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Abstract 

George Box’s famous quote “All models are wrong, but some are useful” is now 

widely known.  Mathematical models can be built based on a combination of first principles 

and available data.  The focus of this work is on the application of data-driven modelling 

approaches in two specific instances of problems in upstream (oil & gas extraction) and 

downstream (refining & chemicals) industries, namely (a) cementing of wells drilled for 

production of oil and gas from unconventional resources, such as shales;  and (b) design of 

robust control-relevant models for oil refineries and chemical plants.   

Shale gas production from horizontal wells faces potential problems related to gas 

leakage from the cemented annulus of the well into the air and water reserves, with obvious 

environmental and productivity implications.  Whether a well will leak or not depends on 

several factors, related to cement composition and preparation, the cementing process, well 

conditions, and others.  A model would be useful in assessing ahead of time whether a 

cementing job will produce a non-leaking well or not.  Such a model could be based on 

first principles, but would be extremely complicated.  Alternatively, as done in this work, 

a model can be built using multivariate statistics and available data from several leaking 

and non-leaking wells, cemented under different enough scenarios.  The model built has 

35 input variables (in the broad categories of casing properties, cement and drilling mud 

properties, and operating conditions) and manages to correctly classify with confidence 

81% of wells as leaking or non-leaking in cross-validation tests.  
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An advanced control system relies on a good control-relevant model that is not 

merely a good approximation of the actual process under control but also satisfies 

additional properties necessary for controller design.  Control-relevant models are typically 

identified through industrial experiments whose design is considerably more involved than 

standard design for parameter estimation.  The focus of this study is how to design control-

relevant identification experiments when elements of the model are already known.  A new 

theoretical framework is developed and its significant advantages over standard methods 

are illustrated through numerical simulations.  Several possibilities for future development 

are suggested. 
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PRBS inputs for 2 2  well-conditioned distillation column ............................................ 59 

Figure 4-12: Percentage of IC violation varying with J  for 3 3  distillation column .... 60 

Figure 4-13: Loci of eigenvalues  1ˆ 
DG  for least squares estimate Ĝ  and DD  using 
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1 Introduction 

Data-driven modeling has emerged as a new field of research in the last couple of 

decades.  Owing to advancements in digital data storage and high speed computing, data-

driven modeling is finding applications in a variety of industries.  Exploration and 

production (E&P) and chemical process industries are also taking interest in data-driven 

modeling to address related problems.  Seismic data analysis, reservoir surrogate modeling 

and injection-production optimization are major research areas in upstream E&P industries 

where data-driven modeling is being applied (Denney; Esmaili & Mohaghegh, 2016; 

Holdaway & Laing; Maucec et al., Mohaghegh, 2016; Stephen et al., Zhao et al., 2016).  

Fault diagnosis and control-relevant model identification are major application areas of 

data-driven modeling in oil refineries and chemical process industries (Kadlec et al., 2009; 

Rasmussen & Bay Jørgensen, 2005; Shu et al., 2016; Tabora, 2012; Xiong et al., 2014; 

Yamuna Rani & Patwardhan, 2007).  The focus of this work is on the application of data-

driven modelling approaches in two specific instances of problems in upstream (oil & gas 

extraction) and downstream (refining & chemicals) industries, namely (a) cementing of 

wells drilled for production of oil and gas from unconventional resources, such as shales;  

and (b) design of robust control-relevant models for oil refineries and chemical plants.  In 

the subsequent sections, motivation behind this research is explained. 
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1.1  Cementing shale gas wells  

 

As shown in Figure 1-1, oil and gas production from unconventional reservoirs has 

transformed the US energy landscape with profound economic and environmental 

implications (DOE, August 2016).  Indeed, the US chemical industry now has the 

advantage of inexpensive natural gas as a raw material produced domestically; and the 

power industry is increasingly relying on natural gas, as an alternative to coal, for 

electricity generation with reduced greenhouse gas (GHG) and other emissions, higher 

flexibility, and lower cost (Figure 1-2) (Biello, 2015).   

 

 

Figure 1-1: Primary U.S energy production (Quadrillion BTU)  
 

Natural gas from shale formations known as shale gas, is playing a key role in 

natural gas energy sector.  Figure 1-3 shows the presence of shale basins in lower 48 states 

of the United states (DOE, 2009).  As shown in Figure 1-4, the share of natural gas from 

shale formations has increased from approximately 1% in early 2000 to more than 20 % in 

2013 and is expected to increase to approximately 55 % by 2040 (DOE, April 2015).   



 

3 
 

 

Figure 1-2: Use of natural gas in U.S in 2014 

 

 

Figure 1-3: Geographical locations of shale basins in the US 
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Figure 1-4: Projections of dry natural gas production in the US  
 

The extraction of large amounts of shale gas from almost impermeable rock 

formations became possible because of advancements in two key technologies:  massive 

hydraulic fracturing and horizontal drilling (IEA, 2011).  Massive hydraulic fracturing 

creates the flow paths needed for oil and gas to flow through an otherwise almost 

impermeable rock, within reasonable amount of time, to a production well and then to the 

surface.  This task is assisted by horizontal drilling, which creates a large contact area 

between a very low-permeability rock formation and a production well (DOE, 2009).  

Although shale gas revolution has played a significant role in cutting down carbon-di-oxide 

emission but its production is not without environmental risks.  An important consideration 

is potential gas leakage from various geological zones of a production well, either into the 

air or into underground water reserves.  In fact, undesired gas emissions into the air – in 

addition to wasting a valuable resource – could potentially cancel any advantages on 
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greenhouse gas emissions reduction stemming from use of natural gas in power generation 

(Figure 1-5) (R. W. Howarth, D. Shindell, R. Santoro, A. Ingraffea, N. Phillips, and A. 

Townsend-Small., 2012), as methane has more than an order of magnitude higher global 

warming potential than CO2 (IPCC, 2013).  The acceptable threshold of natural gas leaks, 

above which total greenhouse gas emissions would actually increase, is vigorously debated 

(R. W. Howarth, Ingraffea, et al., 2011), on occasion among scientists within the same 

institution (Cathles et al., 2012; R. W. Howarth, Santoro, et al., 2011; R. W. Howarth et 

al., 2012), and has spawned high-profile scientific investigations (Caulton et al., 2014).  

Nevertheless, developing cost-effective solutions for unwanted natural gas leaks is an 

opportunity welcome by industry (Boling, 2015).   

 

 

Figure 1-5: Potential leakage of hydrocarbons  

 

Preventing the undesired flow of natural gas between various well zones and rock 

formations is known as zonal isolation, and is achieved by creating a tight seal through 
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cementing appropriate sections of a well (Figure 1-6).  Providing adequate zonal isolation 

remains formidable for industry, because uniform placement of cement in the annulus 

between the metal casing and the wellbore formation is both technically challenging and 

costly.  In current industrial practice, predicting zonal isolation mainly relies on laboratory 

investigations and/or predictions based on analytical models or finite-element analysis.  

Investigators have reported the effect of internal casing pressure and temperature on zonal 

isolation in experimental studies (Goodwin & Crook, 1992; Jackson & Murphey, 1993) 

and the effect of well events, such as completion and production, using finite-element 

methods (Tahmourpour & Griffith, 2004; Thiercelin et al., 1998).  Correlation-based 

studies of the effect of formation properties on gas migration have also been presented 

(Wilkins & Free, 1989) . 

 

 

Figure 1-6: Possibility for leakage of hydrocarbons into underground water or into 

the air.  Gas migration can be prevented by proper cementing of the 

annular space between metal casing and the wall of the well 
 

Although such studies are quite useful for individual tasks related to well cementing 

and zonal isolation, no method has been presented to account for the combined effect of all 
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related factors on the quality of a cementing job.  Yet such factors interact with one another, 

and their overall effect can be difficult to anticipate, either using fundamental equations 

(which become overly unwieldy) or by invoking experience (which, by itself, is 

insufficient).  In particular, cementing operations and design for horizontal wells are 

generally more demanding than for vertical wells, and routinely require decisions on a large 

number of factors.  Such decisions include cement-slurry design, spacer design, casing 

design, centralization, and evaluation of a cementing job after its completion, among 

others.   

1.1.1 Problem statement 
 

Assessing the effect of all such factors in a systematic way would be helpful for 

cementing engineers.  In fact, a mathematical model that could make reasonable 

quantitative predictions would help the engineer perform what-if analysis and possibly 

optimize the cementing operation.   

1.1.2 Proposed approach 
 

Since the development of a mathematical model based on first principles would be 

extremely difficult in this case, because of the significant uncertainty and complexity in 

the fundamental equations governing the cementing process, a data-driven model could be 

built, provided that sufficient data is available. 

A key focus of this work is the development of such a data-driven mathematical 

model.  Input (predictor) variables to this model are factors that generally may have an 

effect on the quality of a cementing job.  The output variable of this model is 

characterization of cementing quality of a well section, through classification of a section 
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as leaking or non-leaking, along with the relative confidence of such a prediction.  The 

model is built using multivariate statistical analysis on data already available from a 

number of cemented wells; no first-principles equations are employed at all.  The model 

can be used to guide the design of subsequent cementing jobs.   

1.2 Designing experiments for control-relevant model 

identification 
 

A good model is at the heart of good controller design.  With uprising applications 

of model predictive control in chemical industries, control-relevant model identification 

has become even more important.  Identifying a right model structure requires right set of 

inputs. So experiment design has an important role to play in the model identification.  

Traditionally, experiments were designed to capture the effect of the input variable on the 

response variable by testing a large set of input variations.  Generally, the objective of 

experiment design is to minimize errors in the estimated parameters so that the identified 

model is as close as possible to the actual process.  Research in the field of experiment 

design with the only objective to minimize parameter covariance dates back to mid of 20th 

century (Federov, 1972; Kiefer, 1958).  For multivariable systems, parameter covariance 

is not a scalar but a multidimensional matrix.  Based on different scalar measures of the 

parameter covariance matrix, the following are vastly used experiment designs: 

 D-optimal: minimization of determinant of the parameter covariance matrix 

 L-optimal: minimization of weighted trace of the parameter covariance matrix ( in 

case of unit weights, the design is called A-optimal) 

 E-optimal: minimization of maximum eigenvalue of the parameter covariance 

matrix 
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Since finding covariance matrix may be difficult, inverse of the Fisher information 

matrix is often used as an approximation to the covariance matrix (Soderstrom & Stoica, 

1989).  The optimization problem is solved to find the optimal set of inputs.  The optimal 

inputs obtained from the solution of the optimization problem may not be physically 

implementable.  To avoid this situation, the objective function can be optimized subject to 

physical constraints on the inputs and the outputs (Gevers & Ljung, 1986).   

The above mentioned and likewise designs only ensure the model closest to the 

actual process.  However, control-relevant identification is slightly different as it requires 

certain control characteristics to be fulfilled as well (Gevers, 2005).  One such control 

characteristic, is integral controllability (C. E. Garcia & M. Morari, 1985).  Integral 

controllability (IC) is a desired property of multivariable models used in robust controller 

design.  IC requires satisfaction of eigenvalue-based inequalities involving the real process 

and the inverse of the identified model.  Since the IC satisfaction involves inversion of the 

identified model, identifying such models for ill-conditioned multivariable systems have 

been a challenge.  A multivariable ill-conditioned system is characterized by a steady state 

gain matrix (SSGM) with very high condition number, which makes inversion of the 

SSGM of the identified model mathematically inaccurate.  Although models for individual 

input-output pairs of a multivariable system can be identified via single-input testing.  

However researchers have shown that single-input testing does not produce good model 

particularly for ill-conditioned systems because of insufficient information in weak 

direction.  This leaves no alternative other than MIMO testing and identification.  MIMO 

testing and identification can be performed in open loop or closed loop manner.   
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Open loop testing is very common in industrial applications.  Either one input at a 

time or multivariable random inputs can be used in open loop testing.  A pseudo random 

binary sequence (PRBS) is persistently exciting input sequence and the most common type 

of input sequence used in open loop testing because of advantages associated with 

persistent excitation (Soderstrom & Stoica, 1989).  A standard PRBS has binary states with 

zero mean and unit variance that can be approximated to a white noise signal.  In a PRBS, 

minimum switching time, total sample time and upper/lower bounds can be varied to 

produce different input sequences.  Open loop testing is useful except in those cases where 

unmeasured disturbances affect the process outputs.  Closed loop testing and identification 

can be useful in those situations when keeping process outputs within desired range 

becomes a challenge.  Under closed loop testing, a feedback controller is used to keep the 

process outputs within desired range.  The challenge in closed loop testing is design of the 

feedback controller.  The controller placed in closed loop testing is generally based on 

some preliminary model.  The response of the controller depends on the goodness of the 

preliminary model.  Since the purpose of the experiment design is to obtain a good model, 

dependency of the feedback controller design on the model quality makes this closed-loop 

approach iterative.  If one can make the closed loop stable with the controller based on 

some good preliminary model, closed loop testing may lead to good model identification. 

For identification of IC compliant model for ill-conditioned systems, (Koung & 

MacGregor, 1994) proposed a rotated input design for 2 2  systems based on principles 

of D-optimal design and provided extension of the rotated input design for n n  systems.  

The rotated input design uses singular value decomposition (SVD) of the gain matrix.  

Rotated inputs are set of correlated inputs that are obtained from rotation of PRBS inputs 
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of appropriate amplitudes.  Since this design depends on the SVD of the unknown true gain 

matrix, desired inputs cannot be designed in one step.  An iterative approach is required to 

design the inputs using this rotated input design.  For identification of an IC compliant 

model, a number of other researchers have also established the usefulness of this rotated 

input design over a standard PRBS design (M L Darby & M. Nikolaou, 2014; Kulkarni, 

2012; P. Misra & Nikolaou, 2003; S. Misra & Nikolaou, 2015; Panjwani & Nikolaou, 

2016) .  The rotated input design provides only sub-optimal when both input and output 

constraints are present (M L Darby & M. Nikolaou, 2014).  

For real systems with input and output constraints present, designing experiments 

for the identification of an IC compliant model is a challenging task because of 

cumbersome eigenvalue based inequality check (
1ˆRe[ ( )] 0  GG  where G is uncertain 

steady state gain matrix and Ĝ is the identified model).  To address this issue, Darby and 

Nikolaou (2009) developed a general mathematical framework, that relies on a much 

simpler inequality as its starting point.  This simpler inequality is only sufficient but not 

necessary condition for IC satisfaction, which means it could possibly be a conservative 

check for IC satisfaction.  Apart from this limitation, the DOE proposed by Darby and 

Nikolaou (2009) does not take into account any prior knowledge available about the 

system.  It is not very uncommon to have partial knowledge available about the system.  

This prior knowledge could come from fundamental mass-energy balances or industrial 

experience.  It is expected that inclusion of this partial knowledge in DOE would certainly 

improve the quality of the model.   
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1.2.1 Problem statement 
 

In this work, the below two problems are addressed: 

1) How conservative is the simpler inequality proposed by Darby and 

Nikolaou (2009)? 

2) Is there a way to utilize partial knowledge in DOE, which can lead to better 

IC-compliance model?  

1.2.2 Proposed approach 

 

1) To address first problem, first sufficient condition was analyzed analytically and 

then numerical simulations were performed on a number of case-studies to check 

the conservatism of sufficient condition. 

2) Since partial knowledge could be in any form, which makes this problem an open-

ended problem.  To begin with, partial knowledge in terms of linear equalities were 

considered in DOE.  An optimization framework was setup to design experiment 

and identify an IC compliant model.   

1.3 Organization of this Dissertation 
 

The dissertation is organized as follows: 

 In Chapter 2-3, firstly background literature on shale gas cementing is presented.  

Secondly, the data-driven modeling approach to address the well leakage problem 

is proposed.  Finally, a case study is presented to demonstrate usefulness of the 

data-driven modeling approach. 
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 In Chapter 4-5, firstly conservatism of sufficient IC condition is checked through 

analytical study and numerical simulations on a number of case-studies.  Secondly 

DOEs are developed incorporating partial knowledge available about the system 

and then a numerical optimization framework is presented that enables DOE for 

efficient identification of IC-compliant models for partially known systems.  

 In Chapter 6, conclusions are drawn and future recommendations are made. 
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2 Cementing Wells: Background Literature 

In this chapter, background and literature related to well cementing will be 

presented.  Cement sheath quality evaluation and factors affecting cement sheath quality 

will be discussed in detail. 

2.1 Cement sheath quality 
 

Well cement sheath quality is affected by a number of factors.  The significant 

factors are described as follows: 

2.1.1 Casing design.   
 

This includes the type of casings used for surface, intermediate, and production 

zones, internal diameter of casing, casing weight per unit length, number and type of 

centralizers, and casing/hole diameters ratio.  The main purpose of using centralizers is to 

reduce eccentricity of casing in the borehole.  Depending on the eccentricity of casing, a 

large number of centralizers may be required, but this creates a problem of extra drag while 

running casing, which is why spacing between centralizers needs to be calculated for 

minimizing the drag (Austin, 1988).  Casing weight, hole-diameter, and hole-deviation play 

an important role in determining the minimum standoff (an eccentricity measure of casing 

pipe placement inside the borehole) required for uniform cement flow in the upper and 

lower parts of the horizontal section of the annulus (Figure 2-1 from Wilson and Sabins 

1988).  Minimum standoff required is 60% for uniform flow of cement inside the annulus 

(Wilson & Sabins, 1988).  In general, the size of the annulus lies in a recommended range 

(0.75-1.5 inch) (Wilson & Sabins, 1988).  Casing movement, i.e. rotation or reciprocation, 
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also affects the displacement efficiency as it breaks the agglomeration of gelled drilling 

mud (Wenande, 1987).  Casing-connection is also an important part of casing-design, as 

they help in resisting leaks due to excessive internal or external fluid pressure and provide 

structural rigidity.  There are a few different casing connections such as round thread and 

buttress thread.  Casing connections may sometimes have a larger outer diameter than the 

body of the casing.  Typically that only happens for the smaller casing sizes. 

 

 
 

Figure 2-1: Standoff in the horizontal section of a well  

 

2.1.2 Rheological properties.   
 

Such properties include gel strength, plastic viscosity, and yield point.  A number 

of researchers have suggested use the of drilling muds with ratio of yield point to plastic 

viscosity greater than one (Zurdo et al., 1986).  These properties affect the cement 
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pumpability through the casing pipe and annulus.  They also affect the drilling mud 

displacement by cement during cementing as they help to prevent settling of solids inside 

the horizontal annulus.  It should be stressed that the key to successful cementing jobs is 

the properties of the slurries themselves, regardless of how such properties were achieved. 

2.1.3 Cement properties and cementing procedure. 
 

The properties of the cement slurry used in the lead and tail systems of a cemented 

section are generally different.  In either case, important variables that ultimately affect 

cementing quality are slurry type, slurry density, slurry rheological properties, slurry free 

water content, fluid loss rate, thickening time, compressive strength, Young modulus and 

cement pumping rate.  High fluid loss rate means more water is forced out of slurry to 

permeable formations which causes increase in cement slurry viscosity.  High viscosity of 

cement slurry makes movement of the cement slurry more difficult.  The Young modulus 

of the cement should be more than the Young modulus of the rock to achieve better 

cementing job quality (Thiercelin et al., 1998).  The type and volume of a spacer, placed 

between the cement slurry front and the drilling mud displaced by the cement, play an 

important role in cementing, as they avert potential problems related to intermixing of 

drilling mud and cement.  The presence of wiper plugs also helps in fluid displacement as 

it allows mechanical separation of fluids while fluids are inside the casing.  Generally, two 

types of wiper plugs are used.  The bottom plug is inserted before pumping the cement 

slurry.  The diaphragm in the bottom plug ruptures after it reaches to the landing collar and 

allows the cement slurry to pass through it.  The top pug is inserted at the end of cementing 

job.   
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2.1.4 Cement additives. 
 

