four diagonal faces

(τ̂1, τ̂2, τ̂3, and τ̂4), and eight trigonal faces (τ̃1, τ̃2, τ̃3, τ̃4, τ̃5, τ̃6, τ̃7, and τ̃8).

To maintain conditions 1 and 2, I need to determine the configuration type of

each patch of F ′m, i.e., how the four corners of the quad patch are extracted from

a component bc. To achieve this, I first initialize all the patches in F ′m with all the

14 configurations. Then, for each patch, I applied conditions 1 and 2: I retain the

configurations that contained parts of singular edges as well as the configurations

that share the same edges with those of its neighboring patches; other configurations

were removed. Besides, a global update of the configurations of all the patches was

needed. This is because removing invalid configurations of a patch may invalidate

some configurations of its neighboring patches. In most cases, the above conditions

were not sufficient to ensure every patch had only one configuration left. As such,

I randomly choose one configuration of a patch that had multiple configurations

remaining, and updated the configurations of its neighboring patches accordingly. By
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repeating this process, a valid configuration of F ′m was constructed (Figure 5.8(b)).

5.2.3.2 Face Sheet Extraction

(c)

(e)

(b)

τk

τk+1

^ε1

^ε2

(d)

τi+1

τj

Δ1

Δ2
(f)

τ̂1

(a)

vi, j, k

vi+1, j+1, k+1

bc

vi+1, j+1, k

Min

Max

Figure 5.10: A base-complex face with diagonal configuration can be constructed
from a component (a), by first extracting the two new base-complex edges (b);
second, peeling hex-elements gradually from the surface (d) to the interior (e) by
measuring the weights calculated for them (c). The constructed sheet is shown in
(f).

After determining the configuration for each patch, I now describe the construc-

tion of a patch from its corresponding component bc using elements of H. Based

on all the three topologically distinct cases of the configurations, this patch will be

either set as one of two original faces of bc, i.e., the configurations shown in the top

row of Figure 5.9, or newly extracted from bc, i.e., the other configurations in Fig-

ure 5.9. In all cases, new base-complex nodes will be chosen from BV . Specifically, I

process each configuration as follows.
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Original configuration: As shown in the original configurations of Figure 5.9, I

just use either τj or τj+1 of bc. Without loss of generality,

let’s assume τj is selected, if τj+1 is contained in a compo-

nent other than bc, then that component will be merged

with bc to form one component in B′ (see the inset). Oth-

erwise, τj+1 is on the surface boundary of H, I simply

discard the bc component and as a result, τj will be on the boundary.

Diagonal configuration: Let’s assume τ̂1 is selected (the first configuration of the

diagonal case in Figure 5.9), I then describe how to extract it as follows, illustrated

in Figure 5.10.

In the example shown in Figure 5.10, first, I extract the two new edges, ε̂1 from

τk and ε̂2 from τk+1, respectively. Let us take the extraction of ε̂1 as an example.

Consider τk that consists of points and edges as an undirected graph, then ε̂1 is the

shortest path from vi,j,k to vi+1,j+1,k A point inside τk has a large weight when it

is close to the boundary of τk. The kthDijkstra algorithm [96] is used to compute

this path. The standard Dijkstra algorithm cannot be applied because its computed

shortest path would be problematic when three edges on the shortest path share the

same hex-element in H. In this case, a quad of τk will be contained in the patch that

is to be extracted. Then, there could be a quad belonging to two base-complex faces

in B′ when two neighboring components are merged.

Second, with the four edges extracted for τ̂1 (Figure 5.10(b)), I find its interior
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quads that are located inside bc. A straightforward yet inefficient way to extract τ̂1

from bc is to exhaust all the scenarios in a brute force fashion. I now describe our

algorithm to obtain the optimal τ̂1. As shown in Figure 5.10(c), I first calculate a

scalar function over the whole volume of bc. The scalar value at a vertex v in bc is

calculated using s(v) = d2e(v)−dc(v)−de(v)−df (v), where d2e(v), dc(v), de(v), and

df (v) are the minimal distances from v to the two newly extracted edges ε̂1 and ε̂2,

to the eight corners, to the twelve edges, and to the six patches of bc, respectively.

The distances are the numbers of hexahedral edges calculated through a bread-first

search. The weight for each quad within bc was then computed by averaging its four

vertices’ scalar values. As shown in Figure 5.10(c), the weights became smaller from

the corners corresponding to εi,j+1 and εi+1,j to the center, as the color is changed

from red to blue.

Third, the interior of τ̂1 can be obtained by a hex-element peeling process. The

surface of bc is separated into two parts based on the boundary of τ̂1. Either of them

can be used for initialization. Here, I initialize τ̂1 as the partial surface consisting of

faces τj, τi + 1 and patches ∆1, ∆2 (Figure 5.10(d)).

For a quad within bc, if it is on τ̂1 then I mark it as a

boundary quad; otherwise, I mark it as an interior quad.

All the hex-elements in bc are marked as valid. Next, I

check each valid hex-element, h, that has a boundary quad. As shown in the inset fig-

ure, if the sum of the weights of all the boundary quads of h (green, left) is larger than

the sum of the weights of all the interior quads (blue, left), then I mark all the orig-

inal boundary quads as invalid (white, right), set the original interior quads as new
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boundary quads (green, right), and label the hex-element as invalid. By repeating the

above process, τ̂1 is continuously moving towards the center of bc. When all the valid

hex-elements with boundary quads do not change their states any more, the final τ̂1

is reached. Figure 5.10(e) shows an intermediate state of τ̂1 during the above peeling.

The final extracted τ̂1 is shown in Figure 5.10(f).

After extracting τ̂1, to maintain the cuboid property

of B′, some nodes, edges and faces of the neighboring

components (either one or two) of τj and τj+1 have to be

reconstructed. As a result, the volumes of these compo-

nents are expanded. The right inset shows such an example.

Trigonal configuration: A patch can be extracted from bc by following a similar

process as detailed for the diagonal configuration.

Assume τ̃1 is selected (the first configuration of the trig-

onal case in Figure 5.2.3.1), the two diagonal edges of τ̃1

need to be extracted. The boundary of τ̃1 separates the

surface of bc into two parts. One part consists of a face and two triangular patches,

while the other part consists of three faces and two triangular patches. The interior

of τ̃1 can be extracted by first intializing it using either part and then performing

the peeling process. Similarly, the connectivities of the neighboring components of

τ̃1 need to be modified. The right inset shows such an example.

Topology preservation: During the zig-zag face extraction step, while the original
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configuration works perfectly well under all the cases I tested, there is a constraint for

both the diagonal and trigonal configurations. If the configuration of a component

is diagonal, then two of its three principal directions must have a resolution of at

least two hexahedral elements; if the configuration of a component is trigonal, then

all of its three principal directions must have a resolution of at least two hexahedral

elements. The reason is that, for the diagonal configuration, the normal of the

extracted patch (i.e., topologically equivalent to a plane) is perpendicular to one

of the three principal directions, while for the trigonal configuration, it is neither

parallel nor perpendicular to any principal directions.

(a) (b) (c) (d)

Figure 5.11: (a) A diagonal configuration within a component is comprised of only
a single hex-element. The two light blue quads belong to Fl andFr, respectively; (b)
the actual extracted patch that would lead to an invalid B′; (c) the same component
with additional refined hex-elements, and (d) the resulting correct patch from (c).

Figure 13 illustrates a potential problematic scenario when the resolution of the

hex-elements within a component is insufficient. Figure 13(a) shows a diagonal con-

figuration that consists of one single hex-element enclosed by two blue quads. The

two quads are parts of the left and right surfaces of the component sheet. Figure

13(b) shows the actual extracted patch (red), which would lead to an invalid B′ after

collapse. Figure 13(c-d) illustrate that this issue can be easily resolved by inserting

additional hex-element layers.
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The above mentioned constraint can be satisfied through the re-parameterization

(see Section 5.3.2) of H to increase the hex-element layers in the misalignment can-

didates, as described in Step 4 of our misalignment algorithm.

5.3 Parameterization and Optimization

After removing misalignments in B, I obtain a simplified base-complex B′. It has

fewer components with the cost of certain geometric artifacts. Furthermore, the

global orientation of B′ may not be aligned with the surface features any more. To

improve B′ and the subsequent H′, I propose a structure-aware re-parameterization

algorithm.

5.3.1 Component-wise Volume Parameterization

Based on the aforementioned misalignment correction algorithm, components B′C

in base-complex B′ are still valid cuboids with certain distortion (Figure 5.5(b-g)).

Each hex-element of H belongs to only one cuboid in B′C . A cuboid can be mapped

(or projected) to an axis-aligned cube domain (x, y, z), where x, y, z ∈ [0, 1]. The

cuboid can then be re-meshed into a tetrahedral mesh by subdividing each hex-

element into five tets [34]. The parameterization of a cuboid proceeds by assigning

parametric values to corners, to the intermediate vertices via linear interpolation of

the two end corners of a base-complex edge, to the six patches, and finally to the

interior of volume, respectively. Each patch can be mapped to a planar rectangular
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parametric-domain. Mean-value coordinate techniques for 2D [25] and 3D [44] are

used to calculate the parametric coordinates of vertices inside patches and inside the

volume, respectively. Based on the neighboring information of cuboids in B′, the

parametric positions of the corners, edges, and patches only need to be calculated

once.

5.3.2 Discretization of Parameterization

Hex = 116

JMin = 0.643

JAve = 0.855

Hex = 939

JMin = 0.609

JAve = 0.921

Hex = 51798

JMin = 0.542

JAve = 0.950

(a) (b) (c)

Figure 5.12: Multi-resolution hex-meshes can be generated by only providing differ-
ent total numbers of hex-elements. The user-specified element numbers are: (a) 100,
(b) 1000, and (c) 50000, respectively.

Typically, the parameterization resolution is determined by a scalar value, e.g.,

the average edge length. However, it is impossible for users to know beforehand

how many elements will be produced. Given the desired number of elements as

the input, NH, I present a strategy to re-parameterize the mesh with the element

number reasonably close to NH. Recall that the resolution of a hex component was

determined by three directions, i.e., the resolutions of its edges in i, j, k directions.

Therefore, as long as I can determine the resolution of each base-complex edge,

the total element number of the final hex-mesh can be soundly estimated. For each
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component sheet, the base-complex edges in its middle part are expected to maintain

the same resolution. For all the nc base-complex edges in the same component sheet,

I calculate a representative length, δ, for them as follows.

δ =

∑
t

lEt

lēt

nc
(5.3)

Here, δ is the sum of all the lengths of the base-complex edges (lEt) in the same

component sheet divided by the average edge length (lēt) of the original mesh. The

total element number of the resulting hex-mesh should be
∑
w3δiδjδk = NH, which

is the sum of the elements in all the components in B, and w is a scalar weight,

defined bellow.

w = 3

√
NH∑
δiδjδk

(5.4)

Thus, to produce a hex-mesh with NH elements, each base-complex edge belonging

to the same component sheet should contain wδ hex-edges. Figure 5.12 shows an

example of multiple resolution hex-meshes given different user-specified numbers of

elements.

5.3.3 Global Optimization

The initially re-parameterized hex-mesh after misalignment correction may contain

a large distortion (see Figure 5.13(a)), which is less suitable for downstream appli-

cations. Therefore, to obtain a high-quality hex-mesh, a post-processing step such

as optimization has to be employed. For certain cases, commonly used optimization
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(a) (b) (c)

Figure 5.13: (a) The re-meshed hex-mesh after alignment for a Rockerarm model
before optimization. Different components are colored differently. (b). Different sets
of parameterization domains for each iteration. Isolated edge and face domains are
in red and green colors, while domains colored in white are fixed for current iteration.
(c). The optimized hex-mesh.

techniques, such as different Laplacian smoothing and geometric flow [97], may op-

timize some interior vertices onto the boundary, which would pose challenges for the

subsequent untangling process [12]. The reason is that after alignment, singularities

may not be at their optimal locations any more. To improve the quality, I perform

a structure-aware global parameterization over the base-complex domain B′ of H′,

as detailed below. Our method efficiently optimizes the base-complex structure B′,

while ensuring that the geometrically and topologically interior nodes in the input

volume remain inside after parameterization. The local quality of the generated

hex-mesh from B′ is improved consequently.

For each interior-base complex patch and edge, I build a parameterization domain,

as shown in Figure 5.14. This strategy is inspired by [22, 73, 89], which introduced

the interpolation-space parameterization for 2D surfaces. Specifically, for a patch,

the parameterization domain stitches its two neighboring hex-components together
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(a) (b)

Figure 5.14: Base-complex patch based (left) and base-complex edge based (right)
parameterization domains. Domains shown in (b) have valence 4, 3, and 5, respec-
tively.

to form a larger component, which can be mapped to a regular cuboid. For a base-

complex edge bei = (bvi , bvj) with valence n, its adjacent n components form a unified-

parameterization domain. In the parameterization domain, let k axis points at the

direction of bei , and the i, j axes are perpendicular to bei . Origin O(0, 0, 0) of the

parameterization domain is set to be at bvi , so that bvj will be mapped to q(0, 0, k).

