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Abstract 

Many Natural Language Processing (NLP) applications operating on large data sets are 

written in programming languages that do not have bindings in the Message Passing 

Interface (MPI) specification. Yet, with increasing problem sizes, these applications also 

necessitate some form of parallel and distributed processing. The goal of this thesis is to 

evaluate the utilization of MPI with a non-traditional HPC programing language, Python, 

for NLP application scenarios. 

  

The current thesis is divided into two parts. The first part evaluates the performance and 

functionality of the mpi4py, a python module for MPI binding, using multiple point-to-

point benchmarks with native C-based MPI benchmarks using an InfiniBand and a Gigabit 

Ethernet network interconnect. The results show that in many instances communication 

performance of the Python benchmarks was on par with their C-based counterparts. 

 

In the second part of the thesis, a few application scenarios used in Natural Language 

Processing (NLP) such as word count, n-gram count, and tfidf were developed, and mpi4py 

module was used to distribute data on different nodes for these scenarios and to evaluate 

performance. The results demonstrate that the application of mpi4py module in NLP 

scenarios can greatly improve execution time. 
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Chapter 1  

Introduction 

Parallel computing is a computing method in which multiple processors are concurrently 

used to solve a problem. In traditional (serial) programming, a single processor executes 

program instructions in a step-by-step manner. Some operations, however, have multiple 

steps that do not have time dependencies and therefore can be separated into multiple tasks 

to be executed simultaneously. For example, adding a number to all the elements of a 

matrix does not require that the result obtained from summing one element be acquired 

before summing the next element. Elements in the matrix can be made available to several 

processors, and the sums performed simultaneously, with the results available faster than 

if all operations had been performed serially. 

 

Parallel computations can be performed on shared-memory systems with multiple central 

processing units (CPUs), distributed-memory clusters made up of smaller shared-memory 

systems, or single CPU systems. Coordinating the concurrent work of the multiple 

processors and synchronizing the results are handled by program calls to parallel libraries; 

these tasks usually require parallel programming expertise. 
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Parallel computers can be broadly classified into three types by the way they are connected 

through memory system or through network interconnect. They are as follows: 

• Shared memory systems: Memory can be accessed simultaneously by number of 

processes for communication. Fig. 1.1 shows a schematic of shared memory 

system. 

  
Figure 1.1 Shared memory system for three processors 

 

• Distributed memory systems: Memory system where each processor has its own 

private memory space. For communication, task must request and receive data from 

respective processors. A schematic of distributed memory stems shown in Fig. 1.2. 

 

  
Figure 1.2 Distributed memory system of three computers 
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• Hybrid systems: Memory architecture where shared memory systems are connected 

via network, Fig. 1.3. 

  
Figure 1.3 hybrid memory for quad-core processor-based computer system 

 

The uses of parallel computing are very wide ranging from home gaming system to national 

astronomical observatory for the purpose of collision risk assessment [1,2,3,4]. Other areas 

where parallel computing is currently used are: 

• Weather prediction 

• Oceanography and astrophysics 

• Artificial intelligence and automation 

• Seismic exploration 

• Genetic engineering 

• Weapons research and defense 

• Medical applications 

• Energy resource exploration 
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1.1. Big Data and NLP  

Big data is a term coined for solving problems that require analyzing very large amounts 

of un-structured data. In contrast, the High Performance Computing (HPC) deals with 

small size dataset, which are structured and mainly used for computational purposes. Big 

data stands for data of very large volume, velocity, variety (of different data types), veracity 

(trustworthiness of data), and value (meaningfulness) of data. Many technologies have 

been developed to store, query and manage large sets of data such as relational database, 

data warehouse, and parallel databases [14]. But, due to exponential growth of data, big 

data technologies are now using cluster computing instead of single node computing.  

 

Apache Hadoop [13] is an example of big data technology. It is an open-source software 

framework for storing data and running applications on clusters of commodity hardware. 

It provides massive storage for any kind of data, enormous processing power and the ability 

to handle virtually limitless concurrent tasks or jobs. 

 

Apache Spark [15] is a more generic model of cluster computing, it provides 

an interface for programming entire clusters with implicit data parallelism and fault-

tolerance. It is capable of streaming, batch and interactive workloads. 
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Natural Language Processing 

Natural Language Processing (NLP) is the field of science which deals with interactions 

between human language and computers. It is based on study of mathematical and 

computational modeling of various aspects of language and the development of a wide 

range of systems. These include spoken language systems that integrate speech and natural 

language; cooperative interfaces to databases and knowledge bases that model aspects of 

human-human interaction; multilingual interfaces; machine translation; and message 

understanding systems [16]. It includes areas such as artificial intelligence, computer 

science, and computational linguistics. This field covers computer understanding and 

manipulation of human language. It provides ways for computers to analyze, understand, 

and derive meaning from human language. It deals with following programming 

functionalities that can process large natural language corpora [17]: 

• Understanding natural language to decipher its meaning, 

• Generating natural language to present textual, audio or video, 

• Provides connecting link between language and machine perception, and  

• Facilitate dialog between human and machine. 

 

Information retrieval (IR) is required to implement any of above mentioned features. IR 

deals with the process of automated searching of information from provided resources. IR 

represent document with following models: 

• Set-theoretic models represent documents as sets of words or phrases. Similarities 

are usually derived from set-theoretic operations on those sets.  
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• Algebraic models represent documents and queries usually as vectors, matrices, or 

tuples. The similarity of the query vector and document vector is represented as a 

scalar value. 

• Probabilistic models treat the process of document retrieval as a probabilistic 

inference. Similarities are computed as probabilities that a document is relevant for 

a given query.  

• Feature-based retrieval models view documents as vectors of values of feature 

functions (or just features) and seek the best way to combine these features into a 

single relevance score, typically by learning to rank methods.  

 

The current thesis will use algebraic model (Vector Space model) and feature based 

retrieval models.  

