Rare Events Simulation In Bacterial Genetic Evolution Models

by
Yingxue Su

A dissertation submitted to the Department of Mathematics,
College of Natural Sciences and Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

Chair of Committee: Robert Azencott
Committee Member: Mattew Nicol
Committee Member: Andreas Mang

Committee Member: Brett Geiger

University of Houston
May 2022



ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Robert Azencott, for pushing me forward mathemat-
ically, for understanding me through sicknesses and difficult times and for inspiring me with life
wisdom.

I would like to thank my committee members, Professor Mattew Nicol, Professor Andreas Mang
and Professor Brett Geiger, for helping me complete my research computationally and financially.

I would like to thank Professor Alan Haynes for encouragements and recognition through my 5
years Ph.D. student life.

I would like to thank my husband, my mother, my friends and my other family members for
sharing my happiness and struggles with me and for supporting me in all possible ways.

I complete this dissertation in memory of my grandpa and my friend, Guiping Zhong.

ii



ABSTRACT

Rare events often disturb the dynamics of random systems dramatically, despite their low frequen-
cies. It is crucial to study the possible paths leading to the happening of these rare events and
the probabilities of these paths. We focus on the fixation events in bacterial genetic evolution
models. Fixations happen when the frequencies of certain genotypes become unusually large in the
population. We introduce two numerical algorithms to estimate the probabilities of fixations. The
first algorithm is based on the large deviations theory and the importance sampling method. The

second algorithm is inspired by the genealogy method introduced by physicists.

iii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . ... ... .
ABSTRACT . . . .
LIST OF TABLES . . . . . . . .
LIST OF FIGURES . . .. . .. .. e

Introduction

1.1 Stochastic Model of Bacterial Genetic Evolution . . . . .. ... ... ... .....
1.2 Review of Large Deviations Theory . . . . . . . ... ... .. .. ... ... ..
1.3 Review of Importance Sampling . . . . . . . . .. .. . L oL
1.4 Exponential Shift Family and Genealogy Algorithm . . . . . . .. ... ... ... ..

Stochastic Model for Genetic Evolution of Bacteria Population

21
2.2
2.3

Deterministic Growth . . . . . . . .
Random Mutations . . . . . . . . . e
Random Selection . . . . . . . . L

Sampling Method of Multinomial Random Vector with Large Population

3.1
3.2
3.3

Normal Approximation of Multinomial Distributions . . . . . . ... ... ... ...
Asymptotic Sampling Method . . . . . . .. ... Lo
Example of Multinomial Distribution Sampling . . . . . .. .. .. ... ... .. ..

Large Deviations in Path Space

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Large Deviations Asymptotics for Mutations . . . . . . . .. ... ... ... ....
Large Deviations Rate Function for Multinomial Sampling . . . . . ... ... ...
Large Deviations for the One-step Transition Kernel . . . . . . .. .. .. ... ...
Large Deviations in Path Space . . . . . . . . . .. ... ... .. ... ... .. ...
Explicit Computation of Geodesics . . . . . . . . . ... o
Mean Trajectories . . . . . . . . .. L e
Sets of Thin Tubes of Realizing Rare Events . . . . . . .. .. .. ... ... .. ..

Geodesic Computation

5.1
5.2
5.3

5.4

Brute Force Simulation . . . . . .. ... ... ...
Parallel Computing Technique . . . . . . . . . . .. ... ... ... ... .......
Quantile Technique . . . . . . . . . . . e
5.3.1 Quantile Technique Simulations . . . . . . . . . . .. ... ... ... .....
Modified Geodesic Shooting Method . . . . . . . . .. .. .. ... L.

v

10

11
11
12
13

14
14
16
16
18
18
19
20



5.4.1 Gradient of the Rate Function . . . . . . . . . . ... ... ... .. ..... 35

5.4.2 Modified Geodesic Shooting Example . . . . ... ... ... ... .. ... 45

6 Fixations 49
6.1 Example of Fixations . . . . . . . . . . . . . e 49
6.2 Optimal Trajectory G Realizing Fve(J,3) . . . . . . . ... 51
6.2.1 Algorithms for Searching for G . . . . . .. . ... ... ... ... ..., 51

6.2.2 Examples of the Multi-scale Algorithm . . . . . . . . ... ... ... ..... 53

7 Importance Sampling in Path Space 58
7.1 Background of Importance Sampling . . . . . . . ... ... 58
7.2 Cramer Transform of Poisson Distribution and Multinomial Distribution . . . . . . . 59
7.3 Exponential Shift Distribution of the Poisson Distribution . . . . . . ... ... ... 60
7.4 Exponential Shift Distribution of the Multinomial Distribution . . .. .. .. .. .. 61
7.5 Forced Simulation of One-step Transition . . . . . ... .. ... ... ... ..... 62

8 Estimation of the One-step Transition Kernel 67
8.1 Estimator of the One-step Transition Kernel . . . . . . . .. . ... ... ... .... 67
8.2 Algorithm for Estimating Q(H,G) . . . . . . . . . 68
8.3 Estimation of the Summation of Extremely Small Values. . . . . . . ... ... ... 69
8.4 Concentration Properties of LW(H,R,G) . . . . . . . . ... ... .. ........ 70
8.5 Accuracy of Q(H,G) . . . . . . e 83
8.6 Example of Estimating the Q(H,G) . . . . . . . . .. 87

9 Estimating the Probabilities of Random Trajectories 89
9.1 Estimator for the Probability of a Random Trajectory . . . . . ... ... ... ... 89
9.2 Accuracy of the Estimation . . . . . .. .. .. .. ... ... .. ... 90
9.3 Examples of Estimating P(H|Hp) . . . . . . . . ... 92

10 Estimating P(H in a thin tube) by Importance Sampling 94
10.1 Forced Trajectories in a Thin Tube . . . . . . . . . . .. ... . ... 94
10.2 Estimator of P(H in a thin tube) . . . .. .. ... ... ... ... ... ..... 95
10.3 Accuracy of the Estimation . . . . . . . ... .. ... o 97
10.4 Example of Estimating P(H in a thin tube) . . . . . . . ... ... ... ... ... 98

11 Genealogy Forced Trajectory Simulation 101
11.1 One-step Transition from H, = H to Hyy1 =G . . . . . . . . ..o oo .. 101
11.2 Generate a Set of Trajectories Q(¢t) = {H',...,H} . . . . . ... ... .. ... ... 102
11.3 Generate Q(t +1) Given Q(t) . . . . . . . . .o L 102
11.4 Genealogy Simulation of Forced Trajectory . . . . . .. ... ... .. ... ..... 104
11.5 Genealogy Forced Trajectory Simulation Example . . . .. ... ... ... ... ... 105

A Appendix 107
A.1 Computing Time of Examples in Section 5.3.1.2 . . . . . . . . . ... ... ... ... 107
A.2 Optimal Trajectory G in Section 6.2.2.2 . . . . . . . . .. ... ... ... ... ... 111
BIBLIOGRAPHY . . . . . e 113



3.1

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

9.1
9.2

10.1

Al
A2
A3
A4
A5

LIST OF TABLES

Computing Time of the Multinomial Random Vector Sampling . . . . . ... .. .. 13
Efficiency Computation for g =3 . . . . . . .. .. ... .. ... ... ... ... 28
Efficiency Computation for g =4 . . . . . . . . . . ... 29
Efficiency Computation for g =5 . . . . . . . . .. .. L 30
Geodesic Example when g =7 . . . . . . .. 31
Geodesic Example when ¢ =8 . . . . . . ... 32
Brute Force Simulation of Eve(J,5) . . . . . . . .. . .. 51
Optimal Trajectory G . . . . . . . . . . . 54
Optimal Trajectory G . . . . . . . . . . e e 54
Optimal Trajectory G . . . . . . . . . . . 54
Optimal Trajectory G . . . . . . . . . . e e 92
Forced Simulation Results . . . . . . .. .. . 93
Results of Forced Simulation of Trajectories . . . . . . . . .. . ... ... .. .... 99
Computing Time for Example when g =7 . . . . . . . . ... .. ... ... ..... 108
Computing Time for Example when g =8 . . . . . . . . .. ... ... ... ..., 110
Optimal trajectory G . . . . . . . . . L 111
Optimal trajectory G . . . . . . . . . e e 111
Optimal trajectory G . . . . . . . . . L 112

vi



LIST OF FIGURES

5.1 Modified Geodesic Shooting Example 1 with g =8 . . . .. ... ... ... ..... 46
5.2 Modified Geodesic Shooting Example 2 with g =10 . . . . .. .. .. ... ... .. 48
6.1 Mean Trajectory . . . . . . . . . L e 50
6.2 Optimal Trajectories and the Mean Trajectory . . . . .. .. ... ... ... .... 55
6.3 Optimal Trajectories and the Mean Trajectory . . . . .. ... .. ... ... .... o7
10.1 Forced Trajectories Around G . . . . . . . . . . . . 100
11.1 Forced Trajectories by Genealogy Method . . . . . . .. ... ... ... ....... 106

vii



Chapter 1

Introduction

1.1 Stochastic Model of Bacterial Genetic Evolution

Rare events often have an important impact even though these events have extremely low occur-
rence. Tsunamis, finances crises, and earthquakes are some examples. If we are able to simulate
the likely trajectories that realize these dangerous rare events, we could avoid the occurrence of
the rare events by avoiding these trajectories. Constructing efficient numerical algorithms is the
natural approach to simulate rare events. E. Vanden-Eijnden has studied the rare events simulation
in different continuous time systems in a series of papers, see [16, 25, 26, 36, 64]. The book [6]
summarizes the main theoretical and numerical results of rare events simulations. In this disser-
tation, we study the rare events in a discrete time random system. We introduce two numerical

algorithms to estimate the probabilities of the rare events in the discrete time system.

We consider the stochastic model for genetic evolution of E'scherichia coli, which was obtained
from long-term laboratory experiments [4, 5, 9, 10]. This commonly used stochastic model contains
three parts: deterministic growth, Poisson distributed mutations, and random selection. On day
n, the population first grows with a deterministic vector F' with the starting population size V.

After the growth, random mutations happen simultaneously following Poisson distributions. We



then randomly extract N cells from the bacterial population to be the starting population of day
N +1. The papers [38, 46, 65] introduce several computational methods to estimate the parameters

in this stochastic model.

We are interested in the rare events where the frequencies of certain intermediate-strength
genotypes become unusually large; such events are called fixations. It is important to understand
the paths that lead to these fixations under the effects of two random steps, namely, random
mutations and random selections. In the recent work [3], the large deviations theory results of the
stochastic model are obtained. In this thesis, we derive a numerical method for estimating the
probability of fixations, based on these large deviations theory results. We first use these results
to search for the optimal path that realizes the fixation. Next, we estimate the fixation probability
by forcing random trajectories to follow the optimal path. We also derive a second numerical
method, based on the genealogy method of [55], which does not depend on the large deviations
theory results. This genealogy method depends on a re-sampling trick to force the rare events to

occur more often in the system.

1.2 Review of Large Deviations Theory

The large deviations theory studies the exponential decay of sequences of probability distributions
asymptotically. The function that measures the rate of this decay is called the rate function.
Since large deviations theory studies the tail behaviors of probability distributions, it becomes the

common and useful tool for studying rare events in random systems.

The earliest work of large deviations theory was done by the Swedish mathematician Cramer. He
studied the large deviations theory in order to solve actuary problems in 1938, see [12]. The result
he obtained for i.i.d random variables is known as the Cramer theorem. Another important result
for i.i.d random variables is Sanov’s theorem which was obtained in 1957, see [59]. Sanov’s theorem

shows that the rate function of i.i.d Markov process is the Kullback-Leibler divergence between



the true probability distribution and the estimated probability distribution. From the late 1970s
to the early 1980s, Donsker and Varadhan studied the large deviations theory of Markov processes
much more thoroughly in a series of papers, see [17, 18, 19, 20]. Around the same time, Gértner
and Ellis extended Donsker’s and Varadhan’s results to more general settings, see [27, 28, 37]. One
of their famous results is the Géartner-Ellis theorem. Later on, Csiszar introduced the method of
types technique to simplify some proofs of the classical large deviations theory results, see [13].

The books [2, 14] present the classic and important results of large deviations theory.

The large deviations theory results of the stochastic model of bacteria populations were obtained
in paper [3]. In this thesis, we introduce an algorithm based on these large deviations theory results

to simulate rare events and estimate the probabilities of rare events.

1.3 Review of Importance Sampling

Importance sampling is a Monte Carlo simulation technique. It uses a manipulated probability
distribution instead of the true probability distribution of the system to simulate the events of our
interest. Since we change the probability distribution of the system during simulations, we need to
keep tracking the corrective ratio between the true probability distribution and the manipulated
probability distribution. By using a “good” manipulated probability distribution, the rare events
become the common events of the random system. Thus, importance sampling is one of the powerful
tools to study and simulate rare events. In fact, the first use of the importance sampling was to
study the rare events of nuclear particles penetrating shields in 1950, see [40]. In recent decades,
people have developed multiple types of importance sampling methods such as, adaptive importance
sampling [50, 51, 57, 22, 24|, annealed importance sampling [45, 56|, sequential importance sampling
[15, 29], and multiple importance sampling [30]. [7, 63] review these developments of the importance

sampling. We summarize the important developments here.

Let p(z) be the true probability distribution of a random variable X. Let g(x) be the changed



probability distribution. In general, not all the properties of the true distribution p(x) are known.
In these circumstances, it might be difficult to choose the changed distribution ¢(x) that is practical
to use and guarantees good accuracy. Several strategies were studied to solve this issue. We review

three types of importance sampling methods here.

If some theoretical properties of p(x) are known, one might be able to use these properties
to determine the family of ¢(z). We then select the optimal distribution ¢(z) among this family
based on certain measurements. This type of method is the adaptive importance sampling method.
When a multivariate normal distribution is a good estimator of p(x) asymptotically, one might
select the corresponding multivariate normal distribution as g(x), see [33]. The work [32] shows
that a multivariate student density distribution is a better choice for ¢(z). Later on, the work
in [41, 49] reduces the restrictions on the asymptotic approximation of p(z) and extended the

candidates of g(z).

Sequential importance sampling method is often used for sampling high dimensional random
variables. Suppose the random variable is of dimension n, denote z[; = (x1,...,2¢) for any
t € [1,n]. One can rewrite the true probability distribution p(z) and the changed probability
distribution ¢(z) as

n

p(x) = p(z1) Hp($t|$[1:t—1])a

t=2

and
n
H q 9Ct|$[1 it— 1]
t=2

We select the proper q(z¢|x[1,—1)) for p(@¢|zi4—q)) for t = 2,...,n. Sequential importance sampling
is often used for models with different states, see Chapters 3 and 4 in [43]. [44] applied this
technique to study wireless communication. [54] proposed several applications in speech recognition
by recognizing the chain like sequential distributions in the system. [53] analyzed the economical
time series by applying this sequential importance sampling technique. [60] studied the prediction

of the 3D structure of the protein by using this technique.



The work [48] introduces the anneal importance sampling method to sample the random variable
sequentially, even if the random variable does not have a chain like structure. One first constructs

a sequence of distributions po(z), ..., ps(x) = p(x), where pg is selected to be diffuse and

1-b; b;

pi() = po(x)" "p(x)™,

fori =1,....,d, 0 =by < by < .. <bg=1. Next, one draws a sample z(t) from the distribution

gt(a'|x(t — 1)) for t = 1, ..., d sequentially, where g;(2'|z(t — 1)) is a transition kernel satisfying

/pt(x)gt(x’\x)dm = p(2)).

[45] applied this anneal importance sampling method to study dileucine peptide. [35] studied the
particle filtering problem by using this technique. People also proposed a sampling method of
combining the sequential importance sampling method and the transition kernel idea, see [31, 39,
47]. This type of algorithm allows one to perform the dependent Markov chain sampling around
the proper transition kernel. We will use this type of importance sampling structure to simulate

rare paths in the bacterial genetic evolution stochastic model.

1.4 Exponential Shift Family and Genealogy Algorithm

If we have obtained the large deviations theory results of the true distribution p(z), one of the
commonly used families for the manipulated probability distributions is the exponential shift family,
see [11, 21, 52, 61]. Moreover, the exponential shift distribution with the large deviation minimizer
is the optimal manipulated distribution among this family. This is because the variance of the
estimator is minimized asymptotically by this exponential shift distribution, see [23, 58]. The
exponential shift family is constructed as follows. Let p(z) be the Laplace transform of the true

distribution p(z). The exponential shift family of p(z) is defined as ¢(z) = €<t’;(>£(x) for t € R. The

parameter ¢ of the optimal manipulated distribution comes from the Cramer transform of p(x).



The large deviations results in the path space of the bacterial genetic evolution model are
obtained in paper [3]. The large deviations theory approach to simulate rare fixations is organized
as follows in this dissertation. We first search for the optimal paths to realize the fixations, see
Chapter 5. Next, we force the random trajectories to follow the optimal paths by applying the
exponential shift technique, see Chapter 7. The methodology of estimating the probabilities of
random trajectories is explained in Chapters 8 and 9. In Chapter 10, we estimate the probabilities
of fixations by estimating the probabilities of random trajectories in thin tubes centered at the

optimal paths.

Physicists propose the genealogy algorithm to study rare events in the overly complicated
stochastic models. This genealogy algorithm does not depend on the large deviations theory results
of the system. The computation of searching for the optimal paths to realize rare events is not
needed. The genealogy algorithm simulates the likely paths that realize rare events by applying
certain re-sampling tricks. The Giardina-Kurchan— Lecomte-Tailleur (GKLT) algorithm is one of
the commonly used genealogy algorithms. This algorithm was originally designed to simulate the
large deviation rate functions for infinite time limit, see [34, 62, 42]. Ragone, Wouters, and Bouchet
apply this GKLT algorithm to a finite continuous time setting to study extreme weather, see [55].
In comparison, time is discrete in the stochastic model of our interest. Thus, we introduce the
modified genealogy algorithm to simulate rare events in the bacterial genetic evolution model in

Chapter 11.



Chapter 2

Stochastic Model for Genetic

Evolution of Bacteria Population

There are g genotypes in the stochastic model of genetic evolution of bacteria populations. H =
[H(1),..., H(g)] € RY with coordinates 0 < H(j) <1,and > ,_;  H(j)=1Iisa genetic histogram
for this stochastic model. The set H C RY of all potential histograms is a compact convex set. We
refer to the cells of genotype j as j-cells; j-cells have a rate of exponential growth f; > 0. Define the
growth factor for j-cells as F; = exp (D f;) > 1, where D is the fixed duration of the deterministic
growth. Denote F' = [Fy, Iy, ..., Fy]. We order the Fj in an ascending order so that if i < j, then
F; < F;. At the beginning of day n, the bacteria population starts with pop, = N and a genetic
histogram H,,. In fact, we have H,, € Hy, where Hy = {H € H|NH(j) € Z for j=1,...,g9}. The
populations are allowed to grow deterministically till they reach a very large size N(H,, F'). After
the growth, these cells of g genotypes are allowed to mutate simultaneously. At the end of day n,
we select a random sample of size N as the starting population of day n + 1. The precise model is

stated as follows:

1. Phase 1: The j-cells colony grows deterministically and its population size grows to [N H,,(j)F}]



forj=1,..,9.
2. Phase 2: Mutations occur simultaneously with a fixed small mutation rate m.

3. Phase 3: Randomly sample N cells from the population to be the starting population of day

n+ 1.

2.1 Deterministic Growth

Let N, denote the population size after the deterministic growth. The population size of j-cells
is NH,(j) at the beginning of day n, then it reaches siz,(j) = [NH,(j)Fj] after the deterministc
growth, where [z] gives the smallest integer greater or equal to z. Therefore, Ny, = 22:1 sizn(j) =

[N(F,Hp)]. The frequency of j-cells becomes to [NF;H,(j)|/[N(F, Hp)].

Definition 2.1.1. Define the deterministic growth function ® : H — H by

®;(H) = F;jH;/(F,H)

forj=1,..,9.

We use ®;(H,,) to estimate the frequency of j-cells after the deterministic growth. The distance

between this estimation and the true frequency is of the order of 1/N for large N, see [3].

2.2 Random Mutations

Assume mutations occur simultaneously at the end of each growth period. Let a g x g matrix
M = m@Q with entry M; ; = m@);; be the mean mutation rates matrix, where m is a very small,
fixed mutation rate and @ is the fixed transfer matrix with @Q;, > 0 and @;; = 0. The mutation

rate m takes a value between 1078 to 1076.



