
Rare Events Simulation In Bacterial Genetic Evolution Models

by

Yingxue Su

A dissertation submitted to the Department of Mathematics,

College of Natural Sciences and Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

Chair of Committee: Robert Azencott

Committee Member: Mattew Nicol

Committee Member: Andreas Mang

Committee Member: Brett Geiger

University of Houston
May 2022

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Robert Azencott, for pushing me forward mathemat-

ically, for understanding me through sicknesses and difficult times and for inspiring me with life

wisdom.

I would like to thank my committee members, Professor Mattew Nicol, Professor Andreas Mang

and Professor Brett Geiger, for helping me complete my research computationally and financially.

I would like to thank Professor Alan Haynes for encouragements and recognition through my 5

years Ph.D. student life.

I would like to thank my husband, my mother, my friends and my other family members for

sharing my happiness and struggles with me and for supporting me in all possible ways.

I complete this dissertation in memory of my grandpa and my friend, Guiping Zhong.

ii

ABSTRACT

Rare events often disturb the dynamics of random systems dramatically, despite their low frequen-

cies. It is crucial to study the possible paths leading to the happening of these rare events and

the probabilities of these paths. We focus on the fixation events in bacterial genetic evolution

models. Fixations happen when the frequencies of certain genotypes become unusually large in the

population. We introduce two numerical algorithms to estimate the probabilities of fixations. The

first algorithm is based on the large deviations theory and the importance sampling method. The

second algorithm is inspired by the genealogy method introduced by physicists.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii
ABSTRACT . iii
LIST OF TABLES . vi
LIST OF FIGURES . vii

1 Introduction 1
1.1 Stochastic Model of Bacterial Genetic Evolution . 1
1.2 Review of Large Deviations Theory . 2
1.3 Review of Importance Sampling . 3
1.4 Exponential Shift Family and Genealogy Algorithm 5

2 Stochastic Model for Genetic Evolution of Bacteria Population 7
2.1 Deterministic Growth . 8
2.2 Random Mutations . 8
2.3 Random Selection . 10

3 Sampling Method of Multinomial Random Vector with Large Population 11
3.1 Normal Approximation of Multinomial Distributions 11
3.2 Asymptotic Sampling Method . 12
3.3 Example of Multinomial Distribution Sampling . 13

4 Large Deviations in Path Space 14
4.1 Large Deviations Asymptotics for Mutations . 14
4.2 Large Deviations Rate Function for Multinomial Sampling 16
4.3 Large Deviations for the One-step Transition Kernel 16
4.4 Large Deviations in Path Space . 18
4.5 Explicit Computation of Geodesics . 18
4.6 Mean Trajectories . 19
4.7 Sets of Thin Tubes of Realizing Rare Events . 20

5 Geodesic Computation 21
5.1 Brute Force Simulation . 21
5.2 Parallel Computing Technique . 24
5.3 Quantile Technique . 25

5.3.1 Quantile Technique Simulations . 28
5.4 Modified Geodesic Shooting Method . 32

iv

5.4.1 Gradient of the Rate Function . 35
5.4.2 Modified Geodesic Shooting Example . 45

6 Fixations 49
6.1 Example of Fixations . 49
6.2 Optimal Trajectory G Realizing Eve(J, β) . 51

6.2.1 Algorithms for Searching for G . 51
6.2.2 Examples of the Multi-scale Algorithm . 53

7 Importance Sampling in Path Space 58
7.1 Background of Importance Sampling . 58
7.2 Cramer Transform of Poisson Distribution and Multinomial Distribution 59
7.3 Exponential Shift Distribution of the Poisson Distribution 60
7.4 Exponential Shift Distribution of the Multinomial Distribution 61
7.5 Forced Simulation of One-step Transition . 62

8 Estimation of the One-step Transition Kernel 67
8.1 Estimator of the One-step Transition Kernel . 67
8.2 Algorithm for Estimating Q(H,G) . 68
8.3 Estimation of the Summation of Extremely Small Values 69
8.4 Concentration Properties of LW (H,R,G) . 70
8.5 Accuracy of QK(H,G) . 83
8.6 Example of Estimating the Q(H,G) . 87

9 Estimating the Probabilities of Random Trajectories 89
9.1 Estimator for the Probability of a Random Trajectory 89
9.2 Accuracy of the Estimation . 90
9.3 Examples of Estimating P(H|H0) . 92

10 Estimating P(H in a thin tube) by Importance Sampling 94
10.1 Forced Trajectories in a Thin Tube . 94
10.2 Estimator of P(H in a thin tube) . 95
10.3 Accuracy of the Estimation . 97
10.4 Example of Estimating P(H in a thin tube) . 98

11 Genealogy Forced Trajectory Simulation 101
11.1 One-step Transition from Hn = H to Hn+1 = G . 101
11.2 Generate a Set of Trajectories Q(t) = {H1, ...,HP } 102
11.3 Generate Q(t+ 1) Given Q(t) . 102
11.4 Genealogy Simulation of Forced Trajectory . 104
11.5 Genealogy Forced Trajectory Simulation Example 105

A Appendix 107
A.1 Computing Time of Examples in Section 5.3.1.2 . 107
A.2 Optimal Trajectory G in Section 6.2.2.2 . 111
BIBLIOGRAPHY . 113

v

LIST OF TABLES

3.1 Computing Time of the Multinomial Random Vector Sampling 13

5.1 Efficiency Computation for g = 3 . 28
5.2 Efficiency Computation for g = 4 . 29
5.3 Efficiency Computation for g = 5 . 30
5.4 Geodesic Example when g = 7 . 31
5.5 Geodesic Example when g = 8 . 32

6.1 Brute Force Simulation of Eve(J, β) . 51
6.2 Optimal Trajectory G . 54
6.3 Optimal Trajectory G . 54
6.4 Optimal Trajectory G . 54

9.1 Optimal Trajectory G . 92
9.2 Forced Simulation Results . 93

10.1 Results of Forced Simulation of Trajectories . 99

A.1 Computing Time for Example when g = 7 . 108
A.2 Computing Time for Example when g = 8 . 110
A.3 Optimal trajectory G . 111
A.4 Optimal trajectory G . 111
A.5 Optimal trajectory G . 112

vi

LIST OF FIGURES

5.1 Modified Geodesic Shooting Example 1 with g = 8 46
5.2 Modified Geodesic Shooting Example 2 with g = 10 48

6.1 Mean Trajectory . 50
6.2 Optimal Trajectories and the Mean Trajectory . 55
6.3 Optimal Trajectories and the Mean Trajectory . 57

10.1 Forced Trajectories Around G . 100

11.1 Forced Trajectories by Genealogy Method . 106

vii

Chapter 1

Introduction

1.1 Stochastic Model of Bacterial Genetic Evolution

Rare events often have an important impact even though these events have extremely low occur-

rence. Tsunamis, finances crises, and earthquakes are some examples. If we are able to simulate

the likely trajectories that realize these dangerous rare events, we could avoid the occurrence of

the rare events by avoiding these trajectories. Constructing efficient numerical algorithms is the

natural approach to simulate rare events. E. Vanden-Eijnden has studied the rare events simulation

in different continuous time systems in a series of papers, see [16, 25, 26, 36, 64]. The book [6]

summarizes the main theoretical and numerical results of rare events simulations. In this disser-

tation, we study the rare events in a discrete time random system. We introduce two numerical

algorithms to estimate the probabilities of the rare events in the discrete time system.

We consider the stochastic model for genetic evolution of Escherichia coli, which was obtained

from long-term laboratory experiments [4, 5, 9, 10]. This commonly used stochastic model contains

three parts: deterministic growth, Poisson distributed mutations, and random selection. On day

n, the population first grows with a deterministic vector F with the starting population size N .

After the growth, random mutations happen simultaneously following Poisson distributions. We

1

then randomly extract N cells from the bacterial population to be the starting population of day

N+1. The papers [38, 46, 65] introduce several computational methods to estimate the parameters

in this stochastic model.

We are interested in the rare events where the frequencies of certain intermediate-strength

genotypes become unusually large; such events are called fixations. It is important to understand

the paths that lead to these fixations under the effects of two random steps, namely, random

mutations and random selections. In the recent work [3], the large deviations theory results of the

stochastic model are obtained. In this thesis, we derive a numerical method for estimating the

probability of fixations, based on these large deviations theory results. We first use these results

to search for the optimal path that realizes the fixation. Next, we estimate the fixation probability

by forcing random trajectories to follow the optimal path. We also derive a second numerical

method, based on the genealogy method of [55], which does not depend on the large deviations

theory results. This genealogy method depends on a re-sampling trick to force the rare events to

occur more often in the system.

1.2 Review of Large Deviations Theory

The large deviations theory studies the exponential decay of sequences of probability distributions

asymptotically. The function that measures the rate of this decay is called the rate function.

Since large deviations theory studies the tail behaviors of probability distributions, it becomes the

common and useful tool for studying rare events in random systems.

The earliest work of large deviations theory was done by the Swedish mathematician Crámer. He

studied the large deviations theory in order to solve actuary problems in 1938, see [12]. The result

he obtained for i.i.d random variables is known as the Crámer theorem. Another important result

for i.i.d random variables is Sanov’s theorem which was obtained in 1957, see [59]. Sanov’s theorem

shows that the rate function of i.i.d Markov process is the Kullback-Leibler divergence between

2

the true probability distribution and the estimated probability distribution. From the late 1970s

to the early 1980s, Donsker and Varadhan studied the large deviations theory of Markov processes

much more thoroughly in a series of papers, see [17, 18, 19, 20]. Around the same time, Gärtner

and Ellis extended Donsker’s and Varadhan’s results to more general settings, see [27, 28, 37]. One

of their famous results is the Gärtner-Ellis theorem. Later on, Csisźar introduced the method of

types technique to simplify some proofs of the classical large deviations theory results, see [13].

The books [2, 14] present the classic and important results of large deviations theory.

The large deviations theory results of the stochastic model of bacteria populations were obtained

in paper [3]. In this thesis, we introduce an algorithm based on these large deviations theory results

to simulate rare events and estimate the probabilities of rare events.

1.3 Review of Importance Sampling

Importance sampling is a Monte Carlo simulation technique. It uses a manipulated probability

distribution instead of the true probability distribution of the system to simulate the events of our

interest. Since we change the probability distribution of the system during simulations, we need to

keep tracking the corrective ratio between the true probability distribution and the manipulated

probability distribution. By using a “good” manipulated probability distribution, the rare events

become the common events of the random system. Thus, importance sampling is one of the powerful

tools to study and simulate rare events. In fact, the first use of the importance sampling was to

study the rare events of nuclear particles penetrating shields in 1950, see [40]. In recent decades,

people have developed multiple types of importance sampling methods such as, adaptive importance

sampling [50, 51, 57, 22, 24], annealed importance sampling [45, 56], sequential importance sampling

[15, 29], and multiple importance sampling [30]. [7, 63] review these developments of the importance

sampling. We summarize the important developments here.

Let p(x) be the true probability distribution of a random variable X. Let q(x) be the changed

3

probability distribution. In general, not all the properties of the true distribution p(x) are known.

In these circumstances, it might be difficult to choose the changed distribution q(x) that is practical

to use and guarantees good accuracy. Several strategies were studied to solve this issue. We review

three types of importance sampling methods here.

If some theoretical properties of p(x) are known, one might be able to use these properties

to determine the family of q(x). We then select the optimal distribution q(x) among this family

based on certain measurements. This type of method is the adaptive importance sampling method.

When a multivariate normal distribution is a good estimator of p(x) asymptotically, one might

select the corresponding multivariate normal distribution as q(x), see [33]. The work [32] shows

that a multivariate student density distribution is a better choice for q(x). Later on, the work

in [41, 49] reduces the restrictions on the asymptotic approximation of p(x) and extended the

candidates of q(x).

Sequential importance sampling method is often used for sampling high dimensional random

variables. Suppose the random variable is of dimension n, denote x[1:t] = (x1, ..., xt) for any

t ∈ [1, n]. One can rewrite the true probability distribution p(x) and the changed probability

distribution q(x) as

p(x) = p(x1)
n∏
t=2

p(xt|x[1:t−1]),

and

q(x) = q(x1)

n∏
t=2

q(xt|x[1:t−1]).

We select the proper q(xt|x[1:t−1]) for p(xt|x[1:t−1]) for t = 2, ..., n. Sequential importance sampling

is often used for models with different states, see Chapters 3 and 4 in [43]. [44] applied this

technique to study wireless communication. [54] proposed several applications in speech recognition

by recognizing the chain like sequential distributions in the system. [53] analyzed the economical

time series by applying this sequential importance sampling technique. [60] studied the prediction

of the 3D structure of the protein by using this technique.

4

The work [48] introduces the anneal importance sampling method to sample the random variable

sequentially, even if the random variable does not have a chain like structure. One first constructs

a sequence of distributions p0(x), ..., pd(x) = p(x), where p0 is selected to be diffuse and

pi(x) = p0(x)1−bip(x)bi ,

for i = 1, ..., d, 0 = b0 ≤ b1 ≤ ... ≤ bd = 1. Next, one draws a sample x(t) from the distribution

gt(x
′|x(t− 1)) for t = 1, ..., d sequentially, where gt(x

′|x(t− 1)) is a transition kernel satisfying

∫
pt(x)gt(x

′|x)dx = pt(x
′).

[45] applied this anneal importance sampling method to study dileucine peptide. [35] studied the

particle filtering problem by using this technique. People also proposed a sampling method of

combining the sequential importance sampling method and the transition kernel idea, see [31, 39,

47]. This type of algorithm allows one to perform the dependent Markov chain sampling around

the proper transition kernel. We will use this type of importance sampling structure to simulate

rare paths in the bacterial genetic evolution stochastic model.

1.4 Exponential Shift Family and Genealogy Algorithm

If we have obtained the large deviations theory results of the true distribution p(x), one of the

commonly used families for the manipulated probability distributions is the exponential shift family,

see [11, 21, 52, 61]. Moreover, the exponential shift distribution with the large deviation minimizer

is the optimal manipulated distribution among this family. This is because the variance of the

estimator is minimized asymptotically by this exponential shift distribution, see [23, 58]. The

exponential shift family is constructed as follows. Let p̂(x) be the Laplace transform of the true

distribution p(x). The exponential shift family of p(x) is defined as q(x) = e〈t,x〉p(x)
p̂(t) for t ∈ R. The

parameter t of the optimal manipulated distribution comes from the Cramer transform of p(x).

5

The large deviations results in the path space of the bacterial genetic evolution model are

obtained in paper [3]. The large deviations theory approach to simulate rare fixations is organized

as follows in this dissertation. We first search for the optimal paths to realize the fixations, see

Chapter 5. Next, we force the random trajectories to follow the optimal paths by applying the

exponential shift technique, see Chapter 7. The methodology of estimating the probabilities of

random trajectories is explained in Chapters 8 and 9. In Chapter 10, we estimate the probabilities

of fixations by estimating the probabilities of random trajectories in thin tubes centered at the

optimal paths.

Physicists propose the genealogy algorithm to study rare events in the overly complicated

stochastic models. This genealogy algorithm does not depend on the large deviations theory results

of the system. The computation of searching for the optimal paths to realize rare events is not

needed. The genealogy algorithm simulates the likely paths that realize rare events by applying

certain re-sampling tricks. The Giardina–Kurchan– Lecomte–Tailleur (GKLT) algorithm is one of

the commonly used genealogy algorithms. This algorithm was originally designed to simulate the

large deviation rate functions for infinite time limit, see [34, 62, 42]. Ragone, Wouters, and Bouchet

apply this GKLT algorithm to a finite continuous time setting to study extreme weather, see [55].

In comparison, time is discrete in the stochastic model of our interest. Thus, we introduce the

modified genealogy algorithm to simulate rare events in the bacterial genetic evolution model in

Chapter 11.

6

Chapter 2

Stochastic Model for Genetic

Evolution of Bacteria Population

There are g genotypes in the stochastic model of genetic evolution of bacteria populations. H =

[H(1), ...,H(g)] ∈ Rg with coordinates 0 ≤ H(j) ≤ 1, and
∑

j=1,...,gH(j) = 1 is a genetic histogram

for this stochastic model. The set H ⊂ Rg of all potential histograms is a compact convex set. We

refer to the cells of genotype j as j-cells; j-cells have a rate of exponential growth fj > 0. Define the

growth factor for j-cells as Fj = exp (Dfj) > 1, where D is the fixed duration of the deterministic

growth. Denote F = [F1, F2, ..., Fg]. We order the Fj in an ascending order so that if i < j, then

Fi < Fj . At the beginning of day n, the bacteria population starts with popn = N and a genetic

histogram Hn. In fact, we have Hn ∈ HN , where HN = {H ∈ H|NH(j) ∈ Z for j = 1, ..., g}. The

populations are allowed to grow deterministically till they reach a very large size N〈Hn, F 〉. After

the growth, these cells of g genotypes are allowed to mutate simultaneously. At the end of day n,

we select a random sample of size N as the starting population of day n+ 1. The precise model is

stated as follows:

1. Phase 1: The j-cells colony grows deterministically and its population size grows to [NHn(j)Fj]

7

for j = 1, ..., g.

2. Phase 2: Mutations occur simultaneously with a fixed small mutation rate m.

3. Phase 3: Randomly sample N cells from the population to be the starting population of day

n+ 1.

2.1 Deterministic Growth

Let Nter denote the population size after the deterministic growth. The population size of j-cells

is NHn(j) at the beginning of day n, then it reaches sizn(j) = [NHn(j)Fj] after the deterministc

growth, where [z] gives the smallest integer greater or equal to z. Therefore, Nter =
∑g

j=1 sizn(j) =

[N〈F,Hn〉]. The frequency of j-cells becomes to [NFjHn(j)]/[N〈F,Hn〉].

Definition 2.1.1. Define the deterministic growth function Φ : H → H by

Φj(H) = FjHj/〈F,H〉

for j = 1, .., g.

We use Φj(Hn) to estimate the frequency of j-cells after the deterministic growth. The distance

between this estimation and the true frequency is of the order of 1/N for large N , see [3].

2.2 Random Mutations

Assume mutations occur simultaneously at the end of each growth period. Let a g × g matrix

M = mQ with entry Mi,j = mQi,j be the mean mutation rates matrix, where m is a very small,

fixed mutation rate and Q is the fixed transfer matrix with Qj,k ≥ 0 and Qj,j = 0. The mutation

rate m takes a value between 10−8 to 10−6.

8

Let Rn(j, k) denote the number of cells mutating from type j to type k on day n. Rn(j, k)

follows the Poisson distribution with mean sizn(j)Mj,k. We have

P(Rn(j, k) = Rj,k|Hn = H) = exp(−sizn(j)Mj,k)(sizn(j)Mj,k)
Rj,k/Rj,k!, j 6= k

E(Rn(j, k)|Hn = H) = sizn(j)Mj,k, j 6= k.

Definition 2.2.1. A matrix A is N -rational if NA has only non-negative integer entries.

Definition 2.2.2. For each histogram H and each genotype j, define the constraint sets K(j,H)

to be all the g × g matrices r with non-negative entries such that



∑g
k=1 rj,k < FjH(j) when H(j) > 0,

rj,k = 0 when H(j) = 0,

rj,k = 0 when Qj,k = 0.

(2.1)

Definition 2.2.3. Let Z(N) be the set of all g×g N -rational matrices. DefineK(H) = ∩gj=1K(j,H)

and KN (H) = K(H) ∩ Z(N).

Therefore, Rn/N ∈ KN (H). The population histogram Jn after the mutation is

Jn(j) =
1

[N〈F,Hn〉]
([NFjHn(j)]−

∑
k

Rn(j, k) +
∑
k

Rn(k, j)).

Definition 2.2.4. For given Hn = H ∈ HN and r = Rn/N ∈ KN (H), we define function Ψ by

Ψj(H, r) =
1

〈F,H〉
(FjH(j)−

∑
k 6=j

rj,k +
∑
k

rk,j),

for j = 1, ..., g.

The function Ψ is an estimator for the histogram Jn. The distance between this estimator and

9

the true frequency Jn is of the order 1/N , see [3].

2.3 Random Selection

After the deterministic growth and random mutations, we extracts N cells from the population for

cycle n+ 1. Let µN,J(V) be the multinomial distribution defined as

µN,J(V) = N !
∏
j

(J(j))V (j)

V (j)!
. (2.2)

Definition 2.3.1. For any H ∈ H, spt(H) is the support of H and b(H) > 0 is its essential

minimum defined as

spt(H) = {j|H(j) > 0} and b(H) = min
j∈spt(H)

H(j).

Suppose Hn+1 = G ∈ HN , then we have

P(Hn+1 = G|Hn, Rn) = P(Hn+1 = G|Jn) =


µN,Jn(NG) spt(G) ⊂ spt(Jn),

0 otherwise .

Definition 2.3.2. Q(H,G) = P(Hn+1 = G|Hn = H) is the transition kernel defined as

Q(H,G) =
∑

r∈KN (H)

P(Hn+1 = G|Rn = Nr,Hn = H)P(Rn = Nr|Hn = H). (2.3)

10

Chapter 3

Sampling Method of Multinomial

Random Vector with Large

Population

Since the population size N of the bacteria evolution stochastic model is large, we will need to sam-

ple multinomial random vectors with this large population size N during the numerical simulation

of the model. The current algorithm used for generating multinomial random vector in Matlab is

not feasible when the population size N is large due to the storage issue and the efficiency issue.

In this section, we implement an asymptotic sampling method for the multinomial random vector

by using the normal approximation of the multinomial distribution.

3.1 Normal Approximation of Multinomial Distributions

Let X be a random vector in Rk following the multinomial distribution µN,p defined as formula

(2.2). Notice that p ∈ Rk and
∑k

i=1 pi = 1. The marginal distribution of Xj follows the binomial

11

distribution Binomial(n, pj). The mean and covariance matrix of X are

E(X) = (np1, ..., npk)
T ,

and

V (X) =



np1(1− p1) −np1p2 ... −np1pk

−np1p2 np2(1− p2) ... −np2pk
...

