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Abstract

The Fourier transform, the quantum mechanical harmonic oscillator, and super-

symmetric quantum mechanics are well-studied objects in mathematics. The relations

between them are also well-understood. The traditional understanding of each ap-

pears to suggest rigid structures that do not leave much flexibility for alternatives. In

this thesis, we will develop generalizations of the Fourier transform and explore their

relations. Exploring the analytic structure of these integral transforms, particularly

their related Hamiltonians, naturally leads to Hamiltonian-like operators which have

analytic and algebraic structures.

The algebraic structure underlying the Hamiltonian-like operators associated to

generalized Fourier transforms suggests a much-more-general abstract formulation.

To this end, we introduce the coupled supersymmetry (coupled SUSY) algebraic

framework which unifies the quantum mechanical harmonic oscillator and supersym-

metric quantum mechanics in a more complete way. The coupled SUSY framework

subsumes the quantum mechanical harmonic oscillator and provides a broader class

of systems which have interesting functional analytic and algebraic structures. In

this setting, one is able to develop further generalizations of the Fourier transform.

A further generalization of coupled SUSY is briefly presented which appears to offer

new insights into supersymmetry.
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Chapter 1

Introduction

The Fourier transform plays an integral role in mathematics and science. It serves

as the cornerstone of abstract harmonic analysis and signal processing. It is quite

appealing for many reasons, namely it is a unitary operator on L2(R) that is closely

connected to the group structure of the real line and converts differential opera-

tors into multiplication operators. The Fourier transform is extremely important in

quantum mechanics. In the context of quantum mechanics, the Fourier transform

takes a wavefunction ψ expressed in the spatial domain and then expresses it in the

momentum domain and vice versa. Physically, it can be thought of as extracting

the momentum information of the wavefunction. The Fourier transform also gives a

rigorous mathematical justification for the Heisenberg uncertainty principle.

The Fourier transform is also critical in the spectral theory of the (negative)

Laplacian: −∆. When viewed on an appropriate dense subspace of L2(R), this

operator is unbounded, essentially self-adjoint, and positive. The spectral theorem for

unbounded operators says that a unitary operator U exists such that −∆ is unitarily

equivalent to multiplication by a nonnegative function under U . Analysis shows that
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CHAPTER 1. INTRODUCTION

U is exactly the Fourier transform. In one real variable, − d2

dx2
has an image of y2 under

the Fourier transform. (In higher dimensions, −
∑

i
d2

dx2i
has image

∑
i x

2
i .) Likewise,

the multiplication operator x2 has an image of − d2

dy2
under the Fourier transform. As

such, the operator − d2

dx2
+x2 will be form-invariant under the Fourier transform. This

can be readily realized as the quantum-mechanical harmonic oscillator Hamiltonian.

The purpose of this thesis is to explore integral transforms which generalize

the Fourier transform and develop Hamiltonian-like objects which generalize the

quantum-mechanical harmonic oscillator Hamiltonian. This pursuit leads to a rich,

general theory when coupled with the language of supersymmetric quantum mechan-

ics. This new theory is denoted as coupled supersymmetry, or coupled SUSY. In this

framework, one can define pairs of integral transforms that generalize the Fourier

transform which are closely related. In the context of the quantum-mechanical har-

monic oscillator, these structures collapse into pairs of duplicates, and so these struc-

tures are hidden in this case.

Generalizing the Fourier transform on R and the quantum-mechanical harmonic

oscillator are hardly new ideas. The Hankel, or Fourier-Bessel, transform [28, 24, 25]

and the fractional Fourier transform [33] are two such generalizations of the Fourier

transform. The Fourier-Bessel transform is very closely related to the work contained

herein. There has been some work characterizing and studying general integral trans-

forms on R [11, 12] and some work on periodic integral transforms [52, 32]. There

is also a generalization of the Fourier transform to arbitrary locally compact abelian

groups which subsumes both Fourier series and Fourier transforms on R. This gen-

eralization of the Fourier transform is quite general and very satisfactory, though it

does not in general capture a differential structure. This generalization is founded on

continuous homomorphisms of the locally compact abelian group to the unit circle T.
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CHAPTER 1. INTRODUCTION

Such continuous homomorphisms serve as the integral kernel for the Fourier trans-

form. It is a simple exercise to show that in the case of the group of real numbers

under addition, the Fourier kernel is effectively unique and is exactly exp(−ixy). Fur-

thermore, Fourier transforms come in pairs in this setting: one may define a Fourier

transform on a group G and its dual group Ĝ. A generalization closely related to the

abstract harmonic analytic Fourier transform is the Dunkl transform [30, 42].

Supersymmetric quantum mechanics is a broad generalization of the ladder op-

erator formalism of the quantum-mechanical harmonic oscillator. The connection

between the quantum-mechanical harmonic oscillator and the Fourier transform can

be made explicit beyond the connection via the Gaussian as an eigenfunction of each.

The creation and annihilation operators x± ip in the quantum-mechanical harmonic

oscillator are eigenoperators [32] of the Fourier transform, i.e., they are form-invariant

under the Fourier transform. This parallel between the quantum-mechanical har-

monic oscillator and the Fourier transform suggests that, at least in special subcases

of supersymmetric quantum mechanics, Fourier-like transforms exist and have the

supersymmetric charge operators as eigenoperators.

