AN EXPERIMENTAL STUDY OF THE PRINTED-CIRCUIT CIRCULAR DISC ANTENNA

A Thesis

Presented to the Faculty of The Department of Electrical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering

> by Mark D. Walton December 1976

ACKNOWLEDGEMENT

To Dr. L. C. Shen and Dr. Stuart A. Long, who patiently guided the research, I would like to express my appreciation and gratitude. I would also like to thank Dr. G. W. Batten for serving on the committee and Margaret Coward for typing this thesis.

AN EXPERIMENTAL STUDY OF THE PRINTED-CIRCUIT, CIRCULAR DISC ANTENNA

An Abstract of a Thesis Presented to the Faculty of The Department of Electrical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering

> by Mark D. Walton December 1976

ABSTRACT

Using Watkins^[1] dominant mode design for a circular resonant structure in microstrip, several circular disc radiators were fabricated on a copper-clad laminate of teflon/glass using conventional printedcircuit board etching techniques. The input impedance and far field patterns of these antennas were measured as a function of feed position and dielectric thickness. The effect of a cross-polarizing of the radiators was also measured assuming that Watkins' surface current distribution on the disc for the n=1 mode would result in a linearly polarized radiation. Finally, a comparison between the measured and theoretical radiation properties is presented for various combinations of antenna feed position and dielectric thickness.

TABLE	OF	CONT	ENTS

Chapter	•	Page
<u>I.</u>	Introduction	1
<u>II.</u>	Design and Construction of the Antennas	3
II.1	Zeroth-Order Theory.	3
II.2	Design Considerations	3
II.3	Design of the Antennas	5
II.4	Construction of the Antennas	6
III.	Measurement of the Input Impedance of the Antennas	9
III.1	The Network Analyzer System	9
III.2	Calibration of the Network Analyzer System	12
III.3	Impedance Measurement Results	13
III.3a	Tabulated Impedance Measurements	13
III.3b	Effects of the Dielectric Substrate Thickness on	
·	Input Impedance	23
III.3c	Effects of Feed Position on Input Impedance	30
III.4	Comparisons Between Measured Results and the Zeroth-	
	Order Theory	37
<u>IV.</u>	Measurement of the Radiation Properties of the Antennas	39
IV.1	Test Configuration for Measuring the Far Fields of	
	the Antennas	39
IV.2	Far Field Pattern Measurements	39
IV.2a	General Results of the Measurements	39
IV.2b	Effects of Feed Position on the Far Fields	59
IV.2c	Effects of Dielectric Thickness on the Far Field Patterns.	67
IV.2d	Effects of Frequency Variation on the Far Field Patterns .	69

•

.

.

IV.3	Comparison o	of the Calculated and Neasured Far Field	
	Patterns		
IV.4	Polarization	Measurements	
۷.	Conclúsions.		
	Bibliography	92	
	Appendix 1.	Data Sheets	
•	Appendix 2.	Wang 720C Computer Program	

Page

CHAPTER I

1

INTRODUCTION

With the introduction of the printed-circuit board to the electronics industry, came great reductions in circuit weight and complexity. In many cases involving spacecraft or aircraft, antennas which are lightweight and simple to fabricate are of primary concern to the designer. Recently, printed circuit technology has been applied to the fabrication of printed-circuit board antennas.^[2,3] Not only are these antennas lightweight and easy to fabricate, but also they are low-profile and extremely reproduceable. These antennas are fabricated using standard printed-circuit board etching techniques. The printedcircuit antenna now offers a homogeneous technology for the fabrication of communication systems since it is now possible to design the antenna, feed network, phase shifters, and associated circuitry on the same printed-circuit board. This type of technology will offer to the engineer great reductions in the size, weight, and cost of communication systems.

The printed-circuit, circular disc antenna shown in Figure 1 was chosen to be analyzed experimentally with the ultimate goal being to verify or disprove the validity of Watkins' zeroth-order theory for various dielectric substrate thicknesses and antenna feed positions.

Figure 1: The Printed-Circuit, Circular Disc Antenna in An Edge-Fed Configuration

۰.

• . a

CHAPTER II

DESIGN AND CONSTRUCTION OF THE ANTENNAS

II.1 Zeroth-Order Theory

From a close observation of Figure 1, one can see that the area between the outer edges of the disc and the ground plane form an aperture through which radiation may occur. This must be so if a disc over a ground plane separated by a dielectric sheet is to behave like an antenna. In Watkins' analysis of circular resonant structures in microstrip, he assumed that the distance between the disc and the ground plane was very small compared to a wavelength in the dielectric material, i.e. $kd << \lambda$. With the relationship between the radiator/ground plane separation and wavelength established, Watkins made two additional assumptions in his analysis. He stated fringe effects at the edge of the disc are negligible and radiation from the aperture formed by the edge of the disc and the ground plane is much smaller than the stored energy in the parallel-plate region. These three assumptions are basic to the zeroth-order theory, although they may seem inappropriate if the disc/ground plane configuration is to be used as a radiating device. However, Watkins! theory does provide a starting point for an experimental study of the printed-circuit, circular disc antenna.

II.2 Design Considerations

The antennas were designed such that for a given disc radius, R, resonance occurred for the lowest order or n=1 mode. From Watkins, this radius is given by:

$$R(cm) = 1.84118 \times \frac{30}{2\pi f \sqrt{\varepsilon_n}}$$

Several commercial companies offer a wide variety of copper-clad dielectric materials in various thicknesses and with various relative dielectric constants. A teflon/glass substrate material with a relative dielectric constant of approximately 2.45 was chosen* because of its availability and its desirable physical characteristics. The teflon/glass substrate is not brittle as is a substrate material like Rexolite, and tolerances on its thickness can be accurately maintained.

Before a design radius, R, could be established, other factors had to be considered. First, the cost of the copper-clad dielectric board prohibited a circular disc radiator that was excessively large, because it was decided that the width and height of the square ground plane would be at least three times larger than the diameter of the disc. Second, the availability of suitable test equipment which operated at the chosen design frequency had to be considered. This test equipment included signal sources, a network analyzer, directional couplers, crystals, pyramidal horn antennas, power meters, receivers, and an anechoic chamber. The anechoic chamber was designed to operate in the range from 2 to 4 gigahertz, and this frequency range was well within the design limits of the other test equipment that was available. In order to investigate the broadband characteristics of the printed-circuit, circular disc antenna, an operating frequency of approximately 3.0 gigahertz, a frequency close to

*made by 3M Company, St. Paul, Minn.

4

(1)

the midpoint of the 2 to 4 gigahertz range, was chosen.

Letting:
$$\epsilon_r = 2.45$$

 $f = 3.0 \text{ GHz}$
 $R = 1.84118 \text{ X} \frac{30}{2\pi(3.0)} \sqrt{2.45}$
 $R \approx 1.87 \text{ cm}$
or
 $D \approx 3.74 \text{ cm}$

Using a disc diameter of 3.74 cm would mean the dimensions on the ground plane would have to be at least 11.2 cm X 11.2 cm. A ground plane of this size would certainly not be prohibitive.

II.3 Design of the Antennas

Measured test data on the electrical and physical characteristics of the copper-clad dielectric materials was sent with each sample that had a different dielectric substrate thickness. This data is shown in Table II.1. In order to accurately evaluate the effects of different dielectric substrate thicknesses on the circuit and radiation properties

K-6098-11 Product	Dissipation Factor	Dielectric Constant	Substrate Thickness		iness
Number	@ X-band	@ X-band	Ave.	Min.	Max.
LX-1004	-	2.47	0.16 cm	-	
LX-1030	.0018	2.48	0.0296 in. 0.075 cm.	0.0291 in. 0.074 cm.	0.0299 in. 0.076 cm.
LX-1010	.0020	2.45	0.0143 in. 0.036 cm.	0.0142 in. 0.036 cm.	0.0144 in. 0.036 cm.

Table II.1 - Manufacturer's Data on

3 Thicknesses of Copper-Clad Dielectric Board

of the printed-circuit, circular disc antenna, it was desirable that each copper-clad board have the same relative dielectric constant. From Table II.1, one can see that this was almost accomplished. The manufacturer would only guarantee in their ordering brochure that each copperclad board would have a relative dielectric constant within a certain tolerance of ±.04. Therefore, the actual dielectric constant of each sheet was not known until the time of delivery. This variation in relative dielectric constant produced a negligible change in the calculation of the resonant frequency for the n=1 mode of a given size radiator. A circular disc with a radius of 1.88 cm was chosen for this experimental investigation. Solving equation (1) for frequency, one has:

$$f(GHz) = 1.84118 X \frac{30}{2\pi R} \sqrt{\epsilon_r}$$
 (2)

For

$$\varepsilon_r = 2.45 \Rightarrow f = 2.987 \text{ GHz}$$

 $\varepsilon_r = 2.47 \Rightarrow f = 2.975 \text{ GHz}$
 $\varepsilon_r = 2.48 \Rightarrow f = 2.969 \text{ GHz}$

Thus the worst case difference in relative dielectric constants for the three sheets that were used accounted for a 0.6% change in the calculated resonant frequency.

II.4 Construction of the Antennas

As was mentioned earlier, a disc radius of 1.88 cm was used in the design regardless of the dielectric substrate thickness or the position of the feed point. The physical properties of each antenna are shown in Table II.2.

Antenna _ #	R (cm)	Relative Dielectric Constant	Dielectric Thickness (cm)	Feed Point
1	1.88	2.47	0.16	R
2	1.88	2.47	0.16	3/4 R
3	1.88	2.47	0.16	1/2 R
4	1.88	2.48	0.075	R
5	1.88	2.48	0.075	3/4 R
6	1.88	2.48	0.075	1/2 R
7	1.88	2.45	0.036	R
8	1.88	2.45	0.036	3/4 R
9	1.88	2.45	0.036	1/2 R

Table II.2 Physical Properties of the Printed-Circuit, Circular Disc Antennas

Thus, three separate antennas which were fed at different points were fabricated on each of three copper-clad substrate materials of different thickness. This accomplished two things. First, the effects of moving the feed point to three separate locations on a substrate material with the same thickness could be experimentally investigated. The first, second, and third feed point were respectively located at R, 3/4 R, and 1/2 R, where R, the radius, was measured from the center of the disc. Second, the effects of changing the dielectric substrate thickness for radiators that were fed at the same point could be evaluated.

All nine circular disc radiators were fabricated using conventional photographic etching techniques^[4]. Nine separate copper-clad boards were cut to dimensions of approximately 14 cm by 14 cm. Each board was coated with photoresist on both sides and then spun in a low temperature oven to dry the photoresist. A rubylith masque was made for each side of the printed-circuit board. One masque was made for the radiating disc and another masque was made for the feed-through hole in the ground plane. Each side of the board was exposed to an ultraviolet lamp for approximately 15 minutes with the appropriate masque accurately positioned over the printed-circuit board. A great deal of caution had to be exercised to make certain that the feed-through hole in the ground plane was accurately aligned with the feed position on the disc radiator. After exposure to the ultraviolet lamp, each copper-clad board was placed in a developing solution of thichloroethylene. Finally, the boards were placed in a mechanically agitated container of etching solution made of ferric chloride. After the etching process was completed, each printedcircuit board had a disc radiator with a radius of 1.88 cm etched on one side, and an appropriately located feed-through hole etched in the ground plane on the opposite side. The diameter of the feed-through hole was important because any discontinuity caused by the ground plane in the coaxial line of the SMA panel mount connector would affort the impodance measurements of the circular disc antenna,

CHAPTER III

MEASUREMENT OF THE INPUT IMPEDANCE OF THE ANTENNAS

III.1 The Network Analyzer System^[5]

The network analyzer system shown in Figure 2 was used for all impedance measurements. This system consists of a sweep oscillator with an appropriate RF plug-in, a transducer, a harmonic frequency converter, a network analyzer mainframe, a polar display unit, and a precision x-y recorder.

The 8690B sweep oscillator provides a CW or a swept RF signal which can be leveled over the entire sweep range of the plug-in. However, a leveled source is not required by the network analyzer since there are two matched AGC (automatic gain control) amplifiers in the 8410A mainframe to compensate for any RF power fluctuations during a sweep. Regardless, to insure accurate results in this experimental study, the 8690B sweep oscillator was leveled externally with the use of a directional coupler and a crystal detector. As a precaution against spurious outputs and harmonic outputs, an in-line coaxial low pass filter was inserted in the RF path which leaves the sweep oscillator.

The transducer, placed as it is between the signal source and the harmonic frequency converter, has three functions. First, it has to split the incoming signal into a reference and test channel. Secondly, it has to provide the capability of extending the electrical length of the reference channel so that the distances that the reference and test signals travel are equal. Thirdly, it correctly connects the system for transmission or reflection measurements. Figure 2 shows the HP 8743A transducer configured for complex reflection coefficient measurements.

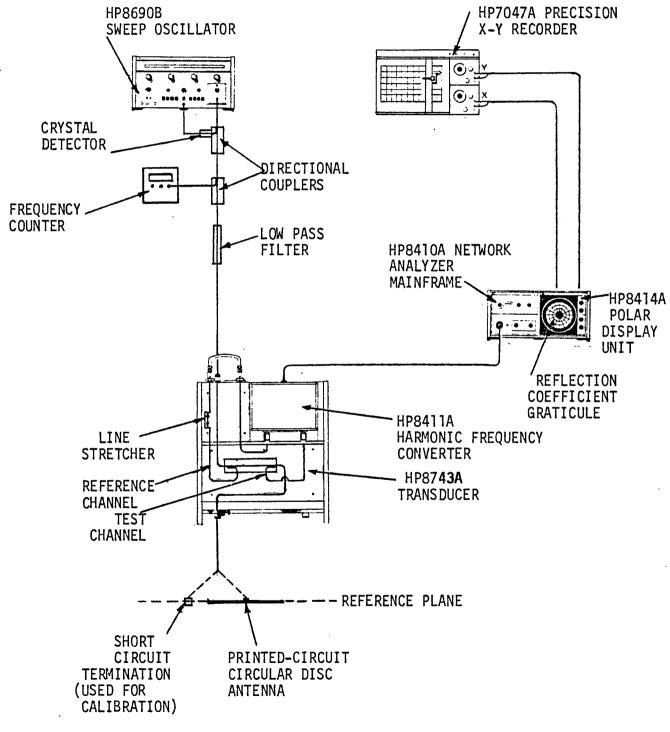


Figure 2: The Network Analyzer System

Input impedance can be obtained directly from the complex reflection coefficient by using the relation:

$$\frac{Z_{in}}{Z_{o}} = \frac{1 + r}{1 - r}$$
(3)
where: $\frac{Z_{in}}{Z_{o}} = \text{normalized input impedance}$

 Z_0 = characteristic impedance of the system (50Ω) Γ = complex reflection coefficient

The HP 8411A harmonic frequency converter unit and the HP 8410A network analyzer mainframe serve as the core of the entire system. The test channel and reference channel information enter the harmonic frequency converter from the transducer where, by harmonic sampling, the input signals are converted to a fixed IF frequency. This enables low frequency circuitry in the network analyzer to measure amplitude and phase relationships. Through harmonic sampling, the system can operate over an extremely wide frequency range; in this case the range is 110 MHz to 18 GHz.

The amplitude and phase detectors are in the HP 8414A polar display unit. This unit provides a polar plot of complex reflection coefficients and can be used with either CW or swept frequency. The magnitude of the complex reflection coefficient of the device under test is read on the concentric circles, with $|\Gamma| = 0$ at the center of the display and $|\Gamma| = 1$ at the edge of the display. The phase angle of each point is read by noting where the radial line that passes through the point intersects the outside ring of the graticule.

Since divisions on the polar display graticule were rather coarse, a visual observation of the reflection coefficient points was not accurate. By using the HP 7047A precision x-y recorder, the reflection coefficient trace shown on the polar display unit could be accurately duplicated on a Smith chart. Copies of the precision x-y recorder Smith chart plots are shown in Appendix 1. From these plots, the magnitude and phase of the complex reflection coefficient was accurately determined, since the reflection coefficient graticule on the Smith chart has many more divisions than the reflection coefficient graticule on the polar display unit.

III.2 Calibration of the Network Analyzer System

Prior to the measurement of the input impedance of the printedcircuit, circular disc radiators, the network analyzer system was calibrated using a short-circuit termination. After initial calibration of the system, impedance measurements were begun on the printed-circuit circular disc antennas. Since the physical position of the shortcircuit termination was established as the reference point for future impedance measurements, particular care had to be taken to insure that the reference plane chosen as the load position of the printed-circuit, circular disc antennas occurred at the same point in the system as did the short-circuit termination. Different reference points would cause an ambiguity in the measurements, since from the following relationship for a terminated lossless transmission line, one can observe that input impedance changes with position from the load.

$$Z(\ell) = Z_0 \frac{Z_L + jZ_0 \tan \beta\ell}{Z_0 + jZ_L \tan \beta\ell} (\Omega)$$
(4)

where $Z(\ell)$ = impedance at a distance ℓ looking toward the load (Ω)

- Z_{o} = characteristic impedance of the line (Ω)
- $Z_1 = load impedance (\Omega)$
- β = propagation constant (m⁻¹)

The effective load position chosen for the printed circuit, circular disc antennas was the substrate ground plane, and this was made to coincide with the position of the short-circuit termination that was used in the system calibration.

III.3 Impedance Measurement Results

III.3a Tabulated Impedance Measurements

Tables III.1 through III.9 contain the results of the impedance measurements. Real and imaginary parts of impedance were calculated from the measured complex reflection coefficients by using equation (3). This task was simplified by writing a computer program on the Wang 720C Programmable Calculator. This computer program is included in Appendix 2. Tables III.1 through III.3 contain data that was taken on three printedcircuit, circular disc antennas that were fabricated on a substrate thickness of approximately 0.16 cm. The feed position of each radiator is denoted on each table. Tables III.4 through III.6 are pertinent to printed-circuit, circular disc antennas that were fabricated on a substrate thickness of approximately 0.075 cm. Tables III.7 through III.9 apply to circular disc antennas that were fabricated on a substrate material with a thickness of approximately 0.036 cm.

SUBSTRATE THICKNESS: .16 CM.

DIELECTRIC THICKNESS: 2.47

EDGE FED RADIATOR

FREQUENCY (GHZ)	REFLECTION COEFFICIENT MAGNITUDE	REFLECTION COEFFICIENT ANGLE	IMPEDANCE REAL PART	IMPEDANCE IMAGINARY PART
2.400 2.680 2.700 2.710 2.720 2.730 2.740 2.750 2.760 2.770 2.760 2.770 2.780 2.770 2.780 2.790 2.810 2.810 2.815 2.820 2.810 2.815 2.820 2.830 2.840 2.850 2.850 2.850 2.850 2.850 2.880 2.850 2.880 2.800	1.00 .93 .92 .91 .91 .91 .90 .89 .88 .86 .85 .84 .33 .82 .80 .79 .79 .77 .74 .73 .72 .71 .70 .68 .67 .66	$ \begin{array}{c} 80\\ 56\\ 40\\ 38\\ 36\\ 32\\ 29\\ 27\\ 24\\ 21\\ 18\\ 14\\ 11\\ 7\\ 2\\ 0\\ -2\\ -6\\ -11\\ -15\\ -20\\ -25\\ -32\\ -38\\ -44\\ -118 \end{array} $	0 8 18 22 24 30 40 50 8 97 135 267 96 432 2390 146 441 2390 146 114 497 14 114 497 14	$ \begin{array}{r} 60\\ 93\\ 135\\ 142\\ 150\\ 169\\ 185\\ 196\\ 215\\ 230\\ 248\\ 269\\ 267\\ 224\\ 68\\ 0\\ -61\\ -131\\ -148\\ -154\\ -154\\ -149\\ -138\\ -122\\ -107\\ -95\\ -28\\ \end{array} $
3.100 3.200	.77 .89	-173 156	· 7 3	-3 11

Table III.1 Impedance Measurement Results

..

.

.

SUBSTRATE THICKNESS: .16 CM.

.

DIELECTRIC CONSTANT: 2.47

-

.

FEED POINT AT 3/4R

FREQUENCY (GHZ)	REFLECTION COEFFICIENT MAGNITUDE	REFLECTION COEFFICIENT ANGLE	IMPEDANCE REAL PART	IMPEDANCE IMAGINARY PART
2.400 2.600 2.710 2.720 2.730 2.740 2.750 2.760 2.770 2.780 2.790 2.800 2.810 2.820 2.810 2.820 2.830 2.840 2.850 2.850 2.860 2.850 2.860 2.870 2.880 2.890 2.880 2.890 2.900 3.000 3.100 3.200 3.400	1.00 .94 .90 .89 .88 .87 .86 .84 .83 .81 .80 .78 .77 .75 .72 .70 .68 .67 .66 .65 .64 .63 .68 .79 .89 .95	94 68 45 42 38 35 32 28 25 21 17 12 8 0 -5 -10 -15 -21 -27 -34 -41 -49 -123 -168 167 136	0 5 18 22 29 37 46 66 84 120 164 237 300 350 287 229 181 139 109 84 67 53 12 6 3 1	$\begin{array}{r} 47\\74\\118\\127\\140\\150\\162\\177\\190\\202\\213\\197\\158\\-74\\-109\\-118\\-121\\-115\\-105\\-94\\-83\\-25\\-5\\6\\20\end{array}$

Table III.2

Impedance Measurement Results

SUBSTRATE THICKNESS: .16 CM.