1.2. Programming Models 

A programming model is an abstraction of the underlying computer system that allows for 

the expression of both algorithms and data structures [5]. They allow programmers to 

develop codes which are faster, efficient and portable. In High Performance Computing 

(HPC), users focus on writing computation intensive programs for parallel processing, and 

in big data programming users focus on writing data-driven parallel programs that can be 

executed in parallel and distributed environments. The programming models used in HPC 

and big data are briefly described below. 
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1.2.1  High Performance computing (HPC)  

Message Passing Interface (MPI) is the standard communication protocol for parallel 

programming. It is used for communication by passing messages to different process in 

distributed system. It provides a specification for how its features must behave in any 

implementation [7].  

 

MPI includes both point-to-point and collective operations. In point to point operations, 

communication refers to transmittance of a message or data between a pair of processes. 

Whereas, collective communication refers to communication with participation of all the 

processes within the communicator. It involves group of processes to send and receive 

message.  

 
Figure 1.4 Schematic of MPI communication in a cluster of four nodes 
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Open Multiprocessing (OpenMP) is a directive based multi-processing programming 

model which works on fork and join execution model of multi-threading. It targets shared 

memory architecture, where all processors share main memory. It launches a single process 

which in turn can create n number of thread as directed by user [9].  

 
Figure 1.5 Schematic of Fork Join Model of OpenMP 

 

Compute Unified Device Architecture (CUDA) is a parallel programming architecture 

majorly used in Graphics Processing Units (GPU). It was created by Nvidia. In CUDA, 

parallel part of program is executed on GPUs [11]. It supports programming languages 

such as C, C++ and Fortran. OpenACC [18] and OpenCL [19] are frameworks used for 

heterogeneous programming using CPUs and GPUs. It enables general purpose computing 

on graphical processing units which is termed as General Purpose Graphical Processing 

Unit (GPGPU). 

 
Figure 1.6 Schematic of Computer Unified Device Architecture (CUDA) 
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Other programming models include partitioned global address space (PGAS) as Co-Array 

Fortran (CAF), Unified Parallel C, and the DARPA-initiated, vendor-based, languages 

Chapel, Fortress and X10 [5]. 

 

1.2.2  Big Data Technology 

MapReduce [6] is a framework to write parallel application for big data application. It can 

be termed as de-facto paradigm for writing applications that can be solved with map and 

reduce functions. It uses divide and conquer approach to divide data, perform operation 

with map function and then reduce it to get result. 

 

Hadoop is one of the famous examples of this paradigm. It is written in Java, and therefore 

its map and reduce functions are provided with Mapper and Reducer interfaces. The input 

to Mapper is key-value pair, map function performs logic on each key-value pair. Reducer 

perform logic on set of values for each key. 

 

Functional Programming is a declarative style of programming. It describes the logic of 

computation in form of expressions and therefore avoids any side effect. It is becoming 

popular choice for next generation big data processing technology. Spark and Flink are few 

popular examples of functional programming.  

 

Spark [20] framework provides data centric programming interface on its resilient 

distributed dataset (RDD) structure. Tasks can be represented in parallel as RDD 
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transformations. The programs are dependency flows which will be executed in parallel on 

distributed environment. 

 

Flink [21] is an open source framework for distributed and high performing data streaming 

applications. It provides bounded and unbounded data sets. Bounded datasets are finite and 

unchanging, while unbounded data sets are infinite datasets that are appended to 

continuously. It provides both streaming and batch processing execution model. It provides 

real time (record level) streaming as compare to micro batch streaming in spark. 

 

Structured query language is the most famous database query language, based on 

relational algebra. It consists of data definition, manipulation and control features. It 

supports primitives such as create, insert, update and delete for modifying data in tables.   

 

• Hive [22] is a SQL-like query interface built on Hadoop environment. It takes SQL 

like statement for querying and internally convert it into MapReduce jobs 

connected as a Directed Acyclic graph.  

 

• Cassandra [23] is a distributed NoSQL database, which supports SQL like 

statements to query data from cluster of computers. Key features of Cassandra are 

decentralized, scalability, replication factor, fault tolerant, tunable consistency and 

map reduce support.  It uses KEYSPACE and COLUMNFAMILY compared to 

DATABASE and TABLE in SQL. 
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• Apache SQL [24] is a Spark module for querying structured data. It is built on the 

DataFrame model and consider input data sets as table like structure. It provides 

SQL like statement to query data from data frames.  

 

Actor Model [25] is a programming model for concurrent computation. The primitive unit 

of computation in this model is actor. Actors have states and they communicate with 

messages and perform action or computation based on that message. Actors are completely 

isolated and never share memory. They have private state and address where they send and 

receive messages. Actor model is a reactive programming model, where programmers 

write code for reacting logic in response to events and state changes [12]. 

 

• Akka [26] is actor-based toolkit and runtime for concurrent and distributed 

applications on Java virtual machine. It is written in Scala. Concurrency is message 

based, asynchronous and no mutable data is shared. Apache Spark is built on Akka.  

 

• Storm [27] is open source distributed real time computation system. It supports 

real time processing of unbounded streams of data. Based on Actor based model, it 

provides two types of processing actors. 

(i) Spouts: It is data source of stream and is continuously collecting or generating 

data for processing. 

(ii) Bolts: It is processing entity which contains processing logic such as 

transformation, redirection, aggregation, partitioning etc. 
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1.3. Challenges 

1.3.1. Motivation for using Python MPI 

Python is a high-level programming language which contains built-in libraries, for example 

natural language processing toolkit (NLTK), scikit-learn, numpy, pandas, matplot and 

pybrain suitable for programming language used in data science applications. It is primarily 

used in data analytical application. Goal of this thesis was to evaluate possibility of getting 

high performance from NLP based applications. Therefore, the primary choice of language 

was the one which is best for NLP application, and which provides binding for MPI. 

 

For MPI library in python, there are many options such as - pypar [15], MYMPI [10], MPI 

Python [1], and mpi4py [5, 6]. In the current thesis it was decided to investigate the mpi4py 

library, since it is the most complete, widely used, and actively developed library among 

the available solutions.  

 

1.3.2 Benefits of using big data applications in HPC setting 

With rise in real time analytics for operational, tactical and strategic decisions, there is a 

high demand for obtaining the best possible performance from such applications. For real 

time decision making, once the data is arrived, the performance of application is most often 

the limiting factor. In industries like finance and trading data-based decisions must be made 

quickly, in real time, therefore performance of the applications is very critical. 