This thesis has two main sections. The first section comprises Chapters 2 and

3 and focuses on integral transform theory. Chapter 2 contains a brief overview of

Fourier series and transform theory. Chapter 3 contains generalizations of the Fourier

transform and explores uncertainty relations and a notion of duality between integral

transforms. The analysis of the generalized Fourier transform leads to the consider-

ation of Hamiltonian-like operators which have a supersymmetric nature. This leads

naturally into the second section of the thesis. The second section comprises Chap-

ters 4 and 5. Chapter 4 contains a brief review of the quantum-mechanical harmonic

oscillator and supersymmetric quantum mechanics. Chapter 5 introduces coupled

3



CHAPTER 1. INTRODUCTION

supersymmetry and explores its analytic and algebraic structures.

The work in Chapter 3 has been accepted to the Journal of Fourier Analysis and

Applications [54] and is to appear. The work in Chapter 5 has been submitted to

arXiv [55].
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Chapter 2

Fourier Transforms

2.1 Fourier Series

The Fourier transform serves as the basis of much of the work in this thesis, due

in no small part to its many nice properties. The Fourier transform is, in some

sense, a continuum analogue of the Fourier series [8, p. 92] and so we choose to

briefly investigate the nature of Fourier series. The Fourier series of a sufficiently nice

compactly supported (or periodic) function extracts the amplitude and frequency

information by expanding the function as a (possibly infinite) linear combination of

sines and cosines. Historically, Fourier series were developed to approximate general

solutions to the heat equation on a bounded domain [20, 21].

Fourier series play an integral role in communications, largely due to Shannon’s

sampling theorem [47] which states that a band-limited signal can be completely

reconstructed from a sufficient number of discrete samples. Much real-world data

are continuous, however only discrete data can be stored or analyzed on computers,

making the sampling theorem a very crucial theorem in signal reconstruction. The

5



2.1 FOURIER SERIES

sampling theorem guarantees that the reconstructed data agrees with the original

signal within a given tolerance. To this end, Fourier series are quite important in

real-world applications. We now formally define the Fourier series.

Given a function f ∈ L1([0, 2π]), we may define its (formal) Fourier series (pro-

vided that it exists) as the function

1√
2π

∞∑
n=−∞

einxFf(n), (2.1)

where x ∈ [0, 2π] and

Ff(n) =
1√
2π

∫ 2π

0

e−inyf(y) dy. (2.2)

Indeed this is the largest domain for which Fourier series can be defined since

∫ 2π

0

|e−inyf(y)| dy =

∫ 2π

0

|f(y)| dy.

Both integrals converge if and only if f ∈ L1([0, 2π]). Note that the Lp spaces are

nested on [a, b] where −∞ < a < b < ∞. (In general, if X is a finite measure space

and p2 > p1, then Lp2(X) ⊂ Lp1(X) [19, p. 186].)

Remark 2.1. The integrals that appear herein are to be interpreted as Lebesgue in-

tegrals. However, in many situations of interest in this thesis, the Lebesgue integral

may be treated as a Riemann integral.

Carleson’s theorem [10, 29] shows that for f ∈ Lp([0, 2π]) with 1 < p < ∞, then

the Fourier series of f converges almost everywhere to f when the Fourier series is

6



2.2 THE FOURIER TRANSFORM

summed as a principal value sum, that is to say that for f ∈ Lp([0, 2π]),

f(x) = lim
N→∞

1√
2π

N∑
n=−N

Ff(n)einx (2.3)

for almost every x ∈ [0, 2π].

2.2 The Fourier Transform

An inherent fault in the theory of Fourier series is that it is built on functions defined

on bounded intervals, or more generally on periodic functions. Many functions that

are of general interest are not defined on bounded intervals and are not periodic, e.g.,

exp(−x2/2) for x ∈ R. This leads to the theory of the Fourier transform. In some

sense, the Fourier transform may be viewed as a continuum analogue of Fourier series.

The Fourier transform can be abstractly defined via group theoretic techniques

[18, 44, 48]. Given a locally compact abelian group G, one may define the set of

continuous characters, denoted Ĝ, to be the group of functions χ : G → T, where T

is the unit circle, satisfying χ(g1g2) = χ(g1)χ(g2). The set of continuous characters

forms a group under multiplication called the dual group. One can define the Fourier

transform from G to Ĝ by Ff(χ) =
∫
G
χ(g)f(g) dg and a Fourier transform from

Ĝ back to G similarly. These Fourier transforms are in some sense inverses of each

other. Particularly, for suitably nice functions, the Fourier transforms are indeed

inverses of each other. Notably, Fourier transforms come in pairs in the context of

locally compact groups. For more information see [18, 44, 48]. We will see in the next

chapter that our generalizations of the Fourier transform also come in pairs.

It is a simple exercise to show that the dual group of the group [0, 2π) under

7



2.2 THE FOURIER TRANSFORM

addition modulo 2π is the group of integers [18, p. 90]. In the defintion of the Fourier

series appeared an integral over [0, 2π) and a sum over Z. Hence, the Fourier series is

a specific realization of the abstract Fourier transform on [0, 2π) and Z. Considering

instead the group of real numbers R with addition, a straightforward argument shows

that if f : R → T is a continuous character, then f(x) = exp(ixy) for some fixed

y ∈ R [18, p. 90]. Thus, the dual group of R is again R, and so we expect that the

Fourier and inverse Fourier transforms on R are closely related. This leads into our

first definition.

Definition 2.2. Let f ∈ L1(R) and y ∈ R, then its Fourier transform, denoted Ff ,

is defined to be

Ff(y) =
1√
2π

∫ ∞
−∞

e−ixyf(x) dx. (2.4)

This is well-defined for f ∈ L1(R) since

∫ ∞
−∞
|e−ixyf(x)| dx =

∫ ∞
−∞
|f(x)| dx <∞.

Both integrals
∫∞
−∞ e

−ixyf(x) dx converge for y ∈ R as it is absolutely integrable.

Furthermore, this is the largest domain of definition for the Fourier transform as an

integral operator.

