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ABSTRACT

In recent years, transfer learning in the form of pre-trained neural language models (LMs) has
significantly transformed the research and application of natural language processing (NLP). Tech-
niques and models, such as ELMo, ULMFit, Transformer, and BERT, have claimed state-of-the-art
results on a wide range of NLP tasks. This dissertation explores utilizing pre-trained LMs to ad-
dress two major areas in NLP: Authorship Verification and Sentiment Analysis. Our design focus
for these models is to achieve not only state-of-the-art performance in the respective tasks, but also
high flexibility and high interpretability.

For the Authorship Verification problem, we propose an unsupervised solution that utilizes pre-
trained deep language models to compute a new metric called DV-Distance. The proposed metric is
a measure of the difference between the two authors compared against pre-trained LMs. Our design
addresses the problem of non-comparability in authorship verification, frequently encountered in
small or cross-domain corpora. To the best of our knowledge, this work is the first one to introduce
a method designed with non-comparability in mind from the ground up, rather than indirectly. It
is also one of the first to use deep language models in this setting. The approach is intuitive, and it
is easy to understand and interpret through visualization. Experiments on four datasets show our
methods matching or surpassing current state-of-the-art and strong baselines in most tasks.

For sentiment analysis, we propose two iterations of a framework called the sentiment-aspect
Attribution Module (SAAM) . SAAM works on top of traditional neural networks and is designed
to address the problem of multi-aspect sentiment classification and sentiment regression. The
framework works by exploiting the correlations between sentence-level embedding features and
variations of document-level aspect rating scores.

We first propose several variations of SAAM and demonstrate their effectiveness on top of
CNN and RNN based models. Experiments on a hotel review dataset and a beer review dataset
have shown that SAAM can improve the sentiment analysis performance over corresponding base
models. Moreover, because of how our framework intuitively combines sentence-level scores into
document-level scores, it can provide a deeper insight into data (e.g., semi-supervised sentence

aspect labeling). Hence, we also provide a detailed analysis that shows the potential of our models
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for other applications, such as sentiment snippet extraction.

Lastly, this dissertation also presents SAAM v2. SAAM v2 dramatic improvement over the orig-
inal version, by addressing three of its significant shortcomings. We demonstrate SAAM v2’s capa-
bilities by combining it with pre-trained language model architectures AWD-LSTM and RoBERTa.
The evaluation of SAAM v2 on the hotel and beer review datasets confirms that the module
can provide better expressiveness and overall performance. Furthermore, the model can estimate
sentence-level aspects at a much higher accuracy. We end our model analysis by showcasing some

of the fine-grained latent information discovered by SAAM v2.

v



TABLE OF CONTENTS

ABSTRACT
LIST OF TABLES
LIST OF FIGURES

1 INTRODUCTION
1.1 Authorship Verification .

1.2 Multi-aspect Sentiment Analysis . . . . . . . .. .. o oL

2 AUTHORSHIP VERIFICATION

2.1 Problem Description . . .

2.2 Related Works in Authorship Verification . . . . ... ... ... ... ... .....
2.3 Normal Writing Style and Deviation Vector . . . . . . ... ... ... ... .....

2.4 Language Model . . . ..

2.5 Unsupervised Method: DV-Distance . . . . . . ... ... ... ... .........
2.6 Supervised Method: DV-Projection . . . . . . ... ... .. ... .

2.7 2WD-UAV . .. ... ..
2.8 Experiments. . . ... ..
2.8.1 Datasets . . . . ..
2.8.2 Evaluation Metrics
2.8.3 Other Baselines . .
2.9 Results and Discussion . .
2.10 Conclusion . . ... ...

MULTI-ASPECT SENTIMENT ANALYSIS

3.1 Related Works in Multi-aspect Sentiment Analysis . . . . . ... ... ... ... ..

3.2 Why SAAM . . . .....

3.3 Sentiment-Aspect Attribution Module . . . . . . ... ... ... .. ... ... ...
3.3.1 Problem Formulation . . . ... ... ... .. ... ... ... .
3.3.2  SAAM Classification—1 (SAAM-C1) . . . ... .. ... .. .. ... .....
3.3.3  SAAM Classification—2 (SAAM-C2) . . . . . . . ... ...
3.3.4 SAAM Regression (SAAM-R) . . . . . . ... Lo

3.3.5 Intuitions . .. ..

3.4 Experiments and Evaluations . . . . .. .. .. ... . o 0 oo

341 Data. .. ... ..

3.4.2 Evaluation of Document-level MASA . . . . . . . . . . . ... ... ...

3.4.3 MASA Results . .

3.4.4 Evaluation of Latent Sentence-level Aspect Attribution . . . ... ... ...

3.4.5 Snippet Extraction
3.5 Conclusion .. ... ...

MORE ON MULTI-ASPECT SENTIMENT ANALYSIS

4.1 Introduction and Motivation . . . . . . . . . . . . e

iii

viil

viii



4.2 Model Architecture . . . . . . . .. 45

4.2.1 Encoding Stage . . . . . . .. 46

4.2.2 Sentence Feature Extractors . . . . . . . . . . . . . ... ... . ... ..., 46

4.2.3 Aspect Driven Attention . . . . . . . . . ... 47

4.2.4 Sentiment Estimation . . . . . . . . . .. ... . 48

4.3 Evaluation . . . . . . . . . e 48
4.3.1 Evaluation Method . . . . . . . . . . . ... 48

4.3.2 Training Details . . . . . . . ... 49

4.4 Results. . . . . . e 49
4.5 Analysis of Sentence-level Attribution . . . . . . ... ... o oL 50
BIBLIOGRAPHY 53

vi



LIST OF TABLES

Authorship Verification results for PAN datasets. . . . . . . . ... ... ... .... 18
Performance of proposed SAAM classification variants against corresponding base
models and other baselines, experimented on TripAdvisor hotel review dataset. . . . 37
Performance of proposed SAAM regression variants against corresponding base mod-
els and other baselines, experimented on BeerAdvocate beer review dataset. . . . . . 38

Evaluation of our SAAM framework’s ability to estimate latent sentence aspects.
Accuracy is reported against labels generated independently by two humans on both
datasets and a keyword-based labeling method of the BeerAdvocate dataset. . . . . 40
This table shows document-level classification accuracies on each aspect of the Beer-
Advocate dataset the TripAdvisor dataset. The performance of both base models
and the performance after they are combined with the proposed SAAM v2 are reported. 49

vii



N O U = W

10
11
12

13

14
15

LIST OF FIGURES

A sample hotel review with user-submitted ratings shown beneath. Sentiment scores

and aspects assigned to sentences by our model in brackets. . . . . . ... ... .. 5
A sample beer review with user-submitted ratings shown beneath. Sentiment scores

and aspects assigned to sentences by our model in brackets. . . . . . ... ... .. 6
Sample document fragments from PAN 2015. . . . . . . . .. .. .. ... ... ... 7
A conceptual demonstration of deviation vector pointing to opposite direction. . . . 10
A demonstration of the process of calculating DV using AWD-LSTM. . ... .. .. 12
A demonstration of the process of calculating DV using RoBERTa. . . . . . ... .. 12

This figure shows the network architecture of the DV-Projection method. Vectors
EMB, LM, and DV are represented using a rounded rectangles. Fully connected
layers are represented using trapezoids. Element-wise mathmatical operations are
represented using circles. . . . . . . . .. 14
Network architecture of the 2WD-UAV model. . . . . . . . . ... ... ... .... 16
Visualization of deviation vectors in 2D. Each line corresponds to a word-level DV.
All DVs in a document are visualized in one subplot. The arrow in each subplot

represents the averaged DV direction of that document. . . . . . . .. ... ... .. 22
Architecture of SAAM Classification - 1 . . . . . . . . ... ... ... 28
Optimization of attribution layer . . . . . . . . . . . .. ... oL 33

Architecture of the previous version of SAAM framework. The sentence embeddings
generated by the base model and the layers for rating and aspect estimations are
labeled with corresponding colors. . . . . . .. ... L 43
This figure shows the overall architecture of SAAM v2 combined with a base model.
The figure illustrates the scenario of an input document with three sentences. The
model estimates sentiments over two different aspects. . . . . . . . ... ... 46
A sample hotel review with aspects estimated to sentences by our SAAM v2 in brackets. 51
A sample hotel review with aspects estimated to sentences by our SAAM v2 in brackets. 52

viii



1 Introduction

In recent years, transfer learning in the form of pre-trained neural language models (LMs) has
significantly transformed the research and application of natural language processing (NLP). Tech-
niques and models, such as ELMo, ULMFit, Transformer, and BERT have claimed state-of-the-art
results on a wide range of NLP tasks. These tasks include, but are not limited to, document classi-
fication, such as sentiment analysis (IMDb dataset [44], Yelp review dataset compiled by [78], word
level sequence labeling, structured prediction such as parsing, text generation such as summariza-
tion and question answering. Indeed, it may not be an exaggeration to say that the whole NLP
research field has experienced a revolution since the first successful application of pre-trained LMs
was proposed in 2018.

With the fast-paced advancement of language modeling techniques, modern LMs have become
incredibly complex and large. For example, the full-sized variant of the BERT model consists of 24
layers and 345 million parameters. A more extreme example would be Turning-NLG [49], a model
with 78 transformer layers and 17 billion parameters, which was also shown to be exceptionally
strong at language modeling and other NLP tasks.

However, despite the massive amount of interest and effort afforded to the LMs, little research
has been conducted to better utilize token-level LM outputs to arrive at the ultimate document-
level predictions. Less formally, we refer to methods or models that take in and utilize token-
level vectors from LMs to make document-level predictions as token-to-doc connections. Token-to-
doc connections are prevalent and exist in all forms of document classification models, including
sentiment classification, question classification, and topic classification. Despite their importance,
as far as we know, almost all existing document classification models have a token-to-doc connection
based on some combinations of max-pooling, average-pooling, and a few fully connected layers.

To advance the study of this under-explored field, in this dissertation, we will propose four

novel methods and models that play the role of token-to-doc connections. The application will



revolve around two vital and challenging NLP tasks: Authorship Verification (AV) and Multi-
aspect Sentiment Analysis (MASA). It is worth noting that the methods and models we proposed
are not limited to solving just these two types of problems. There remains much potential for our

models to be applied to other tasks; and we will expand on this later in the corresponding sections.

1.1 Authorship Verification

Authorship Attribution (AA) [64] and Verification (AV) [43] are critical, challenging problems in
this age of ”fake news”. The former attempts to identify who wrote a specific document; the
latter concerns itself with the problem of finding out whether the same person authored several
documents or not. Ultimately, the goal of AV is to determine whether the same author wrote any
two documents of arbitrary authorship. These problems have attracted renewed attention, as we
urgently need better tools to combat content farming, social bots, and other forms of communication
-pollution.

An interesting aspect of authorship problems is that technology used elsewhere in NLP has not
yet penetrated it. Up until the very recent PAN 2018 and PAN 2020 authorship events [30, 4], the
most popular and effective approaches still largely rely on n-gram features and traditional machine
learning classifiers, such as support vector machines (SVM) [11] and trees [15]. Elsewhere, these
methods were recently overshadowed by deep neural networks. This phenomenon may be primarily
attributed to the fact that authorship problems are often data constrained — as the amount of text
from a particular author is often limited. From what we know, only a few deep learning models
have been proposed and shown to be effective in authorship tasks [1, 20, 6], and these networks
require a good amount of text to perform well. Likewise, transfer learning may not have been
utilized to its full potential, as some of the recent work in deep language models shows it to be a
silver bullet for tasks lacking training data [22].