Let R, (j,k) denote the number of cells mutating from type j to type k on day n. Ry(j,k)

follows the Poisson distribution with mean siz,(j)M; . We have
P(Rn(j, k) = Rjj|Hy = H) = exp(—sizn(j)M; 1) (sizn () Myx) 5+ [ Rjx!,  j #k

E(Rn(]a k)‘Hn = H) = Sizn(j)Mj,ka J 7& k.
Definition 2.2.1. A matrix A is N-rational if N A has only non-negative integer entries.
Definition 2.2.2. For each histogram H and each genotype j, define the constraint sets K (j, H)

to be all the g x g matrices r» with non-negative entries such that

S0 ik < F;H(j) when H(j) >0,
Tjk =0 when H(j) =0, (2.1)

rir =0 when @ = 0.

Definition 2.2.3. Let Z(NV) be the set of all gx g N-rational matrices. Define K(H) = ﬂ?le(j, H)

and Ky(H) = K(H)N Z(N).

Therefore, R,/N € Kn(H). The population histogram J,, after the mutation is

Ju(j) = M([NFan(j)] -SSR + 2 Rl

Definition 2.2.4. For given H, = H € Hy and r = R, /N € Kx(H), we define function ¥ by

Wi(H, 7) = <R1H><FjH<j> B T

k£j k

forj=1,...,9.

The function ¥ is an estimator for the histogram J,. The distance between this estimator and



the true frequency J, is of the order 1/N, see [3].

2.3 Random Selection

After the deterministic growth and random mutations, we extracts IV cells from the population for

cycle n+ 1. Let pn (V) be the multinomial distribution defined as

N
un.g(V) = N! H % (2.2)

Definition 2.3.1. For any H € H, spt(H) is the support of H and b(H) > 0 is its essential

minimum defined as

spt(H) = (j1H() > 0) and b(H)= min H(j).

Suppose H,11 = G € Hp, then we have

pUn,g, (NG)  spt(G) C spt(Jy),
P(Hy i1 = G|Hp, Rp) = P(Hni1 = G| J,) =

0 otherwise .

Definition 2.3.2. Q(H,G) = P(H,4+1 = G|H, = H) is the transition kernel defined as

QH,G)= Y  P(Huy1=G|R,=Nr,H,=H)PR, =Nr|H, =H). (2.3)
T‘GKN(H)

10



Chapter 3

Sampling Method of Multinomial
Random Vector with Large

Population

Since the population size N of the bacteria evolution stochastic model is large, we will need to sam-
ple multinomial random vectors with this large population size N during the numerical simulation
of the model. The current algorithm used for generating multinomial random vector in Matlab is
not feasible when the population size N is large due to the storage issue and the efficiency issue.
In this section, we implement an asymptotic sampling method for the multinomial random vector

by using the normal approximation of the multinomial distribution.

3.1 Normal Approximation of Multinomial Distributions

Let X be a random vector in R¥ following the multinomial distribution pN,p defined as formula

(2.2). Notice that p € R¥ and Zle p; = 1. The marginal distribution of X; follows the binomial

11



distribution Binomial(n,p;). The mean and covariance matrix of X are

E(X) = (npla X npk)T7

and
np1(1 — p1)

—npip2

—Np1Pk

Theorem 3.1.1. X € R* follows the multinomial distribution UNp. As N — oo, the distribution

of VN(% — p) weakly converges to the multivariate Normal distribution N(0,%), where

p1(1—p1)

—P1p2

—P1Pk

see [1].

—npip2

np2(1 — p2)

—npapg

—PpP1p2

p2(1 —p2)

—P2Pk

3.2 Asymptotic Sampling Method

By using Theorem 3.1.1, we implement the following asymptotic sampling method for multinomial

random vectors.

Algorithm 3.1: Asymptotic Sampling Method

Step 1. Sample a random vector Y following the multivariate normal distribution N (0, ), where

I is the k x k identity matrix.

Step 2. Compute Z = £2Y and Z ~ N(0,%).

12

—Np1Pk

—Np2Pk

npr(1 — i)

—P1DPk

—P2Dk

pr(1 = pr)




Table 3.1: Computing Time of the Multinomial Random Vector Sampling

N | Matlab mnrnd | Asymptotic sampling method
10° 0.03(s) 0.005(s)
107 0.32(s) 0.005(s)
108 3.20(s) 0.005(s)
107 30.12(s) 0.005(s)

Computing time of the Matlab mnrnd function and the asymptotic sampling method on one node
of the Opuntia cluster

Step 3. Compute U = VNZ + Np. Let X; = [U;] fori=1,....,k—1 and X}, = N—Zi:ll X;. The

vector X is the sampled multinomial random vector.

3.3 Example of Multinomial Distribution Sampling

Let p = [0.5,0.2,0.3] and k = 3, we compare the computing time of sampling one multinomial
random vector by using the Matlab function mnrnd and the asymptotic sampling method for

N =10%,107,108,10° in Table 3.1.

We see that as N increases by a factor of 10, the computing time of Matlab function mnrnd
also increases by a factor of 10 approximately. When we sample a multinomial random vector
with population size N = 10'° by using the mnrnd function, we will also face the storage issue.
In comparison, the computing time of the asymptotic sampling method is not increasing as N
increases. In the following chapters, we will be using this asymptotic sampling method to sample

mutinomial random vectors when the population size N > 107.

13



Chapter 4

Large Deviations in Path Space

The large deviations theory studies the exponential decay of probability distributions of random
systems. The rate function is used to describe this exponential decay, which contains important
information of the rare events occurring in the system. Thus, studying the large deviations theory
of the random system is an important step to analyze rare events. In this chapter, we recall several
important large deviations theory results in the path space of the bacterial genetic evolution model,

which were studied in paper [3]. The proofs of the theorems in this chapter can be found in [3].

4.1 Large Deviations Asymptotics for Mutations

Definition 4.1.1. For all H € H and r € K(H), define the g x g matrix L(r, H) of Poissonian

rate functions by

M; i FyH(§) + i log( ) HG)M (G, k) >0,
L H) = Gkt j M, < By ()

0 H(j)M (5, k) = 0.

14



Thus, the large deviations rate function for mutations mut(r, H) is

mut(r, H) = ZLM(T, H) (4.2)
j.k

= > M FH(G) + i logr — g log(eM;  FyH () (4.3)
(4,k)| M, H(5)>0

with the convention 0 x log(0) = 0. The mut(r, H) is a finite, non-negative, and continuous strictly
convex function of r € K(H), since each Ljy, is strictly convex in ;5. mut(r, H) = 0 if and only

if rjp = M,;,F;H(j) for all j # k.
Definition 4.1.2. Define a fixed finite parameter set P, namely:
1. the number g > 2 of genotypes.
2. the multiplicative daily growth factor F} for genotype j with j =1,...,g.

3. the g x ¢ transfer matrix Q.

Definition 4.1.3. For any fixed 0 < a < 1, define the compact set of histogram H(a) C H by
H(a) = {H € H| _min H(j) > a}.
J=4..9

The large deviations result of the mutation stage is stated in the following Theorem 4.1.4.

Theorem 4.1.4. Let R, be the random mutation matriz of day n. Let mut(r, H) be the mutations

rate function defined by formula (4.2). Then for fired a > 0 and the parameters P, there is a

constant Ny = No(a,P) such that for N > Ny, the large deviation formula
1
N logP(R,/N = r|H, = H) = —mut(r, H) + o(N), with |o(N)| < 4¢g*log(N)/N (4.4)

holds uniformly for H € H(a) NHn and r € Ky(H).

15



4.2 Large Deviations Rate Function for Multinomial Sampling

Definition 4.2.1. The classical Kullback — Leibler divergence between two histograms G and J

is defined as

> jespt(G) G(j)log% when spt(G) C spt(J),

KL(G,J) = (4.5)

00 otherwise.

Recall that KL(G,J) > 0 for all G and J, and KL(G,J) = 0 if only if G = J. The large

deviation result of the random selection stage is stated in the following Theorem 4.2.2.

Theorem 4.2.2. If any histograms J and G with spt(G) C spt(J) and G is N-rational, then the

multinomial distribution py,; defined by formula (2.2) verifies

%loguNJ(NG) =—-KL(G,J)+o(N) with |o(N)| <2(g+1)logN/N. (4.6)

4.3 Large Deviations for the One-step Transition Kernel

Definition 4.3.1. For any H,G € H and r € K(H), define the composite transition rate 7(H,r, G)
as

T(H,r,G) = mut(r,H) + KL(G,VY(H,1)). (4.7)

Definition 4.3.2. Define the one-step cost function C(H, G) by

C(H,G) = Ter%i(r}{)T(H,r, G) = Tgl{i(r}{)[mut(r, H)+ KL(G,®(H,r))].

The large deviation result of the one-step transition kernel is stated in the following Theorem

4.3.3.

16



Theorem 4.3.3. Fiz any 0 < a < 1 < d and the parameters P. One-step large deviations for
Markov chain Hy,, are controlled as follows by two constants ¢ = ¢(d,a, P) and Nog = Ny(d,a,P).
Consider any H,G € H(a) with one-step transition cost C(H,G) < d. Then the transition kernel
Q(H,G) has a uniform large deviations approzimation, valid for all N > Ny and H,G € H(a) as
above,

% log Q(H,G) = —C(H,G) + o(N) (4.8)

with |o(N)| < ¢/V/'N.

The explicit computation of the one-step cost function is stated in the following Theorem 4.3.4.

Theorem 4.3.4. Fix P and any 0 < a < 1. Let T'(a) be the set of interior histograms J with
b(J) > a. There is a constant ¢ = c(a,P) > 0 such that for all H,G € I'(a), and 0 < m < ¢, the
transition cost C(H, Q) is a finite C* function and transition cost C(H,G) has an explicit first

order expansion in m, given by

C(H,G) = KL(G,®) + mY_ F;H(j)Q;x(1 — Ux/Uj) + O(m?) (4.9)
7.k

where Uj = exp %,

KL(G,®) =) G(j)log(G(j)/®(j)) >0 and @(j) = F;H(j)/(F, H).
J
The first order expansion of C(H,G) is obtained when

rik & mEjH(j)QjxUs/Uj, (4.10)

forjk=1,....,9 and j # k.

17



4.4 Large Deviations in Path Space

Definition 4.4.1. Define Qp = H” the path space of all histogram trajectories H = [Hy, ..., H7_1]
with all H, € H where T is the fixed time horizon. A trajectory H € Qp is N-rational if all the H,,

are N-rational histograms. Define the essential minimum b(H) of H as b(H) = min,—g .71 b(Hp).

Definition 4.4.2. The large deviations rate function A : Qp — [0, +0o0] is defined for any H € Qp

by

Define the large deviations rate functional A(F') € [0, +oc] for all subsets F' of the path space Qp
by

A(F) = inf A(H).

The large deviations theory result of single trajectories is stated in the following Theorem 4.4.3.

Theorem 4.4.3. For any path length T > 2, denote H = [Hy, ..., Hp_1] as the random trajectory of
population histograms. Fiz P and any positive constants d > 0 and a > 0. The (a,d, P) determine
positive constant ¢ and Ng such that the following properties hold. For any N -rational path h € Qp

such that A(h) < d and b(h) > a, one has, for all N > Ny,

%log P(H = h|Hy) = —A(h) + o(N) with |o(N)| < Te/VN. (4.11)

4.5 Explicit Computation of Geodesics

Definition 4.5.1. A path h* = [h{, ..., h}._;] from H to G is a geodesic from H to G if it minimizes

the large deviation rate function A\(h) over all h € Qp such that hg = H and hy = G.

When all b} € H° for n =0,...,T — 1, we call h* an interior geodesic. The following Theorem

4.5.2 gives the explicit formula of generating a reverse geodesic recurrently.

18



Theorem 4.5.2. Let h* be any interior geodesic in Qp with T > 1. Let a = b(h*). There is a
constant mg = mg(a, PAR) such that for m < mg, and any n € 0,...,T — 3, then x := h} is fully
determined by y = hy | and z := h} 5. Indeed, x = (m,y, z), where is a C* function of (m,y, z)
for m < mg and y,z € H°. Hence, for m < mq, h* is determined by its last two points h}. and
Iy thanks to the reverse recurrence relation

Bt —

n

x(m, hyy 1, hyyo) for 0<n <T 3. (4.12)

We call the histogram h._, the penultimate point of the geodesic h*. Denote x5 = Z4(1 + muws)
with s = 1,...,g and remainder of order m? the 1st order Taylor expansion of x = x(m,y,z) in m
for m < mqg. The interior histogram & and the vector w depend only on y,z and are given below

by the explicit formulas

Xs
& = , 413
Ys F Zs
X, =2 Y 4.14
= p(<F7y> ys) (4.14)
w=u+v—{(a,u+v), (4.15)
F Xk
Us = Z(Qs,kzes,k Qk sCk s) (416)
k
Ys Yk
= — 4.17
€sk exp( Fsas + Fkak )a ( )
z
Vs = FsZQs,k’ - (Fs + i)Zfs,st,k 2 Z kkak sfk ER) (418)
k Ys 7% Fsys k
Ze 2k
= exp(— . 4.19
fs,k p( Fsys Fkyk ( )

4.6 Mean Trajectories

The following Theorem 4.6.1 gives the explicit formula for computing the mean trajectories. The

mean trajectories have zero cost.

19



Theorem 4.6.1. H = [Hy,..., Hp_1] is the random trajectory of population histograms. Given

H, = H, then E(Hy1|Hy = H) = ((H), where ¢ : H — H is defined as
GH) = 1y EHG) mZQJkFH +mZQk,]FkH k), (4.20)

forj=1,..g9

4.7 Sets of Thin Tubes of Realizing Rare Events

Definition 4.7.1. For > 0 and E* C Q7 , define the n-neighborhood U, (E*) of E* as the union

of all open balls of radius n and center in E*.

Definition 4.7.2. For any I' € Qr, define the open neighborhood Vi (I') as the union of all balls

Vi (H) with radius 5% and any arbitrary center H € I', where Viy(H) is defined as the set

2
H) = {H cQ H — Hi|| < =1
Vi(H) = (B € Qr | _max || - Hil| < -}

’” 7

Theorem 4.7.3. Fiz the path length T and an initial histogram H. Let Py be the probability
distribution of random histogram paths starting at H. Let E C Qp be any closed set of interior
paths starting at H satisfying 0 < A(E) < oco. Let E* be the set of all paths h minimizing the
rate function A(h) over all h € E. Then E* is a closed subset of E. For any fized n > 0, the

n-neighborhood U = U, (E*) verifies

lim Pp(He UH € Vy(E)) = 1.
N—oco

From this theorem, we know that the probability of fixations is approximately equal to the prob-
ability of trajectories realizing the fixations through the thin tubes centered at the cost-minimizing

paths for large population size N.

20



Chapter 5

Geodesic Computation

Let A(G) be the set of trajectories starting with histogram H and ending with histogram G. We are
interested in computing P(A(G)|H) which is the probability of the event that trajectories starting
with histogram H end with histogram G. By the large deviation theory results in paper [3], we
know that

1 B o
im0 P(A(G)|Ho) = A(A(G)) = inf  M(ED).

Notice that infge4() A(H) brings up the definition of geodesics from H to G. We can roughly
estimate the probability P(A(G)|H) by exp(—N - A(h*)), where h* is the geodesic from H to
(. Thus, searching for geodesics from H to (G is a very important aspect of studying the small
probability P(A(G)|H). In this chapter, we will study several algorithms to search for geodesics
from H to G. This chapter will be submitted as a paper with Brett Geiger, Andreas Mang, Ilya

Timofeyev, and Robert Azencott.

5.1 Brute Force Simulation

Given a fixed starting histogram H and a fixed target histograms G, paper [3] states the brute

force algorithm to search for the geodesic from H to G in detail. We summarize the basic steps of

21



this brute force simulation in the following Algorithm 5.1.

Algorithm 5.1: Brute Force Simulation

Step 1. H is the starting histogram. G is the target histogram. Mesh is the mesh size. Let
PEN = H\G. We use the mesh size Mesh to discretize set PEN. Let DPEN be the discretized
penultimate points set. Denote the cardinal number of set DEPN as card(DPEN). Suppose
card(DPEN) = n.

Step 2. For every histogram P € DPEN, construct a reverse geodesic RG(G, P) lying within
the interior of H using formula (4.12). Let RG',...,RG™ be n such reverse geodesics and denote
RG' = [RG} = G, RGY, -~-,RGiT¢]7 where RG%5 € DPEN and T' is the length of reverse geodesic
RG".

Step 3. Compute the mean trajectory MT = [MTy = H, MTy, MTs, ..., MT;] starting from H
and lying within H°.

Step 4. For every reverse geodesic RG = [RG; = G, ..., RG], we construct a broken geodesic of
the form BG = [MTy = H, ..., MT1, RG, ..., RG1 = G]|. We select the index I, J by minimizing

j—1

1,J= argi:ré{i..r.{ng?ﬁtC(Mﬂ, RG;) + ;C(RGh RGit1),

where C(MT;, RG;) is the one step cost from a histogram M7T; in the mean trajectory to a his-
togram RG; in the reverse geodesic, and Zi; C(RGi+1, RG;) is the rate function of the trajectory
[RGj,RG;_1,RGj_2,..., RG1]. Thus, we will get n broken geodesics BG?, ..., BG™ constructed from
RG', ..., RG".
Step 5. The geodesic from H to G is

Geo = arg He{Bgllar.l.,BG”} A(H).

Thus, the geodesic from H to G contains three pieces theoretically, truncated mean trajectory,

one step jump from mean trajectory to a reverse geodesic and the truncated reverse geodesic.

22



However, from our numerical results, if H,G € H satisfies C(H,G) > 0.1, min(H) > 0.01 and
min(G) > 0.01, then the geodesic from H to G only contains two pieces, one step jump from H
to a reverse geodesic and the truncated reverse geodesic. This is because the reverse geodesic that
is used to construct the geodesic from H to G always shoots almost right at H. We will use this

conclusion to construct the modified geodesic shooting method in Section 5.4.

If we want to compute the geodesic from H to G accurately by using this brute force simulation,
we need to use a relatively small Mesh (< O(1072)) to discretize PEN, especially for the case
when H or G is near to the boundary of H. If we use Mesh = 0.01 for geodesic computing with
g = 4, we would need to construct 10° reverse geodesics to find one geodesic for one pair of H and
G. This computation takes about 40 seconds by using one core on our Opuntia cluster. However,
for geodesic computing with g = 6, if we use Mesh = 0.01, we would need to construct 10! reverse
geodesics to obtain one geodesic for one pair of H and G. If we perform this computation on one
core, the computing time would increase to around 4 x 10° seconds (more than 4 days), which is

very computationally heavy.

Brute force simulation for searching for the geodesic from H to G works for cases with the
number of genotypes g < 5. For geodesic computing with g > 5, we developed these following
techniques to perform this computation, brute force simulation with parallel computing, brute
force simulation with the quantile technique on multi-cores, and the modified geodesic shooting
algorithm. Brute force simulation with parallel computing technique keeps the computing time
for geodesic searching within an hour for cases when g = 5,6. However, this parallel computing
technique is not powerful enough to perform the geodesic searching computation within a reasonable
time when g = 7,8. Thus, we implement the quantile technique on multi-cores for these cases. For
geodesic searching when g > 9, the modified geodesic shooting algorithm is the best choice. In the

following sections of this chapter, we explain these algorithms in detail.

23



5.2 Parallel Computing Technique

The most natural approach to save computation time is to parallelize the computation task on
multi-cores. The idea is to split the computation task on k cores to save the computing time by
a factor of 1/k. We explain the brute force simulation with parallel computing technique in the
following algorithm.

Algorithm 5.2: Brute Force Simulation with Parallel Computing

Step 1. H is the starting histogram. G is the target histogram. Mesh is the mesh size. PEN is
the set of penultimate histograms. Discretize PEN with Mesh. DPEN is the discretized set of
penultimate histograms. k is the number of cores.

Step 2. Split the set DPEN to k subsets, DPENy, ..., DPEN}, where UleDPENi = DPEN.
Step 3. We perform the brute force simulation with the set of penultimate histograms DPFEN;
on the i — th core for i = 1,..., k following Algorithm 5.1. Let Geo® be the geodesic found on the
i —th core for i =1,..., k.

Step 4. The geodesic from H to G is

Geo = arg min

He{Geol,Geo?,...,Geok}
Theoretically, the computing time of parallel computing on k cores would be shortened by a

factor of 1/k. However, the actual computing time on each core is a little longer than the original

computing time divided by k.

For the geodesic searching with g < 6, brute force simulation with parallel computing performs
well. For the geodesic searching with g = 7, 8, brute force simulation with parallel computing tech-
nique still takes days to find one geodesic with access to 100 cores. Thus, we develop the following

quantile technique to save the computing time by selecting the “good” penultimate histograms.