The Fourier transform has numerous properties which are direct consequences

of the Fourier kernel exp(−ixy) being a continuous character on R, the Lebesgue

measure, and the L1(R) space. Some of these properties are summarized below.

Proofs may be found in [43, p. 179].

Theorem 2.3. Let f, g ∈ L1(R), x′, y, y′ ∈ R, α ∈ R∗, fx′(x) = f(x−x′), (f ∗g)(x) =∫∞
−∞ f(x− x̃)g(x̃) dx̃, and Dαf(x) =

√
|α|f(αx), then

8



2.2 THE FOURIER TRANSFORM

1. Ff ∈ C0(R), i.e., Ff is continuous on R and goes to zero at infinity,

2. F(fx′)(y) = e−ix
′yFf(y),

3. F(eixy
′
f)(y) = Ff(y − y′),

4. F(f ∗ g)(y) =
√

2πFf(y) · Fg(y),

5. F(Dαf)(y) = Dα−1Ff(y),

6. If f ∈ AC(R), then F(f ′)(y) = iyFf(y),

7. If xf ∈ L1(R), then F(xf)(y) = −i d
dy
Ff(y).

The first property is known as the Riemann-Lebesgue lemma. The second and

third properties are restatements of the fact that the function x, y 7→ exp(−ixy) is a

group homomorphism of R to T. The fourth property relies on this fact, in addition

to the Fubini-Tonelli theorem. The fifth is a consequence of the fact that the Fourier

kernel is a product kernel, i.e., f(x, y) = g(xy) for some function g. The last two are

consequences of the fact that the function x 7→ exp(λx) is an eigenfunction of the

derivative operator.

Definition 2.4. Let f ∈ L1(R) and y ∈ R. The inverse Fourier transform of f ,

denoted F−1f , is defined to be

F−1f(y) =
1√
2π

∫ ∞
−∞

eixyf(x) dx. (2.5)

Indeed, as the name suggests, the operator F−1 does act as the inverse of the

Fourier transform for such functions f . Comparing this to the definition of the Fourier

series, we see that Ff plays an analogous role to the integral (2π)−1/2
∫ 2π

0
e−inyf(x) dx,

9



2.2 THE FOURIER TRANSFORM

whereas F−1 plays the role of the summation and the following identity holds for

almost every x ∈ R provided that f,Ff ∈ L1(R) [43, p. 185]:

f(x) =
1√
2π

∫ ∞
−∞

eixyFf(x) dx. (2.6)

If f ∈ L1(R) it is not guaranteed that Ff ∈ L1(R) and so the above integral may

not exist, i.e., f may not be invertible. A typical example of such an f is f = 1
2
χ[−1,1] ∈

L1(R). For this choice of f , Ff(y) =
√

2
π

sin y
y

. Ff is not absolutely integrable

on R and is therefore not in L1(R). Instead one may argue that if Ff ∈ L1(R),

then we could realize F−1Ff(y) as F2f(−y). F2f(−y) will be continuous by the

Riemann-Lebesgue lemma, however the original definition of f is not continuous. An

adaptation of the latter argument works quite well for more general locally compact

abelian groups.

The L1 theory of the Fourier transform is quite nice, but it is perhaps the L2 theory

that is most appealing as its functional analytic properties on L2(R) are even richer.

Many of the L1 properties can be adapted to the L2 theory. To develop the Fourier

transform on L2(R), one first considers the dense subspace L1(R) ∩ L2(R) in L2(R).

That this is a dense subspace of L2(R) is fairly straightforward. Given f ∈ L2(R),

define the sequence fn = χ[−n,n]f . These functions are compactly supported and in

L2(R). By the nesting of Lp spaces on finite measure spaces [19, p. 186] (of which

[−n, n] under the Lebesgue measure is an example), each of the fn are in L1(R). A

straightforward calculation shows that ‖f − fn‖2 → 0 as n tends to infinity. The

heuristic argument is that in order for f ∈ L2(R), the integral of its tail, represented

by f − fn, must go to zero.

The Fourier transform on L1(R) ∩ L2(R) is an L2 isometry. That is to say that

10



2.2 THE FOURIER TRANSFORM

if f ∈ L1(R) ∩ L2(R), then Ff ∈ L2(R) and ‖Ff‖2 = ‖f‖2. The standard proof

for this involves regularizing the integrals with exponentially decaying functions [43],

be they of the form exp(−|t|) or exp(−x2). Since L1(R) ∩ L2(R) is dense in L2(R)

and the Fourier transform is an L2 isometry from L1(R)∩L2(R) to L2(R), it extends

to an isometry on L2(R). This extension cannot be realized as an integral operator

directly as the integral of exp(−ixy) against an L2 function need not exist.

The extension of the Fourier transform from L1(R) ∩ L2(R) to all of L2(R) is

traditionally also called the Fourier transform, though the understanding is not lost

as the Fourier transforms on L1(R) ∩ L2(R) and on L2(R) are quite different in

nature. The Fourier transform on L2(R) has numerous properties, sharing many with

the Fourier transform on L1(R). Let 〈·, ·〉 denote the usual inner product on L2(R).

Some unique properties of the L2(R) Fourier transform are

1. 〈Ff,Fg〉 = 〈f, g〉,

2. F is onto L2(R),

3. F is a unitary,

4. F4 = I,

5. σ(F) = {±1,±i}.

That F4 = I follows from the fact that F2 acts as a reflection operator, i.e.,

F2f(x) = f(−x) on L2(R). This is ultimately a consequence of the symmetry between

the Fourier and inverse Fourier transforms, particularly, the two differ only insofar

that exp(−ixy) and exp(ixy) differ by an overall sign change. Perhaps the most

surprising and enticing property of the L2(R) Fourier transform is the uncertainty

principle associated to it.