In Chapter 2, we propose two deep neural language model based AV methods: DV-Distance
and DV-Projection. Both methods are built upon the idea of estimating the magnitude and the

direction of deviation of a document from the normal writing style (NWS), where the NWS is



modeled by state-of-the-art language models such as the AWD-LSTM and RoBERTa architecture
introduced in [48, 40].

Among the two methods proposed, DV-Distance is a fully unsupervised method that directly
reflects the magnitude and direction of the writing style deviation. Despite not requiring any
ground truth information, DV-Distance can out-perform many previous state-of-art methods by
a large margin. Based on the concept and framework of DV-Distance, we also proposed a su-
pervised neural architecture, DV-Projection. DV-Projection works as a token-to-doc connection
module by projecting deviation vectors (DVs) into a separate space and then subsequently com-
bining them to form a document level prediction. We theorize that doing so allows the model to
identify dimensions that are more appropriate for authorship tasks. Experiments show that this
architecture’s performance is significantly better compared to DV-Distance on academic and formal
writing datasets.

In addition to the above two methods constructed based on the concept of DVs, we also propose
a more conventional end-to-end Siamese neural network architecture named 2WD-UAV. 2WD-
UAV is built on top of a multi-layer pre-trained LSTM language model and trained with various
regularization techniques, such as adversarial noise injection. Experiment results prove the model
to be very competitive in several author verification datasets. We will mainly use this model as a
strong baseline to compare against.

Both DV-Distance and DV-Projection have intuitive and theoretically sound architecture and
come with elegant interpretability. Moreover, both proposed methods contain previously unex-
plored token-to-doc connection techniques, which utilize outputs of the pre-trained LM to inform
document-level predictions. We end this chapter with visualizations of DVs for document pairs
from the same and different authors, partially verifying our initial hypothesis.

The work in Chapter 2 primarily relates to the following peer-reviewed articles:

e Zhang, Y., Boumber, D., Hosseinia, M., Yang, F. and Mukherjee, A., 2021. Improving
authorship verification using linguistic divergence. In Workshop on Reducing Online Mis-

information through Credible Information Retrieval (ROMCIR 2021), held as part of ECIR



2021.

e Boumber, D., Zhang, Y., Hosseinia, M., Mukherjee, A. and Vilalta, R., 2019. Robust author-
ship verification with transfer learning. In Proceedings of the 2020 International Conference

on Computational Linguistics and Intelligent Text Processing (CICLing 2020).
The following publication is related, but will not be extensively discussed in Chapter 2:

e Boumber, D., Zhang, Y. and Mukherjee, A., 2018. Experiments with convolutional neural
networks for multi-label authorship attribution. In Proceedings of the Eleventh International

Conference on Language Resources and Evaluation (LREC 2018).

1.2 Multi-aspect Sentiment Analysis

Aspect level sentiment analysis is one of the main paradigms of sentiment analysis [54]. Extracting
sentiments on each aspect of the entity is a critical tasks under aspect-level sentiment analysis.
While there have been several works in aspect extraction [23, 58], opinion term extraction [12],
aspect based summarization [23, 70, 81], joint aspect and sentiment models [26, 39, 53, 80|, and
polarity identification [63], the task of MASA has received limited attention.MASA refers to ex-
tracting each aspect’s sentiment value (in polarity or rating score) at the document level. To our
knowledge, the most closely related works on MASA are those in [41, 62, 70, 72]. However, these
works either rely on aspect keyword supervision or only produce an aspect-based summary of an
entity using latent topic attribution as opposed to the proposed fine-grained MASA at the sentence
level. The individual differences between these works and ours are detailed in Section 3.1.

In Chapter 3 of this dissertation, we propose a novel neural network-based framework called
the sentiment-aspect attribution module (SAAM) to solve the problem of document level MASA.
The proposed SAAM module can be trained using a set of documents tagged with overall and
aspect ratings. During inference, SAAM employs the latent sentiment-aspect attribution (LSAA)
mechanism, where it assigns a latent aspect distribution to each sentence and estimates their

sentiment scores. The estimated latent aspect distribution and sentiment scores for each sentence



e Definitely not a 5 star resort I'm dumbfounded that this hotel gets good reviews and is so highly rated. [1.23,
Value] e It’s decidedly a 3 star property, not 5 stars as indicated. [-0.04, Service] e The rooms are very
dated and run down, old crappy beds and pillows, an old tv and overall poorly maintained. [-2.97, Room] e
The whole property is pretty run down and old-looking. [-0.47, Location] e The food is subpar, not one
meal I had would be called great. [-2.23, Service] e The service is uneven and the staff is poorly trained
and uninformed. [-2.23, Service] e The beach is great, it’s the only redeeming factor. [1.27, Location] e
However the resort is a 1-hour taxi trip from the airport. [1.68, Location]

Overall: ). 0, SAGAQAe Value: ), PAeRakake
Room: ), phokokoke Location: D000 Q¢
Cleanliness: KRIIWCTY  Service: )0 $Aekeke

Figure 1: A sample hotel review with user-submitted ratings shown beneath. Sentiment scores and
aspects assigned to sentences by our model in brackets.

of a document are then pooled together to estimate the document-level review ratings. We proposed
three variations of our SAAM framework (two classifications and one regression) to demonstrate
the possibilities available.

Chapter 4 of this dissertation proposes a greatly improved version of SAAM named SAAM v2.
The new model improves on the existing one by addressing three critical issues. Consequently,
SAAM v2 demonstrates better performance at both document-level sentiment estimation and sen-
tence level aspect estimation.

To our knowledge, the proposed models are the first neural network models capable of dis-
covering both sentiment and aspect information at the sentence level with only document-level
aspect-rating labels. Moreover, the frameworks we introduced in this work are not independent,
specific neural network architectures. Instead, they are add-on “token-to-doc” components that
can be added to other popular neural network architectures to support MASA and LSAA. As will
be detailed in Chapter 3, we showcase the proposed SAAM framework by stacking three variations
of SAAM on top of a CNN [31] and a GRU-based RNN to demonstrate the framework’s ability to
generalize, and we compare the performance between them. In Chapter 4, we showcase SAAM v2
by stacking it on top of multi-layer pre-trained LSTM and RoBERTa base models.

Experimental results on the TripAdvisor hotel review dataset and BeerAdvocate beer review
dataset illustrate the effectiveness of the proposed approaches by showing performance improvement

over corresponding base models, as well as other baselines on several metrics for classification and



e This beer is yellow, fizzy, and clearly meant for washing dirt out of your mouth after mowing the lawn. [1.035,
Appearance] e I’'m not even sure it’s good for that. [3.245, Taste] e It’s definitely yellow and fizzy, with no
head to speak of, and zero lacing. [-1.27, Appearance] e It almost smells like a loaf of bread, and nearly
tastes the same. [4.255, Aroma] e It’s very earthy and grainy with nary a hop to be found. [3.58, Taste] e
Man, I love me some Caldera, but I would rather drink a Bud Light than this on a hot summer day. [1.845,
Appearance] e Sorry guys, but this beer gets an F. [1.495, Taste]

Overall: K vevere
Appearance: KIITCICTC Taste: ) gAeRokaks
Palate: KeYeveve  Aroma: b @ \akakoks

Figure 2: A sample beer review with user-submitted ratings shown beneath. Sentiment scores and
aspects assigned to sentences by our model in brackets.

regression variations of the MASA task. Additionally, we evaluate our model’s ability to attribute
aspect labels to each sentence of a document by using manually labeled data and a heuristic
keyword approach. We publish these processed datasets and sentence aspect labeling to better
promote research in this novel task.

The work in Chapter 3 primarily relates to the following peer-reviewed article:

e Zhang, Y., Yang, F., Hosseinia, M. and Mukherjee, A., 2020. Multi-aspect Sentiment Anal-
ysis with Latent Sentiment-Aspect Attribution. In The 2020 IEEE/WIC/ACM International

Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2020).

The work in Chapter 4 primarily relates to the following article, which has been submitted to

EMNLP 2021 and is currently pending review:

e Zhang, Y., M., Mukherjee, 2019. Multi-aspect Sentiment Analysis with Improved Sentiment-
Aspect, Attribution Module. Submitted The 2021 Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP 2020).

2 Authorship Verification

2.1 Problem Description

In the following sections, we use the symbol P to denote an AV problem. Each problem P consists

of two elements: a set of known documents K, and unknown documents, U. Similarly, & and



u represent a single known and unknown document, respectively. The task is then to find a
hypothesis, h, that takes in both components and correctly estimates the probability that the same
author writes them. Important in many forensic, academic, and other scenarios, AV tasks remain
very challenging due to several reasons. For one, in a cross-domain AV problem, the documents
in K and u could be of entirely different genres and types. More specifically, K could contain
several novels written by a known author, while u could be a Twitter post. Another example
demonstrating why a cross-domain model may be necessary is the case of a death note [65], as it
is implausible to obtain K containing death notes written by the suspect. Furthermore, solving an
AV problem usually involves addressing one or more types of limited training data challenges: a
limited amount of training problems P, out-of-set documents and authors appearing in test data, or
a limited amount of content in the document sets { K, U} of a particular problem P. Many methods
use sophisticated forms of test-time processing, data augmentation, or ensembling to successfully
minimize these challenges’ impact and achieve state-of-the-art results [1, 5]. However, such solutions
typically result in prohibitively slow performance, most require a considerable amount of tuning,
and almost all of them, to the best of our knowledge, require labeled data. As a result, existing

methods are not relevant in many real-world scenarios.

k: T suppose that was the reason. We were waiting for you without knowing it. Hallo!
u: He maketh me to lie down in green pastures; he leadeth me beside the still waters.

Figure 3: Sample document fragments from PAN 2015

Based on our observations, it is not unusual for an AV model to identify some salient features
in either K or U, U yet fail to find a directly comparable case in the other member of the pair.
An example consisting of two brief segments from different authors is shown in Figure 3. We can
immediately notice that document u contains unusual words “maketh” and “leadeth” which are
Old English. In contrast, document k is written in relatively colloquial and modern English. A
naive method of AV one may devise in this scenario is to detect whether document K contains the

usage of “makes”, the modern counterpart to “maketh”. If there are occurrences of “makes” in K,



we may be able to conclude that the two documents are from different authors. However, the issue
with this approach, is the non-zero probability of K containing no usages of “makes” at all.

Although it is possible to overcome the problem of non-comparability hand-crafted features,
feature engineering is often a labor-intensive process that requires manual labeling. It is also
improbable to design all possible features that encode all characteristics of all words. On the other
hand, while some modern neural network-based methods were built upon the concept of distributed
representations (word embeddings) and could encoded some of the essential features, there is no
existing approach explicitly attempting to address the non-comparability problem.

To address the non-compatibility problem, we formulate the NWS, which can be seen as a
universal way to distinguish between a pair of documents and solve the AV task in most scenarios
in an unsupervised manner. The differences or similarities between documents are determined with
respect to the NWS. To this end, we establish a new metric called Deviation Vector Distance (DV-
Distance). To the best of our knowledge, the proposed approach is the first model designed with

non-compatibility in mind from the ground up.

2.2 Related Works in Authorship Verification

Much of the existing works in AV are based on vocabulary distributions, such as n-gram frequency.
The hypothesis behind these models is that the relative frequencies of words or word combinations
can be used to profile the author’s writing style [64, 18]. One can conclude that two documents
are more likely to be from the same author when the distributions of the vocabularies are similar.
For example, in one document, we may find that the author frequently uses ” I like ...,” while in
another document, the author usually writes "I enjoy ...”. Such a difference may probably indicate
that the documents are from different authors. This well-studied approach has had many successes,
such as settling the ”Federalist Papers’ dispute” [60]. However, its results are often less than ideal
when dealing with a limited data challenge.