For each ij layer, its parametric coordinates are expressed in the form of polar

coordinates (ρ, θ), and transformed to (ρt, tθ) via the exponential map, where t =

4/n.

Through face- and edge-based domain re-parameterization, distorted-base com-

plex faces and edges can be optimized. With the above parameterization domains,

I perform our global optimization iteratively, i.e., edge- and patch-parameterization

domains are executed, alternately. At each iteration, parameterization domains are

set to be isolated from each other, as shown in Figure 5.13(b), thus parallel techniques

can be employed to significantly speed up the optimization performance.
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Surface feature preserving: Typically no feature exists inside the volume unless

I define one. In this work, I only tackled the isotropic volume space; thus, only

boundary features were considered. Surface feature can be preserved by projecting

specific parameterizaiton lines onto the detected features of the boundary surface.

After global optimization, the hex-mesh was further improved using the Mesquite

software [12].

5.4 Results

Figure 5.15: The hex-meshes (from left to right and top to bottom) of the Kiss [32],
bone, fandisk, impeller [52], angel, dragon, dancing children [38], fertility, bunny [55],
and rocker-arm [38] before (the left of each model) and after misalignment correction
and optimization (the right of each model).

I have applied the proposed approach to several datasets, including hex-meshes
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provided by the authors of [32, 52, 55, 38]. The datasets covered a spectrum of me-

chanical and natural objects, with various complexities. Table 2 provides the statis-

tics of the tested hex-meshes before and after alignment. Specifically, the statistics

information provided in Table 5.1 includes the number of hex elements(|H|), the de-

tected and corrected misalignment candidates (|m|), the average and minimal Scaled

Jacobians (S. J.), and the number of components (|BC |) in B. I removed all the

detected-misalignments for hex-meshes as seen in Table 5.1. The improvement of

singularity alignment was measured as the ratio between |BC |−|B′C | and |BC |, which

was also provided for each mesh (i.e., the AR column in Table 5.1). As seen in the

|BC | column in Table 5.1, our alignment algorithm can significantly simplify the base-

complexes of input hex-meshes, while preserving comparable local element quality

(the S. J. column in Table 5.1). Figure 5.15 provides visual results before and after

optimization on a number of hex-meshes listed in Table 5.1. Hexahedral elements

that belong to the same components of B were rendered with the same colors. In our

experiments, the computational time varied from one minute (e.g., Fandisk model)

to half an hour (e.g., Dragon model). All the timing information was recorded on a

PC with Intel Xeon (E5-1620) processor and 16 GB memory.

User control: Our misalignment correction algorithm is intuitive for users to

control. Although I remove all the detected-misalignments for hex-meshes as seen

in Table 6.1, I also allow users to specify parameter, p, to decide how many mis-

alignments they wants to remove. Bumpy torus (Figure 5.16) is used to demonstrate

various optimized results controlled by p.
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Figure 5.16: p controls the simplicity of the optimized global structure. The larger
the p value, the smaller the number of components in the resulting B′.

Adapt to quad-mesh domain: Our alignment algorithm can be straightforwardly

adapted to deal with the misalignments in a quad-mesh. The misalignment candidate

for hex-meshes defined in Section 5.1.2 was reduced to a restricted poly-chord [20]

operating on the base-complex of a quad-mesh. Figure 5.17(a) shows the initially

optimized results of the Drillhole and Botijo quad-meshes from [8]. Figure 5.17(b)

provides the results by further removing misalignments in the meshes shown in Fig-

ure 5.17(a) using our algorithm for quad-meshes with p = 2 and 4, respectively.

Figure 5.17(c) demonstrates that if too many misalignment candidates (p = 5 and

9 for Drillhole and Botijo, respectively) were removed from the base-complex, to

maintain the isometry, the edges of the base-complex may not be conformal to the

features of the input models. This demonstrated that our alignment algorithm acted

as an additional process to further improve the simplicity of quad meshes.
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Models |H| |m| S. J. | BC | AR Models |H| |m| S. J. | BC | AR

girl/BU
∗ 193k

16
.925/.235 1098

63% Gargoyle
] 26k

52
.906/.196 7563

75%
44k .894/.121 401 23k .911/.214 1920

Bumpy-torus
∗

(Fig. 5.7(b), 5.16(c))
35k

33
.891/.271 2518

77% Angel-1
] 14k

11
.923/.470 1284

46%
35k .866/.189 590 15k .915/.296 698

Bunny
∗ 82k

7
.930/.138 1324

82% Angel-2
] 16k

5
.919/.212 302

35%
33k .906/.200 240 16k .914/.260 196

Fertility-refine
∗ 20k

15
.911/.196 598

35% Angel-3
] 14k

2
.898/.222 78

28%
22k .884/.364 390 17k .867/.157 56

Kiss-coarse
∗

(Fig. 5.15)
27k

24
.901/.163 3690

63% Bumpy-torus
] 39k

23
.929/.335 2254

60%
59k .910/.190 1365 39k .879/.270 910

Bone
† 3k

6
.930/.620 87

45% Bunny
] 38k

2
.926/.382 273

19%
9k .924/.577 48 48k .937/.373 221

Bunny
† 134k

2
.940/.293 259

29% Bustle
] 12k

3
.934/.302 348

16%
96k .930/.276 184 22k .929/.393 292

Rod
† 6k

1
.947/.658 66

50% Dancing-children
]
(Fig. 5.15)

35k
48

.870/.143 5482
73%

7k .937/.527 33 38k .876/.190 1458

Sculpture-A
† 24k

6
.961/.689 51

69% Dragon
]
(Fig. 5.15)

118k
22

.857/.150 3977
51%

24k .890/.426 16 113k .899/.120 1958

Fandisk
†
(Fig. 5.15)

.4k
3

.936/.609 49
39% Elephant

] 172k
26

.878/.221 2842
65%

.8k .940/.413 30 55k .890/.170 1008

Fertility
†
(Fig. 5.4)

14k
7

.911/.351 1352
31% Rockerarm-1

]
(Fig. 5.13)

24k
12

.920/.439 686
42%

28k .88/.300 934 26k .890/.329 395

Hanger
† 5k

1
.964/.599 60

32% Rockerarm-2
] 25k

13
.905/.378 835

69%
9k .950/.448 41 26k .899/.366 263

Impeller
†
(Fig. 5.15)

11k
8

.924/.185 944
58% Bunny

‡
(Fig. 5.15)

74k
13

.938/.274 580
67%

19k .925/.238 399 46k .928/.263 194

Joint
†
(Fig. 5.15)

18k
4

.984/.729 83
29% Fertility

‡
(Fig. 5.15)

54k
11

.872/.259 693
43%

18k .983/.724 59 74k .885/.272 396

Rockerarm
† 11k

9
.866/.209 578

50% Girl/BU
‡ 56k

9
.926/.401 580

57%
18k .862/.145 291 77k .899/.279 252

Sculpture-B
† 6k

0
.892/.055 51

0% Rockerarm
‡ 57k

10
.890/.370 664

50%
6k .889/.049 51 57k .893/.297 335

Table 5.1: The number of components of base-complex and quality comparisons of
hex-meshes before and after alignment. For each model, the original hex-mesh and
optimized hex-mesh by our method are shown in the upper row and bottom row,
respectively. Original hex-meshes with ∗, †, ], and ‡ are obtained from [32, 52, 38, 55],
respectively.

5.5 Conclusion

In this chapter, I presented the first framework to optimize the hex-mesh by reducing

the number of components in B in two steps: 1) detect and remove misalignment

candidates in B, and 2) improve the geometric quality of a hex-mesh through a

structure-aware re-parameterization optimization. The pipeline can be applied to

quad-mesh domain as well.
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(a) (b) (c)

Figure 5.17: Given the optimized quad-meshes generated from [8](a), our method
can further reduce the number of patches of the quad-meshes, as shown in (b-c). (c)
has the smallest number of patches with the cost of the largest distortion among the
three results.

Limitations: Similar to the alignment problem on surface domain,

the major limitation of our work was the input hex-mesh,

if the singularities were at a higher order, the number of

singularities were large, or the singularities were badly

placed, its simplified-base complex was still too compli-

cated to be used for some applications. The inset demon-

strated such an example, where the hex-mesh is directly

subdivided from a tet-mesh. However, the complexity of B in each tested hex-mesh
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Hex = 18k

JMin = 0.729
JAve = 0.984

Hex = 18k

JMin = 0.742
JAve = 0.983

Hex = 17k

JMin = 0.526
JAve = 0.975

(a) (b) (c)

Figure 5.18: Given the original Joint hex-mesh as the input (a), comparing to the
base-complex of the mesh aligned by the presented algorithm (b), fewer components
can be achieved with the modification of the singularity-structure in the mesh (c).

was reduced, unless the input hex-mesh had an already well aligned singularity-

structure, such as the Sculpture-B and Rod models as seen in Table 6.1. In this case,

our framework directly performed the optimization step, while the hex-mesh after

optimization cannot guarantee a higher geometric quality than the original input.

While our alignment algorithm simplified the complexity of the base-complex of

a hex-mesh without changing its singularity-structure, the number of components

can be further reduced by allowing the merging of singularities. As an example,

the Joint hex-mesh shown in Figure 5.18(c) has fewer components than the one in

Figure 5.18(b), which was achieved by allowing the change of S. How to manipulate

the singularities of a hex-mesh in a general manner to achieve better results is an

interesting topic for future research. Another limitation was that although all the

misalignment candidates in the meshes used in this chapter were detected and cor-

rected by our approach, other configurations of misalignment candidates may exist

that are not reported here. Furthermore, in theory our approach cannot guarantee
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that the optimized base-complex is free of any misalignments. Here, misalignments

arise if any component in BC contains at least one regular base-complex edge, which

is not the same as the misalignment candidates defined in this work. I plan to address

these limitations in the future work.
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Chapter 6

Simplifying Global Structures for

Hex Re-meshing

Up to date, generating usable, high-quality hex-meshes (i.e., with positive minimum-

scaled Jacobian) for arbitrary 3D objects remains a challenging task, despite many

recent advances [55, 38, 52, 43, 27, 30, 53]. While persistent efforts have been made

to focus on effectively generating all-hex-meshes from surface inputs, optimizing the

initial obtained meshes with existing hex-meshing techniques is often necessary. This

includes the improvement of the quality of individual elements and the simplification

of the global structure of the meshes (i.e., reducing the number of irregular elements

in the meshes). While the former has been extensively studied [12, 54], there has

been lack of attention on the latter.

As discussed in Chapter 1.1, the number of components in the base-complex

was used to measure its complexity. A base-complex with fewer components (i.e.,
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a simpler structure) is typically preferred by applications that seek a smooth rep-

resentation (e.g., splines) with high level smoothness throughout the entire volume,

such as Isogeometric Analysis (IGA) [4]. However, most existing hex-meshing tech-

niques cannot control the complexity of the structure of the obtained hex-mesh. This

requires post-processing to reduce the complexity of the mesh structure for the sub-

sequent applications. Recently, Gao et al. [27] introduced a structure simplification

framework for hex-meshes by procedurally aligning the mis-matched singularities

(i.e., mis-alignments). However, this process does not remove any singularities from

the hex-mesh, which constrains the overall continuity that the corresponding 3D

parameterization can achieve. It also greatly limits the level of simplicity that a hex-

mesh can achieve, which is related to the number of singularities (see two examples

in Figure 6.15).

In this chapter, I propose a new structure simplification strategy for valid all-hex-

meshes by procedurally removing the base-complex sheets and base-complex chords

extracted from their base-complexes. Different from the previous hexahedral sheet

removal for hex-mesh coarsening [10, 91], our approach simplifies the structure of

the hex-mesh explicitly, which coarsens the hex-meshes much faster than individual

element removal. Also, in contrast to the mis-alignment problem, the involved sin-

gularities may be removed or altered after the removal of the corresponding sheets

and chords, which enables us to greatly simplify the structure of the mesh.