24



5.3 Quantile Technique

From our simulation experiments, we observe that the geodesic from H to GG always has a relatively
small one-step cost from the penultimate histogram to the target G for many different pairs of
(H,G). By using this observation, we implement the following brute force simulation with the
quantile technique on multicores.

Algorithm 5.3: Brute Force Simulation with Quantile Technique on Multicores

Step 1. H is the starting histogram, G is the target histogram, PEN = H — G, Mesh is the
mesh size, DPEN is the set of all penultimate histograms from discretizing PEN by Mesh and
card(DPEN) = n, k is the number of cores.

Step 2. Compute the one-step cost from every penultimate histograms in DPEN to G. Quan(p)
is the p-quantile of all these one step cost.

Step 3. Split the set DPEN to k subsets, DPENy, ..., DPEN}, where UleDPENi = DPEN.

Step 4. On the ¢ — th core, select the p-quantile penultimate histograms set as

PEN;(p) = {y € DPEN;|C(y,G) < Quan(p)}. (5.1)

Denote PEN (p) = UX_ PEN;(p).

Step 5. We use Algorithm 5.1 to search for a geodesic from H to G using the penultimate points
set PEN;(p) on the i — th core for i = 1,...,k. Let Geo® be the geodesic found on the i — th core
fori=1,...,k.

Step 6. Select a geodesic from H to G as

Geo = argmin HG{G601,GeoQ,.‘.,Geok})‘(H)'
We denote the rate function of the geodesic found by this p — quantile technique as A\(Geo) =
ANH,G,p).
For a fixed pair (H, G) of the starting histogram H and the target histogram G, if \(H,G,p) =

25



ANH,G,1), we say that set PEN(p) is efficient to compute the geodesic from H to G. Since
card(PEN (p)) = p-card(DPEN), the computing time of the geodesic search using Algorithm 5.3
will be shortened by a factor of p/k theoretically. Thus, for the geodesic computing when g > 7, if
there exists a small percentage p such that PEN (p) is efficient, the computing time of the geodesic
search will be saved significantly by using the quantile technique. From several numerical examples
we studied, we observe a relation between the number of genotypes ¢ and the smallest percentage
p such that \(H,G,p) = A\(H,G,1). To describe this relation formally, we define the efficiency of
p — quantile technique as follows. Let H x H be the set of all pairs of the starting histogram H

and the target histogram G, namely

HxH={(H G)|HGeH).

Let the efficiency of p — quantile technique be

EFF(p) = card({(H,G) € H x zlfjgz))éj efficient for (H, G)})

We conclude that the relation between g and EFF(g) is as follows: as the number of genotypes
g increases, the efficiency of p — quantile technique EFF(p) increases. To verify this conclusion,
we first use the following algorithm to estimate the efficiency of the p — quantile technique.
Algorithm 5.4: Estimate the Efficiency EFF(p)
Step 1. Randomly select n pairs of (H,G) satisfying that min(H) > 0.01, min(G) > 0.01 and
C(H,G) > 0.01, where H € H is the starting histogram and G € H is the target histogram. Name
this set HGP.
Step 2. For every pair of (H,G), compute the geodesic from H to G by using the brute force
simulation with the p — quantile technique. Recall that PEN (p) is the p — quantile penultimate
points set.

Step 3. For every pair of (H,G), check whether PEN (p) is efficient for (H,G) and we estimate

26



EFF(p) by ef f(p) as

_ card({(H,G) € HGP|PEN(p) is efficient for (H,G)})
e/1(p) = card(HGP)

card({(H,G) € HGP|PEN p) is efficient for (H,G)})
- :

We now analyze the accuracy of this estimation. When ef f(p) € [%, 1 - %] and n > 100,

ef f(p)— EFF(p) has the normal distribution with mean 0 and standard deviation efHp)1=el/(p))

n

approximately. Thus, the 90% confidence interval for EF F(p) is approximately

LG\/eff(p)(ln—eff(p))veff(p)H'G\/

n

[e FFp) — ef f(p)(1 - eff(p))] |

When ef f(p) € (1 — £,1] and n > 100, n - ef f(p) has Poisson distribution with mean n - EFF(p)

approximately. Thus, the 90% confidence interval of EF F(p) is approximately

eff(p)

n

el F(p) + 16 efj;(’”] .

leff(p) — 16

We tested the conclusion of the relation between g and EFF(p) on 10000, 5000, 240 pairs of
(H,G) when g = 3,4,5, respectively. The numerical results support this conclusion. We present
these simulations in Section 5.3.1.1. Based on our simulations, we conclude that PEN (5%) is
efficient for most pairs of (H,G) when g = 7,8. Thus, for these cases, the quantile technique can
shorten the computing time of geodesic computing by a factor of 20 approximately. We present

two examples of the geodesic computing when g = 7,8 using Algorithm 5.3 in the Section 5.3.1.2.

27



Table 5.1: Efficiency Computation for g = 3

P 1 0.75 0.5 0.25 0.1 0.05 0.01
Mean RT | 170s | 146s | 119 s 87 s 67 s 54 s 48 s
Std RT 40 s 7s 3s 2's 11s 5s 9s

Max RT | 203s | 168s | 126 s 90 s 101 s 62 s 66 s
eff(p) 100% | 100% | 100% | 94.83% | 54.43% | 34.74% | 19.78%

90% CI L | 98.4% | 98.4% | 98.4% | 94.48% | 53.63% | 33.98% | 19.14%

90% CI R | 100% | 100% | 100% | 95.18% | 55.23% | 35.50% | 20.42%

Efficiency computation for 10000 pairs of (H,G) when g = 3. Mean RT, Std RT, Max RT are the
mean, the standard deviation and the maximum of runtime of geodesic computing for 10000 pairs

of (H,G) among 20 nodes on the Opuntia cluster, respectively. 90% confidence interval of EFF(p)
is [90% CI L, 90% CI R].

5.3.1 Quantile Technique Simulations
5.3.1.1 Efficiency Computing

For g = 3, we randomly selected 10000 pairs of (H,G) satisfying min(H) > 0.05, min(G) >
0.05, and C(H,G) > 0.01. Let the growth factor be F = [200,200!%8 200112]  let the mutation
rate be m = 107% and let the mutation matrix be Q; ; = 0.5 for i # j. For every fixed p €
{1,0.75,0.5,0.25,0.1,0.05,0.01}, we use the p — quantile technique to compute the geodesic for
every pair of (H, G) with Mesh = 0.005 and compute ef f(p). We also compute the 90% confidence
intervals of EFF(p) for every p. We perform this computation task on 20 nodes with 10 cores on
each node on the Opuntia cluster. Hence, we compute the geodesics for 50 pairs of (H,G) on each
core. We present the mean of the runtime (Mean RT), standard deviation of the runtime (Std RT),
the maximum of the runtime (Max RT) among 20 nodes. We also present the ef f(p) and the 90%

confidence intervals ([90% CI L, 90% CI R}) for p = 1,0.75,0.5,0.25,0.1,0.05,0.01 in Table 5.1.

For g = 4, we randomly selected 5000 pairs of (H, G) satisfying min(H) > 0.05, min(G) > 0.05,

and C(H,G) > 0.01. Let the growth factor be

F = [200,200%%, 2001, 200! 12],

28



Table 5.2: Efficiency Computation for g = 4

P 1 0.75 0.5 0.25 0.1 0.05 0.01
Mean RT | 7108 s | 6505 s | 3411 s 417 s 177 s 135 s 92 s
Std RT 1968 s | 1288 s 875 s 71 s 9s 11s 30 s

Max RT | 10639 s | 9132s | 4313s | 298s 189 s 142 s 121 s

eff(p) 100% 100% 100% 100% | 93.9% | 66.29% | 25.1%
90% CI L | 97.74% | 97.74% | 97.74% | 97.74% | 93.36% | 65.22% | 24.12%
90% CI R | 100% 100% 100% 100% | 94.44% | 67.36% | 26.08%

Efficiency computation for 5000 pairs of (H,G) when g = 4. Mean RT, Std RT, Max RT are the
mean, the standard deviation and the maximum of runtime of geodesic computing for 1000 pairs

of (H,G) among 20 nodes on Opuntia cluster, respectively. 90% confidence interval of EFF(p) is
[90% CI L, 90% CI R]

let the mutation rate be m = 1078 and let the mutation matrix be Qi; = 1/3 for i # j. For
every fixed p € {1,0.75,0.5,0.25,0.1,0.05,0.01}, we use the p — quantile technique to find the
geodesic for every pair of (H,G) with Mesh = 0.005 and compute ef f(p). We also compute
the 90% confidence interval of EFF(p). We perform the geodesic computation for 1000 pairs
of (H,G) on 20 nodes with 10 cores on each node on Opuntia cluster and repeat for 5 times.
Hence, we compute the geodesics for 5 pairs of (H,G) on each core. We present the mean of the
runtime (Mean RT), standard deviation of the runtime (Std RT), the maximum of the runtime

(Max RT) among 20 nodes, ef f(p) and the 90% confidence intervals ([90% CI L, 90% CI R]) for
p=1,0.75,0.5,0.25,0.1,0.05,0.01 in Table 5.2.

For g = 5, we randomly selected 5000 pairs of (H, G) satisfying min(H) > 0.05, min(G) > 0.05,
and C(H,G) > 0.01. Let the growth factor be

F = [200,200%8, 200119 20011, 200'12],

let the mutation rate be m = 10~% and let the mutation matrix be Q;,j = 0.25 for i # j. For every
fixed p € {1,0.75,0.5,0.25,0.1,0.05,0.01}, we use the p— quantile technique to find the geodesic for

every pair of (H, G) with Mesh = 0.01 and compute ef f(p). We also compute the 90% confidence

29



Table 5.3: Efficiency Computation for g =5

D 1 0.75 0.5 0.25 0.1 0.05 0.01
Mean RT | 11610s | 7789 s | 3331s | 2058 s | 1056 s | 1769 s | 1600 s
Std RT 7698 s | 4613s | 1691s | 378s 282's 375 s 246 s
Max RT | 32274 s | 18721 s | 9842s | 2706 s | 1613 s | 2255s | 1997 s
eff(p) 100% 100% 100% 100% 100% 100% | 70.83%
90% CI L | 89.67% | 89.67% | 89.67% | 89.64% | 89.64% | 89.64% | 66.14%
90% CIR | 100% 100% 100% 100% 100% 100% | 75.52%

Efficiency computation for 240 pairs of (H,G) when g = 5. Mean RT, Std RT, Max RT are the
mean, the standard deviation and the maximum of runtime of geodesic computing for 240 pairs

of (H,G) among 20 nodes on Opuntia cluster, respectively. 90% confidence interval of EFF(p) is
[90% CI L, 90% CI R]

interval of EF F(p). We perform the geodesic computation for 240 pairs of (H, G) on 20 nodes with
12 cores on each node on Opuntia cluster. Hence, we compute the geodesic for 1 pair of (H,G) on
each core. We present the mean of the runtime (Mean RT), the standard deviation of the runtime
(Std RT), the maximum of the runtime (Max RT) among 20 nodes, ef f(p) and the 90% confidence

intervals ([90% CI L, 90% CI R]) for p = 1,0.75,0.5,0.25,0.1,0.05,0.01 in Table 5.3.

From Tables 5.3, 5.4, and 5.5, we see that for fixed p, as g € {3,4,5} increases, ef f(p) increases.
Thus, we predict that PEN (0.1) is efficient for most pairs of (H, G) for g = 6,7, 8. In Section 5.3.1.2,

we present one geodesic computing example with the quantile technique for g = 7, 8.

5.3.1.2 Geodesic Computing Example When g = 7,8

For g = 7,8, we search for the geodesic for one pair of (H,G) using Algorithm 5.3 with p =
0.1,0.2. If the cost of the geodesics obtained by using PEN(0.1) and PEN(0.2) is same, which is

ANH,G,0.1) = A\(H,G,0.2). We assume both PEN(0.1) and PEN(0.2) are efficient.

For g = 7, let the growth factor be

F = [200,200"°7, 200", 20099, 200"1%, 20011, 20012,

30



Table 5.4: Geodesic Example when g =7

Geogp | 0.6000 | 0.1000 | 0.1000 | 0.0500 | 0.0500 | 0.0500 | 0.0500
Geoy | 0.5094 | 0.1013 | 0.1007 | 0.0699 | 0.0721 | 0.0960 | 0.0505
Geoy | 0.3827 | 0.1116 | 0.1110 | 0.0843 | 0.0852 | 0.1612 | 0.0640
Geos | 0.2656 | 0.1145 | 0.1142 | 0.0948 | 0.0950 | 0.2382 | 0.0777
Geoy | 0.1700 | 0.1100 | 0.1100 | 0.1000 | 0.1000 | 0.3200 | 0.0900
Geos | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.4000 | 0.1000

Geodesic from H = [0.6,0.1,0.1,0.05,0.05,0.05,0.05] to G = [0.1,0.1,0.1,0.1,0.1,0.4, 0.1]

the mutation rate be m = 1078, the mutation matrix be Qi = 1/6fori # j. The starting histogram
is H =1[0.6,0.1,0.1,0.05,0.05,0.05,0.05], the target histogram is G = [0.1,0.1,0.1,0.1,0.1,0.4, 0.1]
and Mesh = 0.01, we use p = 0.1 and p = 0.2 to perform the geodesic computing following Algo-
rithm 5.3 on 16 nodes with 8 cores on each node. We obtained that A\(H,G,0.1) = \(H,G,0.2) =
0.0264. The geodesic we found is presented in Table 5.4. The maximum computing time among
all nodes is 3984 seconds and 4036 seconds for p = 0.1 and p = 0.2, respectively. The detailed

computing time on each node is in Appendix.

For g = 8, let the growth factor be

F = [200,200"°¢,200"97 200"%% 200", 2001, 20011, 200"-1%],

the mutation rate be m = 1078, the mutation matrix be Qij; = 1/7 for ¢ # j. When the
starting histogram is H = [0.5,0.1,0.1,0.1,0.05,0.05,0.05,0.05], the target histogram is G =
[0.05,0.05,0.1,0.05,0.05,0.1,0.5,0.1] and Mesh = 0.02, we use p = 0.1 and p = 0.2 to perform
the geodesic computing with the quantile technique on 32 nodes with 16 cores on each node. We
obtained that \(H,G,0.1) = A(H,G,0.2) = 0.0534. The geodesic we found is in Table 5.5. The
maximum computing time among all nodes is 5723 seconds and 5309 seconds for p = 0.1 and

p = 0.2, respectively. The detailed computing time on each node is in Appendix.

From these two examples, we can see that the computing time of the geodesic computing on

31



Table 5.5: Geodesic Example when g = 8

Geog | 0.5000 | 0.1000 | 0.1000 | 0.1000 | 0.0500 | 0.0500 | 0.0500 | 0.0500
Geoy | 0.4046 | 0.1027 | 0.0817 | 0.1155 | 0.0396 | 0.0632 | 0.1033 | 0.0893
Geoz | 0.2999 | 0.1009 | 0.0953 | 0.1125 | 0.0464 | 0.0771 | 0.1711 | 0.0969
Geos | 0.2087 | 0.0927 | 0.1037 | 0.1025 | 0.0510 | 0.0886 | 0.2506 | 0.1023
Geos | 0.1369 | 0.0799 | 0.1067 | 0.0871 | 0.0530 | 0.0963 | 0.3355 | 0.1047
Geos | 0.0850 | 0.0650 | 0.1050 | 0.0688 | 0.0525 | 0.1000 | 0.4200 | 0.1038
Geog | 0.0500 | 0.0500 | 0.1000 | 0.0500 | 0.0500 | 0.1000 | 0.5000 | 0.1000

Geodesic from H = [0.5,0.1,0.1,0.1,0.05,0.05,0.05, 0.05] to G =
[0.05,0.05,0.1,0.05,0.05, 0.1, 0.5, 0.1]

multi-cores with the quantile technique is reasonable for ¢ = 7,8. However, if we want to perform
the geodesic computing for g > 9, parallel computing with quantile technique is still not efficient
enough. Thus, we develop the following geodesic shooting algorithm for the geodesic computing
when g > 9. The number of genotypes does not impact the computing time of this geodesic shooting

algorithm strongly.

5.4 Modified Geodesic Shooting Method

Reverse geodesic shooting method is used to construct geodesics on Riemannian manifolds origi-
nally. Consider a smooth compact Riemannian manifold M of dimension r. Fix the time interval
[0,T], as well as the given starting and the terminal points H,G € M. Fix any initial vector Y in
the r dimensional tangent space to M at point G. There exists a unique reverse geodesics h(t) for

t € (0,T), which is the solution of a second order differential equation

R"(t) = F(h'(t),h(t)) for 0 <t <T,

verifying h(T) = G and h/(T) =Y. Moreover, h(t) = h(t,G,Y) is a smooth function of (t,G,Y).

The generic geodesic shooting algorithm on manifolds is to search for an initial vector Y tangent to

32



M at G, by minimizing the distance between h(0,G,Y) and H. The main differences of geodesics
searching in our model are that, time is discrete and the cost function is used to measure the distance
between histograms. Thus, we implemented a modified geodesic shooting method by minimizing

the cost of paths with a fixed number of steps from H to G.

We first explain the shooting algorithm for constructing the cost minimizing path with a fixed
number of steps from the starting histogram H to the target histogram G.
Algorithm 5.4.1: Shooting Algorithm for Paths with a Fixed Length

Step 1. We fix the number of steps of all paths to be T' > 3. Denote the secure set

SEC ={H € H|min(H) > 0.005}.

Y1 € SEC is the initial penultimate histogram.
Step 2. At iteration ¢ > 1, the current penultimate histogram is Y;. We construct a reverse
geodesic

RG(Y;) = [RGy = G, RGy = Y, RGs, ..., RGY,

by using the formula (4.12) and RG; € SEC fori =1,...,1. If | < T — 1, we stop this computation.
Otherwise, we continue to Step 3.

Step 3. We truncate RG(Y;) to construct a path with 7" steps from H to G as

FP,=FP(Y,;)=[H,RGr_1,RGr_2,RGr_3, ..., RG1 = G] (5.2)

Compute

Kt = X(m,RGT_l,RGT_Q) (5.3)

and Ay = A\(F'F).
Step 4. We compute the gradient of the A\(F'P;) with respect to Y; as stated in Section 5.4.1.

Name this gradient GRD; = GRD(Y;) € R9™1. —~GRD; is the search direction at iteration .

33



Step 5. We use the line search method to find a suitable step length oy € R for iteration t.

Step 6. Update the first g — 1 coordinates of the penultimate histogram for iteration ¢t 4+ 1 as

Yiyi(l:g—1)=Y,(1: 9g—1) —ay- GRD;.

Update Yi11(g) as Yiyi(g) = 1 — Y0 Vi(i).

Step 7. We continue to Step 8 if ¢ > 500 or ||H — Y;|| < 10~*. Otherwise, we repeat Step 2 to
Step 7.

Step 8. Suppose we stop this computation at iteration L, the cost minimizing path FP(T") with
T steps is selected as

FP(T) = argmin geypp, ... rp, yAH).

By using Algorithm 5.4.1, we are able to find a cost minimizing path FP(T) with T steps from
H to G. We now explain the modified geodesic shooting algorithm (Algorithm 5.4.2) for computing
the geodesic from the starting histogram H to the target histogram G.
Algorithm 5.4.2: Modified Geodesic Shooting Algorithm
Step 1. We start with the number of steps in a path being T' = 3.
Step 2. For the current number of steps T', we compute F'P(T') following Algorithm 5.4.1. Denote
the rate function of FP(T) as A(T) = N(F'P(T)).
Step 3. We update the number of steps to be T + 1, we compute F'P(T + 1) following Algorithm
5.4.1. Denote the rate function of FP(T + 1) as A(T' 4+ 1) = A(FP(T + 1)).

Step 4. We stop the computation once \(T'+ 1) > \(T'). Otherwise, we repeat Step 2 to Step 3.