DIELECTRIC CONSTANT: 2.47

FEED POINT AT 1/2R

FREQUENCY (GHZ)	REFLECTION COEFFICIENT -MAGNITUDE	REFLECTION COEFFICIENT ANGLE	IMPEDANCE REAL PART	IMPEDANCE IMAGINARY PART
2.400 2.600 2.760 2.770 2.780 2.790 2.800 2.810 2.810 2.818 2.820 2.830 2.830 2.840 2.850 2.850 2.860 2.870 2.880 2.890 2.890 3.000 3.100	1.00 .93 .76 .74 .71 .68 .64 .60 .58 .57 .54 .50 .48 .46 .46 .46 .46 .46 .46 .46 .46 .47 .49 .76 .87	$ \begin{array}{r} 108 \\ 85 \\ 40 \\ 35 \\ 29 \\ 22 \\ 15 \\ -6 \\ -3 \\ -13 \\ -25 \\ -35 \\ -47 \\ -60 \\ -75 \\ -88 \\ -100 \\ -175 \\ 159 \\ \end{array} $	0 4 51 67 95 133 170 192 188 181 148 109 87 67 52 40 33 27 7 4	$ \begin{array}{r} 36\\54\\118\\127\\131\\126\\96\\38\\0\\-15\\-50\\-61\\-62\\-57\\-53\\-45\\-39\\-34\\-2\\9\end{array} $
3.200	.95	144	1	16

Table III.3 Impedance Measurement Results

SUBSTRATE THICKNESS: .075 CM. DIELECTRIC CONSTANT: 2.48

EDGE FED RADIATOR

FREQUENCY (GHZ)	REFLECTION COEFFICIENT MAGNITUDE	REFLECTION COEFFICIENT ANGLE	IMPEDANCE REAL PART	IMPEDANCE IMAGINARY PART
2.500 2.700 2.790 2.800 2.810 2.820 2.830 2.840 2.850 2.860 2.860 2.870 2.880 2.890 2.890 2.900 3.000	.99 .94 .87 .86 .84 .82 .79 .76 .74 .72 .70 .69 .68 .67 .81	$ \begin{array}{r} 108 \\ 80 \\ 48 \\ 42 \\ 36 \\ 29 \\ 22 \\ 15 \\ 8 \\ 0 \\ -10 \\ -20 \\ -31 \\ -44 \\ -141 \end{array} $	0 4 21 28 42 69 118 193 276 307 229 146 91 57 6	36 59 109 125 143 167 186 130 126 0 -109 -131 -118 -95 -17
3.100 3.400	• 90 • 98	179. 139	3 1	0 19

Table III.4

Impedance Measurement Results

SUBSTRATE THICKNESS: .075 CM. DIELECTRIC CONSTANT: 2.48 FEED POINT AT 3/4R

FREQUENCY (GHZ)	REFLECTION COEFFICIENT MAGNITUDE	REFLECTION COEFFICIENT ANGLE	IMPEDANCE REAL PART	IMPEDANCE IMAGINARY PART
2.500	1.00	121	0	28
2.700	.93	94	3	47
2.780	.88	66	11	76
2.820	.81	42 .	38	120
2.830	.78	34	62	138
2.840	.75	26	102	153
2.850	.72	18	162	149
2.860	. 69	10	224	102
2.869	.68	0	262	0
2.880	.66	-13	189	-99
2.890	.65	-25	118	-112
2.900	.65	-38	73	-100
2.910	.64	-50	50	-83
3.000	.81	-135	6	-20
3.100	.90	-171	3	- 3
3.400	.98	153.	1	12

Table III.5

Impedance Measurement Results

SUBSTRATE THICKNESS: .075 CM. DIELECTRIC CONSTANT: 2.48 FEED POINT AT 1/2R

FREQUENCY (GHZ)	REFLECTION COEFFICIENT MAGNITUDE	REFLECTION COEFFICIENT ANGLE	IMPEDANCE REAL PART	IMPEDANCE IMAGINARY PART
2.500 2.700 2.800 2.850 2.860 2.870 2.875 2.880 2.885 2.880 2.885 2.890 2.900 2.950 3.000 3.100	.99 .92 .84 .66 .61 .56 .54 .52 .49 .48 .47 .67 .83 .92	$ \begin{array}{r} 133, \\ 113, \\ 83, \\ 44, \\ 32, \\ 18, \\ 9, \\ 0, \\ -13, \\ -21, \\ -43, \\ -130, \\ -163, \\ 171, \\ \end{array} $	0 3 10 58 93 138 157 158 133 115 73 12 5	22 33 56 94 96 70 38 0 -38 -51 -60 -22 -7
3.400	.97	147	ĩ	15

Table III.6

.6 Impedance Measurement Results 19

•

SUBSTRATE THICKNESS: .036 CM. DIELECTRIC CONSTANT: 2.45 EDGE FED RADIATOR

FREQUENCY (GHZ)	REFLECTION COEFFICIENT MAGNITUDE	REFLECTION COEFFICIENT ANGLE	IMPEDANCE REAL PART	IMPEDANCE IMAGINARY PART
2.600 2.800 2.850 2.860 2.870 2.875 2.880 2.885 2.890 2.895 2.900 2.905 2.910 2.950 3.000	.95 .86 .68 .63 .57 .54 .52 .49 .47 .46 .45 .45 .45 .46 .68 .85	$127 \cdot 90 \\ 54 \\ 42 \\ 29 \\ 20 \\ 12 \\ 0 \\ -9 \\ -22 \\ -35 \\ -48 \\ -60 \\ -128 \\ -163$	2 7 41 65 103 128 144 146 133 110 86 66 52 12 4	25 49 83 92 84 67 43 0 - 25 - 48 - 55 - 55 - 53 - 23 - 7
3.200	. 98	162	1	8

Table III.7 Impedance Measurement Results SUBSTRATE THICKNESS: .036 CM. DIELECTRIC CONSTANT: 2.45 FEED POINT AT 3/4R

FREQUENCY (GHZ)	REFLECTION COEFFICIENT MAGNITUDE	REFLECTION COEFFICIENT ANGLE	IMPEDANCE REAL PART	IMPEDANCE IMAGINARY PART
2.600 2.800 2.840 2.850 2.855 2.860 2.865 2.870 2.875 2.880 2.885 2.880 2.885 2.890 2.900 2.950 3.100	.94	$ \begin{array}{r} 135 \\ 94 \\ 56 \\ 42 \\ 32 \\ 24 \\ 13 \\ 0 \\ -14 \\ -32 \\ -44 \\ -59 \\ -86 \\ -149 \\ 172 \\ 172 \end{array} $	1 9 45 72 94 109 122 122 122 112 87 72 56 33 6 2	21 46 74 76 68 55 31 0 -26 -44 -47 -47 -41 -13 3
3.600	. 99	150	0	13

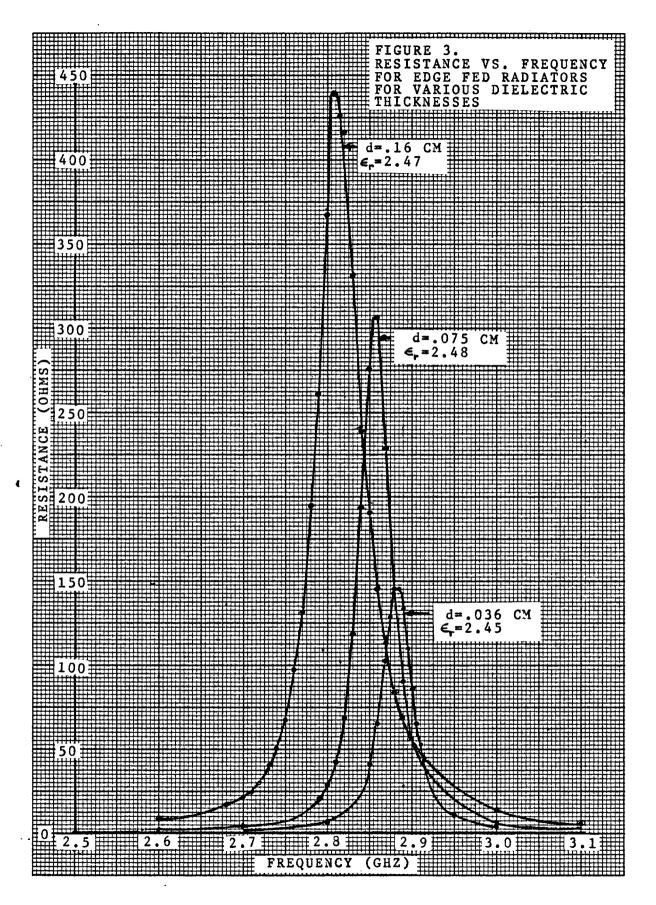
Table III.8 Impedance Measurement Results 21

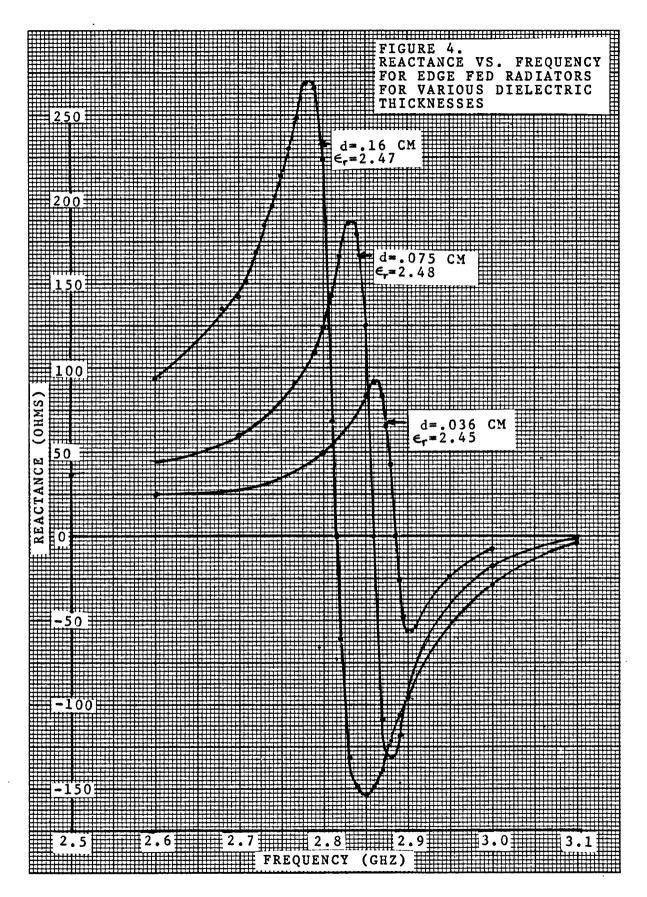
.

SUBSTRATE THICKNESS: .036 CM. DIELECTRIC CONSTANT: 2.45 FEED POINT AT 1/2R

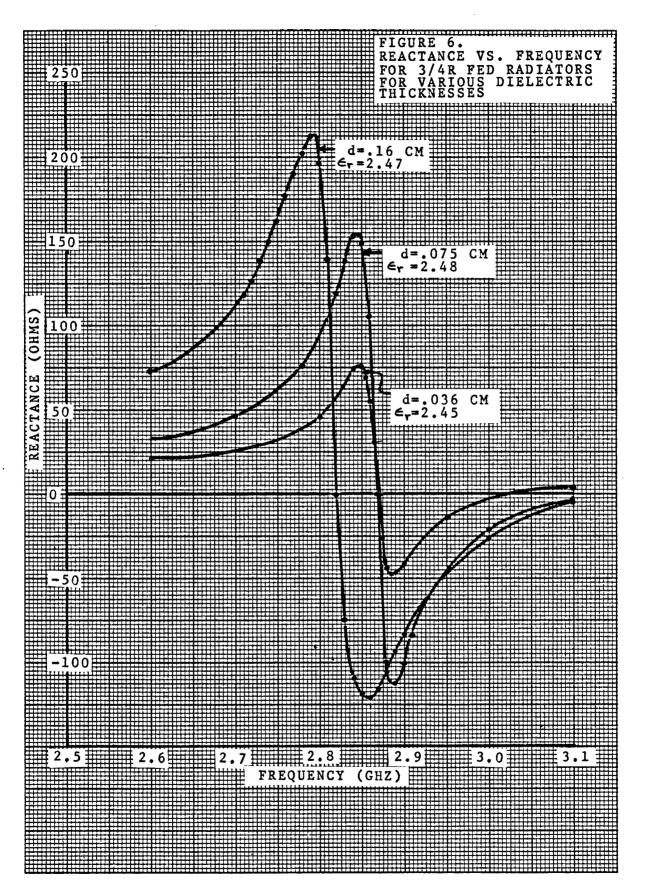
FREQUENCY (GHZ)	REFLECTION COEFFICIENT MAGNITUDE	REFLECTION COEFFICIENT ANGLE	IMPEDANCE REAL PART	IMPEDANCE IMAGINARY PART
2.600 2.800 2.830 2.840 2.850 2.855 2.860 2.864 2.870 2.875 2.880 2.920 3.000 3.200	.98 .83 .63 .52 .38 .30 .24 .18 .18 .24 .31 .60 .94 .99	$ \begin{array}{r} 145\\ 112\\ 88\\ 76\\ 59\\ 45\\ 30\\ 0\\ -42\\ -80\\ -98\\ -136\\ 175\\ 163 \end{array} $	1 7 22 36 57 68 73 72 63 48 38 14 2 0	$ \begin{array}{r} 16\\33\\47\\50\\43\\32\\19\\0\\-15\\-24\\-25\\-18\\2\\7\end{array} $

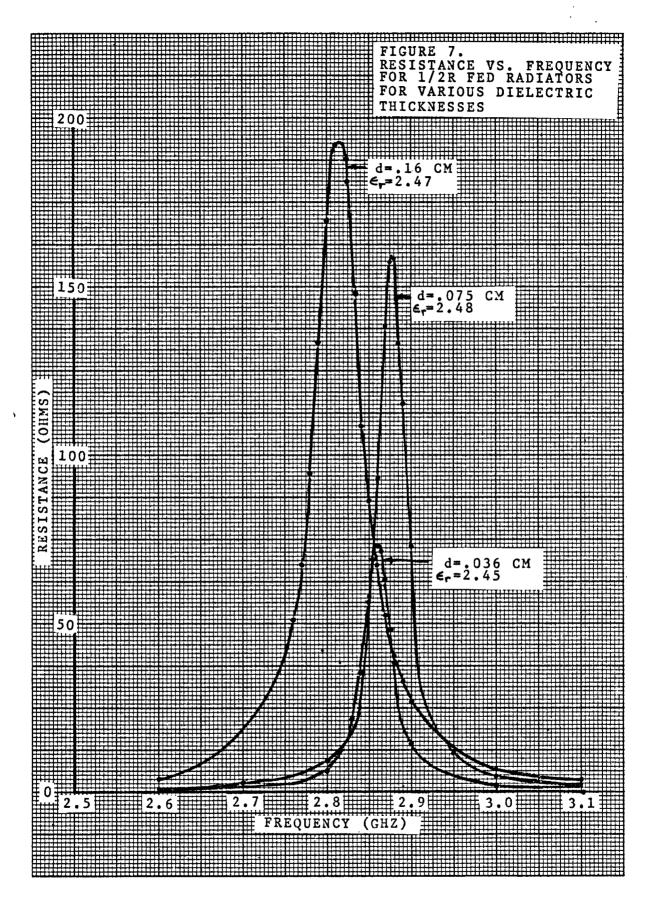
Table III.9

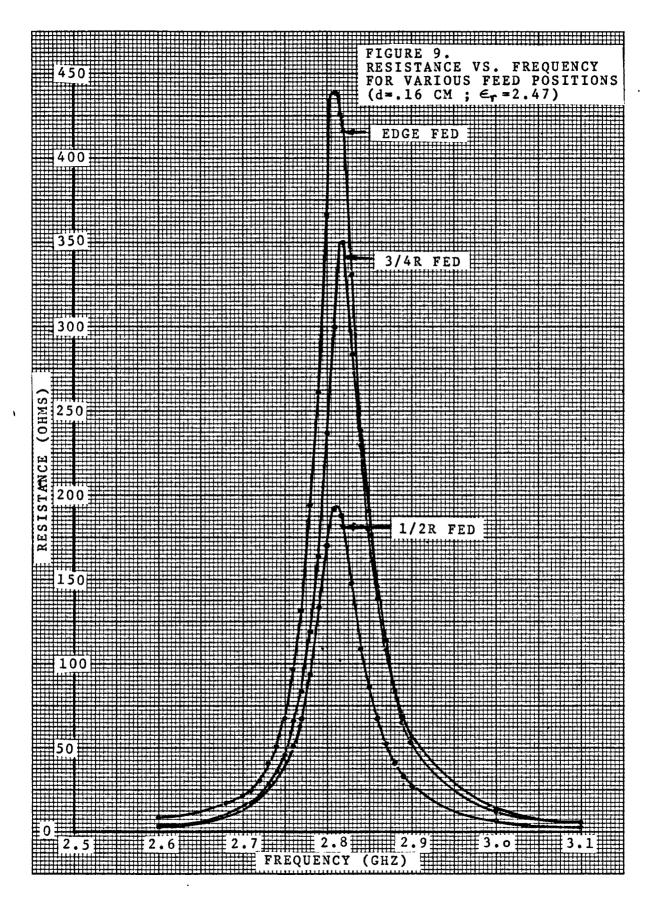

Impedance Measurement Results

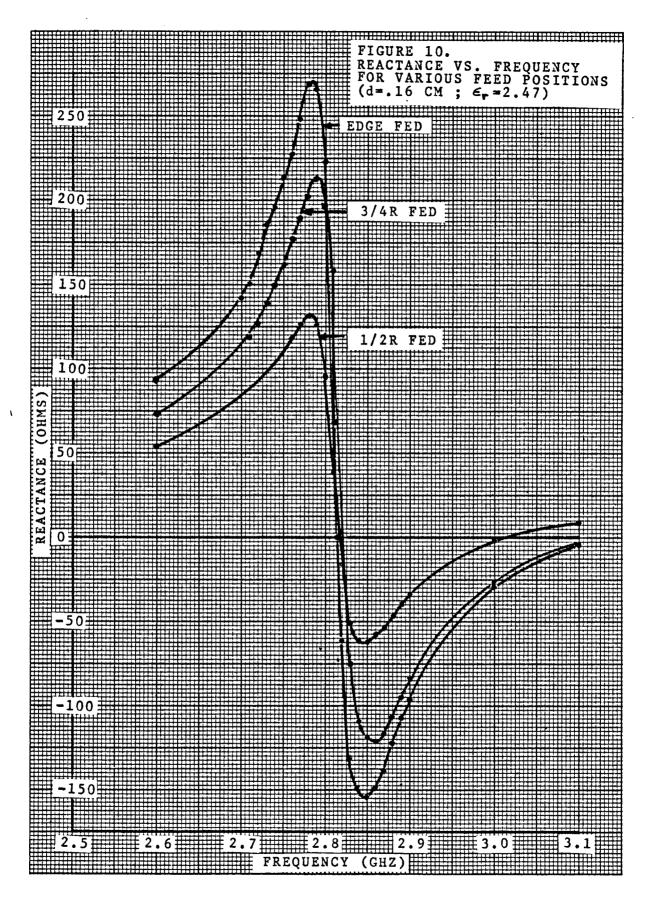

III.3b Effects of the Dielectric Substrate Thickness on Input Impedance

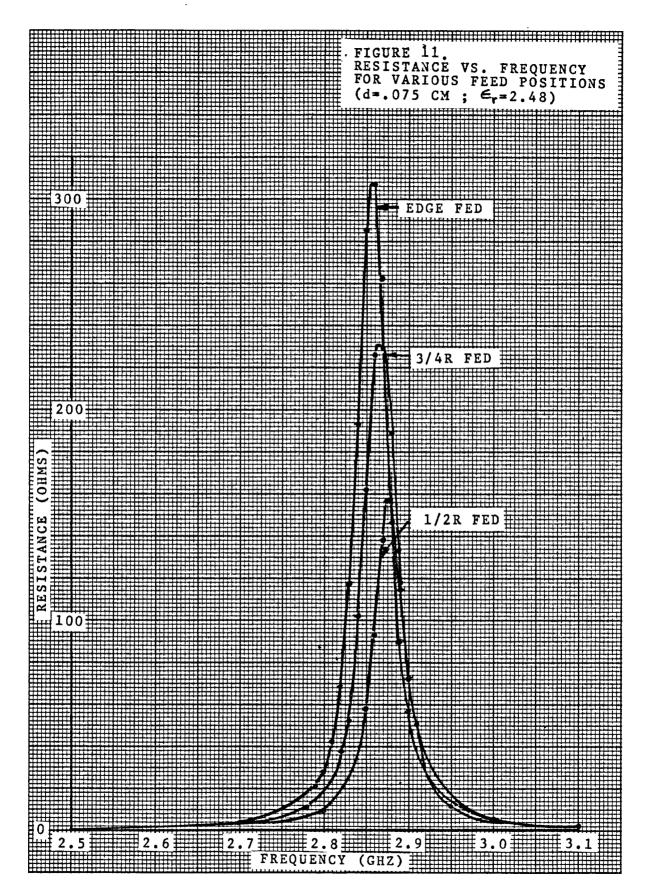
Figures 3 through 8 graphically display the effects of the dielectric substrate thickness on the input impedance. Figures 3 and 4 show the effects on resistance and reactance, respectively, of edge-fed radiators etched on different substrate thicknesses. Two phenomena are immediately observable from these figures. First, the magnitude of the resistive and reactive component of input impedance decreases for decreasing substrate thickness. Secondly, the resonant frequency, or frequency at which the reactive component of impedance is zero, increases for decreasing substrate thickness. For edge fed radiators, resonance occurred at 2.815 GHz, 2.86 GHz and 2.885 GHz, for dielectric thicknesses of 0.16 cm, 0.075 cm and 0.036 cm, respectively.