...
. . .

...

−np1pk −np2pk ... npk(1− pk)


.

Theorem 3.1.1. X ∈ Rk follows the multinomial distribution µN,p. As N → ∞, the distribution

of
√
N(XN − p) weakly converges to the multivariate Normal distribution N(0,Σ), where

Σ =



p1(1− p1) −p1p2 ... −p1pk

−p1p2 p2(1− p2) ... −p2pk
...

...
. . .

...

−p1pk −p2pk ... pk(1− pk)


,

see [1].

3.2 Asymptotic Sampling Method

By using Theorem 3.1.1, we implement the following asymptotic sampling method for multinomial

random vectors.

Algorithm 3.1: Asymptotic Sampling Method

Step 1. Sample a random vector Y following the multivariate normal distribution N(0, I), where

I is the k × k identity matrix.

Step 2. Compute Z = Σ
1
2Y and Z ∼ N(0,Σ).

12

Table 3.1: Computing Time of the Multinomial Random Vector Sampling

N Matlab mnrnd Asymptotic sampling method

106 0.03(s) 0.005(s)
107 0.32(s) 0.005(s)
108 3.20(s) 0.005(s)
109 30.12(s) 0.005(s)

Computing time of the Matlab mnrnd function and the asymptotic sampling method on one node
of the Opuntia cluster

Step 3. Compute U =
√
NZ +Np. Let Xi = [Ui] for i = 1, ..., k− 1 and Xk = N −

∑k−1
i=1 Xi. The

vector X is the sampled multinomial random vector.

3.3 Example of Multinomial Distribution Sampling

Let p = [0.5, 0.2, 0.3] and k = 3, we compare the computing time of sampling one multinomial

random vector by using the Matlab function mnrnd and the asymptotic sampling method for

N = 106, 107, 108, 109 in Table 3.1.

We see that as N increases by a factor of 10, the computing time of Matlab function mnrnd

also increases by a factor of 10 approximately. When we sample a multinomial random vector

with population size N = 1010 by using the mnrnd function, we will also face the storage issue.

In comparison, the computing time of the asymptotic sampling method is not increasing as N

increases. In the following chapters, we will be using this asymptotic sampling method to sample

mutinomial random vectors when the population size N ≥ 107.

13

Chapter 4

Large Deviations in Path Space

The large deviations theory studies the exponential decay of probability distributions of random

systems. The rate function is used to describe this exponential decay, which contains important

information of the rare events occurring in the system. Thus, studying the large deviations theory

of the random system is an important step to analyze rare events. In this chapter, we recall several

important large deviations theory results in the path space of the bacterial genetic evolution model,

which were studied in paper [3]. The proofs of the theorems in this chapter can be found in [3].

4.1 Large Deviations Asymptotics for Mutations

Definition 4.1.1. For all H ∈ H and r ∈ K(H), define the g × g matrix L(r,H) of Poissonian

rate functions by

Lj,k(r,H) =


Mj,kFjH(j) + rj,k log(

rj,k
eMj,kFjH(j)) H(j)M(j, k) > 0,

0 H(j)M(j, k) = 0.

(4.1)

14

Thus, the large deviations rate function for mutations mut(r,H) is

mut(r,H) =
∑
j,k

Lj,k(r,H) (4.2)

=
∑

(j,k)|Mj,kH(j)>0

Mj,kFjH(j) + rj,k log rj,k − rj,k log(eMj,kFjH(j)) (4.3)

with the convention 0× log(0) = 0. The mut(r,H) is a finite, non-negative, and continuous strictly

convex function of r ∈ K(H), since each Lj,k is strictly convex in rj,k. mut(r,H) = 0 if and only

if rj,k = Mj,kFjH(j) for all j 6= k.

Definition 4.1.2. Define a fixed finite parameter set P, namely:

1. the number g ≥ 2 of genotypes.

2. the multiplicative daily growth factor Fj for genotype j with j = 1, ..., g.

3. the g × g transfer matrix Q.

Definition 4.1.3. For any fixed 0 < a < 1, define the compact set of histogram H(a) ⊂ H by

H(a) = {H ∈ H| min
j=1,...,g

H(j) > a}.

The large deviations result of the mutation stage is stated in the following Theorem 4.1.4.

Theorem 4.1.4. Let Rn be the random mutation matrix of day n. Let mut(r,H) be the mutations

rate function defined by formula (4.2). Then for fixed a > 0 and the parameters P, there is a

constant N0 = N0(a,P) such that for N > N0, the large deviation formula

1

N
logP(Rn/N = r|Hn = H) = −mut(r,H) + o(N), with |o(N)| ≤ 4g2 log(N)/N (4.4)

holds uniformly for H ∈ H(a) ∩HN and r ∈ KN (H).

15

4.2 Large Deviations Rate Function for Multinomial Sampling

Definition 4.2.1. The classical Kullback − Leibler divergence between two histograms G and J

is defined as

KL(G, J) =


∑

j∈spt(G)G(j) log G(j)
J(j) when spt(G) ⊂ spt(J),

∞ otherwise.

(4.5)

Recall that KL(G, J) ≥ 0 for all G and J , and KL(G, J) = 0 if only if G = J . The large

deviation result of the random selection stage is stated in the following Theorem 4.2.2.

Theorem 4.2.2. If any histograms J and G with spt(G) ⊂ spt(J) and G is N -rational, then the

multinomial distribution µN,J defined by formula (2.2) verifies

1

N
logµN,J(NG) = −KL(G, J) + o(N) with |o(N)| ≤ 2(g + 1) logN/N. (4.6)

4.3 Large Deviations for the One-step Transition Kernel

Definition 4.3.1. For any H,G ∈ H and r ∈ K(H), define the composite transition rate τ(H, r,G)

as

τ(H, r,G) = mut(r,H) +KL(G,Ψ(H, r)). (4.7)

Definition 4.3.2. Define the one-step cost function C(H,G) by

C(H,G) = min
r∈K(H)

τ(H, r,G) = min
r∈K(H)

[mut(r,H) +KL(G,Φ(H, r))].

The large deviation result of the one-step transition kernel is stated in the following Theorem

4.3.3.

16

Theorem 4.3.3. Fix any 0 < a < 1 < d and the parameters P. One-step large deviations for

Markov chain Hn are controlled as follows by two constants c = c(d, a,P) and N0 = N0(d, a,P).

Consider any H,G ∈ H(a) with one-step transition cost C(H,G) ≤ d. Then the transition kernel

Q(H,G) has a uniform large deviations approximation, valid for all N > N0 and H,G ∈ H(a) as

above,

1

N
logQ(H,G) = −C(H,G) + o(N) (4.8)

with |o(N)| ≤ c/
√
N .

The explicit computation of the one-step cost function is stated in the following Theorem 4.3.4.

Theorem 4.3.4. Fix P and any 0 < a < 1. Let Γ(a) be the set of interior histograms J with

b(J) > a. There is a constant c = c(a,P) > 0 such that for all H,G ∈ Γ(a), and 0 ≤ m ≤ c, the

transition cost C(H,G) is a finite C∞ function and transition cost C(H,G) has an explicit first

order expansion in m, given by

C(H,G) = KL(G,Φ) +m
∑
j,k

FjH(j)Qj,k(1− Uk/Uj) +O(m2) (4.9)

where Uj = exp
Gj

FjH(j) ,

KL(G,Φ) =
∑
j

G(j) log(G(j)/Φ(j)) > 0 and Φ(j) = FjH(j)/〈F,H〉.

The first order expansion of C(H,G) is obtained when

rj,k ≈ mFjH(j)Qj,kUk/Uj , (4.10)

for j, k = 1, ..., g and j 6= k.

17

4.4 Large Deviations in Path Space

Definition 4.4.1. Define ΩT = HT the path space of all histogram trajectories H = [H0, ...,HT−1]

with all Hn ∈ H where T is the fixed time horizon. A trajectory H ∈ ΩT is N -rational if all the Hn

are N -rational histograms. Define the essential minimum b(H) of H as b(H) = minn=0,...,T−1 b(Hn).

Definition 4.4.2. The large deviations rate function λ : ΩT → [0,+∞] is defined for any H ∈ ΩT

by

λ(H) =
∑

n=0,...,T−2
C(Hn, Hn+1).

Define the large deviations rate functional Λ(F) ∈ [0,+∞] for all subsets F of the path space ΩT

by

Λ(F) = inf
H∈F

λ(H).

The large deviations theory result of single trajectories is stated in the following Theorem 4.4.3.

Theorem 4.4.3. For any path length T ≥ 2, denote H = [H0, ...,HT−1] as the random trajectory of

population histograms. Fix P and any positive constants d > 0 and a > 0. The (a, d,P) determine

positive constant c and N0 such that the following properties hold. For any N -rational path h ∈ ΩT

such that λ(h) ≤ d and b(h) ≥ a, one has, for all N > N0,

1

N
logP(H = h|H1) = −λ(h) + o(N) with |o(N)| ≤ Tc/

√
N. (4.11)

4.5 Explicit Computation of Geodesics

Definition 4.5.1. A path h∗ = [h∗0, ..., h
∗
T−1] from H to G is a geodesic from H to G if it minimizes

the large deviation rate function λ(h) over all h ∈ ΩT such that h0 = H and hT = G.

When all h∗n ∈ Ho for n = 0, ..., T − 1, we call h∗ an interior geodesic. The following Theorem

4.5.2 gives the explicit formula of generating a reverse geodesic recurrently.

18

Theorem 4.5.2. Let h∗ be any interior geodesic in ΩT with T > 1. Let a = b(h∗). There is a

constant m0 = m0(a, PAR) such that for m < m0, and any n ∈ 0, ..., T − 3, then x := h∗n is fully

determined by y := h∗n+1 and z := h∗n+2. Indeed, x = (m, y, z), where is a C∞ function of (m, y, z)

for m < m0 and y, z ∈ Ho. Hence, for m < m0, h∗ is determined by its last two points h∗T and

h∗T−1 thanks to the reverse recurrence relation

h∗n = χ(m,h∗n+1, h
∗
n+2) for 0 ≤ n ≤ T − 3. (4.12)

We call the histogram h∗T−1 the penultimate point of the geodesic h∗. Denote xs = x̂s(1 + mws)

with s = 1, ..., g and remainder of order m2 the 1st order Taylor expansion of x = χ(m, y, z) in m

for m < m0. The interior histogram x̂ and the vector w depend only on y, z and are given below

by the explicit formulas

x̂s =
Xs∑
tXt

, (4.13)

Xs =
ys
Fs

exp(
Fs
〈F, y〉

− zs
ys

), (4.14)

w = u+ v − 〈a, u+ v〉, (4.15)

us =
∑
k

(Qs,kes,k −
FkXk

FsXs
Qk,sek,s), (4.16)

es,k = exp(− ys
Fsas

+
yk
Fkak

), (4.17)

vs = Fs
∑
k

Qs,k − (Fs +
zs
ys

)
∑
k

fs,kQs,k −
zs
Fsy2s

∑
k

FkykQk,sfk,s, (4.18)

fs,k = exp(− zs
Fsys

+
zk
Fkyk

). (4.19)

4.6 Mean Trajectories

The following Theorem 4.6.1 gives the explicit formula for computing the mean trajectories. The

mean trajectories have zero cost.

19

Theorem 4.6.1. H = [H0, ...,HT−1] is the random trajectory of population histograms. Given

Ht = H, then E(Ht+1|Ht = H) = ζ(H), where ζ : H → H is defined as

ζj(H) =
1

〈F,H〉
(FjH(j)−m

∑
k

Qj,kFjH(j) +m
∑
k

Qk,jFkH(k)), (4.20)

for j = 1, ..., g.

4.7 Sets of Thin Tubes of Realizing Rare Events

Definition 4.7.1. For η > 0 and E∗ ⊂ ΩT , define the η-neighborhood Uη(E
∗) of E∗ as the union

of all open balls of radius η and center in E∗.

Definition 4.7.2. For any Γ ∈ ΩT , define the open neighborhood VN (Γ) as the union of all balls

VN (H) with radius 2
3N and any arbitrary center H ∈ Γ, where VN (H) is defined as the set

VN (H) = {H′ ∈ ΩT | max
i=0,...,T−1

||H ′i −Hi|| ≤
2

3N
}.

Theorem 4.7.3. Fix the path length T and an initial histogram H. Let PH be the probability

distribution of random histogram paths starting at H. Let E ⊂ ΩT be any closed set of interior

paths starting at H satisfying 0 < Λ(E) < ∞. Let E∗ be the set of all paths h minimizing the

rate function λ(h) over all h ∈ E. Then E∗ is a closed subset of E. For any fixed η > 0, the

η-neighborhood U = Uη(E
∗) verifies

lim
N→∞

PH(H ∈ U |H ∈ VN (E)) = 1.

From this theorem, we know that the probability of fixations is approximately equal to the prob-

ability of trajectories realizing the fixations through the thin tubes centered at the cost-minimizing

paths for large population size N .

20

Chapter 5

Geodesic Computation

Let A(G) be the set of trajectories starting with histogram H and ending with histogram G. We are

interested in computing P(A(G)|H) which is the probability of the event that trajectories starting

with histogram H end with histogram G. By the large deviation theory results in paper [3], we

know that

lim
N→∞

− 1

N
logP(A(G)|H0) = Λ(A(G)) = inf

H∈A(G)
λ(H).

Notice that infH∈A(G) λ(H) brings up the definition of geodesics from H to G. We can roughly

estimate the probability P(A(G)|H) by exp(−N · λ(h∗)), where h∗ is the geodesic from H to

G. Thus, searching for geodesics from H to G is a very important aspect of studying the small

probability P(A(G)|H). In this chapter, we will study several algorithms to search for geodesics

from H to G. This chapter will be submitted as a paper with Brett Geiger, Andreas Mang, Ilya

Timofeyev, and Robert Azencott.

5.1 Brute Force Simulation

Given a fixed starting histogram H and a fixed target histograms G, paper [3] states the brute

force algorithm to search for the geodesic from H to G in detail. We summarize the basic steps of

21

this brute force simulation in the following Algorithm 5.1.

Algorithm 5.1: Brute Force Simulation

Step 1. H is the starting histogram. G is the target histogram. Mesh is the mesh size. Let

PEN = H\G. We use the mesh size Mesh to discretize set PEN . Let DPEN be the discretized

penultimate points set. Denote the cardinal number of set DEPN as card(DPEN). Suppose

card(DPEN) = n.

Step 2. For every histogram P ∈ DPEN , construct a reverse geodesic RG(G,P) lying within

the interior of H using formula (4.12). Let RG1,...,RGn be n such reverse geodesics and denote

RGi = [RGi1 = G,RGi2, ..., RG
i
T i

], where RGi2 ∈ DPEN and T i is the length of reverse geodesic

RGi.

Step 3. Compute the mean trajectory MT = [MT0 = H,MT1,MT2, ...,MTL] starting from H

and lying within Ho.

Step 4. For every reverse geodesic RG = [RG1 = G, ..., RGt], we construct a broken geodesic of

the form BG = [MT0 = H, ...,MTI , RGJ , ..., RG1 = G]. We select the index I, J by minimizing

I, J = arg min
i=0,...,L

min
j=1,...,t

C(MTi, RGj) +

j−1∑
k=1

C(RGi, RGi+1),

where C(MTi, RGj) is the one step cost from a histogram MTi in the mean trajectory to a his-

togram RGj in the reverse geodesic, and
∑j−1

k=1C(RGi+1, RGi) is the rate function of the trajectory

[RGj , RGj−1, RGj−2, ..., RG1]. Thus, we will get n broken geodesics BG1, ..., BGn constructed from

RG1, ..., RGn.

Step 5. The geodesic from H to G is

Geo = arg min
H∈{BG1,...,BGn}

λ(H).

Thus, the geodesic from H to G contains three pieces theoretically, truncated mean trajectory,

one step jump from mean trajectory to a reverse geodesic and the truncated reverse geodesic.

22

However, from our numerical results, if H,G ∈ H satisfies C(H,G) > 0.1, min(H) > 0.01 and

min(G) > 0.01, then the geodesic from H to G only contains two pieces, one step jump from H

to a reverse geodesic and the truncated reverse geodesic. This is because the reverse geodesic that

is used to construct the geodesic from H to G always shoots almost right at H. We will use this

conclusion to construct the modified geodesic shooting method in Section 5.4.

If we want to compute the geodesic from H to G accurately by using this brute force simulation,

we need to use a relatively small Mesh (≤ O(10−2)) to discretize PEN , especially for the case

when H or G is near to the boundary of H. If we use Mesh = 0.01 for geodesic computing with

g = 4, we would need to construct 106 reverse geodesics to find one geodesic for one pair of H and

G. This computation takes about 40 seconds by using one core on our Opuntia cluster. However,

for geodesic computing with g = 6, if we use Mesh = 0.01, we would need to construct 1010 reverse

geodesics to obtain one geodesic for one pair of H and G. If we perform this computation on one

core, the computing time would increase to around 4 × 105 seconds (more than 4 days), which is

very computationally heavy.

Brute force simulation for searching for the geodesic from H to G works for cases with the

number of genotypes g ≤ 5. For geodesic computing with g > 5, we developed these following

techniques to perform this computation, brute force simulation with parallel computing, brute

force simulation with the quantile technique on multi-cores, and the modified geodesic shooting

algorithm. Brute force simulation with parallel computing technique keeps the computing time

for geodesic searching within an hour for cases when g = 5, 6. However, this parallel computing

technique is not powerful enough to perform the geodesic searching computation within a reasonable

time when g = 7, 8. Thus, we implement the quantile technique on multi-cores for these cases. For

geodesic searching when g ≥ 9, the modified geodesic shooting algorithm is the best choice. In the

following sections of this chapter, we explain these algorithms in detail.

23

5.2 Parallel Computing Technique

The most natural approach to save computation time is to parallelize the computation task on

multi-cores. The idea is to split the computation task on k cores to save the computing time by

a factor of 1/k. We explain the brute force simulation with parallel computing technique in the

following algorithm.

Algorithm 5.2: Brute Force Simulation with Parallel Computing

Step 1. H is the starting histogram. G is the target histogram. Mesh is the mesh size. PEN is

the set of penultimate histograms. Discretize PEN with Mesh. DPEN is the discretized set of

penultimate histograms. k is the number of cores.

Step 2. Split the set DPEN to k subsets, DPEN1, ..., DPENk, where ∪ki=1DPENi = DPEN .

Step 3. We perform the brute force simulation with the set of penultimate histograms DPENi

on the i − th core for i = 1, ..., k following Algorithm 5.1. Let Geoi be the geodesic found on the

i− th core for i = 1, ..., k.

Step 4. The geodesic from H to G is

Geo = arg min
H∈{Geo1,Geo2,...,Geok}

λ(H).

Theoretically, the computing time of parallel computing on k cores would be shortened by a

factor of 1/k. However, the actual computing time on each core is a little longer than the original

computing time divided by k.

For the geodesic searching with g ≤ 6, brute force simulation with parallel computing performs

well. For the geodesic searching with g = 7, 8, brute force simulation with parallel computing tech-

nique still takes days to find one geodesic with access to 100 cores. Thus, we develop the following

quantile technique to save the computing time by selecting the “good” penultimate histograms.

24

5.3 Quantile Technique

From our simulation experiments, we observe that the geodesic from H to G always has a relatively

small one-step cost from the penultimate histogram to the target G for many different pairs of

(H,G). By using this observation, we implement the following brute force simulation with the

quantile technique on multicores.

Algorithm 5.3: Brute Force Simulation with Quantile Technique on Multicores

Step 1. H is the starting histogram, G is the target histogram, PEN = H − G, Mesh is the

mesh size, DPEN is the set of all penultimate histograms from discretizing PEN by Mesh and

card(DPEN) = n, k is the number of cores.

Step 2. Compute the one-step cost from every penultimate histograms in DPEN to G. Quan(p)

is the p-quantile of all these one step cost.

Step 3. Split the set DPEN to k subsets, DPEN1, ..., DPENk, where ∪ki=1DPENi = DPEN .

Step 4. On the i− th core, select the p-quantile penultimate histograms set as

PENi(p) = {y ∈ DPENi|C(y,G) ≤ Quan(p)}. (5.1)

Denote PEN(p) = ∪ki=1PENi(p).

Step 5. We use Algorithm 5.1 to search for a geodesic from H to G using the penultimate points

set PENi(p) on the i − th core for i = 1, ..., k. Let Geoi be the geodesic found on the i − th core

for i = 1, ..., k.

Step 6. Select a geodesic from H to G as

Geo = argmin H∈{Geo1,Geo2,...,Geok}λ(H).

We denote the rate function of the geodesic found by this p − quantile technique as λ(Geo) =

λ(H,G, p).

For a fixed pair (H,G) of the starting histogram H and the target histogram G, if λ(H,G, p) =

25

λ(H,G, 1), we say that set PEN(p) is efficient to compute the geodesic from H to G. Since

card(PEN(p)) ≈ p · card(DPEN), the computing time of the geodesic search using Algorithm 5.3

will be shortened by a factor of p/k theoretically. Thus, for the geodesic computing when g > 7, if

there exists a small percentage p such that PEN(p) is efficient, the computing time of the geodesic

search will be saved significantly by using the quantile technique. From several numerical examples

we studied, we observe a relation between the number of genotypes g and the smallest percentage

p such that λ(H,G, p) = λ(H,G, 1). To describe this relation formally, we define the efficiency of

p − quantile technique as follows. Let H × H be the set of all pairs of the starting histogram H

and the target histogram G, namely

H×H = {(H,G)|H,G ∈ H}.

Let the efficiency of p− quantile technique be

EFF (p) =
card({(H,G) ∈ H ×H|PEN(p) is efficient for (H,G)})

card(H×H)
.