34



5.4.1 Gradient of the Rate Function
5.4.1.1 Gradient of One-step Cost

Recall the one step cost from H to G,

C(H,G) = KL(G,®) + m>»_ F;H(j)Q;x(1 - Uy/U;),

J#k
where
KL(G,®) =} | G(j)log(G(j)/®(j),
o 05)
and
°0) =

Since G(g) =1— Y921 G(j) and H(g) = 1 — Y 9Z] H(j), C(H,G) is a function of H(1),..., H(g —

1),G(1),...,G(g — 1) and we have

oG~ "
0H(g) _
oH() ~ "

for j=1,...,9 — 1. Hence,

0%(j) _ Fi(F H) — F;H(G)(Fj - Fy)

OH(j) (F, H)?

forj=1,...,9 — 1, and




.,g—land k=1,...,g—1, and

for j =1,
dB(g) _ —F,(F.H) — F,H(g)(F; — F,)
OH(j) (F, H)?
for j =1,...,9 — 1. Therefore,
OKL Z _G(k:) 0P (k)
OH(j) = @(k) H(j)'
OKL 0 , (7) 0 G(9)
~ = —G(j)log —% — ——=G(g) log —==
0G(j)  0G(j) )l ®(j)  9G()) @)les g )
G() G(g)
log —== — log —==,
fa() o)
for j=1,...,9g — 1. We also have
oU; _ UGH)
OH(j)  F;H(j)*
oU; _ U;
0G(j)  F;H(j)
and
oUy _ Uy,G(g)
0G(j)  FyH(g)*
oy, U
0G(j)  FyH(g)’
forj=1,..,9—1. Let DUH;} = g—gi forj=1,..,gand k=1,...,9g — 1. Denote

U
SS(H,G) = mEH(j)Qjny; -
J

Jklj#k
We rewrite SS(H,G) as
. Uk
SS(H, G) = Z ijH(])Qj,kF—F

Ak gk=1,....,g—1 j

g—1 U,

<mFQH(g)Qg,kU + mEH (k) Qg
k=1 g

36

U(g)
(k)

) |



Thus, we compute the derivative of SS(H, Q)

with respect to H(s) and G(s) for s =1,...,g — 1 as

0SS(H, Q) B Us DUH, U, —UsDUH, s
Tom. mFgQg,s ( 7, + H(g) 02
U, DUH,Us —U,DUH,,
+mFQs g <UZ + H(s) 9, sUs2 g s)
Uw H(s)UyDUHg, DUH; ,
+ Z <mFSQs’k(U5 — Us2 ) + kaH(k>Qk,s Uk >
k=1,...,g—2|k#s
1 H(g)DUH, DUH,
f Y (R - 9P s ()0, 2 e )
Uy U Uk
k=1,...,g—2|k+#s g
0SS(H,G) U U
— Fi H(k
k#s,k=1,...,g—1
g-1 U
+ (ngk _kaH( )Qk’gUFH )
k=1 Ug
Therefore, for j = 1,...,g — 1, we obtain
0C(H,G) B OKL _ 0SS(H, Q) (5.4)
OH(j) OH (j) OH(j) '
and
0C(H,G) B OKL - 0SS(H,G) (5.5)
9G(j) 9G(7) oG(j) '

5.4.1.2 Gradient of One-step Geodesic

Recall that suppose the two histograms in a geodesic are Gry1 = y, Grio = 2, then we have

G = x where

Ts = Ts + MTWs,

37



R X
Ty = ———
S ZtXt7

w5:a5+,85_<i704+6>,

Fip Xy,
Qg = Z(Qs,kes,k - ﬁ@k,sek,s)v
kts ks
637k — eXp(— yS + yk )’

sts Fkiﬁk

z zZ
Bs=FeY Qur— (Fs+ yi > fokQok — TZQ > FeyeQr.sfrs),
k ok 595k

f (— o+

k= €Xpl— .

* Fsys Fk‘yk

Since z, y and z are histograms, we only need to compute gf;j and gﬁ: for s =1,...,g — 1 and

t=1,...,g — 1 and we have

9 _ 4
Ay,
92 _ 4,
8Zj

for j=1,...,9g — 1. Hence, for s =1,...,g — 1, we have

(Fyy) s

0Xs < Fy zs> ( 1 Zs ys(Fs—Fg)>
= €exXp - + - 2 )
ys Fs  Fsys <Fay>

0X, 1 ( F Zs)
= ——eX - =),
0z F P (F,y) ys

Fors=1,...,9,l=1,..g — 1, s # [, we have

aXs_ys(Fg_E)eXp< F Zs)
8yl <F7 y>2 < 7

0X,
0z

38



Denote DXy, = %)y(ls fors=1,...,9,l=1,...,g — 1. So, we obtain

0>, Xy ( Fy, Zk) ( 1 2k ye(Fi —Fg)>
St e L +
Oy PAEY  w) \E T Fax (F,y)?
eXp(<FS Zs) ys(Fg_Fk)

S en(p- A,
o Fy) F) (Fy)
0, X, 0X;
8zk N 8Zk ’

for k=1,...,g — 1. Denote DSXy; = %ytht for k =1,...,g — 1. Therefore,

0T o DXys,l(Et Xt) - Xs - DSXyl
Oy (> Xp)?

)

fors=1,....,9,l=1,....,g — 1,
N 0Xs
03,  %(Y,..X)

9z, (X%

fors=1,....,9g—1 and

025 X, 00X
8zl (Zt th)2 8zl
fors=1,..,9,l =1,...,g — 1, s # |. Denote Diy,; = gzj and Diz,; = %ZZS for s = 1,...,g and

l=1,...,g — 1. Recall that

e —exp | — Ys + Yk
sk Fsis Fk-i'k: .

Therefore, we have

Deys,k,s = 83/ =
s

fors=1,....,9g—1,k=1,...,g with s # k,

Oesp (ysDi'ys,k: Ty — ykzDii‘yk,k>
s,k + y

Deyg pr = = - -
S Yy, F12 1‘%

39



fors=1,....,9,k=1,...,9g — 1 with s £k,

_ Oegr YsD2ysy  ypDZyr,
Deys 1 = = e€sk -

8yl Fs.i'g Fk-ﬁi

fors=1,...,9,k=1,...,9,l=1,...,9g — 1 with [ # s and s # k, and

des . Ys Yk
Dezsp)=—F—=esk | 7g Dozs) — -5 Dz |,
82[ sts Fkxk

for s,k=1,...,9,and [ =1,...,g — 1. Recall

Fip Xy
Qg = § <Qs,kes,k - FX Qk,sek,s> .
kts s\ s
Hence, we have
Oag FrLQp,s DXyp Xs — XpDXysy  XpDeyg s
g D — —_— T ) ) ySy
o E Qs xDeys 7 Ck,s X2 + X,

k#l k#s

fors=1,...,9,l=1,...,g — 1,

X
oo F]CAX]CQ]Cy Dezk, , Xs — €k, SS
) ® = E (Qs,kDeZs,k,s - F - > X2 S )
%t s s
fors=1,...,g — 1, as well as
8as EQ[ s a)(l
= D — : — + X;D
92 Qs1Dezq X (€1, 92 + XiDezy 1)+
F. Xy,
§ (QspDezg iy — T x. Qr,sDezp 1),
ks k£l sevs

Oas
oy

and Doz, = 9as Recall

fors=1,..,9,l=1,...,9 — 1, s # 1. Denote Days; = R

Zs 2k
fsx = exp <— - ) .
B Fsys Fkyk

40



Hence, we have

8f8,k _ fs,kzs
dys  Fay?’
8fs,k _ fs,k
0z Fuys’
fors=1,..,9-1,k=1,...,g,
sk Fskz
Oy Fry?’
afs,k _ fs,k
Oz, Fyy’

fors=1,...,9,k=1,...,9— 1, as well as

afs,k

pu— ()7
oyl
afs k
2 =0
8zl ’

for | # s and | # k. Denote D fys 1 = 85[;;]“ and Dfzgp; = 863;21“.

Recall that

z
/BSZFSZQs,k_ Fs"‘jZfs,st,k F QZFkkaksfks
k S k S S

Thus, we have

8ﬁs = Zfsk@sk_ (F + >ZnySkSQSk+

ays ys
k+#s
2z
3 ZFkkaksfk:s_ Fuy =5 ) FrhQi,s D f Yhs.s:
sYs k#s

41



0B, 1 ( z5>
- T s s,k Fs + — s D Zs,k,s
92 " Ek Js Qs k " Ek QskDfzsk,

1 2
= 5 F - = F D .
Fsyg g kkak7sfk7s Fsyg % kkak7s fzk,s,s

fors=1,....,g—1. Fors=1,...,g,l=1,...,g — 1 and s # [, we have

0 Z zsFy D zsFi
Bs _ (Fs N s> QuiDfyor — zlez,52 fyisi 2 lQl,;fl,s,
8yl Ys Fsys Fsys

op Z z
82; - <Fs * ys> D QuiDfzsks = 5z > FrtnQiaD 201
S

k#s Fsys k#s

Denote DBy, ; = %ﬁj and Dfzs; = %—i;, fors=1,....,9,l=1,...,g — 1.

Recall that

w3:a5+,35—<-@704+ﬁ>-

For s=1,...,9 — 1, we have

oz, R R
W = Z Dzyy s(ou + Bt) + Z¢(Daye,s + DBy s),
s t

T, a+ . )
<8zsﬂ> = ; DCBZt,s(Oét +6) + l't(Dazt7S + Dﬁzt,s)-

Denote DSY; = 8<%Zj/8> and DSZ, = 3(%2—5) Therefore,

Ows
"5 — Doy + DBys, — DSY.
3yz

0
Ws = DOéZs,l + D,BZSJ —DSZ,.
0z

Denote Dwy,; = %’;’f and Dwzg; = 837125-

Recall that

Ts = Ts + MTsWs.

42



Thus, we have

0 . .
azs = Dy, (1 + mws) + TomDwys , (5.6)
1
0x R .
5 Dizs (14 mws) + ZsmDwz,y, (5.7)
2l

Fors=1,..,9—1,1=1,...,9—1.

5.4.1.3 Gradient of Rate Functions of Truncated Reverse GGeodesics

Given a reverse geodesic RG = [RG1, ..., RGy], RG is determined by the target histogram RG; = G
and the penultimate histogram RGs = Y. We truncate this reverse geodesic to a trajectory with
T steps as TRG = [RGp, RGr_1,...,RGy = Y, RG; = G]|. We want to compute the derivative of
AT RG) with respect to Y (1),...,Y (g —1). First, we clarify the notations of derivatives of one step

cost function and reverse geodesic function x. Recall that C'(H,G) is the one step cost from H to

G, denote
_0C(H,G) | 0C(H,G) 0C(H,G)
_0C(H,G) [ 0C(H,G) 0C(H,G)
D2C(H,G) = 9C = aG) "“’GG(g—l)]'

Recall that if h* = [hg, h1, he,...] is a geodesic and we have hyy; = y, hypo = z, then hy = = =
x(m,y, z), where t > 0 and x(m,y, z) is defined by formula (4.12). We denote the derivatives of =

with respect to y and z as

Oz Oz Oz
o1 Oyo  Byg
O Oxy Oy Oz2
Oy1 Oy2 Tt Oyg—1
DlX(mﬂy:z):ai: I 5
y .
O0xg_1 Oxg_1 O0xg_1
Y1 0y2 T Oyg-1

43



Oz1 Ozy Oz
0z1 0zo Tt 0zgo1
D2 _ _ z1 z2 T Zg—1
x(m,y,z) = =~
Oxg_1 Org_1 Oxg_1
021 0z2 Tt 82971
Recall that
T-1
MTRG) = C(RGit1, RG;).
i=1
Thus,
OMTRG) = C(RGiy1, RGy) (5.:5)
R oY ‘
= OC(RG,11,RG,) ORG, 4 | 0C(RGiy1, RGy) ORG; 59)
B pat ORG;+1 Y ORG; oy - '
We can compute %ﬂ%@) and %W as formula (5.4) and formula (5.5) fori =1,...,T.
We also know
ORG, 0G .
5 -9y Zero Matrix, (5.10)
ORGy 0Y . .
Y -9y Identity Matrix. (5.11)
Fori=1,...,T — 2, we have that RG;;+2 = x(m, RGi+1, RG;). Thus,
8RG¢+2 8RG¢+1 ORG;
— Dlx(m, RGy.1, RG, D2x(m, RGy.1, RGy) i 5.12

for i =1,...,T — 2. Thus, we can compute the gradient % by using formula (5.8) to formula

(5.12).

44



5.4.2 Modified Geodesic Shooting Example

In this section, we present two computational examples by using the modified geodesic shooting
method. One is the same example we used to present the brute force simulation with quantile
technique for ¢ = 8. We use this same example to show that we can obtain a geodesic for this
example in a much shorter time by using the modified geodesic shooting method. This geodesic is
also very close to the geodesic we obtained by using the brute force simulation. The other example
is a geodesic computation example for g = 10 by using the modified geodesic shooting method.
We use this example to show that the computing time of this modified geodesic shooting method
is not impacted by the number of genotypes strongly. Therefore, this modified shooting algorithm

can perform well for geodesic computing when g > 9.

5.4.2.1 Modified Geodesic Shooting Example 1

Recall the example with g = 8 in Section 5.3.1.2. The growth factor is

F = [200,200"%%,200"7, 200"%, 200" %, 200" 1°, 200" **, 200" *?],

the mutation rate is m = 1078, the mutation matrix is Qi; = 1/7 for i # j, the starting histogram
is
H =[0.5,0.1,0.1,0.1,0.05,0.05,0.05, 0.05],

the target histogram is

G = [0.05,0.05,0.1,0.05,0.05,0.1,0.5,0.1]

and the mesh size is Mesh = 0.02. By using the brute force simulation with the quantile technique

on multicores, we estimated the rate function of the geodesic from H to G to be 0.0534 and the

45



C{H,Kt} Norm of GRDt

01z 4
0.1 &
S 0.08 =
el a 2
= 0.06 g
]
0.04 = ll
L I"\- - -
0.02 {). r— e
0 200 400 BO0 0 200 400 &00
iteraions t iteraions t
Rate function of FP_ 102 [1¥ =Y ¢ q
. 01 5
&
S 0.08 -
5 =3
= 0.06 oy
E 2
@ 004 \ i
: \
0.02 0
0 200 400 B00 0 200 400 BO0
iteraions t iteraions t

Figure 5.1: Modified Geodesic Shooting Example 1 with g = 8

Top left figure presents the one step cost C'(H, K;) from H to K; at iteration ¢ = 1,...,500. Top
right figure presents the norm of the gradient GRD; at iteration ¢ = 1,...,500. Bottom left figure
presents the rate function \(F'P;) at iteration ¢t = 1, ..., 500. Bottom right figure presents the norm
[|Y: — Y;—1]| at iteration ¢ = 2, ..., 500.

penultimate histogram of this geodesic to be

[0.0850, 0.0650, 0.1050, 0.0688, 0.0525, 0.1000, 0.4200, 0.1038].

The maximum computing time among all nodes is about an hour. If we use the modified geodesic
shooting algorithm to search for the geodesic from H to GG, we find that the estimated rate function

is 0.0350 and the estimated penultimate histogram is

[0.0837,0.0650,0.1129,0.0663, 0.0566, 0.0999, 0.4173, 0.0982].

46



The total computing time is around 20 seconds by using one node on the Opuntia cluster. In

Figure 5.1, we present the one step cost C(H, K;), where K, is defined as formula (5.3), the norm

of gradient GRD; = BAéI;;Pt)j the rate function A(F'P;) and the norm of Y; — Y;_; for ¢t = 1,...,500,

when we fix the number of the steps in the path to be 7. From this figure, we can see that A\(F'P;)
decreases very fast using this modified geodesic shooting method. By using this modified geodesic

shooting algorithm, we are also able to find a geodesic in a much shorter time.

5.4.2.2 Modified Geodesic Shooting Example 2

We now present a geodesic computing example when g = 10 by using the modified geodesic shooting
method. This example shows that this shooting algorithm performs very well for geodesic searching

when g > 9.

We first define the parameters of this example. Let the growth factor be
F = [200,200"%%,200"%% 200" 20097, 200, 2001-%?, 200119, 200", 200**2].

Let the mutation rate be m = 107®. Let the mutation matrix be @Q;; = 1/9 for i # j. Let the
starting histogram be H = [0.45,0.10,0.10, 0.05,0.05, 0.05, 0.05, 0.05, 0.05, 0.05]. Let the target his-
togram be G = [0.05, 0.05,0.05, 0.05,0.05, 0.05,0.05,0.10,0.45,0.10]. We use the modified geodesic
shooting algorithm to search for a geodesic from H to G and find that the estimated rate function

of this geodesic is 0.0277 and the estimated penultimate histogram is
[0.0741,0.0616,0.0626, 0.0561,0.0567, 0.0566, 0.0555, 0.0974, 0.3818, 0.0977].

The total computing time is around 40 seconds on one node of the Opuntia cluster. In Figure 5.2,
we present the one step cost C'(H, Ky), where K; is defined as formula (5.3), the norm of gradient
GRD; = OMFR) the rate function A(FP;) and the norm of Y; — Y, for ¢t = 1,...,500 when we fix

oYy

the number of the steps in the geodesic to be 8.

47



C(H,K,)

MNorm of GRDt

0.1
4
E-I—'
,...LD_DS G 3
4 e
- o
O 0.06 E i
]
g — N
004t 1
0 200 400 BO0 0 200 400 &00
iteraions t iteraions t
Rate function of FP_ 102 [1¥ =Y ¢ q
. 01 g
(=
[T
‘5 0.08 B
C e
.9 )
= 0.06 > 4
C g
= =
5 0.04 2
4
=
0.02 0 g |
0 200 400 B00 0 200 400 BO0
iteraions t iteraions t

Figure 5.2: Modified Geodesic Shooting Example 2 with g = 10

Top left figure presents the one step cost C'(H, K;) from H to K; at iteration ¢ = 1,...,500. Top
right figure presents the norm of the gradient GRD; at iteration ¢ = 1,...,500. Bottom left figure
presents the rate function \(F'P;) at iteration ¢t = 1, ..., 500. Bottom right figure presents the norm
[|Y: — Y;—1]| at iteration ¢ = 2, ..., 500.

From this example, we can see that the computing time of geodesic computing using the modified
shooting method is not impacted strongly by the number of genotypes g. When we increase g from
8 to 9, the computing time increases from 20 seconds to 40 seconds. In comparison, the computing
time of the geodesic searching using the brute force simulation would increase at least by a factor of

10 when g increases 1. Thus, this modified geodesic shooting method has a much better efficiency

for the geodesic computing when g > 9.

48



Chapter 6

Fixations

The rare events of our interest are due to the fact that the frequencies of certain intermediate-
strength genotypes become large in the bacterial population. Such rare events are called fixations.
For a fixed genotype J < g and a level 3, define a target set TAR(S) = {H € H|H(J) > }. For
a fixed large T, H = [Hy, ..., Hr] € Qr41 is a histogram trajectory of length 7'+ 1, where H; € H.
Since the g-cells have the largest growth factor Fy, Hr(g) will tend to 1 as T — oo for N large.
We say that H enters the target set TAR(S) if there exists a step 1 < ¢ such that Hy(J) > 3, and
denote this event as Eve(J, 3). This event is a rare event when § is relatively large and this event
is the fixation of genotype J. Let Py g, (Eve(J, 5)) be the probability of the event that trajectories
starting with histogram Hy and population size N realize the event Eve(J,3). In fact, when the
population size N is large, the fixation of genotype J happens very rarely even for § > 0.2. We

will show this fact by presenting an example in Section 6.1.

6.1 Example of Fixations

We now discuss a fixation example with g = 3 genotypes. We are interested in the fixation of

genotype J = 2 of trajectories starting from the histogram Hy = [0.9,0.05,0.05]. We first analyze

49



the highest percentage of genotype 2 that the mean trajectory starting from Hy reaches.

0.18

0.16

0.14

frequency of genotype 2

Figure 6.1: mean trajectory starting from hy = [0.9,0.05,0.05]

(=)
=
(o8]

0.1¢

starting histogram H

0.2 0.4 0.6 0.8 1
frequency of genotype 1

Figure 6.1: Mean Trajectory

0

We

present the mean trajectory h starting from [0.9,0.05,0.05] is in Figure 6.1. The highest frequency

of genotype 2 of the mean trajectory h is

max h(2) = 0.167180.
t=0,1,..

For large population size IV, the random trajectories will follow this mean trajectory h in a thin

tube. We set f = 0.167182, which is slightly larger than max; ht(2), we use the brute force

simulation to estimate the frequency of the event Ewve(J, 3) for N = 10'°,10'1,10'2, 10 in the

following Table 6.1. We can see that when N = 103, the event Eve(J, ) already becomes rare.

Thus, the event Eve(.J,3) is a rare event when 3 > 0.2 and N > 10'3.

When N = 10'3, the brute force simulation takes 7 minutes to generate 5 - 107 trajectories on

50



Table 6.1: Brute Force Simulation of Eve(.J, )

N | num of simulation | frequency of Eve(J,3) | stand error
1010 106 0.4456 49.10714
10! 106 0.3369 4.7-1074
1012 106 0.0928 2.9.-1074
1013 5 x 107 2.8 x 1076 2.4-1077

Brute force simulation for different population size starting from Hy = [0.9,0.05,0.05].