Accelerator, retarder, extender, fluid-loss, anti-foam, gas migration, dispersant, antigel, 

expansion additives and some special additives are added into the cement slurry in required 

proportions to achieve desired slurry properties.  Each additive has its own role in affecting 

the cement sheath quality and there are multiple and complex interactions among these 

additives.  The description of some of the additives are given below: 

i. Accelerator is added to accelerate the setting of the cement. It provides sufficient 

compressive strength, so that drilling operations can be continued without any 

problems.  As the cement setting process is fast in high temperature conditions, 

this additive is generally used for near-surface cementing, where the temperature 

is not very high. 

ii. Retarder does exactly the opposite job of the accelerator additive.  It is added in 

the cement slurry to increase the setting time for the purpose of proper 

placement.  The retarder is needed in deep cementing operations. 

iii. Extender is added to decrease the density of a cement slurry.  Reducing the 

density reduces the hydrostatic pressure of the cemented column, which helps in 

successful cementing of the weak zones of the well. 

iv. Fluid loss additive is added to control the loss of fluid from the cement slurry to 

the rock formation.  The fluid loss from the cement slurry adversely affect the 

permeability of the reservoir formations and the cement setting process.  

v. Anti-foam additive is added to avoid the foam formation during the cement 

slurry preparation and mixing process.  Excess foam may cause poor quality 

control of the cement slurry.  
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vi. Gas migration additive is added to prevent the gas migration through and around 

the cement sheath. 

vii. Dispersant is added to reduce the cement slurry viscosity to enable easy flow of 

the cement slurry.  It also helps in displacing drilling mud more efficiently. 

viii. Antigel additive is added to break conglomeration in the cement slurry, which 

enables the smooth flow of the cement slurry. 

Several authors have studied the effect of special cement additives on cementing 

quality (Bach & Vijn, 2002; Elmarsafawi et al., 2006; Pollard, 1994).   

2.1.5 Mixing water quality.   
 

The quality of the mixing water also has an effect on cementing quality (Rowan & 

Stone).  Contamination in the water affect thickening time, compressive strength, rheology, 

fluid loss and free water content in the water.  The quality of the mixing water is primarily 

measured in terms of chloride content, sulfate content, pH, alkalinity and hardness of the 

water.  High amount of chlorides in the mixing water may cause acceleration of the cement 

setting time.  The major source of chloride contamination are water trucks that have 

previously carried brine water.  High amount of sulfates in the mixing water may cause 

microstructural defects in the cement because of chemical changes in the cement.  Hardness 

of the mixing water comes from magnesium ions, calcium ions and other dissolved 

carbonates.  

2.1.6  Other variables.  
 

Water temperature, bottom hole circulation temperature (BHCT), bottom hole 

static temperature (BHST), and hydrostatic pressure inside the well affect the reaction 
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kinetics of the cement slurry setting, rheology, and fluid loss, among others (Chow et al., 

1988).  Formation properties (e.g., porosity and permeability) as well as hole conditions 

(e.g., washouts) have an effect.  

2.2 Cement sheath evaluation 
 

The various techniques have been used for evaluation of the quality of a cement 

sheath.  The following two techniques were used in this work. 

2.2.1 Bond index.  
 

Tools such as segmented cement bond tool (SBT) (Tyndall, 1990), cement bond 

log (CBL) (Fitzgerald et al., 1985), and the ultrasonic imager (USI) (Butsch, 1995) can be 

used for quantitative analysis of cement bond quality in terms of the bond index (BI), a 

continuous variable between zero and one, calculated using log data.  The CBL tool 

functions on sonic log principals of refraction.  Sound signals transmitted by the transmitter 

refracts along the casing-mud interface and returns back to receiver.  The amplitude of the 

signal (in millivolts) or attenuation (in decibel/ft) is recorded.  The bond index is calculated 

as the ratio of attenuation at any point and maximum attenuation.  The maximum 

attenuation corresponds to the lowest amplitude in the CBL.  BI values close to zero 

represent poor cementing quality whereas a BI value at one indicates perfect cementing.  

Although conventional CBL log display provides a good graphical way to evaluate cement 

sheath quality, CBL results can be analyzed using acoustic waveform display known as 

variable density logs (VDL).  VDL helps in analyzing the effect of fast formation, 

decentralization and other problems.  These waveforms have white-gray-black color band.  
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Zero amplitude, negative amplitude and positive amplitude are shown by grey, white and 

black colors respectively in CBL-VDL.  Lower the amplitude better the quality of 

cementing.  

The usage of CBL is limited to horizontal wells – not necessarily deep wells.  The 

tool is typically run on a wireline and relies heavily on gravity to evaluate the entire well.  

Vertical sections are easier to log.  Typically, the horizontal section requires a tractor-

propelled CBL, which may be cost-prohibitive.  The CBL is also not used often on less 

critical strings, because of the cost of the tool and associated rig time to run the tool.  The 

operator may not elect to use a CBL on shallower strings but rather depend on other 

methods to determine whether there has been adequate isolation.  Moreover, interpretation 

of CBL data in itself is not an easy task and it might produce erroneous results in the case 

of micro-annulus formation (Boyd et al., 2006).  While CBL analyze the full 360deg, 

micro-annulus detection is difficult due to the way the tool functions.  A micro annulus 

may only be indicated by performing runs with and without pressure on the casing to 

determine if there is a small gap.  Other than micro-annulus formation, parameters like 

heavy mud weight in the wellbore, eccentricity of the CBL tool in the bore-hole, fast-

formations, downhole pressure temperature, and directional holes affects the CBL 

functioning (Ashena et al.). 

The USI tools are more useful as the tools runs under pressure to determine micro-

annulus formation (Crain, 2000).  The USI tools measure acoustic impedance of the 

material immediately behind the casing to evaluate casing-to-cement-bond quality.  Color-

coded cement maps provide a visual way to identify channels in the cement. 
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2.2.2 Sustained casing pressure.  
 

A coarser alternative to the BI for assessment of cement sheath quality can be 

indirectly provided in terms of the sustained casing pressure (SCP).  This is a measure of 

well annulus pressure that rebuilds after bleed-down (Figure 2-2).  SCP is assumed to be 

caused by factors other than well temperature fluctuations or artificially imposed pressure.  

The major cause of such pressure buildup is poor primary cementing job (Rocha-Valadez 

et al., 2014).  In ideal conditions, a cemented annulus should exhibit zero SCP.  In practice, 

however, a small value of SCP is usually chosen as a threshold limit, above which gas 

leakage is considered to be appreciable. 

 

 

Figure 2-2: Sustained casing pressure (SCP) 
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3 Cementing Wells: A Modeling Study 

As already mentioned in section 1.1.2 of chapter 1, the modeling exercise aims to 

generate a model that can provide guidelines on the effect of several (typically tens of) 

decision variables on the quality of a cementing job.  In this chapter, model building will 

be attempted for either BI or SCP as the model output.  In the first case a regression model 

can be built, since BI is a continuous variable (taking values in the interval [0,1] ), whereas 

in the second case a classification model can be built, since SCP values below or above a 

threshold correspond to leaking or non-leaking cementing jobs (namely values 0 or 1).  For 

either case a cross-validation method, such as 10-fold cross-validation , can be used, to 

avoid overfitting or underfitting the data (Seber & Lee, 2003).   

Both regression and classification are broad subjects with vast literature.  I 

summarize next the approaches that were considered in this work, as I deemed them to be 

most suitable for modeling the kind of data at hand. 

3.1 Regression Models 
 

Of the large array of standard methods available to build regression models, partial 

least squares (PLS) is a method that has found wide applicability in recent years (Svante 

Wold et al., 2001) to build models with collinear input (predictor) and/or output data, 

particularly from scant data.  The data may correspond to multiple collinear variables, and 

may even be incomplete.  PLS relies on constructing mutually uncorrelated latent input 

variables that are best correlated with mutually uncorrelated latent output variables.  The 

latent variables (whether input or output) are constructed through linear combinations of 
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the original input and output variables.  The number of latent variables is typically much 

smaller than the number of the original variables.  This makes it easier to build a reliable 

model that connects all input with all output variables.  To determine a reasonable (ideally 

optimal) number of latent variables, minimization of the cross-validation error (fitting error 

plus validation error) is usually employed.  Both linear and nonlinear versions of the 

method are available (Holcomb & Morari, 1992; Malthouse et al., 1997; Qin & McAvoy, 

1992; Taavitsainen & Korhonen, 1992; S. Wold, 1992).  However, nonlinear models, 

because of their wide spectrum of possible structures, require substantially more data than 

linear models, and do not extrapolate reliably beyond the data used to build such a model. 

3.2 Classification models 
 

Some of the commonly used techniques for building classification models are linear 

discriminant analysis (LDA), support vector machines (SVM), discriminant analysis using 

principal component analysis (PCA) (Nguyen & Rocke, 2004), k-nearest neighbors (k-

NN), and tree based classification (CART) (Wehrens, 2011), and partial least squares 

discriminant analysis (PLS-DA) (M. Barker & Rayens, 2003).  Additionally, methods 

based on fuzzy logic and artificial neural networks (Haykin, 1999) provide higher 

flexibility, but require large amounts of data to produce models with useful predictive 

ability. 

LDA is not suitable when the number of input variables is more than the numbers 

of data points or when the input variables are collinear.  Methods based on dimensionality 

reduction, such as PLS or PCA have been found to be suitable for that kind of situation.  
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Partial least squares (PLS) or PCA are commonly used methods for the dimensionality 

reduction. 

Partial least squares discriminant analysis (PLS-DA) builds a classification model 

through a combination of PLS regression (as mentioned above) and linear discriminant 

analysis.  The PLS part of the analysis builds a linear model between continuous inputs 

and continuous outputs that are highly correlated with one another, whereas the DA part of 

the analysis maps the continuous outputs to discrete outputs, to complete the classification.  

In principle, standard linear regression could also be used in place of PLS if input and 

output variables were known not to be highly correlated. 

PCA also reduces the dimensionality of predictor variable space by calculating 

principal components (PCs) but this method doesn’t consider observable variables while 

calculating PCs.  A number of studies prefer the use of PLS-DA over classification based 

on PCA (M. a. W. R. Barker, 2003; Nguyen & Rocke, 2004).   

3.2.1 VIP variable selection and multi-step PLS-DA 
 

To distinguish between input variables that have an appreciable effect on an 

observed output and those whose effect on the output is insignificant, one can calculate the 

VIP (variable importance in projection) value of each input variable after a model is 

estimated (Mehmood et al., 2011), retain in the list of inputs only those with minVIP>VIP , 

estimate the model again, and continue this cycle until convergence (Figure 3-1).  While a 

typical value for minVIP   is 1 (S. Wold, 1994) several values of  minVIP can be examined 

and corresponding models built, so that the model with the lowest cross-validation error 

can be finally selected.   
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Figure 3-1: Multistep PLSDA 
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3.2.2 Non-dimensionalization 
 

To make the model as widely applicable as possible, and to potentially reduce the 

actual number of input variables in the model (thereby facilitating model building from 

scant data), the original input variables are clustered into dimensionless groups, using the 

standard pi theorem (Gibbings, 2011).  The selection of such dimensionless groups is not 

unique, and has the flexibility to generate dimensionless groups that are intuitively simple 

to interpret and possibly correspond to choices already in practical use.  After 

dimensionless groups are constructed for input variables, building corresponding 

regression or classification models can be attempted. 

3.3 Modeling study 

3.3.1 Available data 
 

As already mentioned above, the proposed modeling approach relies on data alone 

to build a model that can predict the quality of a cementing job based on decisions made 

for a large number of factors.  The data used for this study consisted of field data from the 

intermediate casing in the vertical section of horizontal shale-gas wells as well as data 

collected through laboratory experiments on the cement.   

All 45 wells were in the same geological environment (Marcellus Shale).  These 

wells were drilled by the same operator and cemented by two different service companies. 

Wiper plugs (one-plug system in most of the wells) were used in all the wells.  Since all 45 

wells were from the Marcellus shale region and drilled by the same operator, physical 

variables such as casing diameter, hole diameter, BHST and BHCT did not have a lot of 

variation in their values.  Table 3-1 shows 35 physical variables related to cementing 
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quality and their respective ranges for all 45 wells.  CBL data was available for 21 wells, 

which was used to calculate the average bond index (BI) value for these wells.  

Categorization of all 45 wells as leaking or non-leaking was also available, based on an 

SCP value threshold of 2 psi.  Out of 45 wells, 19 showed SCP whereas 26 did not. 

3.3.2 Dimensionless inputs 
 

Starting with the 35 variables (Table 3-1) affecting cementing quality, 31 

dimensionless groups were identified as shown in Table 3-2.  Note that some of the original 

variables remained intact, while others moved to dimensionless groups.  The dimensionless 

groups were created in such a way as to be close to well established dimensionless number 

already known in fluid flow and related disciplines. For example, dimensionless variable 

2 resembles the skin friction coefficient (dimensionless number used in boundary-layer 

flow analysis of viscous flow); Variable 3 represents the ratio of viscous forces to inertial 

forces (equal to the inverse of the Reynolds number); Variables 4, 5, and 28 represent the 

ratio of shear forces to buoyancy forces at three different kinds of shear forces, namely 

pertinent to gel strength at two different times and at a critical point. 

3.3.3 Regression analysis 
 

Attempts were made to build a cross-validated linear regression model with 

predictive ability for the BI values recorded.  All attempts proved unsuccessful.  Therefore, 

the idea to build a linear regression model that could predict BI from available inputs was 

not pursued any further. 
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Table 3-1: Physical variables and respective ranges 

No. Physical Variable (unit) Range 

1 Displacement volume (barrel) [58, 145] 

2 Yield stress (lbf/ft2) [34, 94] 

3 Plastic viscosity (centipoise) [44, 175] 

4 Gel strength[10 min] (lbf/100ft2) [12, 126] 

5 Gel strength[10 sec] (lbf/100ft2) [8, 52] 

6 BHCT (oF) [70, 85] 

7 BHST (oF) [70, 85] 

8 Spacer volume (barrel) 35 

9 Average displacement rate 

(barrel/minute) 

[3.7, 6] 

10 Water to mix (barrel) [48, 185] 

11 Casing depth (ft) [575, 2400] 

12 Annulus size (inch) [2, 3.625] 

13 Cement additive: Accelerator (%) [0, 0.2] 

14 Cement additive: Fluid loss (%) [0, 0.0085] 

15 Cement additive: Anti foam (%) [0, 0.005] 

16 Cement additive: Gas migration (%) [0, 0.002] 

17 Cement additive: Anti gel (%) [0, 0.0075] 

18 Cement additive: Suspension (%) [0, 0.005] 

19 Cement additive: Extender (%) [0, 0.09] 

20 Cement additive: Dispersant (%) [0, 0.012] 

21 Cement additive: Retarder (%) [0, 0.003] 

22 Cement additive: Defoamer (%) [0, 0.004] 

23 Hardness of water (ppm) [0, 280] 

24 Sulfates in water (ppm) [50, 200] 

25 Chlorides in water (ppm) [200, 1000] 

26 Water pH [6, 7] 

27 Number of centralizers  [8, 23] 

28 Critical Gel strength (lbf/100ft2) [257, 296] 

29 Fluid loss rate (barrel/minute) [5.4*10-5, 6.2*10-5] 

30 Displacement rate (standard deviation) 

(barrel/minute) 

[0 2,.6] 

31 Mud weight (lb/gal) [8.3, 9.8] 

32 Cement sacks [388, 1140] 

33 Cement density (lb/gal) [15.4, 15.6] 

34 Water temperature (oF) [48, 81] 

35 Cement pump rate (barrel/minute) [3.1, 6] 



 

29 
 

 

Table 3-2: Affecting dimensionless variables for intermediate casing 

No. Dimensionless variable 

1 Displacement volume/ Cement sacks 

2 Yield stress× Annulus size4/(Average displacement rate2×Cement density) 

3 Plastic viscosity × Annulus size/(Average displacement rate × Cement 

density) 

4 Gel strength[10 min]/(Cement density × Annulus size) 

5 Gel strength[10 sec]/(Cement density × Annulus size) 

6 BHCT/Water temperature 

7 BHST/Water temperature 

8 Spacer volume /Cement sacks 

9 Average displacement rate/Cement pump rate 

10 Water to mix /Cement sacks 

11 Casing depth/Annulus size 

12 Annulus size/Casing internal diameter 

13 Cement additive: Accelerator 

14 Cement additive: Fluid loss 

15 Cement additive: Anti foam 

16 Cement additive: Gas migration 

17 Cement additive: Anti gel 

18 Cement additive: Suspension 

19 Cement additive: Extender 

20 Cement additive: Dispersant 

21 Cement additive: Retarder 

22 Cement additive: Defoamer 

23 Hardness of water 

24 Sulfates in water 

25 Chlorides in water 

26 Water pH 

27 Number of centralizers 

28 Critical Gel strength/(Cement density × Annulus size) 

29 Fluid loss rate/Cement pump rate 

30 Displacement rate (standard deviation)/ Average displacement rate 

31 Mud weight/ Cement density 
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3.3.4 Linear discriminant analysis  
 

To build a classification model, LDA performs inversion of the input variable 

matrix.  Due to collinearity among the dimensionless input variables obtained from the 

data-set, LDA did not produce numerically accurate results. 

3.3.5 Partial least squares discriminant analysis 
 

Classification using PLS-DA was used with the 31 dimensionless variables shown 

in Table 3-2 as inputs and the designation Leak/No-Leak as output variable for each of the 

45 wells in the database.  Ten-fold cross-validation was used for model validation.  In 10-

fold cross-validation, the whole data-set is randomly partitioned into 10 equal-sized sub 

datasets.  Out of 10 subsets, 9 subsets are used for training the model and a remaining 

subset is used for the model validation.  This cross-validation process is repeated 10 times 

(folds), so that each subset can be used exactly once as the validation set.  The PLS-Toolbox 

(Eigenvector, 2013) was used to build the PLS-DA model.  All programming was done in 

MATLAB© (MATLAB, R2013b).  Since the PLS-toolbox provides only the best estimate 

of the probability that the output belongs to either of the two categories, without a 

confidence assessment,  the reliability of classification probability (as Leak or No-Leak) 

was calculated by considering the 68% confidence interval around observable variables 

(Pérez et al., 2009).  Since these probabilities were calculated using Bayes formula (Duda 

et al., 2000) and cutoff was fixed at point where probability of belonging to either category 

was 50%, it is highly probable that some of the points lie very close to cutoff point although 

correctly classified.  Classification results for such points should be used with caution.  To 

make predictions more reliable, not-classified category was introduced.  All those points 
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where probabilities lie in the range (50%-55%) were put into the not classified category.  

Details are provided in Appendix A. 