We conclude that the relation between g and EFF (g) is as follows: as the number of genotypes

g increases, the efficiency of p − quantile technique EFF (p) increases. To verify this conclusion,

we first use the following algorithm to estimate the efficiency of the p− quantile technique.

Algorithm 5.4: Estimate the Efficiency EFF (p)

Step 1. Randomly select n pairs of (H,G) satisfying that min(H) > 0.01, min(G) > 0.01 and

C(H,G) > 0.01, where H ∈ H is the starting histogram and G ∈ H is the target histogram. Name

this set HGP .

Step 2. For every pair of (H,G), compute the geodesic from H to G by using the brute force

simulation with the p − quantile technique. Recall that PEN(p) is the p − quantile penultimate

points set.

Step 3. For every pair of (H,G), check whether PEN(p) is efficient for (H,G) and we estimate

26

EFF (p) by eff(p) as

eff(p) =
card({(H,G) ∈ HGP |PEN(p) is efficient for (H,G)})

card(HGP)

=
card({(H,G) ∈ HGP |PEN(p) is efficient for (H,G)})

n
.

We now analyze the accuracy of this estimation. When eff(p) ∈ [4n , 1 −
4
n] and n > 100,

eff(p)−EFF (p) has the normal distribution with mean 0 and standard deviation

√
eff(p)(1−eff(p))

n

approximately. Thus, the 90% confidence interval for EFF (p) is approximately

[
eff(p)− 1.6

√
eff(p)(1− eff(p))

n
, eff(p) + 1.6

√
eff(p)(1− eff(p))

n

]
.

When eff(p) ∈ (1− 4
n , 1] and n > 100, n · eff(p) has Poisson distribution with mean n · EFF (p)

approximately. Thus, the 90% confidence interval of EFF (p) is approximately

[
eff(p)− 1.6

√
eff(p)

n
, eff(p) + 1.6

√
eff(p)

n

]
.

We tested the conclusion of the relation between g and EFF (p) on 10000, 5000, 240 pairs of

(H,G) when g = 3, 4, 5, respectively. The numerical results support this conclusion. We present

these simulations in Section 5.3.1.1. Based on our simulations, we conclude that PEN(5%) is

efficient for most pairs of (H,G) when g = 7, 8. Thus, for these cases, the quantile technique can

shorten the computing time of geodesic computing by a factor of 20 approximately. We present

two examples of the geodesic computing when g = 7, 8 using Algorithm 5.3 in the Section 5.3.1.2.

27

Table 5.1: Efficiency Computation for g = 3

p 1 0.75 0.5 0.25 0.1 0.05 0.01

Mean RT 170 s 146 s 119 s 87 s 67 s 54 s 48 s
Std RT 40 s 7 s 3 s 2 s 11 s 5 s 9 s
Max RT 203 s 168 s 126 s 90 s 101 s 62 s 66 s
eff(p) 100% 100% 100% 94.83% 54.43% 34.74% 19.78%

90% CI L 98.4% 98.4% 98.4% 94.48% 53.63% 33.98% 19.14%
90% CI R 100% 100% 100% 95.18% 55.23% 35.50% 20.42%

Efficiency computation for 10000 pairs of (H,G) when g = 3. Mean RT, Std RT, Max RT are the
mean, the standard deviation and the maximum of runtime of geodesic computing for 10000 pairs
of (H,G) among 20 nodes on the Opuntia cluster, respectively. 90% confidence interval of EFF (p)
is [90% CI L, 90% CI R].

5.3.1 Quantile Technique Simulations

5.3.1.1 Efficiency Computing

For g = 3, we randomly selected 10000 pairs of (H,G) satisfying min(H) > 0.05, min(G) >

0.05, and C(H,G) > 0.01. Let the growth factor be F = [200, 2001.08, 2001.12], let the mutation

rate be m = 10−8 and let the mutation matrix be Qi,j = 0.5 for i 6= j. For every fixed p ∈

{1, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01}, we use the p − quantile technique to compute the geodesic for

every pair of (H,G) with Mesh = 0.005 and compute eff(p). We also compute the 90% confidence

intervals of EFF (p) for every p. We perform this computation task on 20 nodes with 10 cores on

each node on the Opuntia cluster. Hence, we compute the geodesics for 50 pairs of (H,G) on each

core. We present the mean of the runtime (Mean RT), standard deviation of the runtime (Std RT),

the maximum of the runtime (Max RT) among 20 nodes. We also present the eff(p) and the 90%

confidence intervals ([90% CI L, 90% CI R]) for p = 1, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01 in Table 5.1.

For g = 4, we randomly selected 5000 pairs of (H,G) satisfying min(H) > 0.05, min(G) > 0.05,

and C(H,G) > 0.01. Let the growth factor be

F = [200, 2001.08, 2001.1, 2001.12],

28

Table 5.2: Efficiency Computation for g = 4

p 1 0.75 0.5 0.25 0.1 0.05 0.01

Mean RT 7108 s 6505 s 3411 s 417 s 177 s 135 s 92 s
Std RT 1968 s 1288 s 875 s 71 s 9 s 11 s 30 s
Max RT 10639 s 9132 s 4313 s 298 s 189 s 142 s 121 s
eff(p) 100% 100% 100% 100% 93.9% 66.29% 25.1%

90% CI L 97.74% 97.74% 97.74% 97.74% 93.36% 65.22% 24.12%
90% CI R 100% 100% 100% 100% 94.44% 67.36% 26.08%

Efficiency computation for 5000 pairs of (H,G) when g = 4. Mean RT, Std RT, Max RT are the
mean, the standard deviation and the maximum of runtime of geodesic computing for 1000 pairs
of (H,G) among 20 nodes on Opuntia cluster, respectively. 90% confidence interval of EFF (p) is
[90% CI L, 90% CI R]

let the mutation rate be m = 10−8 and let the mutation matrix be Qi,j = 1/3 for i 6= j. For

every fixed p ∈ {1, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01}, we use the p − quantile technique to find the

geodesic for every pair of (H,G) with Mesh = 0.005 and compute eff(p). We also compute

the 90% confidence interval of EFF (p). We perform the geodesic computation for 1000 pairs

of (H,G) on 20 nodes with 10 cores on each node on Opuntia cluster and repeat for 5 times.

Hence, we compute the geodesics for 5 pairs of (H,G) on each core. We present the mean of the

runtime (Mean RT), standard deviation of the runtime (Std RT), the maximum of the runtime

(Max RT) among 20 nodes, eff(p) and the 90% confidence intervals ([90% CI L, 90% CI R]) for

p = 1, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01 in Table 5.2.

For g = 5, we randomly selected 5000 pairs of (H,G) satisfying min(H) > 0.05, min(G) > 0.05,

and C(H,G) > 0.01. Let the growth factor be

F = [200, 2001.08, 2001.10, 2001.11, 2001.12],

let the mutation rate be m = 10−8 and let the mutation matrix be Qi,j = 0.25 for i 6= j. For every

fixed p ∈ {1, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01}, we use the p−quantile technique to find the geodesic for

every pair of (H,G) with Mesh = 0.01 and compute eff(p). We also compute the 90% confidence

29

Table 5.3: Efficiency Computation for g = 5

p 1 0.75 0.5 0.25 0.1 0.05 0.01

Mean RT 11610 s 7789 s 3331 s 2058 s 1056 s 1769 s 1600 s
Std RT 7698 s 4613 s 1691 s 378 s 282 s 375 s 246 s
Max RT 32274 s 18721 s 9842 s 2706 s 1613 s 2255 s 1997 s
eff(p) 100% 100% 100% 100% 100% 100% 70.83%

90% CI L 89.67% 89.67% 89.67% 89.64% 89.64% 89.64% 66.14%
90% CI R 100% 100% 100% 100% 100% 100% 75.52%

Efficiency computation for 240 pairs of (H,G) when g = 5. Mean RT, Std RT, Max RT are the
mean, the standard deviation and the maximum of runtime of geodesic computing for 240 pairs
of (H,G) among 20 nodes on Opuntia cluster, respectively. 90% confidence interval of EFF (p) is
[90% CI L, 90% CI R]

interval of EFF (p). We perform the geodesic computation for 240 pairs of (H,G) on 20 nodes with

12 cores on each node on Opuntia cluster. Hence, we compute the geodesic for 1 pair of (H,G) on

each core. We present the mean of the runtime (Mean RT), the standard deviation of the runtime

(Std RT), the maximum of the runtime (Max RT) among 20 nodes, eff(p) and the 90% confidence

intervals ([90% CI L, 90% CI R]) for p = 1, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01 in Table 5.3.

From Tables 5.3, 5.4, and 5.5, we see that for fixed p, as g ∈ {3, 4, 5} increases, eff(p) increases.

Thus, we predict that PEN(0.1) is efficient for most pairs of (H,G) for g = 6, 7, 8. In Section 5.3.1.2,

we present one geodesic computing example with the quantile technique for g = 7, 8.

5.3.1.2 Geodesic Computing Example When g = 7, 8

For g = 7, 8, we search for the geodesic for one pair of (H,G) using Algorithm 5.3 with p =

0.1, 0.2. If the cost of the geodesics obtained by using PEN(0.1) and PEN(0.2) is same, which is

λ(H,G, 0.1) = λ(H,G, 0.2). We assume both PEN(0.1) and PEN(0.2) are efficient.

For g = 7, let the growth factor be

F = [200, 2001.07, 2001.08, 2001.09, 2001.10, 2001.11, 2001.12],

30

Table 5.4: Geodesic Example when g = 7

Geo0 0.6000 0.1000 0.1000 0.0500 0.0500 0.0500 0.0500

Geo1 0.5094 0.1013 0.1007 0.0699 0.0721 0.0960 0.0505

Geo2 0.3827 0.1116 0.1110 0.0843 0.0852 0.1612 0.0640

Geo3 0.2656 0.1145 0.1142 0.0948 0.0950 0.2382 0.0777

Geo4 0.1700 0.1100 0.1100 0.1000 0.1000 0.3200 0.0900

Geo5 0.1000 0.1000 0.1000 0.1000 0.1000 0.4000 0.1000

Geodesic from H = [0.6, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05] to G = [0.1, 0.1, 0.1, 0.1, 0.1, 0.4, 0.1]

the mutation rate bem = 10−8, the mutation matrix beQi,j = 1/6 for i 6= j. The starting histogram

is H = [0.6, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05], the target histogram is G = [0.1, 0.1, 0.1, 0.1, 0.1, 0.4, 0.1]

and Mesh = 0.01, we use p = 0.1 and p = 0.2 to perform the geodesic computing following Algo-

rithm 5.3 on 16 nodes with 8 cores on each node. We obtained that λ(H,G, 0.1) = λ(H,G, 0.2) =

0.0264. The geodesic we found is presented in Table 5.4. The maximum computing time among

all nodes is 3984 seconds and 4036 seconds for p = 0.1 and p = 0.2, respectively. The detailed

computing time on each node is in Appendix.

For g = 8, let the growth factor be

F = [200, 2001.06, 2001.07, 2001.08, 2001.09, 2001.10, 2001.11, 2001.12],

the mutation rate be m = 10−8, the mutation matrix be Qi,j = 1/7 for i 6= j. When the

starting histogram is H = [0.5, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05], the target histogram is G =

[0.05, 0.05, 0.1, 0.05, 0.05, 0.1, 0.5, 0.1] and Mesh = 0.02, we use p = 0.1 and p = 0.2 to perform

the geodesic computing with the quantile technique on 32 nodes with 16 cores on each node. We

obtained that λ(H,G, 0.1) = λ(H,G, 0.2) = 0.0534. The geodesic we found is in Table 5.5. The

maximum computing time among all nodes is 5723 seconds and 5309 seconds for p = 0.1 and

p = 0.2, respectively. The detailed computing time on each node is in Appendix.

From these two examples, we can see that the computing time of the geodesic computing on

31

Table 5.5: Geodesic Example when g = 8

Geo0 0.5000 0.1000 0.1000 0.1000 0.0500 0.0500 0.0500 0.0500

Geo1 0.4046 0.1027 0.0817 0.1155 0.0396 0.0632 0.1033 0.0893

Geo2 0.2999 0.1009 0.0953 0.1125 0.0464 0.0771 0.1711 0.0969

Geo3 0.2087 0.0927 0.1037 0.1025 0.0510 0.0886 0.2506 0.1023

Geo4 0.1369 0.0799 0.1067 0.0871 0.0530 0.0963 0.3355 0.1047

Geo5 0.0850 0.0650 0.1050 0.0688 0.0525 0.1000 0.4200 0.1038

Geo6 0.0500 0.0500 0.1000 0.0500 0.0500 0.1000 0.5000 0.1000

Geodesic from H = [0.5, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05] to G =
[0.05, 0.05, 0.1, 0.05, 0.05, 0.1, 0.5, 0.1]

multi-cores with the quantile technique is reasonable for g = 7, 8. However, if we want to perform

the geodesic computing for g ≥ 9, parallel computing with quantile technique is still not efficient

enough. Thus, we develop the following geodesic shooting algorithm for the geodesic computing

when g ≥ 9. The number of genotypes does not impact the computing time of this geodesic shooting

algorithm strongly.

5.4 Modified Geodesic Shooting Method

Reverse geodesic shooting method is used to construct geodesics on Riemannian manifolds origi-

nally. Consider a smooth compact Riemannian manifold M of dimension r. Fix the time interval

[0, T], as well as the given starting and the terminal points H,G ∈ M. Fix any initial vector Y in

the r dimensional tangent space to M at point G. There exists a unique reverse geodesics h(t) for

t ∈ (0, T), which is the solution of a second order differential equation

h′′(t) = F (h′(t), h(t)) for 0 < t < T,

verifying h(T) = G and h′(T) = Y . Moreover, h(t) = h(t, G, Y) is a smooth function of (t, G, Y).

The generic geodesic shooting algorithm on manifolds is to search for an initial vector Y tangent to

32

M at G, by minimizing the distance between h(0, G, Y) and H. The main differences of geodesics

searching in our model are that, time is discrete and the cost function is used to measure the distance

between histograms. Thus, we implemented a modified geodesic shooting method by minimizing

the cost of paths with a fixed number of steps from H to G.

We first explain the shooting algorithm for constructing the cost minimizing path with a fixed

number of steps from the starting histogram H to the target histogram G.

Algorithm 5.4.1: Shooting Algorithm for Paths with a Fixed Length

Step 1. We fix the number of steps of all paths to be T ≥ 3. Denote the secure set

SEC = {H ∈ H|min(H) ≥ 0.005}.

Y1 ∈ SEC is the initial penultimate histogram.

Step 2. At iteration t ≥ 1, the current penultimate histogram is Yt. We construct a reverse

geodesic

RG(Yt) = [RG1 = G,RG2 = Y,RG3, ..., RGl],

by using the formula (4.12) and RGi ∈ SEC for i = 1, ..., l. If l < T − 1, we stop this computation.

Otherwise, we continue to Step 3.

Step 3. We truncate RG(Yt) to construct a path with T steps from H to G as

FPt = FP (Yt) = [H,RGT−1, RGT−2, RGT−3, ..., RG1 = G] (5.2)

Compute

Kt = χ(m,RGT−1, RGT−2) (5.3)

and λt = λ(FPt).

Step 4. We compute the gradient of the λ(FPt) with respect to Yt as stated in Section 5.4.1.

Name this gradient GRDt = GRD(Yt) ∈ Rg−1. −GRDt is the search direction at iteration t.

33

Step 5. We use the line search method to find a suitable step length αt ∈ R for iteration t.

Step 6. Update the first g − 1 coordinates of the penultimate histogram for iteration t+ 1 as

Yt+1(1 : g − 1) = Yt(1 : g − 1)− αt ·GRDt.

Update Yt+1(g) as Yt+1(g) = 1−
∑g−1

i=1 Yt(i).

Step 7. We continue to Step 8 if t > 500 or ||H − Yt|| < 10−4. Otherwise, we repeat Step 2 to

Step 7.

Step 8. Suppose we stop this computation at iteration L, the cost minimizing path FP (T) with

T steps is selected as

FP (T) = argmin H∈{FP1,...,FPL}λ(H).

By using Algorithm 5.4.1, we are able to find a cost minimizing path FP (T) with T steps from

H to G. We now explain the modified geodesic shooting algorithm (Algorithm 5.4.2) for computing

the geodesic from the starting histogram H to the target histogram G.

Algorithm 5.4.2: Modified Geodesic Shooting Algorithm

Step 1. We start with the number of steps in a path being T = 3.

Step 2. For the current number of steps T , we compute FP (T) following Algorithm 5.4.1. Denote

the rate function of FP (T) as λ(T) = λ(FP (T)).

Step 3. We update the number of steps to be T + 1, we compute FP (T + 1) following Algorithm

5.4.1. Denote the rate function of FP (T + 1) as λ(T + 1) = λ(FP (T + 1)).

Step 4. We stop the computation once λ(T + 1) > λ(T). Otherwise, we repeat Step 2 to Step 3.

34

5.4.1 Gradient of the Rate Function

5.4.1.1 Gradient of One-step Cost

Recall the one step cost from H to G,

C(H,G) = KL(G,Φ) +m
∑
j 6=k

FjH(j)Qj,k(1− Uk/Uj),

where

KL(G,Φ) =
∑
j

G(j) log(G(j)/Φ(j)),

Uj = exp

(
G(j)

FjH(j)

)
,

and

Φ(j) =
FjH(j)

〈F,H〉
.

Since G(g) = 1−
∑g−1

j=1 G(j) and H(g) = 1−
∑g−1

j=1 H(j), C(H,G) is a function of H(1), ...,H(g −

1), G(1), ..., G(g − 1) and we have

∂G(g)

∂G(j)
= −1,

∂H(g)

∂H(j)
= −1,

for j = 1, ..., g − 1. Hence,

∂Φ(j)

∂H(j)
=
Fj〈F,H〉 − FjH(j)(Fj − Fg)

〈F,H〉2

for j = 1, ..., g − 1, and

∂Φ(j)

∂H(k)
=
FjH(j)(Fg − Fk)

〈F,H〉2

35

for j = 1, ..., g − 1 and k = 1, ..., g − 1, and

∂Φ(g)

∂H(j)
=
−Fg〈F,H〉 − FgH(g)(Fj − Fg)

〈F,H〉2

for j = 1, ..., g − 1. Therefore,

∂KL

∂H(j)
=
∑
k

−G(k)

Φ(k)

∂Φ(k)

H(j)
,

∂KL

∂G(j)
=

∂

∂G(j)
G(j) log

G(j)

Φ(j)
− ∂

∂G(j)
G(g) log

G(g)

Φ(g)

= log
G(j)

Φ(j)
− log

G(g)

Φ(g)
,

for j = 1, ..., g − 1. We also have

∂Uj
∂H(j)

= − UjG(j)

FjH(j)2
,

∂Uj
∂G(j)

=
Uj

FjH(j)
,

and

∂Ug
∂G(j)

=
UgG(g)

FgH(g)2
,

∂Ug
∂G(j)

= − Ug
FgH(g)

,

for j = 1, ..., g − 1. Let DUHj,k =
∂Uj
∂Hk

for j = 1, ..., g and k = 1, ..., g − 1. Denote

SS(H,G) =
∑

j,k|j 6=k

mFjH(j)Qj,k
Uk
Uj
.

We rewrite SS(H,G) as

SS(H,G) =
∑

j 6=k,j,k=1,...,g−1
mFjH(j)Qj,k

Uk
Uj

+

g−1∑
k=1

(
mFgH(g)Qg,k

Uk
Ug

+mFkH(k)Qk,g
U(g)

U(k)

)
.

36

Thus, we compute the derivative of SS(H,G) with respect to H(s) and G(s) for s = 1, ..., g − 1 as

∂SS(H,G)

∂Hs
= mFgQg,s

(
−Us
Ug

+H(g)
DUHs,sUg − UsDUHg,s

U2
g

)

+mFsQs,g

(
Ug
Us

+H(s)
DUHg,sUs − UgDUHs,s

U2
s

)
+

∑
k=1,...,g−2|k 6=s

(
mFsQs,k(

Uk
Us
− H(s)UkDUHs,s

U2
s

) +mFkH(k)Qk,s
DUHs,s

Uk

)

+
∑

k=1,...,g−2|k 6=s

(
mFgQg,kUk(−

1

Ug
− H(g)DUHg,s

U2
g

) +mFkH(k)Qk,g
DUHg,s

Uk

)
,

∂SS(H,G)

∂Gs
=

∑
k 6=s,k=1,...,g−1

(
−mQs,k

Uk
Us

+mFkH(k)Qk,s
Us

UkFsH(s)

)

+

g−1∑
k=1

(
mQg,k

Uk
Ug
−mFkH(k)Qk,g

Ug
UkFgHg

)
.

Therefore, for j = 1, ..., g − 1, we obtain

∂C(H,G)

∂H(j)
=

∂KL

∂H(j)
− ∂SS(H,G)

∂H(j)
, (5.4)

and

∂C(H,G)

∂G(j)
=

∂KL

∂G(j)
− ∂SS(H,G)

∂G(j)
. (5.5)

5.4.1.2 Gradient of One-step Geodesic

Recall that suppose the two histograms in a geodesic are GT+1 = y, GT+2 = z, then we have

GT = x where

xs = x̂s +mx̂sws,

Xs =
ys
Fs

exp(
Fs
〈F, y〉

− zs
ys

),

37

x̂s =
Xs∑
tXt

,

ws = αs + βs − 〈x̂, α+ β〉,

αs =
∑
k 6=s

(Qs,kes,k −
FkXk

FkXs
Qk,sek,s),

es,k = exp(− ys
Fsx̂s

+
yk
Fkx̂k

),

βs = Fs
∑
k

Qs,k − (Fs +
zs
ys

∑
k

fs,kQs,k −
zs
Fsy2s

∑
k

FkykQk,sfk,s),

fs,k = exp(− zs
Fsys

+
zk
Fkyk

).