11



2.2 THE FOURIER TRANSFORM

Theorem 2.5. Let f ∈ L2(R) ∩ AC(R) be such that x 7→ xf(x) ∈ L2(R) and

y 7→ yFf(y) ∈ L2(R), then

(∫ ∞
−∞

x2|f(x)|2 dx
)(∫ ∞

−∞
y2|Ff(y)|2 dy

)
≥ 1

4

(∫ ∞
−∞
|f(x)|2 dx

)2

. (2.7)

There are many proofs for this theorem [22, 26, 49], most of which make use of

some form of the Cauchy-Schwarz inequality. We provide one proof below.

Proof. Let f ∈ L2(R) ∩ AC(R) be such that x 7→ xf(x) ∈ L2(R) and y 7→ yFf(y) ∈

L2(R), then f ′ exists and f ′ ∈ L2(R). By integration by parts,

(∫ ∞
−∞
|f(x)|2 dx

)2

= 4

(
Re

∫ ∞
−∞

xf(x)f ′(x) dx

)2

.

Note that f goes to zero at infinity since f ∈ AC(R) and |f |2 ∈ L1(R). Using

Cauchy-Schwarz with the auxiliary functions η(x) = xf(x) and ξ(x) = f ′(x) as well

as the established equivalence F(f ′)(y) = iyFf(y),

4

(
Re

∫ ∞
−∞

η(x)ξ(x) dx

)2

≤ 4

(∫ ∞
−∞
|η(x)|2 dx

)(∫ ∞
−∞
|ξ(x)|2 dx

)
= 4

(∫ ∞
−∞

x2|f(x)|2 dx
)(∫ ∞

−∞
y2|Ff(y)|2 dy

)
.

Thus

(∫ ∞
−∞

x2|f(x)|2 dx
)(∫ ∞

−∞
y2|Ff(y)|2 dy

)
≥ 1

4

(∫ ∞
−∞
|f(x)|2 dx

)2

.

Equality holds above if and only if ξ = −λη for some λ ∈ C, i.e., f ′(x) = −λxf(x)

and so f(x) = exp(−λx2/2). Provided that Re(λ) > 0, f ∈ L2(R) and results in a

12



2.2 THE FOURIER TRANSFORM

modulated Gaussian. A simple computation shows that for such a choice of f , equality

indeed holds.

The function exp(−x2/2) is not just a minimizer for the uncertainty product, it

is also an eigenfunction of the Fourier transform. We prove this below. Define f by

f(y) =
1√
2π

∫ ∞
−∞

e−ixye−
x2

2 dx. (2.8)

Taking a derivative of both sides with respect to y and noting that we may differentiate

under the integral sign, we get

f ′(y) =
1√
2π

∫ ∞
−∞
−ixe−ixye−

x2

2 dx.

−x exp(−x2/2) can readily be viewed as the derivative of exp(−x2/2), and an inte-

gration by parts yields

f ′(y) = − y√
2π

∫ ∞
−∞

e−ixye−
x2

2 dx = −yf(y).

The solution to this is clearly of the form C exp(−x2/2).

Another standard technique for showing that the Gaussian is an eigenfunction

of the Fourier transform makes use of rewriting exp(−ixy) exp(−x2/2) as a single

exponential with complex argument, completing the square, and making use of the

entirety of the exponential function to do a complex change of variables.

As noted above, the Fourier transform interchanges the roles of the multiplication

operatorMix and the derivative operator d
dy

. The Fourier transform also interchanges

the roles ofMy and i d
dx

; as such the operator d
dx

+x is form-invariant under the Fourier

13



2.2 THE FOURIER TRANSFORM

transform, that is to say that

F
((

d

dx
+ x

)
f

)
(y) = i

(
d

dy
+ y

)
Ff(y). (2.9)

Likewise,

F
((
− d

dx
+ x

)
f

)
(y) = −i

(
− d

dy
+ y

)
Ff(y). (2.10)

The operators d
dx

+ x and − d
dx

+ x will play an important role in Chapter 3.

The Fourier transform is, unsurprisingly, critical to the spectral theory of the

operator − d2

dx2
. This should be expected since the Fourier transform is unitary and

also enjoys the property that its kernel exp(−ixy) is a (non-L2) eigenfunction of the

operator − d2

dx2
. The image of the operator − d2

dx2
under the Fourier transform is y2, and

likewise the image of the multiplication operatorMx2 under the Fourier transform is

the operator − d2

dy2
. As such, it is natural to construct the operator

−1

2

d2

dx2
+

1

2
x2.

This operator will be invariant under the Fourier transform, much like the operators

d
dx

+ x and − d
dx

+ x. Such operators are called eigenoperators and some theory has

been worked out for them [32].
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Chapter 3

Generalized Fourier Transforms

3.1 Generalizing the Fourier Transform

Through its connection with the group structure of the real numbers, the Fourier

transform appears to leave little flexibility in its design. Part of the popularity of

wavelets in harmonic analysis can be attributed to the variety of ways that scaling

functions and associated wavelets, building blocks for signal analysis, can be chosen

for different purposes in time-frequency analysis. A structural difference between

Fourier and wavelet analysis is the use of dilations in the definition of the wavelet

transform which are related to the affine group.

This section follows a path to the Fourier transform that orients itself closely

with the structure of wavelets, making the intertwining relationship with dilations a

defining property rather than a relationship between translations and modulations.