In this thesis, it is aimed to get high performance for such application.  
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1.4. Goal of the Thesis 

For the last few years big data and high-performance computing (HPC) communities have 

been working on similar problems and have developed solutions based on fundamentally 

different technologies. The dominant programing models in big data are based on the Map 

Reduce paradigm, although more generic models such as the one offered by Apache Spark 

are becoming popular. Many of the applications developed for big data environments are 

based on Java, Scala and Python programming languages, whereas software in the HPC 

are primarily developed in programming languages such as MPI, Open MP, or CUDA. C, 

C++ and FORTRAN. 

  

It has been said [13] that most data science applications would benefit from utilizing an 

HPC programming model and environment from the performance perspective over the big 

data approaches such as Hadoop MapReduce or Apache Spark. Yet, it is often unrealistic 

to expect application groups to convert their codes to an HPC environment for practical 

reasons. For example, applications in the domain of natural language processing (NLP) are 

often written in Python, and benefit from having a wide range of well tested tools and 

libraries that they are built on. Rewriting an application code in this domain using C/C++ 

would not just mandate converting the code written by the application group from Python 

to C/C++, but also replacing all the libraries used by the original code. 
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The goal of the current thesis are two folds: (i) evaluate the MPI with a non-traditional 

HPC programming language (mpi4py for Python) in terms of their latency and bandwidth 

usages as compared to their C counterpart, and (ii) evaluate mpi4py in natural language 

processing scenarios from performance and functionality perspectives. 

 

The organization of the remainder of the thesis is following: Chapter 2 will provide a brief 

background on Python, MPI, mpi4py, NLTK and other python libraries relevant to current 

work. Chapter 3 will discuss the results related to the first goal of the thesis, i.e., evaluation 

of the mpi4py- MPI for python in terms of their latency and bandwidth usages as compared 

to their C-counterpart. Chapter 4 will present the results related to the second goal of the 

thesis, i.e. evaluation of mpi4py for natural languages processing scenarios such as word 

count, n-gram, term frequency inverse document frequency (tfidf), and lastly Chapter 5 

will summarize the thesis and outline the scope for future work. 
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Chapter 2  

Background 

2.1. Python  

Python is a high level, general purpose programming language originally designed by 

Guido van Rossum in 1985−1990. It is the language of choice for data analysis, backend 

web development, applications related to artificial intelligence, scientific computing, and 

to some extent for productive tools, game and desktop app development. It is a highly 

readable programming language and supports English words as keywords. 

 

Python is widely popular among the data science community, because it contains rich and 

powerful scientific tools and libraries, such as – numpy, scikit-learn, pandas, matplotlib 

and pybrain. Other key features of Python making it useful in general-purpose computing 

are: 

• Interpreted Language: It is processed at runtime by Python interpreter and thus 

provides rapid prototyping. 

• Dynamic type: It can infer the type of data without explicit declaration and thus 

offers a concise source code, better reuse of module and metaprogramming which 

ultimately provides the capability to execute many programming behaviors at 

runtime.  
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• Automatic memory management: It implements automatic garbage collection. 

Python’s memory manager periodically looks for any objects that are no longer 

referenced by the program and clears memory. 

• Object Oriented: It encapsulates code and data within objects and therefore 

provides easy reusability of code. 

• Supports imperative, functional and procedural styles of programming. 

Python program may contain statements, expressions and/or functional call. 

• Interactive Mode: It provides interactive prompt where code snippets can be tested 

and debugged. 

• Portable: It can run on wide variety of hardware platforms.  

• Extendable: low - level modules can be added easily to Python interpreter. 

• Scalable: It provides better structure and support for large programs.  

• Databases: Python provides interfaces to all major commercial databases. 

2.2. Message Passing Interface (MPI) 

Message Passing Interface (MPI) is a standard and portable communication protocol. It 

provides message-passing specification for communication among processes within 

a parallel program running on a distributed memory system. The MPI bodes following 

advantages: 

• High performance: MPI supports low-latency, high bandwidth interconnects like 

Ethernet [28], Intel’s Omni-Path [29], Mellanox’s InfiniBand [30] and works on all 
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different types of CPU architectures. MPI systems can provide performance up to 

or above a teraflop or 1012 floating point operations per second.  

• Scalability: It refers to system’s capacity to grow or extend to deal with increasing 

work load. 

• Portability: MPI programs works on all different types of CPU architectures and 

network interconnects (Ethernet, Omni-Path and InfiniBand) without requiring any 

changes to code.  

• MPI supports both Point-to-Point and collective communications.  

• Point-to-Point communication refers to transmittance of a message or data 

between a pair of processes. One process send data with MPI_SEND and other 

process receives data with MPI_RECV. Both processes are aware of source and 

destination, unique tag associated, type and amount of data within message. Figure 

2.1 is a typical example of point-to-point communication 

 

 
Figure 2.1 Point to point communication 
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Collective communication refers to communication with participation of all the processes 

within the communicator. It involves group of processes to send and receive message. 

Collective communication provides various benefits in parallel communication [31]. 

1) Offer a higher-level of abstraction for often occurring communication patterns, 

2) Separate desired data movement from actual implementation, 

3) Allow numerous optimizations internally, 

4) Simplify code maintenance and readability, 

5) Reduce communication costs compared to (trivial) linear algorithms, 

6) Essential for scalability of applications at large process counts. 

 

MPI functions used for collective communication are listed below. 

a) MPI_BCAST (Broadcast from one process to all processes within a group) 

 
Figure 2.2 Broadcast operation send data to all processes 

 

b) MPI_GATHER (Gather data from all processes within group to one process) 

c) MPI_SCATTER (Scatter data from one process to all processes within a group) 
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Figure 2.3 Scatter operation divides data to all participating processes and gather operation 

collects data for all participating processes 

 

d) MPI_ALLGATHER (Similar to gather where all processes receive the result) 

 
Figure 2.4 Allgather operation collects data from all processes and broadcast complete set 

of data to all participating processes 

 

 

e) MPI_ALLTOALL (scatter or gather data from all processes to all process of a 

group) 

 
Figure 2.5 Alltoall operation divides data from all processes and then broadcast complete 

set of data to all processes 
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MPI is used in Supercomputing or high-performance computing. Super computers can give 

performance up to 180 petaflops (1015 floating point operation per second), for example 

Google Deep Learning Cloud [32]. MPI bindings were originally written for C, C++ and 

Fortran. Although, currently many others languages are providing bindings for MPI such 

as Python, R, .NET, Java and MATLAB.  