The number of documents in K and U is often insufficient to build two comparable uni-gram

word distributions, let alone 3-gram or 4-gram ones. The depth of difference between two sets of



documents is often measured using the unmasking technique while ignoring the negative examples
[32]. This one-class technique achieves high accuracy for 21 considerably large (over 500K) e-Books.
A simple feed-forward three-layer auto-encoder (AE) can be used for AV, considering it a one-class
classification problem [45]. Authors observe the behavior of the AE for documents by different
authors and build a classifier for each author. The idea originates from one of the first applications
of AEs for novelty detection in classification problems [25].

AV was studied to detect linguistic traits of sock-puppets to verify the authorship of a pair of
accounts in online discussion communities [35]. Recently, a spy induction method was proposed
to leverage the test data during the training step under the ”out-of-training” setting, where the
author in question is from a closed set of candidates while appearing unknown to the verifier [19].

In a more realistic case, we have no specified writing samples of a questioned author, and there
is no closed candidate set of authors. Since 2013, a surge of interest arose for this type of AV
problem. [61] investigated whether one document is one of the outliers in a corpus by generalizing
the Many-Candidate method by [33]. The best PAN 2014E method optimizes a decision tree. Its
method is enriched by adopting a variety of features and similarity measures [15]. For PAN 2014N,
the best results are achieved by using fuzzy C-means clustering [52]. In an alternative approach, [34]
generated a set of impostor documents and applied iterative feature randomization to compute the
similarity distance between pairs of documents. One of the more exciting and powerful approaches
investigates the language model of all authors using a shared recurrent layer and builds a classifier
for each author [1]. Parallel recurrent neural network and transformation AE approaches produce
excellent results for various AV problems [20], ranging from PAN to scientific publication’s AA [6].
A non-machine learning model comprised of a compression algorithm, a dissimilarity method, and

a threshold was proposed for AV tasks, achieving first place in two of four challenges [16].

2.3 Normal Writing Style and Deviation Vector

To make a small and often cross-domain document pair comparable, we propose comparing both

documents to the NWS instead of directly comparing the pair. We can define the Normal Writing



shaving beard
.4 N
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K | hate ? my ? /
Gender axis in
U My favorite gift is the ? embedding
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.
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dress

Figure 4: A conceptual demonstration of deviation vector pointing to opposite direction.

Style or NWS loosely as what average writers would write on average, given a specific writing
genre, era, and language. From a statistical perspective, the NWS can be modeled as the averaged
probability distribution of vocabulary at a location, given its context. As manifested in Figure 3,
the reason words ”"maketh” and ”leadeth” stand out in the document u because they are rarely
used in today’s writing. Hence, they are deviant from the NWS.

We hypothesize that we can utilize modern neural language models to the model NWS. We
also assume the predicted word embedding at a given location is an excellent semantic proxy of
what an average writer would write at that location. Moreover, we also hypothesize that, generally,
an author has a consistent deviation direction in the word embedding space. Consequently, if two
documents k and u have the same direction of deviation, then the two documents are likely from the
same author. Conversely, if two documents have a significantly different direction of deviation, then
they are probably from different authors. Previous empirical evidence shows that word embeddings
constructed using neural language models are good at capturing syntactic and semantic regularities
in language [50, 51, 56]. The vector offsets encode properties of words and relationships between
them. A famous example demonstrating these properties is the embedding vector operation: “King
- Man + Woman = Queen”, which indicates that there is a specific vector offset that encodes the
gender difference.

Given the above context, we theorize that it is possible to encode the deviance of "maketh” from
"makes” as “Maketh - Makes” in a similar manner. We shall refer to the offset vector calculated

this way as the Deviation Vector (DV). Figure 4 shows an illustrative example that visualizes the

10



roles of Normal Writing Style modeling and the DVs. In the upper part of the figure, a document &
by a male author is suggested, containing a sentence, "I hate shaving my beard.” At the bottom half
of the figure, we can see a document u written by a female author: ”My favorite gift is a dress.”
Assuming we have an NWS model that can correctly predict all the words except at locations
marked using a question mark, the NWS may predict very general terms, such as “do” or “thing”
in place of those words. The actual words at these locations deviate from these general terms in
the direction of the DV, represented in the figure using arrows. This specific example contains the
words “beard” and “dress”, usually associated with a particular gender, while the general terms
are gender-less. The DV must then have a component along the direction of the gender axis in the

embedding space but in the opposite direction.

2.4 Language Model

We used the AWD-LSTM architecture [48], implemented as part of the universal language model
(ULMFit) [22], and RoBERTa [40] to model the NWS. AWD-LSTM is a three-layered LSTM-
based language model that is trained by predicting the next word given the preceding sequence.
Meanwhile, RoBERTa is a BERT-based model trained by predicting the masked word given an
input sequence. Both of these language models are pre-trained on large corpuses. Thus, their
predicted embedding for the unseen words can be used as a proxy of the statistical distribution of
NWS.

Assuming these language models can adequately model the NWS, the DVs can be calculated
by subtracting the actual embeddings of the words from the predicted word embeddings; more
formally, for an input sequence consisting of n tokens {wy,...,w,}. We use EM B to denote the
embedding layer of the language models and use LM to denote the language model itself. Then
EM B(w;) and LM (w;) will correspond to the embedding of the actual token at location i and the

predicted embedding by the language model at location ¢ when the corresponding token is the next
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Figure 5: A demonstration of the process of calculating DV using AWD-LSTM.
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Figure 6: A demonstration of the process of calculating DV using RoBERTa.

token (AWD-LSTM) or is masked (RoBERTa). The DV at location i can then be calculated as:

DV; = LM (w;) — EMB(uw;) (1)

Figures 5 and 6 demonstrate the respective processes of calculating the DVs for a given input
sequence using AWD-LSTM and RoBERTa. For AWD-LSTM, at each token location 4, the DV is
calculated by subtracting the predicted embedding generated at the previous token location ¢ — 1
by the embedding the current word at i. Consequently, for a document of n words, a total of n —1
DVs can be generated. For RoBERTa, the predicted embedding at location ¢ is obtained by feeding
the model a complete input sequence with the token at i replaced by the “[mask]|” token. A total

of n such inference needs to be conducted to obtain all the predicted embeddings at each location.
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The DVs can then be calculated by subtracting the predicted embeddings using the actual token

embeddings, resulting in a total of n DVs.

2.5 Unsupervised Method: DV-Distance

To compare the direction of a deviation between two documents, we calculate the element-wise
mean of all the DVs throughout each document to obtain the “averaged DVs”(ADVs). For a given
document of n tokens, ADV (doc) = X DV;/n. Notice that for locations with larger deviations
between LM and EM B, the corresponding DV shall exert a larger influence on the document level
ADV. ADVs are calculated for both K and U, and then the DV-Distance can be calculated as the
cosine similarity between ADV (K) and ADV (U).

ADV(K) - ADV(U)

DV Dist(K. U) = 1 pv ) [TADV (0] @)

Since the DV-Distance method is completely unsupervised, the resulting distance values are
relative instead of absolute. That is, it is difficult to determine the classification result of a single
document pair. Instead, a threshold value needs to be determined such that we can then classify all
the document pairs — with DV-Distance values greater than the threshold as ”Not same author”
and vice versa. To determine the threshold, we follow previous PAN winners, such as [1], and use
the median of the DV-distance values between all K and u pairs within the dataset. Using this
scheme is reasonable because PAN AV datasets are guaranteed to be balanced.

During our experiments, we found that the threshold value is relatively stable for a particular
model in a given dataset, although it, can be quite different between LSTM and BERT models. For
real-world applications, the threshold value can be determined ahead of time using a large dataset

of the same genre and format as the problem to be evaluated.

2.6 Supervised Method: DV-Projection

One of the significant deficiencies of our DV theory is that it assumes that all differences in the DV

hyperspace are relevant. However, one can imagine this assumption does not always hold in all the
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Figure 7: This figure shows the network architecture of the DV-Projection method. Vectors EM B,
LM, and DV are represented using a rounded rectangles. Fully connected layers are represented
using trapezoids. Element-wise mathmatical operations are represented using circles.

AV settings. For example, the gender dimension shift shown in Figure 4 can be a useful clue when
conducting AV on a Twitter dataset or in the context of autobiographies. It may be less relevant
if the gender shift occurs in a novel, as the vocabularies used in the novel are more relevant to its
characters’ genders instead of the author’s.

To address this issue, we propose using a supervised neural network architecture to project the
D.V.s onto axes that are most helpful for distinguishing authorship features. As we will demonstrate
in the results and analysis section of this work, these DV projections are very effective when
combined with the original token embeddings generated using the language models.

Here, we shall formally define the DV-Projection process. Given that we have the embeddings
and DVs for both a known document and an unknown document, each denoted using EM Bf,
DV;’LC7 EMB, DV, we apply dense layers P, and P, on embeddings and DVs respectively to
extract prominent features. These features are then feed together into the dense layer Pjpter to
allow these vectors to interact with each other. The outputs of Pj,t, are then average-pooled
along the sequence to produce document-level features. Lastly, features from both known and
unknown documents are connected to two additional fully connected layers Py;, Py to produce the

final output. These operations are summarized in Equation 3 and visualized in Figure 7, and all
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layers are used in combination with hyperbolic tangent as the activation function:

TokenFeaturei»C = Pinter(Pe (EMBZI“), Pdv(DVZ-k)) (3)
TokenFeatureEL = Pinter(Pe (EMB;-L), Py, (DVj“))

DocFeature® = AvgPool(TokenFeature®)

DocFeature® = AvgPool(TokenFeature®)

logit = Pyy(Pyi(DocFeature®, DocFeature®))

To allow the training of the above model together with RoBERTa, we break documents from the
original training document pairs into segments of 128 tokens long. These short document segments
are then used to build small training example pairs. This approach allows us to build more training
examples to train the network parameters, but also forces the model to be more robust and prevent
overfitting by limiting the amount of text it has access to. The training loss used is binary cross
entropy loss in combination with the sigmoid function.

Because the DV-Projection method is a supervised model, the model can learn the optimal
threshold for classification from a theoretical perspective, therefore eliminating the need for using
median value as the threshold. However, the document segment-based training pair generation
method can generate significantly more “same author” pairs than “different author” pairs. There-
fore the resulting trained model is biased and cannot be assumed to have a 0 valued threshold !. To
make it consistent, we also use the testing set median value as the threshold for the DV-Projection

method 2.

In a real-world application, this problem can be easily addressed by simply generating a large and balanced
training dataset.

20One can also opt to use the training set median value as the threshold. To give a rough impression of how this will
impact the performance: On the PAN14N dataset, using the testing set median value as the threshold will produce
61% in accuracy, using training set median value as the threshold will produce 65% in accuracy. On the PAN14E
dataset: using testing set median value as the threshold will produce 73% in accuracy, using training set median
value as the threshold will produce 70% in accuracy.
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Figure 8: Network architecture of the 2WD-UAV model.

2.7 2WD-UAV

In this section, we will introduce a novel neural network architecture, 2WD-UAV. The model utilizes
a pre-trained multi-layer language model in combination with additional RNNs to encode both
known documents K and unknown document u. Similar to our DV-Distance methods introduced
earlier this chapter, 2WD-UAV also makes use of transfer learning and language modeling, and
it demonstrates solid performance in AV problems. On the other hand, from an architectural
standpoint, the model resembles many conventional end-to-end trained classification models, in
contrast to the unsupervised DV-Distance method. As such, we will use this model as a strong
baseline for us to compare and analyze against.