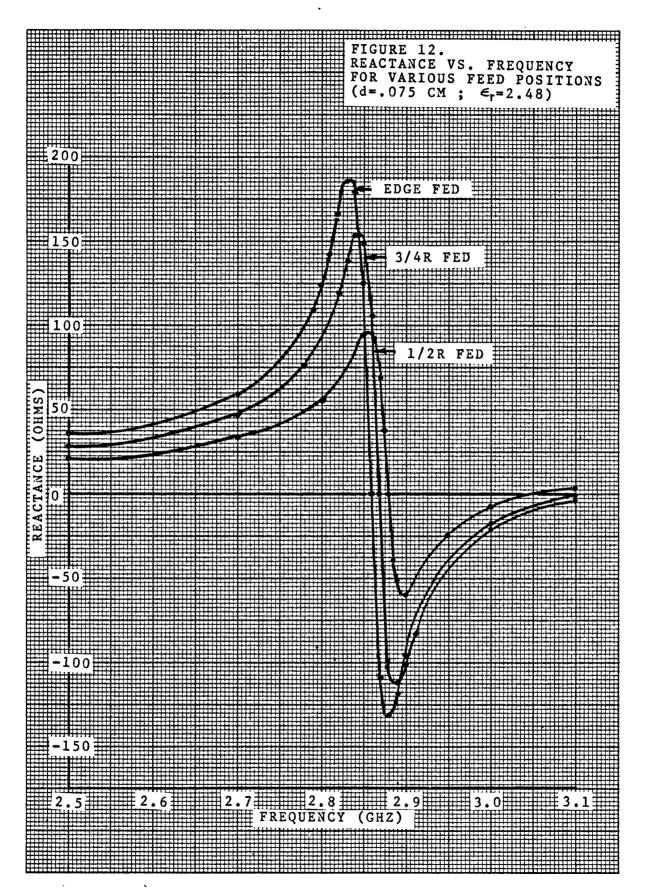

Figures 5 and 6 are similar to Figures 3 and 4, respectively, except these figures pertain to radiators that were fed at 3/4 of a disc radius. Once again the magnitude of the resistance and reactance decreased for decreasing dielectric thickness. For these 3/4 R fed radiators, resonance occurred at 2.82 GHz, 2.869 GHz, and 2.87 GHz for substrate thicknesses of 0.16 cm, 0.075 cm, and 0.036 cm, respectively. Note that the difference in the resonance frequency of the radiator etched on the 0.075 cm substrate thickness and the radiator etched on the 0.036 cm substrate thickness is only 1 MHz.

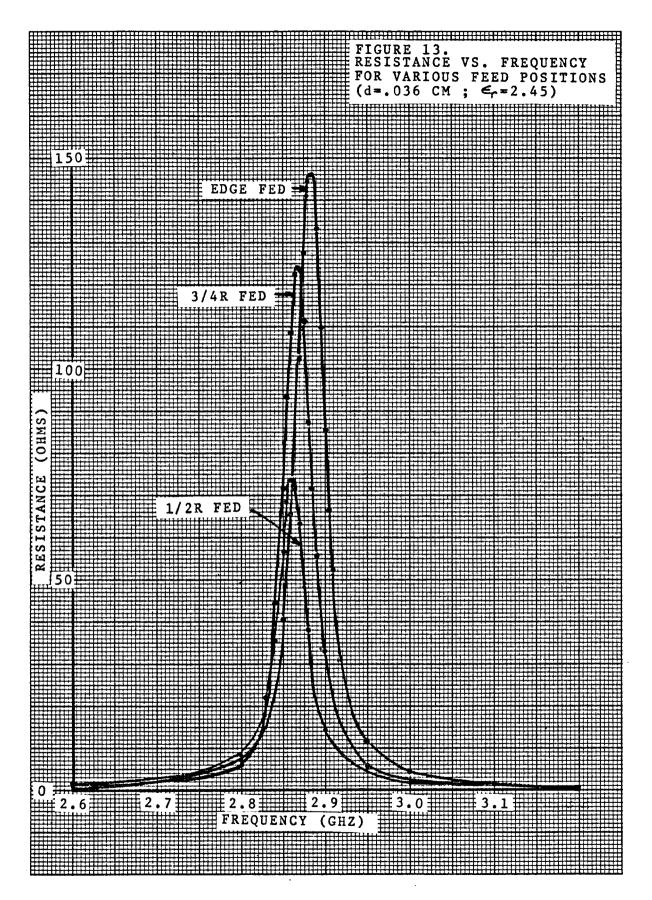

Figures 7 and 8 display the resonance behavior of 1/2 R fed radiators etched on different substrate thicknesses. As was the case for radiators that were edge fed and 3/4 R fed, the magnitude of the resistance and reactance for 1/2 R fed radiators decreased with decreasing substrate thickness. However, the resonant frequency for 1/2 R fed radiators did not continuously increase for decreasing substrate

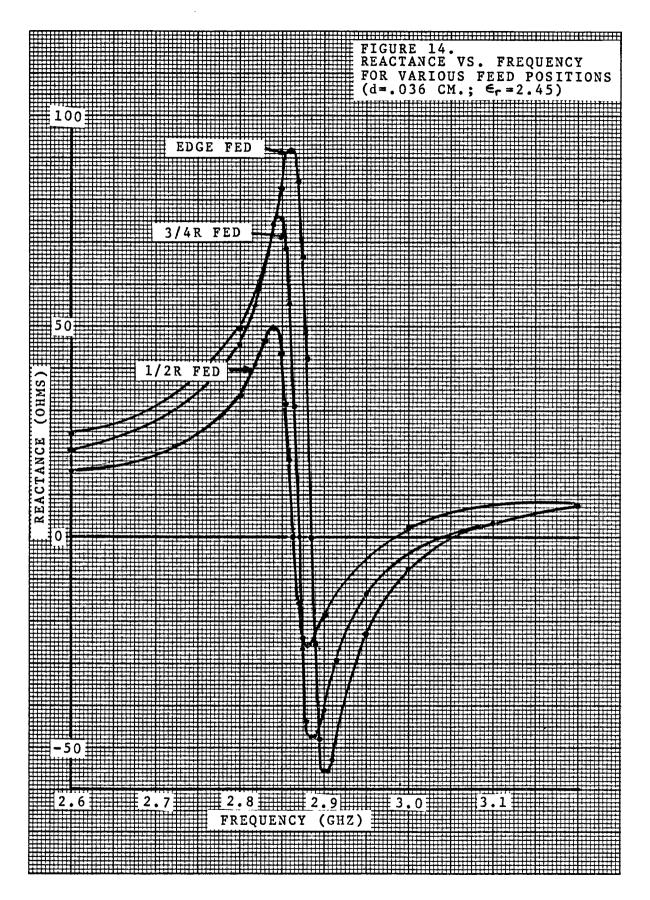

thickness. This was evidenced by the fact that resonance occurred at 2.818 GHz for d = 0.16 cm, 2.88 GHz for d = 0.075 cm, and 2.864 GHz for d = 0.036 cm.


III.3c Effects of Feed Position on Input Impedance


Figures 9 through 14 graphically display the effects of moving the feed point of the radiators which have a substrate material with the same thickness. Figures 9 and 10 respectively show the resistance and reactance variations caused by moving the feed point of three radiators etched on a substrate material with d = 0.16 cm. One observation that is immediately noticeable is that the magnitude of the resistance and reactance decreases as the feed point is moved closer to the center of the disc. Upon close observation of the curves, one also notices that the resonant frequency of each radiator changes very little as the feed point is moved closer to the center of the disc.


Figures 11 and 12 respectively show resistance and reactance curves for three radiators etched on a substrate material with thickness d = 0.075 cm. Once again, the magnitude of the resistance and reactance of the antennas decreased as the feed point was moved closer to the center of the disc. Also, the resonant frequency gradually increased by 0.7% as the feed point was moved from R to 1/2 R.


Figures 13 and 14 contain graphs of the resistance and reactance, respectively, for three differently fed radiators etched on a dielectric material with a thickness of 0.036 cm. As was the case for thicker substrate materials, the magnitude of the resistance and reactance of the antennas decreased fc⁻⁻ feed positions located closer to the center of the disc. However, for the 0.036 cm substrate material, the resonance



frequency continuously decreased by a total of 0.73% after successive feed positions from the disc edge to 1/2 R.

III.4 Comparisons Between Measured Results and the Zeroth-Order Theory

In order to minimize fringing effects and radiation, Watkins made the assumption that the dielectric thickness, d, was small compared to a wavelength in the dielectric, i.e., $kd <<\lambda$. Table III.10 compares the dielectric thicknesses of the three printed-circuit boards used in this investigation to the wavelength in the dielectric at the theoretical resonant frequency for the n=1 mode.

Dielectric Constant @ X-band	d (cm)	Calculated Resonant Frequency (GHz)	kd (radians)	$\frac{\mathrm{kd}}{2\pi}=\frac{\mathrm{d}}{\lambda}$	$\frac{\lambda}{d}$
2.47	0.16	2.975	0.156	0.025	40
2.48	0.075	2.969	0.073	0.012	83.3
2.45	0.036	2.987	0.035	0.006	166.7

Table III.10 Calculated Values of kd for Three Copper-Clad Dielectric Boards

From Table III.11, one is able to make several conclusions regarding the accuracy of Watkins' zeroth-order theory as it applies to the prediction of the resonant frequency for the printed-circuit, circular disc antenna. First, for all the antennas that were tested, the measured resonant frequency was lower than the theoretical resonant frequency, regardless of the substrate thickness or the feed position. For the edge fed radiators, the percentage error between measured

d (cm)	Dielectric Constant @ X-band	Feed Point Position	Measured Resonant Point (GHz)	Calculated Resonant Point (GHz)	% error (<u>calc-meas</u> x 100) meas. x 100)
0.160	2.47	R	2.815	2.975	5.68
0.160	2.47	3/4 R	2.820	2.975	5.50 ·
0.160	2.47	1/2 R	2.818	2.975	5.57
0.075	2.48	R	2.860	2.969	- 3.81
0.075	2.48	3/4 R	2.869	2.969	3.48
0.075	2.48	1/2 R	2.880	2.969	3.09
0.036	2.45	R	2.885	2.987	3.54
0.036	2.45	3/4 R	2.870	2.987	4.08
0.036	2.45	1/2 R	2.864	2.987	4.29

Table III.11 Comparison Between Theoretical and Experimental Results

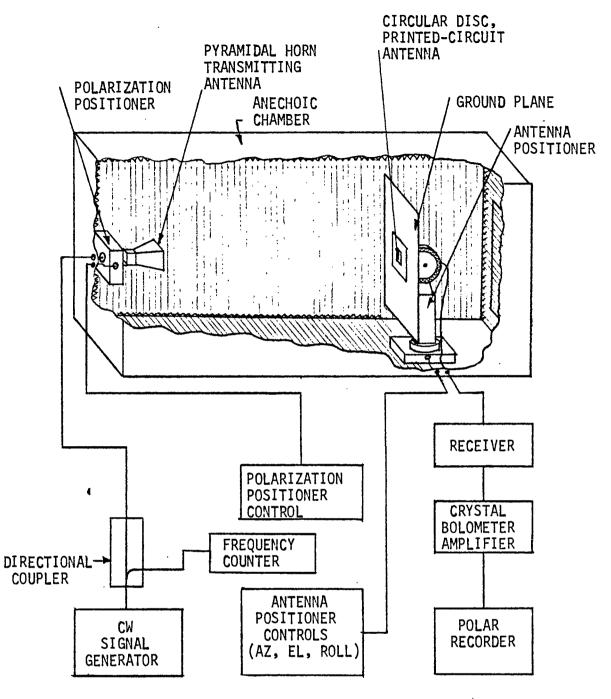
resonance and theoretical resonance decreased from 5.68% to 3.54% as the dielectric substrate thickness was decreased from 0.16 cm to 0.036 cm. This was not altogether true for the antennas which were 3/4 fed and 1/2 R fed, since for each of these feed points, the percentage error decreased as dielectric thickness was changed from 0.16 cm to 0.075 cm but increased as dielectric thickness was changed from 0.075 cm to 0.036 cm.

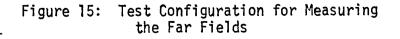
Discrepancies between measured and calculated resonances could only be attributed to violations of Watkins' assumptions for the zerothorder theory and/or higher order modes in the region between the disc and ground plane being simultaneously present with the n=l or dominant mode.

CHAPTER IV

MEASUREMENT OF THE RADIATION PROPERTIES OF THE ANTENNAS

IV.1 Test Configuration for Measuring the Far Fields of the Antennas


Figure 15 shows the test configuration used in the measurement of the far fields of the printed-circuit, circular disc antennas. To avoid the reception of unwanted signals during the pattern measurements, an anechoic chamber was used. With the use of microwave absorbing material inside the chamber, a free space condition was simulated. Details of the antenna ground plane are shown in Figure 16. Since the 0.91 m x 1.52 m ground plane was a finite structure, its edges were lined with microwave absorbing material to reduce edge effects due to diffraction. The effects of this material on the far field patterns are presented later in the polar plots of the antenna patterns.


IV.2 Far Field Pattern Measurements

IV.2a General Results of the Measurements

On every printed-circuit, circular disc antenna that was fabri-• cated, two components of the electric field, \overline{E}_{θ} and \overline{E}_{ϕ} , were measured as a function of θ for various ϕ planes. These components, \overline{E}_{θ} and \overline{E}_{ϕ} , are shown in Figure 17. Note in Figure 17, that along the Z-axis ($\theta = 0$), \overline{E}_{θ} in the $\phi = 0$ plane is the same component of the electric field as \overline{E}_{ϕ} in the $\phi = 90^{\circ}$ plane. Table IV.1 contains data pertinent to the far field measurements of each antenna. Note that during the far field

÷

.

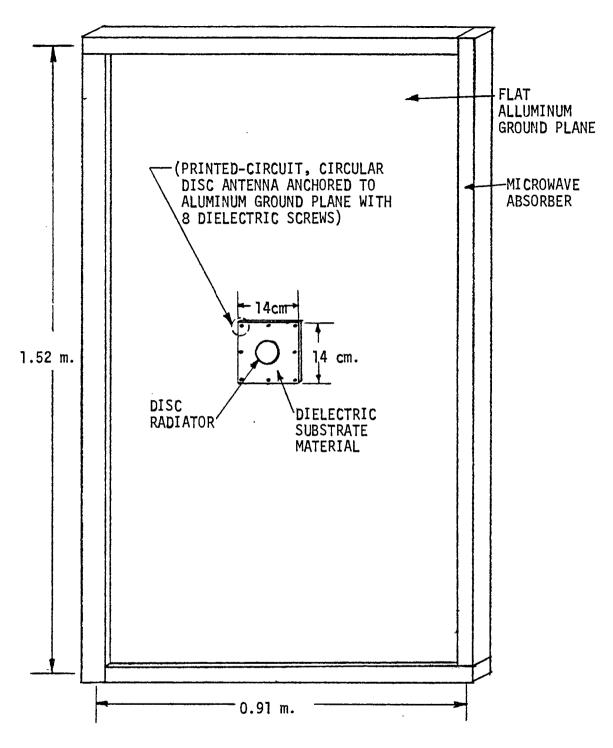
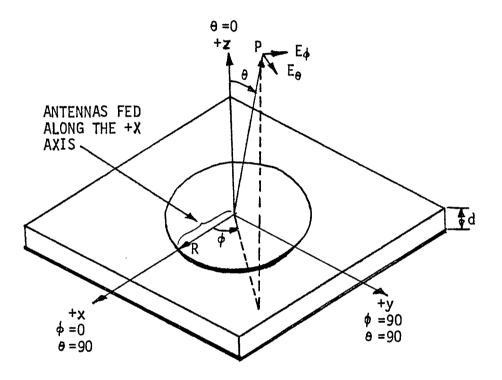



Figure 16: Antenna Ground Plane Details

•

-

.

. .

.

Antenna #	Feed Point	Measured Resonant Frequency (GHz)	Substrate Thickness (cm)	Far Field Component that was Measured	∳ Planes (deg.)	Ground Plane Configuration
π		(012)	(Ciii)		(ueg.)	
1	R	2.815	0.16	E _θ vs θ	0,30,60,90	w/absorber
				E _φ vs θ	90,60,30,0	w/absorber
2	3/4 R	2.82	0.16	E _e vs 0	0,30,60,90	w/absorber
				E _o vs θ	90,60,30,0	w/absorber
3	1/2 R	2.818	0.16	E _e _vs 0	0,30,60,90	w/absorber
	·			E _φ vs θ	90,60,30,0	w/absorber
4	R	2.86	0.075	E ₀ vs 0	0,30,60,90	w/o absorber
				E _φ vs θ	90,60,30,0	w/o absorber
				E _θ vs θ	0,30,60,90	w/absorber
	-			E _φ vs θ	90,60,30,0	w/absorber
5	3/4 R	2.869	0.075	E _e vs e	0,30,60,90	w/absorber
				E _φ vs θ	90,60,30,0	w/absorber
6	1/2 R	2.88	0.075	E _θ vs θ	0,30,60,90	w/absorber
				E _φ vs θ	90,60,30,0	w/absorber
7	R	2,885	0.036	E _e vs e	0,30,60,90	w/absorber
				E _d vs ə	90,60,30,0	w/absorber
8	3/4 R	2.87	0.036	E ₀ vs 0	0,30,60,90	w/absorber
-	-,			$ E_{\phi} $ vs θ	90,60,30,0	w/absorber
9	1/2 R	2.854	0.036	<u> </u>	0,30,60,90	w/absorber
	1 <i>7 4</i> 1	L.UJT	0,000	E _θ vs θ E _φ vs θ	90,60,30,0	w/absorber
				<u> </u>		

Table IV.1 Summary of Measured Far Field Patterns

43

--

Figures 18 through 23 apply to radiators etched on a 0.16 cm dielectric substrate. Figures 18 and 19 respectively show $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ for an edge-fed radiator which was being driven at its resonant frequency of 2.815 GHz. Figures 20 and 21 respectively show $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ for a 3/4 R fed radiator being driven at its resonant frequency of 2.82 GHz. Finally, Figures 22 and 23 show $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ for a 1/2 R fed radiator being driven at 2.818 GHz, its resonant frequency.

Figures 24 through 31 apply to radiators that were etched on a dielectric substrate material of 0.075 cm. Figures 24 and 25 are similar to Figures 26 and 27, respectively, with the exception being that Figures 24 and 25 show patterns that were measured on an edge-fed radiator mounted on a ground plane without absorber while Figures 26 and 27 show patterns that were measured on an edge-fed radiator mounted on a ground plane with absorber. Note that the absorber had virtually no effect on the patterns involving $|E_{\phi}|$ but that the absorber eliminated the fluctuations in the $|E_{\theta}|$ patterns. Morel ^[7] theoretically calculates far field patterns for $|E_{\theta}^{-}|$ vs θ and $|E_{\phi}^{-}|$ vs θ for the circular disc, printed-circuit antenna which are smooth. This smooth pattern for $[E_{\theta}]$ vs θ was obtained when the ground plane was lined with microwave absorber material. Figures 26 and 27 show $|\dot{E}_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ , respectively, for an edge-fed radiator being driven at its resonant frequency of 2.86 GHz. Figures 28 and 29, respectively, show $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ for a 3/4 R fed radiator at its resonant frequency of 2.869 GHz. Figures 30 and 31 show $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ , respectively, for a 1/2 R fed radiator being driven at 2.88 GHz, its resonant frequency.