3.4 Results and Discussion 

3.4.1 Model accuracy and confidence in predictions  
 

Table 3-3 shows cross-validated classification results for 14 models built using 

multistep PLS-DA (Figure 3-1).  Each model uses a different 𝐕𝐈𝐏𝐦𝐢𝐧 value (column 2 of 

Table 3-3) to select the number of significant inputs.  Column 6 in Table 3-3 shows the 

percentage of all 45 cases for which each model correctly predicted the category of the 

output (leak/no-leak) with probability greater than 55% in cross-validation tests.  Column 

7 in Table 3-3 shows the percentage of all 45 cases for which each model incorrectly 

predicted the category of the output (leak/no-leak) with probability greater than 55% in 

cross-validation tests.  Column 8 in Table 3-3 shows the percentage of all 45 cases for 

which each model correctly or incorrectly predicted the category of the output (leak/no-

leak) with fairly low probability, namely below 55%, in cross-validation tests.  Of the 14 

models built, model 6 performed best, in that it has the highest percentage (75%) of 

correctly classified samples out of all samples (with probability above 55%), and the lowest 

percentage of non-classified samples (7%).  Overall, model 6 performs best by predicting 

correctly 𝟖𝟏%(=
𝟕𝟓

𝟕𝟓+𝟏𝟖
× 𝟏𝟎𝟎) of all cases classified with probability above 55%.   

For completeness, column 4 of Table 3-3 indicates that of the 31 original dimensionless 

inputs, a smaller number turned out to be significant and to contribute to each model’s 

predictive ability.  The corresponding VIPmin values used to determine the number of 

significant variables for each model are shown in column 2 of Table 3-3.  Finally, column 
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5 of Table 3-3 shows the small number of latent variables used in the PLS part each model, 

determined by minimizing the cross-validation error. 

Table 3-3:  Intermediate casing PLS-DA model cross-validation results for different 

VIP cut-off values 

Model 

No. 
𝐕𝐈𝐏𝐦𝐢𝐧 

No. of 

iteration 

(inner 

loop, 

Figure 3-

1) 

No. of 

chosen 

inputs 

No. of 

latent 

variable 

in PLS-

DA 

% 

correctly 

classified 

% 

incorrectly 

classified 

%  

non-

classified 

1 
All inputs 

included 
31 

4 
65 22 13 

2 0.1 1 30 2 49 13 38 

3 0.2 1 30 2 47 18 35 

4 0.3 1 26 3 71 18 11 

5 0.4 1 25 3 71 18 11 

6 
0.5 

1 23 4 75 18 7 

7 2 21 3 69 20 11 

8 
0.6 

1 22 4 69 18 13 

9 2 20 1 47 11 42 

10 
0.7 

1 20 3 65 13 22 

11 2 14 1 58 11 31 

12 0.8 1 16 1 49 18 33 

13 0.9 1 14 1 49 13 38 

14 1.0 1 11 1 54 13 33 

 

3.4.2 Significant variables for cementing quality 
 

Model 6 used 23 dimensionless inputs which were selected using minVIP  equal to 

0.5.  The ranking of selected dimensionless variables is shown in Figure 3-2.  This ranking 

can be useful in understanding the relative significance of selected variables for cementing 

quality.  Note that this ranking is entirely based on data and is not influenced by any 
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preconceived notions of what variables may be significant or not.  To our knowledge, no 

such ranking of the relative importance of these variables has appeared in literature. 

 

 
Figure 3-2: VIP values of selected dimensionless variables for model-6 

 

3.4.3 Positive and negative effect of variables on cementing quality 
 

Apart from the relative significance of input variables, the PLS-DA model 

developed here provides an indication in what direction a variable must be moved to 

decrease the chance of leak.  While this can be determined numerically, there is also an 

insightful graphical tool that can provide quick visual understanding of how these physical 

variables are related to leakage of the wells.  This tool makes use of the PLS part of the full 

PLS-DA model, as described in more detail in Appendix A.  In summary, each latent input 
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variable jt  in the PLS model is a linear combination of the 23 input variables ix , i.e. 

23

1j ji ii
t w x


 ;  and the output of the PLS model is 1 1 2 2

ˆ ...y q t q t   .  Assuming that two 

latent input variables ( 1 2,t t ) capture enough variance of the output ŷ , one can check 

whether the vectors 1, 2,i iw w    and  1 2q q  form an acute angle or not in a 2D plot, as 

shown in Figure 3-3.  In case of acute angle, correlation is positive; otherwise correlation 

is negative.  For example, (Average displacement rate)/ (Cement pump rate) forms an acute 

angle with the leak weight vector, corresponding to positive correlation, whereas Anti-

foam forms an obtuse angle and is negatively correlated with leaks.  Similarly, Retarder, 

forming an approximately right angle with Leak has little effect on leaks.  In that figure, 

the values of 1, 2,i iw w    for 1,...,23i  , as well as    1 2 0.28 0.17q q   are shown.  

Variables that appear to have a fairly negative effect towards leaking are gel-strength (10 

sec)/ (Cement density×Annulus size), gel-strength (10 min)/ (Cement density×Annulus 

size) etc., whereas variables such as BHCT/Water temperature, BHST/Water temperature 

etc., appear to have a positive effect towards leaking.  The complete results of this analysis 

are summarized in Table 3-4. 

Using the correlations presented in Table 3-4, cementing variables should be altered 

to ensure no leakage from the cemented annulus.  However some of the variables like 

BHCT, BHST, casing internal diameter and well depth, cannot be changed for a cementing 

job.  As it was mentioned earlier that geometry of the annulus (internal diameter, hole-

diameter depth etc.) affects the behavior of cement flow (laminar or turbulent) inside the 

annulus and temperatures BHCT, BHST control setting of cement inside annulus, inclusion 

of these variables makes our data-driven analysis more realistic.   
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Important observations from Table 3-4 and Figure 3-3 are as follows:  

 For all dimensionless variables, except for variables 21, 27 and 30, the 

approximately computed sign of the corresponding variable’s effect on 

leakage (positive or negative), as shown in Figure 3-3 , agrees with the sign 

computed using the full PLS model (Appendix A).  The sign discrepancy for 

these variables (positive/negative) is due to the fact that for these variables, 

latent variable weights associated with latent variables 3 and 4 are not small 

and hence the effect of latent variable weights associated with latent 

variables 3 and 4 should not be ignored to find the correlation with leakage. 

 Variables 6 and 7 are inversely proportional to temperature of the mixing 

water and both variables are positively correlated with well leakage.  Field 

observations also suggest that cold water leads to poor mixing (Watters, 

2014). 

 Cement slurries that develop high gel strength in short time span are useful 

to restrict fluid migration (Childs, 1984).  Variables 4 and 5, which are 

directly proportional to gel-strength and negatively correlated with well 

leakage, also suggests that high gel-strength development in short time span 

is desirable for good cementing job.   

 Negative correlation of variable 27 indicates that a high number of 

centralizers is required for better cementing job.  However a very high 

number of centralizers may cause excess drag when running the casing 

resulting in extra washout or some negative effects on the wellbore.  This 

may also affect the ability of the rig to rotate or reciprocate the pipe while 
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cementing, too many centralizers may prevent this pipe movement from 

occurring.  Centralizers are necessary for uniform cement coverage by 

ensuring a centralized casing, so an optimized number of centralizers would 

be beneficial. 

 Negative correlation of variable 30 suggests that high variation in the 

displacement rate is desirable for good cementing job.  In fact, this 

correlation is in agreement with the field practice where the rate is slowed 

prior to bumping the plug to avoid over pressuring when the plug seals in 

the floats.  The displacement rate is also slowed down to maintain the 

uniform density down hole.  However the rate may be slowed because of 

mixing problems or equipment problems as well. 

 Positive correlation of variable 10 suggests that very high volume of mixing 

water is not good for a cementing job.   

 Variable 19 is negatively correlated with leakage (i.e. high extender implies 

low leakage).  The model’s prediction is also in agreement with the 

prescriptive suggestion to use extenders for high water/cement ratio. 

 Positive correlation of variable 29 suggests that high fluid loss rate is not 

desirable for good cementing job.  To reduce fluid loss rate, fluid loss cement 

additive is added and our model is also suggesting addition of fluid loss 

additive for better cementing   

 Mud weight should be low (not very low) for better mud displacement.  

Positive correlation of variable 31 with well leakage, also suggests use of 

low mud weight for better cementing job.  
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Figure 3-3: Latent variable weights for dimensionless inputs in the model-6 

 

Table 3-4: Selected dimensionless variables and their positive or negative effect on 

well leakage for model-6 in Table 3-3 

No. 

(As in 

Table 

3-2) 

Dimensionless Variable  Correlation with 

well leakage (using 

2 latent variables, 

Figure 3-3) 

Correlation with well 

leakage (using all 4 

latent variables –

Appendix A)  

1 Displacement volume/ 

Cement sacks 

Positive Positive 

2 Yield stress× Annulus 

size4/(Average 

displacement 

rate2×Cement density) 

Negative Negative 
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 Table 3-4 continued 

3 Plastic viscosity×Annulus 

size/(Average displacement 

rate×Cement density) 

Negative Negative 

 

4 Gel strength(10 

min)/(Cement 

density×Annulus size) 

Negative Negative 

5 Gel strength(10 

sec)/(Cement 

density×Annulus size) 

Negative Negative 

6 BHCT/Water temperature Positive Positive 

7 BHST/Water temperature Positive Positive 

9 Average displacement 

rate/Cement pump rate 

Positive Positive 

10 Water to mix /Cement sacks Positive Positive 

11 Casing depth/Annulus size Positive Positive 

14 Cement additive: Fluid loss Negative Negative 

15 Cement additive: Anti foam Negative Negative 

17 Cement additive: Anti gel Positive Positive 

19 Cement additive: Extender Negative Negative 

20 Cement additive: Dispersant Negative Negative 

21 Cement additive: Retarder Positive Negative 

24 Sulfates in water Negative Negative 

25 Chlorides in water Negative Negative 

26 Water pH Negative Negative 

27 Number of centralizers Positive Negative 

29 Fluid loss rate/ Cement 

pump rate 

Positive Positive 

30 Displacement rate (standard 

deviation)/ Average 

displacement rate 

Positive Negative 

31 Mud weight/ Cement density Positive Positive 
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3.4.4 Visualizing and understanding differences between wells 
 

The PLS-DA model can also provide intuitively appealing visual analysis of 

similarities and differences between wells.  The idea is that the first two latent variables 

23

1 11 i ii
t w x


  and 

23

2 21 i ii
t w x


  are responsible for most of the variance seen in the 

output, as captured by the PLS-DA model.  Now, each value of  1 2t t  (also called x-

scores) represents a point associated with a well in a 2D plot.  Therefore, points close to 

each other refer to wells with fairly similar behavior.  Using the preceding ideas, patterns, 

such as clusters or outliers, can be identified in a 2D plot with axes 1t  and 2t .  Such a plot 

is shown in Figure 3-4, where the following observations can be made. 

 Wells 2, 10, 11, and 24 have very close scores for latent variables 1 and 2 (Figure 

3-4). This hints toward the similarity among these wells.  These wells can be 

distinguished from the rest of the wells by the value of dimensionless variable 

10 (water to mix/cement sacks), which was found to be one of the most 

important variables according to VIP ranking (Figure 3-2).  These wells have 

higher values for variable 10 (≈ 0.21) compared to the rest of the wells (≈ 0.12).   

 Wells 5 and 18 lie on two extreme positions along latent variable-1 and belong 

to the no-leak and leak categories, respectively.  One of the reasons for their 

extreme positions in the x-score plot is very high values of variables 4 and 5 for 

well 5 and very low values of the same variables for well 18.  The same 

conclusion can be drawn just by observing the positions of well 5 in x-score plot 

(Figure 3-4) and positions of variables 4 and 5 in the weights plot (Figure 3-3).  

Variables 4 and 5 both are negatively correlated with well leakage. 
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Figure 3-4: Latent variable x-scores for model-6 
 

3.5 Summary 
 

A data-driven classification model was developed using PLS-DA analysis.  The 

model can make useful predictions on whether a set of values for a large number of cement 

and casing factors will result in a leaking or non-leaking well.  The model classified 

correctly 81 % of the classified wells in a cross-validation study with reasonable 

confidence.  In addition, the model provides a confidence with which each well prediction 

is classified as leaking or non-leaking. 
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The model is able to identify (in terms of the VIP statistic) the relative importance 

of cement and casing variables used as inputs to the model.  Furthermore, the model also 

identifies whether there is positive or negative correlation between each input variable and 

leakage.  Finally, a 2D score plot provides an intuitively appealing graphical way to cluster 

or distinguish wells based on their leaking behavior.   

The model can be directly used in what-if analysis for future cementing jobs and 

achieve better cement integrity or avoid undesired gas leakage.  
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4 Ensuring Integral Controllability for Robust Multivariable 

Control 

In this chapter, question raised in section 1.2.1 will be addressed.  Namely, attempts 

will be made to check the conservatism of the integral controllability sufficient condition 

developed by Darby and Nikolaou (2009).  The work presented in this chapter will clear 

some doubts before we attempt experiment design for control relevant model identification 

subject to integral controllability. 

4.1 Introduction  
 

A good model is at the heart of good controller design.  Development of a control-

relevant model for a multivariable process, particularly for an ill-conditioned one, is 

especially challenging.  A variety of creative approaches have appeared towards design of 

informative experiments that facilitate control-relevant model development (M L Darby & 

M. Nikolaou, 2014, and references therein).  A fundamental fact when developing a 

control-relevant model is that mere proximity between the model and the controlled 

process (e.g. in the sense of small errors in model parameter estimates) is not adequate.  

Conditions must also be satisfied that are relevant to the controller design method in which 

the model will be used.  C E Garcia and M Morari (1985) showed that for robust 

multivariable controller design with the internal model control (IMC) method, a process 

with real steady-state gain matrix (SSGM) G  and model SSGM Ĝ  must be such that 
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 1ˆRe ( ) 0   
 

GG   (4.1) 

for all eigenvalues   of 
1ˆ 

GG .  Satisfaction of eqn. (4.1) ensures integral controllability 

(IC), as defined precisely in the Background section.   

Since the real process G  is never known with certainty, IC-compliance requires 

satisfaction of eqn. (4.1) for all G  in some uncertainty set U .  Therefore, for a model to 

be used in multivariable IMC design, the model Ĝ  must satisfy eqn. (4.1) for all G  in U

.  However, it is not trivial to check whether eqn. (4.1) is satisfied for all G  in a typical set 

U , such as an ellipsoidal uncertainty set resulting from estimation of Ĝ  through linear 

least squares.  To circumvent this difficulty, Darby and Nikolaou (2009) proposed an 

alternative condition to the inequality in eqn. (4.1), whose satisfaction is trivial to check, 

as summarized in the Background section.  Based on this condition, Darby and Nikolaou 

(2009) developed a general mathematical framework for design of experiments that 

generate data for efficient identification of IC-compliant models under several 

circumstances.  However, the condition proposed by Darby and Nikolaou (2009) is only 

sufficient and not necessary.  This immediately raises the following question, Q1: 

 How conservative is the sufficient condition of Darby and Nikolaou (2009), 

namely how likely is it that a model Ĝ  violating that condition also violates eqn. (4.1)? 

 An even more fundamental question that can also be raised is the following 

question Q2:   

 If a model Ĝ  and real process G  with corresponding uncertainty set U  

violate eqn. (4.1), is there an alternative Ĝ  that can satisfy eqn. (4.1)? 
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The rationale behind the preceding question Q2 is that perhaps a model other than 

Ĝ , possibly a little farther from the real G  than Ĝ  is, but with the right structure, might 

satisfy eqn. (4.1) for all UG , thus making the design of IC-compliant identification 

experiments potentially unnecessary. 

The main purpose of this work is to address the preceding two questions Q1 and 

Q2.  In summary, numerical simulations concerning question Q1 indicate that the 

corresponding mathematical framework appears not to be overly conservative for small 

systems, the conservatism increasing for larger systems.  A counter-example for the 2 2  

case indicates that the answer to question Q2 is negative, and design of experiments for 

efficient identification of IC-compliant models is indeed desirable. 

In the rest of the chapter, firstly a brief background on integral controllability is 

provided, and then the above questions Q1 and Q2 are addressed. 

4.2 Background 
 

We consider an n n  stable, linear, time-invariant system with steady-state input-

output behavior  

 y Gm , (4.2) 

where , ny m , and 
n nG .  Both inputs and outputs are in deviation form from steady 

state; i.e., the steady state is at  y m 0 . 

4.2.1 Integral controllability 
 

The precise formulation of the result on integral controllability (C E Garcia & M 

Morari, 1985, Theorem 2) is as follows:  Assume that internal model control (IMC) with 
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estimate Ĝ  of G  and a diagonal (decoupling) filter matrix ( )z F diag

    11 1 z     is used to control the system in eqn.(4.2)  Then, there exists an 

* [0,1)   such that the closed loop is stable for all [ *,1)  , if and only if all eigenvalues 

 1ˆ 
GG  of 

1ˆ 
GG  are in the right half of the complex plane, i.e. they satisfy the IC 

condition, eqn. (4.1)   

This result establishes the achievable robustness of decoupling multivariable 

controllers with integral action.  Since G  is not known, eqn. (4.1) must be satisfied for all 

G  in an uncertainty set .U  

4.2.2 Sufficient condition for integral controllability 
 

Assuming that Ĝ  is the outcome of least-squares identification over t  time steps, 

an uncertainty set U  for G  can be defined as the standard ellipsoidal uncertainty set, 

resulting from least-squares estimation of G , i.e., 

  

   
1

2ˆ ˆ , 1,...,

T

n n T T T

i i i i

T

n

U c i n

  
   

        
  

   

g

G g g M M g g

g

, (4.3) 

where the information matrix T
M M  results from the input matrix t nM  and 

2 2

1 ( , )c s nF n t n  2 2

noise 1 ( )n    for confidence level  . 

Assessing whether eqn. (4.1) holds for all G  in the uncertainty set U  defined in 

eqn. (4.3) is challenging.  To remedy that, Darby and Nikolaou (2009), Corollary 1 proved 

that eqn. (4.1) is satisfied for all G  in the set U  of eqn. (4.3) if 



 

46 
 

 
11

1

ˆ
ˆ ˆ( ) 1

ˆ

n
k T T

k k

k k

J c







u

v M M v , (4.4) 

where 

  
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
n

T T

k k k

k




 G UΣV u v  (4.5) 

is the singular-value decomposition of the identified model Ĝ . 

The above eqn. (4.4) is only sufficient, and potentially conservative, as already 

discussed.  The main source of conservatism can be found in the proof of Theorem 1 in 

Darby and Nikolaou (2009), namely through the weakening of inequalities in the following 

steps: 

- Satisfaction of the inequality  

  1ˆ ˆRe 0   
  

G D G  1ˆ1 Re 0    
 

DG  for all UG  and (4.6) 

if   1ˆ 1  DG  for all ˆˆ D  D G G ,    (4.7) 

where  

 

1

2 , 1,...,

T

n n T T

i i

T

n

D c i n

  
   

      
  

   

d

D d M Md

d

. (4.8) 

- The series of inequalities 

 
1 1 1

1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

n n n
T T T

k k k k k ki i
k k kk k ki i
    

   Dv u Dv u Dv u . (4.9) 

Conservatism may arise in any of the weakened inequalities shown above.  While 

a quantitative assessment of the conservatism introduced by each individual step is 

complicated, the following analysis, corroborated by the numerical simulations in section 
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4.3 suggests that eqn. (4.9) introduces more conservatism than eqn. (4.7).  To begin with, 

eqn. (4.6) is equivalent to  

 
 
 

1

1

ˆ

1
ˆ2












DG

DG
 for all DD   (4.10) 

as can be shown from direct application of a Moebius transformation (Appendix B.).  Eqn. 