In a gist, the 2WD-UAV model is a bi-directional pipeline of recurrent neural networks (see
Figure 8). It is built on top of a pre-trained 5-layer LSTM model, with the last three layers
(2 intermediate hidden ones and the final embedding output) acting as inputs by pooling them
together. We use an ensemble of sequence classifiers, one based on an RNN and the other using a
QRNN [7], a recent addition to the RNN family that combines some properties of recurrent and

convolutional networks. Both are 3-layer models with the last two layers averaged and max pooled,
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passed through a Rectified Linear Unit (ReLLU), and then to the logit units. We output probabilities
rather than labels. The predictions made by RNN and QRNN are then averaged.

The attempt to improve generalization through a bi-directional model brings with it two chal-
lenges. First, our pre-trained LSTM model is uni-directional. Second, the QRNN design used in
this work does not support bi-directional training. We circumvent the problem by tokenizing and
numericizing the text data by first training in a regular fashion on a standard pre-trained Wikipedia
model, then loading the numericalized tokens backward, using a model trained on Wikipedia back-
ward. At test time, we reversed each document, giving the normal ones to the forward model and
the backward ones to the backward model, then averaging the results of the two runs, effectively

reaping the benefits of the equivalent use of a bi-directional RNN.

2.8 Experiments

The goal of the empirical study described in the following section is to validate the proposed DV-
Distance and DV-Projection method. For this purpose, we use AV datasets released by PAN in

2013 [28], 2014 [66] and 2015 [65].

2.8.1 Datasets

The 2013 version of the PAN dataset consists of 10 training problems and 30 testing problems. PAN
2014 includes two separate datasets, Novels, and Essays. PAN 2014N consists of 100 English novel
problems for training and 200 English problems for testing. PAN 2014E consists of 200 English
essay problems for training and 200 English essay problems for testing. PAN 2015 is a cross-topic,
cross-genre author verification dataset, which means known documents and an unknown document
may come from different domains. PAN 2015 contains 100 training problems and 500 testing prob-

lems.
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2.8.2 Evaluation Metrics

For each PAN dataset, we follow that year’s challenge rules. PAN 2013 uses accuracy, Receiver-
Operating Characteristic (ROC) and Score = Accuracy x ROC. PAN 2014 introduces the c@1
measure to replace accuracy to potentially reward those contestants who choose not to provide an

answer in some circumstances. This metric was proposed in [55], and it is defined as

a1 = () x (ne + (my x ), (4)

Where n, is the number of problems correctly classified, and n,, is the number of open problems.
The Score for PAN 2014 and 2015 is calculated as the product of c@1 and ROC, c@1 x ROC.

Table 1: Authorship Verification results for PAN datasets.

PAN14E PAN14N

Category Method c@l ROC Score | c@l ROC  Score
Baseline GNB 0.675 0.741 0.5 0.56  0.743  0.416
Baseline LR 0.675 0.728 0.491 | 0.515 0.604 0.311
Baseline MLP 0.7 0.768 0.538 | 0.54 0.782  0.422
PAN FCMC [52] 0.58 0.602 0.349 | 0.71 0.711 0.508
PAN Frery [15] 0.71 0.723 0.513 | 0.59 0.61 0.36

TE [20] 0.67 0.675 0.452 | 0.695 0.7 0.487

2WD-UAV [5] | 0.73 0.761 0.555 | 0.68 0.801 0.552
Our model DV-Dist. L | 0.58 0.575 0.334 | 0.82 0.79 0.648
Our model DV-Dist. R | 0.52 0.526 0.274 | 0.71  0.739  0.525
Our model DV-Proj. R | 0.73 0.778 0.569 | 0.61 0.668 0.41

PAN13 PAN15

Category Method Acc. ROC  Score | c@l  ROC  Score
Baseline GNB 0.633 0.795 0.503 | 0.552 0.78 0.431
Baseline LR 0.7 0.781 0.547 | 0.544 0.796  0.433
Baseline MLP 0.533 0.5 0.267 | 0.554 0.687 0.381
PAN MRNN [1] - - - 0.76 0.81 0.61
PAN Castro [8] - - - 0.69 0.75  0.52
PAN GenlM [61] 0.8 0.792 0.633 | - - -
PAN CNG [24] - 0.842 - - - -

TE [20] 0.8 0.835 0.668 | 0.748 0.75 0.561

2WD-UAV [5] | 0.82 0.825 0.677 | 0.75 0.822 0.617
Our model DV-Dis. L 0.7 0.763 0.534 | 0.76 0.834 0.634
Our model DV-Dis. R | 0.63 0.746 0.472 | 0.716 0.767 0.548
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2.8.3 Other Baselines

Classic Models with N-gram Features: In our study we use a set of baselines reported in [20].
These results are produced using seven sets of features, including word n-grams, POS n-grams, and
character 4-gram. The features need to be transformed because baselines are standard classification
algorithms. According to the authors, simple concatenation of two documents’ features produces
poor results. Seven different functions were used to measure the similarity between feature vectors
from both documents, including Cosine Distance, Fuclidean Distance, and Linear Kernel. Several
common classifiers are trained and evaluated using these similarity measurements, providing a
reasonable representation of the performance that is achievable using classic machine learning
models and n-gram feature sets. Out of all the baseline results, three classifiers with the highest
performance are reported along with the other PAN results for comparison. The selected classifiers
are Gaussian Naive Bayes (GNB), Logistic Regression (LR), and Multi-Layer Perceptron (MLP).
We compare them with the proposed approach along with the state-of-the-art methods.

PAN Winners: We compare our results to the best performing methods submitted to PAN
each year. The evaluation results of the participant teams are compiled in the overview reports of
PAN 2013 [28], 2014 [66] and 2015 [65]. In PAN 2013, the best-performing methods are the Gen-
eral Imposters Method (GenIM) proposed by [61] and the Common N-Gram (CNG) dissimilarity
measure proposed by [24]. In PAN 2014 challenge, the best method for the English Essay dataset
is proposed by [15] (Frery), and the best method for English Novel dataset is by [52] which uses
Fuzzy C-Means Clustering (FCMC). In PAN 2015, the Multi-headed Recurrent Neural Networks
(MRNN) proposed in [1] outperforms the second-best submission (Castro) [8] of the same year by
a large margin.

Transformation Encoder: In [20], an auto-encoder based AV model performed competitively
on PAN. We include its results to evaluate our model against one of the newest and strongest

performers.
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2.9 Results and Discussion

Table 1 shows the results from experiments on PAN datasets, detailed in Section 2.8. For each
dataset and each evaluation metric, the highest values and the best performing models are marked
in bold font. The proposed unsupervised DV-Distance method conducted using AWD-LSTM and
RoBERTa is denoted as “DV-Dist. L” and “DV-Dist. R”, respectively. The proposed supervised
DV-Projection method is trained using DVs produced by RoBERTa and is labeled as “DV-Proj.
R” in the table. We were only able to train the projection model on PAN14E and PAN14N because
both have relatively long documents and large training sets.

For PAN 2013, our results are slightly below the best performer of that year in terms of accuracy
and AUC-ROC; the 0.1 difference in accuracy translates to 3 problems difference out of 30 testing
problems. The PAN 2013 corpus are text segments from published Computer Science textbooks.
The best performing model in this dataset is the neural network-based model from 2WD-UAV.

For PAN 2014, we observed some interesting results. For the Novels part of the challenge,
our unsupervised DV-Distance method based on LSTMs drastically improves upon previous state-
of-the-art models, surpasses the previous best result by 18 percent. On the other hand, for the
Essay dataset, both unsupervised DV-Distance methods failed to capture the feature necessary to
complete the task, showing only 58% and 52% in accuracy. However, the supervised DV-Projection
method successfully projects the DVs generated using RoBERTa into a hyperspace that is suitable
for the essay AV problems, resulting in significant performance improvement over the unsupervised
models and slightly outperforms the previous best result from 2WD-UAV.

PAN 2015 edition places its focus on cross-genre and cross-topic AV tasks. Based on our
observations, the corpus mainly consists of snippets of novels of different genres and sometimes
poems. Our proposed DV-Distance method based on multi-layer LSTMs once again shows excellent
performance in this dataset, slightly outperforms the previous best model MRNN [1]. In cross-
domain settings like PAN 2015, the problem of non-comparability is likely to be very pronounced.
Therefore, the strong performance of our methods in this dataset verifies that these methods are

quite robust against domain shift and non-comparability.
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Overall, we have observed two consistent trends in our experiments. First, we find that the
AWD-LSTM based DV-Distance method consistently performs better than the RoBERTa based
DV-Distance method. At first glance, this may seem counter-intuitive, as BERT-based models are
generally regarded as one of the best performing models for language modeling. We theorize that
this is precisely the culprit: RoBERTa was able to predict the target word much more accurately,
both due to its architectural advantage and it simply has access to more contextual information.
However, if the language model is performing “too accurate”, it failed to act as a model which
represents averaged writing style, but instead mimicking the author’s tone and style. From a
mathematical perspective, predictions that are “too accurate” will cause DV's calculated using
equation (1) to have a magnitude close to zero. Consequently, later steps in equation (2) or (3) will
have very little information to work with.

Second, we find that our proposed methods are most suitable for novel and fiction-type docu-
ments. Our methods demonstrated state-of-the-art performance in both PAN 2014 Novel and PAN
2015; both consist of mainly novel documents. On the other hand, PAN 2013 and PAN 2014 essay
contains writing styles that are more formal and academic-oriented, for which our models performed
less competitive. We theorize that this is because essay documents are easier to predict, whereas
novels are much more “unpredictable”. This difference in predictability means higher quality DVs
can be obtained in novel datasets; while in essay datasets, the language models are once again
making predictions that are “too accurate”, corroborating the first theory we discussed above.

Deviation vectors of two PAN 2015 document pairs are visualized in Figure 9. Figure 9a and
Figure 9b shows DVs from two documents written by different authors while Figure 9¢ and Figure
9d shows DVs from two documents by the same author. The plots are generated by conducting PCA
on the DVs at each word, projecting the 400 dimensions DVs from AWD-LSTM to 2 dimensions.
A longer line in the plots hence represents a bigger deviation from the NWS. We can observe that
in Figure 9a and 9b the DVs’ directions are in opposite direction while in Figure 9¢ and 9d their

directions are similar.
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Figure 9: Visualization of deviation vectors in 2D. Each line corresponds to a word-level DV. All
DVs in a document are visualized in one subplot. The arrow in each subplot represents the averaged
DV direction of that document.

2.10 Conclusion

In this chapter, we presented two novel approaches to the AV problem. Our first method, DV-
Distance, relies on using deep neural language models to model the Normal Writing Style and
then computes the directional differences in the embedding space between the input document.
The other proposed approach, DV-Projection, is a supervised architecture that takes in deviation
vectors and extracts relevant features to predict the authorship of the unknown document. The

evaluation shows that authorship style differences strongly correlated with the distance metric we
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proposed. Our methods demonstrate state-of-the-art models on multiple datasets, both in terms

of accuracy and speed.
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3 Multi-aspect Sentiment Analysis

3.1 Related Works in Multi-aspect Sentiment Analysis

Neural networks have been shown to be very effective in several natural language processing (NLP)
tasks such as semantic parsing [76], sentence modeling [29], and various other classic NLP tasks [10,
69]. Recent works have employed convolutional neural networks (CNN) for sentiment classification
at the sentence level and for short texts [14], which have shown promising results. A document-
level sentiment analysis system based on recurrent neural network (RNN) has also been explored
in [67]. Despite these successes, not many neural-network-based models specifically address the
problem of MASA. Although it is always possible to train one network for each predetermined
aspect independently, we hypothesize that providing multiple aspect scores concurrently during
training should result in better performance. More recently, [59] proposed a hierarchical neural
network that has shown promising results in the ABSA tasks. However, they are solving sentence-
level ABSA problems, which are different from the document-level ABSA this chapter addresses.