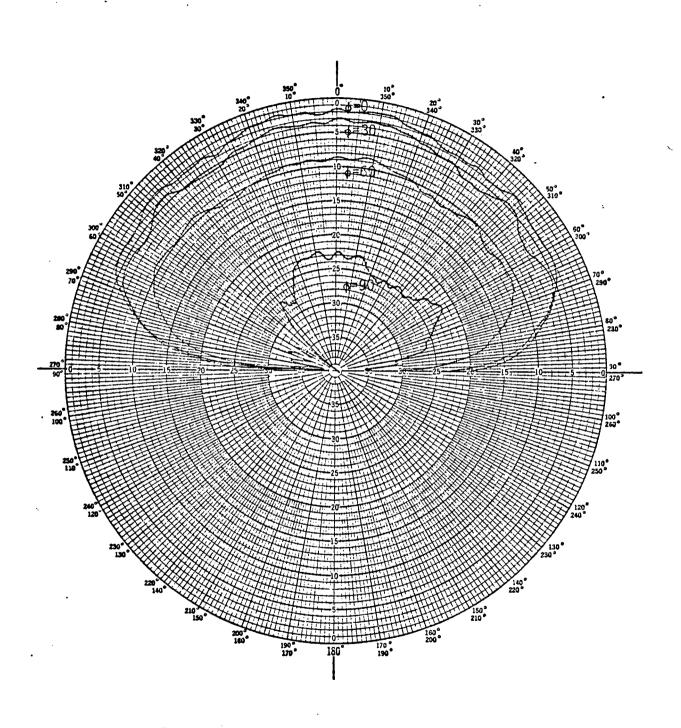
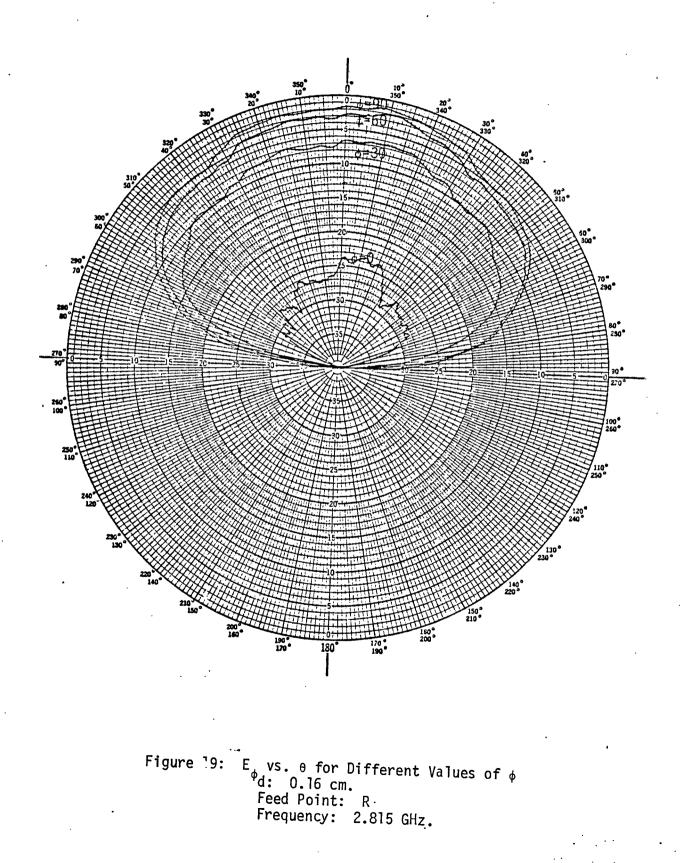



Figure 18: E, vs. θ for Different Values of φ d: 0.16 cm. Feed Point: R Frequency: 2.815 GHz.

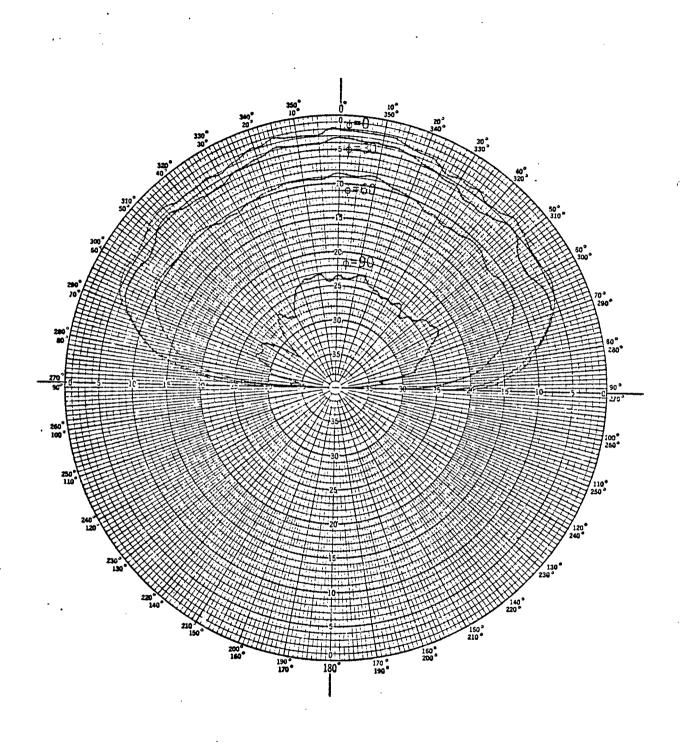


Figure 20: E vs. θ for Different Values of φ d: 0.16 cm. Feed Point: 3/4R Frequency: 2.82 GHz.

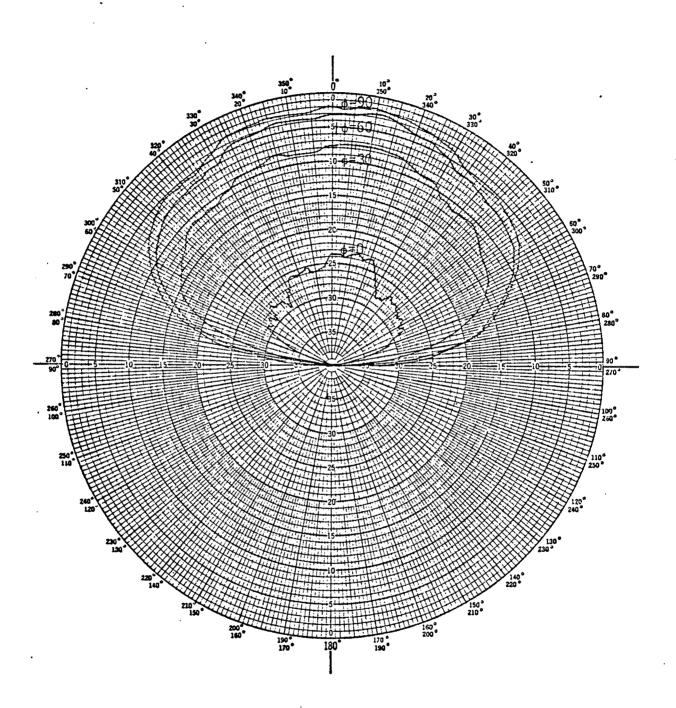
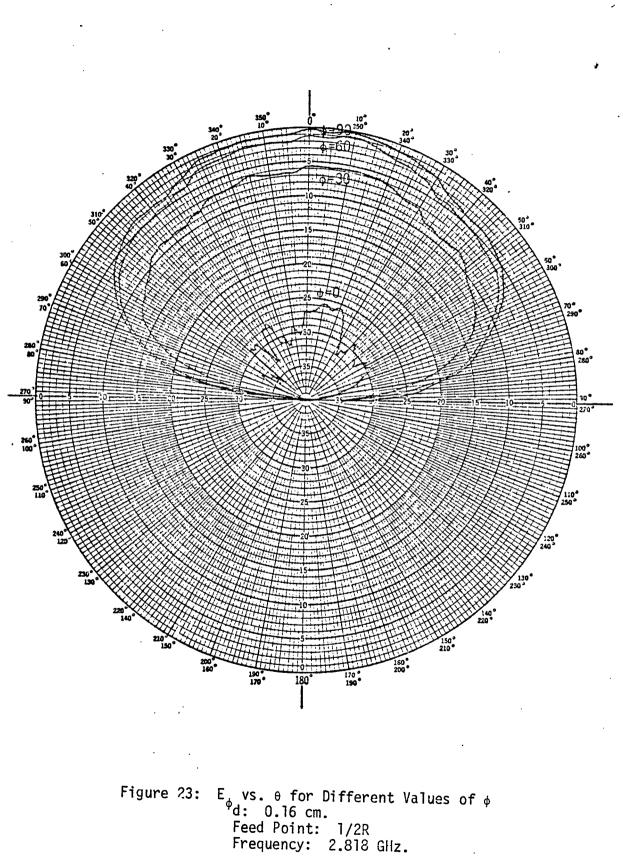



Figure 21: E vs. θ for Different Values of φ ^φd: 0.16 cm. Feed Point: 3/4R Frequency: 2.82

Figure ?2: E vs. θ for Different Values of ϕ θ d: 0.16 cm. Feed Point: 1/2R Frequency: 2.818 GHz. **49**[°]

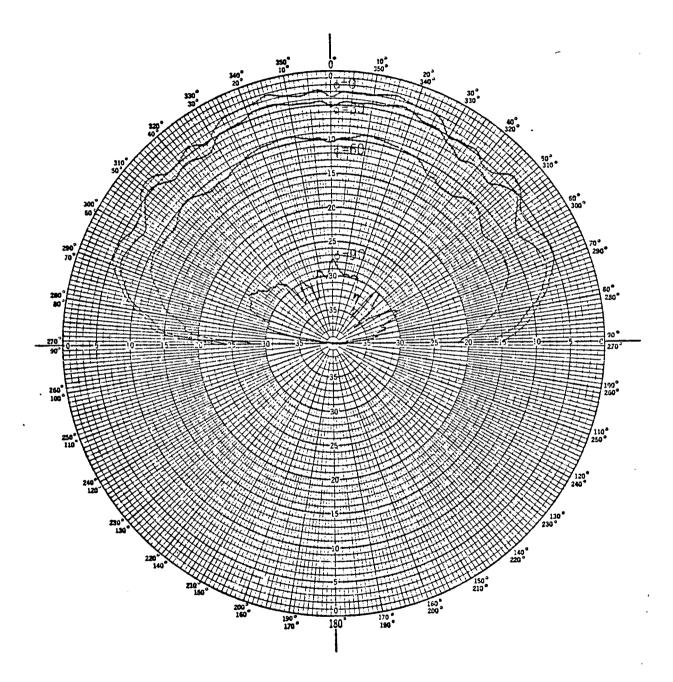


Figure 24: E vs. θ for Different Values of φ Without Absorber d: 0.075 cm. Feed Point: R Frequency: 2.86 GHz.

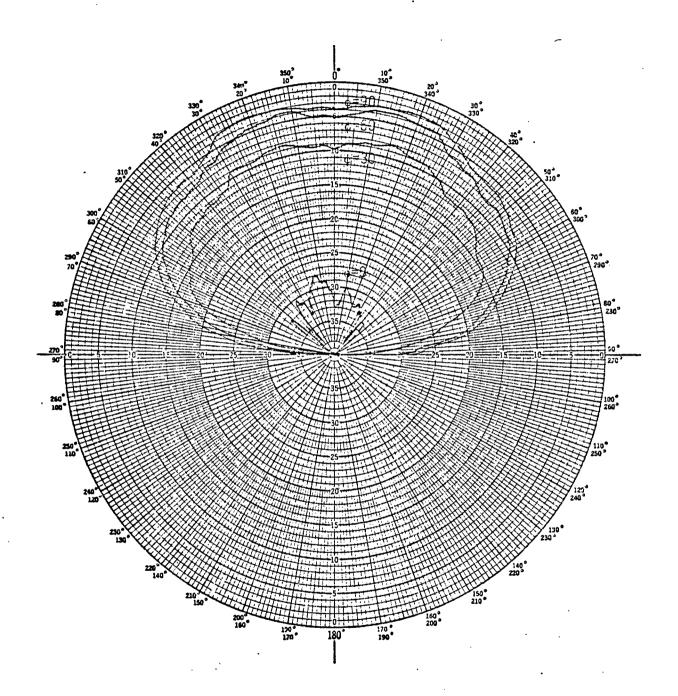


Figure ?5: E, vs. θ for Different Values of φ ^ΦWithout Absorber d: 0.075 cm. Feed Point: R Frequency: 2.86 GHz.

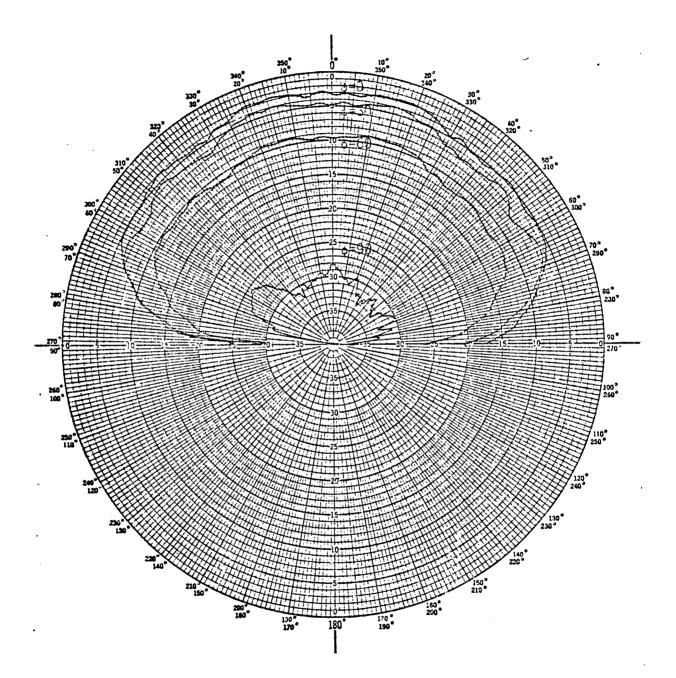


Figure 26: E vs. θ for Different Values of ϕ θ d: 0.075 cm. Feed Point: R Frequency: 2.86 GHz.

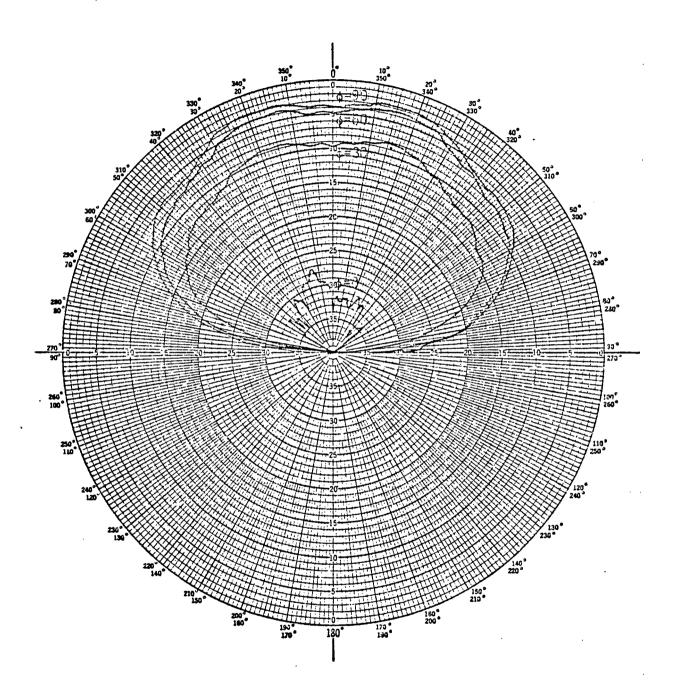


Figure 27: E vs. θ for Different Values of φ ^φd: 0.075 cm. Feed Point: R Frequency: 2.86 GHz.

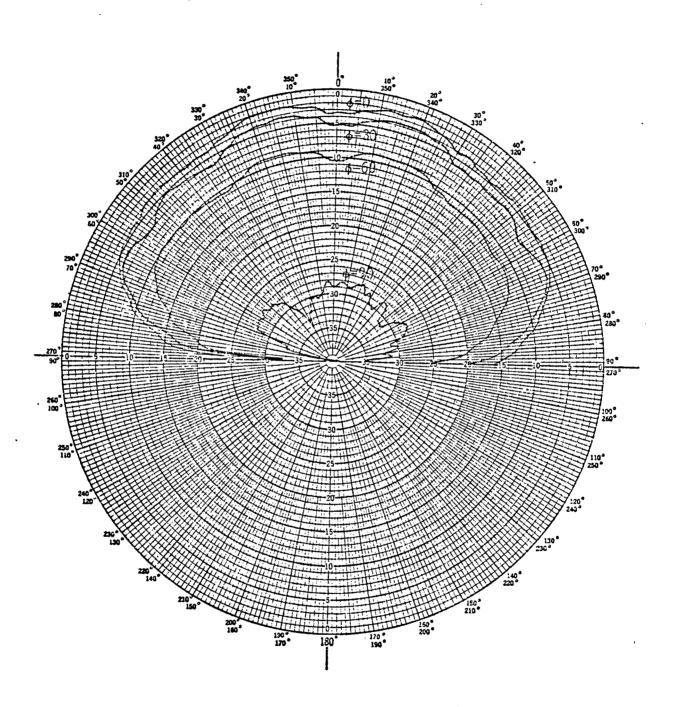
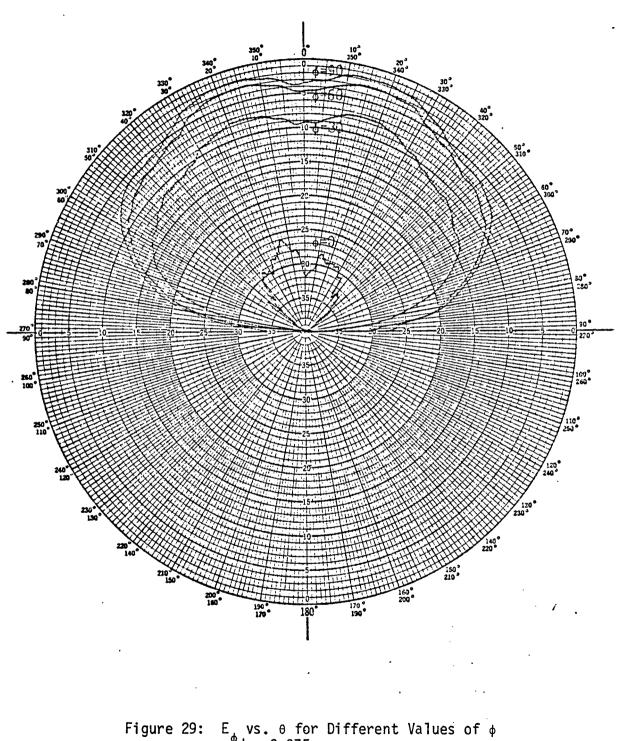




Figure 28: E_θ vs. θ for Different Values of φ d: 0.075 cm. Feed Point: 3/4R Frequency: 2.869 GHz.

29: E vs. θ for Different Values of φ ^φd: 0.075 cm. Feed Point: 3/4R Frequency: 2.869 GHz.

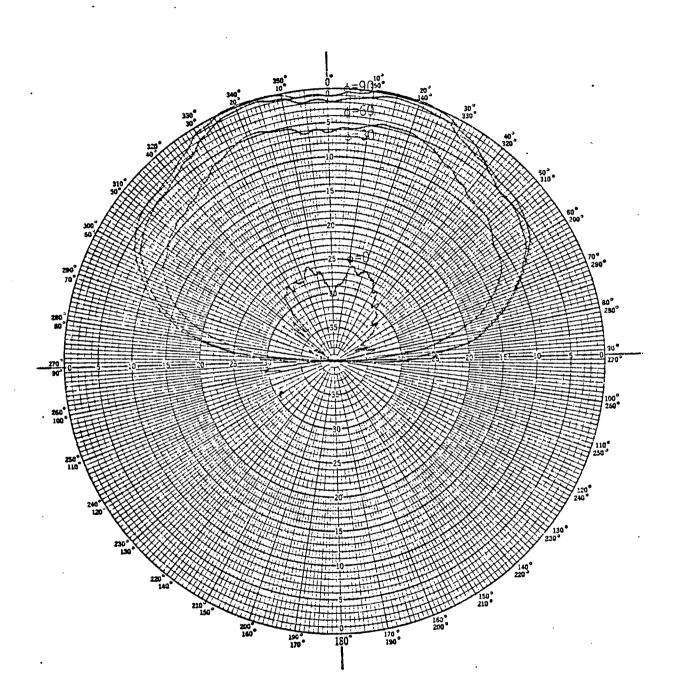


Figure 31: E vs. θ for Different Values of φ d: 0.075 cm. Feed Point: 1/2R Frequency: 2.88 GHz.

Figures 32 through 37 pertain to radiators that were fabricated on a substrate material with a thickness of 0.036 cm. Figures 32 and 33 show the electric fields of a radiator that was edge-fed and driven at its resonant frequency of 2.885 GHz. Figures 34 and 35 show the electric fields of an 3/4 R fed radiator at resonance. Its resonant frequency was measured to be 2.87 GHz. Finally, Figures 36 and 37 respectively, show $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ for a 1/2 R fed radiator driven at its resonant frequency of 2.864 GHz.

The most noticeable observation from Figures 18 through 37 is the general shape of the $|E_{\theta}|$ vs θ and the $|E_{\phi}|$ vs θ patterns. Regardless of the feed position or the ϕ angle, there was usually a finite value for $|E_{\theta}|$ at $\theta = 90^{\circ}$ while $|E_{\phi}|$ at $\theta = 90^{\circ}$ was usually zero. Also, in the $\phi = 0^{\circ}$ plane, the principal plane cut for $|E_{\theta}|$ vs θ , and the $\phi = 90^{\circ}$ plane, the principal plane cut for $|E_{\phi}|$ vs θ , the half-power beamwidth (measured between the -3 dB points of the beam maximum) was larger for the \overline{E}_{θ} component than for the \overline{E}_{ϕ} component for any given feed position or dielectric thickness.