If one had to choose a “scaling function” associated with the Fourier transform, it

would arguably be the Gaussian; a suitably chosen Gaussian is an eigenfunction

of the Fourier transform, and its translates and modulations are related by analytic

15



3.1 GENERALIZING THE FOURIER TRANSFORM

continuation. The Gaussian is also an uncertainty minimizer, a fact that has relevance

for the short-time Fourier transform, which extracts local frequency information by

modulating with a moving window and subsequently applying the Fourier transform.

The Gaussian also plays the role of a low-pass filter in some applications; however,

while it is localized in both time and frequency, it is not considered to be close

to an ideal low-pass filter [7]. Particularly, the Gaussian decays rapidly to zero,

whereas a nearly ideal low-pass filter should be nearly 1 over an interval of interest

and decay rapidly to zero outside of it. On the other hand, because of the nearly

discontinuous behavior of an approximately ideal filter, one would not expect its

Fourier transform to be well-localized which is desirable from a numerical point of

view. The simplest way in which to address this deficiency is to find an integral

transform with an eigenfunction possessing simultaneous localization in both domains,

something that seems impossible when considering the various manifestations of the

uncertainty principle in harmonic analysis.

In this chapter, we will establish that there is a family of integral transforms

{Φn}∞n=1, each Φn densely defined on L2(R), which generalize the properties of the

Fourier transform in the following way:

1. If gn(x) = e−
x2n

2n , n ∈ N, then Φngn = gn.

2. If α ∈ R\{0} andDα is the dilation operator given above, then ΦnDα = Dα−1Φn.

3. The operator Φn is unitary and can be defined as an integral transform when

its domain is suitably restricted to a dense set in L2(R).

4. Φ4
n = I and its eigenvalues and spectrum are comprised only of ±1,±i.

Moreover, an uncertainty principle, some spectral analysis of an unbounded Laplacian

16



3.2 A FAMILY OF INTEGRAL TRANSFORMS

will be explored, a short-time analogue of Φn will be developed, and a family of integral

transforms closely related to Φn will be established.

The Gaussian is a special case of the family of Gaussian-like functions {gn}∞n=1

featured in property (1). The guiding principle is to retain as many properties of the

Fourier transform as possible while demanding that Φn leaves gn invariant. Based on

these axioms, we derive that Φn is defined as an integral transform,

Φng(y) =

∫ ∞
−∞

ϕn(xy)g(x) dx, a.e. y ∈ R,

for each sufficiently regular function g with the integral kernel ϕn(xy) = cn(xy) +

isn(xy),

cn(η) =
1

2
|η|n−

1
2J−1+ 1

2n

(
|η|n

n

)
,

and

sn(η) = −1

2
sgn(η)|η|n−

1
2J1− 1

2n

(
|η|n

n

)
.

The Fourier transform emerges as the special case F = Φ1. The functions cn and

sn are shown to be solutions to the eigenvalue equation of a (singular) Laplacian,

− d
dη

1
η2n−2

d
dη
g(λη) = λ2ng(λη). This shows that the asymptotic oscillatory behavior of

the kernel can be tuned by choosing n, which is expected to be useful in applications

of signal analysis to functions with chirp-like components.

3.2 A Family of Integral Transforms

We first want to show that a densely defined, bounded integral operator on L2(R)

satisfying the dilation property given in (2) has an integral kernel, ϕ, of the form

17



3.2 A FAMILY OF INTEGRAL TRANSFORMS

ϕ(y, t) = f(xy) for some function f .

Proposition 3.1. Suppose T is a bounded integral operator defined on a dense sub-

space X of L2(R) such that X is invariant under each Dα, α 6= 0, and T Dαg = Dα−1T g

for all g ∈ X. If ϕ is a kernel for T , then we can choose ϕ to be of the form

ϕ(y, t) = f(xy) for some function f .

Proof. Suppose g ∈ X and let α ∈ R \ {0}. T Dαg and Dα−1T g are then defined

almost everywhere. From the dilation property and by a change of variables, we have

∫ ∞
−∞

ϕ(αx, y)g(x) dx =

∫ ∞
−∞

ϕ(x, αy)g(x) dx, a.e. y ∈ R. (3.1)

This identity also holds almost everywhere when choosing g among a countable, dense

subset of X, which is dense in L2(R), and thus for a fixed α 6= 0, ϕ(αx, y) = ϕ(x, αy)

for almost every x, y ∈ R. Next, this identity is valid when selecting α from a

countable set, say the rationals. Scaling then gives ϕ(xα−1, αy) = ϕ(x, y) almost

everywhere, which shows that the left hand side does not depend on α. Now taking

the limit α → x through the rationals gives that ϕ(x, y) is a function of xy, defined

almost everywhere. This proof is expedited if ϕ is assumed to be continuous and the

almost everywhere constraints may be dropped in favor of pointwise constraints.

Next we define the family of n-Gaussians.

Definition 3.2. For n ∈ N, the n-Gaussian is the function gn ∈ L2(R) such that

gn(x) = e−
x2n

2n .

In analogy with the Fourier transform, we require in (1) that gn be invariant under
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3.2 A FAMILY OF INTEGRAL TRANSFORMS

the integral operator Φn. The n-Gaussians behave as nearly ideal low-pass filters and

as such are natural candidates for defining an integral transform. We denote the

kernel of Φn by ϕn.

Our goal is to devise a family of operators that generalize the Fourier transform

while retaining as many of its properties as possible. Specifically we look to an

axiomatic characterization of the transforms. A similar axiomatic approach has been

developed for the case of the Hilbert transform [6]. To this end, we inspect some

properties of the Fourier kernel.