In [72], the multi-aspect rating task was performed using generative modeling. Later, in [73],
a unified generative model for rating analysis was proposed that did not require explicit aspect
keyword supervision. However, the model does not utilize aspect ratings of a document but instead
uses overall ratings to discover latent aspects and estimate ratings on each aspect. A supervised
LDA-like [47] scheme was proposed in [70] and later in [41] that regressed the local and global
topics (aspects) of reviews with the overall rating and aspect ratings for each review. Ranking
algorithms are designed to either identify important aspects [77], or aspect rating prediction without
discovering them [62]. Another model used document-level multi-aspect ratings as a form of “weak
supervision” to uncover sentence aspects. While it was pretty successful in the sentence aspect
attribution task, its primary purpose was not to estimate sentiment ratings [46].

There are many research efforts around SemEval 2015 and 2016 ABSA datasets [57]. In these
datasets, both aspect and sentiment polarity labels are available at both sentence and document

levels. As such, the works such as [68, 59] address a somewhat different problem than the one in
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this work. Both of these works utilize the sentence level labels that are not genuinely available in
real-world review datasets and require labor-intensive labeling. Furthermore, the datasets include
an extensive set of aspect categories. In contrast, real-world datasets such as the TripAdvisor
review dataset have a fixed small set of aspects (roughly 3 - 5) that users rate on at the document
level. These small differences in problem setting ultimately lead to very different solutions and
models, and we believe both problem settings have their values.

In recent years, deep learning-based models have dramatically changed the field of natural
language processing and significantly improved the performance of document classification [75, 6,
79], machine translation [2], and language modeling [13]. CNN [31], RNN such as LSTM/GRU
[68, 59] and more recently, pre-trained Bert based architectures have been proposed to solve the
problem of sentiment analysis, and these models have significantly advanced state-of-the-art. Pre-
trained transformer-alike architectures such as BERT with an extra task-specific layer are fine-tuned
on domain reviews for aspect extraction and sentiment classification separately [74]. Unlike the
models that extract aspects and predict their sentiments individually, multi-task neural learning
frameworks are designed to prevent error propagation in such models. They jointly tackle aspect

extraction, and sentiment classification tasks using modern neural networks [71, 17, 38].
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3.2 Why SAAM

Most of these previously mentioned deep learning classification models are built on top of some form
of base model (also called an encoder). Most of these base models can take in an embedded sequence
of text and generate output vectors at each token’s location. These token-level outputs are then
fed to one or several layers of fully connected layers (also called decoders or classification heads) to
estimate the probability distribution at the document level ultimately. While much progress has
been made in improving these base models’ expressiveness, little attention has been paid to the
connection between token level outputs of the base models and the final prediction outputs. These
token-to-doc connections are often either done by max-pooling/average-pooling [31, 21] or directly
use the last/first token’s output embedding as the document level embedding [59, 74].

We believe these existing token-to-doc connection schemes are not expressive enough and can
become an information bottleneck in both the training and inferencing stage. In comparison, our
SAAM framework provides an expressive connection between each sentence and the document-level
outputs. In doing so, the SAAM framework can further estimate the latent aspect distribution in
each sentence, along with its sentiment rating score. Such fine-grained analysis capability, which
we refer to as LSAA, provides more insight into the data. As typical document-level sentiment
classification or regression is a unison of sentiments expressed in various sentences across different
aspects.

Secondly, our model only requires overall and aspect document-level ratings during the training
stage, which can be acquired by most online review systems that use formats similar to those
illustrated in Figure 1 and 2. In other words, the proposed SAAM architecture does not require
any sentence-level aspect or sentiment supervision and can be easily applied to most existing review
datasets and systems.

Last, by assigning each sentence to a proper aspect, the SAAM framework’s LSAA capability
allows the generation of aspect-specific sentiment snippets. This feature is similar to a summariza-
tion system, where the summarization is based on choosing the relevant sentences under different

latent aspects. These three major differences not only allow our model to improve upon the current
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MASA methods, but also take into account variations of sentiment analysis tasks from different

perspectives.

3.3 Sentiment-Aspect Attribution Module
3.3.1 Problem Formulation

Formally, we refer to the text content part of a review simply as review in the remaining chapters
and denote a single review using r. We use s; to refer to the ¢th sentence of a document and a
document thus consists of |s| number of sentences. The set of factors that a reviewer can evaluate
and rate are referred to as aspects, denoted using A. Moreover, the notation |A| is used for the
cardinality of set A. For example, the hotel review data we are working with contains the following
aspects:

A = {Value, Room, Location, Cleanliness, Service}

The actual overall rating and aspect ratings associated with a review r are denoted as Ryyerqir (7)
and Rggpects(r). To correspond to the five-star rating scheme, we assume that the overall rating is

scalar and that a aspect rating is a vector consisting of |A| number of elements:

Roverall(r) € {132737475}1 (5)

Raspects(r> € {17 2,3,4, 5}|A‘

3.3.2 SAAM Classification—1 (SAAM-C1)

The first variation of the SAAM classification model estimates the overall rating class using all
features generated from all sentences by the convolution layer or the GRU cell directly. Each
sentence’s features are also passed into a fully connected softmax layer to estimate the five-class
rating distribution of each sentence, correspondingly. There is one such layer for every sentence in

an input r while the weights are shared. We refer to these layers as rating score layers. Another set
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Figure 10: Architecture of SAAM Classification - 1

of weights are used to estimate the aspect distribution of each sentence. We refer to these layers
as aspect attribution layers. The resulting aspect distributions at the aspect attribution layers are
then used to scale the rating scores from the rating score layer of each sentence, such that sentences
with a high probability of belonging to a specific aspect exert a stronger influence on the ultimate
aspect rating distributions at the document level. All scaled rating scores are then summed up for
each aspect to estimate the final rating class for each aspect. The structure of this SAAM variation,
together with the underlying K-CNN base, is visualized in Figure 10.

More formally, given any base model such as a CNN or a GRU and an input document r,
we should be able to generate the vector representation ¢ of dimension d for each sentence of the
document. The SAAM utilizes these sentence-level feature vectors generated by the base networks
to estimate latent distributions and, ultimately, the sentiments of the document. For CNNs, these
sentence representations are usually generated using max-pooling the filter activations along the
sentence length dimension. For RNNs, this embedding can be obtained by using the final output
at the last token. While for BERT-based models, the sentence embedding is usually generated
by averaging all outputs along the sequence dimension or using the outputs of the [CLS] token.
Thus, for an input document with |s| number of sentences, a matrix u of dimension |s| X d can be

obtained. This process is illustrated on the left side of Figure 10.
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To obtain a probability distribution of the overall rating label of the the entire review, all of the
features in u are then passed into a fully connected softmax layer, the overall rating layer. Weights
that corresponding to the overall rating are labeled with a superscript o. This operation is shown

in Figure 10 in which a green arrow is marked with Equation 6.

Loveran(r) = softmax(W°-u + b°) (6)

Like we discussed in the beginning of this section, to estimate the rating distribution of other
aspects and carry out LSAA, feature values extracted from each sentence are fed into a rating score
layer and an aspect attribution layer. For sentence s;, the rating scores (un-normalized distribution)

of sentence s; over |C| rating classes are calculated by the following:

score (s;) = (W; + b%) (7)

where W% e R¥™Cl and »* € RIC!

In the case of a five-star rating scheme, the above |C| would equal 5. This operation is demon-
strated in Figure 10, in which the rating score layer of each sentence is shown in yellow; four of
such layers are drawn.

On the other hand, regarding the aspect attribution layer, for a review of total |A| aspects,
we actually calculate the aspect attribution for sentence s; over |A| + 1 aspects. The reason for
this additional last element in each vector of attribution distribution, which we referred to as
attribution to other-aspect, is designed to relax the restriction of the model to some extent. It
essentially allows the attribution process to ignore the rating scores of some sentences if it deems

necessary. Empirically, this structure does make the optimization process faster and allows the

29



models to provide a better result.

aspect(s;) = softmar(W"t; + b") ()

where W’ e R>*(4H+D)  and b7 e RIAIFD

It should be noted in Equation 7 and Equation 8 that, the same W® and W" are shared across all
sentences. Four aspect attribution layers are shown in Figure 10 marked in blue.

Here, computing aspect (s;) should result in a vector RI4I*! with the first |A| elements rep-
resenting how strongly the sentence s; is associated with each aspect. We use aspect (87;)[1:| 4 to
denote these first |A| elements. On the other hand, the last element of each aspect attribution,
denoted as aspect (si)” A1) is not associated with any of the actual aspects. We refer to it as the
attribution of other-aspect. As we will later explain, this additional attribution dimension provides
the model with the flexibility to determine if some sentences do not belong to any of the given
aspects.

The first |A| elements of the aspect attribution layer then distribute output from the rating
score layer into respective aspects. More specifically, the scaled score for aspect j of sentence s;

would be equivalent to the following:
scaledScore (s;) = aspect (si)p;) - score(si) 9)

In Figure 10 this process is marked in red. It should be noted how scaledScore (s;) is also equivalent

[Al+1)x[C]
Y

to an outer product of the previous two layers, resulting in an matrix of size R( where

row j of this matrix is scaledScore (s;)’.
Lastly, these scaled scores for all sentences in a review are summed up element-wise per aspect.

A softmax is then applied to the resulting vector to determine the distribution over rating classes
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for each aspect of document r:

Is|
(r) = softmax Z scaledScore(s;)’ (10)
i=1

Lzbspect
This is shown in the bottom right corner of Figure 10 marked using light blue. The Lgspect only
contains the rating distribution of aspects — it does not include overall rating distribution. Since

rating distribution for overall is directly evaluated using all sentence features u at the overall rating

|A[+1

aspect(T) 18 n0t used to estimate any label of

layer. Also, it is worth noting that the distribution L

the input document; it is the result of attribution to other-aspect and hence disregarded.

3.3.3 SAAM Classification—2 (SAAM-C2)

The second variation of the classification model is very similar to the first one. The only difference
in this case is that we do not use a separate weight W? to directly estimate the overall rating
distribution. Instead, overall rating is predicted in a similar manner to other aspects, utilizing the
sentence aspect attribution process. More specifically, this means for each sentence s;, an aspect

attribution layer of size |A| + 2 is used, as follows:

aspect (s;) = softmax (W't; +b") (11)

where W' ¢ R(d)XGAH'Q) and b € R(|A|+2)

Naturally, to estimate the overall rating of a review, we use the (JA|+ 1)th element of the
attribution layer: aspect (si)“ Al41] to scale sentence level rating scores towards the overall rating.
These scores are then summed together and normalized using a softmax operation similar to SAAM-
C1.

The main advantage of this modification over SAAM-C1 is the significant reduction in the size
of parameters as the original overall weight matrix W9 is large. Classification-2 can thus use less

memory and is potentially less prone to overfitting. Moreover, this scheme can estimate the latent
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aspect attribution towards the overall aspect, if such information is indeed a point of interest.

3.3.4 SAAM Regression (SAAM-R)

Apart from the more traditional rating classification task, we also present a variation of the SAAM
in which the output layers are changed to real-value regression for rating scores while retaining
the sentiment-aspect attribution mechanism. In this setting, the five-star rating distribution is
translated to a real value in the range of 1 to 5.