Our approach shares some similarities to the quad mesh coarsening approaches

proposed by Daniel et al. [20] and Tarini et al. [88] (i.e., the base-complex sheet

collapsing vs. the poly-chord collapsing, and the base-complex chord collapsing vs.
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the quadrilateral collapsing). However, due to one additional dimension in hex-mesh

simplification, there are new challenges that need to be addressed compared to quad

mesh simplification. First, the topological configurations of sheets and chords in

3D are far more complex than their 2D counterparts. Second, directly adapting the

collapsing operations for element levels [20, 10] to base-complex may result in large

geometric distortion and the loss of important surface features due to its coarse rep-

resentation. Third, to facilitate the subsequent optimization of the hex-mesh with

as simple as possible structure, the extracted sheets and chords for removal need to

be properly sorted to avoid early termination of the simplification or undesired topo-

logical configurations, which has not been addressed by existing ranking strategies.

To address the above new challenges, I first systematically classify the base-

complex sheets and chords into different configurations, for which different simplifica-

tion operators are developed to warrant a topologically correct output (Section 6.1).

Second, I propose an effective simplification framework that procedurally removes the

base-complex sheets and chords using the developed simplification operators (Sec-

tion 6.2). A comprehensive ranking metric (Section 6.2.1) is developed for prioritizing

operators to achieve efficient reduction of the structure while preserving geometry

fidelity. A parameterization-based collapsing strategy is introduced to address the

distortion due to the removal of sheets and chords (Section 6.2.2). I have applied

our simplification framework to a number of hex-meshes generated with state-of-art

hex-meshing approaches to demonstrate its effectiveness (Section 6.3).
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6.1 Preliminaries

As shown in Figure 6.1(a-b), for a quad-mesh a sequence of connected quads can be

removed simultaneously via a poly-chord collapsing; a quad can be removed via a

quadrilateral collapsing (Figure 6.1(c-d)) [20]. Similarly, a sequence of components

in the base-complex can be removed together to obtain a reduced base-complex

(Figure 6.1(e-h)). While collapsing a poly-chord or a quadrilateral configuration

may not reduce (or even complicate) the structure of the mesh (Figure 6.1(a-d)),

collapsing a sequence of components in the base-complex will monotonically reduce

the complexity of the base-complex. To achieve that, in what follows I describe the

3D counterparts of poly-chord and quadrilateral configurations, which are referred

to as the base-complex sheets and base-complex chords, respectively.

6.1.1 Base-complex Sheet

Recall that the base-complex B of a hex-mesh H is a coarse hex-mesh. There-

fore, a base-complex sheet is a hexahedral sheet of the coarse hex-mesh defined

by B [27]. Given a base-complex edge e, I locate the other base-complex edges

that are all parallel to e and in the components (i.e., cuboids) that have e as an

edge. For these new base-complex edges, I similarly locate other edges that are

parallel to e in the components adjacent to these new edges. By recursively doing

so, a unique set of parallel base-complex edges is identified (Figure 6.2(a)). The

components having one of these edges as their edge form a base-complex sheet S.
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(e) (f) (g) (h)

(b) (c) (d)(a)

Figure 6.1: For a quad-mesh, removing a poly-chord (green) may not affect its patch
layout (a-b), while collapsing a quad may even increase the complexity of the struc-
ture (c-d). In contrast, performing either (e) a base-complex sheet or (g) a chord
removal on the global structure of a hex-mesh will reduce the number of its compo-
nents (f, h).

Specifically, S = {SV , SE, SP , SC}, where SV , SE, SP , and SC are

the nodes, edges, patches, and components in B that belong to S,

respectively. In particular, edges in SE can be classified into two

groups SEm (blue edges in Figure 6.2(b)) and SEs (blue edges in

Figure 6.2(c-d)), where SEm is the aforementioned set of parallel

edges and SEs are the other edges in S. Patches in SP can be

similarly classified into two groups with SPm (green patches in

Figure 6.2(b)) being the patches that are adjacent to the edges in

SEm and SPs (blue in Figure 6.2(c) and yellow in (d)) being the other patches.

In general, a base-complex sheet can be decomposed into two parts: side surfaces
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(a) (b) (c) (d)

Figure 6.2: A base-complex sheet in (a) can be decomposed into a middle part (b)
packed by its two side surfaces (c-d). All the base-complex sheets contained in the
model are rendered only by their middle edges in (e).

(Figure 6.2(c-d), containing elements SV , SEs , and SPs) and a middle volume part

(Figure 6.2(b), containing SV , SEm , SPm , and SC). Note that, although the side

surfaces shown in Figure 6.2(c-d) consist of two disconnected components (i.e., a

left and a right surfaces), there could be cases (as shown in the inset) that the side

surfaces form a Mobiüs surface (i.e., the green surface).

By the above definition, a base-complex edge can belong to the set SEm of only

one sheet; a patch can be included in SPm by at most two sheets; and a component

can be shared by at most three sheets. Therefore, a finite set S of base-complex

sheets can be extracted from a base-complex. Each base-complex edge has a unique

tag, which marks the sheet whose SEm contains this edge. As shown in Figure 6.2(e),

an ellipsoid hex-mesh has a total of six sheets where their corresponding edge sets

SEm are colored differently.
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6.1.2 Base-complex Chord

The concept of hexahedral chord has been applied to the hex-mesh matching [84]

and editing [37]. Similar to the base-complex sheet, I adapt hexahedral chords for a

hex-mesh to its base-complex and define the base-complex chord (Figure 6.3). Given

a base-complex patch p, I find its opposite (or parallel) patch in the component that

has p as one of its faces. I repeat this search for a newly located patch. By recursively

doing so, a unique set of parallel base-complex patches is identified (green patches

in Figure 6.3(a)). The components having one of these patches as their face form a

base-complex chord C. Specifically, C = {CV , CE, CP , CC}, where CV , CE, CP , and

CC are the nodes, edges, patches, and components in the base-complex that belong

to this chord, respectively. In particular, CP consists of those parallel patches CPm

(Figure 6.3(b)) from the above search and the other patches CPs (Figure 6.3(c)) of

C. CE consists of edges CEm (blue edges in Figure 6.3(b)) that are the boundary

edges CPm of the patches and the other edges CEs (blue edges in Figure 6.3(c)).

(a) (b) (c)

Figure 6.3: A base-complex chord in (a) can be decomposed into a middle part (b),
i.e., set of parallel patches, and four side surfaces (c).

Similar to a base-complex sheet, a base-complex chord can be decomposed into
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two parts: (four) side surfaces CPs (Figure 6.3(c), containing elements CV , CEs) and

a middle volume part (Figure 6.3(b), containing CV , CEm , CPm and CC). By the

above definition, a base-complex patch can belong to the set CPm of only one chord,

and a component can be shared by at most three chords. Therefore, a finite set C

of base-complex chords can be extracted from a base-complex. Every patch in the

base-complex has a unique tag that marks the chord whose CPm contains this patch.

Relations between sheets and chords: For the four edges of a patch in

CPm of a chord, they could have either the same tag or at most two different tags of

sheets. Thus, all the edges in CEm could have either the same or two tags for sheets.

Therefore, a chord is either fully contained within a sheet (one tag) or a crossing of

two different sheets (two tags). Furthermore, for a patch in the set SPm of a sheet,

all its parallel patches that form a chord are contained in set SPm . Therefore, if there

are k distinct chords of the patches in SPm of a sheet, then the union of the k chords

form the sheet. This relation between sheets and chords will be utilized to reduce the

complex sheets to simpler ones for subsequent removal (illustrated in Figure 6.11).

In the following, I will discuss the possible configurations of sheets and chords, which

will affect the subsequent collapsing process for removal.

(a) (b)

Figure 6.4: A closed base-complex sheet (a) and chord (b), respectively.
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6.1.2.1 Base-complex Sheet/Chord Configurations

The base-complex for a hex-mesh is basically a layered structure in multiple directions

that is further complicated by various orientations of the singularities. This makes

the base-complex sheet is not a trivial extension from the 2D poly-chord to 3D. Based

on whether there are boundary edges in SEm , a sheet S can be either open (Figure 6.2)

or closed (Figure 6.4(a)). Similarly, a chord can be either open (Figure 6.3) or closed

(Figure 6.4(b)), depending on whether there are patches in CPm on the boundary

surface.

(a)

(c)

(d) (e)

(b)

Figure 6.5: (a) A sheet has combined configurations with tangent at node (b), tan-
gent at edge (c), tangent at patch (d), and tangled (e) configurations. For each
configuration, the left image is the zoom-outed view of the sheet, while the right
image is a simple illustration.

Based on the neighborhood properties of the elements in a sheet, it can be classi-

fied as regular (all nodes in SV have only one neighboring edge in SEm , Figure 6.2),

tangled at components (i.e., components in SC whose six patches are in SPm , Fig-

ure 6.5(e)), tangent at nodes (i.e., nodes in SV that have more than one neighboring

edges in SEm yet are not contained in tangled components, Figure 6.5(b)), tangent

at edges (i.e., edges in SEs that have more than one neighboring patches in SPs
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yet are not contained in tangled components, Figure 6.5(c)), or tangent at patches

(i.e., patches in SPs that have more than one neighboring components in SC yet are

not contained in tangled components, Figure 6.5(d)). A sheet may have both tan-

gent and tangled configurations (Figure 6.5(a)). This will complicate the subsequent

collapsing. Note that, based on the relations between sheets and chords described

earlier, the tangled components of a sheet form a complete base-complex chord. By

removing the base-complex chord at the tangled region, this complex configuration

can be reduced to a simpler one that only has tangent configurations, which can be

further reduced. More details will be provided later (Section 6.2.2).

(a)

(c)

(d) (e)

(b)

Figure 6.6: (a) A chord has combined configurations with tangent at node (b),
tangent at edge (c), tangent at patch (d), and tangled (e) configurations. For each
configuration, the left image is a zoom-outed view of the chord, while the right image
is a simple illustration.

Similarly, a chord could be regular (all nodes are contained in one patch in CPm ,

Figure 6.3), tangled at components (i.e., components in CC that have more than four

patches in set CPm , Figure 6.6(e)), tangent at nodes (i.e., nodes in CV that have more

than one neighboring patches in CPm yet are not contained in tangled components,

Figure 6.6(b)), tangent at edges (i.e., edges in CEs that have more than one neigh-

boring patch in CPs yet are not contained in tangled components, Figure 6.6(c)), or

97



Extract sheets 
 (Sect. 3.1.1)

Sheet ranking
(Sect. 3.3)

Sheet configuration
checking (Sect. 3.1.3)

Sheet removal
(Sect. 3.4)

Chord ranking 
(Sect. 3.3)

tangled/

tangent

Extract chords at tangled/
tangent regions (Sect. 3.1.2) Chord configuration

checking (Sect. 3.1.3)

Chord removal
(Sect. 3.4)

top ranked

chord

top ranked

sheet regular

Extract chords 
 (Sect. 3.1.2)

regular

tangled/

tangentno valid

sheet

Exit

Figure 6.7: Simplification pipeline.

tangent at patches (i.e., patches in CPs that have more than one neighboring com-

ponent in CC yet are not contained in tangled components, Figure 6.6(d)). It also

removes all the patches in CPm while not creating new patches.

6.2 Simplification Algorithm

Given an all-hex-mesh as the input, I first extract its base-complex and the base-

complex sheets described above. I then perform the following iterative process (Fig-

ure 6.7). First, I prioritize all of the sheets (Section 6.2.1) and identify the top-ranked

sheet. If this sheet is regular, I remove it (Section 6.2.2) and process the second top-

ranked sheet. If this sheet is tangled or tangent (Section 6.1.2.1), I identify the chords

at the tangled or tangent regions of the sheet and rank them. If the top-ranked chord

is regular, I remove it (Section 6.2.2) and put the newly obtained sheets to the list of

the candidate sheets, then, repeat the above sheet removal process. If the top-ranked

chord is tangled or tangent, I identify the chords at the tangled or tangent regions of

this chord and rank them. I then attempt to remove the top-ranked chord according

to its configuration (Section 6.1.2.1) as above. Second, if there is no sheet avail-

able for removal because of the topology constraints (Section 6.2.3), I extract all the
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base-complex chords from the current base-complex and rank them. I then attempt

to remove the top-ranked chord according to its configuration as above. If there is

no chord available for removal, I exit the simplification. Note that to facilitate the

subsequent removals, after the successful removal of each sheet or chord, I perform

a global re-parameterization of the mesh based on the simplified base-complex to

regularize the base-complex components [27].

While it may be easier for the user to specify the desired number of components

for the simplified base-complex, the resultant hex-mesh from the simplified base-

complex may possess many tangled hex-elements (i.e., with negative Jacobians) that

existing optimization techniques cannot completely resolve. To avoid this, I introduce

a simple yet effective binary search pipeline that enables us to produce a hex-mesh

with desired structure while having high-quality elements to some extent. To achieve

that, I first save the simplified result of each iteration as a sequence of hex-meshes.

