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ABSTRACT

To investigate the nature of sustained oscillations
in a fourth order control system with an Amplitude sensitive
nonlinearity. The basic assumption is that the open loop

linear transfer function of the system is stable.

The graphical technique for solving this problem is by
substituting the nonlinearity by its equivalent describing
function and then applying Nyquist stability criterion. An
analytical method to solve the prgblem is developed.

Expressions for amplitude and frequency of sustained
oscillations are derived. Regions of stabllity and instability
are indicated. Expressions for amplitude and fwequency of
sustained oscillations are derived. Regions of stability
and instability are indicated. Expressions for amplitude
and frequency of sustained oscillations are reduced to Third
and Second order control system by reducing the order of

the system.

An example is presented and the results are verified.



1T,

III.

IV,

VI,

VII.

Table of contents

INTRODUCTION

GRAPHICAL ?ECHNIQUE

A&ALYTICAL TECHNIQUE

FOURTH ORDER SYSTEM EXAMPLE & RESULTS
CONCLUSIONS AND FUTURE DEVELOPMENTS

BIBLIOGRAPHY

REFERENCES

VIII,APPENDIX A, COMPUTER PROGRAM.

IX.

APPENDIX B. COMPUTER PROGRAM,

Pages

Pages

Pages

Pages

Pages

Pages

* Pages

Pages

Pages

52 -

19

30

L1
43
51

62



(1)

INTRODUCTION

One of the fundamental problems in the analysis of any
physical system is the question of stability. A linear system
is defined as stable if the output response to any bounded
input disturbance is finite, which in simple words means that
a.linear system is stable if, and only if, any bounded input
produces a bounded output. This implies that all the roots
of the characteristic equation must be located in the left half
of the S-plane. Roots that are in the right half of the S-plane
~give rise to transients which tend to diverge from the steady
state, and the system is said to be unstable. Thus the stability
of a linear feedback control system is also uniquely determined

by the location of the roots of its characteristic equation.

Stability conditions for nonlinear systems have been the
subject of a great deal of investigation. A nonlinear system
may be completely stable or completely unstable and in addition
a nonlinear system may exhibit a " Limit Cycle " or sustained
finite - amplitude oscillation. The cause and effect(input
and output) are no longer directly proportional, the form of
the transient response to a step input is no longer independent
of the amplitude of the step, and the response to an arbitrary
input cannot be found as the sum of the responses to a series
of step or pulse inputs. Which in simple words means that the

principle of Superposition is no longer valid, and consequently
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the loss of the use of the Fourier Integral. This destroys

the formal relationship between the time domain and the
frequency domain for nonlinear systems. Both time and frequency
analyses may be made independently, but it is not possible

to compute the time response from the frequency response or
vice versa. 1In general, if the system is to be used with

step and ramp inputs, a time domain analysis and synthesis

seems necessary; if sinusoidal or periodic inputs are anti-

- cipated, a frequency - response analysis and design is suitable.

As a general consequence of the invalidation of the super-
position principle, it may be said that the ability to extra-
polate or predict is lost. Certainly knowledge of the transient
response of a nonlinear system to a unit step input does not
permit quantitative prediction of the response of that system
. to a larger or smaller step. 1In fact, for some systems,-a

. change in the magnitude of the step may result in a change
from a stable response to an unstable response or vice versa.
Thus the study of stability in nonlinear systems .requires the
usual information used in linear - system studies, i.e.,
knowledge of the physical and mathematical characteristics

of the components. In addition, however, it is necessary to
know the type of forcing functions anticipated, the range of

. values expected for the magnitudes of these forcing functions,

the types of noise and load disturbances, and any initial
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conditions which may arise.

Limit Cycle: In phase - blane'terminolpgy Limit cycle is

the name given to a nonlinear oscillation of fixed frequency

and amplitude determined by the nonlinear properties of the
system. Limit cycles are one of the most frequently encountered
modes of behavior peculiar to nonlinear systems. Limit cycles
are distinguished from linear oscillations in that their

amplitude of oscillation is independent of initial conditions.

Limit cycles are generally defined in 3 types ( shown
in Figure Q)
(1) Orbitally stable limit cycle:~ Paths spiral toward the
limit cycle C from both sides as t increases.
(2) Orbitally unstable limit cycle:- Paths spiral away from
C on both sides as t increases.
(3) Orbitally semistable limit cycle:- Paths spiral toward

C from one side and away from C on the other side as t increases.

Limit cycles are generally undesirable in control
applications; however, at times they can be accepted if the
amplitude of oscillation is small. On the other hand, limit

. cycles play an important role in the design of oscillators.

Types of Nonlinearities:- The nonlinearities encountered

in control systems may be classified as accidental nonlinearities

and intentional nonlinearities. The accidental class consists
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of those nonlinearities which are inherent in the components
used in the system. Intentional nonlinearities are those
which are introduced deliberately, either to obtain desired
performance features or for economic advantages. A well -
known illustration is the introduction of a relay to provide

a relay servo. A further classification may be into analytic
and nonanalytic nonlinearities. Slowly varying nonlinearities,
such as those which can be represented graphically by a

smooth single valued curve or by a fémily of smooth curves,

are considered analytic nonlinearites. Nonanalytic nonlinearitie
exhibit abrupt changes in their characteristic and are

_graphically represented as discontinuous or multivalued curves.