Since x, y and z are histograms, we only need to compute ∂xs
∂yt

and ∂xs
∂zt

for s = 1, ..., g − 1 and

t = 1, ..., g − 1 and we have

∂yg
∂yj

= −1,

∂zg
∂zj

= −1,

for j = 1, ..., g − 1. Hence, for s = 1, ..., g − 1, we have

∂Xs

∂ys
= exp

(
Fs
〈F, y〉

− zs
ys

)(
1

Fs
+

zs
Fsys

− ys(Fs − Fg)
〈F, y〉2

)
,

∂Xs

∂zs
= − 1

Fs
exp

(
Fs
〈F, y〉

− zs
ys

)
.

For s = 1, ..., g, l = 1, ...g − 1, s 6= l, we have

∂Xs

∂yl
=
ys(Fg − Fl)
〈F, y〉2

exp

(
Fs
〈F, y〉

− zs
ys

)
,

∂Xs

∂zl
= 0.

38

Denote DXys,l = ∂Xs
∂yl

for s = 1, ..., g, l = 1, ..., g − 1. So, we obtain

∂
∑

tXt

∂yk
= exp

(
Fk
〈F, y〉

− zk
yk

)(
1

Fk
+

zk
Fkyk

− yk(Fk − Fg)
〈F, y〉2

)
+∑

s=1,...,g,s 6=k
exp

(
Fs
〈F, y〉

− zs
Fs

)
ys(Fg − Fk)
〈F, y〉2

,

∂
∑

tXt

∂zk
=
∂Xk

∂zk
,

for k = 1, ..., g − 1. Denote DSXyk =
∂
∑
tXt

∂yk
for k = 1, ..., g − 1. Therefore,

∂x̂s
∂yl

=
DXys,l(

∑
tXt)−Xs ·DSXyl
(
∑

tXt)2
,

for s = 1, ..., g, l = 1, ..., g − 1,

∂x̂s
∂zs

=
∂Xs
∂zs

(
∑

t6=sXt)

(
∑

tXt)2
,

for s = 1, ..., g − 1 and

∂x̂s
∂zl

= − Xs

(
∑

tXt)2
∂Xl

∂zl

for s = 1, ..., g, l = 1, ..., g − 1, s 6= l. Denote Dx̂ys,l = ∂x̂s
∂yl

and Dx̂zs,l = ∂x̂s
∂zl

for s = 1, ..., g and

l = 1, ..., g − 1. Recall that

es,k = exp

(
− ys
Fsx̂s

+
yk
Fkx̂k

)
.

Therefore, we have

Deys,k,s =
∂es,k
∂ys

= es,k

(
ysDx̂ys,s − x̂s

x̂2s
−
ykDx̂yk,s
Fkx̂

2
k

)
,

for s = 1, ..., g − 1, k = 1, ..., g with s 6= k,

Deys,k,k =
∂es,k
∂yk

= es,k

(
ysDx̂ys,k
Fsx̂2s

+
x̂k − ykDx̂yk,k

x̂2k

)
,

39

for s = 1, ..., g, k = 1, ..., g − 1 with s 6= k,

Deys,k,l =
∂es,k
∂yl

= es,k

(
ysDx̂ys,l
Fsx̂2s

−
ykDx̂yk,l
Fkx̂

2
k

)

for s = 1, ..., g, k = 1, ..., g, l = 1, ..., g − 1 with l 6= s and s 6= k, and

Dezs,k,l =
∂es,k
∂zl

= es,k

(
ys
Fsx̂2s

·Dx̂zs,l −
yk
Fkx̂

2
k

·Dx̂zk,l

)
,

for s, k = 1, ..., g, and l = 1, ..., g − 1. Recall

αs =
∑
k 6=s

(
Qs,kes,k −

FkXk

FsXs
Qk,sek,s

)
.

Hence, we have

∂αs
∂yl

=
∑
k 6=l

Qs,kDeys,k,l −
∑
k 6=s

FkQk,s
Fs

(
ek,s

DXyk,lXs −XkDXys,l
X2
s

+
XkDeyk,s,l

Xs

)

for s = 1, ..., g, l = 1, ..., g − 1,

∂αs
∂zs

=
∑
k 6=s

(
Qs,kDezs,k,s −

FkXkQk,s
Fs

Dezk,s,sXs − ek,s ∂Xs∂zs

X2
s

)
,

for s = 1, ..., g − 1, as well as

∂αs
∂zl

= Qs,lDezs,l,l −
FlQl,s
FsXs

(el,s
∂Xl

∂zl
+XlDezl,s,l)+ ∑

k 6=s,k 6=l
(Qs,kDezs,k,l −

FkXk

FsXs
Qk,sDezk,s,l),

for s = 1, ..., g, l = 1, ..., g − 1, s 6= l. Denote Dαys,l = ∂αs
∂yl

and Dαzs,l = ∂αs
∂zl

. Recall

fs,k = exp

(
− zs
Fsys

+
zk
Fkyk

)
.

40

Hence, we have

∂fs,k
∂ys

=
fs,kzs
Fsy2s

,

∂fs,k
∂zs

= −
fs,k
Fsys

,

for s = 1, ..., g − 1, k = 1, ..., g,

∂fs,k
∂yk

= −
fs,kzk
Fky

2
k

,

∂fs,k
∂zk

=
fs,k
Fkyk

,

for s = 1, ..., g, k = 1, ..., g − 1, as well as

∂fs,k
∂yl

= 0,

∂fs,k
∂zl

= 0,

for l 6= s and l 6= k. Denote Dfys,k,l =
∂fs,k
∂yl

and Dfzs,k,l =
∂fs,k
∂zl

.

Recall that

βs = Fs
∑
k

Qs,k −

Fs +
zs
ys

∑
k

fs,kQs,k −
zs
Fsy2s

∑
k

FkykQk,sfk,s

 .

Thus, we have

∂βs
∂ys

=
zs
y2s

∑
k

fs,kQs,k −
(
Fs +

zs
ys

)∑
k 6=s

Dfys,k,sQs,k+

2zs
Fsy3s

∑
k

FkykQk,sfk,s −
zs
Fsy2s

∑
k 6=s

FkykQk,sDfyk,s,s,

41

∂βs
∂zs

= − 1

ys

∑
k

fs,kQs,k −
(
Fs +

zs
ys

)∑
k

Qs,kDfzs,k,s−

1

Fsy2s

∑
k

FkykQk,sfk,s −
zs
Fsy2s

∑
k

FkykQk,sDfzk,s,s.

for s = 1, ..., g − 1. For s = 1, ..., g, l = 1, ..., g − 1 and s 6= l, we have

∂βs
∂yl

= −
(
Fs +

zs
ys

)
Qs,lDfys,l,l −

zsFlylQl,sDfyl,s,l
Fsy2s

−
zsFlQl,sfl,s

Fsy2s
,

∂βs
∂zl

= −
(
Fs +

zs
ys

)∑
k 6=s

Qs,kDfzs,k,l −
zs
Fsy2s

∑
k 6=s

FkykQk,sDfzk,s,l.

Denote Dβys,l = ∂βs
∂yl

and Dβzs,l = ∂βs
∂zl

, for s = 1, ..., g, l = 1, ..., g − 1.

Recall that

ws = αs + βs − 〈x̂, α+ β〉.

For s = 1, ..., g − 1, we have

∂〈x̂, α+ β〉
∂ys

=
∑
t

Dx̂yt,s(αt + βt) + x̂t(Dαyt,s +Dβyt,s),

∂〈x̂, α+ β〉
∂zs

=
∑
t

Dx̂zt,s(αt + βt) + x̂t(Dαzt,s +Dβzt,s).

Denote DSYs = ∂〈x̂,α+β〉
∂ys

and DSZs = ∂〈x̂,α+β〉
∂zs

. Therefore,

∂ws
∂yl

= Dαys,l +Dβys,l −DSYl.

∂ws
∂zl

= Dαzs,l +Dβzs,l −DSZl.

Denote Dwys,l = ∂ws
∂yl

and Dwzs,l = ∂ws
∂zl

.

Recall that

xs = x̂s +mx̂sws.

42

Thus, we have

∂xs
∂yl

= Dx̂ys,l(1 +mws) + x̂smDwys,l, (5.6)

∂xs
∂zl

= Dx̂zs,l(1 +mws) + x̂smDwzs,l, (5.7)

For s = 1, ..., g − 1, l = 1, ..., g − 1.

5.4.1.3 Gradient of Rate Functions of Truncated Reverse Geodesics

Given a reverse geodesic RG = [RG1, ..., RGt], RG is determined by the target histogram RG1 = G

and the penultimate histogram RG2 = Y . We truncate this reverse geodesic to a trajectory with

T steps as TRG = [RGT , RGT−1, ..., RG2 = Y,RG1 = G]. We want to compute the derivative of

λ(TRG) with respect to Y (1), ..., Y (g− 1). First, we clarify the notations of derivatives of one step

cost function and reverse geodesic function χ. Recall that C(H,G) is the one step cost from H to

G, denote

D1C(H,G) =
∂C(H,G)

∂H
= [

∂C(H,G)

∂H(1)
, ...,

∂C(H,G)

∂H(g − 1)
],

D2C(H,G) =
∂C(H,G)

∂G
= [

∂C(H,G)

∂G(1)
, ...,

∂C(H,G)

∂G(g − 1)
].

Recall that if h∗ = [h0, h1, h2, ...] is a geodesic and we have ht+1 = y, ht+2 = z, then ht = x =

χ(m, y, z), where t ≥ 0 and χ(m, y, z) is defined by formula (4.12). We denote the derivatives of x

with respect to y and z as

D1χ(m, y, z) =
∂x

∂y
=



∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yg−1

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yg−1

...
...

. . .
...

∂xg−1

∂y1

∂xg−1

∂y2
. . .

∂xg−1

∂yg−1


,

43

D2χ(m, y, z) =
∂x

∂z
=



∂x1
∂z1

∂x1
∂z2

. . . ∂x1
∂zg−1

∂x2
∂z1

∂x2
∂z2

. . . ∂x2
∂zg−1

...
...

. . .
...

∂xg−1

∂z1

∂xg−1

∂z2
. . .

∂xg−1

∂zg−1


.

Recall that

λ(TRG) =

T−1∑
i=1

C(RGi+1, RGi).

Thus,

∂λ(TRG)

∂Y
=

T−1∑
i=1

C(RGi+1, RGi)

∂Y
(5.8)

=
T−1∑
i=1

∂C(RGi+1, RGi)

∂RGi+1

∂RGi+1

∂Y
+
∂C(RGi+1, RGi)

∂RGi

∂RGi
∂Y

. (5.9)

We can compute ∂C(RGi+1,RGi)
∂RGi+1

and ∂C(RGi+1,RGi)
∂RGi

as formula (5.4) and formula (5.5) for i = 1, ..., T .

We also know

∂RG1

∂Y
=
∂G

∂Y
= Zero Matrix, (5.10)

∂RG2

∂Y
=
∂Y

∂Y
= Identity Matrix. (5.11)

For i = 1, ..., T − 2, we have that RGi+2 = χ(m,RGi+1, RGi). Thus,

∂RGi+2

∂Y
= D1χ(m,RGi+1, RGi)

∂RGi+1

∂Y
+D2χ(m,RGi+1, RGi)

∂RGi
∂Y

, (5.12)

for i = 1, ..., T − 2. Thus, we can compute the gradient ∂λ(TRG)
∂Y by using formula (5.8) to formula

(5.12).

44

5.4.2 Modified Geodesic Shooting Example

In this section, we present two computational examples by using the modified geodesic shooting

method. One is the same example we used to present the brute force simulation with quantile

technique for g = 8. We use this same example to show that we can obtain a geodesic for this

example in a much shorter time by using the modified geodesic shooting method. This geodesic is

also very close to the geodesic we obtained by using the brute force simulation. The other example

is a geodesic computation example for g = 10 by using the modified geodesic shooting method.

We use this example to show that the computing time of this modified geodesic shooting method

is not impacted by the number of genotypes strongly. Therefore, this modified shooting algorithm

can perform well for geodesic computing when g ≥ 9.

5.4.2.1 Modified Geodesic Shooting Example 1

Recall the example with g = 8 in Section 5.3.1.2. The growth factor is

F = [200, 2001.06, 2001.07, 2001.08, 2001.09, 2001.10, 2001.11, 2001.12],

the mutation rate is m = 10−8, the mutation matrix is Qi,j = 1/7 for i 6= j, the starting histogram

is

H = [0.5, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05],

the target histogram is

G = [0.05, 0.05, 0.1, 0.05, 0.05, 0.1, 0.5, 0.1]

and the mesh size is Mesh = 0.02. By using the brute force simulation with the quantile technique

on multicores, we estimated the rate function of the geodesic from H to G to be 0.0534 and the

45

Figure 5.1: Modified Geodesic Shooting Example 1 with g = 8

Top left figure presents the one step cost C(H,Kt) from H to Kt at iteration t = 1, ..., 500. Top
right figure presents the norm of the gradient GRDt at iteration t = 1, ..., 500. Bottom left figure
presents the rate function λ(FPt) at iteration t = 1, ..., 500. Bottom right figure presents the norm
||Yt − Yt−1|| at iteration t = 2, ..., 500.

penultimate histogram of this geodesic to be

[0.0850, 0.0650, 0.1050, 0.0688, 0.0525, 0.1000, 0.4200, 0.1038].

The maximum computing time among all nodes is about an hour. If we use the modified geodesic

shooting algorithm to search for the geodesic from H to G, we find that the estimated rate function

is 0.0350 and the estimated penultimate histogram is

[0.0837, 0.0650, 0.1129, 0.0663, 0.0566, 0.0999, 0.4173, 0.0982].

46

The total computing time is around 20 seconds by using one node on the Opuntia cluster. In

Figure 5.1, we present the one step cost C(H,Kt), where Kt is defined as formula (5.3), the norm

of gradient GRDt = ∂λ(FPt)
∂Yt

, the rate function λ(FPt) and the norm of Yt − Yt−1 for t = 1, ..., 500,

when we fix the number of the steps in the path to be 7. From this figure, we can see that λ(FPt)

decreases very fast using this modified geodesic shooting method. By using this modified geodesic

shooting algorithm, we are also able to find a geodesic in a much shorter time.

5.4.2.2 Modified Geodesic Shooting Example 2

We now present a geodesic computing example when g = 10 by using the modified geodesic shooting

method. This example shows that this shooting algorithm performs very well for geodesic searching

when g ≥ 9.

We first define the parameters of this example. Let the growth factor be

F = [200, 2001.04, 2001.05, 2001.06, 2001.07, 2001.08, 2001.09, 2001.10, 2001.11, 2001.12].

Let the mutation rate be m = 10−8. Let the mutation matrix be Qi,j = 1/9 for i 6= j. Let the

starting histogram be H = [0.45, 0.10, 0.10, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05]. Let the target his-

togram be G = [0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.10, 0.45, 0.10]. We use the modified geodesic

shooting algorithm to search for a geodesic from H to G and find that the estimated rate function

of this geodesic is 0.0277 and the estimated penultimate histogram is

[0.0741, 0.0616, 0.0626, 0.0561, 0.0567, 0.0566, 0.0555, 0.0974, 0.3818, 0.0977].

The total computing time is around 40 seconds on one node of the Opuntia cluster. In Figure 5.2,

we present the one step cost C(H,Kt), where Kt is defined as formula (5.3), the norm of gradient

GRDt = ∂λ(FPt)
∂Yt

, the rate function λ(FPt) and the norm of Yt − Yt−1 for t = 1, ..., 500 when we fix

the number of the steps in the geodesic to be 8.

47

Figure 5.2: Modified Geodesic Shooting Example 2 with g = 10

Top left figure presents the one step cost C(H,Kt) from H to Kt at iteration t = 1, ..., 500. Top
right figure presents the norm of the gradient GRDt at iteration t = 1, ..., 500. Bottom left figure
presents the rate function λ(FPt) at iteration t = 1, ..., 500. Bottom right figure presents the norm
||Yt − Yt−1|| at iteration t = 2, ..., 500.

From this example, we can see that the computing time of geodesic computing using the modified

shooting method is not impacted strongly by the number of genotypes g. When we increase g from

8 to 9, the computing time increases from 20 seconds to 40 seconds. In comparison, the computing

time of the geodesic searching using the brute force simulation would increase at least by a factor of

10 when g increases 1. Thus, this modified geodesic shooting method has a much better efficiency

for the geodesic computing when g ≥ 9.

48

Chapter 6

Fixations

The rare events of our interest are due to the fact that the frequencies of certain intermediate-

strength genotypes become large in the bacterial population. Such rare events are called fixations.

For a fixed genotype J < g and a level β, define a target set TAR(β) = {H ∈ H|H(J) > β}. For

a fixed large T , H = [H0, ...,HT] ∈ ΩT+1 is a histogram trajectory of length T + 1, where Hi ∈ H.

Since the g-cells have the largest growth factor Fg, HT (g) will tend to 1 as T → ∞ for N large.

We say that H enters the target set TAR(β) if there exists a step 1 ≤ t such that Ht(J) ≥ β, and

denote this event as Eve(J, β). This event is a rare event when β is relatively large and this event

is the fixation of genotype J . Let PN,H0(Eve(J, β)) be the probability of the event that trajectories

starting with histogram H0 and population size N realize the event Eve(J, β). In fact, when the

population size N is large, the fixation of genotype J happens very rarely even for β > 0.2. We

will show this fact by presenting an example in Section 6.1.

6.1 Example of Fixations

We now discuss a fixation example with g = 3 genotypes. We are interested in the fixation of

genotype J = 2 of trajectories starting from the histogram H0 = [0.9, 0.05, 0.05]. We first analyze

49

the highest percentage of genotype 2 that the mean trajectory starting from H0 reaches. We

Figure 6.1: Mean Trajectory

Figure 6.1: mean trajectory starting from h0 = [0.9, 0.05, 0.05]

present the mean trajectory h starting from [0.9, 0.05, 0.05] is in Figure 6.1. The highest frequency

of genotype 2 of the mean trajectory h is

max
t=0,1,..

ht(2) = 0.167180.

For large population size N , the random trajectories will follow this mean trajectory h in a thin

tube. We set β = 0.167182, which is slightly larger than maxt ht(2), we use the brute force

simulation to estimate the frequency of the event Eve(J, β) for N = 1010, 1011, 1012, 1013 in the

following Table 6.1. We can see that when N = 1013, the event Eve(J, β) already becomes rare.

Thus, the event Eve(J, β) is a rare event when β > 0.2 and N ≥ 1013.

When N = 1013, the brute force simulation takes 7 minutes to generate 5 · 107 trajectories on

50

Table 6.1: Brute Force Simulation of Eve(J, β)

N num of simulation frequency of Eve(J, β) stand error

1010 106 0.4456 4.9 · 10−4

1011 106 0.3369 4.7 · 10−4

1012 106 0.0928 2.9 · 10−4

1013 5× 107 2.8× 10−6 2.4 · 10−7

Brute force simulation for different population size starting from H0 = [0.9, 0.05, 0.05].

50 cores on Opuntia cluster. If we want to simulate a much rarer event (β > 0.3), brute force

simulation becomes too costly. Thus, we implement the importance sampling method and the

genealogy method to study the rare fixations in this dissertation.

6.2 Optimal Trajectory G Realizing Eve(J, β)

Paper [3] obtained the following large deviation result,

lim
N→∞

− 1

N
logPN,H0(Eve(J, β)) = Λ(Eve(J, β)) = inf

H∈Eve(J,β)
λ(H)

Therefore, one approach of estimating PN,H0(Eve(J, β)) is to estimate infH∈Eve(J,β) λ(H). Hence,

we want to find an optimal trajectory that realize the event Eve(J, β) with the smallest cost. We

develop the following algorithms to search for this optimal trajectory G.

6.2.1 Algorithms for Searching for G

Algorithm 6.1: Brute Force Simulation for Searching for G

Step 1. TAR = TAR(β) is the set of target histograms. Mesh is the mesh size. We use the mesh

size Mesh to discretize the set TAR. Let DTAR be the discretized set of target histograms. H0 is

the starting histogram.

Step 2. For every target histogram G ∈ TAR, PEN(G) = {H ∈ H|H 6= G} is the set of

51

penultimate histograms set for G. We use the brute force simulation Algorithm 5.1 in Section 5.1

to search for the geodesic from H0 to G. Suppose card(DTAR) = n, let P1, ...,Pn be the geodesics

from H0 to all the target histograms in DTAR.

Step 3. The optimal path G for realizing Eve(J, β) is

G = argmin H∈{P1,...,Pn}λ(H).

In Step 2 of Algorithm 6.1, we can also use the parallel computing technique, the quantile

technique, and the modified shooting algorithm instead of the brute force simulation algorithm to

search for the geodesic from H0 to a target histogram. We also implement the following multi-scale

algorithm to improve the efficiency of the algorithm for searching for the optimal trajectory G.

Algorithm 6.2: Multi-scale Algorithm for Searching for G

Step 1. We start with the set of target histograms TAR, the set of penultimate histograms

PEN = H− TAR and the mesh size Mesh = 0.01.

Step 2. Given the current TAR, PEN and Mesh, we find the optimal trajectory G = [G0 =

H0, ...,GT−1,GT] by using Algorithm 6.1.

Step 3. Update the set of penultimate histograms TAR, the set of penultimate histograms PEN

and the mesh size Mesh as

new TAR = {H||H − GT |∞ < 3 ·mesh},

new PEN = {H||H − GT−1|∞ < 3 ·mesh},

new Mesh = 0.1 ·Mesh.

Step 4. Given the new TAR, new PEN and new Mesh, find the new optimal trajectory G′ by

using Algorithm 6.1.

Step 5. Stop the algorithm if |λ(G) − λ(G′)| ≤ 10−3 · λ(G). The optimal trajectory for realizing

52

the event Eve(J, β) is G′.

6.2.2 Examples of the Multi-scale Algorithm

We present two examples of searching for the optimal trajectory G for realizing the event Eve(J, β)

by using the multi-scale algorithm. By presenting these two examples, we show that the multi-scale

algorithm is much more efficient than the brute force Algorithm 6.1.