(4.10) is trivially satisfied if eqn. (4.7) is true,  

because 

        1 1 1 1ˆ ˆ ˆ ˆ2 2 2 2           DG DG DG DG . (4.11) 

However, the converse is not true, as shown in Figure 4-1  In Figure 4-1 (left) it is 

clear that if eqn. (4.7) is violated for some DD  with  1ˆRe 1    
 

DG , then eqn. 

(4.10) is also violated for the same DD .  Now, if there is some DD  with 

 1ˆRe 1   
 

DG , then, by eqn.(4.8), there also exists D D , for which 

   1 1ˆ ˆRe Re 1         
   

DG DG , and consequently eqn. (4.10) is also violated for 

D D .  Therefore, conservatism is introduced for  1ˆ1 Re 1    
 

DG  when violation 

of eqn. (4.7) does not necessarily imply violation of eqn. (4.10), as shown in Figure 4-1 

(right). 
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Figure 4-1: Visualization of the functions  1ˆ 
DG  and 

 
 

1

1

ˆ

ˆ2









DG

DG
 in a 3D plot 

(left) and contour plot (right).  Note that violation of  1ˆ 1  DG  for 

some DD  does not imply violation of 
 
 

1

1

ˆ

1
ˆ2












DG

DG
 for some DD   

 

Whether replacement of eqn. (4.6) by the weakened eqn. (4.7) introduces 

conservatism can also be tested numerically, namely for a large number of realizations of 

DD , with D  an uncertainty ellipsoid resulting from least-squares estimation of Ĝ , the 

eigenvalues of 
1ˆ 

DG  can be plotted on the complex plane, and then one can check whether 

violation of eqn. (4.7) for some DD  implies violation of eqn. (4.6) for some DD .  

This test is carried further in the case studies of the next section. 
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4.3 Main Results 
 

In this section we address the basic questions Q1 and Q2 raised earlier. 

4.3.1 How conservative is the sufficient condition for integral 

controllability? 
 

As discussed above, satisfaction of eqn. (4.4) guarantees that eqn.(4.1) is satisfied 

for all G  in the set U  (eqn.(4.3)).  However, if eqn. (4.4) is violated, eqn. (4.1) may or 

may not be violated.  For a rigorous assessment of whether eqns. (4.1) and (4.4) are valid 

concurrently, one would have to check whether 

   1ˆmin Re ( ) 0
U

 



  
 G

GG  (4.12) 

coincides with satisfaction of eqn. (4.4).  Unfortunately, finding the minimum in eqn. (4.12) 

is not trivial, because the function to be minimized is not convex (Appendix B.).   

To circumvent this difficulty, we assess satisfaction of the inequality in eqn. (4.12) 

through randomized simulation, namely by checking whether eqn. (4.4) is satisfied for a 

large number of matrices G , each randomly chosen from the set U  in eqn. (4.3) As eqn. 

(4.3) suggests, the set U  depends on the matrix T
M M , namely on the inputs m  chosen 

for the experiment.  Therefore, the kind of inputs used in the identification experiment has 

a strong effect on the uncertainty ellipsoid corresponding to eqn. (4.3).  Regarding such 

inputs, it is well known that  

(a) pseudo-random binary sequences (PRBS) (Ljung, 1999; Soderstrom & Stoica, 

1989) are D-optimal (i.e. optimal when model-process proximity is the main 

objective of the identification experiment) whereas  
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(b) rotated PRBS inputs (Darby & Nikolaou, 2009; Koung & MacGregor, 1991) are 

IC-optimal (i.e., optimal when IC of the model-process pair is the main objective 

of the identification experiment).  Such rotated inputs are defined as 

 ˆm Vξ , (4.13) 

where V̂  comes from the singular-value decomposition of Ĝ , eqn.(4.5), and the 

input vector ξ  is chosen as a PRBS with individual entries of ξ  proportioned as 

 

2

2

ˆvar( )

ˆvar( )

x

jk

j k



 

 
   
 

, (4.14) 

where 1x   or 1/ 3x   when the total output or input variance, respectively, must 

remain bounded during the experiment (Darby & Nikolaou, 2009, Theorems 4 and 

5). 

It is clear that the matrix T
M M  in eqn. (4.3) is approximately diagonal for PRBS 

inputs (above case (a)) and approximately equal to  2 2
1ˆ ˆ

diag ,...,x x
n

T d d

 
V V  for rotated PRBS 

inputs (above case (b)). 

Specifics of the randomized simulation procedure are as follows: 

1. For noise variance 
2

e , perform an identification experiment by exciting the process 

with PRBS or rotated PRBS inputs of amplitude maxu  for t  time steps and 

calculating the estimate Ĝ  of G  and the set U  in which G  belongs, eqn. (4.3). 

2. Randomly select Sn  samples of the plant G  in the set U  calculated in step 1. 

3. Calculate the percentage of Sn  samples that violate eqn. (4.1) for the model Ĝ  and 

all UG  selected in step 2. 
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4. Repeat steps 2 and 3 Rn  times. 

5. Calculate the mean and standard deviation of IC violation percentages. 

6. Increase the value of 
2

e  and go to step 1, until finished. 

We apply the above procedure to the following five cases.  In all five cases, 

simulation parameter values are as indicated in Table 4-1. 

Table 4-1: Parameter values for randomized simulations 

Simulation parameter Value 

Number of samples in each repetition, Sn  50 

Number of repetitions, Rn  104 

Time steps in PRBS excitation experiment, t  50 

 

Table 4-2: Parameter values for randomized simulations 

Case-study 

Simulation 

parameter Value 

Section 

4.3.1.1 
maxu   1 

e   7, 9, 9.5, 10, 11, 13, 15, 17, 19, 21 

 ( 0.05)c     17.1, 22, 23.2, 24.5, 26.9, 31.8, 36.7, 41.6, 46.5, 

51.4 

Section 

4.3.1.2 
maxu   0.01 

e   1.5, 1.6, 1.65, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3 

 ( 0.05)c     3.6, 3.9, 4.0, 4.1, 4.4, 4.6, 4.8, 5.1, 5.3, 5.6 

Section 

4.3.1.3 
maxu  1 

e  0.18, 0.2, 0.22, 0.24, 0.25, 0.26, 0.28, 0.3, 0.32, 

0.34, 0.36 

 ( 0.05)c    0.5, 0.56, 0.62, 0.67, 0.69, 0.72, 0.78, 0.83, 0.9, 

0.95, 1.0 

Section 

4.3.1.4 
maxu   1 

e   0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.66, 0.67, 0.68, 0.69, 

0.7, 0.75, 0.8, 0.85 

 ( 0.05)c    1.2, 1.4, 1.5, 1.7, 1.8, 2.0, 2.03, 2.06, 2.09, 2.12, 

2.15, 2.3, 2.5, 2.6 
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Table 4-2 continued 

Section 

4.3.1.5 
maxu   1 

e   0.03, 0.033, 0.036, 0.04, 0.045, 0.055, 0.057, 0.058, 0.059, 

0.06, 0.063, 0.066, 0.07 

 ( 0.05)c    0.1, 0.11, 0.12, 0.13, 0.15, 0.18, 0.19, 0.192, 0.196, 0.2, 

0.21, 0.22, 0.23 

 

4.3.1.1 𝟐 × 𝟐 high-purity distillation column  
 

A high-purity distillation column model studied extensively in literature has a 

following steady-state gain matrix (Sigurd Skogestad & Morari, 1988)  

 1

87.8 86.4

108.2 109.6

 
  

 
G . (4.15) 

Before the procedure outlined above is implemented to test whether violation of 

eqn. (4.4) results in violation of eqn. (4.1), it is worth developing some insight into 

satisfaction of IC for different uncertainty sets U , resulting from identification 

experiments using different inputs m , namely PRBS and rotated PRBS. 

Figure 4-2 shows a simulated identification experiment with PRBS inputs, and 

resulting highly collinear outputs, owing to the high condition number of 1G  ( 143  ).  

Using data from this experiment, Figure 4-3 shows the resulting estimates and uncertainty 

regions from least-squares estimation of the entries of 1G .  Visual inspection of Figure 4-

3 reveals that IC is not satisfied by all 1 UG  and 1Ĝ , based on a simple criterion (Koung 

& MacGregor, 1991) according to which IC is equivalent to the existence of a straight line 

through the origin that separates the uncertainty regions for 1g  and 2g  in different half-

planes.  Indeed, it is visually obvious that no such line can be found in Figure 4-3. 
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Figure 4-2: Input and output data in simulated identification experiment for 1G  using 

PRBS inputs. 
 

 

Figure 4-3: Estimates and uncertainty regions resulting from least-squares estimation 

of the entries of 1G  using the experimental data shown in Figure 4-2.  All 

straight lines go through the origin. 
 

Interestingly enough, while eqn. (4.1) is not satisfied by 1Ĝ  and all 1 UG , it is 

violated by only a very small fraction of 1 UG , as shown in Figure 4-4.  For each vector 

in Figure 4-4, the point of origin corresponds to the entries 11 12( , )g g  and the head 
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corresponds to the entries 21 22( , )g g  of 1 UG .  Green and purple vectors correspond to 

pairs of 1Ĝ  and 1G  for which eqn. (4.1) is or is not satisfied, respectively.  Note that only 

10 out 630 instances of 1G  violate eqn. (4.1), and that all 10 are fairly collinear and close 

to the boundaries of their respective uncertainty regions. 

 

Figure 4-4: Graphical representation of IC satisfaction by 1Ĝ  and 630 randomly 

chosen 1 UG  shown in Figure 4-3.  For each vector, the point of origin 

corresponds to 11 12( , )g g  and the head corresponds to 21 22( , )g g .  Green 

and purple vectors correspond to pairs of 1Ĝ  and 1G  for which eqn. (4.1) 

is or is not satisfied, respectively. 
 

Figure 4-5 shows a simulated identification experiment with highly correlated 

rotated PRBS inputs, and resulting highly uncorrelated outputs, owing to the design based 

on eqns. (4.7) and (4.8).  Using data from this experiment, Figure 4-6 shows the resulting 

estimates and uncertainty regions from least-squares estimation of the entries of 1G .  
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Visual inspection of Figure 4-6 reveals that IC is satisfied by all 1 UG  and 1Ĝ , based on 

the simple criterion of Koung and MacGregor (1991) referred to above.  Note the sharp 

difference between the shape of the uncertainty ellipsoids in Figure 4-3 and Figure 4-6.  

 

 

Figure 4-5:  Input and output data in simulated identification experiment for 1G using 

rotated PRBS inputs. 
 

 

Figure 4-6: Estimates and uncertainty regions resulting from least-squares estimation 

of the entries of 1G  using the experimental data shown in Figure 4-5.  All 

straight lines go through the origin. 
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Turning now to the testing procedure outlined above, Figure 4-7 shows that even a 

relatively small increase in the value of J  above 1 ( 1.05J  ) results in IC violation, which 

suggests that eqn. (4.4) is not overly conservative.  

 

Figure 4-7: Percentage of IC violations varying with J  for 2 x 2  ill-conditioned 

distillation column 
 

To determine where the (small) conservatism of eqn. (4.4) is coming from, namely 

whether from eqn. (4.7) or from eqn. (4.9), we check the conservatism of eqn. (4.7) as a 

weakened form of eqn. (4.6).  We do this by plotting the loci of  1ˆ 
DG  on the complex 

plane for a large number of DD , and check whether the existence of a DD  with 

 1ˆ 1  DG  implies the existence of DD  with  1ˆRe 1    
 

DG .  The results of 

5,000 simulated identification experiments with PRBS and rotated PRBS inputs are shown 

in Figure 4-8 and Figure 4-9, respectively.  As can be seen by inspection of the eigenvalue 

loci patterns in either Figure, the existence of a DD  with  1ˆ 1  DG  implies the 

existence of a DD  with  1ˆRe 1    
 

DG .  The preceding observation can be justified 

as follows:  With scaling of D  (depending on noise level and number of experimental data 

points), the eigenvalues of 
1ˆ 

DG  are scaled accordingly.  Therefore, if any eigenvalue 
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 1ˆ 
DG  exits the unit disk as a result of scaling of D , it will be a real eigenvalue, as the 

smallest of the co-centric circles enveloping all real eigenvalues shown in either Figure 4-

8 or Figure 4-9 also encircles all complex eigenvalues, but not vice versa.   

Therefore, replacement of eqn. (4.6) by eqn. (4.7) does not seem to introduce any 

conservatism at all in this case.  Whatever conservatism appears in Figure 4-7 appears to 

be due to eqn. (4.9). 

 

 

Figure 4-8: Loci of eigenvalues  1ˆ 
DG  for least squares estimate Ĝ  and DD  

using PRBS inputs for a 2 2  ill-conditioned distillation column. 
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Figure 4-9: Loci of eigenvalues  1ˆ 
DG  for least squares estimate Ĝ  and DD  

using rotated PRBS inputs for 2 2  ill-conditioned distillation column 
 

4.3.1.2 𝟐 × 𝟐 low-purity distillation column 
 

A well-conditioned 2 2  distillation column (Wood & Berry, 1973) is 

 2

341.3 378
(0) .

176 388

 
  

 
G  (4.16) 

Simulation results for this column are shown in Figure 4-10.  The first violation of 

IC appears around 1.15J  , suggesting again that eqn. (4.4) is not overly conservative.  

As shown in Figure 4-11, it can be concluded here as well that whatever conservatism 

appears in Figure 4-10 it is due to eqn. (4.9)  
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Figure 4-10: Percentage of IC violation varying with J  for 2 2  well-conditioned 

system 
 

 

Figure 4-11: Loci of eigenvalues  1ˆ 
DG  for least squares estimate Ĝ  and DD  

using PRBS inputs for 2 2  well-conditioned distillation column 
 

4.3.1.3 𝟑 × 𝟑 distillation column  
 

A 3 3  distillation column with  

 3

0.64 0.21 1.82

0.6 1.19 0.34

0.55 1.12 1.14

  
 

  
 
  

G  (4.17) 
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was studied by Hovd and Skogestad (1994).  Simulation results for this column are shown 

in Figure 4-12.  The first violation of IC appears around 1.29J  , suggesting once more 

that eqn. (4.4) is not overly conservative, although it is evidently more conservative that 

for the previous two 2 2  cases.  Figure 4-13 once again establishes that the conservatism 

appearing in Figure 4-12 is due to eqn. (4.9). 

 

 

Figure 4-12: Percentage of IC violation varying with J  for 3 3  distillation column 

 

 

Figure 4-13: Loci of eigenvalues  1ˆ 
DG  for least squares estimate Ĝ  and DD  

using PRBS inputs 3 3  distillation column. 
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4.3.1.4 𝟒 × 𝟒 distillation column with side stripper  
 

A 4 4  complex distillation column with side stream stripper is described as 

 4

4.09 6.36 0.25 0.49

4.17 6.93 0.05 1.53

1.73 5.11 4.61 5.49

11.2 14 0.1 4.49

   
 
 
 
 
 
 

G   (4.18) 

(Sigurd Skogestad et al., 1990).  Simulation results for this column are shown in Figure 4-

14.  The first violation of IC appears around 1.56J  , suggesting that the conservatism of 

eqn. (4.4) is higher for this 4 4  system in comparison to the three previous ones.  Similar 

to the three previous cases, Figure 4-15 establishes here that the conservatism appears to 

be due to eqn. (4.9) as well. 

 

Figure 4-14: Percentage of IC violation varying with J  for 4 4  distillation column 

with side stripper 
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Figure 4-15: Loci of eigenvalues  1ˆ 
DG  for least squares estimate Ĝ  and DD  

using PRBS inputs for 4 4  distillation column with side stripper. 

 

4.3.1.5 𝟓 × 𝟓 fluidized catalytic cracker  
 

A 5 5  fluidized catalytic cracker (FCC) is described as 

 5

0.3866 0 0 0 0

0 0.6935 0 0 0.5805

0.1192 1.5461 0.5224 0 0.3667

0 0.1313 0.1298 0.1058 0.2057

0.0631 0.2462 0 0 0.4435

 
 

 
 
  
 

   
   

G  (4.19) 

(M. L. Darby, 2008).  Simulation results for this FCC are shown in Figure 4-16.  The first 

violation of IC appears around 1.69J  , suggesting that the conservatism of eqn. (4.4) is 

higher for this 5 5  system in comparison to the four previous ones.  Similar to the four 

previous cases, Figure 4-17 establishes again that the conservatism appears to be due to 

eqn. (4.9).  
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Figure 4-16: Percentage of IC violation varying with J  for 5 5  fluidized catalytic 

cracker (FCC) 

 

 

Figure 4-17: Loci of eigenvalues  1ˆ 
DG  for least squares estimate Ĝ  and DD  

using PRBS inputs for 5 5  fluidized catalytic cracker (FCC). 

 

4.3.2 Can an alternative model help ensure integral controllability? 
 

As discussed above, if the standard least-squares estimate Ĝ  does not satisfy eqn. 

(4.1) for all UG  in eqn. (4.3), it is natural to ask whether a model other than Ĝ  could 

be used for that purpose.  The rationale behind the preceding question is that perhaps a 
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model other than Ĝ , possibly a little farther from the real G  than Ĝ  is but with the right 

structure, might satisfy eqn. (4.1) for all UG  in eqn. (4.3).  We show below that this is 

generally impossible, by developing a rigorous counter-example for 2 2G . 

It is a standard elementary fact that the eigenvalues of a 2 2  matrix are in the right 

half of the complex plane if and only if both the trace and the determinant of that matrix 

are positive.  To apply this fact to the matrix 
1ˆ 

GG  in eqn. (4.1), we follow an approach 

similar to the one followed by Koung and MacGregor (1991).  

Parametrize 
2ˆ G  as 

 
1 1 1 1

2 2 2 2

ˆ ˆˆ ˆcos sin
ˆ

ˆ ˆˆ ˆcos sin

l l

l l

 

 

 
  
  

G , (4.20) 

where ˆ 0il   and ˆ
i , are the length and angle of each nominal row vector ˆT

ig , 1,2i  .  Then 

the real steady state gain matrix UG  can be expressed as 

 
1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 22 2 2 2 2 2 2 2

ˆ ˆˆ ˆcos( ) sin( ) cos sin
ˆ

ˆ ˆˆ ˆ cos sincos( ) sin( )

n l n l l l

l ln l n l

     

    

    
    

     

G , (4.21) 

where 0in   and i  are the multiplicative error in length and additive error in the angle 

of each row vector 
T

ig , 1,2i  , respectively.  Therefore, 
1ˆ 

GG  can be expressed as (eqn. 