IV.2b Effects of Feed Position on the Far Fields

For the three radiators fabricated on the dielectric substrate material with d = 0.16 cm, the position of the feed point, i.e. R, 3/4 R, 1/2 R, had little effect on the shapes of the $|E_{\theta}|$ vs θ or $|E_{\phi}|$ vs θ patterns regardless of the ϕ cut. The magnitudes of the patterns for radiators with different feed points could not be compared since the feed point movement caused a shift in the resonant frequency. This frequency change caused many other factors to change in the test configuration for measuring the patterns. A change in the output level of the signal generator, a change in the input impedance of the pyramidal

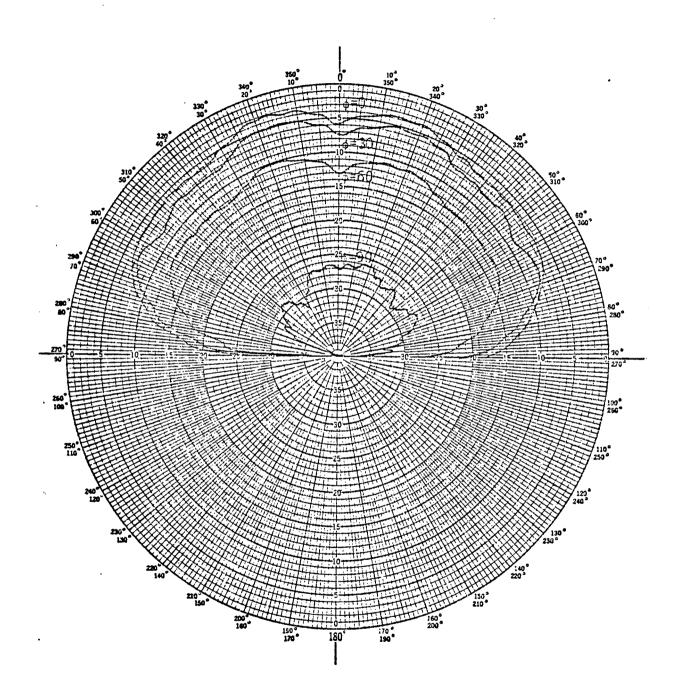


Figure 32: E_θ vs.θ for Different Values of φ d: 0.036 cm. Feed Point: R Frequency: 2.885 GHz.

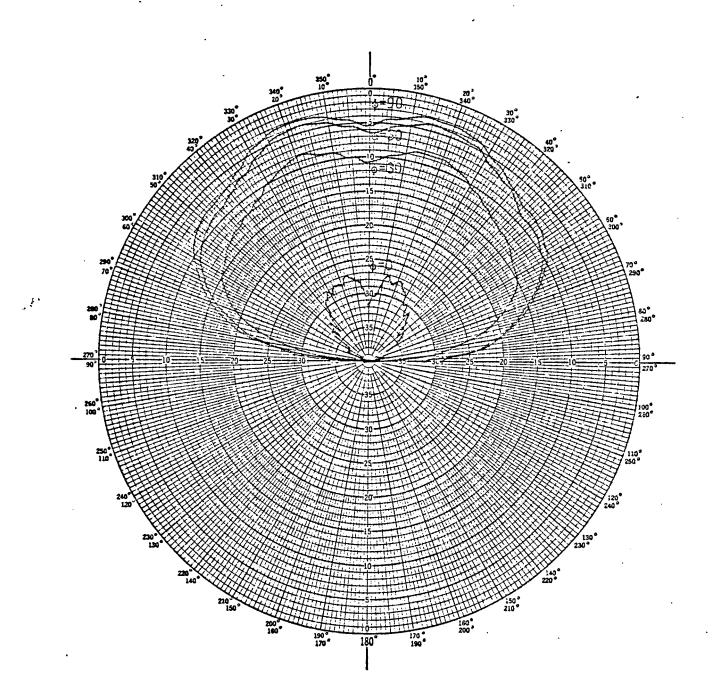


Figure 33: E vs. θ for Different Values of φ
d: 0.036 cm.
Feed Point: R
Frequency: 2.885 GHz.

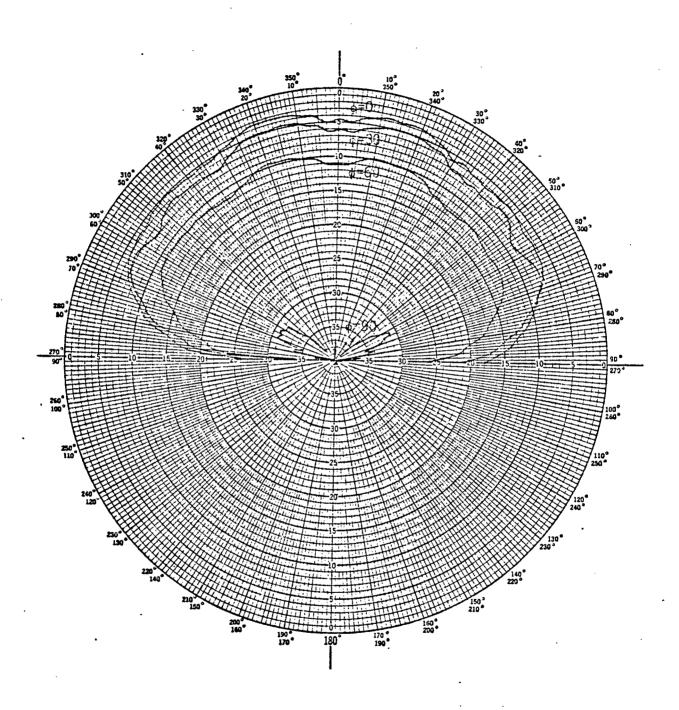


Figure 34: E_{θ} vs. θ for Different Values of ϕ d: 0.036 cm. Feed Point: 3/4R Frequency: 2.87 GHz.

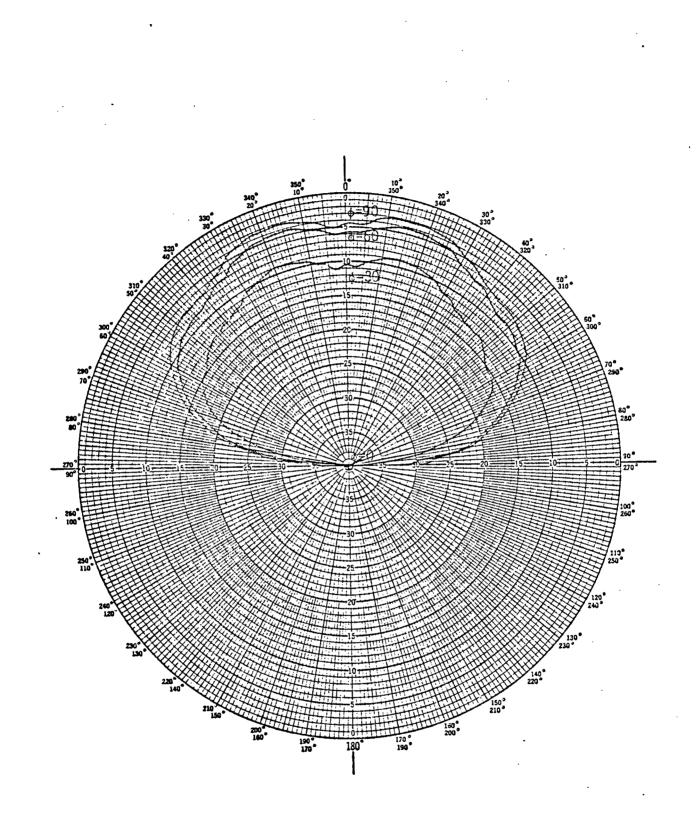


Figure 35: E vs. 0 for Different Values of ϕ ^{\$\overline{\phi}\$}d: 0.036 cm. Feed Point: 3/4R Frequency: 2.87 GHz.

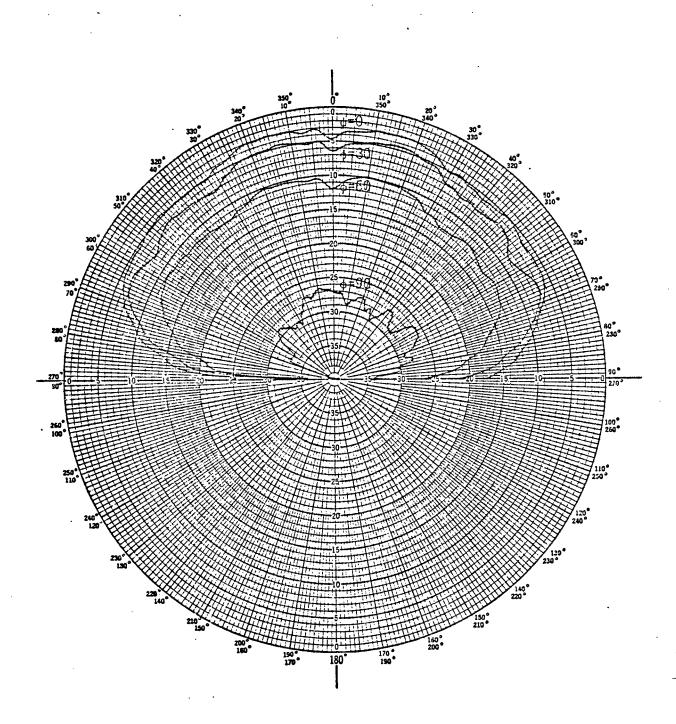


Figure 36: E vs. θ for Different Values of φ d: 0.036 cm. Feed Point: 1/2R Frequency: 2.864 GHz.

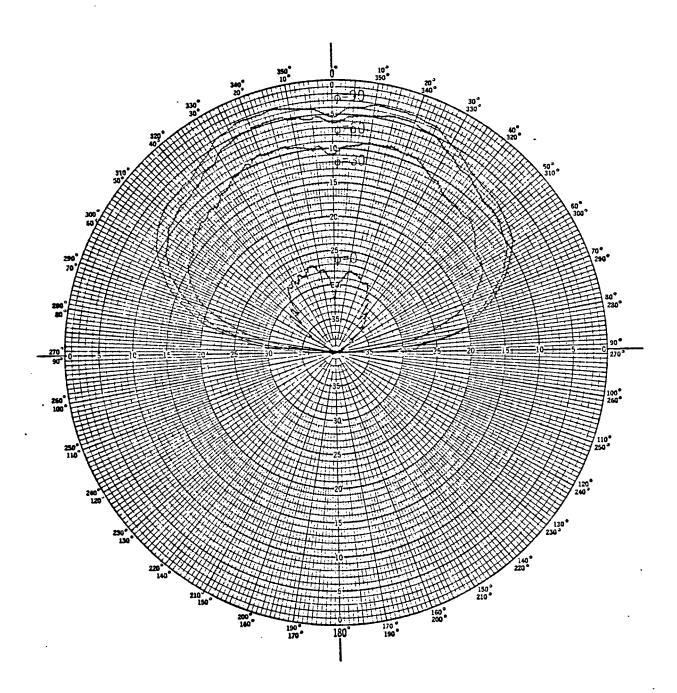


Figure 37: E vs. θ for Different Values of φ ^φd: 0.036 cm. Feed Point: 1/2R Frequency: 2.864 GHz. horn, and a change in the space loss between the transmitting horn and the receiving antenna were just a few of the factors that would prohibit any comparison of the magnitude of the electric fields for radiators with different feed points. Table IV.2 summarizes the 6 dB beamwidth of the electric fields for the d = 0.16 cm radiators.

			•			-	
ф		E _θ vs θ	E _θ vs θ		E _¢ vs e		
Plane (deg.)	R FED	3/4R FED	1/2R FED	R FED	3/4R FED	1/2R.FED	
90	NA	NA	NA	119°	118°	117°	
60	152°	151°	150°	120°	118°	118°	
30	151°	152°	151°	, 119°	120°	120°	
0	149°	147°	147°	NA	NA	NA	

Table IV.2 6 dB Beamwidths for Various Feed Points (d = 0.16 cm)

For the three radiators fabricated on the dielectric material with a thickness of 0.075 cm, the position of the feed point once again had little effect on the shape of the far field patterns. A summary of the 6 dB beamwidths for various feed points is shown in Table IV.3.

ф	E _θ vs θ			· Ε _μ vs θ		
Plane (deg.)	R FED	3/4R FED	1/2R FED	R FED	3/4R FED	1/2R FED
90	NA	NA	NA	117°	116°	117°
60	154°	150°	151°	115°	115°	114°
30	155°	153°	153°	113°	114°	111°
0	.150°	148°	149°	NA .	NA .	NA

Table IV.3 6 dB

Beamwidths

ł

for Various Feed Positions (d = 0.075 cm)

Table IV.4 summarizes the 6 dB beamwidths of the far field patterns for differently fed radiators fabricated on the dielectric material with d = 0.036 cm. Once again no drastic changes occur in the 6 dB beamwidth when the feed position is changed.

φ		E _θ vs θ	•		E _φ vs θ	
Plane (deg.)	R FED	3/4R FED	1/2R FED	R FED	3/4R FED	1/2R FED
90	NA	NA	NA	114°	115°	116°
60	147°	148°	150°	113°	114°	114°
30	150°	151°	151°	110°	112°	113°
0	147°	148°	149°	NA	NA	NA .

Table IV.4 6 dB Beamwidths

for Various Feed Positions (d = 0.036 cm)

IV.2c Effects of Dielectric Thickness on the Far Field Patterns

By comparison of the appropriate figures, one can see that the far field patterns change for radiators at resonance with the same feed point but etched on different dielectric thicknesses. If one compares the 6 dB beamwidths on the patterns for radiators which were fed at the same point but etched on a different substrate thickness, this change is not obvious. However, for radiators driven at their resonant frequency, small dips start occurring at $\theta = 0$ in both $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ patterns as the dielectric thickness gets smaller. This data is summarized in Table IV.5. Values of these dips were rounded to the nearest 1/2 decibel. This dip at $\theta = 0$ for both $|E_{\theta}|$ and $|E_{\phi}|$ was not predicted

d (cm)	Feed Position	∳ Cut (degrees)	E ₀ dip (dB)	E _q dip (dB)
	R	90 60 30 0	NA 0 0 0	0 .5 0 NA
0.16	3/4 R	90 60 30 0	NA O O O	0 .5 .0 NA
	1/2 R	90 60 30 0	NA 0 0 0	0 0 0 NA
·	R	90 60 30 0	NA 1 1 .5	1 1.5 2 NA
0.075	3/4 R	90 60 30 0	NA 1.5 1.5 1.5	1.5 2.0 2.0 NA
	1/2 R	90 60 30 0	NA 2.0 1.5 1.5	1.5 2.0 2.0 NA
	Ŕ	90 60 30 0	NA 3.0 3.0 3.0	2.5 2.5 3.0 NA
0.036	3/4 R	90 60 30 0	NA 1.5 1.5 1.5	1.5 1.5 1.5 NA
	1/2 R	90 60 30 0	NA 2.0 2.0 2.0	2.0 2.0 2.0 NA

Table IV.5 Magnitudes of the Electric Field Dips @ $\theta = 0^{\circ}$

for Different Dielectric Thicknesses

by Morel in his theoretical analysis of the far fields using Watkins' zeroth-order theory for the n=1 mode. Since all the patterns were measured at the resonant frequency of the individual radiators, one logical explanation for these dips is that the radiators fabricated on the 0.075 cm and the 0.036 cm dielectric thicknesses were being driven at a frequency such that higher order modes were generated in the region between the disc and the ground plane.

IV.2d Effects of Frequency Variation on the Far Field Patterns

To investigate the frequency dependence of the far fields, several measurements of $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ were made on an edgefed radiator fabricated on a dielectric material with d = 0.16 cm. The results of these measurements are shown in Figures 38 through 51. Figures 38 and 39 show $|E_{\theta}|$ vs θ in the $\phi = 0^{\circ}$ plane and $|E_{\phi}|$ vs θ in the ϕ = 90° plane, respectively. The operating frequency was 2.6 GHz, well below the resonant frequency of this radiator which was 2.815 GHz. Figures 40 and 41 show the electric field components for a frequency of 2.7 GHz. Figures 42 and 43 show the electric field components at the resonant frequency. Figures 44 and 45, respectively, show $|E_A|$ vs θ for ϕ = 0° and $|E_{\phi}|$ vs 0 for ϕ = 90° measured at a frequency of 2.82 GHz. Figures 46 and 47, 48 and 49, and 50 and 51 show the electric field components for the edge-fed 0.16 cm radiator at 2.85 GHz, 2.96 GHz, and 3.0 GHz, respectively. Note that the electric field changed significantly as the frequency was deviated from the resonant frequency. Dips in the magnitude of the electric field began to occur at θ = 0 as the frequency was increased above 2 815 GHz.

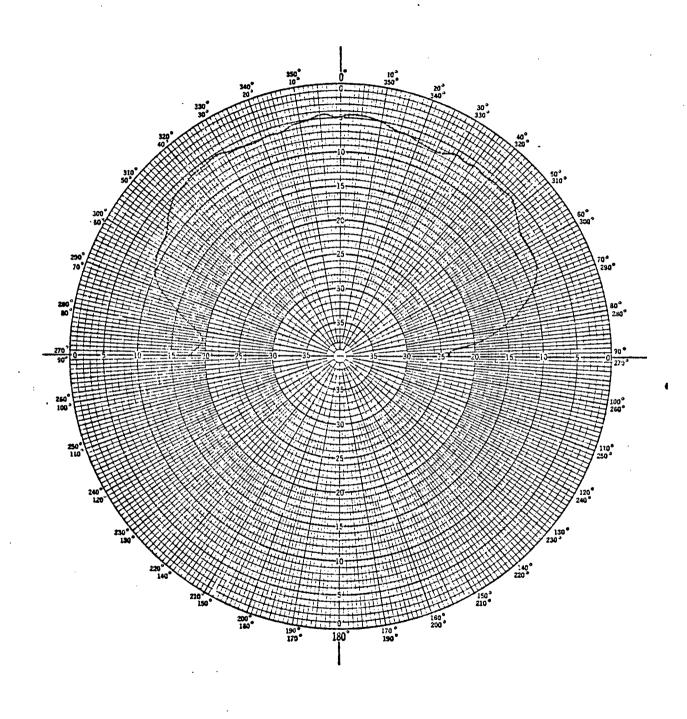


Figure 38: E vs. 0 for φ=0 d: 0.16 cm. Feed Point: R Frequency: 2.6 GHz.

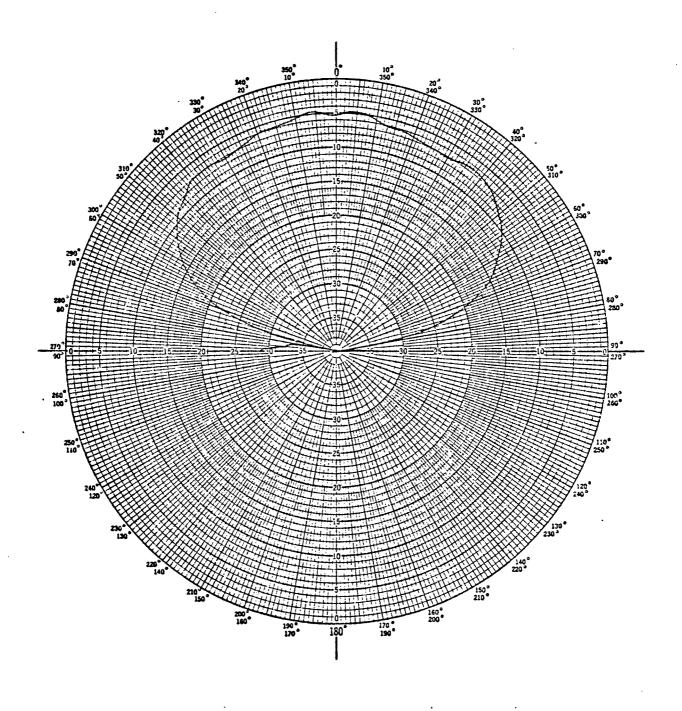
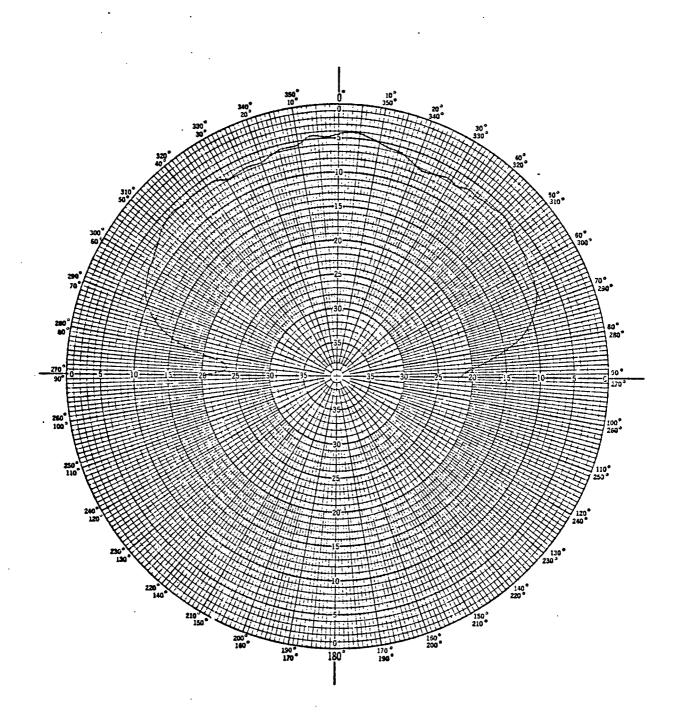



Figure 39: E, vs. 0 for ∳=90 d: 0.16 cm. Feed Point: R Frequency: 2.6 GHz.

igure 40: E_ρ vs. θ for φ=0 d: 0.16 cm. Feed Point: R Frequency: 2.7 GHz.