Methods of investigating Nonlinear Systems:- The first part

of a nonlinear analysis is usually concerned with stability

and the existence of limit cycles. If the system is not stable
or seeks a limit cycle for some set of expected operating
conditions, than it is always better to stoé the analysis until
a stabilizing modification is found or on the other hand, he
might complete the analysis expecting to use the results as

a guide leading to a suitable modification. Many methods are
available for such analyses. No single method is applicable

to all nonlinear systems because of the diversity'of nonlinear
phenomena, the type of information desired from the analysis,

and the availability of time and equipment.
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Different types of limit cycle

c

(a) (b)

(a) Orbitally stable limit cycle.
(b) Orbitally unstable limit cycle.
(c) Orbitally semistable limit cycle.

FIGURE 2.

(6)

(c)
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The most general methods applicable to nonlinear control
systems are as followes:--
(1) Linear approximations.
(2) Piecewise linear approximations.
(3) Numerical methods.
(4) The phase plane.
(5) Déscribing‘Functions.

(6) The Analog computer.

The linear approximation technique is that of applying
linear analysis principles to the system while restricting
the significant parameter values in the system to those values
defined at a selected operating point. The analysis is valid
only for operation in a restricted region about this operating
point. The-results are correct for sufficiently small signals
and for the systems in which the degree of nonlinearity is

small.

Piecewise linear methods are used for relatively large
signal conditions. This technique is convenient for the
systems where the nonlinearity exhibits abrupt or discontinuous
characteristics and may also be used with analytic nonlinearities
by approximating the nonlinear characteristics with straight -
line segments. In short, the method consists in establishing

a linear differential equation for each section of straight

‘line used in the representation of the nonlinearity. This
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method is very laborious if the system is of high order
or if the nonlinearity requires a large number of linear

segments for an accurate approximation.

Many numerical and analytical methods are available for
the solution of nonlinear differential equations. Numerical
methods are applicable to analytic nonlinearities but fail

for discontinuous nonlinearity.

The.phase ~ plane method of analysis is one of the most
powerful analytic tool available. It is basically a graphical .
method. The most valuable feature of the phase - plane method
is that it tends to provide insight into the physical phenomena
which are due to different types of nonlinearities. The major
disadvantage of the phase - plane method are its limitation

to second - order systems and to step and ramp inputs.

In some cases the computer is the best analysis tool
évailable. The nonlinearities can be simulated accurately,
parameter values can be altered as desired, wider ranges of
~initial conditions and forcing functions may be used, and
compensation may be designed on a trial - and - error basis.

The major draw back being to design the experiment intelligently.

The describing function method is a very powerful tool
in determining the stability of a nonlinear control system.
The technique is easy to apply, it is very useful in predicting

limit cycles, and the accuracy of the result improves as the



complexity of the system increases. This method attempts

to extend frequency - response techniques to nonlinear

system analysis and design. It is, however, quite helpful

in suggesting the type and amount of compensation needed,

and a qualitative prediction of transient response 1is possible,
though not completely trustworthy. The major disadvantage

is the lack of accuracy for simple systems and a practical

restriction to only one nonlinear component.

The describing - function and phase - plane techniques,
when used together, often complement each other in the analysis
of complicatZ€d systems. The describing function might be
employed to check stability and suggest compensation if needed.
After compensation, a second - order approximation may be
made which includes the nonlinear characteristics, and a
phase - plane analysis can be made to provide significant
data on the effect of the nonlinearity. The Thesis problem
is solved by applying Describing Function téchnique. The
describing function technique will be further discussed in

detail in Chapter two.

The analytical Technique developed to determine existence
of sustained oscillation in Fourth order control system is

discussed in detail in Chapter three.
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GRAPHICAL TECHNIQUE

The graphical technique of determining sustained
oscillations in a Control system with nonlinear element is
also called as the describing function method of determining
stability. This method was first developed by Goldfarb and

Kochenburger in about 1950.

Describing Function:- The describing function technique

is a method to extend frequency - response techniques to
nonlinear system analysis and design. The practical solution
to these requirements has been to approximate the effect of

" approximate

the nonlinear component by using a linear
- transfer function" or "describing function". The formulation

of describing function is based upon two conditions.

1. That the system can be separated into two sections,
one linear and the other nonlinear or into several sections,

each nonlinear section followed by a linear section.

2. That the linear sections following each nonlinear section
are low pass filters that attenuate the harmonics to a_greafer

degree than the fundamental component.

3. That the nonlinearity may not contain any time varying

elements.

If the above three conditions are met, then the input

to each nonlinear section can be assumed to be sinusoidal.
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This assumption is fairly reasonable as the higher harmonics
are attenuated by the linear low pass filters. The results
obtained are better for higher order systems than for second

order.

The describing function may be defined as the ratio of
the magnitude of the fundamental term in the Fourier series
for the output wave to the magnitude of the input sinusoid
at a phase angle which is the angle between the two sine
waves for all permissible amplitudes and frequencies of the

input wave.

If E Sinwt is the input to the nonlinear element, then
the Fourier series for the signal at the output of the nonlinear

component may be written.

O (t) = Ag + A’Coswt + BISinwt + Aaposzwt + 3g$in2wt

52
+ Aapos3wt + 3351n3wt g
where the coefficients of this Fourier series are given by
T
Ay = Z§ O(t) CosNwt dwt
T %
vl
B = 2 O(t) SinNwt dwt
N T

C
The definition of describing function requires that

Ae/2 = 0 and Ay, By for NZ 2 are negligble. The
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coefficients of interest are A, and B, , and they define the

fundamental frequency output as

O,(W) = ’AT'F B'l" lTanﬂlé,
B’

Then the describing function is given by

A + B

E l0°

When the nonlinearity is single valued, then A, is

TaﬁJ(A,/B,)

also zero, and in that case

The block diagram of a féedback system containing a
nonlinear element is usually reducible to one of the two
configuration shown in Figure 3. When the system has two
or more loops but only one nonlinear component, the simplest
procedure is usually that of manipulating the blocks in such

a way so as to reduce it to the form of Figure 3.