After simplification is terminated, I start to optimize the hex-mesh with the simplest

base-complex. If the optimized hex-mesh fails the quality test (e.g., having negative

Jacobians), I backtrack to the hex-mesh in the half-way of the simplification se-

quence. If the obtained hex-mesh is acceptable (e.g., positive minimum Jacobians),

I locate the hex-mesh in the mid-way of the second half of the simplification se-

quence; otherwise, I retrieve it from the first half. I repeat the same process until

convergence. For the hex-mesh optimization, I first perform the parameterization-

based optimization [27], then apply Mesquite 1 [12] to further improve its geometric

quality.

1Other optimization techniques can be applied here. However, I found Mesquite is fast, robust
and an open source tool that is available for our purpose.
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6.2.1 Sheet and Chord Ranking

To improve the topological layout of the structure and maintain its geometric fidelity,

I employ a ranking strategy for sheets and chords that takes into account the valence

information and the geometric impact of their removal on the resulting mesh.

I first introduce a ranking metric w(S) for a base-complex sheet S as follows.

w(S) = αewg(S) + βewv(S), (6.1)

where wg(S) and wv(S) measure the volume change and valence change induced by

the removal of S, respectively. Empirically, I use α = 0.9, β = 0.1 for sheet ranking

in all our experiments. I use the same generic metric for a chord with a different

set of parameters, i.e., α = 0.2, β = 0.8. In the following sections, I describe the

individual terms in the proposed metric in detail.

6.2.1.1 Geometric Term

To reduce distortion due to the removal, the geometric term prefers a thin sheet with

a smaller volume, as described in Equation 6.2.

wg(S) =

|SC |∑
i=0

Lγ(ei)A(fi) (6.2)

where |SC | is the number of components in S, L(ei) ∈ SEm is an edge of the ith

component that has the longest length in the component, A(fi) ∈ SEm is a patch of

the same component that has the largest area, and γ is a constant that I set as 2,

which put more weights on the thickness of a sheet.
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Similarly, the geometric measurement for a chord is described by Equation 6.3.

wg(c) =

|CC |∑
i=0

Dγ
i A(fi) (6.3)

where |CC | is the number of components in C, D(ai, ci) computes the largest diagonal

length for all the patches in CPm contained in the ith component, A(fi) ∈ CPs is the

side patch that has the largest area in the same component, and γ = 2.

6.2.1.2 Topological Term

(a) (b) (c) (d)

Figure 6.8: Removing green patches in (a) leads to an all-quadrilateral patch lay-
out (b), while the valences of the newly created nodes are the same as the results
computed by Equation 6.4. This valence updating even works for the case when
removing green patches in (c) results in a triangular patch in (d).

To prioritize the impact of removing an operator (either a base-complex sheet or

a chord) on the topological changes of the structure, I compare the valence changes

of base-complex edges in the structures of hex-meshes before and after an operator

removal. This means it is necessary to compute the valence of edges in the resultant

structure before actually removing an operator. Since (base-complex) components

could be removed during the collapsing of base-complex sheets or chords, and the

valence for a base-complex edge is measured by the number of its neighboring com-

ponents, for the simplified structure, I only need to consider the valences of two
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types of edges, i.e., those that are kept from the original structure but have some

of their neighboring components being removed, and those that are newly created.

During the simplification, for an edge e not being removed, the set of its neighboring

components can be simply computed as c′(e) = c(e) − r(e), where c(e) is the set

of its neighboring components in the structure before simplification, and r(e) is the

set of its neighboring components being removed. The new valence of e would be

simply l′(e) = l(e) − |r(e)|, where l′(e) = |c′(e)| and l(e) = |c(e)|. If an edge ē is

newly created from the collapsing of a group of edges {e0, e1, ..., en}, then the set of

components surrounding this edge can be computed by Equation 6.4,

c′(ē) = (c(e0)− r(e0)) ∪ (c(e1)− r(e1)) ∪ ... ∪ (c(en)− r(en)) (6.4)

The first type of edges (i.e., not removed) can be treated using Equation 6.4 as well,

if I consider they are newly created by collapsing to themselves. The computation of

the valence for newly created edges in a hex-mesh can be easily adapted to measure

the valence of a newly created node by collapsing a set of nodes in 2D quad-mesh, as

illustrated in Figure 6.8. Note that, while all our operator removals introduced later

maintain a valid all-cuboid structure, as long as the resulting mesh is still manifold,

our formula for computing the valences of the newly created elements is not restricted

to whether the resulting component (in 3D) is a cuboid or not, or the resulting patch

is a quadrilateral (in 2D) or not. Figure 6.8(b) illustrates a 2D case that the valences

for newly created nodes are consistent with the values computed using Equation 6.4

even it contains a triangular patch.

As illustrated in the left panel of the inset, in the interior of the volume, a base-

complex edge with valence 4 (i.e., has four neighboring components) is preferred, as

102



it could be easier for each of the four neighboring components to form a π/2 vol-

ume angle surrounding this edge, facilitating the subsequent geometric optimization.

ϕ
The optimal number of neighboring components

surrounding a boundary edge is highly related to

the volume angle φ (see the right panel of the

inset). In the metric terms described below, I

estimate the optimal valence for boundary edges as 2φ/π, which could be a floating

point value.

Based on the above descriptions, I consider the valence changes of the various

scenarios for collapsing sheets and chords that involve interior and boundary edges

as follows. Given a base-complex sheet S, since all edges in SEm will be removed

after collapsing, its valence change is only determined by edges in SEs , which can

be decomposed into NE groups. Each group, denoted by Ei = {ei,0, ei,1, ..., ei,Ni
}

(i = {1, ..., NE}) will be merged into a single edge ēi in the resulting structure. Note

that if all the edges in a group are interior edges, ēi is an interior edge, whereas if one

of the edges in a group is on the boundary, ēi is a boundary edge. I then measure

the valence change for removing a sheet by Equation 6.5.

wv(S) =

NE∑
i=0

(λi1wiI + λi2(wiB)η) (6.5)

where wiI measures the valence differences when all the edges in Ei are in the interior,

wiB measures the parametric-domain distortions when there are edges in Ei on the

boundary surface. η is a weight that prefers the resulting boundary edges with better
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valences. Specifically, if all ei,j in Ei are in the interior, then λi1 = 1, λi2 = 0 and

wiI =

NEi∑
j=0

σi,j(|l(ei,j)− 4| − |l(ēi)− 4|), (6.6)

σi,j =

 0, if |l(ei,j)− 4| ≤ |l(ēi)− 4|

1, otherwise

If there are Nm edges in Ei on the mesh boundary, then λi1 = 0, λi2 = 1, and

wiB =
Nm∑
j=0

σi,j(|1−
2φj

πl(ei,j)
| − |1− 2φ

πl(ēi)
|), (6.7)

σi,j =

 0, if |1− 2φj
πl(ei,j)

| ≤ |1− 2φ
πl(ēi)
|

1, otherwise

(6.8)

A boundary edge is preferred when the ratio of its valence divided by its volume

angle φ and π/2 is closer to 1. Therefore, wiB penalizes base-complex sheets whose

collapsing results in new boundary edges with non-ideal valences, and this penalty

is amplified by η.

Compared to the removal of a base-complex

sheet where all newly generated edges are cre-

ated by the collapsing of edges only in SEs , for

a base-complex chord, collapsing edges both in

sets CEm and CEs will result in new edges. Con-

sider a chord shown in the left image of the inset.

Assume red patches are from CPm , red and black edges belong to CEs , and green and

blue edges belong to CEm , respectively. By collapsing this chord, while edges from

both sets CEm and CEs will be collapsed to form new edges (i.e., the red edges in the
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right image of the inset), black edges in CEs will be kept yet with updated valences.

The valences of edges with all these collapsing configurations can be accurately com-

puted based on Equation 6.4. Therefore, following the similar procedure as described

previously for a base-complex sheet, I can first decompose all the edges in CEm and

CEs into distinct groups (each group will be collapsed to a new edge), and then con-

struct the valence term for evaluating a chord based on whether there are edges in a

group on the boundary surface or not.

6.2.2 Removal Operators

While directly collapsing a base-complex sheet onto its dual is ideal for some cases,

as pointed out by Gao et al. [27], severe geometric distortion or the loss of important

surface features may occur. Gao et al. [27] introduced a zig-zag strategy to re-

connect misaligned singularities to maintain surface fidelity. However, it cannot

be employed to handle our case where singularities are encouraged to be removed.

Similar distortion may happen during the removal of a base-complex chord. Here,

I present a new parameterization based removal strategy for both operators (sheet

and chord) to address this issue.

Given a quadrilateral patch in a 2D base-complex, each patch can be mapped to a

2D rectangle. For the one-ring patches of a node, as shown in Figure 6.9(a), through

the combination of rotation, translation, and an exponential mapping ([ρ, α]→ [ρk, k·

α]) of the spherical coordinates in the parameterization space, I can build a node in-

terpolation domain as described in [89], where the exponent k = (2π/n)/(π/2) = 4/n.
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In this way, all the vertices inside the parametric-domain are optimized. Simi-

larly, I adapt this strategy to handle the case where the neighboring patches of

a boundary node form only a fan-shape (i.e., half circle). As illustrated in Fig-

ure 6.9(b), by placing the node with parametric coordinate (0, 0) on the boundary of

the parametric-domain and fixing its position, I can also build a spherical parameter-

ization which optimizes the vertices inside the boundary domain. Here, the exponent

k = (φ/n)/(π/2) = 2φ/(nπ), where φ < 2π and is estimated by firstly projecting the

fan-shape patches onto a 2D plane, and then computing the angle spanned by the

domain around the node.

(a) (b)

ϕ

 ϕ = 2π  ϕ < 2π

ϕ

Figure 6.9: (a) a one-ring patch domain of a node, (b) a spherical parametric-domain
with φ = 2π, (c) a fan-shape patch domain of a node, and (d) a spherical parametric-
domain with φ = 1.3π.

I now describe the removal of sheets and chords using the above parameterization

strategy.

Base-complex sheet removal: As explained earlier, removing a base-complex

sheet that has some patches located on the boundary surface may cause large dis-

tortion and feature loss. I refer to these patches as the boundary patches. To address

this, I classify these boundary patches into two types: patches in the SPs , and patches
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in SPm . Since the removal of a sheet is to erase all the patches in SPm and merge two

patches Pi and Pj in SPs (i.e., with one on the left surface and the other on the right

surface of the sheet) into one Pij, Pi and Pj cannot be both on the boundary surface.

Without loss of generality, if Pi is on the boundary, I set Pij as Pi. If both are in

the interior, I set Pij as the middle patch of Pi and Pj. With this consideration,

collapsing patches in SPs will not cause surface distortion. In contrast, removing

patches in SPm may impact surface fidelity greatly. In the following I concentrate

on reducing the surface distortion when removing boundary patches in SPm . In this

case, I only need to deal with open sheets, because all the patches in SPm of closed

sheets are in the interior of the volume.

For an open sheet, if it is regular and its boundary surface has genus larger than

zero, then its boundary patches in SPm may form more than one surface ring. The

inset image shows an open and regular sheet with genus-2 that has two surface rings

(red and green).

Consider a surface ring (partially shown as the red

corridor in Figure 6.10(a)), it is embedded in a patch net-

work. In this scenario, each surface ring can be processed

independently with the following strategy. The network

is the deduction of boundary patches in SPs from the 2D

surface base-complex. Consequently, from Figure 6.10(a)

I see that, some red nodes in Figure 6.10(a) of the ring are on the boundary. That

means they have neighboring patches in SPs on the boundary. Conversely, those red

nodes in the interior of the network mean all of their neighboring patches in SPs are
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in the interior volume of the mesh.

I sequentially collapse each edge in SEm (red in Figure 6.10 (a)) into a node (yellow

in Figure 6.10 (b)). For each of its two nodes (red in Figure 6.10 (a, c-f)), based on its

neighboring patches, I construct a node domain. The constructed domain could be

either disk-like (Figure 6.9(a)) or fan-like (i.e., a partial disk, Figure 6.9(b)). Given

the valence relationship (i.e., Equation 6.4) between the newly created node and the

two end nodes of an edge before collapsing, respectively, I can obtain the parametric-

domain relationship P̄ = (P1 ∪P2)− (P1 ∩P2), where P̄ is the parametric-domain of

the node after collapsing (Figure 6.10(b)) that can be constructed topologically. For

example, for the middle edge of the three red edges in the top image of Figure 6.10 (f),

its two node parametric-domains are P1 = {A,B,C,D} and P2 = {B,C,E, F,G},

respectively, where both of them are disks. After removing the current sheet, the

parametric-domain of the node corresponding to this edge is P12 = {A,D,E, F,G} =

(P1 ∪P2)− (P1 ∩P2) (bottom image of Figure 6.10 (f)). In fact, when collapsing the

parametric-domains of the two end nodes of an edge: 1) if both P1 and P2 are disks,

then P12 will be a disk; if either P1 or P2 is a fan, then P12 will be a fan.