6.2.2.1 Example 1

Let F = [200, 2001.08, 2001.20], m = 10−7 and

Q =


0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 .

Select H0 = [0.8, 0.1, 0.1], J = 2, β = 0.7. We start with

TAR = {G | G(1) ∈ [0.1, 0.69], G(2) = 0.7},

PEN = {G | G(1) ∈ [0.05, 0.3], G(2) ∈ [0.1, 0.7)}

and the Mesh = 0.01, we generate 7×106 reverse geodesics to find the optimal geodesic G to realize

the event Eve(2, 0.7) by using the multi-scale algorithm. The optimal trajectory G is presented in

Table 6.2 and λ(G) = 0.2169. The mesh size decrease to 10−5 from 0.01 through the computation.

This computation takes 120 seconds on one core on Opuntia. If we use the brute force simulation

algorithm with Mesh = 10−5, we will need to generate 1020 reverse geodesics, which is 1014 more

costly than the multi-scale algorithm.

We also find the optimal trajectories when β = 0.3, 0.5 using the multi-scale algorithm. The

53

Table 6.2: Optimal Trajectory G

G0 0.8000 0.1000 0.1000

G1 0.7579 0.1927 0.0494

G2 0.6566 0.3071 0.0363

G3 0.5253 0.4345 0.0402

G4 0.3847 0.5574 0.0579

G5 0.2532 0.6530 0.0938

G6 0.1450 0.7000 0.1550

Optimal trajectory for Eve(2, 0.7) given H0 = [0.8, 0.1, 0.1].

Table 6.3: Optimal Trajectory G

G0 0.8000 0.1000 0.1000

G1 0.6383 0.1805 0.1812

G2 0.4266 0.2578 0.3156

G3 0.2233 0.3000 0.4767

Optimal trajectory for Eve(2, 0.3) given H0 = [0.8, 0.1, 0.1].

Table 6.4: Optimal Trajectory G

G0 0.8000 0.1000 0.1000

G1 0.6759 0.2068 0.1173

G2 0.5002 0.3325 0.1673

G3 0.3107 0.4413 0.2480

G4 0.1514 0.5000 0.3486

Optimal trajectory for Eve(2, 0.5) given H0 = [0.8, 0.1, 0.1].

54

optimal trajectories for event Eve(2, 0.3) and Eve(2, 0.5) are in Tables 6.3 and 6.4, respectively. We

plot these three optimal trajectories in Figure 6.2. We can see these three optimal trajectories shoot

much higher than the mean trajectory. As β increases, the optimal trajectories take more steps to

realize the rare event Eve(J, β). However, the total number of steps in the optimal trajectory of the

rare events in this discrete time model remains less than 15 steps most of the time. In comparison,

the optimal trajectory in a continuous time stochastic model often have many more steps.

Figure 6.2: Optimal Trajectories and the Mean Trajectory

H0 = [0.8, 0.1, 0.1], the black path is the mean trajectory. Green, blue, and red paths are the
optimal trajectories realizing Eve(2, 0.3), Eve(2, 0.5) and Eve(2, 0.7), respectively.

6.2.2.2 Example 2

The starting histogram is H0 = [0.7, 0.1, 0.1, 0.1], the growth vector is

F = [200, 2001.08, 2001.10, 2001.20],

55

and the mutation matrix is

Q =



0 0.3 0.3 0.4

0.3 0 0.3 0.4

0.3 0.3 0 0.4

0.3 0.3 0.4 0


,

the mutation rate is 10−7. We use the multi-scale algorithm to search for the optimal trajectories

G for realizing the event Eve(3, 0.3), Eve(3, 0.5) and Eve(3, 0.7). We present these three optimal

trajectories in Appendix. We plot these optimal trajectories in Figure 6.3. The computation of

searching for G by using this multi-scale algorithm takes about 400 seconds on one core of Opuntia

for each of these three events. The mesh size decreases to 10−4 from 0.01. We generated around

3·107 inverse geodesics to find the optimal trajectory G. In comparison, we need to generate around

1024 reverse geodesics to search for the optimal trajectory by using the brute force simulation with

mesh size 10−4 and when g = 4. So the multi-scale algorithm improves the efficiency of the

computation of searching for the optimal trajectory G significantly.

56

Figure 6.3: Optimal Trajectories and the Mean Trajectory

H0 = [0.7, 0.1, 0.1, 0.1], the black path is the mean trajectory. Green, blue, and red paths are the
optimal trajectories realizing Eve(3, 0.3), Eve(3, 0.5) and Eve(3, 0.7), respectively

57

Chapter 7

Importance Sampling in Path Space

7.1 Background of Importance Sampling

Importance sampling is an important Monte Carlo simulation technique which increases the fre-

quency of rare events happening in the stochastic model by using a manipulated probability dis-

tribution. Consider a rare event with probability p = 10−6, if we use the brute force simulation,

we at least need a sample size of 108 to guarantee that the standard error
√
p(1− p)/N satis-

fies
√
p(1− p)/N ≤ 10%p. If we use the importance sampling method, the rare event becomes a

common event of the stochastic model. A random sample with a much smaller size is needed to

guarantee the same accuracy.

One of the commonly used families of manipulated probability distributions is the exponential

shifts family. We have introduced the large deviation theory results of the path space of the

stochastic model in Chapter 4. The exponential shift with the large deviation minimizer is the

optimal manipulated distribution among the exponential shift families. We study this importance

sampling technique in details in this chapter. We first compute the Cramer transforms of Poisson

distribution and multinomial distribution by following the definitions in book [2].

58

7.2 Cramer Transform of Poisson Distribution and Multinomial

Distribution

Definition 7.2.1. µ is a probability density function on R. µ̂ : R→ [0,∞] defined as

µ̂(t) =

∫
R
etxµ(x)dx.

is the Laplace transform of µ.

Definition 7.2.2. Define the Cramer transform of the measure µ in dimension 1 as λ : R→ [0,∞]

λ(x) = sup
t∈R

[tx− log µ̂(t)] (7.1)

for all x ∈ R.

Let X be a random variable following the Poisson distribution µpoi with mean a. Hence,

µpoi(r) = ar × e−a/r!. The Laplace transform of µpoi is

µ̂poi(t) =
∞∑
k=0

etkake−a/k! = e−a
∞∑
k=0

(eta)k/k! = ea(e
t−1). (7.2)

By Definition 7.2.2, we compute the Cramer transform of Poisson distribution

λPoi(x) = sup
t∈R

(tx− a(et − 1)) = x log(x/a)− x+ a, (7.3)

which is also called the large deviations rate function for the probability µpoi.

Definition 7.2.3. µ is a probability density on Rk. µ̂ : Rk → [0,∞] defined by

µ̂(t) =

∫
Rk
e〈x,t〉µ(x)dx.

is the Laplace transform of µ.

59

Definition 7.2.4. Define the Cramer transform of the measure µ in dimension k as, λ : Rk → [0,∞]

λ(x) = sup
t∈Rk

[〈x, t〉 − log µ̂(t)] (7.4)

for all x ∈ Rk.

Fix any p = [p1, ..., pk] with pj ≥ 0 and p1 + ...+ pk = 1. For a random vector Y = (Y1, Y2, ..., Yk)

following the multinomial distribution µmul = µn,[p1,...,pk], we have for any y = (y1, ..., yk),

µmul(y) = µn,[p1,...,pk](y)

=
n!

y1!y2!...yk!
py11 p

y2
2 ...p

yk
k ,

and the Laplace transform of multinomial probability distribution µmul is

µ̂mul(t) = (
k∑
i=1

pie
ti)n. (7.5)

Thus, log µ̂mul = n log(p1e
t1 + ...+ pke

tk). The Cramer transform of multinomial distribution is

λmul(x) = sup
t

[〈t, y〉 − log µ̂mul(t)] =

k∑
i=1

yi log(yi/pi)− n log n. (7.6)

7.3 Exponential Shift Distribution of the Poisson Distribution

In Section 7.2, we computed the Cramer transform of Poisson distribution as formula (7.3). Recall

that the Laplace transform of Poisson distribution is µ̂poi(t) =
∑∞

n=0 e
tnµpoi(n). The Cramer

transform of Poisson distribution is obtained when t∗ = log(x/a), which is the solution of

∂

∂t
(tx− log µ̂poi(t)) = x−

µ̂′poi(t)

µ̂poi(t)
= 0.

60

Define a function γt(n) =
etnµpoi(n)
µ̂poi(t)

. Since
∑∞

n=0 γt(n) = 1, γt is a probability mass function.

Moreover, for t∗ = log x
a1

,

γpoi(n) = γt∗(n) =
etnµpoi(n)

µ̂poi(t)
=

xn

exn!
,

which is the probability mass function of Poisson distribution with mean x. γpoi is the optimal

exponential shift distribution of the Poisson distribution µpoi. Recall that Eµpoi(X) = a. If we

change the distribution of random variable X from µpoi to γpoi, we have

Eγpoi(X) =
∑
n

n · γpoi(n) =
µ̂′poi
µ̂poi

= x,

and the corrective weight,

Wpoi(k) =
µpoi(k)
etkµpoi(k)
µ̂poi(t)

= µ̂poi(t)e
−tk = (

a

x
)k exp(x− a). (7.7)

In conclusion, if we want to sample a Poisson variable X ∼ µpoi to be around x 6= Eµpoi(X), we

can change the probability mass function of X to γpoi. By this change, we will be able to sample

a value very close to x easily by following the distribution γpoi, since Eγpoi(X) = x.

7.4 Exponential Shift Distribution of the Multinomial Distribu-

tion

Similar as above, let Y follow the multinomial distribution µmul(y) = µn,p(y). The Laplace trans-

form of this multinomial distribution µmul is

µ̂mul(t) =
∑
y

e〈y,t〉µmul(y) = (

k∑
i=1

pie
ti)n.

61

The Cramer transform of multinomial distribution is obtained when t∗i = log yi
pi

, by solving

∂

∂ti
(〈t, y〉 − log µ̂mul(t))) = yi −

∂µ̂mul
∂ti

1

µ̂mul
= 0.

Let

γmul(z = (z1, ..., zk)) =
e〈t
∗,z〉µmul(z)

µ̂mul(t∗)

=
et
∗
1z1+...+t

∗
kzkµmul(z1, ..., zk)

µ̂mul(t
∗)

=
n!

z1!...zk!
(
y1
n

)z1 ...(
yk
n

)zk .

γmul is the optimal exponential shift distribution of the multinomial distribution µmul and it is also

a multinomial distribution. If we change the probability mass function of Y from µmul to γmul, we

have Eγmul(Yi) = yi
n for i = 1, ..., k. Suppose we sample Y = z by using the distribution γmul, we

have the following corrective weight

Wmul(z) =
µmul(z)

γmul(z)
= µ̂mul(t

∗)e−〈z,t̂
∗〉 = nn(

p1
y1

)z1 ...(
pk
yk

)zk . (7.8)

In conclusion, if we want to sample a multinomial random variable Y to be close to y 6= np, we

can change the probability mass function of Y to γmul. By this change, Eγpoi(Y) = y and we will

be able to sample a value very close to y.

7.5 Forced Simulation of One-step Transition

We have introduced the optimal exponential shift distributions of the Poisson distribution and the

multinomial distribution. We now introduce the forced simulation of the one-step transition from

H to G by using these two exponential shift distributions.

On day n, we start with histogram Hn = H and we want to force Hn+1 = G for day n + 1.

62

However, P(Hn+1 = G|Hn = H) is a very small probability if G is not close to E(Hn+1|Hn = H).

Therefore, we implement the following forced simulation algorithm.

Algorithm 7.1: Forced Simulation of One-step Transition

Step 1. We start with the histogram Hn = H and population size N . The population first grows

with the growth factor F = [F (1), ..., F (g)] deterministically. Compute the sizes of the g colonies

of cells as siz = (siz(1), ..., siz(g)) with siz(i) = NH(i)F (i) for i = 1, ..., g.

Step 2. Compute the optimal mutation matrix R∗ from Hn = H to Hn+1 = G by using the

following formula,

R∗j,k = [r∗j,kN] = [mNFjH(j)Qj,kUk/Uj], (7.9)

where Uj = exp (
Gj

FjH(j)). Next, we want to force the random mutation matrix Rn of day n to be

close to R∗.

Step 3. Rn = (Rj,k) is the random mutation matrix on day n. Rj,k is the number of mutations

from j-cells to k-cells. pλ is the probability mass function of Poisson distribution with mean λ.

Recall that Rj,k follows the Poisson distribution pNLj,k with mean

NLj,k = m · siz(j)Qj,k = mNHjFjQj,k.

In order to force Rj,k to be close to R∗j,k, we change the probability distribution of Rj,k to pR∗j,k .

Suppose we sample Rj,k = zj,k = Nrj,k, the corrective weight for mutation Wpoi(zj,k) is

Wpoi(zj,k) =
pNLj,k(Nrj,k)

pNr∗j,k(Nrj,k)
= (

Lj,k
r∗j,k

)zj,k exp(N(r∗j,k − Lj,k)). (7.10)

We compute

1

N
logWpoi(zj,k) = (rj,k log

Lj,k
r∗j,k

) + (r∗j,k − Lj,k). (7.11)

Let PA denote a probability mass function defined as

PA(R) = P(Rn = R|Hn = H),

63

where A = (Ai,j)g×g ∈ Rg×g, Ai,i = 0 and Rj,k follows pAj,k . Denote Siz = (NLj,k)g×g. The

corrective weight for mutation Wmut(z) for the mutation stage is

Wmut(z) =
PSiz(z)

PR∗(z)
=

∏
j,k|j 6=k

Wpoi(zj,k). (7.12)

We also know

1

N
logPSiz(z) =

1

N
logPR∗(z) +

∑
j,k|j 6=k

(rj,k log
Lj,k
r∗j,k

+ r∗j,k − Lj,k). (7.13)

Step 4. After the random mutations of step 3, the population histogram is transformed to J =

(J1, ..., Jg) given by the formula

Jj =
NFjHj −

∑
k(Rj,k −Rk,j)

NFjHj
.

We need to randomly select N cells from the population after growth and mutations. Let Y =

[Y1, Y2, ..., Yg] be a random vector where Yj is the random number of j-cells being selected. Recall

that Y follows the multinomial distribution µN,J and EµN,J (Yi/N) = Ji. We want Y/N to be close

to G 6= J . So we change the distribution of Y to µN,G. We sample Y = x = [x1, ..., xg] for the

selection stage, the actual histogram we get for day n+ 1 is Hn+1 = x/N . Compute the following

corrective weights for selection Wsel for the selection stage by formula (7.8) as

Wsel(x/N) =
µN,J(x)

µN,G(x)
= NN (

J1
NG1

)x1 ...(
Jg
NGg

)xg =
∏
j

(
Jj
Gj

)xj . (7.14)

Thus, let G′ = x/N , we have

1

N
logP(Hn+1 = G′|Rn = z,Hn = H) =

1

N
logµN,J(x)

=
1

N
logµN,G(x) +

1

N
logWsel(x) (7.15)

64

Step 5. The corrective weight for one-step transition Hn = H → Rn = z → Hn+1 = G′ = x/N is

Wstep(H, z,G
′) =

PSiz(z)

PR∗(z)
·
µN,J(x)

µN,G(x)
= Wmut(z) ·Wsel(G

′).

Since Wstep(H, z,G
′) takes extremely small values for large N , we compute

LW (H, z,G′) =
1

N
log(Wstep(H, z,G

′))

=
∑
j

G′j log(
Jj
Gj

) +
∑

j,k|j 6=k

(rj,k log
Lj,k
r∗j,k

+ r∗j,k − Lj,k). (7.16)

We formulate the extremely small probability P(Hn+1 = G′, Rn = z|Hn = H) as

P(Hn+1 = G′, Rn = z|Hn = H) = PR∗(z) · µN,G(G′N) · exp(N · LW (H, z,G′)).

We obtain the following lemma from the formulations of Algorithm 7.1.

Proposition 7.5.1. Let N be the size of the population. pλ is the probability mass function of

the Poisson distribution with mean λ. For any H,G ∈ HN and any R/N = r ∈ KN (H), we can

formulate the probability P(Hn+1 = G,Rn = R|Hn) as

P(Hn+1 = G,Rn = R|Hn) = PR∗(R) · µN,G(NG) · exp(N · LW (H,R,G)).

where

LW (H, rN,G) =
∑
j

G(j) log(
J(j)

G(j)
)+

∑
j,k|j 6=k

(
rj,k(

G(j)

FjH(j)
− G(k)

FkH(k)
) + r∗j,k − FjH(j)Mj,k

)
,

Jj =
[NFjH(j)]−

∑
k(Rj,k −Rk,j)

[NFjH(j)]
,

65

r∗j,k = mFjH(j)Qj,kUk/Uj ,

Uj = exp(
G(j)

FjH(j)
),

and PR∗(R) =
∏
j 6=k pR∗j,k(Rj,k).

66

Chapter 8

Estimation of the One-step Transition

Kernel

8.1 Estimator of the One-step Transition Kernel

Recall the probability of one step transition from H to G is defined as

Q(H,G) = P(Hn+1 = G|Hn = H) =
∑

R/N∈KN (H)

P(Hn+1 = G,Rn = R|Hn = H).

If we use the forced simulation distribution, we can formulate Q(H,G) as

Q(H,G) =
∑

R/N∈KN (H)

PR∗(R) · µN,G(NG) · exp(N · LW (H,R,G))

= µN,G(GN)
∑

R/N∈KN (H)

exp(N · LW (H,R,G))PR∗(R).

Therefore,

Q(H,G) = µN,G(GN)EPR∗ (X(Rn)).

67

where

X(Rn) = exp(N · LW (H,Rn, G))

and PR∗(R) =
∏
j 6=k pR∗j,k(Rj,k).

Since X(Rn) ≥ 0 and µN,G(GN) > 0,

ER∗(|X(Rn)|) = ER∗(X(Rn)) =
Q(H,G)

µN,G(GN)
<∞,

where ER∗(X(Rn)) is the expectation of X(Rn) when Rn(j, k) follows the Poisson distribution with

mean R∗j,k. By the strong law of large number, we obtain the following proposition.

Proposition 8.1.1. Let N be the size of the bacterial population. For any H,G ∈ HN , let R∗

be the optimal mutation matrix from H to G computed as formula (7.9). Q(H,G) is the one-step

transition kernel from H to G. Let R1, ..., RK be i.i.d random matrices with Rij,k following the

Poisson distribution with mean R∗j,k for i = 1, ...,K and j 6= k = 1, .., g. Denote

Xi = exp(N · LW (H,Ri, G)),

where LW (H,Ri, G) is defined in Lemma 7.5.1. Then,

SK =
X1 + ...+XK

K
→ Q(H,G)

µN,G(NG)

a.s. as K →∞.

�

8.2 Algorithm for Estimating Q(H,G)

We estimate the one step transition kernel Q(H,G) by using the following algorithm.

Algorithm 8.1: Estimating the One-step Transition kernel Q(H,G)

68

Step 1. Sample the random mutation matrices R1, ..., RK , where Rki,j follows the Poisson distri-

bution with mean R∗i,j for k = 1, ...,K, i, j = 1, ..., g.

Step 2. Compute LWi = LW (H,Ri, G) defined in Lemma 7.5.1 for i = 1, ...,K.

Step 3. Estimate Q(H,G) by QK(H,G) where

QK(H,G) =
µN,G(NG)

K

∑
i

exp(N · LWi). (8.1)

Since exp(N · LWi) takes extremely small values, we use the following Algorithm 8.2 to compute

the summation
∑

i exp(N · LWi).

8.3 Estimation of the Summation of Extremely Small Values

We want to estimate
∑K

i=1 Zi, where Z1, ..., ZK ≥ 0 are extremely small numbers, we implement

the following algorithm.

Algorithm 8.2: Estimation of the Summation of Extremely Positive Small Values

Step 1. Compute LZi = logZi for i = 1, ...,K.

Step 2. Sort LZi in an increasing order and name it SLZ1 ≤ SLZ2 ≤ ... ≤ SLZK .

Step 3. Let a = log 100. Construct a series of intervals

(SLZK − j · a, SLZK − (j − 1) · a],

for j = 1, ..., J = [SLZK−SLZ1
a]+1.

Step 4. For j = 1, ..., J = [SLZK−SLZ1
a] + 1, count the number of SLZi that belongs to the interval

(SLZK − j · a, SLZK − (j − 1) · a] and name it nj .

Step 5. We estimate the summation
∑K

i Zi =
∑

i exp(LZi) as

K∑
i

Zi ≈ exp(SLZK)(n1 +
n2
100

+ ...
nJ

100J−1
).

69

The accuracy of this estimation is

1

100
≤

∑
i Zi

exp(SLZK)(n1 + n2
100 + ... nJ

100J−1)
≤ 1.

8.4 Concentration Properties of LW (H,R,G)

Recall that

LW (H,Rn, G) =
1

N
log(

PSiz(Rn)

PR∗(Rn)
·
µN,J(GN)

µN,G(GN)
),

R∗ is the optimal mutation matrix from H to G, J is the histogram after mutation. We will derive

a concentration property of LW (H,R,G) by using the Poisson tail bounds derived in [8].

Lemma 8.4.1. Let X be a random variable following the Poisson distribution with mean λ. Then

we have

P(X ≥ z) ≤ exp(−z log
z

λ
+ z − λ), (8.2)

for some z > λ.

Proof. For t > 0, we have

P(X ≥ z) = P(Xt ≥ zt) = P(exp(Xt) ≥ exp(zt)).

By Markov’s inequality, we have

P(exp(Xt) ≥ exp(zt)) ≤ E(exp(Xt))

exp(zt)
= exp(λ(et − 1)− zt).

Since λ(et − 1)− zt ≥ z − λ− z log z
λ , we have

P(X ≥ z) ≤ exp(−z log
z

λ
+ z − λ).