Stability analysis;- Figure 4. shows the block diagram

of a system which contains a nonlinearity. The describing.
function of the nonlinearity be N(E),
Where N(E) = g(E) + jb(E)

For single valued nonlinearities, the imaginary part

vanishes.
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N(E) G, R
G,(D ¢
(e
G,( <,
G,(9 N(E
(0

Block diagram for single - loop nonlinear systems
(a) Nonlinear block in forward path (b) Nonlinear

block in feedback path.

FIGURE 3.



(14)

The closed loop transfer function is

C(jw) N(E) G(jw)
R(jw) = 1 + N(E)G(jw)

Stability can be determined by equating the characteristic

equation to zero.

i.e.
1- + N(E)G(jw) = 0
G(jw) = -1
: N(E)
This is the condition for continuous oscillations of
the output.

Stability is determined by frequency response analysis
using polar plot. A modification of the conventional Nyquist
principle must be made in order to apply Nyquist's stability
criterion to the frequency response plots. The locus of

- =1 can be considered the locus of the critical point,
N(E)

which for linear systems is the -1 point in the complex
.frequency plane. When the critical point lies to the left
of the G(jw) plot or is not enclosed by it, the ploes of

the control system have negative real parts. The system is
then stable since any disturbances which appear tend to die
out. Conversely, when the critical point lies to the right
of the G(jw) locus and is therefore enclosed by it, the poles

of the control system have positive real parts and the system
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is unstable. If the G(jw) plot passes through the critical
point, the system may have a sustained oscillation, which
may be either stable or uéstable. If a slight disturbance
in amplitude or frequency occurs and the oscillation returns
to its original value, the oscillation is stable. If the
oscillation continues to increase or decrease, it is unstable.
This is better explained from Figure 5.

Here

-1 - Tb 1
N(E) = 4 T,. (D/E) \/
1 - (D/E)*

For a given value of dead zone D, -1/N(E) depends

entirely on the quantity E/D. In the figure 5. -1/N(E)

. locus starts at - =0 for E/D = 1; as the value of E/D is
increased further, the critical point moves toward - ol as
E/D approaches infinity. The relative position of the G{jw)
and - 1/N(E) plots indicate the stability condition of the
system for given set of values of K and D. When the syétem
forward'gain is of a small wvalue, K; o the G(jw) locus does
‘not intersect or enclose any portion of the -1/N(E) locus
and the system is stable. When K = K5 , the system becomes
on the verge of unstability. Point a indicates unstable
limit cycle. When K = K3, we have G(jw) intersecting -1/N(E).
at two points B and C. B indicates unstable limit cycle

and C indicates stable limit cycle.
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Limitations and errors:- The describing-function method

is an approximate method,. since the higher harmonics generated
by the nonlinearity are neglected, and thus the input to the
nonlinear element is assumed sinusoidal. Therefore the
describing-function method giyes accurate results when these
basic assumptions are justified and less acéurate results

when the harmonics are not negligible.

Example: The describing function for saturation is

G =2k (sin’r + R\J1 - ®*) [o° X

m

Where R

Es
E

Similarly it can be shown that the ratio of the third
harmonic to the input sinusoid is
2

Gna = 4KR (1 - RO)>
S 3

The relation ships are plotted in figure 6. It is
seen that, for small signal input, the distortion is small
and the third harmonic content is negligible. But for
larger signals, the amplitude of the third harmonic is
one-third that of the fundamental. Thus for small input
amplitudes, the linear system does not need much filtering

but for larger signals filtering is very important.

Thus the basic purpose of the describing function

analysis is merely a stability check. If the system is
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completely unstable, no further checks are needed, but if

the linear locus approaches or intersects the describing
function, limit cycles ma§ exist and this condition must be
carefully cheéked. However, difficulty sometimes arises

owing to intersections which should not exist and which
predict limit cycles that do not occur in the physical systems.
Another difficulty arises if, when the loci are quite close

together but do not intersect, a limit cycle that has not

been predicted appears in the physical systems.

Thus it may be stated in general that the describing
function method is accurate when the linear system filters
out the harmonics generated in the nonlinear component.
Hence for higher-order systems in which there are many more
open-loop poles than zeros, describing-function predictions‘

are quite accurate.
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ANALYTICAL TECHNIQUE

The Gain Margin and Ehe Phase Margin have been'generally
used to define the amount of relative stability of a closed-

loop linear system.

In a closed loop linear system, The magnitude of
G(jw)H-(Jw) when it crosses the negative real axis is called
(GH)e , and the corresponding frequency on the locus is W,.

The Gain Margin of the system is defined as

Gain Margin = 20 LOglo 1 db.
(G|

Now for a unity feed back system,
Gain Margin = 20 Log 1 db.
Tt
If in the Nyquist plot, the gain K is increased to the
extent that, the G locus goes through the critical point so

that l(GkJ equals unity, the Gain Margin is zero db.

For a second order system, the G locus does not intersect

equals zero, and

the negative real axis; Therefore l(Gk:

the Gain Margin given is infinite.zx &%,

‘Gain Margin is the amount of Gain K in dbs. that can be

allowed to increase before the system reaches instability.

In order to define adequately the relative stability;

Gain Margin is not the only essential term, Phase Margin also
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PHASE MARGIN AND GAIN MARGIN

4 Imaginary
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Gaig crossover

Wt O

Figure 7.
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has to be taken into consideration.