50 cores on Opuntia cluster. If we want to simulate a much rarer event (5 > 0.3), brute force
simulation becomes too costly. Thus, we implement the importance sampling method and the

genealogy method to study the rare fixations in this dissertation.

6.2 Optimal Trajectory G Realizing Fve(J, )

Paper [3] obtained the following large deviation result,

. 1 .
Jim - log B iy (Bvel §)) = AEve( ) = inf  A(H)

Therefore, one approach of estimating Py, (Eve(J, 3)) is to estimate infgge pye(s,8) A(H ). Hence,
we want to find an optimal trajectory that realize the event Fve(J, ) with the smallest cost. We

develop the following algorithms to search for this optimal trajectory G.

6.2.1 Algorithms for Searching for G

Algorithm 6.1: Brute Force Simulation for Searching for G

Step 1. TAR = TAR(p) is the set of target histograms. Mesh is the mesh size. We use the mesh
size Mesh to discretize the set TAR. Let DT AR be the discretized set of target histograms. Hy is
the starting histogram.

Step 2. For every target histogram G € TAR, PEN(G) = {H € H|H # G} is the set of

51



penultimate histograms set for G. We use the brute force simulation Algorithm 5.1 in Section 5.1
to search for the geodesic from Hy to G. Suppose card(DTAR) = n, let Py, ..., P, be the geodesics
from Hj to all the target histograms in DT AR.

Step 3. The optimal path G for realizing Fve(J, ) is

G = argmin He{P1,...,Pn})‘(H>-

In Step 2 of Algorithm 6.1, we can also use the parallel computing technique, the quantile
technique, and the modified shooting algorithm instead of the brute force simulation algorithm to
search for the geodesic from Hy to a target histogram. We also implement the following multi-scale
algorithm to improve the efficiency of the algorithm for searching for the optimal trajectory G.
Algorithm 6.2: Multi-scale Algorithm for Searching for G
Step 1. We start with the set of target histograms T AR, the set of penultimate histograms
PEN =H — TAR and the mesh size Mesh = 0.01.

Step 2. Given the current TAR, PEN and Mesh, we find the optimal trajectory G = [Gy =
Hy,...,Gr—1,Gr] by using Algorithm 6.1.
Step 3. Update the set of penultimate histograms T AR, the set of penultimate histograms PEN

and the mesh size Mesh as

new TAR = {H||H — Gr|s < 3-mesh},

new_PEN = {H||H — Gr_1|oc < 3-mesh},
new_Mesh = 0.1 - Mesh.

Step 4. Given the new T AR, new_PEN and new_Mesh, find the new optimal trajectory G’ by
using Algorithm 6.1.

Step 5. Stop the algorithm if [A\(G) — A(G’)| < 1073 - A(G). The optimal trajectory for realizing

52



the event Eve(J, ) is G'.

6.2.2 Examples of the Multi-scale Algorithm

We present two examples of searching for the optimal trajectory G for realizing the event Eve(J, 3)
by using the multi-scale algorithm. By presenting these two examples, we show that the multi-scale

algorithm is much more efficient than the brute force Algorithm 6.1.

6.2.2.1 Example 1

Let F' = [200,200'%8 200'2°], m = 10~" and

0 05 05
Q=105 0 05

05 05 O

Select Hy = [0.8,0.1,0.1], J =2, § = 0.7. We start with
TAR={G | G(1) € [0.1, 0.69],G(2) = 0.7},

PEN = {G | G(1) € [0.05, 0.3],G(2) € [0.1, 0.7)}

and the Mesh = 0.01, we generate 7 x 10° reverse geodesics to find the optimal geodesic G to realize
the event Eve(2,0.7) by using the multi-scale algorithm. The optimal trajectory G is presented in
Table 6.2 and A(G) = 0.2169. The mesh size decrease to 10~ from 0.01 through the computation.

This computation takes 120 seconds on one core on Opuntia. If we use the brute force simulation

020 014

algorithm with Mesh = 107°, we will need to generate 10?° reverse geodesics, which is 10'4 more

costly than the multi-scale algorithm.

We also find the optimal trajectories when S = 0.3,0.5 using the multi-scale algorithm. The

93



Table 6.2: Optimal Trajectory G

Go | 0.8000 | 0.1000 | 0.1000
G | 0.7579 | 0.1927 | 0.0494
G2 | 0.6566 | 0.3071 | 0.0363
Gs | 0.5253 | 0.4345 | 0.0402
Gy | 0.3847 | 0.5574 | 0.0579
Gs | 0.2532 | 0.6530 | 0.0938
Gs | 0.1450 | 0.7000 | 0.1550

Optimal trajectory for Eve(2,0.7) given Hy = [0.8,0.1,0.1].

Table 6.3: Optimal Trajectory G

Go | 0.8000 | 0.1000 | 0.1000
G | 0.6383 | 0.1805 | 0.1812
Go | 0.4266 | 0.2578 | 0.3156
Gs | 0.2233 | 0.3000 | 0.4767

Optimal trajectory for Eve(2,0.3) given Hy = [0.8,0.1,0.1].

Table 6.4: Optimal Trajectory G

Go | 0.8000 | 0.1000 | 0.1000
G1 | 0.6759 | 0.2068 | 0.1173
Go | 0.5002 | 0.3325 | 0.1673
Gs | 0.3107 | 0.4413 | 0.2480
Gy | 0.1514 | 0.5000 | 0.3486

Optimal trajectory for Eve(2,0.5) given Hy = [0.8,0.1,0.1].

o4



optimal trajectories for event Eve(2,0.3) and Eve(2,0.5) are in Tables 6.3 and 6.4, respectively. We
plot these three optimal trajectories in Figure 6.2. We can see these three optimal trajectories shoot
much higher than the mean trajectory. As 3 increases, the optimal trajectories take more steps to
realize the rare event Fve(J, 3). However, the total number of steps in the optimal trajectory of the
rare events in this discrete time model remains less than 15 steps most of the time. In comparison,

the optimal trajectory in a continuous time stochastic model often have many more steps.

o I r——
"\‘\_ —=mean Lraj
W, —=Eye(2,0.7)

0.6 b —=Eve(2,0.5)|
\\\ —= Eve(2,0.3)

) = =
(%) =N (¥

percentage of genotype 2
[
[ )

mean trajectory

O.LE starting histogram H,,

0 0.2 0.4 0.6 0.8 1
percentage of genotype 1

Figure 6.2: Optimal Trajectories and the Mean Trajectory

Hp = [0.8,0.1,0.1], the black path is the mean trajectory. Green, blue, and red paths are the
optimal trajectories realizing Fve(2,0.3), Eve(2,0.5) and Eve(2,0.7), respectively.

6.2.2.2 Example 2
The starting histogram is Hy = [0.7,0.1,0.1,0.1], the growth vector is

F = [200, 200", 200%19, 2001-2],

95



and the mutation matrix is

0 03 03 04
03 0 03 04
03 03 0 04

03 03 04 O

the mutation rate is 10~7. We use the multi-scale algorithm to search for the optimal trajectories
G for realizing the event Fve(3,0.3), Eve(3,0.5) and Eve(3,0.7). We present these three optimal
trajectories in Appendix. We plot these optimal trajectories in Figure 6.3. The computation of
searching for G by using this multi-scale algorithm takes about 400 seconds on one core of Opuntia
for each of these three events. The mesh size decreases to 10™% from 0.01. We generated around
3-107 inverse geodesics to find the optimal trajectory G. In comparison, we need to generate around
10?4 reverse geodesics to search for the optimal trajectory by using the brute force simulation with
mesh size 107* and when g = 4. So the multi-scale algorithm improves the efficiency of the

computation of searching for the optimal trajectory G significantly.

96



0.7

0.6
05 \ —= mean traj
\\ —=Fve(3,0.7)
—=Eve(3,0.5)
0.4 \\ ——==Eye(3,0.3)

0.3

0.2

0.1

percentage of genotype 3

0.1
0.05

6% 1 T \ Y =

0 0.2 0.4 0.6 0.8 1
percentage of genotype 1
percentage of genotype 2

Figure 6.3: Optimal Trajectories and the Mean Trajectory

Hp =[0.7,0.1,0.1,0.1], the black path is the mean trajectory. Green, blue, and red paths are the
optimal trajectories realizing Eve(3,0.3), Eve(3,0.5) and FEve(3,0.7), respectively

o7



Chapter 7

Importance Sampling in Path Space

7.1 Background of Importance Sampling

Importance sampling is an important Monte Carlo simulation technique which increases the fre-
quency of rare events happening in the stochastic model by using a manipulated probability dis-
tribution. Consider a rare event with probability p = 1079, if we use the brute force simulation,
we at least need a sample size of 10% to guarantee that the standard error \/m satis-
fies \/W < 10%p. If we use the importance sampling method, the rare event becomes a
common event of the stochastic model. A random sample with a much smaller size is needed to

guarantee the same accuracy.

One of the commonly used families of manipulated probability distributions is the exponential
shifts family. We have introduced the large deviation theory results of the path space of the
stochastic model in Chapter 4. The exponential shift with the large deviation minimizer is the
optimal manipulated distribution among the exponential shift families. We study this importance
sampling technique in details in this chapter. We first compute the Cramer transforms of Poisson

distribution and multinomial distribution by following the definitions in book [2].

98



7.2 Cramer Transform of Poisson Distribution and Multinomial

Distribution

Definition 7.2.1. p is a probability density function on R. fi: R — [0, co] defined as

i) = [ oy

is the Laplace transform of u.

Definition 7.2.2. Define the Cramer transform of the measure p in dimension 1 as A : R — [0, oo

Az) = fg}g[tw — log fi(t)] (7.1)

for all z € R.

Let X be a random variable following the Poisson distribution jip,; with mean a. Hence,

Lpoi(1) = a” x e~%/rl. The Laplace transform of i, is

fipoi(t) = Z etfake 0/l = @ Z(eta)k/k! = eale'- 1), (7.2)
k=0 k=0

By Definition 7.2.2, we compute the Cramer transform of Poisson distribution

Apoi(z) = igﬂg(tm —a(e' — 1)) = xlog(xz/a) — x + a, (7.3)

which is also called the large deviations rate function for the probability fi,e;.

Definition 7.2.3. p is a probability density on R*. i : R* — [0, 00] defined by

is the Laplace transform of p.

99



Definition 7.2.4. Define the Cramer transform of the measure g in dimension & as, X : R¥ — [0, o0]

A(z) = sup [(z,t) — log fu(?)] (7.4)

for all z € R,

Fix any p = [p1,...,pg) with p; > 0 and p; + ... + p = 1. For a random vector ¥ = (Y1,Y5,...,Y})

following the multinomial distribution pt,,,; = tin [p,.....p,], We have for any y = (Y1, ey Yk )

Bt (V) = o fpr ] (U)

n!

— ﬁpm 2
Y1:y2---- Yk

Yk
1Py Py

and the Laplace transform of multinomial probability distribution pu,,,,; is

k

ﬁ'mul(t) = (Zpieti)n- (75)

i=1
Thus, log fi,,,; = nlog(pie' + ... + pge'*). The Cramer transform of multinomial distribution is
k

At (@) = $Up[{t, y) = 108 fiua (D] = D _ yilog(yi/pi) — nlogn. (7.6)

=1
7.3 Exponential Shift Distribution of the Poisson Distribution

In Section 7.2, we computed the Cramer transform of Poisson distribution as formula (7.3). Recall
that the Laplace transform of Poisson distribution is fipei(t) = Y po (€™ ppoi(n). The Cramer
transform of Poisson distribution is obtained when t* = log(x/a), which is the solution of

_ ﬂ;oi (t)
fipoi (1)

5} N
a(tm — log fipoi(t)) = x = 0.

60



3mﬂpoi (n)

(D Since Y o7 v(n) = 1, v is a probability mass function.

Define a function v (n) =

Moreover, for t* = log a%?
tn n
€ Mpoi(n) _z

fipoi(t)  e*n!’

Ypoi (1) = Y+ (n) =

which is the probability mass function of Poisson distribution with mean x. 7, is the optimal
exponential shift distribution of the Poisson distribution pe. Recall that E, . (X) = a. If we

change the distribution of random variable X from iy to Ypoi, we have

~
Hpoi
E'Ypoi (X) = Zn : 'Ypoi(n) = ApoA = ‘ra
n Mpoi
and the corrective weight,
fipoi (k) - —tk K
Waoi(k) = a5 = fmoi(D)e™™ = (2) exp( — a). (7.7)
ﬂpoi(t)
In conclusion, if we want to sample a Poisson variable X ~ p,0; to be around = # E,,_,(X), we

can change the probability mass function of X to 7,,. By this change, we will be able to sample

a value very close to x easily by following the distribution v, since E, . (X) = =.

7.4 Exponential Shift Distribution of the Multinomial Distribu-

tion

Similar as above, let Y follow the multinomial distribution p,,,;(y) = tnp(y). The Laplace trans-

form of this multinomial distribution u,,,; is

k
I:l’mul(t) = Z e<y’t>umul(y) = (Zpieti)n'
Yy =1

61



The Cramer transform of multinomial distribution is obtained when ¢; = log Zy)—z, by solving

0 8l:‘l’mul 1

— —log ii =g — -0
g ({19 —108 (1) = i — el = =0

Let

Ay (2
7Zk;)) — M l( )

z=(z1,... - "
7mul( ( 1 Ilfmul(t )

tyzi4...+tiz
et k kumul(zla-'-azk)

ﬁ’mul(t*)
__ont oy (%)Zk
bzl 'n’ T nl

Ymui 1S the optimal exponential shift distribution of the multinomial distribution p,,,,; and it is also
a multinomial distribution. If we change the probability mass function of Y from p,,,,,; t0 ¥ppuis We
have B, ., (Y;) = % for i = 1,...,k. Suppose we sample Y = z by using the distribution =,,,;, we

have the following corrective weight

/J/mul(z) ~ *\ ,—(z,%) nP1yz Dk -
Winpa(2) = Emul=) — g (1%)e= =) = Py (Bhya 7.8
1(2) o) P (t7) GG (7.8)

In conclusion, if we want to sample a multinomial random variable Y to be close to y # np, we
can change the probability mass function of Y to 7,,,;. By this change, E . (Y) =y and we will

be able to sample a value very close to .

7.5 Forced Simulation of One-step Transition

We have introduced the optimal exponential shift distributions of the Poisson distribution and the
multinomial distribution. We now introduce the forced simulation of the one-step transition from

H to G by using these two exponential shift distributions.

On day n, we start with histogram H, = H and we want to force H,+; = G for day n + 1.

62



However, P(Hp4+1 = G|H, = H) is a very small probability if G is not close to E(Hy41|H, = H).
Therefore, we implement the following forced simulation algorithm.

Algorithm 7.1: Forced Simulation of One-step Transition

Step 1. We start with the histogram H,, = H and population size N. The population first grows
with the growth factor F' = [F(1),..., F(g)] deterministically. Compute the sizes of the g colonies
of cells as siz = (siz(1), ..., siz(g)) with siz(i) = NH(i)F (i) for i =1, ..., g.

Step 2. Compute the optimal mutation matrix R* from H, = H to H,+1 = G by using the
following formula,

R} = [rj Nl = [mNF;H(j)Q; xUk/Ujl, (7.9)

where U; = exp (%’(])) Next, we want to force the random mutation matrix R,, of day n to be
J

close to R*.

Step 3. R, = (Rj) is the random mutation matrix on day n. R;j is the number of mutations

from j-cells to k-cells. py is the probability mass function of Poisson distribution with mean .

Recall that R;, follows the Poisson distribution py Lik with mean
NLjr=m-siz(j)Qjr = mNH; F;Q; .

In order to force R;j to be close to R;f w» We change the probability distribution of R;} to PR, -

Suppose we sample R;j = 2z = Nrjy, the corrective weight for mutation Wye;(2jx) is

pNL, (N7 1) Ljg...
Wooi(zix) = L = (==)"*exp(N (15 — Ljk))- 7.10
pm( 7, ) er;.‘yk(Nrj,k) (rjyk) ( ( 7.k 75 )) ( )
We compute
1 Lk .
N log Wyoi(2jk) = ()1 log — )+ (55— Ljk)- (7.11)
Js

Let P4 denote a probability mass function defined as

PA(R) = B(R, = R|H, = H),

63



where A = (A;;)gxg € RI*9, A;; = 0 and R;, follows p4,,- Denote Siz = (NLj)gxg- The

corrective weight for mutation Wp,,(z) for the mutation stage is

PSiz z
Wmut(z) = Pp- ((Z)) = H Wpoi(zj,k)- (712)
Jok|i#k
We also know
1 1 Lj N
108 Psiz(2) = 7 log Pre(2) + > (rjnlog S Lig)- (7.13)
Giklik Ik

Step 4. After the random mutations of step 3, the population histogram is transformed to J =

(J1, ..., Jg) given by the formula

g = NEH; = 5 (Bjk — Riy)
! NF;H;

We need to randomly select N cells from the population after growth and mutations. Let Y =
[Y1,Y, ..., Y,] be a random vector where Y} is the random number of j-cells being selected. Recall
that Y follows the multinomial distribution puy, s and E, ,(Y;/N) = J;. We want Y/N to be close
to G # J. So we change the distribution of ¥ to pn.g. We sample Y = = [z1,..., 24| for the
selection stage, the actual histogram we get for day n + 1 is H,,4; = x/N. Compute the following

corrective weights for selection W for the selection stage by formula (7.8) as

:U’NJ(‘T) N Ji x Jg z ‘]j z;

Weet(x/N) = ——~ =N L. 9 = —= )", 7.14
(/) = LS NN (o =TT (7.14)
Thus, let G’ = /N, we have

1 1
N logP(H,41 = G'|R, = 2, H, = H) = NloguNJ(a:)

1 1
=N log un,c(z) + N log Wi () (7.15)

64



Step 5. The corrective weight for one-step transition H, = H — R, = z — Hp,4+1 = G' = x/N is

n_ Psiz(2) pna(z) ). .
Wstep(Ha Z, G ) = Pp- (Z) MN,G(x) = Wmut( ) Wsel(G )

Since Witep(H, 2, G') takes extremely small values for large N, we compute

LW(H,z,G") = %log(Wstep(H, 2, G)

J' L,k *
=Y ¢ 1og(a?) + > (rjxlog % +77 e — Ljg). (7.16)
j T Gkli#k gk

We formulate the extremely small probability P(H,+1 = G', R,, = z|H,, = H) as
P(Hp41 =G R, = z|H,, = H) = Pp+(2) - unc(G'N) - exp(N - LW (H, z,G")).

We obtain the following lemma from the formulations of Algorithm 7.1.

Proposition 7.5.1. Let N be the size of the population. py is the probability mass function of
the Poisson distribution with mean X. For any H,G € Hy and any R/N =r € Ky(H), we can

formulate the probability P(H,+1 = G, R, = R|H,,) as
P(Hn+1 = G, R, = R|Hy) = Pr+(R) - un,c(NG) - exp(N - LW (H, R, G)).

where

[INF;H(5)] — >k (Rjk — R )

= NFH() |

65



T;,k = ijH(j)Qj7kUk/Uj,

G) )
FiH(5)"

U; = exp(

and Pr(R) = [, 21 PRz, (Rjk)-

66



Chapter 8

Estimation of the One-step Transition

Kernel

8.1 Estimator of the One-step Transition Kernel
Recall the probability of one step transition from H to G is defined as

QH,G)=P(Hpp1 =G|H, =H)= > P(Hny1 =G, Ry =R|H, =H).
R/NeKy(H)

If we use the forced simulation distribution, we can formulate Q(H, G) as

QH,G)= Y  Pp(R) punc(NG) exp(N-LW(H,R,G))
R/NeKyn(H)

=unc(GN) ) exp(N-LW(H,R,G))Pg-(R).
R/NeKy(H)

Therefore,

Q(Hv G) = :U'N,G(GN)EPR* (X(RTL>)

67



where

X(Ry,) =exp(N-LW(H, R,,Q))

Since X(R,) > 0 and pn,q(GN) >0,

Er- (X (Ba))) = Er- (X (Ry)) = )

= < o0,
pn,G(GN)

where Ep+ (X (Ry,)) is the expectation of X (R,,) when R, (j, k) follows the Poisson distribution with

mean R;“k By the strong law of large number, we obtain the following proposition.

Proposition 8.1.1. Let N be the size of the bacterial population. For any H,G € Hy, let R*
be the optimal mutation matriz from H to G computed as formula (7.9). Q(H,G) is the one-step
transition kernel from H to G. Let R',...,R¥ be i.i.d random matrices with R;k following the

Poisson distribution with mean R} | fori=1,...K and j #k=1,..,9. Denote
X; =exp(N - LW(H,R',Q)),

where LW (H, R, Q) is defined in Lemma 7.5.1. Then,

_ X1+ ...+ Xk _ Q(H,G)

S
K K unc(NG)

a.s. as K — oo.