13 of Koung and MacGregor (1991)) 

 

2

1 1 2 2 1 1 1 11

2
1 2 2 1 2 2 2 2 1 2 2 1

ˆ ˆ ˆˆsin( ) sin( )1ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆsin( ) sin( ) sin( )

n l l n l

l l n l n l l

  

    


 

  
     

GG . (4.22) 

It follows that 

 1 2 1
1 2

2 1

sin( )ˆdet( )
ˆ ˆsin( )

n n
 

 

 



GG  (4.23) 

and 
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1 2 1 2 1

1 2

2 1 2 1

ˆ ˆsin( ) sin( )ˆtr( )
ˆ ˆ ˆ ˆsin( ) sin( )

n n
   

   

  
 

 
GG . (4.24) 

If 
1ˆdet( ) 0 GG  for all  1 2,   corresponding to UG , then it immediately 

follows that 
1ˆtr( ) 0 GG  for all  1 2,   corresponding to UG .   

In case of violation of eqn. (4.1) for some UG  given Ĝ , then IC is not satisfied.  

In that case, a new model X̂  would be desirable that can make both the determinant and 

trace of 
1ˆ 

GX  positive for all UG , while being as close to Ĝ  as possible.  Parametrizing 

the new model X̂  as 

 
1 1 1 1 1

22 2 2 2

ˆ ˆˆ ˆcos sin ˆ
ˆ ˆ

ˆ ˆ ˆˆ ˆcos sin

T

T

q q

q q

 

 

   
    
    

x
X

x
 (4.25) 

in analogy to eqn. (4.22), 
1ˆ 

GX  can be written as 

 
1 1 2 2 1 1 1 1 1 11

1 2 2 1 2 2 2 2 2 2 2 1 1 2

ˆ ˆˆ ˆˆ ˆsin( ) sin( )1ˆ
ˆ ˆ ˆ ˆˆ ˆˆ ˆ sin( ) ˆ ˆsin( ) sin( )

n l q n l q

q q n l q n l q

   

     


   

  
     

GX  (4.26) 

It follows that  

 
 1 2 1 2 2 11

1 2 2 1

ˆ ˆ sinˆdet ( ) = 
ˆ ˆˆ ˆ sin( )

n n l l

q q

 

 





GX  (4.27) 

and 

 
   1 1 2 2 1 2 2 1 2 11

1 2 2 1 1 2 2 1

ˆ ˆˆ ˆˆ ˆsin sin
ˆtr( ) = 

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆsin( ) sin( )

n l q n l q

q q q q

   

   


 


 

GX . (4.28) 

in analogy to eqns. (4.23) and (4.24), respectively. 
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For IC compliance of the model X̂  with UG , both the determinant and trace of 

the matrix 
1ˆ 

GX , eqns. (4.27) and (4.28), respectively, must be positive for X̂  and for all 

UG .   

Now, because 0in  , ˆ 0il  , ˆ 0iq  , 1,2i  , eqns. (4.27) and (4.23) suggest that 

the sign of 
1ˆdet( )

GX  varies for UG  similarly to the sign of the term 

2 1 2 1
ˆ ˆsin( ) / sin( )      for angles  2 1,   corresponding to UG .  Therefore, if 

1ˆdet( )
GG  does not keep the same sign for all UG , neither does 

1ˆdet( )
GX , and, 

consequently, IC is not satisfied. 

Furthermore, if it were 
1ˆdet( ) 0 GG  for all UG , then 

1ˆtr( ) 0 GG  for all 

UG , as stated above, and no X̂ would be needed, since the model Ĝ  with UG  would 

be IC-compliant. 

In conclusion, if the model Ĝ  with UG  is not IC-compliant, then no other model 

X̂  can be found that is IC-compliant for UG .  To build a model Ĝ  that is IC-compliant 

for UG , it is necessary to rely on identification which employs suitable data.  Hence the 

need for better design of experiments for identification of IC-compliant models. 

4.4 Summary 
 

In developing a mathematical framework for design of experiments that facilitate 

identification of IC-compliant models, Darby and Nikolaou (2009) relied on a sufficient 

condition (eqn. (4.4)).  In this paper we present a numerical assessment of the conservatism 

introduced by that sufficient condition, along with some analysis, to pinpoint the sources 
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of whatever conservatism may be present.  In the numerical simulations presented, 

conservatism turned out not to be overly high, but increasing, nevertheless, as the size of 

the identified system increases.  The corresponding steps that introduced conservatism in 

the sufficient condition for IC were illustrated.  Interestingly enough, the patterns shown 

in all five case studies (Figure 4-8, Figure 4-9, Figure 4-11, Figure 4-13, Figure 4-15, 

Figure 4-17) show striking similarities for fairly different systems, suggesting that a 

fundamental pattern may underlie all such cases.  This warrants further investigation in the 

future. 

Finally, it was demonstrated rigorously, by counter-example, that avoiding IC-

compliant design of experiments through replacement of a standard least-squares model by 

another model that might satisfy IC is generally infeasible.  Therefore, it appears that 

research efforts to tame the eigenvalue inequalities (eqn. (4.4)) whose "main weakness is 

that they consist of a coupling between the plant model and the true plant, which is highly 

cumbersome" (Featherstone & Braatz, 1998) are well warranted. 
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5 Experiment Design for Control-Relevant Identification 

After successfully addressing issues raised in chapter 4, attempts will be made to 

address second question raised in section 1.2.1 of chapter 1.  In this chapter, new theoretical 

framework will be developed to utilize partial knowledge in designing experiments for 

control relevant model identification. 

5.1 Introduction 
 

A good mathematical model is useful for the design of a good automatic controller, 

whether the model is used explicitly or implicitly.  However, mere proximity between the 

dynamic behavior of a mathematical model and that of the controlled system does not 

necessarily imply that the model can be used effectively with a certain controller design 

method.  For control of multivariable systems, a simple classic example is a case in point:  

Consider a (stable) system with steady-state gain matrix (SSGM) (S. Skogestad & Morari, 

1987) 

 
0.878 0.864

1.082 1.096

 
  

 
G  (5.1) 

with two alternative models: 

 1

0.870 0.880
ˆ

1.092 1.096

 
  

 
G  (5.2) 

and 
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 2

1.054 0.691
ˆ

1.298 0.877

 
  

 
G , (5.3) 

where the respective relative errors for 1Ĝ  and 2Ĝ  are approximately 1%  and 20%  

compared to G .  It turns out (see Appendix C for details) that G  can be controlled robustly 

(i.e. retains closed-loop stability for a wide range of tunings) by a fully decoupling 

controller that employs the far more inaccurate model 2Ĝ , rather than 1Ĝ .  In fact, closed-

loop stability is problematic for any tuning, when the far more accurate model 1Ĝ  is used.  

The underlying reason for this seeming paradox is that 2Ĝ , along with G , satisfies the 

integral controllability (IC) condition (Carlos E.  Garcia & Manfred  Morari, 1985) 

  1ˆRe 0i
  

 
GG  for all i , (5.4) 

(where  1ˆ
i


GG  is an eigenvalue of 

1ˆ 
GG ) whereas 1Ĝ  does not.  Consequently, despite 

its much larger approximation error, 2Ĝ  is preferable to 1Ĝ  for the design of the intended 

multivariable controller. 

The preceding realization suggests that generating data for identification of models 

satisfying the IC condition through deliberately designed experiments requires an approach 

that departs from standard design of experiments (DOE) and takes IC explicitly into 

account.  A fairly general mathematical framework for such design was developed by 

Darby and Nikolaou (2009), inspired by pioneering ideas of Koung and MacGregor (1991, 

1993, 1994).  While these investigations have provided valuable insight (as well as simple 

recipes, in some occasions, involving rotated inputs with appropriately proportioned 

amplitudes) for DOE that enables efficient identification of IC-compliant models, the focus 
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of the investigations was entirely on identification of complete models, without assuming 

any partial prior knowledge.  Yet, it is not uncommon to encounter situations where part 

of a multivariable model to be identified is already known (Abonyi et al., 2000; Johansen, 

1996; Kothare et al., 2004; Timmons et al., 1997).  For instance, structural knowledge 

about a model may dictate that a number of elements in a transfer matrix are identically 

zero, or that certain entries should be trivially equal to each other, or that they add up to 

zero, and so on.  One could reasonably anticipate that incorporation of such partial 

knowledge into DOE for identification of IC-compliant models would have distinct 

benefits.   

In this work, it is shown that this intuition is indeed correct.  That is, explicitly 

incorporating partial knowledge in DOE for identification of IC-compliant models 

produces data from which such models can be identified a lot faster than from data 

generated through DOE that does not take partial knowledge into account.  The proposed 

approach expands substantially on the mathematical framework presented by Darby and 

Nikolaou (2009).  Specifically, we present theoretical results and a numerical optimization 

framework that enables DOE for efficient identification of IC-compliant models for 

systems that are partially known at the outset.  Through numerical simulations on industrial 

and literature models, it is demonstrated that the proposed approach results in significant 

efficiency improvements over standard approaches. 

In the rest of chapter, firstly IC and DOE are briefly introduced and then main 

results are presented.  Further, numerical simulations exemplify the main results.   
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5.2 Background 

5.2.1 Integral controllability 
 

The precise formulation of the result on integral controllability proved by García 

and Morari (1985, Theorem 2) is as follows:  Assume that internal model control (IMC) 

with a diagonal (decoupling) filter matrix 
1

1
( ) diag

1
z

z



 

 
  

 
F  is used to control an n n  

stable, linear, time-invariant system with steady-state input-output behavior y Gm , 

, ,ny m  
n nG .  Then, there exists an * [0,1)   such that the closed loop remains 

stable for all [ *,1)   if and only if the matrix 
1ˆ 

GG  (where G  and Ĝ  are the actual 

and estimated steady-state gain matrices, respectively) has eigenvalues  1ˆ 
GG  in the 

right half of the complex plane, i.e. satisfies the IC condition, eqn. (5.4).   

This result establishes the achievable robustness of decoupling multivariable 

controllers with integral action.   

5.2.2 Uncertainty description 
 

Since G  is not known exactly, eqn. (5.4) must be satisfied for all G  in an 

uncertainty set U .  Assuming that Ĝ  is the outcome of standard least-squares 

identification using data over fT  time steps, the uncertainty set U  for G  can be defined 

as the standard ellipsoidal uncertainty set 

    
1

2ˆ ˆ: , 1,...,

T

n n T T T

i i i i

T

n

U c i n

  
  

        
  

  

g

G g g M M g g

g

, (5.5) 
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where the information matrix T
M M  results from the input matrix fT n

M  and 

 
2 2 2 2

1 noise 1( , ) ( )fc s nF n T n n       (5.6) 

for confidence level  , and for the F-distribution with ( , )fn T n  degrees of freedom or, 

approximately for fT n  for the chi-square distribution with n  degrees of freedom.  

5.2.3 Ensuring integral controllability 
 

Assessing whether eqn. holds for all G  in the set U  defined in eqn. (5.5) is not 

trivial.  Worse yet, the IC condition involves eigenvalue inequalities whose "main 

weakness is that they consist of a coupling between the plant model and the true plant, 

which is highly cumbersome" for design of IC-compliant identification experiments, in that 

the plant inputs to be selected by DOE do not appear in that inequality (Featherstone & 

Braatz, 1998).  To remedy that problem, Darby and Nikolaou (Darby & Nikolaou, 2009)  

proved that the IC inequality in eqn. (5.7) is satisfied for all G  in the set U  defined in eqn. 

(5.5) if 

 
11

1

ˆ
ˆ ˆ( ) 1ˆ

ˆ

n
k T T

u k k

k k

J c






 
u

v M M v , (5.7) 

where 

 

1

ˆ ˆ ˆ ˆ
n

T

k k k

k




G u v  (5.8) 

is the singular-value decomposition (SVD) of the steady-state gain matrix of the identified 

model.   

The advantage of eqn. (5.7), compared to eqn. (5.4), is that it does not include the 

uncertain matrix G  directly, whereas the manipulated inputs appear directly and explicitly 
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in the matrix T
M M .  Therefore, eqn. (5.7) can be used (as a constraint or objective) in 

DOE much more easily than eqn. (5.4), as was demonstrated by the theoretical and 

numerical results developed in Darby and Nikolaou (Darby & Nikolaou, 2009).  In fact, in 

some cases it leads to analytical results that are in full agreement with recipes that have 

appeared in literature, and in other cases it leads to novel such recipes of similar simplicity 

(Darby & Nikolaou, 2009).  Such recipes rely on the idea of rotated inputs, with 

appropriately proportioned amplitudes (Koung & Macgregor, 1993). 

Note also that, while the inequality in eqn. (5.7) is only sufficient for IC, numerical 

tests in the previous chapter suggest that it is not overly conservative (Panjwani & 

Nikolaou, 2016).   

5.2.4 Design of experiments for identification of models satisfying integral 

controllability 
 

To design an identification experiment numerically based on eqn. (5.7), a standard 

approximation of the information matrix T
M M  can first be considered in terms of the input 

covariance matrix, mC , and duration of the experiment, fT , as ( 1)T

f mT M M C ;  then, 

mC  can be parametrized in terms of a triangular matrix Q  through a Cholesky factorization 

T

m C QQ ;  finally, eqn. (5.7) can be used either as a constraint, or the left-hand side of 

eqn. (5.7),  

 
11

1

ˆ
ˆ ˆ( )

ˆ

n
k T T

k k

k k









u

v QQ v , (5.9) 

can be used as an objective to be minimized in an optimization problem that produces Q  

and from that the corresponding input covariance matrix mC . 
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5.2.5 Adaptive design 
 

The inequality in eqn. (5.7) characterizes the optimal inputs, dictated by DOE, in 

terms of the SVD of the estimate Ĝ , eqn. (5.8), which results from the identification 

experiment.  However, because the identification experiment has not yet been conducted, 

and consequently the estimate Ĝ  is not yet known at the time of the design, optimal input 

design – rather than mere characterization – requires some sort of an adaptive approach.  

This was already proposed by M. L Darby (2008), was later modified by Kulkarni (2012), 

and was found to work quite satisfactorily on a number of simulations (S. Misra & 

Nikolaou, 2015).  The general idea of the adaptive approach is as follows. 

1. Develop a preliminary model from input-output data using standard PRBS inputs 

for limited time. 

2. Based on the available model, perform DOE that complies with IC (e.g. by 

minimizing  , subject to input and/or output constraints). 

3. Implement the inputs determined in the above step for limited time, and collect 

input-output data, to update the model. 

4. If the updated model does not satisfy eqn. (5.7) (therefore IC), go to step 2.  Else, 

stop. 

Details can be found in Appendix C. 

5.3 Mathematical Problem Formulation and Main Results 
 

In this section we first formulate mathematically the problem at hand, and then 

explain how this formulation leads to a numerical solution. 
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We consider that the steady-state gain matrix G  of the system to be identified is 

partially known, in terms of linear equality constraints.  A typical kind of such constraints 

arises when matrix elements are known a priori to be equal to zero, because pertinent inputs 

are known to have no effect on related outputs.  Another kind arises from fundamental 

balance equations.  Examples of each kind are discussed in the Case Studies section.   

From a mathematical viewpoint, linear equality constraints capturing partial 

process knowledge involve elements either from individual rows of G  or from multiple 

rows of G .  It turns out that each of these two classes of constraints needs to be handled 

differently mathematically. 

The linear constraints mentioned above are certainly just one form of partial 

knowledge available.  Other forms of partial knowledge include linear inequality 

constraints, nonlinear constraints, constraints for the full dynamic model, and so on.  While 

all such possibilities are worth examining – both from a theoretical and from a practical 

viewpoint – the possibility examined here, namely linear equality constraints on the steady-

state gain matrix, is not uncommon and is of practical interest.  At the same time, it is 

challenging enough to warrant investigation on its own right.  Therefore, we quickly 

summarize linear-equality constrained least-squares next, and proceed to develop our main 

results afterwards. 

5.3.1 Least-squares identification for partially known systems 
 

Consider an n n  multivariable system around a nominal steady state, and steady-

state deviations of inputs and outputs , nm y , respectively.  Assume that the steady-

state input-output behavior of the system is described by the equation  
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 ( 1) ( ) ( )t t t  y Gm e ,  (5.10) 

where 1[ ]T n n

n

G g g ;  t  is discrete time;  and ( )te  is Gaussian white noise with 

zero mean and covariance matrix 
2

e I .  Note that the sampling period has been assumed 

to be long enough, to eliminate transient dynamics in eqn. (10).  This assumption is 

reasonable for most plants, which have a fairly smooth low-pass type of frequency response 

without pronounced resonance frequencies, and makes the problem manageable enough to 

allow for a realistic solution to be obtained with reasonable effort (Koung & MacGregor, 

1991, 1993, 1994).  The more general case of a full dynamic model will be examined in 

the future, along the lines of Darby and Nikolaou (2014). 

5.3.1.1 Identification with linear equality constraints for each individual row of G .   

 

Assume that there is partial knowledge about G  in terms of equality constraints for 

each row 
T

ig  of G , namely 

 i i iH g h , 1,...,i n , (5.11) 

where in n

i


H , in

i h  with in  equal to the number of equality constraints for that row.  

Then, the identification problem can be viewed as a collection of n  multi-input-single 

output (MISO) problems.  The least-squares estimate ˆ
ig  of ig  for the model of eqn. (5.10) 

subject to the equality constraints in eqn. (5.11) is (Seber & Lee, 2003) 

 

     

     

1
1 1 1

1
1 1

,LS ,LS

ˆ

ˆ ˆ

T T T T T T T

i i i i i i i i

T T T T

i i i i i i i


  


 

              

   
  

g M M M y H H M M H h H M M M y

g M M H H M M H h H g

  (5.12) 

and the ellipsoidal uncertainty region of ig  for confidence level   is 
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     2ˆ ˆ
T

i i i i i r  
A

g g A g g , 1,...,i n , (5.13) 

where  

  (0) ( 1) ,
T

T M m m  (5.14) 

  (1) ( )
T

i i iy y Ty , 1,..., ,i n and (5.15) 

  S

1

,L
ˆ T T

ii



g M M M y , 1,...,i n  (5.16) 

is the unconstrained least-squares estimate of ig ;   

 
2 2 2

1 ( ),er n  
A  (5.17) 

 
1

1, 1, 1,

T

i i i i

A R D R , 1,...,i n  (5.18) 

and 1,iD  is the diagonal matrix of non-zero singular values and 1,iR  is the matrix of 

corresponding singular vectors in the singular value decomposition of the matrix 

     1 1 1 1, 1,1 1

1, 2,

2,

0
( ) ( )ˆ

0 0

T

i iT T T T T T

i i n i i i i i i T

i

  
 

  
          

    

D R
M M M M I H H M M H H M M R R

R
. (5.19) 

In terms of the input covariance matrix mC  and total experimentation time fT , eqn. 

(5.19) can be rewritten as 

    1 1
1 1 1 1

,

1 1
ˆ

1 1

T T T

i i m n i i m i i m m i

f fT T

 
        

M M C I H H C H H C C , 1,...,i n .  (5.20) 

5.3.1.2 Identification with linear equality constraints relating multiple rows of. G  
 

Since there are constraints relating multiple rows of the matrix G , a different 

formulation of the constrained estimation problem is needed, to include the constraints in 
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the least-squares problem.  To accomplish this, one can vectorize G  and proceed with its 

identification as a full multi-input-multi-output (MIMO) model, as follows: 

The input-output system described by eqn. (5.10) can be rewritten as 

  ( 1) ( ) vec ( )T Tt t t  y W G e , (5.21) 

where 

  
2

1vec
T

T T T n

n
   G g g  and (5.22) 

 
2

( )

( ) ( )ˆ

( )

T

T T n n

n

T

t

t t

t



 
 

    
 
 

m 0

W 0 0 I m

0 m

  (5.23) 

with   denoting the standard Kronecker product. 