To avoid geometric distortion, I try to compute the node domain after removal

within the edge domain before collapsing. Therefore, I need to build a one-to-one

mapping between the boundary of the common domain of v1 and v2 and the boundary

of the node domain of v12 (e.g., Figure 6.10 (c-f)). To achieve that, for an edge, I

can temporarily split all the other edges in SEm with their corresponding nodes that

they will collapse to (i.e., yellow dots with dashed boundaries in Figure 6.10(c-f)) to

simulate the collapsed parametric-domain. For a temporarily split edge, depending
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on whether there is a boundary node at one of its ends or not, its temporarily

computed collapsed node could be the boundary node (Figure 6.10 (c-e))) or in the

middle of the edge (Figure 6.10 (d-f)). In this case, all the elements within the

parametric-domain of this edge will be re-meshed and optimized simultaneously.

(a)

(c)

(d)

(e)

(f)

(b)

Figure 6.10: Parametrization based removal of a surface ring, represented by a se-
quence of red nodes and edges in (a), of a sheet. (c-f) show a number of node
domains before (top) and after (bottom) collapsing. The yellow dots with dashed
boundary are the tentative nodes that the corresponding red nodes will collapse to.
The collapsing result is shown in (b).

Handling tangled and tangent configurations: For a sheet tangled at open

chords, I remove the top-ranked chord from them. Recall that chords can be formed
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(a) (b) (c) (d)

Figure 6.11: The tangled sheet in (a) can be removed by collapsing the highlighted
patch in (a) to obtain two sheets in (b); by collapsing the highlighted patch in (c),
the tangent configuration can be removed in (d).

by the components of the sheet where tangling occurs. By the removal of such a

chord, the tangled sheet may be separated into multiple sheets, which requires the

re-ranking of all sheets to identify a possibly better sheet. Figure 6.11(a-b) illustrate

a 2D example. For an open sheet tangent at boundary vertices or edges, I first collect

all the surface patches neighboring to these vertices and edges. Recall that each of

these patch corresponds to an open chord. I can remove the top-ranked chord from

these open chords associated with these boundary patches. Similarly, I re-rank all

the sheets to identify a better one. Figure 6.11(c-d) provide a 2D example.

Base-complex chord removal: Similarly, the patches of a chord that are on

the boundary surface can be classified into two types, i.e., patches in set CPs and

patches from set CPm of an open chord (recall that all the patches in set CPm of a

closed chord are in the interior volume). Removing a chord is achieved by collapsing

the four side surfaces into two surfaces. Since the two corresponding patches that

will be collapsed into one should not be both on the mesh boundary, I can always
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collapse the patches in the interior to the patches on the boundary. I now focus on

the removal of boundary patches that are in CPm .

For an open chord with a regular configuration, its boundary patches in CPm

are at the two end positions of the chord. Their removal can be performed by the

procedure as detailed below. Given an open chord, assume the collapsing is in the

diagonal direction pointing from b to d, as shown in the 2D case in Figure 6.12(a).

There could be cases that 1) both b and d have node parametric-domain as a disk-like

shape (Figure 6.12, top), and 2) either b or d have their corresponding parametric-

domain as a fan-shape (Figure 6.12, bottom). For both cases, the parametric-domain

of the collapsed node (yellow) will be Pbd = (Pb∪Pd)−(Pb∩Pd). Since the parametric

boundaries of Pb∪Pd and Pbd are the same, I can perform the node parameterization

of Pbd directly on the combined domain of Pb and Pd to re-mesh and optimize the

positions of the elements inside the domain. The top and bottom rows of Figure 6.12

illustrate the handling of the two cases, respectively. For an open chord with tangent

or tangled configurations, I process it similarly to handle the tangled or tangent sheet

described previously.

6.2.3 Topology Preservation

In our algorithm, the genus of a hex-mesh during optimization is maintained by

checking both the surface (#V+#F-#E) and volume (#V+#F-#E-#H) Euler char-

acteristics for the meshes before and after a sheet or chord removal. Both of the

Euler characteristics should remain unchanged during simplification. This excludes
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(a) (b) (c)

Figure 6.12: Parametrization based collapsing of chords. (a) shows two chords that
are to be collapsed (e.g., b to d or vice versa), whose node parametric-domains around
b and d are a disk (top) and a fan (bottom), respectively. (b-c) show that the col-
lapsing of the disk-like domain (top) and the fan-like domain (bottom), respectively.

the base-complex sheets and chords whose two side patches are both on boundary

from the candidate list, as their removal will alter these Euler characteristics. For a

hex-mesh that is three-manifold, its boundary is a two-manifold quad-mesh, which

prohibits cases such as two components on the surface share either a node or an edge,

as shown in Figure 6.12(a-b).

I also set a lower bound (i.e., 3) and an upper bound (i.e., one plus the maximum

valence of the edges in the input hex-mesh) for the singularity valences, and a low

bound (i.e., 3) for the surface vertex valence, as hard constraints of the simplified

meshes. While it is easy to understand that high valence singularities can greatly

narrow the geometric optimization space, an interior singular edge with low valence
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(e.g., 2) can fail all the untangling algorithms, as well as posing challenges to the

base-complex extraction. As shown in Figure 6.13 (c-d), the maximum Jacobian

values of the involved hex elements are zero, which is not acceptable for subsequent

applications. Figure 6.13 (e) shows an example that the eight red nodes represent

two adjacent components.

a b

cd

e
f

g
h

(a) (b) (c) (d) (e)

Figure 6.13: Cases such as two components share a point (a), and an edge (b) are
not allowed, while when base-complex edges with valence two presented, topological
configurations such as 10 nodes (c), 7 nodes (d), and 6 nodes (e) share two hex
elements may occur.

6.2.4 Feature Preservation

In this work, since I treat the interior volume of a hex-mesh as isotropic, I try to

preserve features on surface boundary. As commonly done in previous work [89, 27],

during the parameterization, feature edges on surface can be considered as hard

constrains and snapped to appropriate parametrization curves in the node parame-

terization domain.
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6.3 Results

I have applied the proposed approach to hex-meshes generated by a variety of state-

of-the-art algorithms including the Octree-based [61], Polycube-based [55, 38], and

frame-field based [52] approaches, as well as meshes after alignment [27]. The selected

meshes covered a spectrum of man-made and natural shapes, with various topological

and geometric complexities. Table 6.1 provides the statistics of the tested hex-

meshes before and after simplification, including: the name of each model used in

their original work, number of hex elements (|H|), the number of operator removals

during the simplification process (|∫ |), the index of the binary searched optimized

mesh in the simplification sequence (|I|), the average and minimal Scaled Jacobians

(S. J.), and the number of components (|BC |) in the base-complex. The simplification

rate for each model was provided in the R column in Table 6.1, which was computed

as the ratio between |BC |−|B′C | and |BC |. As shown in the |BC | column in Table 6.1,

I can see that our algorithm significantly simplifies the base-complex of each tested

hex-mesh, while satisfying the local element quality requirements (the S. J. column

in Table 6.1). Note that, I assume that the positive minimum-scaled Jacobian is

acceptable in our experiments. If a higher quality hex-mesh is sought, our binary

search will return a mesh with more complex structure than those shown in the

results. Figure 6.14 provides visual results before and after simplification on some of

the hex-meshes listed in Table 6.1. The hexahedral elements that belong to the same

components of the base-complex are shown in the same colors. In our experiments,

depending on the hex element number and topological complexity, the computational

time varied from seconds (e.g., Ellipsoid model) to 30 minutes (e.g., Anc101 model).

114



All the timing information was recorded on a PC with an Intel Xeon (E5-1620)

processor and 16 GB memory.

Figure 6.14: The hex-meshes of pipe [61], Sculpture, Double-torus, Impeller, Fertil-
ity [52], the Gargoyle [27], Anc101 [32], Cognit [38], and Carter [55] before (the left
two of each model) and after simplification (the right two of each model).

6.3.1 Comparisons with the Alignment Approach

Figure 6.15 compares our approach with the alignment method introduced by Gao et

al. [27]. Because of the constraint of singularity preservation during the alignment,
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Models |H| |∫ | |I| S. J. | BC | Ratio Models |H| |∫ | |I| S. J. | BC | Ratio

Anc101
∗

(Fig. 6.14)
74k

51 19
.952/.196 12336

82.4% Carter
‡

(Fig. 6.14)
65k

48 26
.895/.250 2500

77.4%
70k .965/.076 2172 72k .807/.192 566

Asm001
∗ 18k

5 2
.95/.131 122

72.2% Fertility
‡ 54k

29 18
.872/.259 693

61.0%
20k .937/.121 29 53k .872/.256 270

Bumpy-torus
∗ 35k

58 31
.891/.27 2518

74.8% Anc101
] 63k

58 28
.964/.150 5009

67.5%
38k .909/.396 635 16k .943/.085 1630

Bunny
∗ 82k

24 15
.930/.138 1324

82.5% Angel
] 14k

30 19
.923/.470 1284

83.0%
81k .934/.292 232 11k .904/.338 218

Casting
∗ 21k

41 21
.845/.195 2805

58.6% Bumpy-torus
] 39k

37 33
.929/.335 2254

77.7%
21k .845/.039 1150 40k .913/.320 502

Fertility
∗

(Fig. 6.14)
20k

30 23
.911/.196 598

59.9% Bunny
] 38k

14 6
.926/.382 273

51.6%
22k .873/.261 240 37k .924/.355 132

Bone
† 3k

9 8
.93/.620 87

92.0% Bustle
] 12k

19 18
.920/.442 348

98.0%
3k .844/.169 7 11k .890/.464 7

Bunny
† 134k

10 5
.94/.293 259

74.9% Cognit
]

(Fig. 6.14)
78k

55 29
.829/.270 5194

65.2%
138k .929/.302 65 74k .812/.071 1709

Double-torus
†

(Fig. 6.14)
4k

8 5
.891/.717 185

87.0% Kitty
] 7k

9 3
.91/.424 121

36.4%
9k .918/.564 24 21k .905/.312 77

Ellipsoid
†

(Fig. 6.1, 6.2, 6.3, 6.4)
2k

4 4
.95/.752 34

97.1% Rod
] 11k

7 2
.929/.418 122

76.2%
3k .817/.07 1 3k .89/.056 29

Fertility
†

(Fig. 6.5, 6.6, 6.14)
14k

32 29
.911/.351 1352

91.1% Dancing-Children
? 38k

43 11
.876/.184 1458

30.5%
20k .877/.062 121 8k .793/.007 1014

Hanger
† 5k

8 4
.964/.599 60

33.3% Gagoyle
?

(Fig. 6.14)
28k

50 18
.911/.214 1920

34.1%
17k .920/.116 40 29k .902/.143 1265

Impeller
†

(Fig. 6.14)
11k

67 31
.924/.185 944

61.8% 3-torus
ᵀ

(Fig. 6.15)
5k

67 61
.87/.33 3306

97.5%
15k .906/.021 361 5k .890/.499 82

Joint
†

(Fig. 6.15)
18k

9 6
.984/.729 83

79.5% Pipe
ᵀ

(Fig. 6.14)
10k

55 49
.890/.094 6121

98.9%
20k .958/.583 17 11k .928/.225 69

Rod
† 5k

8 2
.947/.658 66

22.7% Rabbit
§

(Fig. 6.16)
33k

138 137
.896/-.917 32898

99.98%
4k .928/.253 51 38k .882/.232 7

Sculpture-A
† 24k

11 7
.961/.689 51

76.5% Rabit-twist
§

(Fig. 6.16)
34k

143 142
.905/-.980 33967

99.98%
7k .846/.057 12 34k .867/.157 7

Sculpture-B
†

(Fig. 6.14)
6k

13 6
.892/.055 51

41.2% Sphere
\

(Fig. 6.17)
320

38 37
.500/.263 320

97.8%
9k .853/.047 30 5k .913/.452 7

Table 6.1: Topological and geometrical comparisons of hex-meshes before and after
simplification. For each model, the original hex-mesh and optimized hex-mesh by our
method are shown in the upper row and bottom row, respectively. Input hex-meshes
are from [32]∗, [52]†, [55]‡, [38]], [27]?, [61]ᵀ, Voxelization § and tet-mesh subdivision
\, respectively.

much fewer components were removed when most of the base-complex edges in the

base-complex were singularities (Figure 6.15 (c-d)). This constraint was mitigated

by our algorithm, with which a much simpler structure can be obtained (Figure 6.15

(e-f)). In fact, this is expected from the operators employed during the simplification,

where the set of candidates for alignment is only a sub-set of our solution space.
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(a) (b) (c) (d) (e) (f)

Figure 6.15: Compared to the results (c-d) optimized by [27], The proposed approach
simplifies input meshes (a-b) with either sharp feature or complicated structures
greatly while maintaining a high geometric quality (e-f).