8.2 Algorithm for Estimating Q(H, G)

We estimate the one step transition kernel Q(H, G) by using the following algorithm.

Algorithm 8.1: Estimating the One-step Transition kernel Q(H,G)

68



Step 1. Sample the random mutation matrices R, ..., RX, where Rf, j follows the Poisson distri-
bution with mean R;:j fork=1,...K,1,57=1,...,9.
Step 2. Compute LW; = LW (H, R*, G) defined in Lemma 7.5.1 for i = 1,..., K.

Step 3. Estimate Q(H,G) by Qx(H,G) where

_ unG(NG)
Qu(H,G) = =253 [ exp(N - LW,). (8.1)
Since exp(N - LW;) takes extremely small values, we use the following Algorithm 8.2 to compute

the summation ), exp(IN - LIW;).

8.3 Estimation of the Summation of Extremely Small Values

We want to estimate Zfi 1 Zi, where Zy, ..., Zx > 0 are extremely small numbers, we implement
the following algorithm.

Algorithm 8.2: Estimation of the Summation of Extremely Positive Small Values
Step 1. Compute LZ; =log Z; fori =1, ..., K.

Step 2. Sort LZ; in an increasing order and name it SLZ; < SLZy < ... < SLZk.

Step 3. Let a =1log100. Construct a series of intervals
(SLZx —j-a, SLZkg —(j—1)-al,

for j =1,...,J = [SEZs=SLZ1) 4

a
Step 4. Forj=1,...,J = [M] + 1, count the number of SLZ; that belongs to the interval
(SLZkg —j-a,SLZKk — (j — 1) - a] and name it n;.
Step 5. We estimate the summation ZlK Zi =Y ,exp(LZ;) as

K

s 2 nJ
Zi: Zi m exp(SLZi)(m + 156 + - 1007=1)-

69



The accuracy of this estimation is

1 < 2 Zi <1
= no nJg —
100 = exp(SLZk)(n + 12 + .- 1omf—)

8.4 Concentration Properties of LW (H, R, G)

Recall that

Psiz(Ryp)  pn,g(GN)

P (Rn) i G(GN)

1
LW(H,R,,G) = N log(

R* is the optimal mutation matrix from H to G, J is the histogram after mutation. We will derive

a concentration property of LW (H, R,G) by using the Poisson tail bounds derived in [§].

Lemma 8.4.1. Let X be a random variable following the Poisson distribution with mean A. Then
we have

P(X >2) < exp(—zlog§ +2z— M), (8.2)

for some z > A.
Proof. For t > 0, we have
P(X > 2) = P(Xt > zt) = P(exp(Xt) > exp(zt)).

By Markov’s inequality, we have

E(exp(Xt))

Plexp(Xt) > exp(et)) < =7

=exp(A(e! — 1) — 2t).

Since A(e! —1) — 2zt > z — XA — zlog 5, we have

P(X >2) < exp(—zlog§ +2z—A).

70



We define a function h : [—1,00) — R as

(1+u)log(l4+u)—u
)

h(u) =2

)

We can reformulate the Lemma 8.4.1 as

.'EQ x
P(X>A+2) < eXP(—ﬁh(X)) (8.3)

for x > 0. We can also obtain a similar result for 0 < z < A that

2

P(X <\—1) < exp(—%\h(

X

) (3.9

Lemma 8.4.2. Let X be a random variable following the Poisson distribution with mean A. Then

we have

$2

P(IX = A[z2) < 2€XP(—m

)s (8.5)

for x > 0.

Proof. We first prove that h(u) > —= for u > 0. We define a function g(u) = (1 + u)h(u). We
14+u

compute the derivative of g(u) and obtain

Thus,

71



for u > 0. Therefore,

for w > 0. Thus,

x

PX-A>2) < S
( 2 z) S expl=g57 53
for z > 0. Similarly, we can obtain
72
PX<A—2)< R
(¥ <2 —2) Cexp(—5" ).
for 0 < & < A. Therefore, we obtain
72
P(IX = Al =z 2) < QGXP(—m)7
for z > 0. [

We apply Lemma 8.4.2 to the random mutation stage of our stochastic model and obtain the

following result.

Lemma 8.4.3. Let N be the size of bacterial population. For any histograms H,G € Hy, let
R* = r*N be the optimal mutation matriz from H to G defined as formula (7.9). Let Rjj = ;N
be the random number of mutations from j—cells to k—cells and it follows the Poisson distribution

with mean R;fk. For some constant ¢ > 0, we obtain

1 1 C2N2a
* a—
for any a € R. When o = % and N > c3/r;7k3, we have
1 c2 N%
P(jrjp =il 2 eN75) < Zexp(= =) (8.7)
j?k

72



Proof. We apply Lemma 8.4.2 to R;j and select z = cN*. We obtain

(I | *h ( _oNE )
P(|rjr —rip] > cN*") < 2exp(—5 .
! 7 277 N +cNe

If we select « =2/3 and N > c3/r;ik3, N + N < 2r7 ) N, then we obtain

o 1
X _1 c“ N3

P("r‘j’k — Tj,k’ Z CN 3) < 2€Xp(—z . )
ik

O

Lemma 8.4.4. Let N be the size of bacterial population. For any histograms H,G € Hpy, let
R* =r*N be the optimal mutation matriz from H to G defined as formula (7.9). Let R;y, = 11N
be the random number of mutations from j—cells to k—cells and it follows the Poisson distribution
with mean R}kk Let X be a standard normal random variable. Then

(rjx — r;,k)\/]v

*
Tjk

— X

i distribution as N — 00.

*
rr.
]

N

Proof. Since Rj follows the Poisson distribution pg: , then E(rjx) = 1}y and Var(rjx) =

("“j,k_T;’k)\/N .

Hence, the Laplace transform of is

-
re
gk

E(exp(tVN Lok ik _*r;’k)))

\/ ik

73



/N t
= exp(r}f UG Nk — - 1))
' Nrs,
‘77
2 3

= exp( +O(——))

Nrj,k
= VN
Therefore, (i VN converges to a standard normal random variable as N — oc. O

m
Lemma 8.4.5. Let N be the size of bacterial population. For any histograms H,G € Hpy, let
R* = r*N be the optimal mutation matriz from H to G defined as formula (7.9). Let R = 11N
be the random number of mutations from j—cells to k—cells and it follows the Poisson distribution

PR, - J; is the percentage of the j — cells after mutation. Then for some small constant €, we have

C —r*,N)?
P(J; <€) < Zexp <(2é’,k)>
k#s

[NF; H(5)]
g—1

where C' = (1 — ¢)
Proof. Recall that

INF;H(5)] — >k (Rjk — R )
[NE;H(j)]

Jj =

Thus, we have

P(J; <€) =P | > (Rjx— Rij) > (1 - &) [NF;H(j)]
k#j

(1 - [NFH()]

< P(at least one R > g—1 )
< S B(Ry > (1= IINEHG),)
K 91
C —r% N)?
< Zexp <—(2é,k>> = O(exp(—N)),
k#j

74



where C = 7(176)[5_?jH(j)}. O

From Lemma 8.4.5, we know that the probability of J; < € is of the order exp(—N). This

probability is much smaller than the probability of the rare events we are interested in.

Recall the corrective weight of the transition H - R =rN — G is

LW(H,rN,G) ZG <<§)>)+

G(j) G .
j/%;ék <rj7k(FjH(j) a FkH(k))+rjk FiH(j )MM) '

Let R* be the optimal mutation matrix from H to G. When R = R*, we have

LW (H,R*,G ZG )log +Z (3 (hyge + 1) — FyH () M), (8.8)
Jj#k
where
F:H 1
Vi = el g (ks i) (39)
and
hip =2 G (8.10)

FjH(j)  FRH(F)

We denote LW*(H,G) = LW (H, R*,G). When we fix the histogram H and G, we want to
study the difference between the random variable LW (H, R, G) and constant LW*(H, G). To study

this, we first reformulate LW (H, R, G) as the following proposition.

Proposition 8.4.6. Let N be the population size. For any histograms H,G € Hy, let R* = r*N
be the optimal mutation matriz from H to G. Let R = rN = (Rji)gxg be the random mutation
matriz where Rjy follows the Poisson distribution with mean R;k. Recall that LW (H, R, G) is

defined as in Lemma 7.5.1. LW*(H,G) is defined as formula (8.8). V; is defined as formula (8.9).

75



Then we have

LW (H,rN,G) = LW*(H,G) + Y Ajtj + Rem,
i#k

where

Rem = Z G(j)rem;,

J

Don(teg —tik) 2otk — tik)
=1 1 ’ d — : —.
rem; og < + V]<F, H) V]<F, H)

Proof. Recall that

FiH(G) = > ik — i)
FiH(j)

2ok (teg — tik)
(F,H)

J() =
=V +

=Vi(1+ W)

where ¢; = rj, — 17, Let bj = V) and z; = > ;. (tk; —tjx). Then we have
log J(j) = logVj + b;z; +log(1 + bjz;) — b;z;.
Denote rem; = log(1 + b;z;) — bjz;. Thus, we have
log J(j) =log Vj + bjz; + rem;.
Then we compute LW (H, R,G) — LW*(H, Q) as

LW(H,R,G) — LW*(H,G)

76

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)



= > G()(log J(j) —log Vi) + Y hyk(rix — 75s)
J J#k

> k(tey —tik)

:;G(])( V}<F,H> +T€mj)+2hj,ktj7k

J7#k
G (k) G() .
A N _ hs .
2 el ~ g,y ) 2 Glremy
57k J
where hj . is defined as formula (8.10). O

We now analyze the term ) £k Ajitjr and the term Rem in the following lemmas.

Lemma 8.4.7. Let N be the population size. For any histograms H,G € Hy, let R* = r*N be the
optimal mutation matriz from H to G. Let R = rN = (Rjk)gxg be the random mutation matriz
where R; . follows the Poisson distribution with mean R;k. Aj i, is defined as formula (8.13) and

tik =Tjk —Tjy Jor j,k =1,....g. For some constant ¢ > 0, we obtain

_1 C2 N3
P %}Aj,ktj,u > eN75) < 2g(g — D exp(————), (8.16)
J7
where C' = min; j, m and r* = max; j, r;k. We also have
ry . —rk (¥, — oy
Ajj = 2 ik kg ' ;k) _ ZJ( 5,k ’;J) +O(m2).
(F5H(5)) (FH (K))
Proof. For some constant ¢ > 0, we have
P Ajitixl = eN7V%)
J:k
<P |Ajrtjk| > N7V
Jik
P(at 1 |Ajptin] is 1 han N )
< PP(at least one i ktjk| 1s larger than ——
P 9(g—1)

77



cN—1/3
< D Pkl = ——57—)
%; T g9 = DAk

<Y P(ftju| = CNTE)
7.k

where C' = min; , ——%———. Denote r* = max,; . r*,. We have
Ik glg=T)[A; k] Ik 5k

P(1> Ajrtiel > N7
j’k

y 4 r;ik
<299 - Dexp(- SN0,
Recall that A = hj; — V]C:l(?jl)% + ka}’f}n. Since
1 1

(FH)V; FjH(G) + 20 = )

1 S
FHG)  (FH()?

+0(m?),

then
G(j) G(k)

A — By —
sk =0k = R Y T V(E )

_ ok G(j)(r};,j - r;k) _ Zj G(k)(r}ik - 7“72,j)

: +O0(m?
(BHG)? (FH()P o
O
Lemma 8.4.8. We use the same conditions in Lemma 8.4.7. Denote
T(H,R,G)=VN>_ Ajxtjn. (8.17)

Jk

78



Then we have T(H,R,G) — Y in distribution as N — oo, where Y follows N(0,0?%) and

G)=> Ak, =0(m?).
jik
Proof. The Laplace transform of T'(H, R, G) is
E(exp(t-T(H, R, G)))

= [E(exp(t\/ﬁz Aj,ktj,k:))
J#k
= H E(exp(t\/ﬁAj,ktj,k))
ok
- H E(exp(tV/NA;x(rjx — k)
ok
tA;

ko
\/jV Rjk))

= H exp(—t\/NAj7k1";k)E(eXp(
J7#k

=[] exp(—tVNA; i} ) exp(r], N - (exp(tj/l;vk 1))
Jj#k

tA;
—Hexp t\/>Ajkr &+ 75N exp( k)— k)
ok N

tAjn) _ tAse
\/N VN

= [ exo(r N (exp(—2= —-1)

JF#k
2 42 343
t Ajk t Aj,k

:Qexp<r;,kN< o+ 0l )

t2A2 tPA3
_ H exp + 0 J,k" 7, ))
J#k VN

= exp(— ZA o)+ O(—= ZAMM

J#k J#k

79

(8.18)



Therefore, T(H, R, G) convergence to the normal distribution N(0,?), where

o= 3 A= Om?).
ik

In the bacterial evolution stochastic model, the population size N is very large and the mutation
rate m is very small. Generally, we have N > 10'? and m < 1075, The variance of T'(H, R, G) will
be of the order less O(10718), which is extremely small. This means that T'(H, R, G) will concentrate
around 0. Notice the remainder term O(\j—% > itk A?kr;‘k)) =0t - \7/”—%) < O(#3 - 10736), which

takes extremely small value for small ¢. Thus, T'(H, R, G) is approximately normal in this stochastic

model.

Lemma 8.4.9. We use same conditions as in Proposition 8.4.6. Recall that Rem =3, G(j)rem;

where rem; is defined as formula (8.15). For some constant ¢ > 0, we have

5 9 N1/3
P(|Rem| > ¢cN73) < 2g°(g — 1) exp(—C1——), (8.19)
T
where r* = max;, v}, and C'1 = min; ﬁVf{F, H)?.
Proof. Recall that rem; = log <1 + Z’“&&}ff”) — Z’“Vt’z}%;;’k) Let
J ’ J )
oo 2wty —tik) Dyt — k)
IS TVER T BHG) S,

Since we have proved that |t; ;| < cN —1/3 with ultra high probability, we assume that X; > —0.5.

We can prove that 22 — z +log(1 +2) > 0 and  — log(z + 1) > 0 for > —0.5. Thus,

|rem;| = —log(1+ X;) + X; < XJZ,

80



for j =1, ..., g. Therefore, we have
P(|rem;| > eN723) < }P’(X]? > cN723) = P(|1X;| > VENT3,

We use Lemma 8.4.3 and obtain

N1/3
P(|rem;| > cN~2/3) < 2g(g — 1) exp(—C" —),
.
2 2
where C’' = min; % and r* = max; ;. Therefore, we have
P(|Rem| > ¢N~%/3)
< IP’(Z Irem;| > ¢N~%/3)
J
N1/3
< 2¢%(g — 1) exp(~C1l——~),
r
where C1 = & V7 (F, H)*. O

We know that A, = O(m) from Lemma 8.4.7. In the following proposition, we show that we

can control the term ) ik Ajitj and the term Rem simultaneously.

Proposition 8.4.10. We use same conditions as in Proposition 8.4.6. m is the mutation rate.
Recall that Rem = _; G(j)rem; where rem; is defined as formula (8.15). For some constant ¢ > 0

and a € (0.5,1), we are able to control

B N2a71
P(1> " Ajutikl = eN*1) < Crexp(— ) (8.20)
j.k
and
N2a71
P(|Rem| > ¢N?*72) > Cy exp(— p- ) (8.21)

at the same time, where C1,Co are constants depending only on ¢, H and G.

81



Proof. We can prove this Proposition by using Lemma 8.4.3, Lemma 8.4.7, and Lemma 8.4.9. [

Theorem 8.4.11. Let N be the population size. For any histograms H,G € Hy, let R* = r*N
be the optimal mutation matriz from H to G. Let R = rN = (Rj1)gxq be the random mutation
matriz where R;j. follows the Poisson distribution with mean R;,k' Recall that LW (H, R, G) is
defined as in Lemma 7.5.1. LW*(H, Q) is defined as formula (8.8). Then for some constant ¢ > 0

and o € (0.5,1), we obtain

N2a—1

r*

P(|LW(H,R,G) — LW*(H,G)| > ¢cN*™! + cN?*72) < ¢ exp(—

),

1
for N > O(max; j, 7“;7,6 a=1), where C" depends only on ¢, H and G, r* = max;j, r;kk

Proof. We know that

LW (H,rN,G) = LW*(H,G) + > | Ajt;, + Rem,
itk

Thus, LW(H,R,G) — LW*(H,G) = z#k Ajitir + Rem. By using Proposition 8.4.10, we have

P(] Z Ajtir + Rem| > cNO! 4 cN2072)
ik

<P(] ZAj,ktj,k| + |Rem| > cNO‘_l)
Jj#k

C rra—1 C o
<P(] E#k Ajtin| > §N°‘ )+ P(|Rem| > ENO‘ h
j

<P Ajktin
i#k

> gzva—l) + P(|Rem| > gNQO‘_Q)

N?oc—l
r* ),

< C'exp(—

1
* . * . e
where 7* = max; Tk for N > O(max; 7 e ). =

82



8.5 Accuracy of Qx(H,G)

We have shown that the estimator Qx (H,G) — Q(H,G) almost surely as K — oo in Proposition
8.1.1. In the following theorem , we obtain a confidence interval for Qi (H,G) by assuming that
T(H, R, G) follows the normal distribution N(0,0?), where o is defined in formula (8.18). We first

prove a lemma about the standard normal random variable.

Lemma 8.5.1. Let Z,..., Z}, be the i.i.d random variables that follow the standard normal distri-

bution N(0,1). Then for any constant ¢ > 0, we have

02

IP’(,maxk |Zi| > ¢) < 2kexp( 5 ). (8.22)

i=1,...,

Proof. Let MZ = max;—; _j Z;. Then, for ¢ > 0
P(MZ > c¢) =P(exp(t- MZ) > exp(tc))

< exp(—tc)E(exp(t- MZ))

< exp(—tC)E(Z exp(t - Z;))

t2
= kexp(; — te).

Since % —te > —c?/2,
2
P(max Z; > ¢) < kexp(—%).
7

Similarly, for any ¢ < 0
2

P(min Z; < ¢) < kexp(—%).

Thus, for any constant ¢ > 0, we have

C2

P('maxk|Zi| > ¢) < 2k exp( 5 ).

=1,...,

83



O]

Theorem 8.5.2. Let N be the population size. For any histograms H,G € Hy, let R* = r*N be the

optimal mutation matriz from H to G. Let R = rN = (Rjk)gxqg be the random mutation matriz

where Rj . follows the Poisson distribution with mean R;k. Q(H, Q) is the one-step transition

kernel from H to G. Let R',...,RX be a random sample of R. Let Qi (H,G) be the

estimator

defined as formula (8.1). LW* = LW*(H, Q) is defined as formula (8.8). Assume that T(H, R, G)

defined as formula (8.18) follows the normal distribution N(0,0), where o is defined as formula

(8.17). Then for any constant ¢y > 0,co > 0, we obtain that

QK(H7G)
LK(H7G) < m < UK<H7G)

with probability above

pler, o, H,G) = 0.99p1(c1, H, G)* p2(c2)

for K > max{103,9N o2}, where

Uk(H,G) = exp(N - LW* + ¢, N'/3)(1 + + No?exp(c2VNo)),

3V No
VK

3V No

Lx(H,G) = exp(N - LW* — ¢; N'/3)(1 — Nics

)7

pl(c1, H,G) =1 —2¢%(g — 1) exp(—C1

s Gy 2
Cl—mjln@Vj (F,H)*,

2
C
ple2) =1-2K GXP(*EQ)'

Proof. For every R!, we compute LW; = LW (H, R, G) defined in Lemma 7.5.1 for i = 1,

we have
exp(N - LW;)

Qx(H,G) = una(GN) %

%

84

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

..., K and



By our assumption, VN(LW; — LW*(H,G)) = 0Z; + vV'NRem;, where Z; follows the normal

distribution N (0, 1). Thus,
Qk(H,G)
= exp(N - LW;)/ K
i a(GN) ~ 2= "N
exp(VNoZ;) exp(N - Rem;)
% .