Partial knowledge about G  in terms of equality constraints relating multiple rows 

of the matrix G  can be written as 

  vec T K G k , (5.24) 

where 
2p nK , pk , with p  equal to the total number of linear equality constraints. 

The least-squares estimate   1
ˆ ˆ ˆvec

T
T T T

n
  G g g  of  vec T

G  for the model 

of eqn. (5.21) subject to the equality constraints in eqn. (5.24) is (Seber & Lee, 2003) 

 

       

       

1
1 1 1

1
1 1

LS LS

ˆvec

ˆ ˆvec vec

T T T T T T T T

T T T T T T


  


 

              

     
    

G X X X Y K K X X K k K X X X Y

G X X K K X X K k K G

  (5.25) 

and the ellipsoidal uncertainty region of  vec T
G  for confidence level   is 

          2ˆ ˆvec vec vec vec ,
T

T T T T r   BG G B G G  (5.26) 
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where 

 
2

(0) (0)

( 1) ( 1)

f

T T

n

n T n

T T

f n fT T

 

   
   

     
     
   

W I m

X

W I m

, (5.27) 

    1 f
T n TT T

fT
  

 
y y y , (5.28) 

  
2 2T T n n

n

  X X I M M , and (5.29) 

    
1

LS
ˆvec T T T



G X X X y  (5.30) 

is the unconstrained least-squares estimate of  vec T
G , 

 
2 2 2 2

1 ( )er n  
B , (5.31) 

 
1

1 1 1

TB R D R   (5.32) 

and 1D , 1R  are the diagonal matrix of non-zero singular values and matrix of 

corresponding singular vectors, respectively, obtained from singular value decomposition 

of the symmetric matrix.   

     2

1
1 1 1

11

1 2

2

0
ˆ

0 0

T

T T T T T

Tn


                        

RD
C X X I K K X X K K X X R R

R
(5.33) 

with kI  the identity matrix of dimensions k k . 

Eqn. (5.33) can be rewritten in terms of the input covariance matrix mC  and total 

experimentation time fT  as 

     2

1
1 1 11

1

T T

n m n m n mn
fT


       

 
C I C I K K I C K K I C . (5.34) 
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5.3.2 Ensuring IC in identification of partially known models 
 

As already mentioned above, the purpose of DOE is to determine inputs that will 

generate data enabling the identification of an IC-compliant model, i.e. a model Ĝ , 

determined by eqns. (5.12) or (5.25), which satisfies eqn. (5.4) along with the real system 

G  constrained in eqns. (5.13) or  (5.26) respectively. 

As has been argued already (Darby & Nikolaou, 2009; Featherstone & Braatz, 

1998), directly relying on eqn. (5.4) results in an overly complicated DOE task.  To 

circumvent that difficulty, in the following theorems we develop inequalities that guarantee 

satisfaction of eqn. (5.4) yet are much simpler in that they 

(a) directly involve the inputs to be determined by DOE, and  

(b) do not contain the uncertain matrix G .   

Consequently, these inequalities are much easier to use in DOE for identification 

of IC-compliant models, as will be explained afterwards. 

Theorem 1 – Sufficient condition for IC of model identified as multiple, partially 

known MISO models 

A model Ĝ , partially known through eqn. (5.11) and identified according to eqn. 

(5.12), satisfies IC for all potential G in the set 

       2

1
ˆ ˆ: ,1

T Tn n

n k k k k kD r k n       AG g g g g A g g   (5.35) 

suggested by eqn. (5.13), where kA  and r
A  are as in eqns.(5.18) - (5.20)-, if  

  
11

1

ˆ
ˆ ˆ 1ˆ

ˆ

n
k T

c k k k

k k

J r






  A

u
v A v . (5.36) 



 

81 
 

Proof:  Placing the matrix kA  in place of T
M M  in Theorem 1 in Darby and 

Nikolaou (Darby & Nikolaou, 2009), the proof of this Theorem follows the exact same 

pattern, and is omitted for brevity. 

Note the similarity between the sets D  in eqn. (5.35) and U  in eqn. (5.5).  Note 

also that, in contrast to eqn. (5.4), the above eqn. (5.36) in Theorem 1 directly involves 

plant inputs through the matrix kA , which, as eqns. (5.18) and (5.19) indicate, is a function 

of both the data matrix, M , and the constraint matrix, kH .  In addition, the uncertain matrix 

G , which is present in eqn. (5.4), has been eliminated in eqn. (5.36). 

The above Theorem 1 is applicable to those cases where individual rows of the 

plant steady-state gain matrix G  are not related to each other through constraining 

equalities.  However, as already argued, situations with constraints involving multiple rows 

of G  are not uncommon.  The subsequent Theorem 2, following the intermediate Lemma 

1 in Appendix C, is developed for such situations. 

Theorem 2 – Sufficient condition for IC of model identified as a single, partially 

known MIMO model 

A model Ĝ , partially known through eqn. (5.24) and identified according to eqn. 

(5.25), satisfies IC for all potential G  in the set 

            2

1
ˆ ˆ: vec vec vec vec vec

T
T n n T T T T

nD r      BG g g G G B G G  (5.37) 

suggested by eqn. (5.26), where B  and r
B  given in eqns. (5.32) - (5.34), if 

 1

max 2

1
( )

nr
  

B

B Φ , (5.38) 

where  
1

ˆ ˆT

n



 Φ I G G , and 
1

max ( ) 
B Φ  is the largest eigenvalue of the matrix 1

B Φ . 
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Proof:  See Appendix C 

Theorem 1 and Theorem 2 immediately suggest how DOE for identification of an 

IC-compliant model can be formulated as an optimization problem.  The optimization 

resulting from Theorem 1 is not far from the formalism in Darby and Nikolaou (Darby & 

Nikolaou, 2009).  By contrast, Theorem 2 departs significantly from that formalism and is 

more challenging.  Therefore, in the following we will first discuss briefly the DOE 

implications of Theorem 1, and will concentrate more on discussing the DOE implications 

of Theorem 2. 

5.3.3 Design of experiments for IC-compliant model to be identified as 

multiple, partially known MISO models 
 

Theorem 1 suggests that DOE for identification of an IC-compliant model as in 

eqn. (5.10), with partial model knowledge captured in constraints as in eqn. (5.11), can be 

carried out using eqn. (5.36), as follows.  Find 

 opt 11

1

ˆ
ˆ ˆarg min

ˆT
m

n
k T

m k k k

k k

r







 
  

 
 A

C QQ

u
C v A v   (5.39) 

subject to variance constraints on individual outputs and inputs, such as 

 
2var( ) [ ]i m kk kM m C , 1,...,k n  and (5.40) 

 
2ˆ ˆvar( ) [ ]T

i m kk kY y GC G  , 1,...,nk  , (5.41) 

where the input covariance matrix is parametrized through a Cholesky factorization as 

T

m C QQ .  Other kinds of constraints, in place of eqns. (5.40) and (5.41) may also be 

considered, as discussed in (Darby & Nikolaou, 2009). 
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It should be noted, that eqn. (5.36) rigorously characterizes (rather than prescribes) 

the optimal inputs under the respective set of identification constraints, since it involves 

the elements ˆ ˆ ˆ, ,k k ku v  of the SVD of the identified model Ĝ .  As already mentioned 

above, an adaptive DOE can address this issue, as follows. 

1. Develop a preliminary model from input-output data using standard PRBS inputs 

for limited time. 

2. Based on the available model, perform DOE that complies with IC by minimizing 

cJ , eqn. (5.36), subject to input and/or output constraints. 

3. Implement the inputs determined in the above step for limited time, and collect 

input-output data, to update the model. 

4. If the updated model does not satisfy eqn. (5.36) (therefore IC), go to step 2.  Else, 

stop. 

5.3.4 Design of experiments for IC-compliant model to be identified as a 

single, partially known MIMO model 
 

Theorem 2 suggests that DOE for identification of an IC-compliant model as in 

eqn.(5.24), with partial model knowledge captured in constraints as in eqn. (5.21), can be 

carried out using eqn. (5.38), as follows:  Find 

 opt 1

maxarg min ( )
T

m

m  



   
 C QQ

C B Φ   (5.42) 

subject to variance constraints on outputs and inputs, as in eqn. (5.40) or (5.41). 

While the task in eqn. (5.42) is challenging, we explain below that minimization of 

an upper bound on 
1

max ( ) 
B Φ  is manageable in realistic situations.  In fact the analysis 

that follows establishes that, in the absence of partial knowledge about the model, DOE 
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based on rotated inputs emerges naturally as the result of minimizing that upper bound on 

1

max ( ) 
B Φ , subject to various constraints on inputs and outputs.  The corresponding 

results are summarized in Theorem 3 and Theorem 4 , after the related context is set first. 

5.3.5 Design of experiments for IC-compliant model to be identified as a 

single MIMO model.   
 

In standard linear regression, absent any partial knowledge on G , the matrix B  in 

eqn. (5.37) is 

 
T B I M M , (5.43) 

where T
M M  in the information matrix containing the inputs that must be designed, and 

can be diagonalized as  

 T TM M PΛP . (5.44) 

Given this, it can be shown (Appendix C) that the DOE problem in eqn. (5.42) can 

be cast as the following optimization problem:  Find 

   2 4

ˆ

ˆmin min tr
T

T 

Λ Q V P
QΛ Q Σ  (5.45) 

with respect to the orthonormal matrix ˆ TQ V P  and the diagonal matrix Λ , subject to 

pertinent input and output constraints.  More specifically, such constraints can be 

2( 1) var( ) [ ] [ ] ( 1)T T

f k kk kk f kT m T M    M M PΛP , 1,...,k n ,  (5.46) 

 
2ˆ ˆ ˆ ˆ( 1) var( ) [ ] [ ] ( 1)T T T T

f k kk kk f kT y T Y    Y Y TV PΛP VT , 1,...,k n , (5.47) 

  2 2

1 1

( 1) var( ) tr[ ] ( 1)
n n

T

f k k f

k k

T m T M
 

     M M , (5.48) 

 2 2

1

ˆ ˆ ˆ( 1) var( ) tr[ ] tr[ ] ( 1)
n

T T T

f k f

k

T y T Y


     Y Y Σ V PΛP V , and (5.49) 
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 2 2

( 1)var( ) ( 1)var( )

ˆ ˆ ˆtr[ ] (1 ) tr[ ]

f f

T T T

T T

w 

   

  

y m

Σ V PΛP V PΛP , (5.50) 

where  1
ˆ ˆ ˆ ˆdiag , , n T U  and ,1   are relative weights of the output and input 

variances, respectively, with 0 1  . 

5.3.5.1 Analytical solution to eqn. (5.45) in the absence of partial model knowledge:  
 

Rotated inputs.  To ensure that eqn. (5.45) poses a meaningful numerical 

optimization problem, it would be useful to examine the outcome of this optimization when 

it accepts an analytical solution.  As shown below (Theorem 3 and Theorem 4) that in the 

case of constraints on the total input or output variance, as in eqn. (5.50), an explicit 

solution to the minimization of  2 4ˆtr T 
QΛ Q Σ  can be found, in terms of rotated inputs, 

as discussed in the Introduction section.  Specifically, the minimization problem in eqn. 

(5.45) can proceed in two steps:   

1) by finding the optimal (orthonormal) P , given Λ , in the first step, and  

2) by finding the optimal Λ , in the second step.   

The first step is carried out in Theorem 3 and the second step in Theorem 4 below. 

Theorem 3 – Emergence of rotated inputs as optimal choice for identification of 

IC-compliant models 

Given  1
ˆ ˆ ˆ n n

n

 V v v  orthonormal,  2 2

1diag , , n Λ  with diagonal 

entries indexed in increasing order as 

 
1

0
n

    , (5.51) 

and  1
ˆ ˆ ˆdiag , , n Σ  with diagonal entries indexed in decreasing order as 

 1
ˆ ˆ 0n    , (5.52) 
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the minimum of  2 4ˆtr T 
QΛ Q Σ  with respect to the orthonormal matrix ˆ n n P VQ  

is  

  2 4

4 4ˆ
1

1ˆmin tr
ˆ

k

n
T

k k 

 





P VQ

QΛ Q Σ   (5.53) 

and is obtained for  

 
1

opt ˆ ˆ ˆ
n

n n    P VΠ v v , (5.54) 

where Π  is a permutation matrix such that 

    1, 1,n n  Π . (5.55) 

Proof: See Appendix C 

 

Corollary 1 – Rotated inputs as optimal choice for identification of IC-compliant 

models 

Under the conditions of Theorem 3, optimal inputs (in the sense of 

 2 4

ˆ

ˆmin tr T 

P VQ
QΛ Q Σ ) for the process to be identified have the form 

 ˆm Vξ , (5.56) 

where V̂  is a rotation (orthonormal) matrix in the SVD of eqn. (5.8), and  

 
2var( )
kk    (5.57) 

Proof:  Eqns. (5.44) and (5.54) imply  

 
1

2 2ˆ ˆ diag , ,
n

T

T T T T    
ΞΞ

V M MV Ξ Ξ ΠΛΠ .    (5.58) 

with the rotated inputs ˆ Tξ V m , rather than the original inputs m , being 

uncorrelated, with covariance matrix  
1

2 21 1
diag , ,

1 1 n

T

f fT T
   

 
C Ξ Ξ . 



 

87 
 

 

Corollary 2 – Sufficient condition for IC in process identification without partial 

knowledge 

IC is guaranteed for identification of a process as in eqn. (5.10) if  

 
4 4 2

1

1 1

ˆ
k

n

k k nr 


B

  (5.59) 

Proof:  Immediate, from combination of eqns. (5.53) in Theorem 3, (5.38) in 

Theorem 2, (5.42), and. (5.45) 

 

Theorem 4 – Emergence of optimal scaling of rotated inputs for identification of 

IC-compliant models 

 
4 4

1

1
min

ˆk
k

n

k k
  

   (5.60) 

subject to the constraint in eqn. (5.50) and the ordering of 
k

  in eqn. (5.51), is obtained at 

 

 
1/3 1/2

4/32

1

1

ˆ

ˆ

k

k

n
k i

i i

w

b b







  
  
   


, (5.61) 

where  
1/2

2ˆ 1k kb     . 

Proof:  See Appendix C 

 

Corollary 3 – Optimal scaling of rotated inputs for identification of IC-compliant 

models 

Under the conditions of Theorem 4,  

 
 

 

  

  

1/6
6 4

1/6
6 4

var ˆ ˆ1
( )

var ˆ ˆ1

j

k

j k k

jk

k j j

r
    


   

 
 

 
. (5.62) 
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Proof:  Immediate from eqns. (5.61) and (5.57). 

 

Note that for 1  , i.e. constraint only on total output variance through eqn. (5.50) 

, the optimal ratio ( 1)jkr    of rotated-input amplitudes expressed in eqn. (5.62) recovers 

the ratio ˆ ˆ/k j   suggested by Koung and MacGregor (1994).  However, for 0  , i.e. 

constraint only on total input variance through eqn. (5.50), the optimal ratio ( 0)jkr    of 

rotated-input amplitudes expressed in eqn. (5.62) turns out to be  
2/3

ˆ ˆ/k j  .  This result 

is related to the design    
1/3

ˆ ˆ0 /jk k jr     ) suggested by Darby and Nikolaou (Darby 

& Nikolaou, 2009).  In fact, both designs, i.e.    
2/3

ˆ ˆ0 /jk k jr      and 

   
1/3

ˆ ˆ0 /jk k jr     , provide rigorous justification to the heuristic suggestion of using 

a ratio ˆ ˆ/jk k jr    with 0 1   at the beginning of an identification experiment (to 

account for uncertainty) proposed by Bruwer and MacGregor (Bruwer & MacGregor, 

2006). 

5.4 Case Studies  
 

The IC-optimal designs proposed in the previous section will be illustrated next 

with numerical simulations on two multivariable systems, namely a 5 5  industrial fluid 

catalytic cracker (FCC) reactor/regenerator unit and a 2 2  multi-stage absorber unit, 

presented below.   

The reason for selecting the FCC unit is that its steady-state gain matrix has a 

number of entries known to be identically zero.  This kind of partial system knowledge 



 

89 
 

conforms with eqn. (5.11).  Therefore, the corresponding theory, epitomized by eqn. (5.36)

will be used.  

The reason for selecting the two-stage absorber unit is that entries of its steady-state 

gain matrix are related through linear constraints that conform with eqn. (5.24). Therefore, 

the corresponding theory, epitomized by eqn. (5.42), will be used. 

In addition to IC-optimal designs, D-optimal designs (Mehra, 1974) will be 

illustrated, for comparison.  The reason for this comparison is that D-optimal designs 

maximize the determinant of the input covariance matrix, 
1

1

T

m

fT



C M M .  By contrast, 

IC-optimal designs involve the quantities indicated in eqns. (5.36) and (5.42), which are 

different functions of mC . 

Four different designs will be illustrated, summarized as follows: 

a. Design D1 is the IC-optimal DOE approach based on minimization of cJ , eqn. 

(5.39) (or minimization of 
1

max ( ) 
B Φ , eqn. (5.42)), taking into account partial 

knowledge, eqn. (5.11) (or eqn. (5.24)), and input-output variance constraints, e.g. 

eqn.(5.40), (5.41) (or any of (5.46) -(5.50)). 

b. Design D2 is similar to D1, but without use of partial knowledge;  i.e. D2 minimizes 

uJ , eqn.(5.7), subject to input-output variance constraints, as above.  

c. Design D3 is D-optimal DOE (Mehra, 1974) with partial knowledge;  i.e. D3 

minimizes the covariance of the parameter estimator, 

    1 1

1 1diag , ,T T

n n

 

M M M M  as in eqns. .(5.18) - (5.20), for least squares 

identification with partial knowledge as in eqn. (5.11):  
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  1,

1

min log det( )
T

m

n

i

i




 
 
 


C QQ
D   (5.63) 

subject to input-output variance bounds, as above;  or minimization of the covariance of 

the parameter estimator, C , as in eqns. (5.32) -(5.34) for least squares identification with 

partial knowledge as in eqn.: 

   1min log det( )
T

mC QQ
D   (5.64) 

subject to input-output variance bounds, as above. 

d. Design D4 is similar to D3 but without use of partial knowledge;  i.e. D4 minimizes 

the covariance of the parameter estimator, 
1

1

T

m

fT



C M M : 

    min log det
T

m

m



C QQ

C  (5.65) 

subject to input-output variance constraints, as above. 

For all four designs, identification is performed through constrained least-squares, 

namely minimization of the sum of the squared errors subject to the equality constraints, 

eqn. (5.11) (or eqn. (5.24)), emanating from partial knowledge. 