70

We define a function h : [−1,∞)→ R as

h(u) = 2
(1 + u) log(1 + u)− u

u2
,

h(0) = 1, h(−1) = 2.

We can reformulate the Lemma 8.4.1 as

P(X ≥ λ+ x) ≤ exp(−x
2

2λ
h(
x

λ
)) (8.3)

for x > 0. We can also obtain a similar result for 0 < x < λ that

P(X ≤ λ− x) ≤ exp(−x
2

2λ
h(−x

λ
)) (8.4)

Lemma 8.4.2. Let X be a random variable following the Poisson distribution with mean λ. Then

we have

P(|X − λ| ≥ x) ≤ 2 exp(− x2

2(λ+ x)
), (8.5)

for x > 0.

Proof. We first prove that h(u) ≥ 1
1+u for u ≥ 0. We define a function g(u) = (1 + u)h(u). We

compute the derivative of g(u) and obtain

g′(u) =
2

u3
(−2

1 + u

u3
log(1 + u) +

2 + u

u2
) ≥ 0.

Thus,

g(u) ≥ g(0) = h(0) = 1,

71

for u ≥ 0. Therefore,

h(u) ≥ 1

1 + u
.

for u ≥ 0. Thus,

P(X − λ ≥ x) ≤ exp(− x2

2(λ+ x)
),

for x > 0. Similarly, we can obtain

P(X ≤ λ− x) ≤ exp(− x2

2(λ+ x)
),

for 0 < x < λ. Therefore, we obtain

P(|X − λ| ≥ x) ≤ 2 exp(− x2

2(λ+ x)
),

for x > 0.

We apply Lemma 8.4.2 to the random mutation stage of our stochastic model and obtain the

following result.

Lemma 8.4.3. Let N be the size of bacterial population. For any histograms H,G ∈ HN , let

R∗ = r∗N be the optimal mutation matrix from H to G defined as formula (7.9). Let Rj,k = rj,kN

be the random number of mutations from j−cells to k−cells and it follows the Poisson distribution

with mean R∗j,k. For some constant c > 0, we obtain

P(|rj,k − r∗j,k| ≥ cNα−1) < 2 exp(−1

2

c2N2α

r∗j,kN + cNα
). (8.6)

for any α ∈ R. When α = 2
3 and N ≥ c3/r∗j,k3, we have

P(|rj,k − r∗j,k| ≥ cN−
1
3) < 2 exp(−c

2

4

N
1
3

r∗j,k
) (8.7)

72

Proof. We apply Lemma 8.4.2 to Rj,k and select x = cNα. We obtain

P(|rj,k − r∗j,k| ≥ cNα−1) < 2 exp(−1

2

c2N2α

r∗j,kN + cNα
).

If we select α = 2/3 and N ≥ c3/r∗j,k3, r∗j,kN +Nα ≤ 2r∗j,kN , then we obtain

P(|rj,k − r∗j,k| ≥ cN−
1
3) < 2 exp(−c

2

4

N
1
3

r∗j,k
).

Lemma 8.4.4. Let N be the size of bacterial population. For any histograms H,G ∈ HN , let

R∗ = r∗N be the optimal mutation matrix from H to G defined as formula (7.9). Let Rj,k = rj,kN

be the random number of mutations from j−cells to k−cells and it follows the Poisson distribution

with mean R∗j,k. Let X be a standard normal random variable. Then

(rj,k − r∗j,k)
√
N√

r∗j,k

→ X

in distribution as N →∞.

Proof. Since Rj,k follows the Poisson distribution pR∗j,k , then E(rj,k) = r∗j,k and V ar(rj,k) =
r∗i,j
N .

Hence, the Laplace transform of
(rj,k−r∗j,k)

√
N√

r∗j,k
is

E(exp(t
√
N
rj,k − r∗j,k√

r∗j,k

)))

= E(exp(t
Rj,k√
Nr∗j,k

− t
√
r∗j,kN))

= exp(−t
√
r∗j,kN)E(

t√
Nr∗j,k

Rj,k)

73

= exp(−t
√
Nr∗j,k) exp(r∗j,kN(e

t√
Nr∗

j,k − 1))

= exp(r∗j,kN(e

t√
Nr∗

j,k − t√
Nr∗j,k

− 1))

= exp(
t2

2
+O(

t3√
Nr∗j,k

))

Therefore,
(rj,k−r∗j,k)

√
N√

r∗j,k
converges to a standard normal random variable as N →∞.

Lemma 8.4.5. Let N be the size of bacterial population. For any histograms H,G ∈ HN , let

R∗ = r∗N be the optimal mutation matrix from H to G defined as formula (7.9). Let Rj,k = rj,kN

be the random number of mutations from j−cells to k−cells and it follows the Poisson distribution

pR∗j,k . Jj is the percentage of the j− cells after mutation. Then for some small constant ε, we have

P(Jj < ε) ≤
∑
k 6=s

exp

(
−

(C − r∗j,kN)2

2C

)

where C = (1− ε) [NFjH(j)]
g−1 .

Proof. Recall that

Jj =
[NFjH(j)]−

∑
k(Rj,k −Rk,j)

[NFjH(j)]
.

Thus, we have

P(Jj < ε) = P

∑
k 6=j

(Rj,k −Rk,j) ≥ (1− ε)[NFjH(j)]


≤ P(at least one Rj,k ≥

(1− ε)[NFjH(j)]

g − 1
)

≤
∑
k 6=j

P(Rj,k ≥
(1− ε)[NFjH(j)]

g − 1
))

≤
∑
k 6=j

exp

(
−

(C − r∗j,kN)2

2C

)
= O(exp(−N)),

74

where C =
(1−ε)[NFjH(j)]

g−1 .

From Lemma 8.4.5, we know that the probability of Jj < ε is of the order exp(−N). This

probability is much smaller than the probability of the rare events we are interested in.

Recall the corrective weight of the transition H → R = rN → G is

LW (H, rN,G) =
∑
j

G(j) log

(
J(j)

G(j)

)
+

∑
j,k|j 6=k

(
rj,k(

G(j)

FjH(j)
− Gk
FkH(k)

) + r∗j,k − FjH(j)Mj,k

)
.

Let R∗ be the optimal mutation matrix from H to G. When R = R∗, we have

LW (H,R∗, G) =
∑
j

G(j) log
Vj
G(j)

+
∑
j 6=k

(r∗j,k(hj,k + 1)− FjH(j)Mj,k), (8.8)

where

Vj =
FjH(j)

〈F,H〉
+

1

〈F,H〉
(
∑
k

(r∗k,j − r∗j,k)), (8.9)

and

hj,k =
G(j)

FjH(j)
− G(k)

FkH(k)
. (8.10)

We denote LW ∗(H,G) = LW (H,R∗, G). When we fix the histogram H and G, we want to

study the difference between the random variable LW (H,R,G) and constant LW ∗(H,G). To study

this, we first reformulate LW (H,R,G) as the following proposition.

Proposition 8.4.6. Let N be the population size. For any histograms H,G ∈ HN , let R∗ = r∗N

be the optimal mutation matrix from H to G. Let R = rN = (Rj,k)g×g be the random mutation

matrix where Rj,k follows the Poisson distribution with mean R∗j,k. Recall that LW (H,R,G) is

defined as in Lemma 7.5.1. LW ∗(H,G) is defined as formula (8.8). Vj is defined as formula (8.9).

75

Then we have

LW (H, rN,G) = LW ∗(H,G) +
∑
j 6=k

Aj,ktj,k +Rem, (8.11)

where

tj,k = rj,k − r∗j,k, (8.12)

Aj,k =
G(j)

FjH(j)
− G(k)

FkH(k)
− G(j)

Vj〈F,H〉
+

G(k)

Vk〈F,H〉
, (8.13)

Rem =
∑
j

G(j)remj , (8.14)

remj = log

(
1 +

∑
k(tk,j − tj,k)
Vj〈F,H〉

)
−
∑

k(tk,j − tj,k)
Vj〈F,H〉

. (8.15)

Proof. Recall that

J(j) =
FjH(j)−

∑
k(rj,k − rk,j)

FjH(j)

= Vj +

∑
k(tk,j − tj,k)
〈F,H〉

= Vj(1 +

∑
k(tk,j − tj,k)
Vj〈F,H〉

).

where tj,k = rj,k − r∗j,k. Let bj = 1
Vj〈F,H〉 and zj =

∑
k(tk,j − tj,k). Then we have

log J(j) = log Vj + bjzj + log(1 + bjzj)− bjzj .

Denote remj = log(1 + bjzj)− bjzj . Thus, we have

log J(j) = log Vj + bjzj + remj .

Then we compute LW (H,R,G)− LW ∗(H,G) as

LW (H,R,G)− LW ∗(H,G)

76

=
∑
j

G(j)(log J(j)− log Vj) +
∑
j 6=k

hj,k(rj,k − r∗j,k)

=
∑
j

G(j)(

∑
k(tk,j − tj,k)
Vj〈F,H〉

+ remj) +
∑
j 6=k

hj,ktj,k

=
∑
j,6=k

tj,k(
G(k)

Vk〈F,H〉
− G(j)

Vj〈F,H〉
+ hj,k) +

∑
j

G(j)remj

where hj,k is defined as formula (8.10).

We now analyze the term
∑

j 6=k Aj,ktj,k and the term Rem in the following lemmas.

Lemma 8.4.7. Let N be the population size. For any histograms H,G ∈ HN , let R∗ = r∗N be the

optimal mutation matrix from H to G. Let R = rN = (Rj,k)g×g be the random mutation matrix

where Rj,k follows the Poisson distribution with mean R∗j,k. Aj,k is defined as formula (8.13) and

tj,k = rj,k − r∗j,k for j, k = 1, ..., g. For some constant c > 0, we obtain

P(|
∑
j,k

Aj,ktj,k| ≥ cN−
1
3) ≤ 2g(g − 1) exp(−C

2

4

N1/3

r∗
), (8.16)

where C = minj,k
c

g(g−1)|Aj,k| and r∗ = maxj,k r
∗
j,k. We also have

Aj,k =

∑
k(r
∗
k,j − r∗j,k)

(FjH(j))2
−
∑

j(r
∗
j,k − r∗k,j)

(FkH(k))2
+O(m2).

Proof. For some constant c > 0, we have

P(|
∑
j,k

Aj,ktj,k| ≥ cN−1/3)

≤ P(
∑
j,k

|Aj,ktj,k| ≥ cN−1/3)

≤ P(at least one |Aj,ktj,k| is larger than
cN−1/3

g(g − 1)
)

77

≤
∑
j,k

P(|tj,k| ≥
cN−1/3

g(g − 1)|Aj,k|
)

≤
∑
j,k

P(|tj,k| ≥ CN−1/3)

where C = minj,k
c

g(g−1)|Aj,k| . Denote r∗ = maxj,k r
∗
j,k. We have

P(|
∑
j,k

Aj,ktj,k| ≥ cN−1/3)

≤
∑
j,k

2 exp(−C
2

4

N1/3

r∗j,k
)

≤ 2g(g − 1) exp(−C
2

4

N1/3

r∗
).

Recall that Aj,k = hj,k − G(j)
Vj〈F,H〉 + G(k)

Vk〈F,H〉 . Since

1

〈F,H〉Vj
=

1

FjH(j) +
∑

k(r
∗
k,j − r∗j,k)

,

=
1

FjH(j)
−
∑

k(r
∗
k,j − r∗j,k)

(FjH(j))2
+O(m2),

then

Aj,k = hj,k −
G(j)

Vj〈F,H〉
+

G(k)

Vk〈F,H〉

=

∑
kG(j)(r∗k,j − r∗j,k)

(FjH(j))2
−
∑

j G(k)(r∗j,k − r∗k,j)
(FkH(k))2

+O(m2)

Lemma 8.4.8. We use the same conditions in Lemma 8.4.7. Denote

T (H,R,G) =
√
N
∑
j,k

Aj,ktj,k. (8.17)

78

Then we have T (H,R,G)→ Y in distribution as N →∞, where Y follows N(0, σ2) and

σ2(H,G) =
∑
j,k

A2
j,kr
∗
j,k = O(m3). (8.18)

Proof. The Laplace transform of T (H,R,G) is

E(exp(t · T (H,R,G)))

= E(exp(t
√
N
∑
j 6=k

Aj,ktj,k))

=
∏
j 6=k

E(exp(t
√
NAj,ktj,k))

=
∏
j 6=k

E(exp(t
√
NAj,k(rj,k − r∗j,k)))

=
∏
j 6=k

exp(−t
√
NAj,kr

∗
j,k)E(exp(

tAj,k√
N
Rj,k))

=
∏
j 6=k

exp(−t
√
NAj,kr

∗
j,k) exp(r∗j,kN · (exp(

tAj,k√
N
− 1)))

=
∏
j 6=k

exp(−t
√
NAj,kr

∗
j,k + r∗j,kN exp(

tAj,k√
N

)− r∗j,kN)

=
∏
j 6=k

exp(r∗j,kN(exp(
tAj,k√
N

)−
tAj,k√
N
− 1))

=
∏
j 6=k

exp(r∗j,kN(
t2A2

j,k

2N
+O(

t3A3
j,k

6(
√
N)3

)))

=
∏
j 6=k

exp(
t2A2

j,kr
∗
j,k

2
+O(

t3A3
j,kr
∗
j,k√

N
))

= exp(
t2

2
(
∑
j 6=k

A2
j,kr
∗
j,k) +O(

t3√
N

∑
j 6=k

A3
j,kr
∗
j,k)).

79

Therefore, T (H,R,G) convergence to the normal distribution N(0, σ2), where

σ2 =
∑
j,k

A2
j,kr
∗
j,k = O(m3).

In the bacterial evolution stochastic model, the population size N is very large and the mutation

rate m is very small. Generally, we have N ≥ 1012 and m ≤ 10−6. The variance of T (H,R,G) will

be of the order less O(10−18), which is extremely small. This means that T (H,R,G) will concentrate

around 0. Notice the remainder term O(t3√
N

∑
j 6=k A

3
j,kr
∗
j,k)) = O(t3 · m4

√
N

) ≤ O(t3 · 10−36), which

takes extremely small value for small t. Thus, T (H,R,G) is approximately normal in this stochastic

model.

Lemma 8.4.9. We use same conditions as in Proposition 8.4.6. Recall that Rem =
∑

j G(j)remj

where remj is defined as formula (8.15). For some constant c > 0, we have

P(|Rem| ≥ cN−
2
3) ≤ 2g2(g − 1) exp(−C1

N1/3

r∗
), (8.19)

where r∗ = maxj,k r
∗
j,k and C1 = minj

c
16gV

2
j 〈F,H〉2.

Proof. Recall that remj = log
(

1 +
∑
k(tk,j−tj,k)
Vj〈F,H〉

)
−

∑
k(tk,j−tj,k)
Vj〈F,H〉 . Let

Xj =

∑
k(tk,j − tj,k)
Vj〈F,H〉

=

∑
k(tk,j − tj,k)

FjH(j) +
∑

k r
∗
k,j − r∗j,k

.

Since we have proved that |tk,j | ≤ cN−1/3 with ultra high probability, we assume that Xj ≥ −0.5.

We can prove that x2 − x+ log(1 + x) ≥ 0 and x− log(x+ 1) ≥ 0 for x > −0.5. Thus,

|remj | = − log(1 +Xj) +Xj ≤ X2
j ,

80

for j = 1, ..., g. Therefore, we have

P(|remj | > cN−2/3) ≤ P(X2
j > cN−2/3) = P(|Xj | >

√
cN−1/3).

We use Lemma 8.4.3 and obtain

P(|remj | > cN−2/3) ≤ 2g(g − 1) exp(−C ′N
1/3

r∗
),

where C ′ = minj,k
cV 2
j 〈F,H〉2

16 and r∗ = maxj,k r
∗
j,k. Therefore, we have

P(|Rem| > cN−2/3)

≤ P(
∑
j

|remj | > cN−2/3)

≤ 2g2(g − 1) exp(−C1
N1/3

r∗
),

where C1 = c
16gV

2
j 〈F,H〉2.

We know that Aj,k = O(m) from Lemma 8.4.7. In the following proposition, we show that we

can control the term
∑

j,k Aj,ktj,k and the term Rem simultaneously.

Proposition 8.4.10. We use same conditions as in Proposition 8.4.6. m is the mutation rate.

Recall that Rem =
∑

j G(j)remj where remj is defined as formula (8.15). For some constant c > 0

and α ∈ (0.5, 1), we are able to control

P(|
∑
j,k

Aj,ktj,k| ≥ cNα−1) ≤ C1 exp(−N
2α−1

r∗
) (8.20)

and

P(|Rem| ≥ cN2α−2) ≥ C2 exp(−N
2α−1

r∗
), (8.21)

at the same time, where C1, C2 are constants depending only on c, H and G.

81

Proof. We can prove this Proposition by using Lemma 8.4.3, Lemma 8.4.7, and Lemma 8.4.9.

Theorem 8.4.11. Let N be the population size. For any histograms H,G ∈ HN , let R∗ = r∗N

be the optimal mutation matrix from H to G. Let R = rN = (Rj,k)g×g be the random mutation

matrix where Rj,k follows the Poisson distribution with mean R∗j,k. Recall that LW (H,R,G) is

defined as in Lemma 7.5.1. LW ∗(H,G) is defined as formula (8.8). Then for some constant c > 0

and α ∈ (0.5, 1), we obtain

P(|LW (H,R,G)− LW ∗(H,G)| ≥ cNα−1 + cN2α−2) ≤ C ′ exp(−N
2α−1

r∗
),

for N ≥ O(maxj,k r
∗
j,k

1
α−1), where C ′ depends only on c, H and G, r∗ = maxj,k r

∗
j,k.

Proof. We know that

LW (H, rN,G) = LW ∗(H,G) +
∑
j 6=k

Aj,ktj,k +Rem,

Thus, LW (H,R,G)− LW ∗(H,G) =
∑

j 6=k Aj,ktj,k +Rem. By using Proposition 8.4.10, we have

P(|
∑
j 6=k

Aj,ktj,k +Rem| ≥ cNα−1 + cN2α−2)

≤ P(|
∑
j 6=k

Aj,ktj,k|+ |Rem| ≥ cNα−1)

≤ P(|
∑
j 6=k

Aj,ktj,k| ≥
c

2
Nα−1) + P(|Rem| ≥ c

2
Nα−1)

≤ P(|
∑
j 6=k

Aj,ktj,k| ≥
c

2
Nα−1) + P(|Rem| ≥ c

2
N2α−2)

≤ C ′ exp(−N
2α−1

r∗
),

where r∗ = maxj,k r
∗
j,k for N ≥ O(maxj,k r

∗
j,k

1
α−1).

82

8.5 Accuracy of QK(H,G)

We have shown that the estimator QK(H,G)→ Q(H,G) almost surely as K →∞ in Proposition

8.1.1. In the following theorem , we obtain a confidence interval for QK(H,G) by assuming that

T (H,R,G) follows the normal distribution N(0, σ2), where σ2 is defined in formula (8.18). We first

prove a lemma about the standard normal random variable.

Lemma 8.5.1. Let Z1, ..., Zk be the i.i.d random variables that follow the standard normal distri-

bution N(0, 1). Then for any constant c > 0, we have

P(max
i=1,...,k

|Zi| > c) ≤ 2k exp(−c
2

2
). (8.22)

Proof. Let MZ = maxi=1,..,k Zi. Then, for c > 0

P(MZ > c) = P(exp(t ·MZ) > exp(tc))

≤ exp(−tc)E(exp(t ·MZ))

≤ exp(−tc)E(
∑
i

exp(t · Zi))

= k exp(
t2

2
− tc).

Since t2

2 − tc ≥ −c
2/2,

P(max
i
Zi > c) ≤ k exp(−c

2

2
).

Similarly, for any c < 0

P(min
i
Zi < c) ≤ k exp(−c

2

2
).

Thus, for any constant c > 0, we have

P(max
i=1,...,k

|Zi| > c) ≤ 2k exp(−c
2

2
).

83

Theorem 8.5.2. Let N be the population size. For any histograms H,G ∈ HN , let R∗ = r∗N be the

optimal mutation matrix from H to G. Let R = rN = (Rj,k)g×g be the random mutation matrix

where Rj,k follows the Poisson distribution with mean R∗j,k. Q(H,G) is the one-step transition

kernel from H to G. Let R1, ..., RK be a random sample of R. Let QK(H,G) be the estimator

defined as formula (8.1). LW ∗ = LW ∗(H,G) is defined as formula (8.8). Assume that T (H,R,G)

defined as formula (8.18) follows the normal distribution N(0, σ), where σ is defined as formula

(8.17). Then for any constant c1 > 0, c2 > 0, we obtain that

LK(H,G) ≤ QK(H,G)

µN,G(GN)
≤ UK(H,G) (8.23)

with probability above

p(c1, c2, H,G) = 0.99p1(c1, H,G)Kp2(c2) (8.24)

for K ≥ max{103, 9Nσ2}, where

UK(H,G) = exp(N · LW ∗ + c1N
1/3)(1 +

3
√
Nσ√
K

+Nσ2 exp(c2
√
Nσ)), (8.25)

LK(H,G) = exp(N · LW ∗ − c1N1/3)(1− 3
√
Nσ√
K

), (8.26)

p1(c1, H,G) = 1− 2g2(g − 1) exp(−C1
N1/3

r∗
), (8.27)

C1 = min
j

c1
16g

V 2
j 〈F,H〉2,

p(c2) = 1− 2K exp(−c
2
2

2
). (8.28)

Proof. For every Ri, we compute LWi = LW (H,Ri, G) defined in Lemma 7.5.1 for i = 1, ...,K and

we have

QK(H,G) = µN,G(GN)
∑
i

exp(N · LWi)

K
.

84

By our assumption,
√
N(LWi − LW ∗(H,G)) = σZi +

√
NRemi, where Zi follows the normal

distribution N(0, 1). Thus,

QK(H,G)

µN,G(GN)
=
∑
i

exp(N · LWi)/K

= exp(N · LW ∗)
∑
i

exp(
√
NσZi) exp(N ·Remi)

K
.