Phase Margin is defined as the angle that the unit
radius phasor makes with the negative real axis in the G
plane. The Phase Margin has the significance of estimating
the stability effect of changes of the parameters of the

system which affect the phase of G(S).

Gain crossover is the point on the plot of the transfer
function-at which the magnitude is unity (zero db). The
frequency at gain crossover is called the phase margin

frequency W¢.

Phase crossover is the point on the plot of the transfer
function at which the phase angle is -180°. The frequency
at which phase crossover occurs is called the gain-margin

frequency We.

The phase margin is related to the effective damping
ratiotg of the system and therefore of the transient overshoot

of the system.

Derivation of Gain Margin and Phase Margin relations:-

Considering a Fourth order Control system with amplitude
sensitive Nonlinearity (shown in Figl-.). At Limit Cycle,

the Gain Margin is zero db and the Phase Margin is zero.

The open loop Linear Transfer function of the Fourth order
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FOURTH ORDER CONTROL SYSTEM WITH

AMPLITUDE SENSITIVE NONLINEARITY

‘U

L) NE) G ¢

Where,
N(E) = g(E) + jb(E)
and
K
G(s) =

S(1 + ST1)(1 + 8T2) (1 + ST3)

Figure &
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control system is

G(S)= K (1)
S(1+ST1) (1+ST2) (1+ST3)

Let N(E) be the equivalent Describing Function for the

Nonlinearity in Cartesian Coordinates, then

N(E) = g(E) + jb(E) (2)
where,.

" g(E) = Real part of the describing function.

b(Ej = Imaginary part of the describing function.

Now equations (1) and (2) can also be written as

G(jw) = lG(jw) lG(jw) (3)
" and
N (E) %_[N(E)! lN(E) (4)

When the nonlinearity is substituted by its equivalent
describing function, the system reduces to a Fourth order
control system. The linear section being function of frequency

and the nonlinear part being function of amplitude.

- Using the Gain Margin and Phase Margin principle, the

equations for the existence of sustained oscillations are
The magnitude equation is
[N(E)l [G(jw)x =1 (5)

The phase equation is

IE(E) + [G(jw) = -180° . (6)
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Simplifying left hand side of equation (6)

since,

IN(E) = Tanrlgig)
- g(E)
and

IG(jw) = —90°—Tan"(le)—Tan"(wT2)-Tan_l(wT3)

Substitutiﬁg the values of ]N(E) and ]G(jw) in '

equation (6) we get

J

Tan  b(E) - 90°—TaﬁJ(le)—TaﬁJ(WT2)~Taﬁ7QwT3) = -180°
~g(E)

i.e.

Tan'b(E) = Tan l(wrl)+Tan/(wr2) +ran/(wr3) - go°
~g(E)

Taking tangent on both sides we have

b(E) = Tan [E;nfkle)+Taﬁ'(wT2)+TaﬂJ(wT3)—9%E]
g (E)

Expanding the right hand side., we have

wT1l+wT2 wT3-X
+
1-w?T1T2 1+wT3X
b(E) = .
. g(E)
Lim X—b>ef wTl+wT2 wT3 - X
1 - .

1-w?T1T2| |1+wT3X

(WT1+wT2) (1+wT3X) + (WT3-X) (1-w>T1T2)

"

(1-w*T1T2) (1L+wT3X) - (WT1+wT2) (wT3-X)
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(WTl4wT2) + (wT3-X) (l-w T1T2)
(1+wT3X)

(1-w?*T1T2) ~ (WT1l+wT2) (WT3-X)
(1+wT3X)

(WT14+wT2) + (WT3 - 1) (1-w-T1T2)
X
(L + wT3)
X

(1-w>T1T2) - (WTLl4wT2) (wT3 - 1)

X
(1 + wT3)
X
l.€Co
WT3 (WwT14wT2) - (1 - w T1T2)
b(E) =
g(E) -
wT3(l-w T1T2) + (wWwT1+wT2)
WwTIT2 + woT2T3 + woTIT3 - 1
b(E) (7)
g(E) =

wTl + wT2 + wT3 - w3T1T2T3

This equation is independent of the gain K. Since for
real values of K the phase angle contribution is zero. Equation

(7) satisfies the phase condition.

Now considering the magnitude conditions, we have
4
2 2. 2
[% (E) + b (E;l

‘G(jwﬂ kK S

e

and
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in

Substituting values of !N(E4 and lG(jw)

equation (5), we have
!

——

2
K [%z(E) + BL(EJ
= 1
L
w [(1+W1Tf) (1+w*T2%) (1+w2T3" )]"

Substituting the value of b(E) from equation (7) in

the above equation, we have
— ~1 7.
p =

5 5 WoTIT2 + woT2T3 + womriT3 - 1
K [g (E) + g (E)

wll + wT2 + wT3 - wTlT2T3 | = 1

T
w [ (1+w=T1%) (1+w>T2") (l+w2T32):i‘L

. e
2 2 Tt
K g(E)| 1 + |w TIT2 + w T2T3 + w T1T3 - 1
wTl + wT2 + wT3 - w3T1T2T3 = 1

i
w E1+WZT1") (1+w>T2%) (1+w1T3"):l"
{

3 2. + 2 3 *
K g(E) (WP1l+wT24wWT3-w“T1T2T3) + (w T1T24+w T2T3+w T1T3-1)
=/

a
(W 14+WT2+WT3-w> T1T2T3) w Elw"‘ccf) (1+w>T2%) (1+wlT3zi}’1

< 2 2.
Let X = (WIEl4+WwT2+WT3-w>T1T2T3) + (W T1T2+w T2T3+w>T1T3-1)
and

Y = (1+w>T1Y) (14w T2%) (1+w3T35)

Therefore, the above equation reduces to
= =1
K g(E) Lx:l +
2

— A
W(WT14+wT24wT3 - W T1T2T3) Ly]"-

On simplification we get X = Y
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Therefore, the above eguation reduces to

K g(E)
= 1 ‘ (8)

WITl + WiT2 + woT3 - woTlT2T3

Equation (8) gives the relationship between the system
parameters for the condition (5) and (6). It is independent

of b(E).