The most obvious properties of the Fourier kernel are that the real part is even,

the imaginary part is odd and it is real analytic in both variables. There are multiple

ways in which sine and cosine are related: as derivatives of each other, as distribu-

tional Hilbert transforms of each other and as linearly independent eigenfunctions

of the Laplacian in one variable. There is no a priori obvious generalization of the

derivative operator which enjoys many of the same properties so this is not feasi-

ble; the distributional Hilbert transform, while rich with theory, is difficult to treat in

practice. For these reasons, and more, we choose to use view the relationship between

sine and cosine as both being linearly independent solutions to the same differential

equation.

We write ϕn as

ϕn(x, y) = cn(x, y) + isn(x, y), (3.2)

where cn and sn are real-valued. With these properties in mind, we state the following

assumptions for ϕn:

(a) ϕn is of the form ϕn(x, y) = f(xy) for some complex-valued function f ,

(b) ϕn is real analytic,
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3.2 A FAMILY OF INTEGRAL TRANSFORMS

(c) cn is even and sn is odd,

(d) cn and sn are linearly independent solutions to the same differential equation.

With the stipulated form for the integral kernel, (1) becomes

e−
y2n

2n =

∫ ∞
−∞

ϕn(xy)e−
x2n

2n dx. (3.3)

From this integral expression we can deduce some immediate consequences for

ϕn. Without assuming evenness of cn, it could not be uniquely determined from (3.3)

as any odd, slowly-growing function can be added to it and the integration against

the n-Gaussian would be unchanged. Additionally, sn must be orthogonal to the

n-Gaussians for all y ∈ R, otherwise the right side of (3.3) would be complex whereas

the left side is pure real. These observations support assumption (c) for ϕn. For now

we will consider cn as it can be easily established from (3.3).

Definition 3.3. Let n ∈ N, l ∈ N0 and

c(n; l) =
(−1)ln

(2n)2l+ 1
2nΓ

(
l + 1

2n

)
l!
.

We then define cn as the entire function with the series

cn(η) =
∞∑
l=0

c(n; l)η2nl , η ∈ C. (3.4)

Lemma 3.4. Let the function cn be as in (3.4), then, for y ∈ R, it is real analytic

and satisfies the integral equation

e−
y2n

2n =

∫ ∞
−∞

cn(xy)e−
x2n

2n dx
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3.2 A FAMILY OF INTEGRAL TRANSFORMS

Proof. Substituting the stipulated form for cn into the integral equation gives

e−
y2n

2n =

∫ ∞
−∞

∞∑
l=0

c(n; l)y2nlx2nle−
x2n

2n dx. (3.5)

If the series given by
∞∑
l=0

c(n; l)y2nl

∫ ∞
−∞

x2nle−
x2n

2n dx (3.6)

converges absolutely for all y ∈ R, then the integral and summation in (3.5) can be

interchanged by the Fubini-Tonelli theorem. Substituting t = x2n

2n
in the integral in

(3.6) yields

∫ ∞
−∞

x2nle−
x2n

2n dx =
1

n
(2n)l+

1
2n

∫ ∞
0

tl+
1
2n
−1e−t dt

=
1

n
(2n)l+

1
2nΓ

(
l +

1

2n

)
.

Inserting this expression into (3.6) yields the following series

∞∑
l=0

1

l!

(
−y

2n

2n

)l
. (3.7)

This series converges absolutely for all y ∈ R and so the integration and summation

can be interchanged in (3.5), resulting in e−
y2n

2n and thus the lemma is proved.

In fact, for real η, cn has the closed-form expression:

cn(η) =
1

2
|η|n−

1
2J−1+ 1

2n

(
|η|n

n

)
, (3.8)

where Jν is the Bessel function of the first kind of order ν [53, p. 40]. This can be
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3.2 A FAMILY OF INTEGRAL TRANSFORMS

checked directly by manipulating the Bessel function power series:

Jν(z) =
∞∑
m=0

(−1)m

Γ(m+ ν + 1)m!

(z
2

)2m+ν

.

Since cn can be expressed in terms of a Bessel function of the first kind, one may

expect that cn is the solution to a second-order differential equation. We prove this

in the next proposition.

Proposition 3.5. The function cn as defined in (3.4) is a solution to the differential

equation

− d

dη

1

η2n−2

d

dη
cn(η) = cn(η). (3.9)

Proof. Since the series defined in (3.4) converges uniformly on compact sets, we can

differentiate the series term-by-term. Hence we have that

− d

dη

1

η2n−2

d

dη
cn(η) =

∞∑
l=0

(−1)ln

(2n)2l+ 1
2nΓ

(
l + 1

2n

)
l!

(
− d

dη

1

η2n−2

d

dη

)
η2nl

=
∞∑
l=1

(−1)ln

(2n)2l+ 1
2nΓ

(
l + 1

2n

)
l!

(−2nl)(2nl − 2n+ 1)η2nl−2n.

Upon reindexing the series and making use of the recursive property of the gamma

function, this becomes cn(η) as claimed.

In fact, a more general property holds. If Dn denotes the operator − d
dx

1
x2n−2

d
dx

,

defined on sufficiently regular entire functions, then for fixed y ∈ R, Dn(cn(xy)) =

y2ncn(xy). This equality can be checked in a similar manner as above.

Using the above result and the assumptions that sn is real analytic and satisfies the

same differential equation as cn, we can now derive sn—at least up to a multiplicative

factor. We do so in the next proposition.
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3.2 A FAMILY OF INTEGRAL TRANSFORMS

Proposition 3.6. The function f defined by the series

f(η) =
∞∑
l=0

(−1)l

(2n)2lΓ
(
l + 2− 1

2n

)
l!
η2nl+2n−1

solves the differential equation Dnf(η) = f(η). Moreover, the solution set of entire

functions to Dng = g is spanned by cn and f as defined above.