The regression variation of the architecture is architecturally similar to the first version of the
classification model. We still connect all the features from all sentences to the output layer for the
overall score. However, in this case the overall output of the network is no longer a distribution over
the rating classes, but a score without non-linearity. In addition to that, the score is normalized
using the sentence count of the corresponding document:

(Wou + b°)

] where W g RIsI¥d (12)
s

Loverall (T) =

Similarly, for each sentence we have a scalar score

score (s;) = W%; + b° (13)

On the other hand, the aspect attribution layer is kept the same as Classification-1 Equation 8
in this paradigm. The sentence-level scalar score of sentence s; is then scaled by multiplying with

aspect weights. So for aspect j, this is calculated by the following:

scaledScore (s;)) = aspect (s;);; x score (s;) (14)

This operation results in a total of |A| scalar score for each sentence, with each value corre-

sponding to one of the aspects. And the final score for aspect j is calculated by the following;:
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Figure 11: Optimization of attribution layer
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Notice the regression scores for aspects are normalized differently compared to the overall score
as shown in Equation 12: the scoring for each aspect is normalized with the total probability
assigned to that aspect by the attribution layer, instead of the number of sentences in the corre-
sponding review. This normalization makes the aspect scoring process equivalent to a weighted
average of sentence aspect scoring, with attribution distribution being the weights.

This difference in normalization is due to the overall score being designed to be an average
of sentence scores - it would be problematic if a longer review with a high number of positive
sentences goes above the 1-5 score range - assuming the padding sentences getting scores close to
0. On the other hand, the attribution layer has the capability to “discard” scores from the padding
sentences when calculating the aspect scores by assigning them a 100% weight on the attribution of

other-aspect, that is, aspect (Si)[l Al+1]" Hence the sentence count normalization is no longer needed.

3.3.5 Intuitions

We provide a simplified example to demonstrate how latent attribution can discover the correct

aspect when provided with sufficient examples. Figure 11 shows two training documents, each
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containing only one sentence, being processed using a simplified SAAM-R model. We picked the
regression model and only two aspects, “Service” and “Room”, for easier demonstration. However,
the idea should be able to generalize to other variants as well as more aspects.

Blue boxes are internal parameters produced by SAAM’s rating scoring layer and Attribution
Layer (marked as sentiment and attribution respectively). Green boxes are output values resulting
from the element-wise product of the former two layers. Lastly, orange boxes are ground truth
scores.

Recall that for SAAM-Regression, the document-level aspect rating predictions are calculated

by the following:

y = sentiment ® attribution (16)

and the loss can be expressed simply as: loss = (§ — y)? .

For the first sentence, “Good Service”, let us assume the sentiment layer produces the correct
score, but the attribution layer is wrong by attributing all the sentiment scores into room aspect.
When optimizing the sentiment layer and attribution layer using gradient descend, the gradients’
directions are indicated using orange arrows for each blue value. As can be seen here, the attribution
layer will be slightly adjusted towards the correct attribution, which is service 100% and room 0%.

In the second example, “Bad Service”, let us assume the attribution layer this time produces
the correct aspect distribution, but the sentiment layer mistakenly produced a very high sentiment
score. In this case, the gradient descent will pass through the attribution layer and decrease the
sentiment score.

Although, in both examples, the gradient descent process has produced some side effects: the
sentiment layer in the first case and the attribution layer in the second case were optimized in the
wrong direction. However, ultimately, given enough examples and training steps, the system should
converge correctly. Imagine a third sentence, “Good Room”, with correct ground truth, in which

circumstances the optimization process should have only one possible solution in the blue boxes.
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3.4 Experiments and Evaluations
3.4.1 Data

We used the TripAdvisor hotel review dataset from [72], and the BeerAdvocate data previously
used in works such as [46] to examine the performance of our framework.

The TripAdvisor dataset consists of 108,891 reviews across 1,850 hotels. Each hotel review
in the original raw data is associated with one overall rating and five aspect ratings - “Value”,
“Room”, “Location”, “Cleanliness”, and “Service”. For our experiment, only reviews with more
than three sentences and all of the five aspects rated were selected. Of the 14,906 reviews that
meet the above requirements, 75% and 25% of the documents were selected as training and testing
sets, respectively. One thousand reviews were picked from the training set as a development set to
tune hyper-parameters. After we determined these hyper-parameters, the models were re-trained
using all available training samples.

Similar parsing and selection process were also applied to the BeerAdvocate dataset, and 100,000
beer reviews were selected for our experiment. Aspects associated with each beer review include
“Appearance”, “Taste”, “Palate”, and “Aroma”. Among these, the aspect “Palate” can be roughly
understood as “mouthfeel”. The advantage of this dataset is that its aspects are more independent
of each other than those in the hotel reviews. For example, “Value”, “Room”, and “Cleanliness” are
often strongly correlated. This property of the BeerAdvocate dataset allowed us to better evaluate
the sentence-level aspect attribution process’s correctness. As with the TripAdvisor dataset, 75%
and 25% of the reviews were selected as the training and testing sets, respectively, and five thousand
reviews were selected as a development set for tuning model parameters.

We used the TripAdvisor hotel review dataset to evaluate our classification modules SAAM-C1
and SAAM-C2, and used the BeerAdvocate beer review dataset to evaluate our regression variant

of the module SAAM-R.
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3.4.2 Evaluation of Document-level MASA

Because our proposed SAAM is an add-on module that can be combined with many different
modern neural network architectures, the document-level sentiment analysis performance of the
whole model (base + SAAM) was determined using both components. In the following experiments,
we opt to use two representative models as base models to better highlight the characteristics of
SAAM.

The first base model is the K-CNN;, as proposed in [31]. In its original form, this model uses
a total of 300 convolutional filters (100 of each size) to extract features from each review. A
fully connected softmax function is then applied to estimate the label probability distribution.
We trained separate models for each aspect of the reviews as baselines. We then replaced the
fully connected layers at the end of the K-CNN with our SAAM to demonstrate how our method
improved the performance of the overall model.

Furthermore, we have also included a version of CNN, which we refer to as Expanded CNN
(E-CNN), to demonstrate that the performance improvement we observed from using SAAM was
not merely due to an increase in the number of parameters. Specifically, in this baseline, reviews
are also divided into sentences. FEach sentence is then passed to the CNN layer to generate 300
dimension embedding. All of the features generated from sentences are then concatenated and
passed to a fully connected softmax layer for classification. Notice that, this formulation mimics
how the overall rating is estimated in the SAAM-C1 scheme (3.3.2) we proposed, shown in Equation
6. A total of |A| such fully connected softmax layers in the model are used to concurrently train
and estimate all aspects.

The second base model we chose is a GRU-based RNN [9]. Similar to the CNN-based model,
we set the hidden state vector to 300 and trained a separate model for each aspect of the dataset
as baselines. We then replace the final fully connected layers with our SAAM to demonstrate its
flexibility and performance improvement over the base models.

We have also included three classification baselines: Hierarchical LSTM [59], Doc2Vec [36] and

SVM [27] for TripAdvisor hotel review classification task, and two regression baselines: Linear
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Table 2: Performance of proposed SAAM classification variants against corresponding base models
and other baselines, experimented on TripAdvisor hotel review dataset.

Aspect 1 Aspect 2 Aspect 3 Aspect 4 Aspect 5 Avg Avg
Overall Value Room Location Cleanliness Service
Acc MSE Acc MSE Acc MSE Ace MSE Acc MSE Acce MSE  Acc. MSE
K-CNN 58.0 0.715 50.8 0.943 45.1 1.061 @ 44.8 1.302 | 47.5 0.995  50.3 1.319 47.70 1.124
E-CNN 58.6 0.600  49.9 0.883 41.8 1.135 429 1.107 46.1 1.076  48.6 1.224 45.86 1.085

CNN+SAAM-C1 583 0.706 51.6 0.888  47.2 0.985 44.7 1.308 |50.2 1.042 51.6 1.138 49.06 1.072
CNN+SAAM-C2 | 58.0  0.62 51.8 0.803 48.2 0.906 45.3 1.166 49.3 0.927  51.0 1.039 49.12 0.968
RNN 58.2 0.647 51.4 0.891 449 1.158 435 1.467 459 1214 484 1.209 48.72 1.098
RNN+SAAM-C1 ' 56.6 0.722 |54.9 0.772 49.0 0.976 45.8 1.407 | 49.8 1.041 ' 51.5 1.100 51.27 1.003
RNN+SAAM-C2  60.2 0.625 | 54.1 0.824 | 49.5 0.969 46.6 1.279 50.4 1.021 | 52.3 1.052 52.19 0.962

Hi-LSTM 61.6 0533 54.7 0.751 464 1.029 ' 448 1216 471 1.052 487 1.234 50.5 0.969
Doc2Vec 54.1 0.829 478 1.087 423 1.305 447 1439 451 1.291 473 1.585 4544 1.341
SVM 29.2  1.892 35.5 2368  33.9 2368 @84 9.010 [32.5 1917 333 2375 28.72 3.608

Regression and SVM regression [27] for the BeerAdvocate beer review regression task. We included
these referencing baselines to help readers interpret the difficulty of our task and dataset and use
them as a benchmark for estimating the expressiveness of our proposed modules. The Hierarchical
LSTM proposed in [59] consists of two levels of LSTM networks: one working at the word level
to generate sentence embedding vectors, and another that takes these sentence embedding vectors
as input, and estimates sentiment polarity for each sentence in a document. To adapt this model
as one of our baselines, we modified the model by concatenating the last output vectors from the
sentence-level bi-directional LSTM and feeding the resulting vector through several dense layers,
where each layer corresponds to one of the aspects.

It should be noted that the additional computational time required to train the SAAM is not
significant, as the additional parameter matrices W® and W7 are relatively small. We tested all
SAAM variants on one Nvidia Titan RTX GPU; the increase in training time was around 10% to

30% longer than that of the base model CNN and RNN, respectively.

3.4.3 MASA Results

Table 2 presents the results of classification variants SAAM-C1, SAAM-C2 on top of CNN and GRU-
RNN compared to the base version of those two models, evaluated on the TripAdvisor testing set.
Both prediction accuracy (Acc) and mean squared error (MSE) were calculated for overall and each

of the five aspects. The predicted rating classes were assumed to be real values when calculating
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Table 3: Performance of proposed SAAM regression variants against corresponding base models
and other baselines, experimented on BeerAdvocate beer review dataset.

Aspect 1 Aspect 2 Aspect 3 Aspect 4

Overall Appearance Taste Palate Aroma Average

MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE R2
E-CNN 0.267 0.423 0.228 0.325 0.260 0.454 0.239 0.425 0.258 0.408 0.246 0.403
CNN+SAAM-R  0.264 0.431 0.208 0.386 0.207 0.564 0.220 0.471 0.219 0.498 0.213 0.480
RNN 0.256  0.448 0.209 0.383 0.231 0.514 0.237 0.429 0.243 0.445 0.235 0.443
RNN+SAAM-R  0.228 0.508 0.195 0.424 0.182 0.617 0.202 0.514 0.199 0.542 0.201 0.521
Linear Regr 0.307 0.338 0.255 0.246 0.266 0.440 0.287 0.308 0.285 0.346 0.273 0.335
SVM 0.272  0.414 0.226 0.332 0.235 0.505 0.253 0.391 0.252 0.421 0.242 0412

MSE. In the right-most two columns, the average accuracy and MSE for the five aspects were
shown for easier comparison. In Table 2, bold text highlights statistically significant performance
improvement of SAAM applied models compared to their corresponding base models.