= exp(N - LW™) Z

%

Recall that

1/3
P(|Rem| > cN~5) < 29%(g — 1) exp(—C1-——),
r
where r* = max;; 77, and C'1 = min; ﬁv;?(F, H)?. Denote
) 1/3
piec) =1 -2¢°(g — 1) exp(~Cl——).

where 7 = max; i r;ka and C'1 = min; ﬁVJZ(F7 H)2. Thus, for some constant ¢; > 0, we have

P(max |Rem;| < clN_%) > pl(c)¥.
7

Therefore, we have

exp(VNoZ;) - Qx(H,G)

exp(N - LW* — cIN'/3) }

- K ~ unc(GN)
NoZ;
< exp(N - LW* + cINY3) S exp(\/lzal) (8.29)
i
with probability above pl(c;)X. We now analyze the term >, e’(p(%igzi). By using the Taylor

expansion of exp(VNoZ;), we get

Z; Z? Noa:
S exp(VNoZi) /K =14 VNo 3. 214 No? Y Ke@(Qm
@ i

)

85



where ¢; is in between 0 and Z;. For a constant cs, we have

2
]

2)'

P('maxk | Zi| > c2) < 2K exp(—

i=1,...,

Therefore,

exp(—\/ﬁa@) < exp(\/ﬁaqi) < eXp(\/NO'CQ),

holds for i = 1, ..., K with probability above p2(c2) =1 — 2K exp(—%). Notice that

ZiZi
’T\ <

=

with probability 0.99, and

IP)(Z;(Z? < 9) = F(2K),

is almost 1 for K > 103, where F is the cdf for chi-square distribution x?(K). Therefore,

3\/20 3VNo + No?exp(cavV/No), (8.30)

b VE

<Y exp(VNoZ;)/K <1+

with probability above 0.99p2(c2). Combine inequality 8.29 and inequality 8.30, we obtain

B 3vVNo < Qx(H, Q)
VK =7 pung(GN)

<exp(N - LW* + ¢, NY3)(1 +

exp(N - LW* — e, N3 (1

3*/\/? + No?exp(caV/No))  (8.31)

with probability above 0.99p1(c1)%p2(cg) for K > max{103,9No?}. O

In the following corollary, we explain how to select the constant ¢; and ¢y when we fix the

sample size K and the probability of the confidence interval.

86



1

Corollary 8.5.3. Given a probability p < 0.99, let p’ = (5&5)F+1, we can select

0.99

16g7r* 2¢%(g — 1

= Ogr - log 99 - ) (8.32)
(F, H)?min; V2N I—p
c2 = [2log - — (8.33)
so that
Li(H,G) < < Ux(H,G
x(H#,G) pn,c(GN) x(H,G)

holds above probability p.

Proof. If we set pl(ci, H,G) = p2(cz) = p, then we have 0.99p1(c2)%p2(c2) = p. By solving

pl(c1) = p’ and p2(c2) = p/, we obtain formula (8.32) and formula (8.33). O

When we fix the sample size K and the probability of the confidence interval, we can obtain the
confidence interval of the estimator Qx (H,G) by using Theorem 8.5.2 and Corollary 8.5.3 without

any simulations.

8.6 Example of Estimating the Q(H,G)
Let F' = [200,200'%8 200'12], m = 10~7 and

0 05 0.5
Q=105 0 05

05 05 0

Let H =1[0.8,0.1,0.1] and G = [0.7,0.2,0.1]. We compute

o*(H,G) = 1.0750 - 10~ 1°.

87



Thus, we select the sample size K = 10%. By using Algorithm 8.1, we obtain

Qi (H,G) = exp(—2.9269 - 1019).

If we want to obtain a 90% confidence interval of Qi (H, G), we select

c1 =5.2931-1071°,

and

cg = 5.8069,

by using Corollary 8.5.3. Then the confidence we obtain by using the Theorem 8.5.2 satisfies

Qr(H,G)
log B2 op L (H,G) = 38.3567,
guN,G(GN) g Lx(H,G)
log U (H,G) — log 22270 — 30.6412.
gUk(H,G) gMN,G(GN)

88



Chapter 9

Estimating the Probabilities of

Random Trajectories

9.1 Estimator for the Probability of a Random Trajectory

Let H = [Hy, Hy, ..., Hi] € Q41 be a random trajectory starting from Hy. Let R*(i) be the optimal
mutation matrix from H; to H;y1. We can use the forced simulation method in Chapter 8 to

estimate Q(H;, Hi+1) by Qi (H;, Hi1+1) for every step, where

S; — \/NO'2(HZ',HZ'+1> (91)
K; = max{10%,9s?} (9.2)
K = max K, (9.3)
MN7Hi+1(NHi+1) s i/
Qx(Hi, Hi11) = % > exp(N - LW (H;, RI(i), Hita)), (9.4)
j=1

89



and R'(4),..., R (i) are the random samples of R*(i). Therefore, the estimator for P(H|Hy) is

t—1
Px(H) = H Qk (Hi, Hit1).

=1
9.2 Accuracy of the Estimation

Proposition 9.2.1. For any random trajectory H = [Hy, ..., Hy] € Q¢41, let R*(i) be the optimal
mutation matriz from H; to Hiyq fori=0,...t — 1. Q(H;, H;11) is the one-step transition kernel
from H; to Hyyq. Let RY(i), ..., RX(i) be a random sample of R*(i), where K is defined as formula
(9.1-9.3). Let

PN, Hisy (NHig 1)

Qk(Hi, Hiy1) = I

K
> exp(N - LW (H;, RI(i), Hit1)),
j=1

where LW (H;, R (i), H;y1) is defined in Proposition 7.5.1. Then,
t—1
Px(H) := | [ Qx (Hi, Hiy1) — P(H|H)

=0

a.s. as K — oo fori=0,...,t — 1.
Proof. By Proposition 8.1.1, Qg (H;, Hi+1) — Q(H;,Hi11) a.s. as K — oo. Thus, Px(H) —
P(H|Hy) a.s. as K — oo. O

We can obtain a confidence interval of Py (H) in the following theorem.

Theorem 9.2.2. Given the random trajectory H = [Hy,..., H;] € Q41 and population size N,
Q(H;, Hi11) is the one-step transition kernel from H; to H;+q fori=0,...,t—1. Let R*(i) = r*(i)N
be the optimal mutation matriz from H; to H;1q. Let R'(4),..., RE (i) be a random sample of R*(i).

Py (H) is the estimator for P(H|Hy) defined in Proposition 9.2.1 . Let s; = \/ No?(H;, H; 1) where

90



o?(H;, Hiv1) is defined as formula (8.18). Let K = maxizoy.,_jt_1{103,95§}. Denote

t—1
p(NH) =[] v (NHig). (9.5)
i=0
We obtain that
t—1 Pic(H) t—1
Li(Hi,Hiv1) < ——— < | | Ux(Hi, Hiy1 9.6
T Lottt o) < iy < [T Uil i) (96)
with probability above
t—1 ‘
p(C°,..,C"™, Co, H) = 0.99"py(Cs)" HPlK(Czy H;, Hii1) (9.7)
i=0

where Uy (H;, Hi1), Li(H;, Hiv1), pl(C% H;, Hiy1), and p2(Ca) are defined in formula (8.25),

formula (8.26), formula (8.27), and formula (8.28).

Proof. Since the one step transition H; — H; 1 are independent for i = 0,...,t — 1, we can obtain

this theorem by applying the Theorem 8.5.2. ]

The following corollary explains how to select the constant C?,...,C*~t, Cy for Theorem 9.2.2.

Corollary 9.2.3. Given a trajectory H = [Hy, ..., H;] and a probability p < 0.99, let R*(i) =
1
r*(i)N are the optimal mutation matriz from H; to Hiyy fori=0,...,t — 1. Let p' = (5%5) ",

we can select

, 16g7* (i 2¢%(g — 1
Ct = 6gr* (i) - log 9(9 - ) (9.8)
(F, H;)?>min; V2(H;, Hi11)N's L—p
where r*(i) = max; 7 (1) k.
fori=0,...,t —1 and
2K
Cy =y/2log T (9.10)

91



Table 9.1: Optimal Trajectory G

Go | 0.8000 | 0.1000 | 0.1000
G | 0.6383 | 0.1805 | 0.1812
Go | 0.4266 | 0.2578 | 0.3156
Gs | 0.2233 | 0.3000 | 0.4767

Optimal trajectory for Eve(2,0.3) given Hy = [0.8,0.1,0.1].

so that
t—1 t—1
Pr(H)
Lix(H;,Hip1) < ———5 < | | Uxk(H;, Hi1

holds above probability p.

Proof. If we set p1(C%, H;, H;y1) = p2(Cs) = p', then we have

t—1
p=0.99"p2(Cy)" [ [ pi (C*, Hi, Hit1).
=0

By solving p1(C?, H;, H;11) = p’ and p2(Cy) = p/, we obtain formula (9.8) and formula (9.10).

9.3 Examples of Estimating P(H|H)
Recall the example in Section 6.2.2.1, F' = [200, 200198 20012], m = 1077,

0 05 0.5
Q=105 0 05

05 05 0

O]

and Hy = [0.8,0.1,0.1]. The optimal trajectory G for realizing the event Eve(2,0.3) is in Table 9.1.

We want to estimate the P(G|Hp) when N = 10'2.

We use Algorithm 8.1 to estimate the one-step transition kernel Q(G;,G;y1) for i = 0, ..

92

2.



Table 9.2: Forced Simulation Results

i QK (Gi, Git1) o*(Gi, Git1) c Cy | left(i) | right(i)
0 | exp(—1.7826 x 10') | 9.9067 - 10~ 1! | 3.1518 - 10710 | 6.7528 | 32.73 | 189.59
1| exp(—1.3909 x 10*!) | 5.9854 - 10~ | 7.7143 - 1071V | 6.7528 | 31.45 | 141.48
2 | exp(—1.3996 x 10!) | 8.4287- 10711 | 7.3950- 10710 | 6.7528 | 32.09 | 172.75

QK (Gi, Giy1) is the estimated one step transition kernel. 02(G;, G;11) is defined as formula 8.18. C!
and Cy are computed as in Corollary 9.2.3. left(i) and right(i) are computed as formula 9.11 and

formula 9.12

We compute 02(G;, Gi 1) and present these values in Table 9.2 and select K = 10%. We present

QK (Gi,Giy1) in Table 9.2. When we select p = 0.9, we compute C* and Co using Corollary 9.2.3

and present these values in Table 9.2. We also present

left(i) = log

and

right(i) = log Uk (Gi, Gi+1) — log

Qr(Gi, Git1)

in Table 9.2. From our computation, we have

2

KUN.Gi 11 (Ngl+1)

—log Lk (Gi, Gi+1)

Qr(Gi, Git1)

KUN.G;i 1 (Ngi-i—l)

P(G|Ho) ~ Px(9) = [ [ Q(Gi, Git1) = exp(—4.5731 - 10').

1=0

93

(9.11)

(9.12)



Chapter 10

Estimating P(H in a thin tube) by

Importance Sampling

From the large deviations theory result Theorem 4.7.3, we know that the probability of fixations is
approximately equal to the probability of trajectories realizing the fixation by following the optimal
trajectory through a thin tube for large population size N. Therefore, in this chapter, we study
how to force random trajectories to follow the optimal trajectory through a thin tube and estimate

the probability of these forced trajectories.

10.1 Forced Trajectories in a Thin Tube

We want to force a random trajectory H to follow the optimal path G = [Gy = Hy, ..., G| through
a thin tube. The basic ideas are:

1. Start with Hy, we aim for Gy, suppose Ry is the forced mutation matrix and we get to H; with
LW, = LW (Hy, Ry, Hy).

2. Start with Hy, we aim for Gy, suppose R; is the forced mutation matrix and we get to Ho with

LW, = LW (Hy, Ry, H).

94



T-1. Start with Hy_1, we aim for G, suppose Rp_1 is the forced mutation matrix and we get to
Hp with LWyp_y = LW (Hp—1, Rr—1, Hr).
By performing the algorithm above, we get a forced trajectory H following the optimal geodesic
G. Denote R = [Ry, ..., Rp—1]. Let the logarithm of the corrective weight of the forced trajectory
H be

T—1

LW(H,R) =Y LW(H;, Ri,Hi}1). (10.1)
=0

We also know that (H; — G;) - V/N follows approximately multivariate normal distribution N (0, %),

where
Gi(1-G1) -GGy —G1Gk
5 —G1G2  Ga(1—Ga) ... -GG,
—G10Gk —GaGk, D Gr(1—Gg)
Therefore,

3v/Gi(7)(1 = Gi(4)) 3
H; — Giloo < < ;
il = ) VR W

with probability above 0.99 for large N.

10.2 Estimator of P(H in a thin tube)

Definition 10.2.1. For any histogram H € H, define a ball centered at a histogram H with radius
p ER as
ball(H,p) = {G € H | [G(i) — H(i)|c < p}-

Definition 10.2.2. For any random trajectory H = [Hy,..., Hp] € Qpy1, define a thin tube

95



centered at trajectory H with radius vector p = [po, ..., pr] € RT! as
TUb@(H, p) = [ba”<H07 :00)7 ba‘ll(Hb ;01)7 ) ba‘ll(HTa PT)]

We say a trajectory G € Tube(H, p) if G; € ball(H;, p;) for i =0,...,T.

Conjecture 10.2.3. Let N be the population size. Let G = [Gy = Hy,...,G;| be the optimal
trajectory that realizes the event Eve(J, 3). Let H = [Hy, ..., H;] be the forced trajectories following

G. Let e =| Then,

0 3 3]
VaVN T oV N

P(H € Tube(G,€)) > 0.99".

We select the radius of a thin tube of the optimal trajectory G = [Go, ..., Gr]| as

3

€= Wik
Let € = [0,¢, ...,¢] € RT*!. We can estimate the probability P(H € Tube(G, €)N Eve(J, 3)) which is
the probability of realizing Eve(J, 8) through the thin tube Tube(G, €) by the following algorithm.
Algorithm 10.1: Forcing H € Tube(G, €) N Eve(J, )
Step 1. Generate S forced trajectories tra', ..., tra® by following the optimal trajectory G.
Step 2. For each forced trajectories tra’ = [traj, ..., trak], let R' = [R}, ..., Ry 1] be the forced
mutation matrix vector. Compute LW (tra’, R?) as formula (10.1).

Step 3. Let Set = Tube(G, €) N Eve(J, ). We can estimate the probability P(H € Set) as
S

1 o
Ps(H € Set) = D Liraieser exp(N - LW (tra’, RY)),
=1

where 1g,qicgey = 1 if tra' € Set, and 1itraiesery = 0, otherwise.

Since exp(N - LW (tra’, R?)) takes extremely small values, we use Algorithm 8.2 to compute

96



the following summation
S

> Liiraicsen xp(N - LW (tra’, RY)).
=1

10.3 Accuracy of the Estimation

Recall for any trajectory H = [Hy, ..., Hr],

T-1
P(H) = [ [ {1~z VHip1)E(exp(N - LW (H;, Ri, Hi11))}
i=0
T-1 T-1
= E(exp(N > LW (H;,Ri, Hiy1))) [ [ nov,mrien (NHign)

i=0 =0

By the change of probability, we have

P(H € Set) = > P(H=h)

heSet
T—1 T—1
= > E(exp(N Y LW (hi, Ri,hiy1))) [ [ tvipess (Nhiga)
heSet =0 =0
T-1 T-1
= Z E(exp(N Z LW(HZ7 R;, HZ+1))‘H = h) H KN, hitq (NhH-l)
heSet =0 =0
T—1
= E(E(exp(N Y LW (H;, R;, Hi11))H))
=0
T—-1
= E(exp(V Z LW (H;, R;, Hiy1)))
=0

= E(exp(N - LW (H, R)))

Lemma 10.3.1. Let G = [Gy, ..., Gr] € Set be an optimal geodesic. tra',...,tra® are forced trajec-

tories following G. Let R = [Ré7 ...,Rl;p_l], where R; is the forced mutation matriz from traé to

97



157“a]+1 LW (tra', R") is defined as formula (10.1). Then

Ps(H € Set) i= < Z Litraicsen xp(N - LW (tra’, R')) — P(H € Set)

a.s. as S — oo.

Proof. Since
E(|exp(N - LW(H,R))|) = E(exp(N - LW(H,R))) = P(H € Set) < oo,
by the strong law of large number, we have
Ps(H € Set) — P(H € Set),

a.s. as S — oo.

10.4 Example of Estimating P(H in a thin tube)
Let F = [200,200'%8 200'12] m = 1077 and

0 05 05

Q=105 0 05

05 05 0

Let Hy = [0.8,0.1,0.1], 8 = 0.3. The optimal path for realizing the rare event Fve(2,0.3) is in Table

9.1. We generate 10* forced trajectories following the optimal geodesic G for different population

size N = 10'9,10'2,10'*. Let num; be the number of forced trajectories realizing the rare event

Eve(2,0.3). Let numg be the number of forced trajectories realizing this rare event though the thin

tube Tube(G, €) where € = [0, ¢, ...,€]. We present the radius of the tube € = ﬁ,

98

numsi, numa,



Table 10.1: Results of Forced Simulation of Trajectories

N € numy | numg | Ps(H € Set)
100 | 1.5-1075 | 5086 | 5058 | 10-3:972710°
10!2 | 1.5-1076 | 5033 | 5017 | 10-3:9727:10'°
10 | 1.5-1077 | 4956 | 4934 | 10-39727-10"

e = 3/(2V/N). num; is the number of forced trajectories realizing the rare event. numsg is the
number of forced trajectories realizing the rare event through the thin tube. Ps(H € Set) is the
estimator of P(H € Set).

and Pg(H € Set) in Table 10.1

We can see that about half of the forced trajectories realize the rare event Eve(2,0.3). Around
99% forced trajectories that realize the rare event Eve(2,0.3) stay in the thin tube Tube(G, €) for
different population size N. When N increases by a factor 10", log Ps(H € Set) decrease by a

factor of 1/10™.

When N = 104, we plot the optimal trajectory G and the histograms in 10* forced trajectories
in Figure 10.1. The blue path is the optimal trajectory. The green clouds are formed by the
histograms in the forced trajectories. The radius of each green clouds is of the order 1/ VN. As N
increase, the radius of the cloud decreases. Therefore, the forced trajectories concentrate around

the optimal trajectory for large V.

99



0.4+

0.35

0.3

0.25¢ optimal trajectoris
0.21

0.15

01r ‘\ae

starting histogram H,

freguency of genotype 2

0.05+

0.3 0.4 0.5 0.6 0.7 0.8
frequency of genotype 1

Figure 10.1: Forced Trajectories Around G

N = 10*. The blue path is the optimal trajectory G. The green clouds are formed by histograms
in the 10* forced trajectories.

100



Chapter 11

Genealogy Forced Trajectory

Simulation

Searching for the optimal trajectory G for realizing the event Eve(J, 3) could become very compu-
tational heavy when the number of genotypes g becomes larger than 8. Therefore, we develop this
genealogy simulation method to force the rare event to happen more frequently without following
any paths. To do so, we favor the trajectories with higher frequencies of J-cell by implementing a

re-sampling trick.

11.1 One-step Transition from H, = H to H,,1 =G

We follow the stochastic model described in Chapter 2 to simulate H,4; given H, = H. We
implement the following Algorithm 11.1.

Algorithm 11.1: One-step Transition

Step 1. We start with the population N and histogram H for day n. The population grows with
the growth factor F = [F(1),...,F(g)]. Compute the size of the g colonies of cells as siz(j) =

[NH(j)F(j)] for 5 =1,...,9.

101



Step 2. Recall that R,(j, k) is the random mutation number from j-cell to k-cell for day n. We
sample R, (j, k) following the Poisson distribution with mean siz(j)M;, for j,k =1,...,g and j # k.
Suppose we get the mutation matrix R,, = R, compute the histogram of population J = (Ji, ..., Jg)

as

1 .
Jj = W([NFjH(j)] - Zk:Rj,k - ;Rw)-

Step 3. After the mutation stage, we sample the random vector V following the multinomial

distribution px 7. Suppose we get V =y, then compute H,,1 = %

11.2 Generate a Set of Trajectories Q(t) = {H!,..., H'}

Let T denote the duration. We will generate a set of random trajectories Q(¢t) = {H', ..., H} at
time t, where P is the number of trajectories in set Q(¢) and H! = [H{, ..., H%] is a trajectory in
Qry1.

Algorithm 11.2: Generate a Set of Trajectories Q(t) = {H!,..., H}

Given the starting histogram Hé of every random trajectory H', generate the random trajectory
H' step by step following Algorithm 11.1.

Define a function level; of genotype J on a random trajectory set Q@ = {H', ..., H"} where H7 as

_ HI()).
level 7(Q) jzl,”frﬁ%}él,...,T ()

11.3 Generate Q(t + 1) Given Q(t)

Given the trajectory set Q(t) at time ¢, we generate the trajectory set Q(t + 1) at time ¢t + 1 by
the re-sampling technique to favor the trajectories in Q(¢) which have higher percentages of J-cell
at step T' as the following algorithm.