Proof. That Dnf = f follows via the same arguments in Proposition 2. Moreover,

suppose that g is a solution to the differential equation Dng = g and is given by the

power series

g(η) =
∞∑
l=0

αlη
l

for some αl ∈ R. Then comparing the terms in the power series of Dng and g, we get

from

− d

dη

1

η2n−2

d

dη
g(η) = − d

dη

1

η2n−2

d

dη

∞∑
l=0

αlη
l

= −
2n−2∑
l=1

αll(l − 2n+ 1)xl−2n −
∞∑
l=2n

αll(l − 2n+ 1)xl−2n

that α1 = · · · = α2n−2 = α2n+1 = · · · = α4n−2 = · · · = 0. Thus the only nonzero

coefficients are α2nl and α2nl−1 for some l. By solving the recursion relations for the

coefficients, it follows that the solutions to Dng = g are linear combinations of cn

and f since cn and f are linearly independent solutions to the same second order

differential equation.

With this result established, we make the following definition for sn.
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3.2 A FAMILY OF INTEGRAL TRANSFORMS

Definition 3.7. Let n ∈ N, l ∈ N0 and

s(n; l) = − (−1)ln

(2n)2l+2− 1
2nΓ

(
l + 2− 1

2n

)
l!
.

We then define sn as the entire function with the series

sn(η) =
∞∑
l=0

s(n; l)η2nl+2n−1 , η ∈ C. (3.10)

As noted above, sn is only unique up to a multiplicative factor. The choice of sn

above guarantees unitarity; in fact, the only other choice that gives unitarity is −sn,

in exact agreement with Fourier transform theory.

Like cn, sn has a convenient representation in terms of a Bessel function of the

first kind; particularly, we have that sn(η) = −1
2

sgn(η)|η|n− 1
2J1− 1

2n

(
|η|n
n

)
. If n = 1,

ϕ(η) = 1√
2π
e−iη as expected.

With these representations in terms of Bessel functions, we can inspect the asymp-

totic behavior of ϕn easily. The Bessel function Jν has the following asymptotic form

[53, p. 199]:

Jν(η) ∼
√

2

πη
cos
(
η − νπ

2
− π

4

)
+O

(
η−

3
2

)
.

Hence cn and sn have the following asymptotic forms which will be useful in the

analysis in the next section:

cn(η) ∼
√

n

2π
|η|

n−1
2 cos

(
|η|n

n
+
π

4

(
1− 1

n

))
+O

(
|η|−

n+1
2

)
, (3.11)

sn(η) ∼
√

n

2π
sgn(η)|η|

n−1
2 cos

(
|η|n

n
− π

4

(
3− 1

n

))
+ sgn(η)O

(
|η|−

n+1
2

)
. (3.12)
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3.3 The Φn transform and its domain

When developing the Fourier transform in full generality, it is often first defined on

functions in L1(R) and then extended by considering limits of Cauchy sequences in

the dense subset L1(R)∩L2(R) [43, 49] or S(R) of L2(R) [45]. For such functions, the

results from the theory on L1(R) are true as well which streamlines many proofs. We

employ a similar approach in the present setting with a caveat: because the kernels

diverge at infinity, the function space on which the integral transforms are defined

cannot be all of L1(R) but must be modified to mollify the growth of ϕn at infinity.

Define the measure dµn(x) = |x|n−1
2 dx. We claim that for f ∈ L1(R, dx) ∩

L1(R, dµn),
∫
R |ϕn(xy)f(x)| dx is finite. In the case of n = 1, this space is identically

L1(R) which is the usual space upon which the Fourier transform is defined. Let

y ∈ R be fixed, f ∈ L1(R, dx) ∩ L1(R, dµn) and R� 1, then

∫ ∞
−∞
|ϕn(xy)f(x)| dx =

∫
|x|≤R

|ϕn(xy)||f(x)| dx+

∫
|x|>R

|ϕn(xy)||f(x)| dx

≤M1

∫
|x|≤R

|f(x)| dx

+

√
n

2π
|y|

n−1
2

∫
|x|>R

(
|x|

n−1
2 +O

(
|x|−

n+1
2

))
|f(x)| dx.

In the first term, we have used the fact that ϕn is continuous and hence bounded

on compact sets. The first integral is then finite since f ∈ L1(R, dx). In the second

term, we have used the asymptotic form for ϕn as per (3.11) and (3.12). The integral

of |f | against |x|n−1
2 in the second term is finite since f ∈ L1(R, dµn) by hypothesis.

Moreover the integral of |f | against O(|x|−n+1
2 ) in the second term is finite since

for some M2 > 0, O(|x|−n+1
2 )|f(x)| ≤ M2R

−n+1
2 |f(x)| and f ∈ L1(R, dx). Thus for

f ∈ L1(R, dx) ∩ L1(R, dµn), y 7→
∫
R ϕn(xy)f(x) dx is defined pointwise.
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Since we are ultimately interested in an L2 theory, it stands to reason that we

should consider the space L1(R, dx)∩L1(R, dµn)∩L2(R, dx). It is well-known that if

f ∈ L1(R, dx) ∩ L2(R, dx), then Ff ∈ L2(R, dx); however this is not obviously true

in general. Thus the natural function space upon which Φn acts, denoted dom Φn, is

given by

dom Φn =

{
f ∈ L1(R, dx) ∩ L1(R, dµn) ∩ L2(R, dx) :

y 7→
∫
R
ϕn(xy)f(x) dx ∈ L2(R, dx)

}
.

(3.13)

This is clearly a vector space however we postpone discussion of its density in L2(R).

With a formal domain, we may now define the Φn transform.