The Table 2 indicate that our proposed SAAM-C1 and SAAM-C2 models provide a consistent
performance improvement over their corresponding base models. More specifically, stacking SA AM-
C1 and SAAM-C2 on top of a CNN and an RNN improves the aspect sentiment classification
accuracy by an average of 2 to 3 percent. In certain aspects such as Room and Cleanliness,
the improvements in accuracy are as much as 5 percent. We also note that there is little to
no improvement in the Owerall rating classification. One reason for this could be that overall
sentiment classification is relatively easy, as the model does not need to learn aspect-specific feature
combinations, and reviewer behavior is more consistent for overall ratings.

As a reference, Hi-LSTM provided an additional 1 to 4 percent improvement in accuracy when
compared with the base version of RNN. This improvement is likely due to the additional expressive-
ness offered by the second layer of LSTM, which can selectively pass through sentence-level features
to document level output to allow more accurate distribution estimation. In other words, the per-
formance advantage of Hi-LSTM can be attributed to its more expressive sentence-to-document
connection. As a comparison, after combining SAAM-C1 and C2 with the RNN base model, the
performance gaps between the RNN and Hi-LSTM were eliminated and, in some cases, reversed,
indicating that SAAM significantly improves the expressiveness and information flow from sentence

level to document level.
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Table 3 shows the performance of our SAAM regression models (SAAM-R) based on a CNN and
an RNN, as well as base models and other referencing baselines evaluated using the Beer Advocate
beer review data testing set. Bold text highlights statistically significant performance improvements
of SAAM applied models compared to their corresponding base models. Once again, we can see
that by adding our SAAM regression module to the base model, we can significantly reduce the
error when comparing against base models. Among all aspects, we observed that base models CNN
and RNN have relatively poor performance on aspect Taste and Aroma, which may have occurred
because the language used to describe these two aspects is very similar. The attribution mechanism
in our model can alleviate this issue by redirecting the latent sentence-level sentiment to the correct

aspect.

3.4.4 Evaluation of Latent Sentence-level Aspect Attribution

One of our SAAM framework’s key advantages is that it can leverage the latent aspect attributed
to each sentence and organically combine them. In this section, we evaluate the LSAA facet of our
models. Two human labelers manually labeled 1,000 sentences with aspects in each of the datasets.
For both of the datasets, the set of possible labels included names of the existing aspects and an
additional label, “None,” which indicates the labeler did not believe the sentence was related to
any of the aspects. The labeling from two labelers achieved a Cohen’s Kappa agreement score of
0.66 on the hotel dataset, indicating significant, but not perfect, agreement. On the other hand,
the beer review dataset yielded a better agreement score of 0.70, reinforcing our observation that
aspects in beer reviews are more independent and unambiguous.

In addition to the human-generated labels, we made use of the review format many reviewers
followed in the BeerAdvocate dataset as an additional set of ground truth. More specifically, many
reviewers on BeerAdvocate use “A:”, “S:”, “M:” and “T:” to signify the beginning of corresponding
review segments®. We selected around 16,000 sentences that have these prefixes and marked them

with the corresponding correct labels.

3«A” for “Appearance”; “S” for “smell”, corresponding to the “Aroma” aspect; “M” for “mouthfeel”, correspond-
ing to the “Palate” aspect; “T” for “Taste”.
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Table 4: Evaluation of our SAAM framework’s ability to estimate latent sentence aspects. Accuracy
is reported against labels generated independently by two humans on both datasets and a keyword-
based labeling method of the BeerAdvocate dataset.

Hotel 1 Hotel 2 Beer 1 Beer 2 Beer Keywd
CNN-+C1 0.32 0.35 - - -
CNN+C2 0.48 0.47 - -
CNN+R - - 0.63 0.61 0.87
GRU+C1 0.46 0.50 - - -
GRU+C2 0.55 0.52 - -
GRU+R - - 0.68 0.64 0.95

To obtain the sentence-level latent aspects determined by SAAM, we examined the estimated
latent aspect distribution (aspect (s;)) for that sentence. If the dominant value of the learned aspect
distribution was consistent with the human labeler’s aspect, it is considered as a correct attribution.
Table 4 shows these evaluation results of SAAM-C1 and SAAM-C2 on the hotel review dataset, and
of SAAM-R on the beer review dataset. We can observe that almost all model combinations can
attribute sentences to aspects with reasonably high accuracy. Among these, the regression model
based on GRU had the highest performance in this task. Moreover, we can see that the regression
models yielded even stronger agreement with the keyword-based labeling. This indicates that the
models successfully learned these keywords and used them as strong signals when conducting latent
aspect attribution.

It is worth noting that due to inherent overlapping between aspect categories, reviewer subjec-
tivity, and vague nature of some of the aspects, this LSAA task is non-trivial. Considering it is a

latent variable and there are 4 to 5 potential classes, the above results indicate good performance.

3.4.5 Snippet Extraction

In addition to estimating latent aspect distribution, SAAM can also estimate the latent sentiment
distribution (score (s;)) for each sentence. We believe there is much exciting opportunity for in-
formation extraction by combining this latent information discovered through LSAA. This section

demonstrates one interesting possible application of aspect-specific review snippet extraction, that
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is inspired by several existing review summarization work such as [37]. Particularly, it is interest-
ing for cases in which the overall review rating is positive but one aspect is evaluated negatively
(or vice-versa); our model may be able to explain such discrepancies. Here, we will present some
qualitative results by SAAM-R to provide an intuitive understanding of this application and the

SAAM framework.

Review 1, 5 Stars Overall: “spent 5 days at excellence at Punta Cana, most of the people who
work at the hotel were very pleasant ...”

Sentiment snippet for the Service aspect via the lowest sentiment score:

e “internet service was not available in the room and barely in the lobby area” [Service, -2.89]

Review 2, 1 Star Overall: “I do not know where to start. the roaches in the room, the rude
waiters, bartenders, front desk, the dead flies that stayed on our friends’ mirror the entire stay, the
average at best food ...”

Sentiment snippet for the Location and Cleanliness aspects via the highest sentence score:

e ‘“the beach was fabulous” [Location, 5.99]

o ‘“the resort itself, décor, pool, beach access was great” [Cleanliness, 5.90]

Review 3, 5 stars Overall with 3 Stars for the “Location” aspect: “Was awesome. my
wife and I traveled to excellence 11/20-11/26 and had a great time ...”

Sentiment snippet for the Location aspect via the lowest sentence score:

o “the worst part about this resort is the drive there and back, the roads are terrible and it is

over an hour” [Location, -1.53]

Review 4, 4 stars Overall with 2.5 Stars for the “Palate” aspect: “A: Pours a clear yellow
with a mild white head, good retention ...”

Sentiment snippet by extracting the only Palate sentence:
o “M: Very light-bodied, watery, light base beer for sure.” [Palate, -0.96]
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3.5 Conclusion

In this chapter, we presented a novel add-on framework called the sentiment-aspect attribution
module (SAAM) that can be combined with common deep learning architectures to solve the
problem of multi-aspect sentiment analysis. The proposed SAAM addresses the token-to-doc con-
nection bottleneck problem using an intuitive and expressive latent sentiment-aspect attribution
(LSAA) process. Furthermore, the LSAA process also facilitates fine-grained sentiment analysis
and summarization. Two classification variants and one regression variant of the SAAM were
demonstrated and tested on both CNN- and RNN-based networks. Experimental results on a
real-world hotel review dataset and a beer review dataset indicated that our proposed framework
yields significant performance improvements over the base networks. Lastly, we also demonstrated
the potential of using sentence-level latent features generated by the SAAM for aspect-specific or
sentiment-specific snippet extraction. This iteration of the SAAM has several areas of potential
improvement. However, we believe this work presents a fascinating new angle to solve multi-labeled

document-classification problems.
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4 More on Multi-aspect Sentiment Analysis

4.1 Introduction and Motivation

In the last chapter, we introduced a framework called the sentiment-aspect attribution module
(SAAM), which can be combined with traditional neural network architectures such as CNNs and
RNNSs to solve multi-aspect sentiment analysis problems. In addition to document-level classifica-
tion capability, SAAM also demonstrated that it is possible to discover sentence-level aspect and
sentiment information without the need for fine-grained labeling during training. In fact, Only the
original user-generated document-level ratings are required for the proposed system to estimates
sentence-level sentiment and aspect distributions.

However, with the latest architectural advancements in neural network, many aspects of the
original design of SAAM now require revision and improvements. More specifically, three main

issues have been identified in the original SAAM model; these issues are described individually

below.

Sentence Rating Score

Embeddings ...t |*,
Sentence 1 —
Sentence 2 *,, Scaled Scores
Sentence 3 | .
Sentence 4

.““ *
o I I N N N L Aspect Ratings
Base Model

Figure 12: Architecture of the previous version of SAAM framework. The sentence embeddings
generated by the base model and the layers for rating and aspect estimations are labeled with
corresponding colors.

First, an “information bottleneck” in the original SAAM architecture design severely limits its

expressiveness. This bottleneck exists between the sentence-level embedding generated by the base
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model and the document-level sentiment distributions. This can be observed in Figure 12, between
sentence embeddings (indicated in black) and rating or aspect distributions (indicated in blue and
yellow). In most base model settings, the size of sentence embedding vectors d is significantly larger
than the number of aspects |A| or the number of rating classes |C|. For example, for many modern
LSTM-based models, the sentence embedding size d is around 300 to 400 elements. In contrast,
the number of aspects |A| and the number of rating classes |C| for a dataset are only around 2 to
6. Consequently, in SAAM, there is a very considerable constraint on how much information each
sentence can contribute to the overall document level outputs.

Another perspective of this information bottleneck issue is to compare it against designs of
attention mechanism. In some ways, the SAAM framework we proposed can be thought of as an
aspect-driven attention mechanism. For regular attention mechanisms, such as [2, 42], the attention
alignment score a allows token-level embeddings to interact with each other before they are fed
into the decoder model. However, in the SAAM framework, the interaction is conducted at the
aspect rating level instead of at the embedding level, so the interaction is greatly limited.

Secondly, the previous SAAM architecture does not provide the base models with context
information regarding surrounding sentences in the document. This can be an undesirable property,
as it limits the ability of the base model to generate accurate sentence embeddings. For example,
in the BeerAdvocate dataset, we often observe that the model is having difficulty figuring out if a
particular sentence is discussing the taste of the beer or its smell, as the set of adjectives used in
both aspects have a lot in common. However, if some contextual information is provided, such as
the previous and subsequent sentences, the model may be better able to attribute the sentence to
the correct aspect, thereby resulting in much better document-level estimations.

Lastly, during our experiments with the SAAM module, we found that the complete model
can be challenging to train. In some conditions, the trained model will opt to attribute all of the
sentences to one single aspect, so other aspects have limited or no sentiment-rating attributions,
yet the model still performs reasonably well on the training set. We believe this phenomenon is

mostly caused by SAAM overfitting the training set. In this work, we propose to conduct transfer
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learning utilizing pre-trained multi-layer language models to alleviate the issue of overfitting.

To address all of the above issues, we propose a neural network module architecture that
improves the original SAAM architecture, which is referred to as SAAM v2. As detailed in the
following section, almost all aspects of the original SAAM have been altered to improve performance.
However, the primary design objectives here remain changed: SAAM v2 is still designed as an add-
on module that can be combined with modern neural network architectures (base model) to allow
them to perform multi-aspect sentiment analysis (MASA). As demonstrated in the Results section,
the models with SAAM v2 show superior performance compared to models with fully connected
layers. Furthermore, as indicated in the analysis section, when combining SAAM v2 with a pre-
trained multi-layer LSTM base model, our module can estimate latent sentence-level aspects with
exceptionally high accuracy.