6.3.2 Hex-meshes from Voxelization

A voxelized mesh can be considered as a complicated volumetric polycubes, with

each vorxel as a polycube. A hex-mesh can be generated by first voxelizing the

volume [62, 70] and then applying a padding process afterward. The hex-mesh

obtained this way is all-hex yet with a complicated structure, which can hardly

be employed by subsequent applications. Figure 6.16 (a,c) show two hex-meshes

of a rabbit model with two different postures using voxelization approaches. Our

technique successfully simplifies the structures of both meshes (Figure 6.16 (b,d))

while improving their geometric quality (see the corresponding entries in Table 6.1).
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6.3.3 Hex-meshes from Tet-meshes

By subdividing each tetrahedral into four hexahedral elements, I can easily obtain

an all-hex-mesh from a tet-mesh with quite a complicated structure, as shown in

Figure 6.17(a). The simplified structure of this hex-mesh using our algorithm under

default topology constraint settings is still too complex (Figure 6.17(b)). By relaxing

the maximum valence constraint (e.g. five times of the maximum valence in the

initial mesh), our algorithm can successfully simplify the mesh into its simplest form

(i.e., a cube). Figure 6.17(c-e) demonstrates the last three steps of the simplification

process for this mesh. Even though Figure 6.17 shows that the excessively complex

base-complex of the hex-mesh converted from a tet-mesh of a sphere can be greatly

simplified, more investigations will be needed for dealing with other more complex

models.

6.4 Conclusion

In this chapter, I introduced a parameterization based approach to simplify the

global structure of a hex-mesh. Our simplification was based on the collapsing of the

base-complex sheets and chords extracted from the base-complex of the mesh. By

optimizing the ordering of the removal of sheets and chords, our technique effectively

reduced the complexity of the base-complex while maintaining the geometric fidelity

of the input mesh. Given the user-input desired complexity, I employed a simple

yet effective binary search strategy to obtain the optimal simplified structure of a

hex-mesh without negative Jacobian from the obtained all-hex structure hierarchy. I
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have applied our framework to numerous hex-meshes to demonstrate its effectiveness.

Limitations: While the proposed approach can simplify the structure of an input

hex-mesh into its simplest form(s), to satisfy the constraint of local element qual-

ity (i.e., positive minimum-scaled Jacobian) for subsequent applications, the output

hex-mesh of our pipeline usually has a more complex structure than its simplest

representation. To address this, more effective optimization (especially, untangling)

techniques for hex-meshes with simpler structure need to be investigated. In ad-

dition, despite successfully simplifying the hex-mesh of a sphere converted from its

tet-mesh, the base-complex may become too complex for our algorithm to process

(i.e., early termination) due to the more complicated configurations of sheets and

chords, leading to topological degenerate configurations that are currently not well-

understood. I plan to address these limitations in the future.
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(a) (b)

(c) (d)

Figure 6.16: Our approach can greatly simplify hex-meshes (a) and (c) directly
converted from voxelized meshes, while the surface patches of the resultant structures
well capture the geometric characteristics of the model.
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(a) (b) (c) (d) (e)

Figure 6.17: For a hex-mesh (a) converted from a tet-mesh, using the default
maximum-edge valence constraint, our algorithm produces a hex-mesh with a struc-
ture that is still too complicated (b). By allowing larger maximum-edge valences,
the input hex-mesh can be simplified to its simplest structure representation (e),
where (c) and (d) are the simplified results of the third and second to the last steps,
respectively.
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Chapter 7

Evaluating Quality Metrics for

Hex-meshes

As mentioned in Chapter 1.2, there does not exist a guideline for the selection of

proper metrics for the effective measurement of hex-mesh quality in practice. To

solve that, I conducted a first comprehensive study on the correlation among various

hex-mesh quality metrics. Even though all existing metrics are defined and computed

with analytic formulas [86], their relations cannot be simply formulated or predicted.

Under this circumstance, studying the co-variant behaviors among different metrics is

a natural quest, which is the first contribution of this work. Specifically, I compute

the Pearson Product-Moment Correlation Coefficient (PPMCC) [85] for all pairs

of metrics. Based on their pairwise covariance coefficients, I perform a bottom-up

hierarchical-clustering of these metrics, in which two closest (or most similar) clusters

are agglomerated each time. This gives rise to a binary tree, where the distance of
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any pair of metrics in the tree measures their similarity. I demonstrated that this

analysis framework can be effectively applied to reduce the number of quality metrics

and identify the most reliable metric given a specific application.

Our second contribution lies in a strategy of generating a large set of hex-mesh

samples with well-distributed metric values, which is required for an accurate cor-

relation analysis. As it is known that the number of hexahedral elements has great

influence on the simulation quality [64], it is necessary to maintain a constant number

of elements during the generation of hex-mesh samples (for a 3D object) to mini-

mize the effect of the element number on simulation quality. In the meantime, the

metric values for these mesh samples should have a statistically sound distribution

required for the co-variance study, which is difficult to achieve with existing hex-mesh

generation tools. To address this challenge, I introduce a two-stage noise insertion

framework to facilitate the generation of the test dataset. This is also the first time

that tens of thousands of meshes are used for the evaluation of the effectiveness of

quality metrics. To increase the generality of our study, the 3D objects I consider

include both natural and man-made objects with various geometric and topological

characteristics.

Third, I applied the proposed analysis techniques to three different applications –

the linear-elasticity problem, Poisson’s equation-solving and Stoke equation-solving,

respectively, on which I conducted a first study to understand the effectiveness of

all existing hex-mesh quality metrics. I observed that average metrics greatly affect

the accuracy of those applications, while minimum and maximum metrics have more

influences on the stability of these applications.
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To the best of our knowledge, this work is the first step to quantitatively under-

stand the correlation characteristics of a large number of existing hex-mesh quality

metrics and their effectiveness to downstream applications. The encouraging results

from our study can be used as practical guidelines for the development of effective

hex-mesh generation and optimization techniques as well as the cornerstone for future

research studies along this line.

7.1 Methodology

To understand the relationships among dozens of hex-mesh quality metrics, I com-

pute the linear-correlation coefficients between metrics (Section 7.1.1), and use a

hierarchical-clustering algorithm to classify similar metrics based on their correla-

tion coefficients (Section 7.1.2). In Section 7.1.3, I present a two-level strategy to

generate a large number of sampled meshes from benchmark hex-meshes with sta-

tistically sound distribution in the metric space.

7.1.1 Linear Correlation Analysis

As described earlier, I focused on how different metrics vary or co-vary. In addition,

without a-priori on the exact relation among pair of metrics, linear-correlation study

is the natural choice to understand their relations as the first step. In this work,

I use the Pearson Product-Moment Correlation Coefficient (PPMCC) [85], rx,y, to
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measure the linear-correlation between any two metrics X and Y .

rx,y =

∑n
i=1 (Xi − X̄)(Yi − Ȳ )√∑n

i=1 (Xi − X̄)2
√∑n

i=1 (Yi − Ȳ )2
(7.1)

Here, rx,y is a real number in the range of [-1, 1]. The closer it is to 0, the weaker

the correlation between X and Y . X and Y are positively correlated if rx,y > 0;

otherwise, X and Y are negatively correlated.

Consider a data matrix, D[N,M ] with each row corresponding to a quality metric

(i.e., N metrics in total), and each column being the respective metric values of a

hex-mesh (i.e., M hex-mesh samples in total). A correlation matrix, denoted by

C[N,N ] (or simply C), is defined as:

C =



r1,1 r1,2 · · · r1,N

r2,1 r2,1 · · · r2,N

...
...

...
...

rN,1 rN,2 · · · rN,N


(7.2)

Each entry ri,j of C is the correlation coefficient of the ith and jth metrics given the

M hex-mesh samples using Eq.(7.1). C is a symmetric matrix, and its columns or

rows will be used to measure the similarity among different metrics (Section 7.1.2).

7.1.2 Metric Reduction

After calculating the correlations among pairs of metrics, I further classified them

into several groups based on their similarities defined according to the obtained
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correlation matrix C. Our goal is to reduce the large number of metrics (as as seen

in Table 3.1) into a small representative sub-set.

Many clustering algorithms [95] can be potentially used. Since the number

of clusters for the metrics is unknown, I opt for the popular Ward’s hierarchical

agglomerative-clustering method [65]. This hierarchical-clustering is performed us-

ing a set of dissimilarities for n objects. In our case, the n objects are the metrics,

each of which is characterized by a vector that is a row or a column in the matrix C.

The process starts with assigning each metric as a cluster, and then proceeds iter-

atively, where at each step the two most similar clusters are merged into one. This

process continues until only one single cluster remains. The similarities between any

two clusters were measured by the Lance-Williams dissimilarity update formula that

encodes the Ward’s minimum variance criterion. Assume two clusters (containing

one or more metrics), denoted by ~i and ~j, are agglomerated into cluster ~i ∪ ~j, the

Lance-Williams dissimilarity update formula for computing the new dissimilarities

between the new cluster and all other clusters is:

d(~i ∪~j,~k) = α~id(~i,~k) + α~jd(~j,~k) + βd(~i,~j) + dγ (7.3)

where dγ = γ
∣∣∣d(~i,~k)− d(~j,~k)

∣∣∣, and d(~i,~j) defines the function of Ward’s mini-

mum variance as:

d(~i,~j) =

∣∣∣~i∣∣∣ ∣∣∣~j∣∣∣∣∣∣~i∣∣∣+
∣∣∣~j∣∣∣
∥∥∥~i−~j∥∥∥2

. (7.4)
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∣∣∣~i∣∣∣ is the cardinality of cluster~i, and
∣∣∣~i∣∣∣ = 1 when~i contains only one metric. For

Ward’s minimum variance metric, the corresponding agglomerative criteria α~i, α~j,

β, and γ are
|~i||~k|
|~i|+|~j|+|~k| ,

|~j||~k|
|~i|+|~j|+|~k| ,

|~k|
|~i|+|~j|+|~k| , and 0, respectively. For more details,

please refer to [65].

Although one may simply use the correlation coefficient of two metrics to mea-

sure their similarity, their respective correlation coefficients to other metrics will

affect their distance measurement in the metric space (a higher-dimensional space).

To define a more accurate similarity metric, for each quality metric, I consider its

corresponding row or column in the correlation matrix (Figure 7.4) with absolute

entry values as its feature vector (i.e., ~i and ~j above). If two metrics have similar

feature vectors measured by Eq.(7.4), then these two metrics should also have similar

evaluation capacity to the hex-meshes. Based on the feature vectors of the individ-

ual metrics, I perform the above hierarchical-clustering to organize the metrics into

a binary tree (see Figure 7.5 (a) for an example).

7.1.3 Data Preparation

To employ the aforementioned correlation analysis and clustering techniques, a large

hex-mesh dataset that has well-distributed metric values is needed; otherwise, the

generality of the analysis results will be questionable. However, it is non-trivial

to generate hex-meshes that are well-distributed in the metric space while having

the same or similar numbers of elements using existing techniques. This is because

different metrics have unknown dependencies on each other, altering one metric value
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Figure 7.1: Parallel coordinate visualizations of all the metric values of (a) Hmin, 59
Cube hex-meshes by only controlling the minimum metrics with lower bounds and ↑
trends (red labels), and (b) Have, 1677 Cube hex-meshes by additionally controlling
the average metrics with lower bounds and ↑ trends (blue labels). I do not explicitly
control metrics with labels in black.

may change the others in an unknown fashion.

Figure 7.2: Parallel coordinate visualization of all the metric values of a set of hex-
meshes of the crank model generated using MeshGem.

As a concrete example, I use MeshGem [61]–an octree-based tool to generate a

set of hex-meshes from a selected object. Each of these meshes is generated with

a slightly different element orientation from the others, while keeping the other pa-

rameters fixed. This allows us to produce a set of meshes with similar numbers of

elements. The reason of adopting an octree-based method for this experiment is
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because it is more robust and easier to use than other available techniques, such as

the Polycubes-based [56, 38] and frame-field based [52, 43] approaches. Figure 7.2

shows a plot of the distribution of the individual metric values for the hex-meshes

(i.e., 657 in total) of the crank model using the parallel coordinate technique [42].

The distribution of the metric values of these meshes is highly uneven. They can

be clearly classified into no more than 30 clusters with distinct metric values. This

means only at most 30 meshes are usable for the correlation analysis, making it

inefficient to generate the test dataset with the octree-based method.