 

MPI for Input/Output operations on File 

MPI also provides specification for multiple processes to read and write simultaneously to 

common file referred to as MPI IO. It is similar to POSIX IO, calls to the MPI functions 

for reading or writing must be preceded by a call to MPI function to create/open file with 

MPI_File_open() and must end with closing a file with MPI_File_close. It provides a file 

pointer (to locate offset) which can be independent for a process or can be shared among 

the processes. In MPI IO, all participating processes can participate in reading or writing a 

portion of a common file. Three common ways to position pointer for multiple processes 

to simultaneously read/write to file are: 

a) Use of individual file pointers using MPI functions- MPI_File_seek(), 

MPI_File_read() 

b) Calculation of byte offset and read at location with MPI_File_read_at() 

c) Using shared file pointer with MPI_File_seek_shared(), and 

MPI_File_read_shared() 
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2.2.1. MPI in Python 

There are multiple libraries supporting MPI from within a Python code, including pypar 

[36], MYMPI [37], MPI Python [38], and mpi4py [39, 40]. We decided to investigate in 

this paper the mpi4py library, since it is the most complete, widely used and actively 

developed library among the available solutions. 

 

2.2.1. a MPI4PY 

It is Python package which provides bindings for Message Passing Interface (MPI). It is 

standard for message passing that allows Python program to exploit multiple processors on 

distributed environment. It provides object-oriented interface that resembles the C++ 

bindings for MPI-2. It provides functionalities for point-to-point and collective 

communications of any pickable object and optimized communications for objects that 

have single-segment buffer interface such as NumPy arrays, bytes/string/array objects. 

2.3. Natural Language Processing (NLP) 

NLP is the field of science which deals with interactions between human language and 

computers. It includes areas such as artificial intelligence, computer science, and 

computational linguistics. This field covers computer understanding and manipulation of 

human language. It provides ways for computers to analyze, understand, and derive 

meaning from human language. 
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Need for NLP 

There is a huge amount of data available on web. The size of the World Wide Web for 

indexed web pages is approximated as 4.59 billion pages as of Monday, 02 October, 2017 

[33]. NLP is required for applications for processing large amount of text. Few notable 

examples of NLP are:  

• Text classification 

• Indexing and searching 

• Automatic translation 

• Speech recognition 

• Information retrieval 

• Automatic summarization 

• Question answer bots 

• Text generation 

• Knowledge acquisition 

 

2.3.1. Natural Language Toolkit (NLTK) 

Natural Language toolkit (NLTK) is a set of programs and libraries that provides 

functionalities such as tokenization, stemming, classification, speech tagging, text parsing, 

and semantic reasoning for English. It is written in Python programming language and was 

developed by Steven Bird and Edward Loper at the University of Pennsylvania [34]. 

 



23 

 

It is a very powerful tool to build applications that need human language data. It provides 

over 50 corpora and lexical resources, toy grammars, trained models. NLTK data can be 

downloaded from Python shell with download method:  

 

2.4. NUMPY 

NUMPY is a Python library for scientific computing, which supports computation for large 

and multidimensional arrays and matrices and provides large set of high-level 

mathematical function as built-in functionalities to be operated on arrays and matrices.  

Numpy provides following functionalities: 

• N-dimensional array objects 

• Scientific built-in functions  

• Tools for integrating Python code with C/C++ and Fortran code 

• Mathematical built-in functionalities for linear algebra, Fourier transform, and 

random numbers. 
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2.5. SCIKIT-LEARN 

It is Python library for data analysis, data mining, machine learning. The scikit-learn 

project started by David Cournapeau. It is largely written in Python, with some core 

algorithms written in Cython to achieve performance [35]. It supports functionalities such 

as: 

Classification: Categorizing the object on basis of its type. 

a) Regression: Used for predicting or forecasting. 

b) Clustering: Used to group similar objects into groups. 

c) Dimensionality reduction: Used to reduce number of random variables from set. 

d) Model Selection: Used to compare, validate and choose parameters and models. 
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Chapter 3  

Microbenchmark 

3.1. Goals of Benchmarks 

Benchmarks such as ping-pong, transferring python objects, overlapping communication 

and computation, and application scenarios like word count were developed to evaluate the 

performance of Python MPI against C-MPI. The performance of parallel application is a 

combination of time spent in computation and communication. Both, performance of 

Python mpi4py with respect to computation [41, 42] and communication [41, 43, 44, 45] 

have been analyzed in open literature. Yet, there are many open questions with respect to 

the performance of mpi4py, because previous studies have either not used high speed 

network interconnects such as InfiniBand or have not covered programming aspects such 

as overlapping computation and communication which is important in parallel 

programming applications. 

 

In this chapter, the performance of mpi4py is evaluated on both Gigabit Ethernet (GE) and 

InfiniBand network interconnect. Also, a benchmark is exclusively developed and studied 

to evaluate performance in case of overlapping computation and communication.  
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3.2. Terminology 

Benchmark is a small program run in order to access the relative performance of object, 

library or test suits. 

 

Latency: It is amount of time a message takes to reach from one designated location to its 

destination location. 

 

Bandwidth: It is the amount of data that is transferred in a fixed amount of time.  

 

Description of platform used in the study: All benchmarks in this thesis have been 

executed on Crill Cluster at University of Houston. It consists of 16 nodes with four 12 

core AMD Opteron processors cores each (48 cores per node, 768 cores total) with 64 GB 

of main memory per node. The cluster is connected to a DDR and a QDR InfiniBand  

interconnect as well as Gigabit Ethernet switch. 

  

These benchmarks were executed with mpi4py 2.0.0 on top of Open MPI [3.6] version 

2.0.1. All measurements for each benchmark are executed three times and the average 

value per message length is being presented subsequently. 
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3.2.1 Ping-Pong Benchmark  

Moving data between processes is one of the major bottlenecks in parallel computing. The 

Ping-Pong benchmark measures the latency and bandwidth of communication operation. 