From equation (7), we have

WwoT1T2 + woT2T3 + woT1T3 -1

WTl + wT2 + wT3 - wT1T2T3

When the nonlinearity is single valued, than the imaginary
part of the describing function vanishes.

This condition implies

2 2 2.
w TlT2 + w T2T3 + w T1T3 -1 = 0
Solving for w® we obtain

v =

T1T2 + T2T3 + T3T1

or

w =i’ (9)

T1T2 + T2T3 + T3T1

As the negative value is practically not realisable



Substituting the value of w, in equation (8) we have

K g(E) N

T1 T2 T3 T1T2T3
+ + -
T1T2+T2T3+T3T1  TI1T2+T2T3+T3T1 T1T2+T2T3+T3T1 (T1T2+T2T3+T3T1

*. 9(® 1 (10)

1 T1+T2+T3 - T1T2T3

T1T2+T2T3+T3T1 V/T1T2+T2T3+T3Tl

For the existence of limit cycle the above eqguation
has to be equal to one. From design point of view the
values of.g(EnVOJL.and gain K can be adjusted sc as to

make the above expression equal to one.

Substituting T1=1.0, T2=0.5, T3=0.25, in equation (10)

we get

K= 1.847 .
9 (E) pjax. _ ’

For different values °f~g(E)hkxxn’ the corresponding

values of gain(K) are obtained and are plotted in figure 12.



g(E)Mooc» K_(galin') ....
0.02 92.35
0.04 46.17
0.06 30.78
0.08 23.09
0.10 18.47
0.12 15.39
0.14 13.19
0.16 11.54
0.18 10.26
0.20 9.23
0.22 8.39
0.24 - 7.69
0.26 7.10
0.28 6.59
0.30 6.15
0.32 5.77
0.34 _ N 5.43°

5 Values are plotted in figure 12.



For multivalued nonlinearity.

From equation (7) we have,

b (E)

g(E)

This

Let

W T1T 24w T2T34w>T1T3-1

WTL+WT2+WwT3—w T1T2T3
Rearranging the terms we get

w g (E) (TIT2+T2T3+T1T3) - w(TL+T2+T3) - g(E)

b(E)  TIT2T3 TIT2T3 "b(E)T1T2T3
et
aj = g(E) (T1T2+T2T3+T1T3)
b (E) T1T2T3
a‘ = = (T1+T2+T3)
TIT2T3
a, = - g(E)

"b(E) TIT2T3

Substituting in above equation we get

pr X
wo 4w ag + wa; + ag 0

is a third order equation in w
3

2z .
g= la, - la ;7 r=1(a,ay; - 3a,) -1 a
30 57 6 27 -

When q3 + rz';> 0, one real root and a pair of

complex conjugate roots.

2
If q3 + r = 0, all roots are real and at least

two are equal.



If ‘z/ "‘/‘“ <o + all roots are real (irreducible case)

2 2
Now substituting the values of G +A" | in terms

of g(E), b(E), T1, T2 ang T3, we get

2 e
cl,-r)o "TcT _ e ?4 . —+:272 .
8 | ok AT LT 73 N CEDT, 7T T T3
_1e3te R _ 43 S — (1)
OTET o m

Lokerc . 5. 2 2.
P= TP+ 4T3 #3775 + 30 54307, 3T F35 7,

S+ 3T+ 6TGT3

- &- 2. .
T‘" - 7’1’75‘7“7717-# BB T, _Tg[’-f |
= ° 3, 3.3 o
. 3T T L AT AT G AT T 2 Y
/ !

—;—37‘3737’ + 97773/“"4-.273'5:3‘5%27;@ 7'##;
2T+ 8T B+ 77, + 8T TR
T TaTE

R= T Tat BT 4 T R 5 + 15 rars -
S = N b +337}73_373 + 37,775 75
VAT TG 43T T T3
_+37}71L2}3+677L7‘LL7_§2__



When equation (11) is greater than zero, we have only
one frequency of oscillation. When equation (11) is equal
to zero, we have two values of w, i.e., two frequency of
oscillation, the corresponding values of amplitude of

oscillation can be obtained from equation (8).

Equation (8) and (11) when combined gives the designer
an estimate of gain (K) and the maximum value of N(E) for

which the system is absolutely stable,

When equation (l1l1) is greater than zero

Then
w= (S1 + 82) ~ a.
—3

and when equation (ll) is equal to zero we have

3
wy = =1 (S1 4+ 82) - a2
> 3 I

The corresponding values of amplitude of oscillation

can be obtained from equation (8)

where, 0 1
(4 o+ (30T 7

P

|

Sl =

1
82 = A (7"}1—/"9;.