Algorithm 11.3: Generate Q(t + 1) Given Q(t)

102



Step 1. Re-sampling Define a weight function on set Q = {H!, ..., H"} where H/ = [Hg, Hf, . H%],

as Wei(Q) = w = (wy, ...,wp) € RY| where

__m)
S Hi ()

i

Apply this weight function on set Q(¢t) = {H',..., H'} and compute W = Wei(Q(t)), where

__ H)
Soiy Hi(J)

7

for i =1, .., P. Then we use this weight vector W and P as parameters of multinomial distribution
ip,w where
P!

— — z1 . Zp
,UP7W(X = (.1'1, ...,J,‘p)) = xl! . xp!WI WP .

We sample a vector ¢ = (q1, ..., qp) with Zle q; = P following the distribution ppy. Clone g;
copies of histogram HJT for j = 1,...,P. Let Copy(t) = {h1,...,hp} be the set of these copied

histograms, where

By = o= hyy = HE,

_ _ _ 2
h(J1+1 — e = hq1+q2 - HT?

_ _ P
hQ1+---+QP71+1 - hq1+---+QP - HT'

Notice that ¢; might be 0 for some i = 1, ..., P. If ¢; = 0, then there is no copy of H% in set Copy(t).
Step 2. Generating Q(t+ 1). To generate set Q(t+ 1) = {S!, ..., S} where S? =[S}, ..., SL], let

S8 = h; for i = 1,..., P. Then we generate the whole set Q(¢ + 1) following Algorithm 11.2.

We call the trajectory H € Q(t) the ancestor of trajectory S € Q(t + 1) if Hy = S;. Define the
ancestor function Anc on a trajectory S € Q(t + 1) and set Q(t) as Anc(S,Q(t)) = (H,n) where

H € Q(t) is the ancestor of S and n is the number of ancestors of S in Q(t).

103



11.4 Genealogy Simulation of Forced Trajectory

Given the starting histogram Hy, we want to simulate random trajectories that realize the rare
event Fve(J, ). We propose the following genealogy simulation algorithm.

Algorithm 11.4: Genealogy Simulation

Step 1. Generate the set of trajectories Q(1) = {H', ..., H"} given H{ = Hy for i =1,..., P at the
time ¢t = 1.

Step 2. If level;(Q(1)) > B, we stop the simulation. The trajectories in (1) which enter the
target set TAR are the rare trajectories that realize the event Fve(J, 3). If level ;(Q(1)) < 3, we
follow the steps 3-4.

Step 3. We generate Q(t + 1) given Q(t) following Algorithm 11.3 for ¢ > 1.

Step 4. If level ;(Q(t + 1)) > 5 or t > 50, we stop the simulation. If level;(Q(t + 1)) > f, the
trajectories in Q(t+ 1) which enter the target set T AR realize the rare event Eve(J, §). Otherwise,

we repeat step 3-4.

Suppose the simulation stops at time ¢, Q(t) = {S!,...,S”} and level;(Q(t)) > B. We select
the trajectories in Q(t) that enter the target set TAR. We name these [ trajectories ST! ..., ST

For every ST', we use the ancestor function Anc to construct a vector n* = [n},...,n;_;] where

(Yt*b ni—l) = A’I’LC(STI, Q(t - 1))a

(Yi—2,mi_5) = Anc(Y;-1,Q(t — 2)),

(Y1,n}) = Anc(Y2,Q(1)).

Y; is the ancestor of Y, for i = 1,....,t — 2 and Y,_; is the ancestor of ST®. Then the estimator

104



for P(Eve(J, 3)) is

11.5 Genealogy Forced Trajectory Simulation Example

Let F' = [200,200'%8 200'12], m = 107, N = 10% and

0 05 05

Q=105 0 05

05 05 O

Let P = 10000, T' = 3, and starting histogram Hy = [0.8,0.1,0.1]. We use Algorithm 11.4 to
simulate the trajectories that realize Eve(2,0.2085). Among these 10000 trajectories, 14 trajectories
realized the event Eve(2,0.2085). We plot these 14 trajectories in Figure 11.1. Since the difference
between these 14 trajectories is of the order 1074, these trajectories look like one trajectory in this

figure. The estimated probability of event Fve(2,0.2085) is

P(Fve(2,0.2085)) ~ 8.70 - 10~

105



0.4 ¢
0.35
03¢
0.25
forced trajectories by genealogy method
0.2¢
0.15
0.1r

starting histogram H, |
0.05+

frequency of genotype 2

005

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
frequency of genotype 1

Figure 11.1: Forced Trajectories by Genealogy Method

Blue paths are the forced trajectories by using Algorithm 11.4. Red arrows represent the direction.

106



Appendix A

Appendix

A.1 Computing Time of Examples in Section 5.3.1.2
Recall the geodesic computing example with ¢ = 7 in Section 5.3.1.2. The growth factor is
F = [200,200"7 200" 200'% 20019 200", 20012,

the mutation rate is m = 1078, the mutation matrix is Qi = 1/6 for i # j. The starting histogram
is H =1[0.6,0.1,0.1,0.05,0.05,0.05,0.05], the target histogram is G = [0.1,0.1,0.1,0.1,0.1,0.4, 0.1]
and Mesh = 0.01, we use p = 0.1 and p = 0.2 to perform the geodesic computing following
Algorithm 5.3 on 16 nodes with 8 cores on each node. Recall that PEN;(p) is the penultimate
histograms set using the p — quantile technique on the i —th node. We present the computing time
CT;(p) on each node i = 1,...,16 and the cardinality of PEN;(p) on each node i = 1,...,16 in the
following Table A.1. We can see that all the penultimate histograms belonging to PEN(0.1) and
PEN(0.2) are in the first node. It is hard to split the geodesic computing task evenly among all
nodes. This is because we have to check whether a penultimate histogram y belongs to PEN (p)

on the fly. Otherwise, we have storage issues saving all the penultimate histograms on each core.

107



Table A.1: Computing Time for Example when g =7

0.1 — quantile 0.1 — quantile 0.2 — quantile 0.2 — quantile
CT;(0.1) (sec) | card(PEN;(0.1)) | CT;(0.2) (sec) | card(PEN;(0.2))
3984 1043949 4036 2119180
4142 0 3875 0
4044 0 3994 0
3772 0 4066 0
3760 0 3809 0
4070 0 3721 0
3997 0 3664 0
3704 0 4334 0
3973 0 4286 0
4060 0 4132 0
4037 0 4097 0
3849 0 4152 0
3652 0 3980 0
4416 0 4557 0
3934 0 3665 0
4070 0 3845 0

H =[0.6,0.1,0.1,0.05,0.05,0.05,0.05], G = [0.1,0.1,0.1,0.1,0.1,0.4, 0.1], CT;(p) is the computing
time of geodesic search from H to G using Algorithm 5.3 on node i for p = 0.1, 0.2, card(PEN;(p))
is the cardinality of set PEN;(p) on node i for p = 0.1,0.2.

108



Recall the geodesic computing example with g = 8 in Section 5.3.1.2. The growth factor is
F = [200,200"%%,200"7, 200"%, 200" *?, 200" 1°, 200" '*, 200" *?],

the mutation rate is m = 1078, the mutation matrix is Qij; = 1/7 for i # j. When the
starting histogram is H = [0.5,0.1,0.1,0.1,0.05,0.05,0.05,0.05], the target histogram is G =
[0.05,0.05,0.1,0.05,0.05,0.1,0.5,0.1] and Mesh = 0.02, we use p = 0.1 and p = 0.2 to perform
the geodesic computing with quantile technique on 32 nodes with 16 cores on each node. We

present the computing time CT;(p) on each node i = 1,...,32 and the cardinality of PEN;(p) on
each node i = 1,...,32 in Table A.2.

From Tables A.1 and A.2, we see that we did not split the geodesic computing task evenly
among all nodes. This is because we have to check whether a penultimate histogram belongs to

PEN(p) on the fly. Otherwise, we have storage issues saving all the penultimate histograms on

each core.

109



Table A.2: Computing Time for Example when g = 8

0.1 — quantile

0.1 — quantile

0.2 — quantile

0.2 — quantile

CT;(0.1) (sec)

card(PEN;(0.1))

CT;(0.2) (sec)

card(PEN;(0.2))

5723 14424498 5309 16058299

189 855292 208 1033565
157 590376 189 812038
88 1027 92 2581
223 1047416 227 1225831
94 5083 99 7887
94 2073 96 4650
84 0 89 0
138 442650 165 673772
88 329 88 1386
93 7 87 307
84 0 81 0

7 899 111 2799
106 0 86 0

97 0 82 0

86 0 108 0
162 366985 158 601778
90 122 93 842
86 0 87 115
118 0 81 0
117 462 96 1884
112 0 83 0
126 0 86 0

91 0 111 0

88 0 113 21
116 0 86 0
117 0 103 0
104 0 88 0

84 0 98 0

90 0 83 0

87 0 88 0

82 0 87 0

CT;(p) is the computing time of geodesic search by using Algorithm 5.3 on node i = 1, ...,32 for
p=0.1,0.2, card(PEN;(p)) is the cardinality of set PEN;(p) on node i = 1,...,32 for p = 0.1,0.2.

110



Table A.3: Optimal trajectory G

Yo

0.7000

0.1000

0.1000

0.1000

g1

0.5287

0.1116

0.1789

0.1808

G2

0.3352

0.1056

0.2550

0.3042

g3

0.1708

0.0822

0.3000

0.4470

Optimal trajectory for Eve(3,0.3) given Hy = [0.7,0.1,0.1,0.1].

Table A.4: Optimal trajectory G

Go

0.7000

0.1000

0.1000

0.1000

g1

0.5514

0.1130

0.2065

0.1291

Go

0.3760

0.1107

0.3302

0.1832

U3

0.2151

0.0923

0.4365

0.2561

G4

0.0983

0.0643

0.5000

0.3374

Optimal trajectory for Eve(3,0.5) given Hy = [0.7,0.1,0.1,0.1].

A.2 Optimal Trajectory G in Section 6.2.2.2

Recall that the example in Section 6.2.2.2, the starting histogram is Hy = [0.7,0.1,0.1,0.1], the

growth vector is

and the mutation matrix is

the mutation rate is 10~7. The optimal trajectories for realizing the event Eve(3,0.3), Eve(3,0.5)

F = [200,200%%, 20011, 200129,

0 03
0.3 0
0.3 0.3

0.3 0.3

and Eve(3,0.7) are in Tables A.3, A.4, A.5.

111

0.3 04
0 04

04 O

0.3 04




Table A.5: Optimal trajectory G

Go | 0.7000 | 0.1000 | 0.1000 | 0.1000
Gp | 0.5887 | 0.1159 | 0.2156 | 0.0798
Go | 0.4393 | 0.1198 | 0.3597 | 0.0812
Gs | 0.2877 | 0.1099 | 0.5058 | 0.0966
Gy | 0.1621 | 0.0887 | 0.6251 | 0.1241
Gs | 0.0741 | 0.0622 | 0.7000 | 0.1637

Optimal trajectory for Eve(3,0.7) given Hy = [0.7,0.1,0.1,0.1].

112



Bibliography

1]

[11]

[12]

N. K. Arenbaev. Asymptotic behavior of the multinomial distribution. Theory of Probability
€ Its Applications, 21(4):805-810, 1977.

R. Azencott, M. Freidlin, and S. R. S. Varadhan. Large deviations at Saint-Flour. Springer
New York, 2013.

R. Azencott, B. Geiger, and I. Timofeyev. Rare events analysis in stochastic models for
bacterial evolution. arXiv, 2018.

J. E. Barrick and R. E. Lenski. Genome dynamics during experimental evolution. Nature
Reviews, 14(12):827-839, 2013.

J. E. Barrick, C. C. Strelioff, R. E. Lenski, and M. R. Kauth. Escherichia coli rpob mu-
tants have increased evolvability in proportion to their fitness defects. Molecular Biology and
Evolution, 27(6):1338-1347, 2010.

J. Bucklew. Introduction to rare event simulation. Springer New York, 1st edition, 2010.

M. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez, and P. Djuric. Adaptive importance
sampling: the past, the present, and the future. IFEE Signal Processing Magazine, 34:60-79,
2017.

C. Canonne. A short note on poisson tail bounds. Retrieved from the Website: http://www.
cs. columbia. edu/ ccanonne, 2017.

T. Cooper, D. Rozen, and R. Lenski. Parallel changes in gene expression after 20,000 genera-
tions of evolution in escherichia coli. Proceedings of the National Academy of Sciences of the
United States of America, 100:1072-7, 03 2003.

V. S. Cooper, D. Schneider, M. Blot, and R. E. Lenski. Mechanisms causing rapid and parallel
losses of ribose catabolism in evolving populations of Escherichia coli. Journal of Bacteriology,
183:2834-2841, 2001.

M. Cottrell, J. -C. Fort, and G. Malgouyres. Large deviations and rare events in the study of
stochastic algorithms. IEEE Transactions on Automatic Control, 28(9):907-920, 1983.

H. Cram’er and H. Touchette. Sur un nouveau théoréme-limite de la théorie des probabilités.
Actualit’es Scientifiques et Industrielles, 736:5 — 23, 1938.

113



[13]

[14]

[15]

[16]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

I. Csiszar. The method of types information theory. IFEE Transactions on Information
Theory, 44(6):2505-2523, 1998.

A. Dembo and O. Zeitouni. Large deviations techniques and applications. Springer, Berlin,
Heidelberg, 2010.

P. M. Djuric, T. Lu, and M. F. Bugallo. Multiple particle filtering. In 2007 IEEE International
Conference on Acoustics, Speech and Signal Processing - ICASSP 07, volume 3, pages I1I-
1181-111-1184, 2007.

C. R. Doering, K. V. Sargsyan, L.. M. Sander, and E. Vanden-Eijnden. Asymptotics of rare
events in birth—death processes bypassing the exact solutions. Journal of Physics: Condensed
Matter, 19(6):065145, 2007.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time, i. Communications on Pure and Applied Mathematics, 28(1):1-47,
1975.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time, ii. Communications on Pure and Applied Mathematics, 1975.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time iii. Communications on Pure and Applied Mathematics, 29(4):389—
461, 1976.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time. iv. Communications on Pure and Applied Mathematics, 36(2):183—
212, 1983.

P. Dupuis and H. J. Kushner. Stochastic systems with small noise, analysis and simulation; a
phase locked loop example. SIAM Journal on Applied Mathematics, 47(3):643-661, 1987.

P. Dupuis, A. Devin Sezer, and H. Wang. Dynamic importance sampling for queueing networks.
The Annals of Applied Probability, 17(4):1306-1346, 2007.

P. Dupuis and H. Wang. Importance sampling, large deviations, and differential games.
Stochastics An International Journal of Probability and Stochastic Processes, 76:37, 2004.

P. Dupuis and H. Wang. Dynamic importance sampling for uniformly recurrent Markov chains.
Annals of Applied Probability, 15, 2005.

W. Ee, W. Ren, and E. Vanden-FEijnden. String method for the study of rare events. Physical
Review B, 66, 2002.

W. Ee and E. Vanden-Eijnden. Transition-path theory and path-finding algorithms for the
study of rare events. Annual Review of Physical Chemistry, 61:391-420, 2008.

R. S. Ellis. Large deviations for a general class of random vectors. The Annals of Probability,
12(1):1-12, 1984.

114



28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

R. S. Ellis. Entropy, large deviations, and statistical mechanics, volume 271. Springer, Berlin,
Heidelberg, 2006.

V. Elvira, L. Martino, M. F. Bugallo, and P. M. Djuric. Elucidating the auxiliary particle
filter via multiple importance sampling [lecture notes|. IEEE Signal Processing Magazine,
36(6):145-152, 2019.

V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo. Generalized multiple importance sam-
pling. Statistical Science, 34(1):129 — 155, 2019.

P. Fearnhead. Computational methods for complex stochastic systems: A review of some
alternatives to mcemec. Statistics and Computing, 18:151-171, 2008.

J. Geweke. Bayesian inference in econometric models using Monte Carlo integration. Econo-
metrica, 57(6):1317-1339, 1989.

J. K. Ghosh, M. Delampady, and T. Samanta. An introduction to Bayesian analysis: theory
and methods. Springer Texts in Statistics. Springer New York, 2007.

C. Giardina, J. Kurchan, and L. Peliti. Direct evaluation of large-deviation functions. Phys.
Rew. Lett., 96:120603, 2006.

S. J. Godsill and T. Clapp. Improvement strategies for Monte Carlo particle filters. Sequential
Monte Carlo Methods in Practice, pages 139-158, 2001.

T. Grafke and E. Vanden-Eijnden. Numerical computation of rare events via large deviation
theory. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:063118, 06 2019.

J. Gértner. On large deviations from the invariant measure. Theory of Probability & Its
Applications, 22(1):24-39, 1977.

C. J. R. lllingworth and V. Mustonen. A method to infer positive selection from marker
dynamics in an asexual population. Bioinformatics, 28:831 — 837, 2012.

A. Jasra, D. A. Stephens, and C. C. Holmes. Population-based reversible jump Markov chain
Monte Carlo. Biometrika, 94(4):787-807, 2007.

H. Kahn. Random sampling (Monte Carlo) techniques in neutron attenuation problems—ii.
Nucleonics, 6 6:60-5, 1950.

T. Kloek and H. K. van Dijk. Bayesian estimates of equation system parameters: an application
of integration by Monte Carlo. Econometrica, 46(1):1-19, 1978.

V. Lecomte and J. Tailleur. A numerical approach to large deviations in continuous-time.
Journal of Statistical Mechanics Theory and Fxperiment, page P03004, 2007.

J. S. Liu. Monte Carlo strategies in scientific computing. Springer Series in Statistics. Springer
New York, 2013.

J. S. Liu and R. Chen. Blind deconvolution via sequential imputations. Journal of the American
Statistical Association, 90(430):567-576, 1995.

115



[45]

[46]

[47]

[56]
[57]

[58]

[59]

[60]

E. Lyman and D. Zuckerman. Annealed importance sampling of peptides. The Journal of
Chemical Physics, 127:065101, 09 2007.

J. A. M. de Sousa, P. R. A. Campos, and I. Gordo. An abc method for estimating the rate and
distribution of effects of beneficial mutations. Genome Biology and Evolution, 5(5):794-806,
2013.

P. D. Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal
Statistical Society. Series B (Statistical Methodology), 68(3):411-436, 2006.

R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125-139, 2001.

M.-S. Oh and J. O. Berger. Adaptive importance sampling in Monte Carlo integration. Journal
of Statistical Computation and Simulation, 41(3-4):143-168, 1992.

M.-S. Oh and J. O. Berger. Integration of multimodal functions by Monte Carlo importance
sampling. Journal of the American Statistical Association, 88(422):450-456, 1993.

A. Owen and Y. Zhou. Safe and effective importance sampling. Journal of the American
Statistical Association, 95(449):135-143, 2000.

S. Parekh and J. Walrand. A quick simulation method for excessive backlogs in network of
queues. Automatic Control, IEEE Transactions on, 34:54 — 66, 1989.

M. K. Pitt and N. Shephard. Filtering via simulation: auxiliary particle filters. Journal of the
American Statistical Association, 94(446):590-599, 1999.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

F. Ragone, J. Wouters, and F. Bouchet. Computation of extreme heat waves in climate
models using a large deviation algorithm. Proceedings of the National Academy of Sciences,
115(1):24-29, 2018.

J. Richard and W. Zhang. Annealed importance sampling. Statistics and Computing, 11, 2001.

J. Richard and W. Zhang. Efficient high-dimensional importance sampling. Journal of Econo-
metrics, 141:1385-1411, 2007.

J. Sadowsky and J. Bucklew. Large deviations theory techniques in Monte Carlo simulation.
IEEE Computer Society, 1989.

I. N. Sanov. On the probability of large deviations of random variables. Matematicheskij
Sbornik, 42:11-44, 1958.

S. Schmidler, J. Liu, and D. Brutlag. Bayesian segmentation of protein secondary structure.
Journal of Computational Biology, 7:233-248, 2000.

D. Siegmund. Importance sampling in the Monte Carlo study of sequential tests. The Annals
of Statistics, 4(4):673 — 684, 1976.

116



[62] J. Tailleur and J. Kurchan. Probing rare physical trajectories with lyapunov weighted dynam-
ics. Nature Physics, 3:203, 2006.

[63] S. Tokdar and R. Kass. Importance sampling: a review. Wiley Interdisciplinary Reviews:
Computational Statistics, 2:54 — 60, 2010.

[64] E. Vanden-Eijnden and J. Weare. Rare event simulation of small noise diffusions. Communi-
cations on Pure and Applied Mathematics, 65, 12 2012.

[65] W. Zhang, V. Sehgal, D. Dinh, R. Azevedo, T. Cooper, and R. Azencott. Estimation of the
rate and effect of new beneficial mutations in asexual populations. Theoretical Population
Biology, 81:168-78, 2011.

117