This benchmark was used to compare performance of mpi4py against the performance 

obtained with similar ping-pong benchmark written in C-MPI [47]. Both C and Python 

benchmarks were run on same platform using the same MPI library for the actual 

communication. The difference obtained between these two benchmarks was used to 

quantify the penalty introduced by the mpi4py layer. The data transferred in python version 

of benchmark is allocated as numpy array [48], which allows the data to be transferred 

without requiring serialization (often referred to as pickling).  

 

a) Comparison of mpi4py and C-MPI on InfiniBand 

InfiniBand is an industry-standard specification that defines an input/output architecture 

used to interconnect servers, communications infrastructure equipment, storage and 

embedded systems. It is most common network interconnect for high performance 

computing or supercomputing areas [49]. 

 

Figures 3.1 and 3.2 show the throughput and execution time comparisons of mpi4Py and 

C- MPI on InfiniBand network interconnect, respectively. As is noted in the figures, the 

throughput and the execution time of ping-pong benchmark on InfiniBand network showed 

very little or no overhead caused by the mpi4py. 



28 

 

 
Figure 3.1 Comparison of throughput on InfiniBand network interconnect for mpi4py and 

open MPI 

 

       
Figure 3.2 Comparison of execution time on InfiniBand network interconnect for mpi4py 

and open MPI 
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b) Comparison of mpi4py and Open MPI on Ethernet Network 

Figures 3.3 and 3.4 compare the throughput of mpi4Py with Open MPI on Gigabit Ethernet 

network.  It is observed that there is virtually no overhead when using mpi4py compared 

to C version of same benchmark on Ethernet network as well for numpy arrays. 

 
Figure 3.3 Comparison of throughput on Ethernet network interconnect for mpi4py and 

open MPI 

 

 

 
Figure 3.4 Comparison of execution time on Ethernet network interconnect for mpi4py and 

open MPI 
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3.2.2. Transferring Python Objects 

The Python MPI, mpi4py has the ability to transfer raw data buffers. It also offers interfaces 

that allows transfer of Python’s objects from one process to another. These interfaces, 

however, require serializing the objects before sending and de-serializing after receiving 

the corresponding number of bytes, and thus it is expected to have an overhead compared 

to direct buffer data transfer. To quantify this serializing and de-serializing overhead, ping-

pong benchmark was developed to transfer data as Python list with a given number of 

elements. 

 

Figures 3.5 and 3.6 present the time taken in transferring (execution time) the 

corresponding number of bytes of the Python list using the InfiniBand and the Gigabit 

Ethernet (GE) networks, respectively. In both figures, the number of bytes sent or received 

are shown, instead of the length of the list, in order to make the direct correlation to the 

benchmark numbers obtained with ping-pong version with numpy arrays. The maximum 

message size shown is approximately 4.7MB, which was the size in bytes of the Python 

list with 524,288 elements.  
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Figure 3.5 Execution time vs message length for mpi4py list and numpy arrays on 

InfiniBand 

 

 
Figure 3.6 Execution time vs message length for mpi4py list and numpy arrays on GE 
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As expected (Figs. 3.5 and 3.6), serializing and de-serializing the Python list increases the 

time it takes to transfer the corresponding number of bytes significantly. Using the 

InfiniBand network, the execution time of the data transfer operation increases by more 

than a factor of 30 to nearly 100 milli second (ms). Over Gigabit Ethernet, the increase in 

the costs of the data transfer operation is somewhat less pronounced. In fact, it is noted that 

the execution time obtained when transferring Python objects over InfiniBand and Gigabit 

Ethernet are nearly identical, because the actual data transfer operation is only responsible 

for a small fraction of the overall costs. 

 

3.2.3. Overlapping Communication and Computation in Benchmark 

This benchmark was written to evaluate the ability of overlapping data transfer operations 

with compute operations. This is commonly used to hide the cost of data transfer 

operations, which could be essential to achieve speedup in applications having high 

communication costs, as seen for the data transfer operation of Python list in previous 

benchmark in section 3.2.2 (Figs. 3.5 and 3.6). In this, the benchmark is executing a 

compute function after posting the non-blocking Isend and Irecv operations. The compute 

operation is configured to take the equal amount of time as the data transfer itself. The 

costs of the data transfer are measured in advance before the overlap test. Thus, we expect 

to observe an overall execution time equal or larger than the time required to perform the 

data transfer only with the upper bound being sum of the time spent in the compute 

operation and communication combined. 

 



33 

 

Figures 3.7 and 3.8 show the execution time of a non-blocking Ping-Pong benchmark of 

mpi4Py and native open MPI over InfiniBand (Fig 3.7) and Gigabit Ethernet (Fig 3.8). In 

Figs 3.7 and 3.8, two values are represented - the first value represents the sum of the 

communication costs and computation costs, while the second value represents the actual 

measured time of the overlap benchmark. The difference between those two values is the 

time the application was able to save by overlapping communication and computation.  

 

 
Figure 3.7 mpi vs native Open MPI on InfiniBand 
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Figure 3.8 mpi vs native Open MPI on Gigabit Ethernet (GE) 

 

The results in Figs. 3.7 and 3.8 indicate very similar behavior between C and Python 

version of the benchmark, namely some benefits from overlapping communication and 

computation but less than what could be expected in an ideal scenario. The limited benefits 

are due to the fact that the benchmark used did not incorporate calls to the MPI library 

during the compute sequence. Thus, the MPI library was not able to ‘progress’ pending 

communication operations continuously. However, evaluating the results from the C vs. 

Python perspective, there was no quantifiable degradation in the performance of the Python 

benchmark compared to C counterpart. 
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Chapter 4  

Application Scenarios for 

Natural Language Processing 

Natural Language Processing is an area of research and application that explores how 

computers can be used to understand and manipulate natural language text or speech to do 

useful things [50]. As a more general definition, we can say it refers to computer systems 

that can understand, process, and generate human language. The input to the systems might 

be text, spoken language, or keyboard input [51]. 

 

4.1. Common Applications of NLP 

In the following subsection, a few typical application use-cases from NLP are being 

presented. 