7.1.3.1 A Perturbation-based Data Generation Strategy

To address the above data generation challenge, I introduce a two-stage noise inser-

tion strategy.

Our method was based on the following observation. That is, all the metrics

in Table 3.1 can be divided into two groups based on their characteristics, i.e.,

a group with those metrics that have minimum/maximum values, and the other

group consisting of the remaining metrics. According to their definitions, I know

that minimum/maximum metrics can be greatly influenced by modifying a single

vertex/hexahedron–much more effective than re-generating the entire mesh, while

average metrics can only be affected by modifying the majority of the elements.

Based on the above insights, given an input hex-mesh H0, I generated its hex-mesh

dataset using the following two steps (Algorithm 4).
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First, I generate a series of hex-meshes Hmin by explicitly controlling their dis-

tribution over the valid spaces of minimum metrics (i.e., those minimum metrics

in Table 3.1 with lower bounds and ↑ trends). There are Nmin = 11 such kind of

minimum metrics. Specifically, for each of those metrics, Mi, with the value mini of

hex-mesh H0, I evenly divide its valid range
[
lMi
b ,mini

]
into α sub-ranges, where lMi

b

is provided in Range? column of Table 3.1 that need not be the mathematical lower

bound of the metric [86]. The lower bounds for all the metrics as seen in Table 3.1,

especially the metrics related with Jacobian, were selected to warrant the generation

of valid hex-meshes [47].

To generate a valid mesh falling in the range of [Rmin, Rmax] ⊂ [lMi
b ,mini] of the

current metric Mi from H0, I proceed as follows. I start with the perturbation of

vertex positions of a randomly selected element ht. The perturbation is done by

adding a small random vector ~vr to the vertex position, where |~vr| ≤ s and s is a

percentage of the average edge length of H0 (e.g., 0.1%). After modifying the selected

vertex positions, I measure the metric Mi ’s value of this element ht and its neighbors.

If one of these values falls in [Rmin, Rmax], I return the obtained mesh. Otherwise, if

all values are larger than Rmax, I double the amount of noise, i.e., s← 2s. Similarly,

if all the values are smaller than Rmin, I decrease s by half. This trial is performed

for Imax times and returns null if no valid mesh can be found. Imax = 5 in all our

experiments. Note that during the above perturbation, I constrain the distortion of

the hex-mesh within the lower bounds of all the metrics to avoid inverted hexahedral

elements, and the location of a modified vertex to be within its bounding sphere to

prevent the tangling issue of hexahedral elements.
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The ideal number of the generated hex-meshes at this step is α×Nmin. However,

this ideal number is typically not achievable. This is mainly because that the above

perturbation may still generate invalid hex-meshes or redundant meshes whose metric

values fall in the same sub-ranges of the previous meshes. These meshes have to be

discarded. The Hmin row of Table 7.1 lists the numbers of the generated hex-meshes

for all the tested models after performing this step. Figure 7.1(a) visualizes the 59

hex-meshes (Hmin) of the Cube model using the parallel coordinate technique [42],

where each curve and each vertical coordinate represent a hex-mesh and a metric

listed in Table 3.1, respectively. From Figure 7.1(a), I see that the generated hex-

meshes have well distributed values across the ranges of those minimum metrics

(whose labels are colored in red). To this end, the hex-meshes in Hmin have varying

values of the minimum metrics but approximately constant values of the average

metrics, as only a few hex elements are altered. Although the average metrics in

Figure 7.1(a) exhibit certain variations, the actual ranges of their distribution are

very small.

Second, for each hex-mesh Hi in Hmin, I perturb the positions of a large portion

of vertices of Hi in order to alter their average metric values. Similar to the first

step, for each average metric Ak (assuming the total number of the average metrics

is Nave) with value avek of Hi that has its lower bound lAk
b and ↑ trend, I divide

its valid space
[
lAk
b , avek

]
into β sub-ranges. Using a similar perturbation strategy

described earlier to a random set of interior vertices, I aim to generate a hex-mesh

with the value of metric Ak falling in the given sub-range. At this step, the maximal

number of the generated hex-meshes is β×NaveHmin, where Nave is 10 corresponding
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to the metrics with blue colored labels in Figure 7.1. However, similar to the first

step, our perturbation does not guarantee to always generate a hex-mesh with the

average metric value falling in a given sub-range, as modifying a large amount of

vertices is harder to control than altering just a few. Therefore, the actual number

of obtained valid meshes is much smaller than the ideal number. The Have row of

Table 7.1 lists the numbers of the generated hex-meshes for all the tested models

after performing this step. Figure 7.1(b) visualizes the 1677 hex-meshes (Have) of

the Cube model. From Figure 7.1(b), I see that the generated hex-meshes have

reasonably well distributed values across the ranges of the average metrics that I

control. The obtained meshes in Have will be used in our correlation analysis.

Figure 7.3: Models used in our experiments.

Note that the above perturbation process does not alter the structure of the hex-

meshes[27] nor the number of hex elements. To cover a wide spectrum of shapes, I

consider over 20 different 3D man-made or natural objects (Figure 7.3) with various

geometric and topological complexities. For each model, I generate a large set of
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Table 7.1: Datasets for six representative models (out of 20 models). Rows without
? are for dataset generation, while Memory? is the memory cost of each mesh for
solving the linear-elasticity problem and Timing? is for solving this problem of all
the sampled meshes for each model.

Models Cube Sphere Fandisk Hanger Bunny Fertility

#H 216 135 357 939 17226 13584
α 8 8 8 8 8 8
HMin 61 61 58 58 63 58
β 12 8 15 25 8 8
HAve 1676 1176 2389 3131 1698 1508

Timing 2h 1.5h 4h 8h 30h 25h
Memory? 8M 6M 10M 100M 200M 180M
Timing? 2h 1.5h 4h 7h 30h 25h

hex-meshes using the above described technique.

As as seen in Table 7.1, #H row lists the numbers of hexahedral elements for six

representative models. The timing of the generation is also provided for each model.

All the timing information was recorded on a PC with an Intel Xeon (E5-1620)

processor and 16GB memory.

7.2 Evaluation

By applying the techniques described in Sections 7.1.1 and 7.1.2 to the generated

hex-mesh datasets (Section 7.1.3), I evaluated the effectiveness of various quality

metrics for hex-meshes and their dependencies. Our evaluation mainly contains

two parts. I first investigated the relationships among the quality metrics for hex-

meshes without considering subsequent applications in Section 7.2.1. The goal here

was to comprehend the correlation among different metrics so that the used quality
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Algorithm 4: Pseudo code of dataset generation for a model

Input : H0, α, β
Output : Hmin, Have

Constant: ē is the average edge length of H0

foreach minimum metric Mi that has a lower bound lMi
b and ↑ trends do

calculate the value mini of metric Mi of H0;

evenly divide the range of metric Mi,
[
lMi
b ,mini

]
, into α sub-ranges;

σ = (mini − lMi
b )/(α− 1);

for j = 0 : α− 1 do

compute the sub-range [Rmin, Rmax], where Rmin = lMi
b + jσ and

Rmax = lMi
b + (j + 1)σ;

generate a valid hex-mesh and put it into set Hmin;

foreach hex-mesh Hi in set Hmin do

foreach average metric Ak that has a lower bound lAk
b and ↑ trends do

calculate the value avek of metric Ak of Hi;

evenly divide the range of metric Ak,
[
lAk
b , avek

]
, into β sub-ranges;

calculate the value avek of metric Ak of Hi;

evenly divide the range of metric Ak,
[
lAk
b , avek

]
, into β sub-ranges;

σ = (avek − lAk
b )/(β − 1);

for j = 0 : β − 1 do

compute the sub-range [Rmin, Rmax], where Rmin = lAk
b + jσ and

Rmax = lAk
b + (j + 1)σ;

generated a valid hex-mesh and put it into set Have;
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(a) Block (b) Bone (c) Bust (d) Double-
torus

(e) Ellipsoid (f) Hanger

(g) Averaged correlation matrices of allmeshes (h) Deviation

Figure 7.4: For the Fandisk, Hanger, and Bunny models, the metric, Max. DM, has
quite weak correlations with other metrics. This is mainly because of the Max. DM
values of the corresponding hex-mesh datasets have a too narrow range.

metrics for different applications were reduced to a small representative set of metrics.

Second, I performed the same analysis but at the same time considered three specific

applications – linear-elasticity problem (Section 7.2.2.1), Poisson equation solving

(Section 7.2.2.2), and Stoke equation solving (Section 7.2.2.3). The goal here is two-

fold: 1) to validate the results of the preceding evaluation and 2) to identify the most

effective set of metrics for the measurement of the quality of hex-meshes in response

to the specific needs of these applications.
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7.2.1 Application Independent Study

Our first evaluation measured the correlation among different metrics (Section 7.1.1)

and their similarity (Section 7.1.2) without considering any specific applications. In

particular, for each model I computed its correlation matrix C based on its dataset

D[N,M ] (e.g. D[N,M ] = D[38, 1677] for the Cube model that has 1677 hex-mesh

samples). Based on C, I classified these metrics into different groups (Section 7.1.2).

Figure 7.4(a-f) visualizes the correlation matrices of all the metrics listed in Ta-

ble 3.1 for six representative models. Each cell of the correlation matrix was colored

based on the correlation coefficient of the associated pair of metrics. It is either

in red or blue, which means the two metrics have positive or negative correlation,

respectively. The darker the color, the stronger the correlation.

To minimize the potential bias caused by a specific model to the relationships

among metrics, I computed a simple averaged-correlation matrix C̄[N,N ] (Fig-

ure 7.4(g)) of all the correlation matrices. From Figure 7.4, I observed that the

correlation matrices for all the models as well as the averaged one have similar pat-

terns, which indicates that the behaviors of the quality metrics may be independent

from the various characteristics of the tested models. Based on C̄[N,N ], I per-

formed the Ward’s hierarchical-clustering (Section 7.1.2). Figure 7.5 (a) shows the

obtained binary tree describing the hierarchical-clustering of the metrics. Note that

the distance among any pair of metrics is seen in the Y axis.

Although a priori does not exist on how many clusters these metrics should be

classified into, in this work, I extracted 8 groups (highlighted by the red rectangles
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in Figure 7.5), without loss of generality. The pairwise distance of metrics in the

same clusters is less than 1.

From these clusters, I obtained the following observations.

(1) Different average metrics had closer relationships while minimum or maximum

metrics are more akin to each other.

(2) Metrics related to operations on the element volume such as {Min. SS, Min.

SES, Min. RSS, and Min. V.}, and {Ave. SS, Ave. SES, and Ave. RSS.} belong

to the same clusters (i.e., cluster 1 and cluster 5, respectively), while Max. O.,

Max. AF, and Max. MAF. belong to cluster 2 that measures the deviations of the

metric tensor from the identity matrix. By inspecting the largest cluster (i.e., cluster

5) that contains most of the average metrics, I saw that although L. SK. and L. T.

metrics have names of the “largest”, they were actually more related to other average

metrics. This insight was not easily obtained by comparing their formulas.

(3) The small difference in their calculations of Min. J., Min. DIS., and Min.

S. has been reflected in the clustering, where they belong to cluster 3. The close

relations between metrics, such as Min. SE, Min. S. J. that measure the angle

distortions have also been identified (see cluster 3) by the hierarchical-clustering.

(4) Max. ER., Min. ST., Min. D. (in cluster 6), and Max. MER. (in cluster 8)

calculated based on the ratios of edge lengths or diagonal lengths were highly related

and have been clustered together.

With this clustering result, researchers focusing on hex-mesh generation tech-

niques can use a smaller number of metrics to evaluate the quality of the generated
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hex-meshes, i.e., selecting one representative metric from each cluster. However, this

only provides a general guideline when there is no specific application involved.

(a)

(b)

1 82 3 4 5 6 7

1 82 3 4 5 6 7

Figure 7.5: Hierarchical-clustering results of the metrics listed in Table 3.1 (a) with-
out and (b) with linear elastic application considered.

7.2.2 Application Dependent Study

After studying the correlation among metrics under the application-independent as-

sumption, to understand the impact of different hex-mesh quality metrics on FEA
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based simulations, I further investigate their influences on a hex-mesh to three well-

studied applications, i.e., linear-elasticity, the Poisson’s equation and Stokes prob-

lems. Other applications can be analyzed in a similar way.