L
v



REDUCTION TO THIRD AND SECOND ORDER CONTROL SYSTEMS

When T3 = (, the conditions reduce to a Third order

Control system,

In that case egquation (7) and (8) will be as follows

b(E) = wTIT2 - 1
g(E
e R

and

K g(E)

WwiTL + w2

Whééh is same as obtained by Dudkikar K.L. and
Nadkarni. D.D.
When T3 and T2 are zero, the conditions reduce to a

second order control system, in that case

b{(E) = =1
g(E) wTl
and
K _g(E) _
2, =1
w Tl

Simplifying we get,

g(E)

= RT1l
b™(E)

Whédeh is same as obtained by Asim K.S8en
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EXAMPLE AND RESULTS

A @ type nonlinearity is considered for the verification
of the results. The nonlinearity is as shown in Fig.§
The nonlinearity is single valued and hence, the equivalent

describing function does not have imaginary component.

The values for the amplitude and frequency of oscillations
are obtained by the Graphical technique derived from the
plotting of the Nyquist curve and the Analytical solution

using the Gain Margin and Phase margin principle.

The describing function for the nonlinearity can be

dexrived and is

g(E) = . 2E(—Sinf%/NE + Sin-g/E) +
' (a-a/N)TTE

/Ez— aZVNL JEZ - a*
E( 2xa/NEx - 2xa/E

) +

E E
]z— 2
E - a
4a (NE® - & '\/.E_z‘_é_zﬁ“_f +4b %
N E E B
E

From Fig. 4
The closed loop Transfer Function is

c(s) = N(E) G(S)
R(S) 1 + N(E)G(S)




Q@ TYPE NONLINEARITY

(3

b o s e e - —

-0

=z[p

Ay S

Figuré 9.

( Q0 type nonlinearity as defined by Gibson John E., in his
book," Nonlinear Automatic Control"., Page 363.)
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The characteristic equation is 1 + N(E)G(S)

Equating this to zero we have

1 + N(E)G(S) =0
N(E)G(S) = -1
G(S) = -1
N(E)

The intersection of the plot of G(S) and - 1
N(E)

will give the frequency and amplitude of oscillations.

Assuming

K = 10

Tl = 1.0

T2 = 0.5

T3 = 0.25

This is plotted and shown in figure‘?. The values
are computed with the aid of a computer program.

As the imaginary part of the describing function is
zero, the locus of =1 will be a portion of negative axis
itself. The open lgég)linear system is stable. Therefore

the G(jw) plot is sufficient from w = infinite to zero.

From figure 9 ., (values are obtained from computer program)
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The frequency of oscillation w = 1.06%91 and the

G(jW)l

at this frequency is 5.4439.,

Since,

[G(jW)l = % )
N (E)]

5.4439 g(E) = 1

1 = 0.1837
5.4439

@
=
N

" From ANALYTIC TECHNIQUE

We have from equation (9)

\ TiT2 + T2T3 + T3T1

N

0.5 + 0.125 + 0.25

) 1

0.875

/1.14285

= 1.0691

Which is exactly the same as obtained previously.

" From equation (8) we have,
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K g(E)

W2TL + woT2 + woT3 — woT1T2T3

w2Tl + wT2 + w'T3 - woT1T2T3

Q
=
n

K

WE(TL + T2 + T3 - wT1T2T3)

K

1.1429(1.75 - 0.133)

10

1.1429 x 1.617

10
= 0.1848

This compares very well with the previous result and

should be more accurate.

The corresponding values of E (amplitude of oscillation)
is calculated from the value of g(E) = 0.1848. From computer

programs the values of E obtained are tabulated on the next

page.

N, a and b corresponds to that shown in figure 8.

When N = 1, the nonlinearity becomes dead band with saturation.
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When N becomes very large, the nonlinearity becomes
only saturation. When a.is very small, the nonlinearity
becomes bang-bang. The higher value of the amplitude of

oscillation is selected from practical point of view.

N a b E
1.1 0.75 0.25 1.52 0.814
1.2 0.75 0.25 1.54 0.775

1.0 0.75 0.25 1.49 0.868




Assuming
T|= 1.0
T,= 0.5

Graphical technique

(37)

Analytical technique

K W . 9(E) W . 9(E)
5 1.0691 0.3674 1.0691 0.3696
10 1.0691 0.1837 1.0691 0.1848
15 1.0691 0.1224 1.0691 0.1232
Values for graphical technique are obtained

from computer programs.
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Conclusions and future developments

The analytical technique developed for determining a
limit cycle in a Fourth order control system with amplitude
sensitive nonlinearity provide a quick method for determing
the existence of one or more limit c¢ycle. The results
developed can be reduced to determine the limit cycle for
Third and second order systems also. This technique is
applicable to any amplitude sensitive nonlinearity. This
approach can also be applied to asymmetric nodlinearities.

The graphical method of determining the existence of sustained

oscillation is time consuming and laborious.

The anglytical technique can be modified and used for
frequency dependent nonlinearities. In this case the locus
of -1 for different w has to be plotted.

N(E,w)

fAneextension of the work could be the development of
the relations for the amplitude and frequency of sustained
oscillations, in cases where the open loop linear system