 

Machine translation: It is area under computational linguistics that deals with use of 

software for translating human language (in form of text or speech) from one language to 

another language. A few examples are: Pairaphrase, which is a web-based application for 

human language translation offered by Pairaphrase LLC, Easy translator, which is a web 

service for language translation offered by Xerox Corporation, and Watson language 
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translator, which provides cross platform applications for language translation offered by 

IBM company. Two models developed by IBM are research rule-based and statistical 

models. The rule-based engine is available as an on-site product, WebSphere translation 

server. The Bluemix or IBM Watson translation is available as an API for developers [52, 

53, 54]. 

 

Fighting spam: Spam filter is generally a part of computer software or service that will 

filter coming messages/emails from irrelevant or inappropriate messages. Spam is 

generally referred to a term where a sender floods the internet with irrelevant messages 

with many copies of the same messages. The spam is usually an attempt to force the 

message on people who would not otherwise choose to receive it [55]. 

 

Information extraction (IE): As the name suggest, it refers to extracting meaningful 

information from un-structured or semi-structured machine-readable data. It mostly deals 

with processing large volumes of human language like text or speech. Due to increasing 

amount of unstructured information such as twitter posts, blogs, video cameras, audio 

recorders, and web documents, retrieval of meaningful information is becoming very 

significant. IE is driving force for crucial decision-making processes in many companies 

and government organizations. 

 

 

 



37 

 

Summarization: Summarization refers to the sum up of the main points from available 

data. In technical terms it can be referred as finding a compact description of a dataset [56]. 

A true summary succinctly expresses the gist of a document, revealing the essence of its 

content [57]. Text summarizer applications are intended to automatically construct 

summaries of a machine-readable datasets. 

 

Question answering (QA): Question answering is a computer science discipline within 

the fields of information retrieval and natural language processing that is concerned with 

building systems that automatically answer questions posed by humans in a natural 

language [4.9]. Some examples are START (http://start.csail.mit.edu/index.php, by Boris 

Katz and his associates of the InfoLab Group at the MIT Computer Science and Artificial 

Intelligence Laboratory) and IBM Watson QA system. 

4.2. Application Scenarios for Common NLP 

Applications 

Application scenarios are the common sequence of events/actions/steps (as a part of 

application) that will be executed in order to process complete application. The first section 

(section 4.1) of the current chapter has already discussed the common applications of NLP. 

In the following (section 4.2.3), the common scenarios that may be used in any or all 

applications will be discussed.  
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4.2.1 Motivation for using parallel/distributed computing for NLP application 

scenarios 

In today’s internet era, there are overwhelming and ever-increasing amount of textual 

information that must be processed in a reasonable time frame. This scenario has led to a 

paradigm shift in the computing architectures and large-scale data processing strategies 

used in the Natural Language Processing field [59]. Many strategies have recently been 

proposed to process large amount of textual data with super-fast computing powers like 

NLP library with Apache Spark [60], for example Apache NLP package in R, and NLP 

toolkit in Python. 

 

4.2.2 Common application scenarios with parallel and distributed computing 

This section presents the execution time of four NLP scenarios (word-count, bigram, 

trigram, and tf-idf) under the high-performance computing (HPC) environment. For 

calculation of the execution time, a small and a large dataset was created from source www. 

gutenberg.org, and saved in pvfs2 file system. The small dataset consisted of 6 books with 

total of 145 KB data, and the large dataset consisted of 216 books with about 18 MB of 

total data. Each application scenario was executed 3 times and the average the three was 

used for plotting the results. 
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Terms used for performance metrics evaluation were: 

Parallel Speed-up: Speed-up (S) is the ratio of execution time with one process (T1) over 

execution time with ‘P’ processes (TP). It is used to calculate how much faster does a 

problem run on ‘P’ processors compared to 1 processor. 

𝑆(𝑃) =  
𝑇(1)

𝑇(𝑃)
 

Where 

S(P) is the speed-up for P processes 

T(1) is execution time for one process 

T(P) is execution time for ‘P’ processes 

 

Parallel Efficiency:  Efficiency is defined as speedup normalized by number of processors. 

It gives an indication of the effectiveness of the parallelization strategy used. Applications 

achieving a speedup value close to the number of processors used will have a parallel 

efficiency close to 1, while applications with the speed up value significantly lower than 

the number of processors used will have an efficiency close to zero. 

𝐸(𝑃) =  
𝑆(𝑃)

𝑃
 

Where  

E(P) is parallel efficiency for ‘P’ number of processes 

S(P) is the speed-up for ‘P’ number of processes 

P is the number of processes 
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4.2.2.1 Word Count 

Word count, also known as term frequency, is used in almost every natural language 

processing or data mining applications. Word count is used to determine the number of 

occurrences of the term in document. This is often used to determine the importance (or 

weight) of that term, assuming that frequently occurring words are of greater significance 

for the document than less frequently occurring once. Note, that there are multiple ways of 

determining the weight of a term. We present with TF-IDF another approach later in this 

section. 

Steps involved in creating word count scenario for HPC environment were: 

1. The word count program was developed to read a number of books assigned to each 

process based on its rank. For dividing books among each process two variables 

start_index and end_index were created and assigned values as per the rule: 

start_index = int(rank * length / size) 

end_index   = int((rank+1) * length / size) 

 

where,  

rank = rank of process 

length = total number of books (documents) 

size = total number of processes assigned. 

2. Each process tokenizes the words using Python’s NLTK package and stored its list 

of tokens. 

3. Each process then counts the occurrence of each token within its local list using 

Counter class from collections library. 
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4. Counter object was shared globally among all processes with “Allreduce” operation 

in mpi4py library. The Allreduce operation is a collective operation where all 

participating processes are used to determine a global value. In the word count 

scenario described here, the operation is used to determine the number of 

occurrences of a term across all processes, by adding up the number of occurrences 

of that term on each process. 

<snapshot below> 

counterSumOp = MPI.Op.Create(addCounter, commute=True) 

global_counter = comm.allreduce(word_count, op=counterSumOp) 

 

5. The global Counter object contains the word and count as dictionary for all the 

documents. 