7.2.2.1 The Linear Elasticity

As our first application, linear-elasticity models an elastically deformable body under

infinitesimal displacement. According to Bathe [2], isotropic linear elastic energy is

an quadratic energy of the displacement field v, taking the following form:

E =

∫
Ω

µε : ε+
λ

2
tr2(ε)dx,

where ε = (∇v +∇vT )/2 − I is the infinitesimal strain tensor and µ, λ are Lamé’s

coefficients. For all three applications, I discretize these continuous energies using

the FEM method with linear shape function and Gauss quadrature to approximate

the per-hex integral. The induced Euler-Lagrangian equation is an elliptic PDE. So

that I have a linear system in the discrete case whose left hand side K is the stiffness

matrix. To extract the minimal and maximal non-trivial eigenpairs of this matrix, I

optimize the Rayleigh quotient xTAx/xTx using nonlinear conjugate gradient method

(NCG) [26] with approximate inverse preconditioner [5].

7.2.2.2 Poisson’s Equation Related Application

Our second application, Poisson’s equation, sees a lot of applications in the field of

computer graphics. It can be used to reconstruct shape from differential domain

[45], to find the potential component of a vector field [92], or to find smooth function
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extensions from boundary values [36]. The solution to the Poisson’s problem is the

minimizer of the Dirichlet energy of an scalar function f :

E =

∫
Ω

‖∇f‖2dx.

Again, the Euler-Lagrangian equation is an elliptic PDE and the resulting discrete

system is linear, where the left hand size matrix A corresponds to the Laplace oper-

ator. The eigenpairs are extracted in the same way as Section 7.2.2.1 from A.

7.2.2.3 Stoke Equation Related Application

Finally, the stokes equation, which models fluid motion with high viscosity and low

Reynolds number. They can also found applications in computational fabrication

[99] and physics based animation [3]. Similarly, following FEM, it can be discretized

by minimizing the component wise Dirichlet energy under the incompressible con-

straints:

E =

∫
Ω

‖∇v‖2dx s.t. ∇ · v = 0,

where v is the velocity field. This system can still be considered as an elliptic PDE

in the subspace specified by the constraints. So that the resulting system is a saddle

point system with the following left hand side: Av BT

B 0

 ,

where Av = A⊗I3×3 is the component-wise Laplace operator and B is the divergence

operator. The system can be solved only for the primal variables using the Schur
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complement matrix: A−1
v − A−1

v BT (BA−1
v BT )−1BA−1

v as the left hand side. It is

the non-trivial eigenpairs of this reduced system that I care about. To extract these

eigenpairs while avoid evaluating this dense system directly, I instead use Av as

the left hand side and project each search direction d of NCG onto the constraint

subspace by solving:

argmind∗‖d∗ − d‖2 s.t. Bd∗ = 0, (7.5)

to get the equivalent result [46]. Equation 7.5 can be solved very efficiently by pre-

factorizing the left hand side of the dual system: BBT using Cholmod [15]. d∗ was

then found from: d∗ = (I −BT (BBT )−1B)d.

7.2.2.4 Application Dependent Analysis

Figure 7.6: The illustration of the correlations of metrics listed in Table 3.1 with
the minimum and maximum eigenvalues of the three applications after averaging the
correlation matrices of all models.

To investigate the impact of the hex-mesh quality metrics on the above three

applications, I include the maximal and minimal eigenvalues of the above individual

systems, denoted by Max. E. and Min. E., respectively, to the correlation matrix,
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Figure 7.7: Metrics ranking based on their correlations with Max. E. of the linear-
elasticity problem.

as shown in Figure 7.6. Based on the absolute values of their correlation coefficients

with Min. E. and Max. E., I rank all the existing metrics as shown in Figures (7.7-

7.12). From these results, I see that the correlation analysis results exhibit very

similar patterns across all three different applications. I also observe that, for all

three applications,

(1) Most average metrics have stronger correlation with both the maximal and

minimal eigenvalues than those minimum/maximum metrics. Among those metrics,

Ave. MAF. has the strongest correlation with the maximal eigenvalue for all three

applications, while Ave. SES. and Ave. SE ranked top two with respect to the

minimal eigenvalue.

(2) The correlations of the metrics (especially average-related metrics) with the

maximal eigenvalues are typically much stronger than their correlations with the

minimal eigenvalues. To explain such a behavior, I provide a qualitative analysis as
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Figure 7.8: Metrics ranking based on their correlations with Min. E. of the linear-
elasticity problem.

follows.

Indeed, the maximal eigenvalue is an effective indicator of the low quality ele-

ments in the mesh. It is tightly related to condition number, i.e., the stability and

performance of solving the system, especially when applying iterative solvers. By a

closer look, all three energies above take the following form:

E =

∫
Ω

Q(∇f)dx =
∑
Ωi

∫
Ωi

Q(∇f)dx,

where Q is the energy density of quadratic form and f is a scalar or vector valued

function over the hex domain. I can write this integral as a sum over all hex-elements

Ωi. In order for f to be the normalized maximal eigenvector, I need to assign f so

that E is maximized. This can be accomplished by assigning f 6= 0 only in Ωi with

maximal |∂Q(∇f)/∂f |. But Q is same for all Ωi, I are thus assigning f 6= 0 only

in Ωi with maximal |∇f/∂f |. This last equation is exactly the inversed Jacobian
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Figure 7.9: Metrics ranking based on their correlations with Max. E. of the Poisson
problem.

of the hex-element Ωi. Therefore, f indicates the hex-elements with low quality.

One should notice that Q doesn’t play an important role in this analysis, so that

although the maximal eigenpair is computed in an application dependent way, it

plays a similar role as typical application independent metrics that detect irregular

sized or shaped hex-elements.

In order to get the true application dependent measure, the minimal non-trivial

eigenpair should be used. Note that in order to discretize the energy functional

E : L∞ → R, I are only looking at a finite dimensional subspace domain L̄ ⊂ L∞.

And the minimal non-trivial eigenvalue is the minimal non-zero E available in L̄,

which must be larger than that available in L∞. Thus, I can reach the conclusion

that, unlike all the other existing metrics which measures the condition of an already

discretized system, λmin measures the accuracy of the discretization itself. Therefore,

λmin has low correlation with all the other metrics by revealing an orthogonal aspect
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Figure 7.10: Metrics ranking based on their correlations with Max. E. of the Poisson
problem.

of the discrete representation. A smaller λmin indicates a better mesh for the specific

application. The above analysis shows that higher quality meshes (measured by

average quality metrics rather than by the minimum/maximum ones) will lead to

smaller λmin, which roughly indicates smaller L2 norm of error.

7.3 Conclusion

In this chapter, I investigate the correlations among various hex-mesh quality met-

rics using a linear-correlation analysis framework. Based on their pairwise covariance

coefficients, I further calculate their similarities and agglomerate them in a hierarchi-

cal fashion. This helps us to classify similar metrics into a small number of groups,

and thus reduces the number of necessary metrics for hex-mesh quality measurement
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Figure 7.11: Metrics ranking based on their correlations with Max. E. of the Stoke
problem.

in practice. Furthermore, with the proposed correlation analysis framework, I use

linear-elasticity, Poisson’s equation, and Stoke equation as example applications to

evaluate the effectiveness of different metrics. In order to acquire the accurate out-

come from the correlation analysis, I propose to generate a large set of hex-meshes

for each model considered in a controllable fashion. The obtained sets of sample

hex-meshes generally have well-distributed metric values.

Limitations and Future Work

The current work can be improved in the following ways. First, although I have

obtained preliminary insights, due to the large set of met-

rics and their inter-dependencies, it is a challenging task

to produce a hex-mesh dataset that uniformly samples

the high dimensional metric space. Some artificial clus-

ters can be observed and some of the data values will
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Figure 7.12: Metrics ranking based on their correlations with Min. E. of the Stoke
problem.

never be sampled, see the inset figure for an example.

The current dataset generation could be improved by additionally controlling the

maximum metrics and their corresponding average metrics. Another limitation of

this work is that, I did not consider hex-meshes with inverted and tangled elements,

which may lead to the underestimate of influences of Jacobian related metrics to

three applications. Even though I have some interesting and potentially useful find-

ings, the relations among metrics studied in this work are only linear, which may not

be accurate enough. A more rigorous description of the relations among metrics will

make our finding more consolidated. I would like to explore these directions in future

work. Finally, based on the analytical results of our study, I will be able to design a

more suitable objective function for the optimization of hex-meshes by considering

the requirements of a given application.
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Chapter 8

Conclusions

This chapter summaries the contributions of this dissertation and points out some

major remaining problems in hex-meshing direction.

8.1 Summary

This dissertation attempts to address two major problems in hex-meshing: 1) obtain

hex-meshes with simple global structures, and 2) identify critical metrics from the

large amount of available quality metrics for future hex-meshing techniques. Specif-

ically, I made the following contributions towards these two sub-directions:

Towards the direction of generating simple structured hex-meshes, I explicitly

defined the singularity-structure composed of all the extraordinary edges in a hex-

mesh, and the base-complex extracted from it guided by the singularity-structure.
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base-complex contains a set of components that decompose a hex-mesh into different

cube-like blocks. Within each component, user can fit high-order smoothness func-

tions while only C0 continuity can be achieved across the boundary of neighboring

components. Based on the simple observation that fewer components will lead to

larger smoothness volume throughout the whole volumetric-domain bounded by the

surface of a hex-mesh, I proposed a series of techniques to produce hex-meshes with

as few as possible components. First, given a 3D-volume domain bounded by a closed

surface, I proposed to decompose a 3D-volume domain into a hex-mesh following a

user designed skeletal structure, which is actually the singularity-structure, guided

by a generalized sweeping strategy. For the first time, I achieved the simplicity of

the skeletal structure, while having the generated hex-meshes follow the orientations

specified by users. Second, given a hex-mesh as input, by assuming that the extracted

singularity-structure of the given hex-mesh has been already well placed, I proposed

to reduce the number of components in the base-complex of the input mesh by cor-

recting the misalignments of singularities. Our proposed alignment technique first

connects misaligned singularities in a zigzag way, and then improved the geometric

fidelity through a structure-aware parameterization optimization. Third, I proposed

a new structure simplification framework to solve a harder problem by making no

assumption on the input structure. Since the misalignment correcting technique

cannot be trivially extended, I employed a new pipeline by first constructing the

simplified graph of the to-be-simplified structure without considering any geometric

quality, and then parameterizing the involved patch domains to directly obtain the

simplified structure while reducing the geometric distortion.

149



Towards identifying the critical quality metrics for hex-meshing (e.g., generation,

optimization, and processing), I proposed a comprehensive yet complete pipeline to

quantitatively evaluate the correlations among quality metrics, and their relation-

ships with certain applications. Because of the non explicit relations among the

metrics, I was the first to employ the linear-correlation analysis to obtain their ap-

proximate relationships. To obtain reliant analytical results, based on a hex-mesh in-

put, I proposed a hex-mesh dataset generation algorithm to generate hex-mesh sam-

ples with statistically sound distributions over the non-orthogonal multi-dimensions,

where each dimension represents a shape metric. Furthermore, I also investigated

the correlations between shape metrics and linear-elasticity, Poisson equation, and

naive Stoke problems, respectively. Our framework can also be employed to evaluate

measurements for other representations, e.g., surfaces and images.

8.2 Future Work

Although I have made considerable contributions in directions of the simple global

structure and quality measurements for hex-meshing, techniques and theories in

structural hex-meshing and quality measurements for hex-meshing are still far away

from being mature. Below I outline our thoughts on those unsolved and valuable

problems in this field.

Quality of global structure. In this dissertation, I demonstrated that a smaller

number of components in a base-complex is preferred for volumetric B-spline-fitting.
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However, for models with complex shapes, coarse structures often lead to bad ele-

ment quality and surface geometric deficits. This leads to a question, is the fewer

components the better quality of the global structure? For other attributes of the

structure, e.g., the number of singularities, the similarity of each component to a

cube, volume changes of neighboring components within the same global structure,

there still lack explicit quantitative measurements.

What is a good hex element? While I have studied the linear-correlations

among the current available shape metrics, it would be beneficial to find a way to

mathematically analyze the correlations between the shape of an element and the

accuracy and convergency rate of numerical simulations. To address this, a valuable

reference would be the “what is a good linear element?- Interpolation, Conditioning,

Anisotropy, and Quality Measures” [81]. Moreover, how the analytical results per-

formed on a hex element can be applied to a general hex-mesh that consists of a set

of hex elements? These call for the design of new and more descriptive metrics.

Linkage between inversion-free and topology. Hex-mesh optimization is

vitally important in improving the quality of a hex-mesh to a user-desired level. Many

practical algorithms have been developed to untangle a non inversion-free hex-mesh

input. However, there still lacks a theoretical answer of whether an inversion-free

hex-mesh is guaranteed to be obtained given any topologically valid all-hex-mesh as

the input.

To conclude, hex-meshing is still a critical and fruitful research area that will

continue seeing many major breakthroughs in the years to come.
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