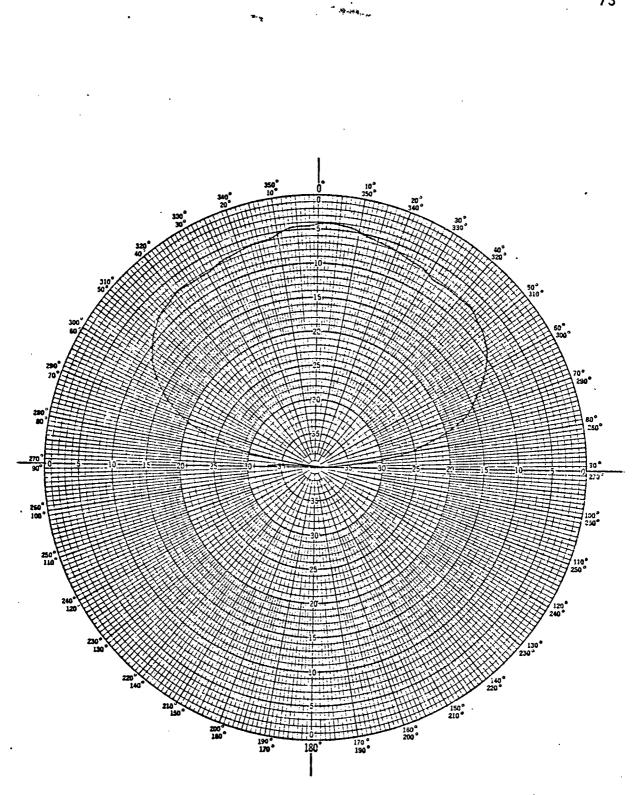


Figure 41: E_{ϕ} vs. θ for ϕ =90 d: 0.16 cm. Feed Point: R Frequency: 2.7 GHz.

73

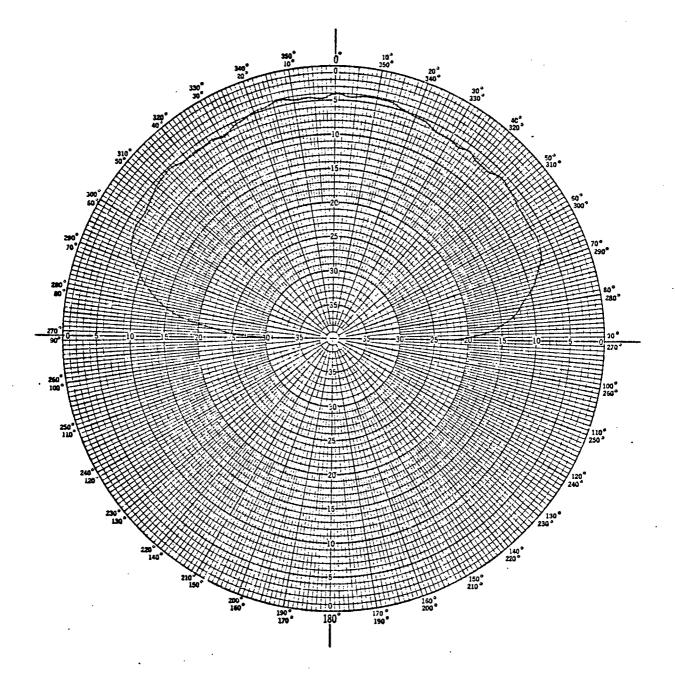


Figure 42: E_{θ} vs. θ for $\phi=0$ d: 0.16 cm. Feed Point: R Frequency: 2.815 GHz.

74

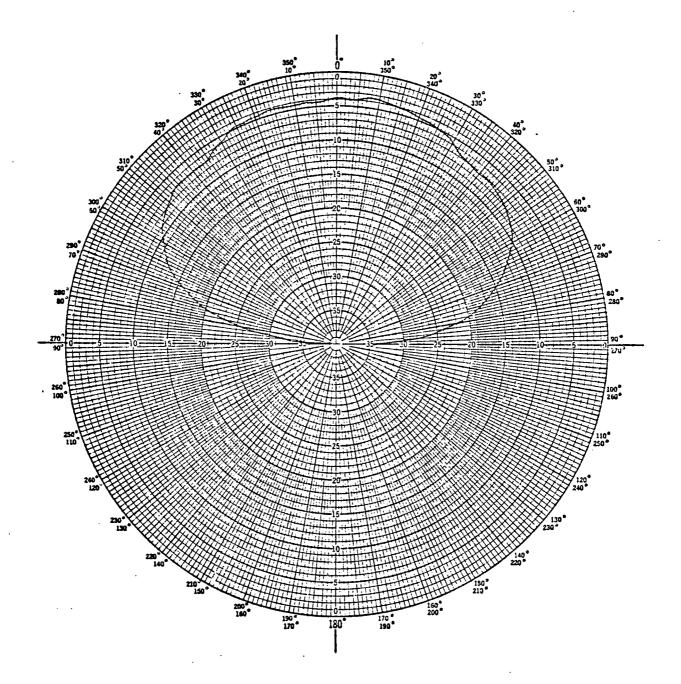


Figure 43: E_{ϕ} vs. θ for ϕ =90 d: 0.16 cm. Feed Point: R Frequency: 2.815 GHz.

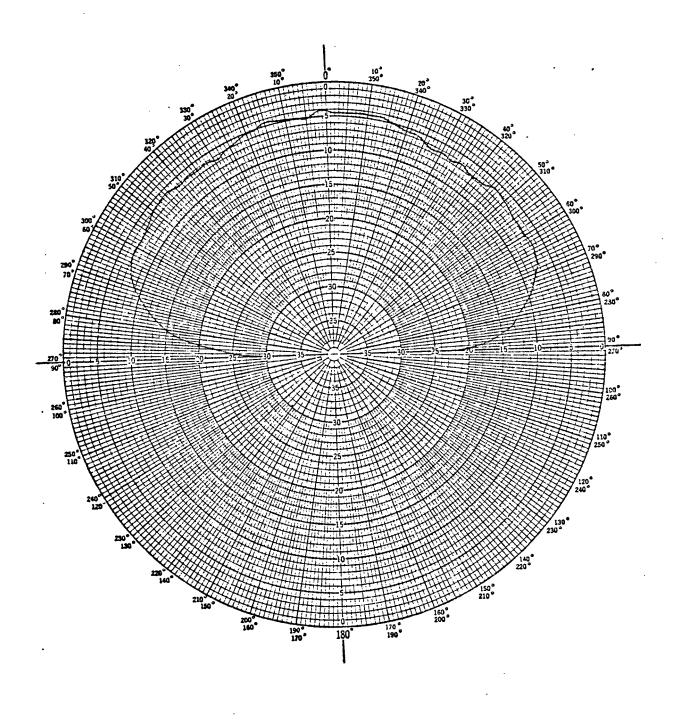
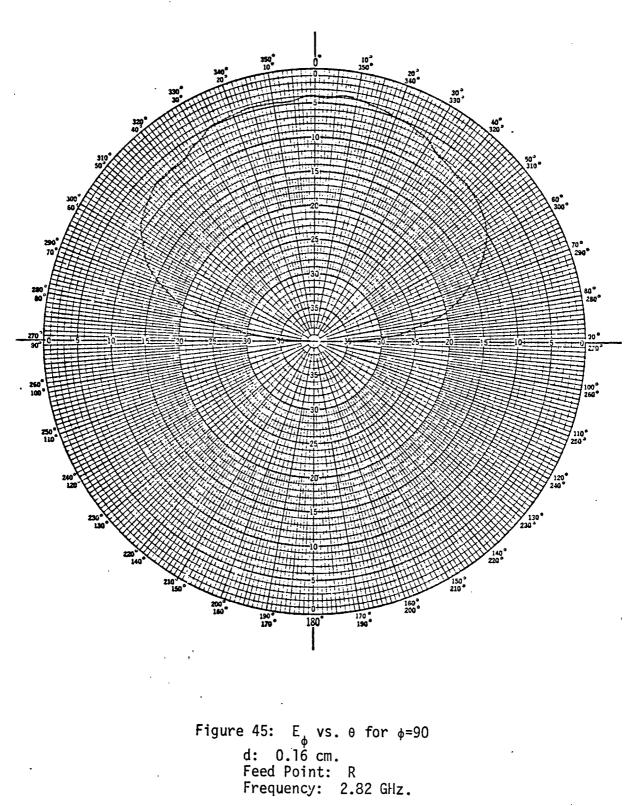



Figure 44: E_{θ} vs. θ for $\phi=0$ d: 0.16 cm. Feed Point: R Frequency: 2.82 GHz.

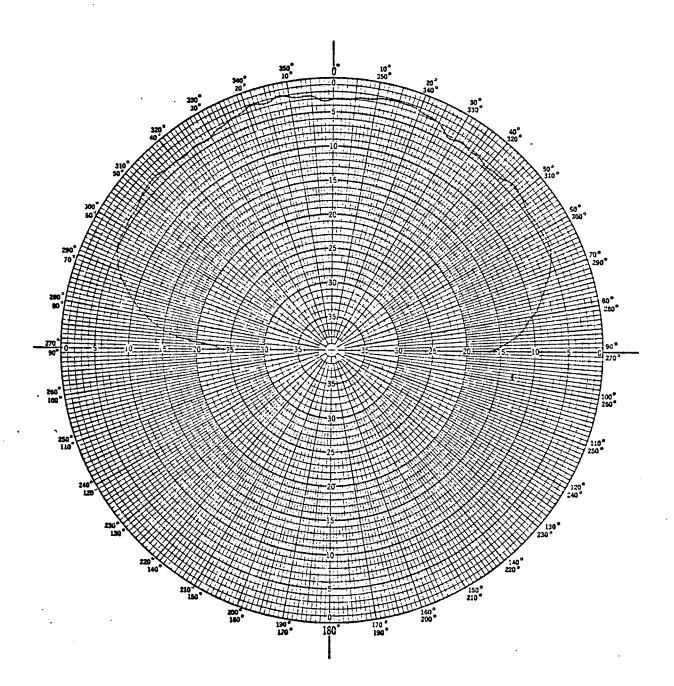


Figure 46: E_θ vs. θ for φ=0 d: 0.16 cm. Feed Point: R Frequency: 2.85 GHz.

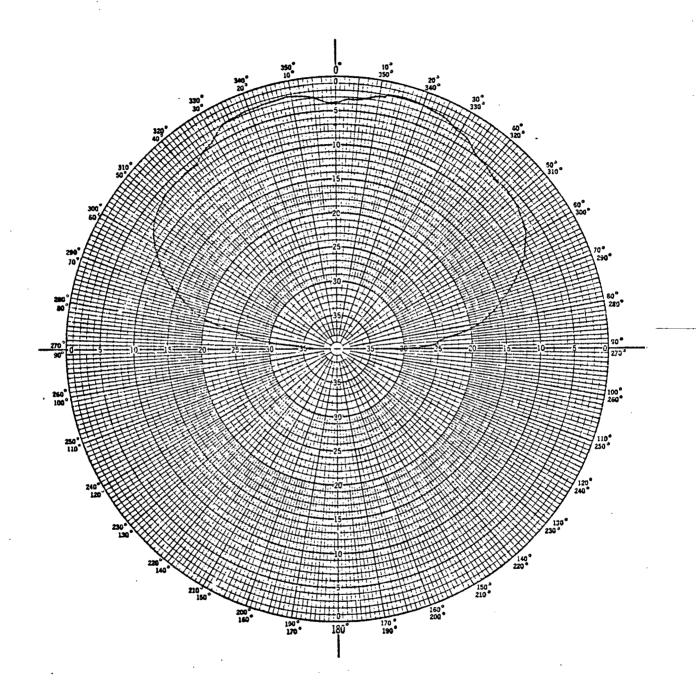


Figure 47: E_{ϕ} vs. θ for ϕ =90 d: 0.16 cm. Feed Point: R Frequency: 2.85 GHz.

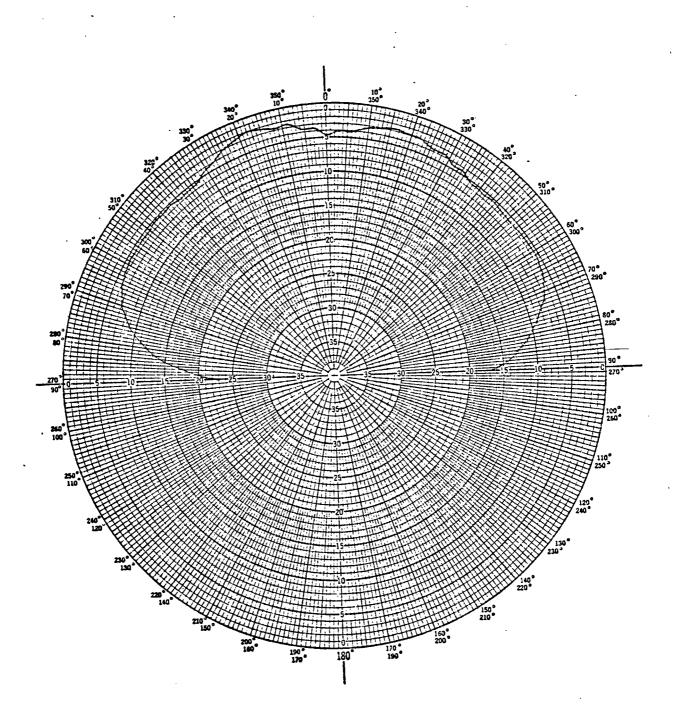


Figure 48: E_θ vs. θ for φ=0 d: 0.16 cm. Feed Point: R Frequency: 2.9 GHz.

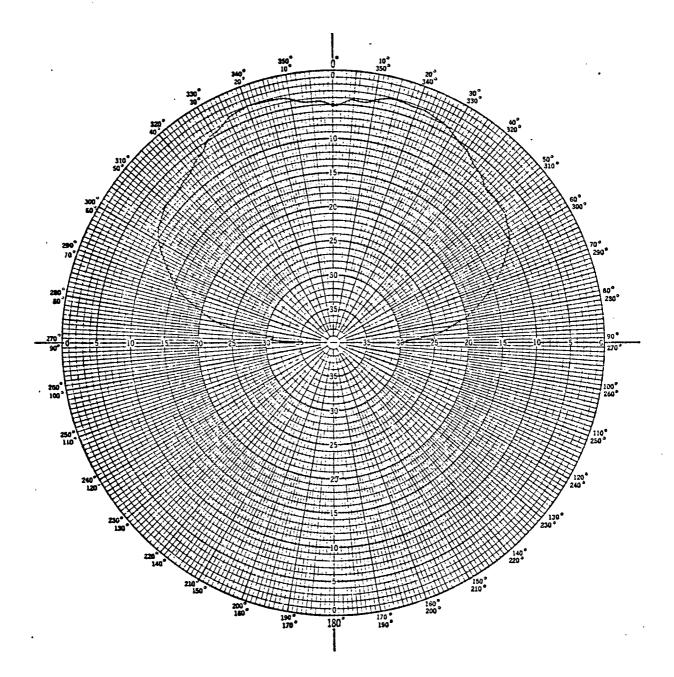
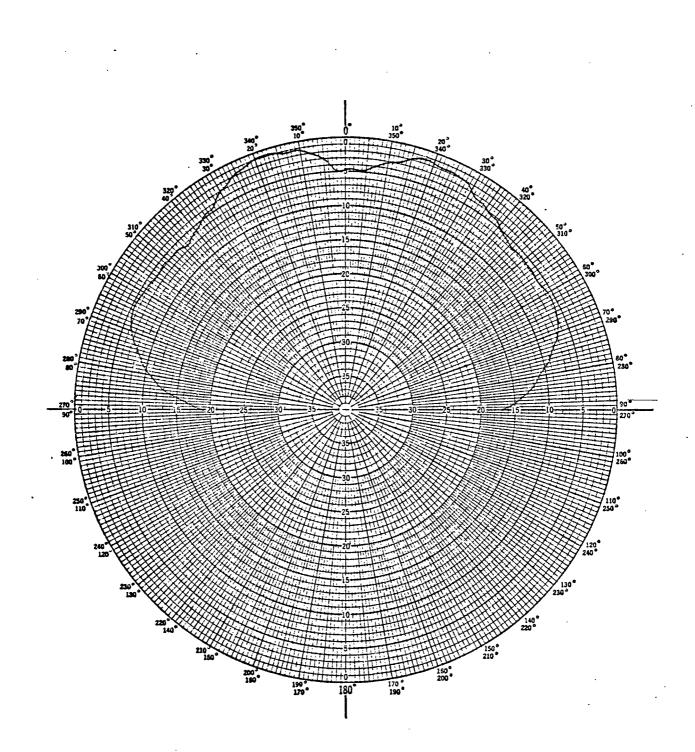
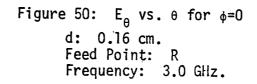




Figure 49: E_{ϕ} vs. θ for ϕ =90 d: 0.16 cm. Feed Point: R Frequency: 2.9 GHz.

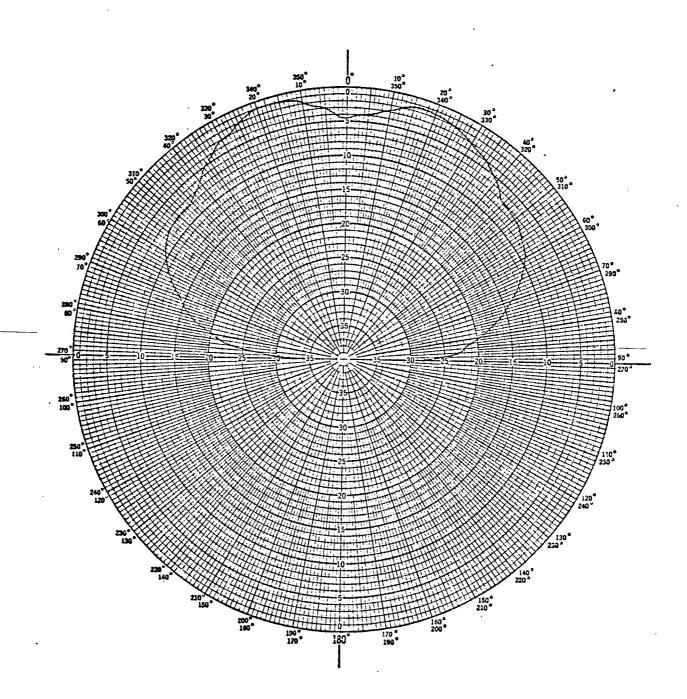


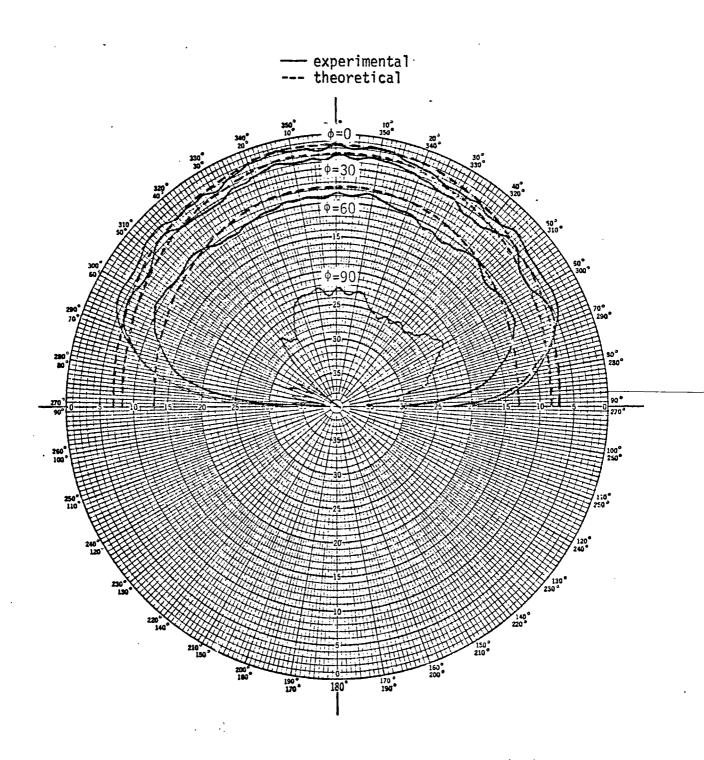
Figure 51: E_{ϕ} vs. θ for ϕ =90 d: 0.16 cm. Feed Point: R Frequency: 3.0 GHz.