Recall that

P(|Rem| ≥ cN−
2
3) ≤ 2g2(g − 1) exp(−C1

N1/3

r∗
),

where r∗ = maxj,k r
∗
j,k and C1 = minj

c
16gV

2
j 〈F,H〉2. Denote

p1(c) = 1− 2g2(g − 1) exp(−C1
N1/3

r∗
).

where r∗ = maxj,k r
∗
j,k and C1 = minj

c
16gV

2
j 〈F,H〉2. Thus, for some constant c1 > 0, we have

P(max
i
|Remi| ≤ c1N−

2
3) ≥ p1(c1)

K .

Therefore, we have

exp(N · LW ∗ − c1N1/3)
∑
i

exp(
√
NσZi)

K
≤ QK(H,G)

µN,G(GN)

≤ exp(N · LW ∗ + c1N1/3)
∑
i

exp(
√
NσZi)

K
(8.29)

with probability above p1(c1)
K . We now analyze the term

∑
i
exp(NσZi)

K . By using the Taylor

expansion of exp(
√
NσZi), we get

∑
i

exp(
√
NσZi)/K = 1 +

√
Nσ

∑
i

Zi
K

+Nσ2
∑
i

Z2
i

K

exp(
√
Nσqi)

2
,

85

where qi is in between 0 and Zi. For a constant c2, we have

P(max
i=1,...,k

|Zi| > c2) ≤ 2K exp(−c
2
2

2
).

Therefore,

exp(−
√
Nσc2) ≤ exp(

√
Nσqi) ≤ exp(

√
Nσc2),

holds for i = 1, ...,K with probability above p2(c2) = 1− 2K exp(− c22
2). Notice that

|
∑

i Zi
K
| ≤ 3√

K
,

with probability 0.99, and

P(

∑
i Z

2
i

K
≤ 2) = F (2K),

is almost 1 for K ≥ 103, where F is the cdf for chi-square distribution χ2(K). Therefore,

1− 3
√
Nσ√
K
≤
∑
i

exp(
√
NσZi)/K ≤ 1 +

3
√
Nσ√
K

+Nσ2 exp(c2
√
Nσ), (8.30)

with probability above 0.99p2(c2). Combine inequality 8.29 and inequality 8.30, we obtain

exp(N · LW ∗ − c1N1/3)(1− 3
√
Nσ√
K

) ≤ QK(H,G)

µN,G(GN)

≤ exp(N · LW ∗ + c1N
1/3)(1 +

3
√
Nσ√
K

+Nσ2 exp(c2
√
Nσ)) (8.31)

with probability above 0.99p1(c1)
Kp2(c2) for K ≥ max{103, 9Nσ2}.

In the following corollary, we explain how to select the constant c1 and c2 when we fix the

sample size K and the probability of the confidence interval.

86

Corollary 8.5.3. Given a probability p < 0.99, let p′ = (p
0.99)

1
K+1 , we can select

c1 =
16gr∗

〈F,H〉2 minj V 2
j N

1
3

log
2g2(g − 1)

1− p′
(8.32)

c2 =

√
2 log

2K

1− p′
(8.33)

so that

LK(H,G) ≤ QK(H,G)

µN,G(GN)
≤ UK(H,G)

holds above probability p.

Proof. If we set p1(c1, H,G) = p2(c2) = p′, then we have 0.99p1(c2)
Kp2(c2) = p. By solving

p1(c1) = p′ and p2(c2) = p′, we obtain formula (8.32) and formula (8.33).

When we fix the sample size K and the probability of the confidence interval, we can obtain the

confidence interval of the estimator QK(H,G) by using Theorem 8.5.2 and Corollary 8.5.3 without

any simulations.

8.6 Example of Estimating the Q(H,G)

Let F = [200, 2001.08, 2001.12], m = 10−7 and

Q =


0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 .

Let H = [0.8, 0.1, 0.1] and G = [0.7, 0.2, 0.1]. We compute

σ2(H,G) = 1.0750 · 10−10.

87

Thus, we select the sample size K = 103. By using Algorithm 8.1, we obtain

QK(H,G) = exp(−2.9269 · 1010).

If we want to obtain a 90% confidence interval of QK(H,G), we select

c1 = 5.2931 · 10−10,

and

c2 = 5.8069,

by using Corollary 8.5.3. Then the confidence we obtain by using the Theorem 8.5.2 satisfies

log
QK(H,G)

µN,G(GN)
− logLK(H,G) = 38.3567,

logUK(H,G)− log
QK(H,G)

µN,G(GN)
= 30.6412.

88

Chapter 9

Estimating the Probabilities of

Random Trajectories

9.1 Estimator for the Probability of a Random Trajectory

Let H = [H0, H1, ...,Ht] ∈ Ωt+1 be a random trajectory starting from H0. Let R∗(i) be the optimal

mutation matrix from Hi to Hi+1. We can use the forced simulation method in Chapter 8 to

estimate Q(Hi, Hi+1) by QK(Hi, Hi+1) for every step, where

si =
√
Nσ2(Hi, Hi+1) (9.1)

Ki = max{103, 9s2i } (9.2)

K = max
i
Ki, (9.3)

QK(Hi, Hi+1) =
µN,Hi+1(NHi+1)

K

K∑
j=1

exp(N · LW (Hi, R
j(i), Hi+1)), (9.4)

89

and R1(i), ..., RK(i) are the random samples of R∗(i). Therefore, the estimator for P(H|H0) is

PK(H) =
t−1∏
i=1

QK(Hi, Hi+1).

9.2 Accuracy of the Estimation

Proposition 9.2.1. For any random trajectory H = [H0, ...,Ht] ∈ Ωt+1, let R∗(i) be the optimal

mutation matrix from Hi to Hi+1 for i = 0, ..., t− 1. Q(Hi, Hi+1) is the one-step transition kernel

from Hi to Hi+1. Let R1(i), ..., RK(i) be a random sample of R∗(i), where K is defined as formula

(9.1-9.3). Let

QK(Hi, Hi+1) =
µN,Hi+1(NHi+1)

K

K∑
j=1

exp(N · LW (Hi, R
j(i), Hi+1)),

where LW (Hi, R
j(i), Hi+1) is defined in Proposition 7.5.1. Then,

PK(H) :=

t−1∏
i=0

QK(Hi, Hi+1)→ P(H|H0)

a.s. as K →∞ for i = 0, ..., t− 1.

Proof. By Proposition 8.1.1, QK(Hi, Hi+1) → Q(Hi, Hi+1) a.s. as K → ∞. Thus, PK(H) →

P(H|H0) a.s. as K →∞.

We can obtain a confidence interval of PK(H) in the following theorem.

Theorem 9.2.2. Given the random trajectory H = [H0, ...,Ht] ∈ Ωt+1 and population size N ,

Q(Hi, Hi+1) is the one-step transition kernel from Hi to Hi+1 for i = 0, ..., t−1. Let R∗(i) = r∗(i)N

be the optimal mutation matrix from Hi to Hi+1. Let R1(i), ..., RK(i) be a random sample of R∗(i).

PK(H) is the estimator for P(H|H0) defined in Proposition 9.2.1 . Let si =
√
Nσ2(Hi, Hi+1) where

90

σ2(Hi, Hi+1) is defined as formula (8.18). Let K = maxi=0,...,t−1{103, 9s2i }. Denote

µ(N,H) =

t−1∏
i=0

µN,Hi+1(NHi+1). (9.5)

We obtain that
t−1∏
i=0

LK(Hi, Hi+1) ≤
PK(H)

µ(N,H)
≤

t−1∏
i=0

UK(Hi, Hi+1) (9.6)

with probability above

p(C0, .., Ct−1, C2,H) = 0.99tp2(C2)
t
t−1∏
i=0

p1K(Ci, Hi, Hi+1) (9.7)

where UK(Hi, Hi+1), LK(Hi, Hi+1), p1(Ci, Hi, Hi+1), and p2(C2) are defined in formula (8.25),

formula (8.26), formula (8.27), and formula (8.28).

Proof. Since the one step transition Hi → Hi+1 are independent for i = 0, ..., t− 1, we can obtain

this theorem by applying the Theorem 8.5.2.

The following corollary explains how to select the constant C0, ..., Ct−1, C2 for Theorem 9.2.2.

Corollary 9.2.3. Given a trajectory H = [H0, ...,Ht] and a probability p < 0.99t, let R∗(i) =

r∗(i)N are the optimal mutation matrix from Hi to Hi+1 for i = 0, ..., t− 1. Let p′ = (p
0.99)

1
t(K+1) ,

we can select

Ci =
16gr∗(i)

〈F,Hi〉2 minj V 2
j (Hi, Hi+1)N

1
3

log
2g2(g − 1)

1− p′
(9.8)

where r∗(i) = maxj,k r
∗(i)j,k,

Vj(i) =
FjHi(j)

〈F,Hi〉
+

1

〈F,Hi〉
(
∑
k

(r∗k,j(i)− r∗j,k(i))), (9.9)

for i = 0, ..., t− 1 and

C2 =

√
2 log

2K

1− p′
(9.10)

91

Table 9.1: Optimal Trajectory G

G0 0.8000 0.1000 0.1000

G1 0.6383 0.1805 0.1812

G2 0.4266 0.2578 0.3156

G3 0.2233 0.3000 0.4767

Optimal trajectory for Eve(2, 0.3) given H0 = [0.8, 0.1, 0.1].

so that
t−1∏
i=0

LK(Hi, Hi+1) ≤
PK(H)

µ(N,H)
≤

t−1∏
i=0

UK(Hi, Hi+1)

holds above probability p.

Proof. If we set p1(Ci, Hi, Hi+1) = p2(C2) = p′, then we have

p = 0.99tp2(C2)
t
t−1∏
i=0

pK1 (Ci, Hi, Hi+1).

By solving p1(Ci, Hi, Hi+1) = p′ and p2(C2) = p′, we obtain formula (9.8) and formula (9.10).

9.3 Examples of Estimating P(H|H0)

Recall the example in Section 6.2.2.1, F = [200, 2001.08, 2001.12], m = 10−7,

Q =


0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 .

and H0 = [0.8, 0.1, 0.1]. The optimal trajectory G for realizing the event Eve(2, 0.3) is in Table 9.1.

We want to estimate the P(G|H0) when N = 1012.

We use Algorithm 8.1 to estimate the one-step transition kernel Q(Gi,Gi+1) for i = 0, ..., 2.

92

Table 9.2: Forced Simulation Results

i QK(Gi,Gi+1) σ2(Gi,Gi+1) Ci C2 left(i) right(i)

0 exp(−1.7826× 1011) 9.9067 · 10−11 3.1518 · 10−10 6.7528 32.73 189.59

1 exp(−1.3909× 1011) 5.9854 · 10−11 7.7143 · 10−10 6.7528 31.45 141.48

2 exp(−1.3996× 1011) 8.4287 · 10−11 7.3950 · 10−10 6.7528 32.09 172.75

QK(Gi,Gi+1) is the estimated one step transition kernel. σ2(Gi,Gi+1) is defined as formula 8.18. Ci

and C2 are computed as in Corollary 9.2.3. left(i) and right(i) are computed as formula 9.11 and
formula 9.12

We compute σ2(Gi,Gi+1) and present these values in Table 9.2 and select K = 104. We present

QK(Gi,Gi+1) in Table 9.2. When we select p = 0.9, we compute Ci and C2 using Corollary 9.2.3

and present these values in Table 9.2. We also present

left(i) = log
QK(Gi,Gi+1)

µN,Gi+1(NGi+1)
− logLK(Gi,Gi+1) (9.11)

and

right(i) = logUK(Gi,Gi+1)− log
QK(Gi,Gi+1)

µN,Gi+1(NGi+1)
(9.12)

in Table 9.2. From our computation, we have

P(G|H0) ≈ PK(G) =

2∏
i=0

Q(Gi,Gi+1) = exp(−4.5731 · 1011).

93

Chapter 10

Estimating P(H in a thin tube) by

Importance Sampling

From the large deviations theory result Theorem 4.7.3, we know that the probability of fixations is

approximately equal to the probability of trajectories realizing the fixation by following the optimal

trajectory through a thin tube for large population size N . Therefore, in this chapter, we study

how to force random trajectories to follow the optimal trajectory through a thin tube and estimate

the probability of these forced trajectories.

10.1 Forced Trajectories in a Thin Tube

We want to force a random trajectory H to follow the optimal path G = [G0 = H0, ...,GT] through

a thin tube. The basic ideas are:

1. Start with H0, we aim for G1, suppose R0 is the forced mutation matrix and we get to H1 with

LW1 = LW (H0, R0, H1).

2. Start with H1, we aim for G2, suppose R1 is the forced mutation matrix and we get to H2 with

LW2 = LW (H1, R1, H2).

94

...

T-1. Start with HT−1, we aim for GT , suppose RT−1 is the forced mutation matrix and we get to

HT with LWT−1 = LW (HT−1, RT−1, HT).

By performing the algorithm above, we get a forced trajectory H following the optimal geodesic

G. Denote R = [R0, ..., RT−1]. Let the logarithm of the corrective weight of the forced trajectory

H be

LW (H,R) =
T−1∑
i=0

LW (Hi, Ri, Hi+1). (10.1)

We also know that (Hi−Gi) ·
√
N follows approximately multivariate normal distribution N(0,Σ),

where

Σ =



G1(1− G1) −G1G2 ... −G1Gk

−G1G2 G2(1− G2) ... −G2Gk
...

...
. . .

...

−G1Gk −G2Gk
... Gk(1− Gk)


.

Therefore,

|Hi − Gi|∞ ≤ max
{j=1,...,g}

3
√
Gi(j)(1− Gi(j))√

N
≤ 3

2
√
N
,

with probability above 0.99 for large N .

10.2 Estimator of P(H in a thin tube)

Definition 10.2.1. For any histogram H ∈ H, define a ball centered at a histogram H with radius

ρ ∈ R as

ball(H, ρ) = {G ∈ H | |G(i)−H(i)|∞ < ρ}.

Definition 10.2.2. For any random trajectory H = [H0, ...,HT] ∈ ΩT+1, define a thin tube

95

centered at trajectory H with radius vector ρ = [ρ0, ..., ρT] ∈ RT+1 as

Tube(H,ρ) = [ball(H0, ρ0), ball(H1, ρ1), ..., ball(HT , ρT)].

We say a trajectory G ∈ Tube(H, ρ) if Gi ∈ ball(Hi, ρi) for i = 0, ..., T .

Conjecture 10.2.3. Let N be the population size. Let G = [G0 = H0, ...,Gt] be the optimal

trajectory that realizes the event Eve(J, β). Let H = [H0, ...,Ht] be the forced trajectories following

G. Let ε = [0, 3
2
√
N
, ..., 3

2
√
N

]. Then,

P(H ∈ Tube(G, ε)) ≥ 0.99t.

We select the radius of a thin tube of the optimal trajectory G = [G0, ...,GT] as

ε =
3

2
√
N
.

Let ε = [0, ε, ..., ε] ∈ RT+1. We can estimate the probability P(H ∈ Tube(G, ε)∩Eve(J, β)) which is

the probability of realizing Eve(J, β) through the thin tube Tube(G, ε) by the following algorithm.

Algorithm 10.1: Forcing H ∈ Tube(G, ε) ∩ Eve(J, β)

Step 1. Generate S forced trajectories tra1, ..., traS by following the optimal trajectory G.

Step 2. For each forced trajectories trai = [trai0, ..., tra
i
T], let Ri = [Ri0, ..., R

i
T−1] be the forced

mutation matrix vector. Compute LW (trai,Ri) as formula (10.1).

Step 3. Let Set = Tube(G, ε) ∩ Eve(J, β). We can estimate the probability P(H ∈ Set) as

PS(H ∈ Set) =
1

S

S∑
i=1

1{trai∈Set} exp(N · LW (trai,Ri)),

where 1{trai∈Set} = 1 if trai ∈ Set, and 1{trai∈Set} = 0, otherwise.

Since exp(N · LW (trai,Ri)) takes extremely small values, we use Algorithm 8.2 to compute

96

the following summation
S∑
i=1

1{trai∈Set} exp(N · LW (trai,Ri)).

10.3 Accuracy of the Estimation

Recall for any trajectory H = [H0, ...,HT],

P(H) =
T−1∏
i=0

{µN,Hi+1(NHi+1)E(exp(N · LW (Hi, Ri, Hi+1))}

= E(exp(N
T−1∑
i=0

LW (Hi, Ri, Hi+1)))
T−1∏
i=0

µN,Hi+1(NHi+1)

By the change of probability, we have

P(H ∈ Set) =
∑
h∈Set

P(H = h)

=
∑
h∈Set

E(exp(N
T−1∑
i=0

LW (hi, Ri, hi+1)))
T−1∏
i=0

µN,hi+1
(Nhi+1)

=
∑
h∈Set

E(exp(N
T−1∑
i=0

LW (Hi, Ri, Hi+1))|H = h)
T−1∏
i=0

µN,hi+1
(Nhi+1)

= E(E(exp(N

T−1∑
i=0

LW (Hi, Ri, Hi+1))|H))

= E(exp(N
T−1∑
i=0

LW (Hi, Ri, Hi+1)))

= E(exp(N · LW (H,R)))

Lemma 10.3.1. Let G = [G0, ...,GT] ∈ Set be an optimal geodesic. tra1, ..., traS are forced trajec-

tories following G. Let Ri = [Ri0, ..., R
i
T−1], where Rij is the forced mutation matrix from traij to

97

traij+1. LW (trai,Ri) is defined as formula (10.1). Then

PS(H ∈ Set) :=
1

S

S∑
i=1

1{trai∈Set} exp(N · LW (trai,Ri))→ P(H ∈ Set)

a.s. as S →∞.

Proof. Since

E(| exp(N · LW (H,R))|) = E(exp(N · LW (H,R))) = P(H ∈ Set) <∞,

by the strong law of large number, we have

PS(H ∈ Set)→ P(H ∈ Set),

a.s. as S →∞.

10.4 Example of Estimating P(H in a thin tube)

Let F = [200, 2001.08, 2001.12], m = 10−7 and

Q =


0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 .

Let H0 = [0.8, 0.1, 0.1], β = 0.3. The optimal path for realizing the rare event Eve(2, 0.3) is in Table

9.1. We generate 104 forced trajectories following the optimal geodesic G for different population

size N = 1010, 1012, 1014. Let num1 be the number of forced trajectories realizing the rare event

Eve(2, 0.3). Let num2 be the number of forced trajectories realizing this rare event though the thin

tube Tube(G, ε) where ε = [0, ε, ..., ε]. We present the radius of the tube ε = 3
2
√
N

, num1, num2,

98

Table 10.1: Results of Forced Simulation of Trajectories

N ε num1 num2 PS(H ∈ Set)
1010 1.5 · 10−5 5086 5058 10−3.9727·10

8

1012 1.5 · 10−6 5033 5017 10−3.9727·10
10

1014 1.5 · 10−7 4956 4934 10−3.9727·10
12

ε = 3/(2
√
N). num1 is the number of forced trajectories realizing the rare event. num2 is the

number of forced trajectories realizing the rare event through the thin tube. PS(H ∈ Set) is the
estimator of P(H ∈ Set).

and PS(H ∈ Set) in Table 10.1

We can see that about half of the forced trajectories realize the rare event Eve(2, 0.3). Around

99% forced trajectories that realize the rare event Eve(2, 0.3) stay in the thin tube Tube(G, ε) for

different population size N . When N increases by a factor 10n, logPS(H ∈ Set) decrease by a

factor of 1/10n.

When N = 104, we plot the optimal trajectory G and the histograms in 104 forced trajectories

in Figure 10.1. The blue path is the optimal trajectory. The green clouds are formed by the

histograms in the forced trajectories. The radius of each green clouds is of the order 1/
√
N . As N

increase, the radius of the cloud decreases. Therefore, the forced trajectories concentrate around

the optimal trajectory for large N .

99

Figure 10.1: Forced Trajectories Around G

N = 104. The blue path is the optimal trajectory G. The green clouds are formed by histograms
in the 104 forced trajectories.

100

Chapter 11

Genealogy Forced Trajectory

Simulation

Searching for the optimal trajectory G for realizing the event Eve(J, β) could become very compu-

tational heavy when the number of genotypes g becomes larger than 8. Therefore, we develop this

genealogy simulation method to force the rare event to happen more frequently without following

any paths. To do so, we favor the trajectories with higher frequencies of J-cell by implementing a

re-sampling trick.

11.1 One-step Transition from Hn = H to Hn+1 = G

We follow the stochastic model described in Chapter 2 to simulate Hn+1 given Hn = H. We

implement the following Algorithm 11.1.

Algorithm 11.1: One-step Transition

Step 1. We start with the population N and histogram H for day n. The population grows with

the growth factor F = [F (1), ..., F (g)]. Compute the size of the g colonies of cells as siz(j) =

[NH(j)F (j)] for j = 1, ..., g.

101

Step 2. Recall that Rn(j, k) is the random mutation number from j-cell to k-cell for day n. We

sample Rn(j, k) following the Poisson distribution with mean siz(j)Mj,k for j, k = 1, ..., g and j 6= k.

Suppose we get the mutation matrix Rn = R, compute the histogram of population J = (J1, ..., Jg)

as

Jj =
1

[N〈F,H〉]
([NFjH(j)]−

∑
k

Rj,k +
∑
k

Rk,j).

Step 3. After the mutation stage, we sample the random vector V following the multinomial

distribution µN,J . Suppose we get V = y, then compute Hn+1 = y
N .

11.2 Generate a Set of Trajectories Q(t) = {H1, ...,HP}

Let T denote the duration. We will generate a set of random trajectories Q(t) = {H1, ...,HP } at

time t, where P is the number of trajectories in set Q(t) and Hi = [H i
0, ...,H

i
T] is a trajectory in

ΩT+1.