Given that the IC-optimal designs D1 and D2 through eqns. (5.39) or (5.42), 

respectively, require knowledge of Ĝ , the plant estimate after the identification, two 

different kinds of designs D1 and D2 are performed in the simulations that follow: 

a. DOE assuming perfect knowledge of G , and replacing Ĝ  by G  in eqns. . (5.39) 

or (5.42) at the time of DOE.  For numerical simulations resulting from such DOE, 

satisfaction of IC is indirectly checked through eqns. (5.36) or (5.38), since 

checking satisfaction of eqn. (5.4) is not trivial.  While this design is obviously 

unrealistic from a practical viewpoint, it provides a clear characterization of the 
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optimal inputs and illustrates what can be anticipated in a best-case, if unrealistic, 

scenario. 

b. Adaptive DOE, as outlined in Adaptive design of the Background section, using 

the latest estimate of Ĝ  to design optimal inputs for the next time-segment of 

identification, at the end of which Ĝ  will be updated and DOE repeated.  After an 

initial period of identification with PRBS inputs, eqns. (5.39) or (5.42) are 

adaptively used at the time of DOE, with Ĝ  being the latest estimate.  Satisfaction 

of IC is again checked through eqns. (5.36) or (5.38).  While this design confounds 

the IC-optimal design with the adaptation method used, it provides a clear 

illustration of how the proposed approach would work in practice.  It is also clear 

that for very long identification experiments, this design will eventually converge 

towards producing inputs similar to those produced by design (a).  The effect of 

adaptation on convergence warrants its own investigation, and is examined 

elsewhere (S. Misra & Nikolaou, 2015). 

For numerical solution of the optimization problems in D-optimal designs D3 and 

D4, we use the semidefinite programming solver SeDuMi (Sturm, 1999) of YALMIP-

MATLAB®.  For the IC-optimal designs D1 and D2, we use the nonlinear optimization 

function fmincon available in MATLAB®, with initial guesses obtained from 

corresponding D-optimal designs.  To avoid local minima, the Multistart algorithm 

available in MATLAB® is also employed with fmincon.  The computational time required 

for fmincon with Multistart was found to increase by a number approximately equal to the 

number of initial guesses considered by Multistart.  However, no improvement in the 

solution was observed, suggesting small probability of convergence to local minima. 
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5.4.1 Fluid catalytic cracking reactor-regenerator 
 

A 5 5  fluid catalytic cracking (FCC) reactor-regenerator unit identified from plant 

testing (Harmse, 2007) is used here to compare performances of designs D1-D4, with 

emphasis on eqn. (5.39).  The state-space model of the system can be found in M. L Darby 

(2008).  The SSGM 1G  of the system is 

 1

0.3866 0 0 0 0

0 0.6935 0 0 0.5805

0.1192 1.5461 0.5224 0 0.3667

0 0.1313 0.1298 0.1058 0.2057

0.0631 0.2462 0 0 0.4435

 
 

 
 
  
 

   
   

G   (5.66) 

with identically zero elements evident.  This partial knowledge can be included in DOE in 

the form of linear constraints on the parameters, as shown in eqn. (5.11).  All four 

experiment designs D1-D4 use the following variance constraints on individual inputs 

( im ) and outputs ( iy ). 

 

1 1

2 2

3 3

4 4

5 5

var( ) 0.35   var( ) 1.5

var( ) 0.35   var( ) 1.5

var( ) 0.65   var( ) 3.0

var( ) 0.35   var( ) 1.5

var( ) 0.35   var( ) 1.5         

y m

y m

y m

y m

y m

 

 

 

 

 

  (5.67) 

Parameters used in the simulation for all adaptive designs are given in Table 1. 

 

Table 5-1: Case1: Parameters used in simulation for adaptive designs 

Time steps of initial identification with PRBS inputs 55   

Standard deviation of output noise 0.25   

Length of time segment at the end of which Ĝ  is updated and DOE 

repeated 

1  

Total number of identification steps 1000   
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The optimal inputs and outputs for 5 5  FCC unit as characterized by designs D1-

D4 are shown in Figure 5-1 - Figure 5-4 respectively. 

 

 

Figure 5-1.  Optimal inputs and outputs for 5 5  FCC unit as characterized by design 

D1 
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Figure 5-2.  Optimal inputs and outputs for 5 5  FCC unit as characterized by design 

D2. 
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Figure 5-3.  Optimal inputs and outputs for 5 5  FCC unit as characterized by design 

D3. 
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Figure 5-4.  Optimal inputs and outputs for 5 5  FCC unit as characterized by design 

D4. 
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Table 5-2.  Characterization of inputs and outputs for designs D1-D4 for 5 5  FCC 

unit; Active constraints are in bold. 

Design det( )mC  det( )iA , 1,...,5i   var( )im , 1,...,5i   var( )iy , 1,...,5i   

D1 0.02  
1.49,0.60,0.49,

0.01,0.88
 

,0.65, ,

1.16,1.34

1.50 3.00
 

0.22, , ,

0.17,0.19

0.35 0.65
 

D2 1.01 

1.5,0.37,0.75,

0.69,0.55
 

,0.42, ,

,1.04

1.50 3.00

1.50
 

0.22, , ,

0.09,0.18

0.35 0.65
 

D3 0.99  
1.5,0.53,0.66,

0.75,0.77
 

,0.55, ,

,1.36

1.50 3.00

1.50
 

0.23, , ,

0.14,0.20

0.35 0.65
 

D4 1.16  
1.5,0.39,0.77,

0.80,0.58
 

,0.41, , ,

1.17

1.50 3.00 1.50
 

0.22, , ,

0.13,0.19

0.35 0.65
 

 

Table 5-3.  Input and output correlations matrices for Designs D1-D4 for 5 5  FCC 

unit. 

Design mR  yR  

D1 

1 0.08 0.07 0.24 0.15

1 0.87 0.49 0.55

1 0.84 0.59

1 0.34

1

  
 

 
 
 
 

 
  

 

1 0.09 0.11 0.04 0.03

1 0.01 0.33 0.86

1 0.49 0.41

1 0.70

1

  
 


 
 
 
 
  

 

D2 

1 0.11 0.002 0.009 0.082

1 0.71 0.23 0.38

1 0.33 0.41

1 0.16

1

 
 

  
 
 
 
 
  

 

1 0.001 0.01 0.02 0.14

1 0.002 0.50 0.91

1 0.12 0.26

1 0.71

1

 
 
 
 
 
 
  
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Table 5-3 continued 

D3
 

4

8

9

9

1 0.19 0.003 3 10 0.14

1 0.80 5 10 0.53

1 6 10 0.60

1 3 10

1









   
 

   
 
 

  
 
 

 

9

8

1 4 10 0.16 0.04 0.08

1 1 10 0.50 0.89

1 0.37 0.33

1 0.77

1





   
 

  
 
 
 
 
 

 

D4 

8 9

10

10

9

1 0.11 1 10 1 10 0.08

1 0.71 9 10 0.43

1 5 10 0.50

1 1 10

1

 







    
 

    
  
 

 
 
 

 

9 8

9

1 7 10 2 10 0.02 0.13

1 7 10 0.51 0.91

1 0.13 0.26

1 0.73

1

 



    
 

 
 
 
 
 
 

 

 

Important observations from Figure 5-1 - Figure 5-4, Table 5-2 and Table 5-3 are 

as follows: 

 For designs D2 and D4, kA , 1,...,5k  , are information matrices, according to 

eqn.(5.35).  Larger value of det( )kA  imply more accurate parameter estimation.  

Because the design D4 is D-optimal, det( )kA  for that design is larger than det( )kA  

for design D2, which is IC-optimal.  This is clearly in agreement with the fact that 

IC-optimal designs sacrifice some accuracy in parameter estimation to achieve IC 

satisfaction. 

 All designs result in input or output pairs that may be from highly correlated to 

fairly uncorrelated.  This is due to the fact that in the presence of input and/or output 

constraints, optimal experiments are obtained through constrained numerical 

optimization.  These observations suggest that the frequently mentioned rule of 

thumb “opt for correlated inputs and uncorrelated outputs when identifying ill-

conditioned systems” is not universally applicable.  Similar findings were also 

stated by Darby and Nikolaou (M L Darby & M. Nikolaou, 2014). 
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 Figure 5-5 shows comparison of identification time required for IC satisfaction  

( 1J  ) for designs D1-D4.  Designs D1 and D3, which use partial knowledge about 

the system, require fewer time steps than designs D2 and D4.  This clearly 

establishes the usefulness of using partial knowledge in designing the experiments.  

Design D1, being an IC-optimal design, performs slightly better than D-optimal 

design D3. 

 Figure 5-6 shows the convergence of elements of identified SSGM using given 

input/output constraints.  Evidently, designs D1-D4 adaptively produce models 

which are close to the actual system 1G .  However, IC-optimal designs D1 and D2 

deliberately compromise the accuracy of some of the parameters, in exchange of 

IC satisfaction.  

 

Figure 5-5.  Adaptive DOE for 5 5  FCC unit:  Identification time required for IC 

satisfaction when inputs are produced by designs D1-D4.  The vertical 

axis is cJ , eqn. (5.11), for designs D1 and D3, and uJ , eqn. (5.7), for 

designs D2 and D4.  
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Figure 5-6.  Convergence of SSGM elements of  FCC unit for designs D1-D4. 
 

5.4.2 Case 2: Two-Stage Absorber Unit 

 

A 2 2  two-stage absorber (Amundson, 1966) is used here to compare 

performances of designs D1-D4, with emphasis on eqn. (5.42).  Input variables are solute 

concentrations in the liquid and vapor streams entering the absorber, and output variables 

are concentrations of solute in the liquid at each of the two stages.  The SSGM 2G  for this 

system is  

 2

0.2632 0.1053

0.1579 0.2632

 
  
 

G . (5.68) 

Partial knowledge, in terms of the linear equality between the first and second row 

of the matrix 2G is given as 

5 5
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2 2

2 2 2

(1,1) (2,2)

(1,2) (2,1) (2,2)



 

G G

G G G
. (5.69) 

Input and output variance constraints are 

 var( ) 0.1,    var( ) 0.5,  1,2i iy m i   . (5.70) 

Parameters used in the simulation for all adaptive designs are given in Table 5-4. 

Table 5-4.  Case 2: Parameters used in simulation for adaptive designs 

Time steps of initial identification with PRBS inputs 55   

Standard deviation of output noise 0.5   

Length of time segment at the end of which Ĝ  is updated and DOE 

repeated 

1   

Total number of identification steps 300   

 

Optimal inputs and outputs for 2 2  two stage absorber unit as characterized by 

designs D1-D4 are shown in Figure 5-7 - Figure 5-10, respectively. 

 

 

Figure 5-7.  Optimal inputs and outputs for 2 2  two-stage absorber unit as 

characterized by design D1. 
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Figure 5-8.  Optimal inputs and outputs for 2 2  two-stage absorber unit as 

characterized by design D2. 
 

 
Figure 5-9.  Optimal inputs and outputs for 2 2  two-stage absorber unit as 

characterized by design D3. 
 

 
Figure 5-10.  Optimal inputs and outputs for 2 2  two-stage absorber unit as 

characterized by design D4. 
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Table 5-5.  Results for designs D1-D4 for 2 2  two-stage absorber.  Active constraints 

are in bold. 

Design det( )mC  det( )B  var( )im  var( )iy  
1 2,m m  

1 2,y y  

D1  59 10  0.45  ,0.5 0.5  0.07,0.09  0.99  1.00  

D2  0.22  0.18  ,0.5 0.5  0.07,0.09  0.35  1.00  

D3  81 10  0.45  ,0.5 0.5  0.07,0.09  1.00  1.00  

D4  0.25  0.25  ,0.5 0.5  0.04,0.05  94 10   0.79  

 

As in the first case study, it can be observed here that det( )B  (a measure of 

parameter estimation accuracy) for design D4 is larger than det( )B  for design D2 (Table 

5-5).  This again establishes the fact that IC-optimal designs sacrifice some accuracy in 

parameter estimation to achieve IC satisfaction. 

Figure 5-11 compares the identification time required for IC satisfaction ( 1J  ) 

for designs D1-D4.  Designs with partial knowledge (D1 and D3) lead to faster IC 

satisfaction than designs without partial knowledge (D2 and D4) as anticipated.  The 

overlapping profiles for design D1 and D3 show close agreement between the IC-optimal 

design D1 and the D-optimal design D3. 

Figure 5-12 shows the convergence of the SSGM elements for the identified 

models.  Despite nearly the same closeness of the matrix elements to the actual process 

over the adaptations, some models satisfy IC and some do not.  This again illustrates the 

claim made in the Introduction about closeness of the model to the real system and control 

relevance. 
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Figure 5-11.  Adaptive DOE for 2 2  two-stage absorber:  Identification time 

required for IC satisfaction when inputs are produced by designs D1-

D4.  The vertical axis is cJ , eqn. (5.11), for designs D1 and D3, and 

,uJ  eqn. (5.7), for designs D2 and D4. 

 

 
Figure 5-12.  Convergence of SSGM elements of 2 2  two-stage absorber for designs 

D1-D4. 
 

5.5 Summary 
 

A general mathematical framework was presented to design experiments for 

efficient identification of partially known models that are required to satisfy the integral 
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controllability condition.  The mathematical framework relies on guaranteeing integral 

controllability (eqn. (5.4)) by satisfaction of simpler inequalities (eqns. (5.36) or (5.38), 

depending on the nature of partial knowledge of the identified model), in which process 

inputs appear explicitly.  This framework produces experiment designs either analytically, 

in simple cases, or through solution of an appropriately formulated constrained 

optimization problem, when input and/or output constraints are present. 

The proposed framework was illustrated with numerical simulations on two 

multivariable systems, namely a 5 5  industrial fluid catalytic cracker (FCC) 

reactor/regenerator unit and a 2 2  multi-stage absorber unit.  These simulations showed 

agreement of the observed results with results in literature under similar conditions.  They 

also demonstrated novel results, under conditions not examined in literature before. 
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6 Conclusion and Future Work 

The previous chapters elaborated the application of data-driven modeling in 

upstream and downstream chemical industrial purposes.  Under upstream industry 

application, data-driven modeling was performed for shale gas well cementing.  A new 

experiment design was proposed for control relevant model identification for partially 

known systems under downstream industry application.  Statistical simulations were 

performed to ensure the suitability of the control-relevant model in terms of satisfaction of 

integral controllability. 

In this chapter, summary and future extension of the work done are presented in the 

subsequent sections. 

6.1 Cementing shale gas wells 
 

Successful cementing of shale gas wells is an important step in stopping gas leaks 

during natural gas production.  Since building a model based on fundamental knowledge 

only is not possible because of missing mathematical relationships between most of the 

affecting factors and cement bond quality.  A data-driven classification model was 

developed using PLS-DA analysis.  The model was validated using ten-fold cross-

validation tests.  The model is not only able to correctly classify 81 % of the classified 

wells but it also helps in identifying the relative importance of cement and casing variables 

used as inputs to the model.  The model also provides correlations between input variables 

and well leakage.  Interestingly, some of findings based on these correlations match with 

the common industrial practices for good cementing.  The model also provides a graphical 



 

107 
 

way to easily distinguish leaking wells and possible reasons behind the leaking behavior 

of wells.  In totality, the model provides a guideline for safe cementing operations. 

The complete methodology presented here would certainly supplement the existing 

knowledge about well cementing.  There is a scope to extend this work along the ideas 

presented below. 

 Although the optimal model presented here produced reasonably good results from 

relatively scant data, it is anticipated that availability of more data points will 

improve the predictive ability of the model and will increase its utility.   

 In fact, availability of data for additional variables, such as related to lithology, 

mechanical properties of cement sheath, or others would also be expected to 

improve the predictive ability of the model.   

 Finally, the possibility of other statistical modeling techniques or a hybrid modeling 

approach that combines first principles and empirical data would be worth 

investigating. 

6.2 Ensuring integral controllability  
 

The framework developed by Darby and Nikolaou (2009) to design experiments 

for identification of IC-compliant models, relied on the sufficient condition instead of 

eigenvalue based inequality.  Since the condition was only sufficient, the approach based 

on the sufficient condition could be potentially be a conservative.  So in this study, the 

conservatism of the sufficient condition was assessed numerically for a number of cases.  

The numerical assessment showed that conservatism is not very high however 
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conservatism increases as the size of the identified system increases.  Graphical analysis 

was also presented to pinpoint the source of conservatism in the sufficient condition.   

An even more important question arose whether any other model can satisfy IC if 

least-squares identified model cannot.  It was shown through counter example that it is 

generally not possible to find an IC compliant model without designing IC-compliant 

experiments.   

Since the step causing conservatism in the derivation of the sufficient condition, 

has been pinpointed, one could think of avoiding that step.  More work is needed here to 

derive less conservative condition or perhaps not conservative at all. 

6.3 Experiment design for control-relevant identification of 

partially known stable multivariable systems 
 

Here a general optimization framework was proposed to design experiments for 

identification of IC compliant models, which utilizes partial knowledge available about the 

system.  The design of experiments developed in this study are based on simpler 

inequalities instead of cumbersome eigenvalue based condition.  The process inputs appear 

explicitly in both these simpler inequalities that makes them suitable for optimization based 

framework.  The framework produces analytical expressions for input design in simple 

case while the systems with complex input/output constraints can be handled using 

numerical optimization.  The proposed framework was tested on two multivariable cases.  

Numerical results in both the cases established the usefulness of newly designed 

experiments in terms of less experimentation time required for identification of IC 

compliant model. 
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A number of items related to this work can be examined in the future, such as the 

following: 

- D-optimal and IC-optimal designs produced inputs with different but not entirely 

dissimilar characteristics.  What are the reasons underlying this outcome? 

- In the present work, partial knowledge of the process to be identified is expressed 

in terms of equality constraints.  Can these ideas be extended to inequality 

constraints, and would that be worthwhile from a practical viewpoint? 

- The framework presented emphasizes steady-state behavior.  Can it be extended to 

the design of experiments for identification of partially known dynamic systems 

along the lines of Darby and Nikolaou (M L Darby & M. Nikolaou, 2014)? 
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Appendix A  

A.1 Classification using PLS-DA  

 
To calculate whether a vector x  (i.e. the 31 dimensionless inputs shown in Table 

3-2) will result in a leaking well (i.e., a value of the output 1y  ) or not ( 0y  ), the PLS-

DA model uses Bayes’ rule (Duda et al., 2000) to calculate whether the probability (Figure 

A-1). 
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is greater than or less than 0.5, respectively.  The quantities that appear in eqn. (A.1) are 

calculated as follows:  1 2( ), ( )P P   are the probabilities of a leaking or non-leaking well;  
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if a well is leaking or non-leaking, respectively;  the vector β̂  is the outcome of PLS 

estimation;  and 

1

ˆ( )

ˆ( | )

cn

i

i
c

c

g y

P y
n

 


 (A.3) 

(Figure A-2) with 1,2c   and cn  the number of samples in category c  in the training set; 

2

,
ˆ ˆ1 1

ˆ( ) exp
2 SEPSEP 2

s i

i

ii

y y
g y



  
   
   

 .................................................................... (A.4) 

1/2SEP [(1 ) MSEC ]i i bch   ..................................................................................... (A.5) 
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is the standard error in prediction (SEPi ) for the thi  sample. 

1( )T T

i i ih  t T T t  ....................................................................................................... (A.6) 

is the leverage and it  is the score vector for the thi  sample on r  latent vectors in the PLS 

model ; 

2

, c

1

ˆ( bias )

MSEC
1

n

s i i

bc

y y

n r

 


 


 .............................................................................. (A.7) 

is the bias corrected mean squared error of calibration ( MSECbc ) (Esbensen, 2000) where 

,

1

ˆ( )

bias

cn

s i i

c

c

y y

n






 ................................................................................................ (A.8) 

with iy  dummy values and ,
ˆ T

s i iy  β x . 