is unstable,
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K= T1=1.00 T2=0.50 T3=0.25
W REAL IMAG ABS VALUE
100.00000 0.000000 0.000000 0.000000
90.00000 0.000001 0.000000 0.000001
80.00000 0.000001 0.000000 0.000001
70.00000 0.000002 0.000000 0.000002
60.000Q00 0.000003 0.000000 0.000003
50.00000 0.000006 0.000001 0.000006
40.00000 0.000015 0.000003 0.000016
30.00000 0.000048 0.000011 0.000049
20.00000 0.000229 0.000083 0.000244
10.00000 0.002823 0.002272 0.003624
9.00000 0.003964 0.003675 0.005405
8.00000 0.005656 0.006222 0.008408
7.00000 0.008128 0.011113 0.013768
6.00000 0.011435 0.021137 0.024031
5.00000 0.014233 0.043217 0.045500
4.90000 0.014286 0.046621 0.048760
4.80000 0.014249 0.050333 : 0.0523il
4.70000 0.014103 0.054385 0.056183
4.60000 0.013823 0.058809 0.060412
4.50000 0.013383 0.063645 0.065037
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W REAL IMAG ABS VALUE
1.06967 -2.719340 0.001841 2.719341
1.06957 -2,719805 0.001544 2.719806
1.06947 -2.720268 0.001248 2.720269
1.06937 -2.720733 0.000951 2.720734
1.06927 -2.721197 0.000654 2.721197
1.06917 -2.721662 0.000358 2.721663
1.06907 -2.722127 0.0006061 2.722128
1.06897 -2.722591 -0.000236 2.722591
1.06887 -2.723056 -0.000533 2.723057
1.06877 -2.723520 -0.000830 2.723520
1.06867 -2.723987 -0.001127 2.723988
1.06857 -2.724451 ~0.001424 2.724452
1.06847 -2.724916 -0.001722 2.724916
1.06837 -2.725381 -0.002020 2.725382 -
1.06826 -2.725845 ~0.002317 2.725847
1.06816 -2.726310 -0.002614 2.726312
1.06806 -2.726778 -0.002913 2.726779
1.06796 -2.727243 -0.003211 2.727245
1.06786 -2.727708 -0.003508 '2.727711
1.06776 -2.728173 -0.003807 2.728177
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X 1¢ T 1.00 T2 0,50 T3 0.25

1] REAL ' INAG ASS VALUZ
100.00000 0.0C0001 0.00C0C0 0.00CC01
90.,00000 0.0C0001 0.0C0000 0.0C0001
R0, 00000 0.000002 0.000000 0.00C002
70.,00600 0.000003 0.0000C0 0.000003
£0.00000 0.0000056 0.000001 0.000006
50.00006 0.000013 0.000002 0.000013
40,00000 0.0C0031 0.,000005 0.000C31
30,00000 0,000095 0.000022 0.C000%E
20,00000 0.0004582 C.000156 0,c00487
10.00000 0.C05545 0.004543 0.C07247
9.00000 | 0,007928 0.007349 0,010810
£,00000 0.011312 0.012443 0.C14817
7.00000 0.0156255 0.022227 0.027537
6.,00000 0.022869 0.042273 0.048062
5.00000 0.0284556 0.086433 0.091000
L4,90000 0.028~571 0.0932ui 0.097520
4.,80000 0.028497 0.1006566 0.104622
L,70000 0.028205 0.108769 0.112367
4,60000 0.0202205 0.108769 0.112367
4,50000 0.026766 0.127290 0.130074
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W REAL IKAG ABS VALUZ
1.06967 -5.432680 0.0035682 5.4386€1
1.06947 -5. 4040534 0.002496 5.440534
-1,06957 -5.439607 0.0030828 5.439069
1.06937 -5. 441065 0,001901 5.40h10457
1,06927 -5.48L2392 0,001309 5.4042394
1.06917 -5.443320 0.000715% 5.443322
1,06907 -5.440253 0.000123 5.hlh2sh
1.06897 -5.0445181 -0.000471 5.445102
1,06297 -5.,446109 -0,001065 5.448110
1.06877 -5, 447032 -0,001660 5.44703
1.06867 -5.447972 -0,002255 5.447973
1.06857 -5.448901 -0.002848 5.L48901
1.056847 ~-5.4049828 -0,00340L% 5.Lk049829
1.06837 -5.450758 -0, 004040 5.450761
1.06826 -5.451687 -0.00463L 5.451689
1.06816 -5.452616 -0.005228 ‘5.@52619
1.06806 -5.453556 -0.0058256 5.453559
1,06796 -5,h54087 -0,006421 5,450L092
1.067%6 -5.455416 -0.007017 5.455421
1,06776 -5.456347 -0.007613 5.456353
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0.190935

K 15 T1 1.00 T3 0,25

W REAL THAG ABS VALUZE
100.00000 0,000001 0,000000 0,000001
90.00000 0.000002 0.000000 0,000002
£0,00000 0.000003 0.000000 0.000003
70.00000 0.000005 0.,000000 0,000005
60,00000 0.000009 0.000001 0.060009
50.00000 0.000019 0.000003 0.C00019
40,00000 0.000045 0.000008 0,000047
30.00000 0.000143 0,00003L 0,000145
20,00000 0.000687 0.,000249 0.000731
10, 00000 0.008470 0,006815 0.010871
9,00000 0,011892 0,011024 0.016214
8,00000 0.0169682 0.018665 0.025225
7.00000 0.024383 0,033340 0.041305
5,00000 0.034304 0.063410 0.072094
5.00000 0.042699 0.129650 0.136500
4,90000 0.042857 0.139862 0.146281
L4,80000 0.0L27456 0.150999 0.156933
4,70000 0,042308 0.163154 0.168550
4,60000 0.041470 0.176428% 0,181237
4,50000 0,040150 0.195110




(51)