6. This global Counter object was then divided among processes based on its rank 

(based on below formula) to write to a shared file.  

s_index = int(rank * counter_length / size) 

e_index = int((rank+1) * counter_length / size) 

seq = total_counter.items()[s_index:e_index] 

 

7. Each process writes to shared file using “write_ordered” operation of mpi4py 

library. The “write_ordered” is the collective operation where all processes write 

to same file using shared file pointer. Shared file pointer specifies the location for 

writing data based on the rank and buffer size of each process participating in the 

communicator group. 
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<Code Snippet> 

length = file_len(inputfile) 

start_index = int(rank * length / size) 

end_index   = int((rank+1) * length / size) 

tokens = get_tokens() 

word_count = Counter(tokens) 

counterSumOp = MPI.Op.Create(addCounter, commute=True) 

total_counter=comm.allreduce(word_count, op=counterSumOp) 

counter_length = len(total_counter.items()) 

s_index = int(rank * counter_length / size) 

e_index = int((rank+1) * counter_length / size) 

seq = total_counter.items()[s_index:e_index] 

fh.Write_ordered("%s\n" % seq) 

 

Figures 4.1 and 4.2 compare the average (for 3 runs) execution time of the word-count 

program for the small and the large data set, respectively. Figures 4.3 and 4.4 present the 

parallel speedup and efficiency of the word-count program for the large dataset. It is 

evident that the execution time improved (i.e. decreased) greatly with the increased number 

of processes, especially for the first 6 to 8 processes after which the increment in the 

processes resulted in little or no improvement in the execution time. 
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Figure 4.1 Average execution time of word count program for small data set 

 

 

 
Figure 4.2 Average execution time of word-count program for large data set 
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Figure 4.3 Parallel speedup of word-count scenario for large dataset 

 

 
Figure 4.4 Parallel efficiency of word-count scenario for large dataset 
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4.2.2.2 N-Gram 

It is sequence of n co-occurring or continuous words in a document. N-grams are most 

commonly used in developing language models. Companies are developing web scale n-

gram models that can be used in a variety of tasks such as spelling correction, word 

breaking and text summarization [61]. Text Summarization can also be achieved by N-

gram models [62]. n-grams is also used for developing features for supervised Machine 

Learning models such as SVMs, MaxEnt models, Naive Bayes. 

 

Bigram Count 

Bigram count, also known as di-gram, i.e., n-gram with n = 2, applies to the sequence of 

two co-occurring or continuous words in a document. For this thesis, bigram count was 

developed using python’s NLTK package to tokenize words n produce bigrams. The 

BigramCollocationFinder class was used to find bigrams in the data set. 

 

Steps involved in creating bigram count scenario for HPC environment were: 

1. Similar to word count, bigram count program was developed to read number of 

books assigned to each process based on its rank.  

2. Each process tokenizes the words using Python’s NLTK package and stores its list 

of tokens and BigramCollocationFinder class was used to find bigrams from 

documents. 

3. Each process then counts the occurrence of bigram within its local list using 

Counter class from collections library. 
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4. Counter object was shared globally among all processes with “allreduce” operation 

on mpi4py library. The Allreduce operation is a collective operation where all 

participating processes are used to determine a global value. 

5. The global Counter object contains the bigram and count as dictionary for all the 

documents. 

6. This global Counter object was divided among processes based on its rank to write 

to a shared file.  

7. Each process writes to shared file using “write_ordered” operation of mpi4py 

library. The “write_ordered” is the collective operation where all processes write 

to same file using shared file pointer. 

          <Code Snippet> 

text = book.read() 

lowers = text.lower() 

no_punctuation=lowers.translate(None, string.punctuation) 

tokens = nltk.word_tokenize(no_punctuation) 

bigram_finder = BigramCollocationFinder.from_words(tokens) 

for k,v in bigram_finder.ngram_fd.items(): 

tokens_temp.append(k) 

list_of_tokens = list_of_tokens + tokens_temp 

 

Figures 4.5 and 4.6 compare the average (for 3 runs) execution time of the bigram-count 

program for the small and the large dataset, respectively. Figures 4.7 and 4.8 show the 

parallel speedup and efficiency for the large dataset. The execution time improved 

significantly with increased number of processes, especially for the first 6 to 8 processes 
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after which the increased in the processes amounted to little or no improvement in the 

execution time. 

 
Figure 4.5 Average execution time of bigram-count program for small data set 

 

 

 
Figure 4.6 Average execution time of bigram-count program for large data set 
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Figure 4.7 Parallel speedup of bigram-count program for large data set 

 

 
Figure 4.8 Parallel efficiency of bigram-count program for large dataset 
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Trigram Count 

Trigram, which is n-gram with n = 3, applies to the sequence of three co-occurring or 

continuous words in a document. For this thesis, trigram count was developed using 

python’s NLTK package to tokenize words n produce trigrams. The 

TrigramCollocationFinder class was used to find trigrams in the data set. 

 

Steps involved in creating trigram count scenario for HPC environment were identical to 

the Bigram but uses three-word sequences instead of two-words. 

<Code snippet> 

text = book.read() 

lowers = text.lower() 

no_punctuation = lowers.translate(None, string.punctuation) 

tokens = nltk.word_tokenize(no_punctuation) 

trigram_finder = TrigramCollocationFinder.from_words(tokens) 

for k,v in trigram_finder.ngram_fd.items(): 

tokens_temp.append(k) 

list_of_tokens = list_of_tokens + tokens_temp 

 

Figures 4.9 and 4.10 show the average (for 3 runs) execution time of the tri-gram-count 

program for the small and the large dataset, respectively. For comparison purpose, the 

execution time of the bigram and work count program is also shown in the figure. Figures 

4.11 and 4.12 present the parallel speedup and efficiency of the trigram count program for 

the large dataset. Similar to the word-count and bigram-count programs, the execution time 
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improved greatly with the increased number of processes for the first 6 to 8 processes after 

which the increment in the processes resulted in little or no improvement in the execution 

time.  