 

Figure A-1: Posterior probabilities for two categories: category-1 and category-2 

 



 

122 
 

 

Figure A-2: Probability density functions for two categories: category -1 and category 

-2  
 

In this study each of the priori probabilities 1( )P   and 2( )P   are assumed to be 

0.5 .  The objective of this exercise is to minimize the number of incorrect classifications 

in 10-fold cross validation test.  The number of latent variables, r , corresponds to 

minimum classification error. 

A.2 Reliability of classification 

 
Classification according to the method presented in previous section (method used 

by PLS-Toolbox (Eigenvector, 2013)) does not consider the uncertainty in prediction of 

ˆ
sy .  If we consider uncertainty, eqn. (A.1) cannot be used to decide the category of the 

sample.  To accommodate this uncertainty Bayes decision rule was changed as 

,

,

,

,

ˆ

cˆ, , c

c , , c ˆ

, ,
ˆ

ˆ ˆ( | )ˆ ˆ ˆ[ | ]
ˆ ˆ ˆ[ | ] ( )

ˆ ˆ ˆ[ ] ˆ ˆ( )

s u

s l

s u

s l

y

s s
ys l s s u

s l s s u y

s l s s u
s s

y

p y dyP y y y
P y y y P

P y y y p y dy


 

 
   

 




 ............... (A.9) 
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where ,
ˆ ˆ SEPs l s sy y k   and ,

ˆ ˆ SEPs u s sy y k   1 1 2 2
ˆ ˆ ˆ( ) ( | ) ( ) ( | ) ( )s s sP y P y P P y P     ; 

1,2k   correspond to 68%  and 95%  confidence intervals respectively.   

The numerator in eqn. (A.9) corresponds to the area under the curve of category- c  

and the denominator to the total area under both curves.  A new sample is assigned to the 

category for which value of c , ,
ˆ ˆ ˆ[ | ]s l s s uP y y y    is higher. 

Because the approach shown in eqn. (A.9) is not built into the PLS-Toolbox 

(Eigenvector, 2013), code for related calculations was written. 

A.3 Interpretation of PLS-DA weights 

 

In summary, the PLS part in the PLS-DA model develops latent inputs 1 1

Tt  w x , 

2 2

Tt  w x , …, and coefficients 1 2, ,...q q  such that the output is  

 
1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

ˆ ...

... ...

...,

T T T T

T

y q t q t

q q q q

x x 

  

     



  

w x w x w w x

β x
    (A.10) 

where  

 1 2β w w q         (A.11) 

It is clear from eqn. (A.11) that an input variable  for 1,2,...ix i   will affect ŷ  

positively or negatively based on the sign of the corresponding i .  But eqn. (A.11) implies 

that 

1, 1 2, 2 r,...i i i i rw q w q w q            (A.12) 
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Now, if a PLS model with two latent input variables ( 2r  ) captures enough 

variance of the output ŷ , then a simple 2D plot can be used to visualize when i  is positive 

or negative by checking whether the vectors 1, 2,i iw w    and  1 2q q  form an acute angle 

or not (as shown in Figure 3-3). 

For the actual calculation of a PLS model there is a number of variants, such as the 

SIMPLS algorithm (de Jong, 1993). 
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Appendix B. 

B.1 Proof of eqn. (4.10) 

 

It is well known (e.g., through the Jury stability criterion) that the transformation 

1

1

s
z

s





 maps the right-half of the complex plane ( Re[ ] 0s  ) to the inside of the unit disk 

( 1)z  .  The translation 1s w   immediately yields that the transformation 
2

w
z

w





 

maps the area to the right of the vertical axis ( 1, )jx  of the complex plane (1 Re[ ] 0)w   

to the inside of the unit disk ( 1)z  . 

B.2 Proof of non-convexity of eqn. (4.12)  

 

For ˆD G G  belonging to an uncertainty set D , eqn. (4.12) can be alternatively 

written as  

   1ˆ ˆRe 0   
  

G D G . (B.1) 

For a 2 2  system it can be easily shown that   1ˆ ˆRe   
  

G D G  is a non-convex 

function of DD , as follows:  Given a model  

 
11 12

21 22

ˆ ˆ
ˆ

ˆ ˆ

g g

g g

 
 
 

G   (B.2) 

and process  

 
11 12 11 11 12 12

21 22 21 21 22 22

ˆ ˆ

ˆ ˆ

g g g d g d

g g g d g d

    
   

    
G ,  (B.3) 
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eqn. (B.1) is true for all DD  if and only if the following two inequalities are satisfied:  

  1 11 22 12 21 22 11 21 12
ˆˆ ˆ ˆ ˆ 2det( )ˆ ˆtr 0

ˆdet( )

d g d g d g d g
        
  

G
G D G

G
 (B.4)

  1 11 22 12 21 11 22 12 21 21 12 22 11
ˆˆ ˆ ˆ ˆ det( )ˆ ˆdet 0

ˆdet( )

d d d d d g d g d g d g
          
  

G
G D G

G
  (B.5) 

Eqn. (B.4) is linear in terms of the elements of the matrix D , but eqn. (B.5) contains 

the bilinear term 11 22 12 21d d d d , which is generally non-convex.  

The preceding analysis can be easily generalized for any higher-order system, as 

the Routh-Hurwitz theorem for eqn. (B.1) will contain terms that are bilinear or multilinear 

in the entries of DD , hence generally non-convex. 
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Appendix C 

 C.1 Controller design for motivating example in Introduction 

Given a transfer matrix model ˆ ( )f zG , where ( )f z  is a stable transfer function with 

stable inverse, the internal-model control (IMC) method can be used to design a feedback 

controller  
1

ˆ( ) ( ) ( ) ( )z z f z z


 C Q I G Q  by selecting 
1ˆ( ) ( ) ( )z z f zQ G F , which yields  

  
11ˆ( ) ( ) ( ) ( )z z z f z
 C G F I F   (C.1) 

For a diagonal IMC filter 
1

( )z
z









F I , the closed-loop sensitivity function 

becomes 

   
1

11 1 11ˆ ˆ ˆ( ) ( ) ( 1) ( 1) (1 )
1

f z z z z
z





   

        
 

I G C I GG G G G   (C.2) 

with closed-loop characteristic equation 
2

2 1 0a a z z   , where the parameters 1 2,a a  are 

  
2

2 0.0215 4.67 3.69a      , 1 4.71 2.71a    (C.3) 

for 1Ĝ , and 

  
2

2 0.0417 1.04a     , 1 0.833 2.08a    (C.4) 

for 2Ĝ .  

For the roots of the characteristic equation to be inside the unit disk, the Jury 

stability criterion requires 
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2

1 2

1 2

1 0

1 0

1 0

a

a a

a a

 













   (C.5) 

Figure C-1 indicates that these inequalities cannot be satisfied simultaneously for 

any value of   in the interval [0,1)  when 1Ĝ  is used in the controller structure of eqn. 

(C.1), but they can be easily satisfied for all   in the interval [0,1)  when 2Ĝ  is used in 

that controller structure. 

  

 

 

Figure C-1  Satisfaction of the inequalities in eqn. (C.5), required by the Jury stability 

criterion for closed-loop stability, when 1Ĝ  (left) and 2Ĝ  (right) is used 

in the feedback controller, eqn. (C.1). 

 

C.2 Adaptive design to build an IC-compliant model 

 

1. Develop a preliminary model Ĝ from input-output data using standard PRBS inputs 

for limited time.  

2. Calculate mC  by solving below optimization problem: 

0.2 0.4 0.6 0.8 1.0

6

4

2

2

0.2 0.4 0.6 0.8 1.0

4

3

2

1

a2 1

a1 a2 1

a1 a2 1
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 min
m

opt

m 
C

C   (C.6) 

 subject to variance constraints on individual outputs and inputs 

  

2

2

var( ) [ ]

ˆ ˆvar( ) [ ]

i m ii i

T

i m ii i

M

Y

 

 

m C

y GC G
. (C.7) 

3. Calculate 
opt

Q  by Cholesky decomposition of ( )opt opt opt T

m C Q Q  and design input 

optm Q z  where z  is a zero-mean PRBS with unit covariance. 

4. Add new input m  in the set of input signals; perform identification and update 

model Ĝ . 

5. Check for satisfaction of IC sufficient condition (eqn. (5.9)); stop if maximum 

number of iterations achieved, otherwise go to step-2 and repeat subsequent steps. 

C.3 Proof of Lemma 1 

 
The following Lemma 1 is proved first, to make it easier to follow the proof of the 

subsequent Theorem 2. 

Lemma 1 – Sufficient condition for IC of model identified as a single, partially 

known MIMO model 

For a model ˆ n nG  and a real plant 
n nG  with uncertainty ˆ D G G , the 

integral controllability condition (eqn. (5.4))is satisfied if 

  
2

1

1 ˆ vec 1ˆ
ˆ

n
T T

c k

k k

J


  Z D , (C.8) 

where 
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2

ˆ

ˆ ˆ

ˆ

T

k

T T n n

k n k

T

k



 
 

    
 
 

v 0

Z 0 0 I v

0 v

 , 1,...,k n  (C.9) 

ˆ
kv , 1,...,k n  are the right singular vectors of the SVD of  

  
1

ˆ ˆ ˆ
n T

k k kk



G u v   (C.10) 

and 

       1
ˆvec vec vec ˆ

T
T T T T T

n
     D G G d d  (C.11) 

Proof:  Eqn. (5.4) is equivalent to 

     ˆ ˆ ˆRe 0 1 Re 0        
    

-1 -1
G D G DG   (C.12) 

which is satisfied if 

  ˆ 1 -1
DG   (C.13) 

By the matrix spectral radius theorem we have 

  ˆ ˆ
i

 -1 -1
DG DG   (C.14) 

for any induced matrix norm 
i
.  Therefore, eqn. (C.14) is satisfied if 

 ˆ 1
i
-1

DG   (C.15) 

for some induced matrix norm 
i
. 

Using the singular-value decomposition 
1

ˆ ˆ ˆ ˆ
n

T

k k k

k




G u v , eqn. (C.15) is equivalent 

to 

 

1

1 1

ˆ ˆ
ˆ ˆ ˆ 1 1

ˆ

Tn n
T k k

k k k

k k k ii






 

 
   

 
 

Dv u
D u v   (C.16) 
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which is satisfied if  

 
1

1
ˆ ˆ 1

ˆ

n
T

k k i
k k

 Dv u   (C.17) 

for any induced matrix norm 
i
. 

 Using the vec  operator, the term ˆ
kDv  in the above inequality can be written as 

 

 

 

1 1

1

ˆ

vec

ˆ

ˆ ˆ

ˆ

ˆ

ˆ vec

ˆ

T
k

T

T T

k

k k

T T

n k n

T

k

T T

k

T

k

n

   
   

    
   
   

 
 
 
  
  

   
  

   
 
 
  

Z

D

d v d

Dv v

d v d

d

v 0

0 0 Z D

0 v

d

  (C.18) 

Therefore 

    
22 2 2

ˆ ˆˆ ˆ ˆ vec vecT T T T T

k k k k kii i
  Dv u Dv Z D Z D , (C.19) 

where 
2i
 is the induced 2-norm of a matrix. 

 Consequently, eqn. (C.19) implies that the inequality in eqn. (C.17) is satisfied if  

  
2

1

1 ˆ vec 1
ˆ

n
T T

k

k k

 Z D . (C.20) 

C.4 Proof of Theorem 2 

 
By the Cauchy-Schwarz inequality, we have that  
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2

1 1

.
n n

T T

k k k k

k k

n
 

 
 

 
 x x x x   (C.21) 

Applied to the left-hand side of eqn. (C.20) with  
1 ˆ vecˆ
ˆ

T T

k k

k
x Z D , eqn. (C.21) 

implies that the inequality in eqn. (C.20) is satisfied if 

 

   

   

   

2
1

2
1

1 ˆ ˆvec vec 1
ˆ

1 1ˆ ˆvec vec
ˆ

1
vec vec .

n
T

T T T

k k

k k

n
T

T T T

k k

k k

T
T T

n

n

n









 

 
  

 







Φ

D Z Z D

D Z Z D

D Φ D

  (C.22) 

The worst case of model uncertainty corresponds to the maximum in the left-hand 

side of the final inequality in eqn. (C.22), namely  

    max  vec vec

T

T
T T

D

xx

D Φ D   (C.23) 

with 

     2{ : vec vec }

T

T
T T r   B

xx

D D B D  (C.24) 

according to eqn. (5.26). 

Using the method of Lagrange multipliers (see below), the maximum of T
x Φx  in 

the above optimization problem of eqns. (C.23) and (C.24) can be easily shown (see below) 

to be equal to  1 2

max r 

BB Φ  and to be attained for maxx  being the eigenvector 

corresponding to the largest eigenvalue of the matrix 1
B Φ ,  1

max 
B Φ . 
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Finally, it is straightforward to show that  
1

2
1

1 ˆ ˆˆ ˆˆ
ˆ

n
T T

k k n

k k





  Φ Z Z I G G , 

because 

  
1

ˆ ˆ ˆˆ ˆ ˆT T T


G G VS U U 
1

2
1

1ˆ ˆ ˆ ˆ
ˆ

n
T T

k k

k k





SV v v   (C.25) 

and the mixed-product property of the Kronecker product, 

         A B C D AC BD , implies 

 

  

   

 

 

2 2
1 1

2
1

2
1

1

1 1ˆ ˆ ˆ ˆ
ˆ ˆ

1
ˆ ˆ

ˆ

1
ˆ ˆ

ˆ

ˆ ˆ .

n n
T T

k k n k n k

k kk k

n
T

n n k k

k k

n
T

n k k

k k

T

n

 





 







  

 

 

 

 





Z Z I v I v

I I v v

I v v

I G G

  (C.26) 

Lagrange multiplier method: 

First, max  T

D
x Φx  such that 

2T r
B

x Bx  is attained for  

 
2T r Bx Bx  (C.27) 

because, if the optimum were attained for 
opt opt 2( ) ( )T r Bx B x , then scaling up opt

x  

would trivially yield a larger value for T
x Φx . 

Then, the Lagrangian is 
2( )T TL r  

B
x Φx x Bx , which implies that at the 

optimum 

 
12( )

T

dL

d
     Φ B x 0 B Φx x

x
  (C.28) 

which, in turn, implies that ( , ) x  is an eigenvalue-eigenvector pair for the matrix 1
B Φ .   
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Now, at the optimum, the objective function will be 

 
1 2T T T r    Bx Φx x BB Φx x Bx   (C.29) 

which implies that   must be the largest of all eigenvalues of 1
B Φ ,  1

max 
B Φ , x  its 

corresponding eigenvector, and the maximum of T
x Φx  is  1 2

max max max

T r  Bx Φx B Φ . 

 

C.5 Proof of eqn. (5.45) 

 

It is straightforward to show that the eigenvalues of 1( ) 
B Φ  satisfy the equalities 

      
11

1 1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
T

T T T T T T   


    
 

    
 
 Q Q

B Φ M M G G PΛ P VΣ V V PΛ P VΣ , (C.30) 

the last equality owing to the similarity of the matrices 
1 2ˆ ˆ ˆT T 

PΛ P VΣ V  and 

1 2ˆ ˆ ˆT T  V PΛ P VΣ  
1 2ˆ ˆ ˆ ˆ ˆ( )T T T 

V PΛ P VΣ V V .   

Because 
1 2ˆT 

QΛ Q Σ  is positive definite, its largest eigenvalue 
1 2

max
ˆ( )T  

QΛ Q Σ  

is equal to its spectral radius 
1 2ˆ( )T  

QΛ Q Σ .  A standard upper bound for the spectral 

radius is the Frobenius norm of the corresponding matrix, which yields the following: 

 

   

 

 

1 2 1 2

max

1 2

2 1 1 2

2 4

ˆ ˆ

ˆ

ˆ ˆtr

ˆtr

T T

T

F

T T

T

    

 

   

 









QΛ Q Σ QΛ Q Σ

QΛ Q Σ

Σ QΛ Q QΛ Q Σ
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  (C.31) 
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C.6 Proof of Theorem 3 

 
By the properties of matrix trace it follows that 

  
4

2 4 4

4 4
1 1

ˆ
ˆ ˆtr tr

TTn n
j jT k k

k jk j 



  

 

 
  

 
 

q Σ qq q
QΛ Q Σ Σ   (C.32) 

Defining the Lagrangian as  
4

4
1 1 1

ˆTn n i
j j T

ik i k ik

j i kj

L  




  

   
q Σ q

q q  and setting its 

partial derivatives with respect to q  equal to zero yields  

 .
4

4
1

ˆ
2

T
n

k k i i

k i

L
 





 

 
    

 
 

Σ q
q q 0

q
.  (C.33) 

Premultiplying eqn. (C.33) by 
T

q  for 1, ,n  gives 

 

( )

4
( ) 2

,4
1

ˆ
0 0

n
T

kk k

k

b q






 
    

 


B

Σ
q I q , 1, ,n  (C.34) 

With singular values in Σ̂  distinct (eqn. (5.52)), the diagonal matrix 

4
( )

4

ˆ






 
Σ

B I  can only have one entry equal to zero, for a corresponding choice of 

.  Consequently, q  in eqn. (C.34) can only have one nonzero entry, corresponding to the 

diagonal zero entry of ( )
B ;  that is q  must be a unit vector  0, 0, ,0, 0

T

 e  with 

0  .  Substituting q  in eqn. (C.32) yields 
4 4

1

1

k

n

k k 

 , where index 

   1, 1,n n  Π .  By the rearrangement inequality, it can be trivially shown that the 
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minimum value of 
4 4

1

1

k

n

k k 

  is obtained when k  and k  are matched in reverse order.  

Therefore, 

  opt 1 opt

, orthonormal

ˆ ˆarg min tr
n n





   
  P

P A H VQ VΠ   (C.35) 

C.7 Proof of Theorem 4 

 

Substituting V̂  from eqn. (5.54) into eqn. (5.50) yields  

  
2

2 2 2

1

ˆ 1
k

k

n

k

k

b

w  


     (C.36) 

Using the Lagrange multiplier method, minimization of the objective function (eqn. 

(5.60)) subject to constraints as in eqn. (C.36) and ordering of 
k

  in eqn. (5.51) proceeds 

as follows: 

Define the Lagrangian as 
4 4

1 0

1

ˆ
k

n n

i i

k ik

L g
  

   , 

where 
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2
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2 2 2
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1

1

ˆ 1 0

0

0,  2

k

k

i i

n

k

k

b

i

g w

g

g i n
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

 




    

  

    



   (C.37)  

Applying the Karush-Kuhn-Tucker (KKT) conditions 

    2

0 14 5

4
2 0

ˆ k

k k

k k k

k

L
b   

  



     


, (C.38) 

   0, 0
ki ig i n     , and (C.39) 
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 0, 0i i n     (C.40) 

yields 

1
6

4 2

0

2

ˆk

k kb


 

 
  
 

, 0 0g  , and 0i  , for 1 i n  . 

Solving 

1
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4 2

0

2

ˆk
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 
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 with 0 0g  , yields the optimal solution 
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