W REAL IMAG ABS VALUE
1..06967 ~8,1582028 0.005522 8.158020
1.06957 -8,159412 0,004432 8.159411
1.06947 -8,160805 0.003744 8.160803
1.06937 -2,162195 0.002852 8.162192
1,06927 -8,163591 0.0019463 8.163587
1.06917 -8,164981 0.001074 8.164979
1.06907 -8,166350 0.00018% 8.166377
1.05297 -8.167774 ~0.0007C7 8.167776
1., 088707 ~-£,16G167 -0,0025GF £,1ECTEL
1,06877 -R,3705¢2 -G, 002l £.37C55
3. CEEET -.,171¢5¢ =CL.C(z5F2 FLl7165E
1.06857 -8.173354 -0,004272 8.173352
1,068L7 -8,174743 -0.005165 8.174741
1.06837 -8.176143 -0, 006060 8.176144
1.06826 -8.177533 -0,006951 8.177532
1,06816 -8.178927 -0, 007843 8.178927
1.06806 -8.180335 -0,008739 8.180336
1.06796 -8.181728 -0.009632 8.181731
1.05786 -8.183124 -0,010525 8.183126
1.06776 -8,184517 -0,010525 8,183126
1.06776 -8.184517 -0.011420 8.184522
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e BF PRI BF1S83___ _ BEMFL . 3F:SE __ . BF:Se __ __ ATAN_ _ B
GF 16K '
PRIGRAN ALLBCATION '

1942 N 19510 A ' 19640 B 19740
e 129G 1 1SACD . P 19300 Q. 13C0 g
17640 u 19F+0 v

~ PR3GRAN SIZE 120 o '




N

1.1

a 0.75 b 0.25
"B g(E)

8.0 0.039613
7.9 0.040111
7.8 0106200
7.7 0.041143
7.6 0.041680
7.5 0.042230
7.4 0,042796
7.3 0.043376
7.2 0.043973
7.1 0.044586
7.0 0.045216
6.9 0.045864
6.8 0.046531
6.7 0,047218
6.6 0.047925
6.5 0.048653
6.4 0.04oLOL
6.3 0.050178
6.2 0.050976
6.1 0.051801

(54)



E g(E)
1.60 0.177828
1.59 0.178665
1,58 0.179503
1.57 0.180347
1,56 0.181197
1.55 0.1820L49
1.5 0.182907
1.53 0.183769
1.52 0.184635
1.51 0.185505
1.50 0.186379
1.49 0.187256
1.48 0.188136
1.47 0.189021
1.46 0.189907
1l.45 0.190797
1.b4 0.191688
1.43 0.192583
1.k2 0.193480
1.81 0.194377

(55)



E g(E)
0.825 0.190721
0.824 0.190228
0.823 0.189728
0.822 0.189222
0.821 0.188705
0.820 0.188183
0.819 0.187656
0.818 0.187121
0.817 0.186575
0.816 0.186026
0.815 0.185468
0.81L 0.184900
0.813 0.184325
0.812 0.183744
0.811 0.183150
0,810 0.182551
0.809 0.181943
0.808 0.181326
0.807 0.180701
0,806 0.180066

(5

O



0.75 b 0.25
E g(E)

8.0 0.039625
7.9 0.040123
7.8 0.040633
7.7 0.041157
7.6 0.041694
7.5 0,04L220L5
7.0 0.042811
7.3 0.043392
7.2 0,043990
7.1 0.0L4603
7.0 0.046234
6.9 0.045883
6.8 0.046551
6.7 0.047339
6.6 0,0L7947
6.5 0.048676
6.4 0.049428
6.3 0.050203
6.2 0.051002
6.1 0.051828

(57)



E g(E)
1.60 0.179503
1.59 0.180374
1.58 0.181248
1.57 0.182129
1.56 830155
1.55 0.183907
1.54 0.18480L4
1.53 0.185706
1.52 0.18661k4
1.51 0.187527
1.50 0.188445
1.49 0.189368
1.48 0.190296
1.47 0.191228
1,46 0.192165
1.45 - 0.193106
1,44 0.194052
1.43 0.195001
1.42 0.195954%
1.41 0.196911

(58)



B g(Z)
0.785 0.191462
0.784 €.190810
0.783 0.190145
0.782 0.189470
0.781 0.188784
0,780 0.188087
0.779 0.187377
0.778 0.186655
0.777 0.185922
0.776 0.185175
0.775 0.184415
0.774 0.183641
0.773 0.182854
0,772 0.182053
0.771 0.181235%
0.770 0.180406
0.769 0.179558
0,768 0.178695
0.767 0.177812
0.766 0.176915

(59)



.
-

N 1.0 a 0.75 b 0.25
E g(E)

8.0 0.039598
7.9 0. 04009k
7.8 0. 040604
7.7 0.041126
7.6 0,041662
7.5 0.0L2212
7.0 0.042776
7.L 0.043355
7.2 0.043952
7.1 0,044 s6L
7.0 0.045193
6.9 0.0L5840
6.8 0.046506
6.7 0.048191
6.6 0.047897
6.5 0.048624
6.4 0.049373
6.3 0.050146
6.2 0. 509403
6

0.051765

(60)



E g(E)
1,60 0.175665
1.59 0.176455
1.58 0.177249
1.57 0.178047
1.56 0.178847
1.55 0.179650
1.54 0.180456
1.53 0.181265
1.52 0.182076
1.51 0.182890
1.50 0.183705
1.49 0.184523
1.48 0.185341
1.47 0.186162
1.46 0.186983
1.45 0.187805
1,44 0.188627
1.43 0.189449
1,42 0,190271
1,41 0.191092

(61

/



E g(E)
0.885 0.190836
0.884 0.190500
0.883 0.190159
0.882 0.189815
0.881 0.189465
0,880 0.189112
0.879 0.188753
0,878 0.188391
0.877 0.188023
0.876 0.187651
0.875 0.187275
0,874 0.186893
0.873 0.186507
0.872 0.186116
0,871 0.185720
0.870 0.185318
0.869 0.184912
0.868 0.184501
0.867 0.184084
0.866 0.183662

(62)