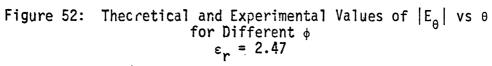
Using Watkins' zeroth-order theory for the n=1 mode, Morel calculated the far fields from the fictitious magnetic currents in the aperture between the disc and the ground plane.

These fields are given by the expressions:

whone

$$E_{\theta} = \frac{-jE_{0}e^{-jk_{0}r} J_{1}(ka)\sin(k_{0}d\cos\theta) a\cos\phi J_{1}^{*}(k_{0}a\sin\theta)}{r\cos\theta}$$
(5)
$$E_{\phi} = \frac{jE_{0}e^{-jk_{0}r} J_{1}(ka)\sin(k_{0}d\cos\theta)\sin\phi J_{1}(k_{0}a\sin\theta)}{k_{0}r\sin\theta}$$
(6)


d = dielectric thickness
a = radius of the disc


$$k_0$$
 = free space wavenumber = $2\pi/\lambda$
 $ka = k_0 \sqrt{\epsilon_r}$ a = 1.84118
 J_1 = first order Bessel function of the first kind
 J_1^1 = derivitive of the first order Bessel function of the first kind

The expressions for $|E_{\theta}|$ and $|E_{\phi}|$ were normalized by a factor of $-jk_{0}r$ and calculated for ϕ angles of 0°, 30°, 60°, and 90° as θ varied from 0° to 90° in 5° steps for each ϕ angle. Since the relative dielectric constants of the printed-circuit boards used in this experimental study were so closely matched, there was a negligible change in the calculated values of $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ for each ϕ plane as ε_{r} varied from 2.45 to 2.48. Thus, only one set of theoretical $|E_{\theta}|$ vs θ

and $|E_{\phi}|$ vs θ (normalized) patterns for different ϕ angles was calculated. These theoretical patterns are compared with the experimental patterns in Figures 52 and 53. The theoretical patterns were calculated using a dielectric constant of 2.47. The experimental patterns were measured on an edge fed circular disc antenna which had a substrate material with a dielectric constant of 2.47 and a thickness of 0.16 cm. Figure 52 shows both theoretical and experimental values of $|E_{\theta}|$ vs θ for the $\phi = 0^{\circ}$, 30°, 60°, and 90° angles. Figure 53 shows theoretical and experimental values of $|E_{\phi}|$ vs θ for the $\phi = 90^{\circ}$, 60°, 30°, and 0° angles.

The measured fields and the calculated fields are remarkably similar in the following ways. First, for $|E_{\theta}|$ vs θ there is good agreement between the theoretical and measured results for $\theta{<}70^\circ{}.$ For $\theta > 70^{\circ}$ the calculated $|E_{\theta}|$ is greater than the measured $|E_{\theta}|$. However, both the theoretical and measured patterns reveal a component of $|E_{A}|$ at θ = 90°. For $|E_{\phi}|$ vs θ , there is good agreement between the theoretical and measured results for values of $0^{\circ} \le 0 \le 90^{\circ}$. Note that both the calculated and measured results reveal that no component of $|\mathsf{E}_{\varphi}|$ exists at θ = 90°. Secondly, the measured and calculated patterns both reveal that the magnitude of $\boldsymbol{E}_{\boldsymbol{\theta}}$ decreases as the $\boldsymbol{\phi}$ angle increases, and the magnitude of $\mathsf{E}_{\!\!\varphi}$ decreases as the ϕ angle decreases. Theoretically, there is a 1.25 dB drop in $|E_{\theta}|$ as ϕ goes from 0° to 30° and a 6 dB drop in $|E_{_{\Theta}}|$ as $_{\varphi}$ goes from 0° to 60°. A 1.25 dB drop in $|E_{\phi}|$ also theoretically occurs as $_{\phi}$ goes from 90° to 60° and a 6 dB drop can be calculated for $|E_{\phi}|$ as ϕ goes from 90° to 30°. Thirdly, both the theoretical and measured results show that the 3 dB beamwidths of E are greater than those for E . The theoretical and measured 3 dB

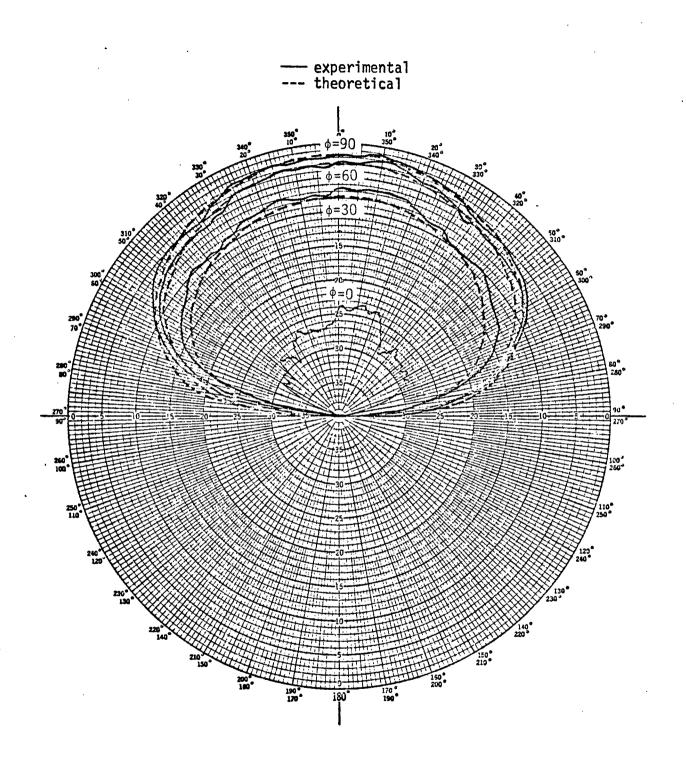


Figure 53: Theoretical and Experimental Values of $|E_{\phi}|$ vs θ for Different ϕ $\varepsilon_{r} = 2.47$

beamwidths of a resonant edge fed circular disc radiator etched on three different substrate thicknesses are shown in Table IV.6.

substrate	φ	3 dB Beamwidths						
thickness	angle	Theore	etical	Measured				
(cm)	(degrees)	Ε _θ	Ε _φ	Ε _θ	Е _ф			
	0	100	NA	132	NA			
0.16	30	100	80	. 106	66			
0.10	60	100	80	136	65			
	90	NA ,	80	NA	68			
0.075	0	100	NA	132	NA			
	30	100	80	107	70			
	60	100	80	134	71			
	90	· NA	- 80	. : NA	72			
0.036	0	100	NA	91	NA			
	30	100	[.] 80	94	69			
	60	100	80	119	70			
、	90	NA .	80	NA	73			

Table IV.6 Calculated and Measured 3 dB Beamwidths of Resonant Edge Fed Radiators

The measured fields and the calculated fields differ in that for the thinner dielectric materials, i.e. 0.075 cm and 0.036 cm, no dip occurs in the calculated $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ patterns at $\theta = 0^{\circ}$ as it does in the measured far field patterns.

IV.4 Polarization Measurements

Figures 18 and 19, respectively, show, among other things, $|E_{\theta}|$ vs θ for $\phi = 90^{\circ}$ and $|E_{\phi}|$ vs θ for $\phi = 0^{\circ}$. From Equations (5) and (6), one sees that $|E_{\theta}|$ vs θ for $\phi = 90^{\circ}$ and $|E_{\phi}|$ vs θ for $\phi = 0^{\circ}$ are both zero. Thus theoretically, for the n=1 mode, the printed-circuit, circular disc antennas are linearly polarized in the x direction for feed points along the x-axis. To test their polarization purity, the transmitting horn was cross-polarized with each printed-circuit, circular disc antenna for measurements of $|E_{\theta}|$ vs θ and $|E_{\phi}|$ vs θ . From Figure 18, one can observe that the ratio of $|E_{\theta}|$ $\theta = 0^{\circ}$, $\phi = 90^{\circ}$ to $|E_{\theta}|$ $\theta = 0^{\circ}$, $\phi = 0^{\circ}$ is approximately -21 dB or 0.089. From Figure 19, ' the ratio of $|E_{\phi}|$ $\theta = 0^{\circ}$, $\phi = 0^{\circ}$ to $|E_{\phi}|$ $\theta = 0^{\circ}$, $\phi = 90^{\circ}$ is approximately -22 dB or 0.079. These ratios were typical for all the printed-circuit, circular disc antennas that were fabricated. Thus, for all practical purposes, this type of antenna was experimentally found to be linearly polarized.

CHAPTER V

CONCLUSIONS

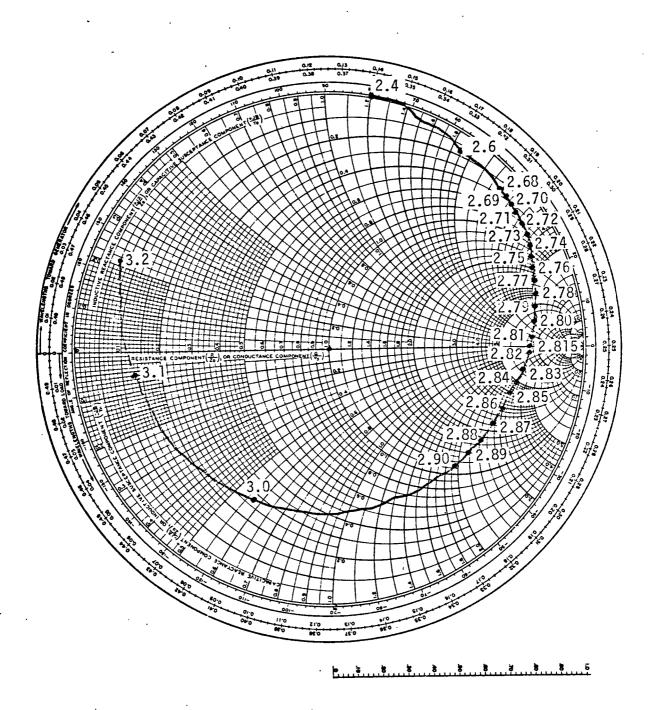
From the impedance measurements that were conducted in this experimental study, several conclusions can be drawn about using Watkins' zero-order theory for the n=1 mode in the design of the antennas. First, it was shown that the calculated resonant frequency was always higher than the measured resonant frequency regardless of the feed position or the dielectric thickness. However, the dielectric thickness affects both the resonant frequency and the magnitudes of the resistive and reactive components. For the edge-fed radiators and 3/4 R fed radiators, the measured resonant_frequency approached the calculated resonant frequency as the dielectric thickness was decreased. For the 1/2 R fed radiators, the difference between the measured resonant frequency and the theoretical resonant frequency decreased as the dielectric thickness was decreased from 0.16 cm to 0.075 cm, but increased as the dielectric thickness was decreased from 0.075 cm to 0.036 cm. Also, it was shown that regardless of the feed point, the magnitudes of the resistance and reactance curves decreased for decreasing dielectric thickness. Secondly, it was shown that for a given thickness dielectric, the feed position changed the impedance magnitudes, but had a negligible effect as far as changing the resonant frequency of the printed-circuit, circular disc antennas. In general, for a given dielectric thickness, moving the feed point from the edge to a position closer to the center of the disc caused the magnitudes of both the resistance and reactance curves to decrease. However, no more than a ±0.7% change in the resonant

frequency occurred when the feed point was moved from R to 1/2 R for any of the three dielectric thicknesses which were experimentally investigated.

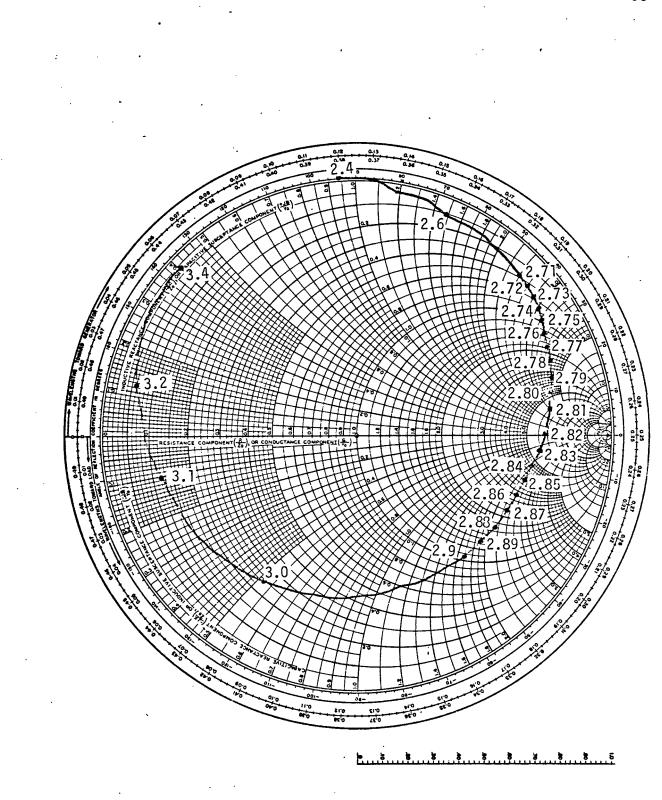
'Wadkins' zeroth-order theory for the n=1 mode was used by Morel to calculate the far fields, \overline{E}_{θ} and \overline{E}_{ϕ} . When these theoretical patterns were plotted versus θ for different ϕ angles, it was discovered that radiation was maximum in a direction normal to the plane of the disc. Also, it was shown theoretically that there was a component of \overline{E}_{θ} at θ = 90° for all ϕ angles except 90° and no component of \overline{E}_{ϕ} at θ = 90° for all ϕ angles. Finally, the calculated patterns using the zeroth-order theory for the n=1 mode revealed that the beamwidth for \overline{E}_{ρ} was greater than the beamwidth for \overline{E}_{h} . These theoretical predictions regarding the far fields were experimentally verified for the printed-circuit, circular disc antennas which were fabricated on a dielectric thickness of 0.16 cm. However, for the thinner dielectric materials, i.e. 0.075 cm and 0.036 cm, it was shown experimentally that radiation was not maximum in a direction normal to the plane of the disc. Dips began to occur at $\theta = 0^\circ$ for the thinner dielectric materials.

Watkins' zeroth-order theory also predicted that the printedcircuit, circular disc antennas operating in the n=1 mode were linearly polarized. This was experimentally verified for three feed positions, R, 3/4 R, and 1/2 R, and three dielectric thicknesses 0.16 cm, 0.075 cm, and 0.036 cm.

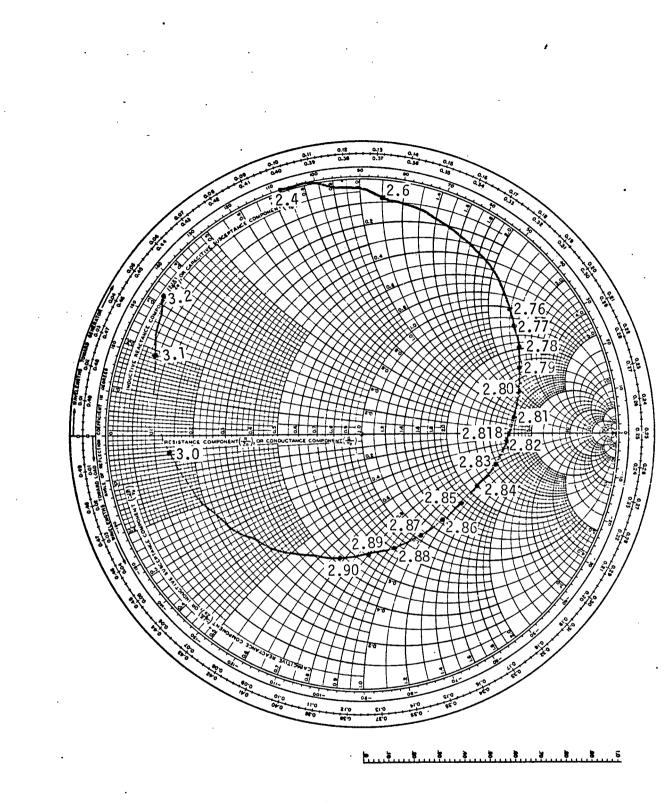
BIBLIOGRAPHY

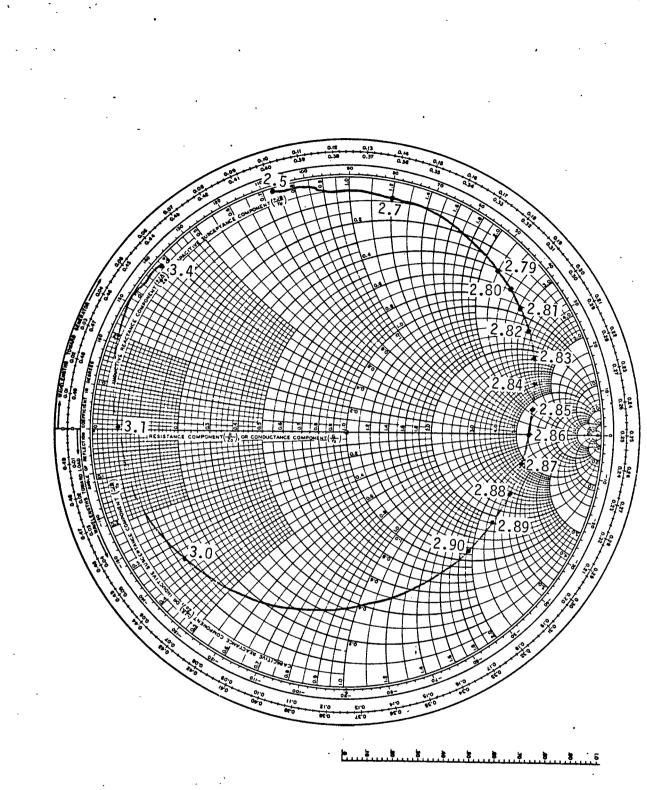

- 1. J. Watkins, "Circular Resonant Structures in Microstrip," <u>Electronic</u> Letters, Vol. 5, No. 21, October 16, 1969.
- Robert E. Munson, "Conformal Microstrip Antennas and Microstrip Phased Arrays," <u>IEEE Transactions on Antennas and Propagation</u>, Vol. AP-22, pp. 74-78, January 1974.
- 3. John Q. Howell, "Microstrip Antennas," IEEE <u>Transactions on Antennas</u> and Propagation, Vol. AP-23, pp. 90-93, January 1975.
- 4. "PC Board Etching Instructions," Lockheed Company Pamphlet, 1969.
- 5. Microwave Network Analyzer Applications, Hewlett Packard, June 1970.
- 6. S. Ramo, J. R. Whinnery, and T. VanDuzer, <u>Fields and Waves in</u> Communications <u>Electronics</u>, New York: Wiley and Sons, p. 33, 1967.
- 7. Pierre B. Morel, "A Theoretical Investigation of the Circular Printed Circuit Antenna," M. S. Thesis, University of Houston, 1976.