 
Figure 4.9 Average execution time of trigram count program for small data set. For 

comparison purpose the execution time of the bigram and word count program is replotted 

to show the effect of change in communication volume on execution time 
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Figure 4.10 Average execution time of trigram count program for large data set. For 

comparison the execution time of the bigram and the word count program is also plotted to 

show the effect of change in communication volume on execution time 

 

 
Figure 4.11 Parallel speedup for trigram-count program for large dataset 
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Figure 4.12 Parallel efficiency for trigram-count program for large dataset 

 
4.2.2.3 Term Frequency-Inverse Document Frequency (TF-IDF) Calculation 

TF-IDF is a numerical statistic that is intended to reflect how important a word is to 

a document in a collection or corpus [63]. It is popular term weighting factor strategy used 

in information retrieval, text mining and text-based recommender systems.  

 

Tf-idf is calculated as  

Tf-idf = tf (term frequency) * idf (inverse document frequency) 

Tf-idf can have many variants depending upon its normalization scheme or smoothing 

factor. For this thesis, tf-idf calculation is based on python’s TfidfVectorizer from sklearn 

package with smooth_idf = false and norm = none. 
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That is term frequency = number of times a term (t) appears in a document (d). 

And, Inverse document frequency idf (t), 

𝑖𝑑𝑓(𝑡) = log
1 + 𝑛𝑑

1 + 𝑑𝑓(𝑑, 𝑡)
+ 1 

 

Steps involved in creating tf-idf scenario for HPC environment were: 

1. Similar to word count, bigram and trigram the tfidf program was developed to read 

number of books assigned to each process based on its rank.  

2. Each process creates a term-document matrix for all the words read within the 

process, using Python’s “textmining” package. 

3. Each process then stores the frequency of term from term-document matrix into a 

triad using namedtuple (for document name and term) and dictionary in Python.  

4. One dictionary variable “doc_freq” was used to store the number of documents that 

contain a particular term within a process. 

5. This “doc_freq” dictionary variable was shared globally among all processes with 

“allreduce” operation on mpi4py library. The “allreduce” is the collective operation 

where all participating processes operate/process on data according to the operator 

provided to them. 

<snapshot below> 

 counterSumOp = MPI.Op.Create(addCounter, commute=True) 

       doc_freq = comm.allreduce(doc_freq, op=counterSumOp) 
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6. The tfidf was calculated by each process with global doc_freq variable using same 

formula from Python’s TfidfVectorizer class of scikit learn package. 

<snapshot below> 

 # Calculating tfidf for each term in process 

 tfidf[Doc_term(key.Doc, key.term)] =  

 value * (math.log(total_Docs/doc_freq[key.term]) + 1) 

 

7. Each process writes its tfidf for all documents and terms to shared file using 

“write_ordered” operation of mpi4py library. The “write_ordered” is the collective 

operation where all processes write to same file using shared file pointer. Shared 

file pointer specifies the location for writing data based on the rank and buffer size 

of each process participating in the communicator group. 

From sklearn: 

from sklearn.feature_extraction.text import TfidfVectorizer 

vectorizer = TfidfVectorizer(smooth_idf=False, norm=None) 

response = vectorizer.fit_transform(books) 

feature_names = vectorizer.get_feature_names() 

 

The above code snippet shows the TfidfVectorizer class of scikit learn package that is used 

in sequential code and same variation of tfidf is used in parallel version of program. 

<code snippet> 

# Reducing dictionary to share with all processes  

 doc_freq = comm.allreduce(doc_freq, op=counterSumOp) 

 total_Docs = len(booknames) 

 tfidf = {} 
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 for key, value in Doc_term_count.iteritems(): 

 # Calculating tfidf for each term in process 

 tfidf[Doc_term(key.Doc, key.term)] =  

 value * (math.log(total_Docs/doc_freq[key.term]) + 1) 

 

Figures 4.13 and 4.14 compare the average (for 3 runs) execution time of the tf-idf program 

for the small and the large dataset, respectively. Figures 4.15 and 4.16 presents the parallel 

speedup and efficiency of the tf-idf program for the large dataset. Similar to the other NLP 

scenarios, the execution time improved significantly with increased number of processes. 

For the large dataset, a rapid improvement in the execution is noted for the first 6 to 8 

processes after which the improvement slowed down. 

 

 
Figure 4.13 Average execution time of tf-idf program for small data set 
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Figure 4.14 Average execution time of tf-idf program for large data set 

 

 
Figure 4.15 Parallel speedup of tf-idf program for large dataset 
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Figure 4.16 Parallel efficiency of tf-idf program for large dataset 

 

 

Conclusion 

The various NLP application scenarios like word count, bi-gram count, tri-gram count, and 

tf-idf calculation with mpi4py library for distributed computing were developed and 

executed. A significant improvement in the execution time with increased number of 

processes was observed under each scenario. The improvement was drastic for the first 6 

to 8 processes after which the improvement slowed down or leveled off. 
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Chapter 5  

Summary 

The mpi4py (MPI for Python) is a library that provides bindings of the Message Passing 

Interface (MPI) standard for the Python programming language. It allows any Python 

program to exploit multiple processors. MPI is a standardized and portable message-

passing standard designed by researchers from academia and industry to function on a wide 

variety of parallel computing architectures. The standard defines the syntax and semantics 

of a core of library routines useful to a wide range of users writing portable message-

passing programs [64]. 

 

Generally, applications that require high performance computing environment use C, C++ 

or Fortran programming languages which support MPI and OpenMP standards for 

communication among processes to support parallel and distributed computing. And, 

applications that operate on large data sets are written in programming languages that do 

not having bindings in the MPI specification. Yet, with increasing problem sizes, these 

applications also necessitate some form of parallel processing. The goal of this thesis was 

to evaluate the utilization of MPI with a non-traditional HPC programing language, namely 

Python, from the performance and functionality perspective.  
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The first part of the thesis evaluated the performance of a mpi4py library using multiple 

point-to-point micro-benchmarks, transferring Python objects, overlapping 

communication and computation cases using an InfiniBand and a Gigabit Ethernet network 

interconnect. The results showed that in many instances the performance obtained with the 

Python benchmarks is on par with their C-based counterparts.  

 

The second part of this thesis presented Natural Language Processing (NLP) based 

application scenarios such as word-count, bigram, trigram count, and tfidf calculation on 

large dataset. All application scenarios showed a significant improvement in the execution 

time with the increasing number of processes. 
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