Algorithm 11.2: Generate a Set of Trajectories Q(t) = {H1, ...,HP }

Given the starting histogram H i
0 of every random trajectory Hi, generate the random trajectory

Hi step by step following Algorithm 11.1.

Define a function levelJ of genotype J on a random trajectory set Q = {H1, ...,HP } where Hj as

levelJ(Q) = max
j=1,...,P,i=1,...,T

Hj
i (J).

11.3 Generate Q(t+ 1) Given Q(t)

Given the trajectory set Q(t) at time t, we generate the trajectory set Q(t + 1) at time t + 1 by

the re-sampling technique to favor the trajectories in Q(t) which have higher percentages of J-cell

at step T as the following algorithm.

Algorithm 11.3: Generate Q(t+ 1) Given Q(t)

102

Step 1. Re-sampling Define a weight function on setQ = {H1, ...,HP } where Hj = [Hj
0 , H

j
1 , ...,H

j
T],

as Wei(Q) = w = (w1, ..., wP) ∈ RP , where

wi =
H i
T (J)∑P

j=1H
j
T (J)

.

Apply this weight function on set Q(t) = {H1, ...,HP } and compute W = Wei(Q(t)), where

Wi =
H i
T (J)∑P

j=1H
j
T (J)

for i = 1, .., P . Then we use this weight vector W and P as parameters of multinomial distribution

µP,W where

µP,W (X = (x1, ..., xP)) =
P !

x1! · ... · xP !
W x1

1 · ... ·W
xP
P .

We sample a vector q = (q1, ..., qP) with
∑P

j=1 qj = P following the distribution µP,W . Clone qj

copies of histogram Hj
T for j = 1, ..., P . Let Copy(t) = {h1, ..., hP } be the set of these copied

histograms, where

h1 = ... = hq1 = H1
T ,

hq1+1 = ... = hq1+q2 = H2
T ,

...

hq1+...+qP−1+1 = hq1+...+qP = HP
T .

Notice that qi might be 0 for some i = 1, ..., P . If qi = 0, then there is no copy of H i
T in set Copy(t).

Step 2. Generating Q(t+ 1). To generate set Q(t+ 1) = {S1, ...,SP } where Si = [Si0, ..., S
i
T], let

Si0 = hi for i = 1, ..., P . Then we generate the whole set Q(t+ 1) following Algorithm 11.2.

We call the trajectory H ∈ Q(t) the ancestor of trajectory S ∈ Q(t+ 1) if HT = S1. Define the

ancestor function Anc on a trajectory S ∈ Q(t + 1) and set Q(t) as Anc(S, Q(t)) = (H, n) where

H ∈ Q(t) is the ancestor of S and n is the number of ancestors of S in Q(t).

103

11.4 Genealogy Simulation of Forced Trajectory

Given the starting histogram H0, we want to simulate random trajectories that realize the rare

event Eve(J, β). We propose the following genealogy simulation algorithm.

Algorithm 11.4: Genealogy Simulation

Step 1. Generate the set of trajectories Q(1) = {H1, ...,HP } given H i
0 = H0 for i = 1, ..., P at the

time t = 1.

Step 2. If levelJ(Q(1)) ≥ β, we stop the simulation. The trajectories in Q(1) which enter the

target set TAR are the rare trajectories that realize the event Eve(J, β). If levelJ(Q(1)) < β, we

follow the steps 3-4.

Step 3. We generate Q(t+ 1) given Q(t) following Algorithm 11.3 for t ≥ 1.

Step 4. If levelJ(Q(t + 1)) ≥ β or t > 50, we stop the simulation. If levelJ(Q(t + 1)) ≥ β, the

trajectories in Q(t+1) which enter the target set TAR realize the rare event Eve(J, β). Otherwise,

we repeat step 3-4.

Suppose the simulation stops at time t, Q(t) = {S1, ...,SP } and levelJ(Q(t)) ≥ β. We select

the trajectories in Q(t) that enter the target set TAR. We name these l trajectories ST1, ...,STl.

For every STi, we use the ancestor function Anc to construct a vector ni = [ni1, ..., n
i
t−1] where

(Yt−1, n
i
t−1) = Anc(STi, Q(t− 1)),

(Yt−2, n
i
t−2) = Anc(Yt−1, Q(t− 2)),

...

(Y1, n
i
1) = Anc(Y2, Q(1)).

Yi is the ancestor of Yi+1 for i = 1, ..., t− 2 and Yt−1 is the ancestor of STi. Then the estimator

104

for P(Eve(J, β)) is

PJ,β =
1

P
(
l∑

i=1

1∏t−1
j=1 n

i
j

).

11.5 Genealogy Forced Trajectory Simulation Example

Let F = [200, 2001.08, 2001.12], m = 10−7, N = 108 and

Q =


0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 .

Let P = 10000, T = 3, and starting histogram H0 = [0.8, 0.1, 0.1]. We use Algorithm 11.4 to

simulate the trajectories that realize Eve(2, 0.2085). Among these 10000 trajectories, 14 trajectories

realized the event Eve(2, 0.2085). We plot these 14 trajectories in Figure 11.1. Since the difference

between these 14 trajectories is of the order 10−4, these trajectories look like one trajectory in this

figure. The estimated probability of event Eve(2, 0.2085) is

P(Eve(2, 0.2085)) ≈ 8.70 · 10−4.

105

Figure 11.1: Forced Trajectories by Genealogy Method

Blue paths are the forced trajectories by using Algorithm 11.4. Red arrows represent the direction.

106

Appendix A

Appendix

A.1 Computing Time of Examples in Section 5.3.1.2

Recall the geodesic computing example with g = 7 in Section 5.3.1.2. The growth factor is

F = [200, 2001.07, 2001.08, 2001.09, 2001.10, 2001.11, 2001.12],

the mutation rate is m = 10−8, the mutation matrix is Qi,j = 1/6 for i 6= j. The starting histogram

is H = [0.6, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05], the target histogram is G = [0.1, 0.1, 0.1, 0.1, 0.1, 0.4, 0.1]

and Mesh = 0.01, we use p = 0.1 and p = 0.2 to perform the geodesic computing following

Algorithm 5.3 on 16 nodes with 8 cores on each node. Recall that PENi(p) is the penultimate

histograms set using the p− quantile technique on the i− th node. We present the computing time

CTi(p) on each node i = 1, ..., 16 and the cardinality of PENi(p) on each node i = 1, ..., 16 in the

following Table A.1. We can see that all the penultimate histograms belonging to PEN(0.1) and

PEN(0.2) are in the first node. It is hard to split the geodesic computing task evenly among all

nodes. This is because we have to check whether a penultimate histogram y belongs to PEN(p)

on the fly. Otherwise, we have storage issues saving all the penultimate histograms on each core.

107

Table A.1: Computing Time for Example when g = 7

0.1− quantile 0.1− quantile 0.2− quantile 0.2− quantile
CTi(0.1) (sec) card(PENi(0.1)) CTi(0.2) (sec) card(PENi(0.2))

3984 1043949 4036 2119180

4142 0 3875 0

4044 0 3994 0

3772 0 4066 0

3760 0 3809 0

4070 0 3721 0

3997 0 3664 0

3704 0 4334 0

3973 0 4286 0

4060 0 4132 0

4037 0 4097 0

3849 0 4152 0

3652 0 3980 0

4416 0 4557 0

3934 0 3665 0

4070 0 3845 0

H = [0.6, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05], G = [0.1, 0.1, 0.1, 0.1, 0.1, 0.4, 0.1], CTi(p) is the computing
time of geodesic search from H to G using Algorithm 5.3 on node i for p = 0.1, 0.2, card(PENi(p))
is the cardinality of set PENi(p) on node i for p = 0.1, 0.2.

108

Recall the geodesic computing example with g = 8 in Section 5.3.1.2. The growth factor is

F = [200, 2001.06, 2001.07, 2001.08, 2001.09, 2001.10, 2001.11, 2001.12],

the mutation rate is m = 10−8, the mutation matrix is Qi,j = 1/7 for i 6= j. When the

starting histogram is H = [0.5, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05], the target histogram is G =

[0.05, 0.05, 0.1, 0.05, 0.05, 0.1, 0.5, 0.1] and Mesh = 0.02, we use p = 0.1 and p = 0.2 to perform

the geodesic computing with quantile technique on 32 nodes with 16 cores on each node. We

present the computing time CTi(p) on each node i = 1, ..., 32 and the cardinality of PENi(p) on

each node i = 1, ..., 32 in Table A.2.

From Tables A.1 and A.2, we see that we did not split the geodesic computing task evenly

among all nodes. This is because we have to check whether a penultimate histogram belongs to

PEN(p) on the fly. Otherwise, we have storage issues saving all the penultimate histograms on

each core.

109

Table A.2: Computing Time for Example when g = 8

0.1− quantile 0.1− quantile 0.2− quantile 0.2− quantile
CTi(0.1) (sec) card(PENi(0.1)) CTi(0.2) (sec) card(PENi(0.2))

5723 14424498 5309 16058299

189 855292 208 1033565

157 590376 189 812038

88 1027 92 2581

223 1047416 227 1225831

94 5083 99 7887

94 2073 96 4650

84 0 89 0

138 442650 165 673772

88 329 88 1386

93 7 87 307

84 0 81 0

77 899 111 2799

106 0 86 0

97 0 82 0

86 0 108 0

162 366985 158 601778

90 122 93 842

86 0 87 115

118 0 81 0

117 462 96 1884

112 0 83 0

126 0 86 0

91 0 111 0

88 0 113 21

116 0 86 0

117 0 103 0

104 0 88 0

84 0 98 0

90 0 83 0

87 0 88 0

82 0 87 0

CTi(p) is the computing time of geodesic search by using Algorithm 5.3 on node i = 1, ..., 32 for
p = 0.1, 0.2, card(PENi(p)) is the cardinality of set PENi(p) on node i = 1, ..., 32 for p = 0.1, 0.2.

110

Table A.3: Optimal trajectory G

G0 0.7000 0.1000 0.1000 0.1000

G1 0.5287 0.1116 0.1789 0.1808

G2 0.3352 0.1056 0.2550 0.3042

G3 0.1708 0.0822 0.3000 0.4470

Optimal trajectory for Eve(3, 0.3) given H0 = [0.7, 0.1, 0.1, 0.1].

Table A.4: Optimal trajectory G

G0 0.7000 0.1000 0.1000 0.1000

G1 0.5514 0.1130 0.2065 0.1291

G2 0.3760 0.1107 0.3302 0.1832

G3 0.2151 0.0923 0.4365 0.2561

G4 0.0983 0.0643 0.5000 0.3374

Optimal trajectory for Eve(3, 0.5) given H0 = [0.7, 0.1, 0.1, 0.1].

A.2 Optimal Trajectory G in Section 6.2.2.2

Recall that the example in Section 6.2.2.2, the starting histogram is H0 = [0.7, 0.1, 0.1, 0.1], the

growth vector is

F = [200, 2001.08, 2001.10, 2001.20],

and the mutation matrix is

Q =



0 0.3 0.3 0.4

0.3 0 0.3 0.4

0.3 0.3 0 0.4

0.3 0.3 0.4 0


,

the mutation rate is 10−7. The optimal trajectories for realizing the event Eve(3, 0.3), Eve(3, 0.5)

and Eve(3, 0.7) are in Tables A.3, A.4, A.5.

111

Table A.5: Optimal trajectory G

G0 0.7000 0.1000 0.1000 0.1000

G1 0.5887 0.1159 0.2156 0.0798

G2 0.4393 0.1198 0.3597 0.0812

G3 0.2877 0.1099 0.5058 0.0966

G4 0.1621 0.0887 0.6251 0.1241

G5 0.0741 0.0622 0.7000 0.1637

Optimal trajectory for Eve(3, 0.7) given H0 = [0.7, 0.1, 0.1, 0.1].

112

Bibliography

[1] N. K. Arenbaev. Asymptotic behavior of the multinomial distribution. Theory of Probability
& Its Applications, 21(4):805–810, 1977.

[2] R. Azencott, M. Freidlin, and S. R. S. Varadhan. Large deviations at Saint-Flour. Springer
New York, 2013.

[3] R. Azencott, B. Geiger, and I. Timofeyev. Rare events analysis in stochastic models for
bacterial evolution. arXiv, 2018.

[4] J. E. Barrick and R. E. Lenski. Genome dynamics during experimental evolution. Nature
Reviews, 14(12):827–839, 2013.

[5] J. E. Barrick, C. C. Strelioff, R. E. Lenski, and M. R. Kauth. Escherichia coli rpob mu-
tants have increased evolvability in proportion to their fitness defects. Molecular Biology and
Evolution, 27(6):1338–1347, 2010.

[6] J. Bucklew. Introduction to rare event simulation. Springer New York, 1st edition, 2010.

[7] M. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez, and P. Djuric. Adaptive importance
sampling: the past, the present, and the future. IEEE Signal Processing Magazine, 34:60–79,
2017.

[8] C. Canonne. A short note on poisson tail bounds. Retrieved from the Website: http://www.
cs. columbia. edu/ ccanonne, 2017.

[9] T. Cooper, D. Rozen, and R. Lenski. Parallel changes in gene expression after 20,000 genera-
tions of evolution in escherichia coli. Proceedings of the National Academy of Sciences of the
United States of America, 100:1072–7, 03 2003.

[10] V. S. Cooper, D. Schneider, M. Blot, and R. E. Lenski. Mechanisms causing rapid and parallel
losses of ribose catabolism in evolving populations of Escherichia coli. Journal of Bacteriology,
183:2834–2841, 2001.

[11] M. Cottrell, J. -C. Fort, and G. Malgouyres. Large deviations and rare events in the study of
stochastic algorithms. IEEE Transactions on Automatic Control, 28(9):907–920, 1983.

[12] H. Cram’er and H. Touchette. Sur un nouveau théorème-limite de la théorie des probabilités.
Actualit’es Scientifiques et Industrielles, 736:5 – 23, 1938.

113

[13] I. Csiszar. The method of types information theory. IEEE Transactions on Information
Theory, 44(6):2505–2523, 1998.

[14] A. Dembo and O. Zeitouni. Large deviations techniques and applications. Springer, Berlin,
Heidelberg, 2010.

[15] P. M. Djuric, T. Lu, and M. F. Bugallo. Multiple particle filtering. In 2007 IEEE International
Conference on Acoustics, Speech and Signal Processing - ICASSP ’07, volume 3, pages III–
1181–III–1184, 2007.

[16] C. R. Doering, K. V. Sargsyan, L. M. Sander, and E. Vanden-Eijnden. Asymptotics of rare
events in birth–death processes bypassing the exact solutions. Journal of Physics: Condensed
Matter, 19(6):065145, 2007.

[17] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time, i. Communications on Pure and Applied Mathematics, 28(1):1–47,
1975.

[18] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time, ii. Communications on Pure and Applied Mathematics, 1975.

[19] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time iii. Communications on Pure and Applied Mathematics, 29(4):389–
461, 1976.

[20] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time. iv. Communications on Pure and Applied Mathematics, 36(2):183–
212, 1983.

[21] P. Dupuis and H. J. Kushner. Stochastic systems with small noise, analysis and simulation; a
phase locked loop example. SIAM Journal on Applied Mathematics, 47(3):643–661, 1987.

[22] P. Dupuis, A. Devin Sezer, and H. Wang. Dynamic importance sampling for queueing networks.
The Annals of Applied Probability, 17(4):1306–1346, 2007.

[23] P. Dupuis and H. Wang. Importance sampling, large deviations, and differential games.
Stochastics An International Journal of Probability and Stochastic Processes, 76:37, 2004.

[24] P. Dupuis and H. Wang. Dynamic importance sampling for uniformly recurrent Markov chains.
Annals of Applied Probability, 15, 2005.

[25] W. Ee, W. Ren, and E. Vanden-Eijnden. String method for the study of rare events. Physical
Review B, 66, 2002.

[26] W. Ee and E. Vanden-Eijnden. Transition-path theory and path-finding algorithms for the
study of rare events. Annual Review of Physical Chemistry, 61:391–420, 2008.

[27] R. S. Ellis. Large deviations for a general class of random vectors. The Annals of Probability,
12(1):1–12, 1984.

114

[28] R. S. Ellis. Entropy, large deviations, and statistical mechanics, volume 271. Springer, Berlin,
Heidelberg, 2006.

[29] V. Elvira, L. Martino, M. F. Bugallo, and P. M. Djuric. Elucidating the auxiliary particle
filter via multiple importance sampling [lecture notes]. IEEE Signal Processing Magazine,
36(6):145–152, 2019.

[30] V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo. Generalized multiple importance sam-
pling. Statistical Science, 34(1):129 – 155, 2019.

[31] P. Fearnhead. Computational methods for complex stochastic systems: A review of some
alternatives to mcmc. Statistics and Computing, 18:151–171, 2008.

[32] J. Geweke. Bayesian inference in econometric models using Monte Carlo integration. Econo-
metrica, 57(6):1317–1339, 1989.

[33] J. K. Ghosh, M. Delampady, and T. Samanta. An introduction to Bayesian analysis: theory
and methods. Springer Texts in Statistics. Springer New York, 2007.

[34] C. Giardinà, J. Kurchan, and L. Peliti. Direct evaluation of large-deviation functions. Phys.
Rev. Lett., 96:120603, 2006.

[35] S. J. Godsill and T. Clapp. Improvement strategies for Monte Carlo particle filters. Sequential
Monte Carlo Methods in Practice, pages 139–158, 2001.

[36] T. Grafke and E. Vanden-Eijnden. Numerical computation of rare events via large deviation
theory. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:063118, 06 2019.

[37] J. Gärtner. On large deviations from the invariant measure. Theory of Probability & Its
Applications, 22(1):24–39, 1977.

[38] C. J. R. Illingworth and V. Mustonen. A method to infer positive selection from marker
dynamics in an asexual population. Bioinformatics, 28:831 – 837, 2012.

[39] A. Jasra, D. A. Stephens, and C. C. Holmes. Population-based reversible jump Markov chain
Monte Carlo. Biometrika, 94(4):787–807, 2007.

[40] H. Kahn. Random sampling (Monte Carlo) techniques in neutron attenuation problems–ii.
Nucleonics, 6 6:60–5, 1950.

[41] T. Kloek and H. K. van Dijk. Bayesian estimates of equation system parameters: an application
of integration by Monte Carlo. Econometrica, 46(1):1–19, 1978.

[42] V. Lecomte and J. Tailleur. A numerical approach to large deviations in continuous-time.
Journal of Statistical Mechanics Theory and Experiment, page P03004, 2007.

[43] J. S. Liu. Monte Carlo strategies in scientific computing. Springer Series in Statistics. Springer
New York, 2013.

[44] J. S. Liu and R. Chen. Blind deconvolution via sequential imputations. Journal of the American
Statistical Association, 90(430):567–576, 1995.

115

[45] E. Lyman and D. Zuckerman. Annealed importance sampling of peptides. The Journal of
Chemical Physics, 127:065101, 09 2007.

[46] J. A. M. de Sousa, P. R. A. Campos, and I. Gordo. An abc method for estimating the rate and
distribution of effects of beneficial mutations. Genome Biology and Evolution, 5(5):794–806,
2013.

[47] P. D. Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal
Statistical Society. Series B (Statistical Methodology), 68(3):411–436, 2006.

[48] R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125–139, 2001.

[49] M.-S. Oh and J. O. Berger. Adaptive importance sampling in Monte Carlo integration. Journal
of Statistical Computation and Simulation, 41(3-4):143–168, 1992.

[50] M.-S. Oh and J. O. Berger. Integration of multimodal functions by Monte Carlo importance
sampling. Journal of the American Statistical Association, 88(422):450–456, 1993.

[51] A. Owen and Y. Zhou. Safe and effective importance sampling. Journal of the American
Statistical Association, 95(449):135–143, 2000.

[52] S. Parekh and J. Walrand. A quick simulation method for excessive backlogs in network of
queues. Automatic Control, IEEE Transactions on, 34:54 – 66, 1989.

[53] M. K. Pitt and N. Shephard. Filtering via simulation: auxiliary particle filters. Journal of the
American Statistical Association, 94(446):590–599, 1999.

[54] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[55] F. Ragone, J. Wouters, and F. Bouchet. Computation of extreme heat waves in climate
models using a large deviation algorithm. Proceedings of the National Academy of Sciences,
115(1):24–29, 2018.

[56] J. Richard and W. Zhang. Annealed importance sampling. Statistics and Computing, 11, 2001.

[57] J. Richard and W. Zhang. Efficient high-dimensional importance sampling. Journal of Econo-
metrics, 141:1385–1411, 2007.

[58] J. Sadowsky and J. Bucklew. Large deviations theory techniques in Monte Carlo simulation.
IEEE Computer Society, 1989.

[59] I. N. Sanov. On the probability of large deviations of random variables. Matematicheskij
Sbornik, 42:11-44, 1958.

[60] S. Schmidler, J. Liu, and D. Brutlag. Bayesian segmentation of protein secondary structure.
Journal of Computational Biology, 7:233–248, 2000.

[61] D. Siegmund. Importance sampling in the Monte Carlo study of sequential tests. The Annals
of Statistics, 4(4):673 – 684, 1976.

116

[62] J. Tailleur and J. Kurchan. Probing rare physical trajectories with lyapunov weighted dynam-
ics. Nature Physics, 3:203, 2006.

[63] S. Tokdar and R. Kass. Importance sampling: a review. Wiley Interdisciplinary Reviews:
Computational Statistics, 2:54 – 60, 2010.

[64] E. Vanden-Eijnden and J. Weare. Rare event simulation of small noise diffusions. Communi-
cations on Pure and Applied Mathematics, 65, 12 2012.

[65] W. Zhang, V. Sehgal, D. Dinh, R. Azevedo, T. Cooper, and R. Azencott. Estimation of the
rate and effect of new beneficial mutations in asexual populations. Theoretical Population
Biology, 81:168–78, 2011.

117