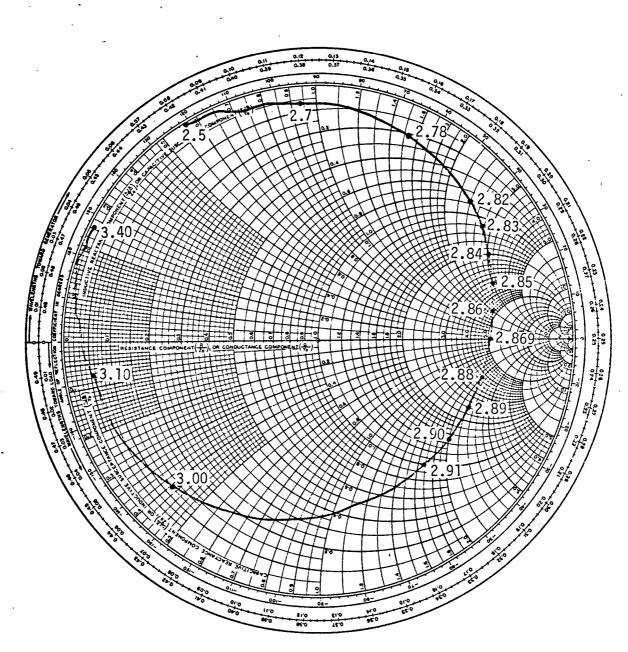
APPENDIX 1

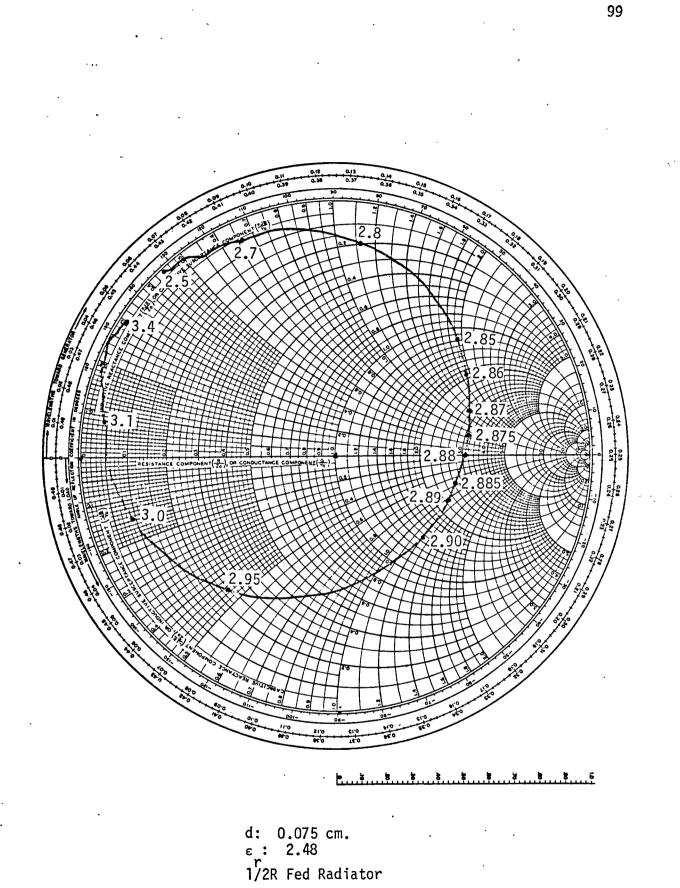

,

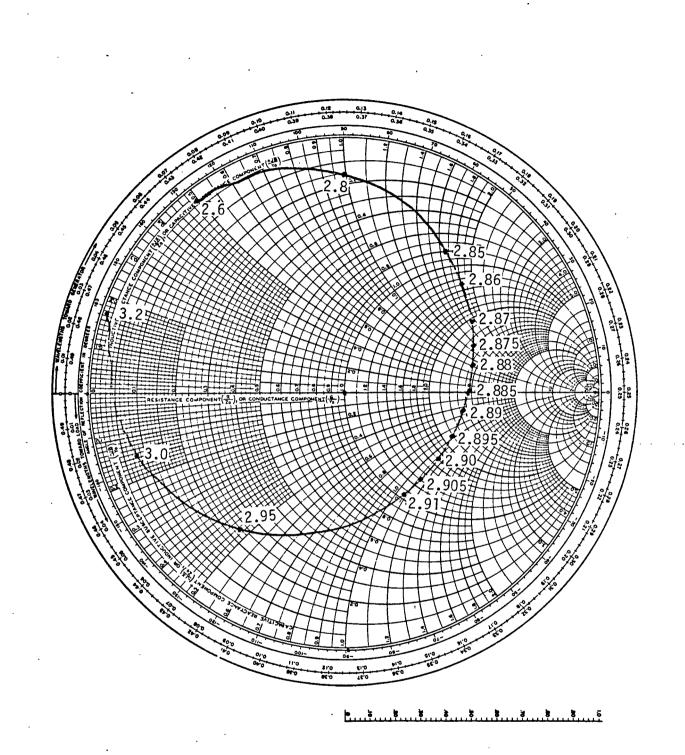
÷


DATA SHEETS

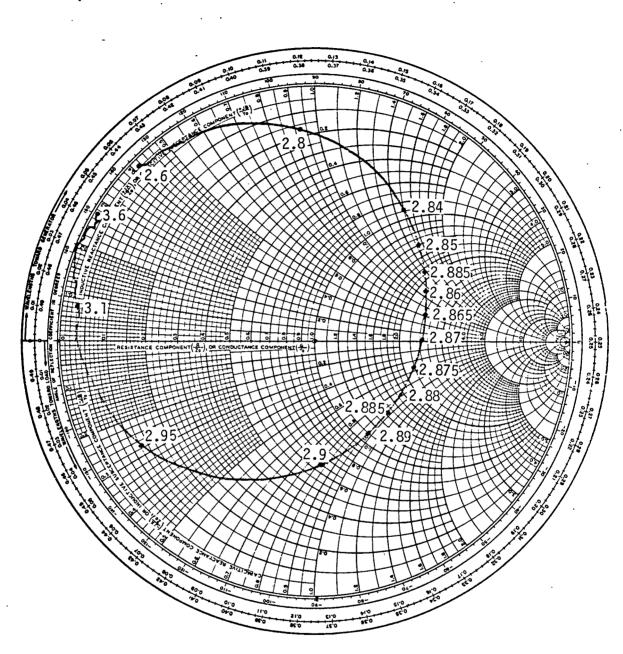

d: 0.16 cm. ε_r: 2.47 R Fed Radiator

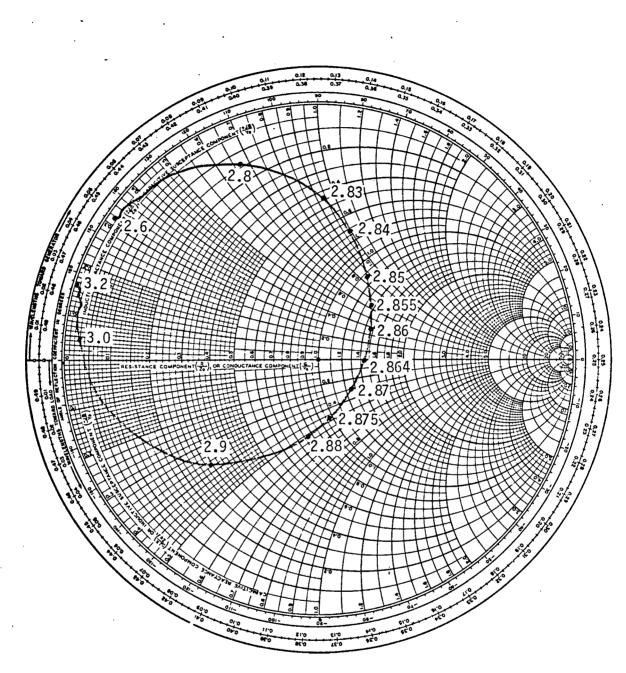

d: 0.16 cm. ε_r: 2.47 3/4R Fed Radiator


d: 0.16 cm. ε_r: 2.47 1/2R Fed Radiator



d: 0.075 cm. ε_r: 2.48 R Fed Radiator


d: 0.075 cm. ε_r: 2.48 3/4R Fed Radiator


d: 0.036 cm. ε_r: 2.45 R Fed Radiator

<u>1</u>00

d: 0.036 cm. ε_r: 2.45 3/4R Fed Radiator

101

5. **8 8 8 8 8 8 8**

d: 0.036 cm. ε_r: 2.45 1/2R Fed Radiator

APPENDIX 2

÷

WANG 720C COMPUTER PROGRAM

0 1 2 3 4 5 6 7	MARK 00 02 UP 9 0
8 9 10 11	DOWN MARK OO O3 UP 3 6
12 13 14 15 16 17	O DIVIDE DOWN INTEGER X 4
18 19 20 21 22	x DOWN INTEGER X - WRITE ALPHA
23 24 25 26	SQRT X PI x 2
27 28 29 30 31	DIVIDE DOWN X2 STORE DIRECT REGISTER 3
19 2212 2234 2267 89 01234 567 83333 3333333333333333333333333333333	1 6 UP 1 STORE DIRECT
39 40	REGISTER O MARK 15 14 RECALL DIRECT
41 42 43 44 45	REGISTER 3 x DIRECT REGISTER 0 DOWN DIVIDE DIRECT
46 47 48 49	REGISTER 0 1 DOWN

.

50 51 52 53 54 55 56 57	CHANGE SIGN DIVIDE DIRECT REGISTER 0 1
55 56 57 58 59	+ DIRECT REGISTER O WRITE ALPHA WRITE SEARCH ·
60 61 62 63 64	15 14 RECALL Y REGISTER O 5
65 66 67 68 69	SET EXP CHANGE SIGN 1 1
70 71 72 73 74 75 76	DOWN WRITE ALPHA END PROG , SEARCH 15 15 MARK
77 78 79 80 81	OO O7 WRITE ALPHA CLEAR X UP
82 83 84 85 86	5 SKIP IF Y GE X WRITE ALPHA X ² 1 +
87 88 89 90 91	STORE Y REGISTER O 2
92 93 94 95	RECALL DIRECT REGISTER O DIVIDE DOWN
95 96 97 98 99	STORE Y REGISTER 1 X STORE Y

.

.

. •

104

:

100	REGISTER 1	0
102	STORE DIREC	т
103	STORE DIREC REGISTER 1 5	3
104	1	
105	5 UP 8 STORE DIREC REGISTER MARK 15 13 RECALL DIRE REGISTER REGISTER X DIRECT REGISTER EXCHANGE DI REGISTER X DIRECT REGISTER DOWN + DIRECT REGISTER 2 - 1 - DIRECT	
107	8	
108	STORE DIREC	Т
109	REGISTER	2
110	MARK	
$111 \\ 112$	IJ IJ RECALL DIRE	СТ
113	REGISTER	0
114	x DIRECT	-
115	REGISTER	3
116	RECALL DIRE	CT
118	X DIRECT	2
119	REGISTER	2
120	EXCHANGE DI	RECT
121	REGISTER	2
122	X DIRECT	2
123	DOWN	2
125	+ DIRECT	
126	REGISTER	3
127	2	
128	-	
130	- DIRECT REGISTER EXCHANGE DI REGISTER DIVIDE DIRE REGISTER RECALL DIRE REGISTER WRITE ALPHA	
131	REGISTER	2
132	EXCHANGE DI	RECT
133	REGISTER	3
134	DIVIDE DIRE	
136	RECALL DIRE	СТ СТ
137	REGISTER	2
138	WRITE ALPHA	
139	LOG e X	
140	LOG e X SEARCH 15 13 RECALL Y	
142	RECALL Y	
143	REGISTER	1
144	RECALL DIRE	
145 146	REGISTER	3
140	x WRITE ALPHA	
148	GO	•
149	x	

.

1 + DOWN SQRT X DIVIDE DIRECT REGISTER 3 RECALL DIRECT REGISTER 3 SEARCH 15 15 MARK 00 06 03 00 00 07 UP	250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
9 O EXCHANGE DOWN SEARCH	265 266 267 268 269 269 270
MARK 00 00 UP WRITE ALPHA STOP MARK	271 272 273 274 275 276 277
x DOWN SEARCH 15 15 MARK 00 01	278 279 280 281 282 283 283 284
WRITE ALPHA GO SEARCH 15 11 MARK	285 286 287 288 289 290 291
STORE DIRECT REGISTER 1 00 03 x DOWN EXCHANGF DIRECT REGISTE: 1 12 15	292 293 294 295 296 297 298 299
	+ DOWN SQRT X DIVIDE DIRECT REGISTER 3 RECALL DIRECT REGISTER 3 SEARCH 15 15 MARK 00 06 03 00 00 07 UP 9 0 EXCHANGE - DOWN SEARCH 15 15 MARK 00 00 UP WRITE ALPHA STOP MARK 15 11 x DOWN SEARCH 15 15 MARK 15 11 x DOWN SEARCH 15 15 MARK 00 01 UP WRITE ALPHA GO SEARCH 15 11 MARK 00 01 UP WRITE ALPHA GO SEARCH 15 11 N MARK 00 01 UP WRITE ALPHA GO SEARCH 15 11 N MARK 00 01 UP WRITE ALPHA GO SEARCH 15 11 V MARK 00 01 V V WRITE ALPHA CO SEARCH 15 11 V V V V V V V V V V V V V V V V V V

•

.

•

.

	14 00	03	8				
	x						
,	RE(RE(CT L
5	RE1	r u:				-	•
	MA1 00		0				
5	WR:			AL	PH	A	
}	WR	[T]	E		-		
)	SE/ 15	AR 0	CH 5				
2	WR:	ΙT	E.		PE	IA	
5	SE: EX						
	RE						
	CH				IC	N	
2	UP 1						
)	8						
)	0 RE:	T' 1 7 '	זיס				
2	MA		C N				
3	15	0	5		T 1	÷ .	
5	WR LO	IT G	e E	AL X	Ľ i	IA	
5	SE.	AR	СН				
7	15 1	0	4				
,	SE'	Т	EX	P	•		
) ·	CH.	AN	GE	S	IC	N	
L 2	9 5						
) · · · · · · · · · · · · · · · · · · ·	MA		_				
	15 WR			A T	סנ	T A	
5	eX	<u>т</u> т	Ľ	ЧЦ		!A	
Ţ	DŢ	VI	DE				
5 }	X2 ST	OR	E	DI	RF	c	т
5	RE	GI	ST				ō
L ,	12 14						
3	$\frac{1}{X}$	0	0				
4	+						0
3 4 5 7 8	RE RE	CA		ск D	ÌI		0 СТ
7	RE	GI	ST	ER	Ľ		0
5	EX WR	CH IT	AN E	GE	.Pł	ĨĂ	
•			-				

.

106

.

•

•

300	LO	3	1	0		X				
301	1/2	K				~	-	~		
302 303	CHA 00			Ŀ		S	T	G	N	
304	STO) R	E		D	Ι	R	E	C	Т
305 306	REO 1	31	S	T	E	R				0
307	WR	L T	E		A	L	P	H	A	
307 308 309	LO/ UP	A D	I	P	R	0	G			
310	9									
311	0									
311 312 313	x RE(۰ ۸	т	т		n	т	וס		ĊŦ
314	REC	ΞI	S	T.	E	R	Ŧ	R I		0
314 315 316	+									
316 317	12 14	0	58							
318	ŜQI			X						
319	EXC	CH	A	N	С	E				
320	RE7 MAB			N						
322	00		0							
318 319 3221 3222 3224 3225 3227 3226 3227 3229 3323 3334 3335 3334 3336 78 901 3334 3336 3339 3341 3334 3339 3341 3334 3334 3334	03	0	1							
324	MAE	١ĸ								
326	15	0								
327	2 DIV	7 T	n	F						
329	DOV			Ľ						
330	SE/	١R	С	H						
331	15 MAF									
333	03.									
334	ex									
336	UP 1/3	c								
337	REI	CU		N						
338	MAE		1							
340	00 03	0								
341	+									
342 343	SEA 15			H						
344	MAR	١ĸ								
345	00	1	2							
346	03 STC			•	Y					
347 348	REC					R			:	3
349	-									

•

.

.

350	<u>т</u> 1	ΠT	סד	07	•	
350 351 352 353 354 355 357 358 357 358 359 360 361 362 363 364	+ I RE	GI	ST	ER		3
352	RE	CA	LL	Γ	TR	ECT
353	RE	GI	ST	EF	Ł	3
354	DI	VI	DE			
355	DO	МЙ	~ **			
300	SE. 15	A K 1	CH			
358	MAI		2			
359	00	1	3			
360	00 03	ō	ž		•	
361	+					
362	MAI					
363	15	1	0			
364	DO					
305	SQ1	R T	.Х. тт		,	•
367	SQ1 RE(RE(ЬА. ∼т	LL CT	Y T T		2
368	+	3 I.	21	τņ	•	J
	DOI	JN				
370			e	X		
371	LO(SE/	AR	ĞН			
372	15	1	5			
373	MAI	RK	_			
374	03	0	2	~ *		
3/3	STO	OK 7T	E c T	DI	KE	3 3
377	REO X2	υL	31	E R	•	J
378	UP					
379	1					
380	RE	ΓU	RN			
381	RE' MAI	RK				
382	00	1	4			
383	03	0	2			
304	SEA	A D	сч			
386	15	1	0			
387	ΜΛI	кŔ	0			
388	00	1	5			
389	UP					
390.	CH	AN	GE	S	IG	N
391	STO	OR	E	DI	RE	CT
392	REC	GI	ST	ER	•	3
393	1 +					
393 394 395 396 397 398 399	+ + I	דר	0 F	ሮጥ		
396	REC					3
397	REC	ČĂ	ĹĹ	D	IR	ECT
398	REC					3
399	DIV					

400	DOWN
401	LOG e X
402	UP
403	2
404	DIVIDE
405	DOWN
406	MARK
407	15 15
408	12 15
409	14 08
410	RETURN
411	MARK
412	Log e X
413	Stop
414	STORE DIRECT
415	REGISTER 10
416	WRITE ALPHA
417	01 02
418	00 02
419	00 02
420	00 02
421	00 14
422 423 424	01 13 02 05 00 04 02 14
425 426 427 428	02 05 02 06 02 12
429	00 01
430	00 02
431	00 02
432	00 02
433	00 02
434	01 13
435	02 05
436	00 14
437	02 09
438	02 05
439	02 12
440	02 07
441	01 04
442	01 09
443	02 06
444	00 02
445	00 02
446	00 02
447	01 13
448	02 05
449	00 14

02 02 02 01 $\begin{array}{c} 0.0 \\$

.

•	
550	00 05
551	01 12
552	01 13
552	02 07
550 551 552 553 555 555 557 558 559 560 561 562	
224	01 08
222	END ALPHA
556	WRITE
557	12 15
558	WRITE ALPHA
559	00 02 -
560	00 02
561	01 15
562	01 12
563	00 15
564	02 06
565	01 04
563 564 565 566	02 07
500	
50/	02 14
568	02 13
569	02 05
570	END ALPHA
571	WRITE
572	12 06
573	WRITE ALPHA
556789012345678901234555555555555555555555555555555555555	01 12
575	02 06
576	00 15
577	02 09
578	02 05
570	01 08
580 1	01 08
501	
201	END ALPHA
202	MARK
583	ex
584	STOP
585	STORE DIRECT
586	REGISTER 27
585 586 587 588 589 589 590 591	STOP
588	STORE DIRECT
589	REGISTER 11
590	STOP
591	STORE DIRECT
592	REGISTER 12
593	RECALL Y
594	REGISTER 11
595	RECALL DIRECT
596	REGISTER 12
597	00 09
502	
592 593 594 595 596 597 598 599	
277	REGISTER 13

109

.

600 STORE 601 RECIST 602 RECALL 603 REGIST 604 CHANGE 605 STORE 606 REGIST 607 RECALL 608 REGIST 609 CHANGE 610 STORE 611 REGIST 612 RECALL 613 REGIST 614 UP 615 1	ER 14 DIRECT ER 13 SIGN DIRECT ER 15 DIRECT ER 14 SIGN DIRECT ER 16 DIRECT ER 14
614 0F 615 1 616 + 617 STORE 618 REGIST 619 RECALL 620 REGIST 621 UP 622 1 623 + 624 STORE 625 REGIST 626 RECALL 627 REGIST 628 RECALL 629 REGIST 630 00 631 STORE 632 REGIST 633 STORE 634 REGIST 635 RECALL 636 REGIST 637 RECALL 638 REGIST 639 00	Y ER 17 DIRECT ER 16 Y ER 18
626 RECALL 627 REGIST 628 RECALL 629 REGIST 630 00 08 631 STORE 36 632 REGIST 633 STORE 633 STORE 16 34 REGIST 635 RECALL 636 REGIST	ER 13 DIRECT ER 17 Y ER 19 DIRECT ER 20 Y FR 15
640 STORE S	Y ER 21 DIRECT ER 22 Y ER 19 DIRECT

.

650 651 652 653	REGISTER	23
651	RECALL Y REGISTER	
652	REGISTER	20
653	RECALL DIR	ĒČT
654	REGISTER	22
655		4 4
656	STORE Y	
650	DIOLE I	~ /
657	REGISIER	24
658	RECALL Y	
659	REGISTER RECALL Y REGISTER	-23
660	RECALL DIR	ECT
661	REGISTER 00 09 STORE Y	24
662	00 09 -	
663	STORE Y	
664	REGISTER	25
665	STORE DIRE	Ст
666	REGISTER STORE DIRE REGISTER	26
667	RECALL DIR	20
6607	RECALL DIR	LOI
668	REGISTER	10
669	x DIRECT REGISTER	
670	REGISTER	25
671	x DIRECT	
672	RECISTER	26
673	RECALL DIR	ECT
674	x DIRECT RECISTER RECALL DIR REGISTER	27
675 676 677	WRITE	
676	WRITE 05 03	
677	WRITE ALPH	۸
678		<u> </u>
679 680 ·	00 02 00 02	
600		
681	END ALPHA	
082	RECALL DIR REGISTER WRITE	ECT
683	REGISTER	11
684	WRITE	
685	06 02	
685 686	WRITE ALPH	A
5 87.	00 02	
688	00 02 .	
	00 02	
690	END AT PHA	
601	END ALPHA RECALL DIR	FCT
692	REGISTER	101
		14
693	WRITE	
694	09 00	
695	WRITE ALPH	A
696	00 02	
697	00 02	
698	00 02	
699	00 02	

700 00 02 701 00 02 702 00 02 703 END ALPHA 704 RECALL DIRECT 705 REGISTER 26 706 UP 707 INTEGER X 708 709 **;** 710 711 EXCHANGE SKIP IF Y LT X 712 713 SEARCH 714 1/x715 1 716 + DIRECT 717 REGISTER 26 718 MARK 719 1/x720 RECALL DIRECT REGISTER 26 721 722 WRITE 723 04 00 724 WRITE ALPHA 725 00 02 726 00 02 727 00 02 728 00 02 729 00 02 730 731 732 733 734 END ALPHA RECALL DIRECT REGISTER 25 UP INTEGER X 735 -736 737 **;** 738 EXCHANGE SKIP IF Y LT X 739 740 SEARCH 741 PI 742 1 743 + DIRECT 744 REGISTER 25 745 MARK 746 ΡI 747 RECALL D'RECT 748 REGISTER 25 749 WRITE

750 06 00 751 WRITE ALPHA 752 01 08 753 END ALPHA 754 SEARCH 755 e^x 756 END PROG

į.