The remaining sections of this chapter are organized as follows. Section 4.2 details the architec-
ture of the proposed SAAM v2 module. In this section, we will also provide the rationales behind
some of the design choices we made to address the three issues introduced above. Section 4.3
discusses our experiment settings and in Section 4.4 details and analysis corresponding experiment

results. Lastly, in Section 4.5 we present a few documents with sentence-level outputs generated

by SAAM v2.

4.2 Model Architecture

This chapter formally defines our SAAM v2 framework. As previously discussed, SAAM v2 can
be combined with common modern neural network architectures and takes their token-level vector
outputs as inputs. SAAM v2 redirects and combines information within these token-level vector
representations to estimate sentiment for each aspect at the document level. Figure 13 shows the
abstracted architecture of our proposed module when combined with a base model. For simplicity,
the figure showcased an input document with three sentences, and the model estimates sentiment

distribution for two aspects.
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Figure 13: This figure shows the overall architecture of SAAM v2 combined with a base model.
The figure illustrates the scenario of an input document with three sentences. The model estimates
sentiments over two different aspects.

4.2.1 Encoding Stage

For a given review document 7 consists of n number of tokens, a base model M can be used to map
r into a matrix t € R™ ¢, where d is the base model’s output embedding dimension. Almost all
modern NLP neural networks produce some form of matrix £, examples include CNN based models
(K-CNN [31]), RNN based models (AWD-LSTM [48]) and more recently Bert based models (BERT

[13], Longformer[3]).

4.2.2 Sentence Feature Extractors

Two separate feature extractors are used to project token-level features to form sentence-level
embeddings. After multiple iterations of experiments, we have found that a linear layer with GeLU
activation strikes the optimal balance of performance and complexity. More specifically, sentiment
and aspect extractors take token-level outputs t as input. Each extractor consists of a linear layer
with output dimension dgent; and dygpe, respectively. After performing the linear projection and
activation, average pooling was then used to combine outputs corresponding to tokens from the

same sentence. For example, if input document 7 consists of |s| number of sentences, then after
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applying both extractors to ¢ should result in two matrices of |s| rows.

Ssenti = Extractor(t, Wsent;)

Saspt = Extractor(t, Waspt)

Where Sgenti € RIsIXdsenti and Saspt € RIsIxdaspt

4.2.3 Aspect Driven Attention

Given the aspect features s,qp¢, a linear layer with a softmax activation function is used to estimate
the aspect distribution associated with each sentence. To describe this in another way, we estimate
the relatedness of the ith sentence s’ by feeding séspt through a linear layer with a softmax function.
Following the paradigm previously applied in SAAM, we increment the output dimension of this
layer by one to allow the “attribution to other-aspect”. That is, assuming the dataset contains a
total of |A| number of aspects, this layer will contain |A| + 1 number of output units, where the

last output probability corresponds to the “other aspect”.

AD(s") = softmaa:(sésptWAD +bap) (17)

We then use the estimated aspect distribution of each sentence to attribute the corresponding
sentiment embeddings to each aspect. To do so, an outer product between the sentiment feature
vector and aspect distribution is performed s_,,. ® AD(s") . As a result, sentiment embedding of
each sentence is mapped to a matrix of dimension dgeny; X |A| + 1. Each row of this matrix is thus
the sentiment embedding vector scaled by the aspect distribution, thereby controlling the amount
of sentiment contributing toward each aspect at the document level.

These matrices resulting from the outer product from each sentence are then summed element-

wise, then normalized by the total weight assigned to each aspect. The resulting document-level

matrix will retain the same dimension as the sentence-level ones, with each row of the matrix
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represents the sentiment embedding towards a particular aspect. In other words, the sentiment

embedding vector towards the a-th aspect, denoted as ml9 can be calculated as follows:

] — lei'l (Ssenti : AD(si)[‘l])
S AD(si)lal

m

4.2.4 Sentiment Estimation

Lastly, the document-level aspect sentiment can be estimated using multiple linear layers with
softmax activation. For the j-th aspect, a linear layer takes ml! as input and outputs a distribution
over the possible ratings. We use |A| such layers independently; each corresponds to one of the

aspects.

4.3 Evaluation
4.3.1 Evaluation Method

Evaluation of SAAM v2 framework is conducted following a similar strategy as the SAAM from
last chapter. Two different datasets were used: the TripAdvisor’s hotel review dataset and the
BeerAdvocate’s beer review dataset. The hotel dataset and beer dataset contain 14,906 and 100,000
reviews, respectively. Both datasets were divided into training and testing set using 75% and 25%
split, and 20% of the training set was used as a development for hyper-parameter tuning.

the pre-trained AWD-LSTM network from the fast.ai library and the Longformer network from
the Hugging-Face Transformers library were fine-tuned on the training sets and evaluated on the
testing sets as baselines. For all baseline models, we connect the base models with a ReLLU activated
dense layer and then |A| independent softmax dense layers, each of which predicted the sentiment
of an aspect. We then replaced the dense layers in baselines with the proposed SAAM v2 module
to evaluate the performance improvement over the baseline models. For all the models, we have

reported accuracies over all aspects for both datasets.
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Table 5: This table shows document-level classification accuracies on each aspect of the Beer Advo-
cate dataset the TripAdvisor dataset. The performance of both base models and the performance
after they are combined with the proposed SAAM v2 are reported.

TripAdvisor Aspects Overall Value Room Location Clean  Service Averaged
AWD-LSTM 66.27 58.49 53.28  47.98 53.89  54.99 55.82
AWD-LSTM+SAAM v2 67.77 60.44 55.58  48.57 54.91 57.40 57.44
longformer 66.97 59.64 53.36  45.81 53.33  53.81 55.49
longformer+SAAM v2 65.71 59.21 54.64 47.55 54.40  56.59 56.35
BeerAdvocate Aspects Overall Appearance Taste Palate Aroma, Averaged
AWD-LSTM 63.46 60.44 67.69 63.31 63.19 63.99
AWD-LSTM+SAAM v2 63.84 62.34 68.23  63.50 64.08 64.39
longformer 62.79 60.74 67.39 63.24 62.88 63.41
longformer+SAAM v2 63.76 62.26 68.24 63.88 64.08 64.44

4.3.2 Training Details

We applied LayerNorm and DropOut before each linear layer to regularize the SAAM V2 module,
including layers inside sentence feature extractors, aspect-driven attention mechanism, and the
sentiment prediction layers.

Adam optimizer was used with 81 = 0.9, 82 = 0.999 and € = 1le — 6 for gradient descent during
training . For the learning rate scheduler, we used cosine-annealing with roughly 50,000 cycles
equivalent warm-up period. The maximum learning rate was set to 2e — 5. Early-stopping was

used for Longformer-based models by monitoring the accuracy on validation set to avoid over-fitting.

4.4 Results

The evaluation results for the BeerAdvocate review dataset and the TripAdvisor review dataset
are presented in the top and bottom half of Table 5, respectively. The sentiment classification
accuracies of the base models AWD-LSTM and Longformer are reported on rows marked with
“AWD-LSTM” and “Longformer”. The performances of our proposed SAAM v2, when combined
with these base models, are reported on the rows beneath them. The right-most column of each
row shows an averaged result of all accuracy values reported on that row for easier comparison.

Overall, these experimental results have demonstrated that, by stacking SAAM v2 on top of
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these state-of-the-art base models, we are able to further improve their performance by around 1-2
percent. These improvements are consistent across all aspects in both the hotel review dataset and
the significantly larger beer review dataset.

One notable observation is that base model AWD-LSTM is out-performing Longformer in most
of the tasks evaluated here, despite the Longformer is generally considered the superior model with
significantly more parameters. We believe this is because the document classification tasks at hand
are relatively easy and hence cannot fully utilize the additional expressiveness afforded by the at-
tention mechanisms driving the modern Bert-based architecture. Nonetheless, the proposed SAAM
v2 module focuses on addressing the information flow from token-level embeddings to document-
level predictions. Consequently, we can observe that in both datasets, the models with SAAM v2

improved the the base models and yielded better performance.

4.5 Analysis of Sentence-level Attribution

One useful property of the SAAM v2 model is its ability to estimate sentence-level aspect dis-
tribution without requiring any sentence-level ground-truth. For each individual sentence of the
document, the corresponding aspect distribution estimated by SAAM v2 can be obtained accord-
ing to Equation 17. More formally, AD(s') can be viewed as the estimated aspect distribution for
sentence s’ over |A| aspects.

For evaluation, we manually labeled 1000 sentences for both the TripAdvisor hotel review
dataset and the BeerAdvocate beer review dataset. We then computed top-1 accuracy and top-2
accuracy for sentence-level aspect attribution by comparing human generated ground-truths with
the estimated distributions. Here, top-1 accuracy is defined as the percentage of labeled sentences
for which the aspect with the highest probability matches the ground-truth. Whereas, top-2 accu-
racy is defined as the percentage of sentences for which the aspect with the highest of second-highest
probability matches the aspect labeled as the ground-truth.

For the TripAdvisor dataset, the accuracy of AWD-LSTM+SAAM v2’s sentence-level aspect

attribution is as follows:
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definitely not a 5 star resort i 'm dumbfounded that this hotel gets good reviews and is so highly rated
[overall, value]

it ’s decidedly a 3 star property , not 5 stars as indicated [overall, room]

the rooms are very dated and run down , old crappy beds and pillows , an old tv and overall poorly
maintained [room]

the whole property is pretty run down and old - looking [room]

the food is subpar , not one meal i had would be called great [overall, service]
the service is uneven and the staff is poorly trained and uninformed [service]
many do not comprehend english [service]

the beach is great , it ’s the only redeeming factor [location]

however the resort is a 1- hour taxi trip from the airport [location]

Figure

14: A sample hotel review with aspects estimated to sentences by our SAAM v2 in brackets.

e Top-1 Accuracy: 73.2

e Top-2 Accuracy: 88.6

For the BeerAdvocate dataset, the accuracy of AWD-LSTM+4SAAM v2’s sentence-level

aspect attribution is as follows:

e Top-1 Accuracy: 89.5

e Top-2 Accuracy: 93.4

To put these numbers into perspective: for the TripAdvisor dataset which contains five aspects,

a model that randomly guessed could achieve an accuracy of 20 percent. The previous version of

SAAM showed a performance of 55 percent accuracy at the highest. Similarly, for the BeerAdvocate

dataset which has four aspects, a model that randomly guessed could achieve an accuracy of

25 percent, whereas the previous best SAAM model reported an accuracy of around 68 percent.

Therefore, the new evaluation results for sentence-level aspect attribution represent a massive

increase in the model’s capability. Furthermore, top-2 accuracies reported here indicate that when

SAAM v2’s first guess was incorrect, the second guess was almost always right.
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e after the one hour ride from the airport we arrived at the hotel and were greeted by everyone we met
[servicel

e i have to say that the staff at the hotel were very nice and made every effort to learn our names and greet
us by name each time they saw us [service]

e the hotel itself was clean , the staff was very friendly , and nothing ever felt crowded [service]
e however , the food was not great [servicel]
e it was not bad - but it was not great [overall, service]

e i’m not a big eater but i was prepared to indulge on my vacation and there just was not anything i was
crazy about [overall, servicel

e we went on two excursions - swimming with the sting - rays/sharks and the zip - line tour [overall,
location]

e we loved the zip - line excursion [location]
e the staff was great and our bus driver and tour guide were great [service]

e it was interesting to visit the sting - rays and swim with the sharks but the reef where we snorkeled was
disappointing [location]

e the fish were very small and there was not much to see [location]

e the electricity went out in our room a handful of times , especially when i used the hairdryer [overall,
room]

e also , our ac was terrible [room]

Figure 15: A sample hotel review with aspects estimated to sentences by our SAAM v2 in brackets.
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