Definition 3.8. Let f ∈ dom Φn and y ∈ R, then Φnf is defined pointwise by

Φnf(y) =

∫ ∞
−∞

ϕn(xy)f(x) dx. (3.14)

Clearly the dilation property (2) holds for f ∈ dom Φn which a simple change of

variable shows. Before showing analytic properties of Φn, we first explore some of its

eigenfunctions as these will play an important role in the L2 theory for Φn. We first

explore the nature of a Riemann-Lebesgue lemma for Φn.

3.4 A Riemann-Lebesgue Lemma for Φn

Consider the function space X = {f ∈ C∞c (R) : 0 6∈ supp f}. Let f ∈ X, then Dnf

will be well-defined since f and its derivatives are all zero in a neighborhood of 0. X is

dense in L1(R, dx)∩L1(R, dµn). Since f is compactly supported, Φnf is well-defined
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as an integral operator. Likewise, ΦnDnf is well defined as an integral operator. We

have

∫ ∞
−∞

ϕn(xy)f(x) dx =
1

y2n

∫ ∞
−∞

Dnϕn(xy)f(x) dx

=
1

y2n

∫ ∞
−∞

ϕn(xy)Dnf(x) dx.

From the previous analysis, we know that
∫∞
−∞ ϕn(xy)Dnf(x) dx grows as |y|n−1

2

as a function of y. Combining this with the above expression shows that Φnf(y)→ 0

as y → ±∞.

Let y 6= 0 be a fixed real number and f ∈ L1(R, dx) ∩ L1(R, dµn) and g ∈ X be

such that ‖f −g‖ < εy−
n−1
2 in both the L1(R, dx) and L1(R, dµn) norms for arbitrary

ε > 0, then we have that

|Φf (y)| =
∣∣∣∣∫ ∞
−∞

ϕn(xy)(f(x)− g(x) + g(x)) dx

∣∣∣∣
≤
∫ ∞
−∞
|ϕ(xy)(f(x)− g(x))| dx+

∫ ∞
−∞
|ϕ(xy)g(x)| dx.

The second term goes to zero at infinity as noted above since g ∈ X. From the

asymptotic form for ϕn, the first term can be bounded by

∫ ∞
−∞

(
M + |xy|

n−1
2

)
|f(x)− g(x)| dx =M

∫ ∞
−∞
|f(x)− g(x)| dx

+ |y|
n−1
2

∫ ∞
−∞
|f(x)− g(x)||x|

n−1
2 dx

≤Mε|y|−
n−1
2 + ε.

Here M is a universal constant, independent of y. Letting y tend to infinity, we see
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that Φnf(y) tends to zero as all three terms go to zero.

3.5 Some eigenfunctions of Φn

We have already demonstrated one eigenfunction for Φn: gn. From this, we can

extract a family of eigenfunctions for Φn by implementing Akhiezer’s technique since

the kernel of Φn is of the form ϕn(y, t) = f(xy). Since gn is an eigenfunction of Φn

by hypothesis,

e−
y2n

2n =

∫ ∞
−∞

ϕn(xy)e−
x2n

2n dx.

Making the changes of variables x = α
1
2n r and y = α−

1
2n t where α > 0, we see that

ϕn is unchanged but we have

e−
t2n

2nα =

∫ ∞
−∞

ϕn(rt)e−α
r2n

2n α
1
2n dr.

Multiplying both sides by α−
1
4n yields the following

α−
1
4n e−

t2n

2nα =

∫ ∞
−∞

ϕn(rt)e−α
r2n

2n α
1
4n dr.

We introduce the parameter β = 1
α

and note that α ∂
∂α

= −β ∂
∂β

. Thus

(
−β ∂

∂β

)m (
β

1
4n e−β

t2n

2n

)
=

∫ ∞
−∞

ϕn(rt)

(
α
∂

∂α

)m (
α

1
4n e−α

r2n

2n

)
dr. (3.15)

To eliminate the dependence upon the parameters α and β, after differentiating

28



3.5 SOME EIGENFUNCTIONS OF ΦN

they may be set to 1. It is then clear that the even eigenfunctions are

φ
(n)
2m(x) =

(
α
∂

∂α

)m (
α

1
4n e−α

x2n

2n

) ∣∣∣∣
α=1

, (3.16)

with eigenvalue (−1)m. Particularly, Φ2
n acts as the identity on these functions.

Taking cues from the Fourier transform, the Hermite-Gauss functions, and noting

that the lowest power in the series for sn(η) is η2n−1, the obvious candidate for an

odd eigenfunction of Φn is x2n−1e−
x2n

2n . To see that this is indeed an eigenfunction of

Φn, note that

∫ ∞
−∞

ϕn(xy)x2n−1e−
x2n

2n dx = −i sgn(y)|y|n−
1
2

∫ ∞
0

x3n− 3
2J1− 1

2n

(
|y|n

n
xn
)
e−

x2n

2n dx.

Letting z = xn, this becomes

∫ ∞
−∞

ϕn(xy)x2n−1e−
x2n

2n dx = − i
n

sgn(y)|y|n−
1
2

∫ ∞
0

z2− 1
2nJ1− 1

2n

(
|y|n

n
z

)
e−

z2

2n dz.

This integral simplifies nicely [53, p. 394] to give

∫ ∞
−∞

ϕn(xy)x2n−1e−
x2n

2n dx = −iy2n−1e−
y2n

2n .

Hence x2n−1e−
x2n

2n is an eigenfunction of Φn with eigenvalue −i. Repeating the

same analysis as above with the even eigenfunctions, we obtain the following odd

eigenfunctions with eigenvalue (−1)m+1i:

φ
(n)
2m+1(x) = x2n−1

(
α
∂

∂α

)m (
α1− 1

4n e−α
x2n

2n

) ∣∣∣∣
α=1

. (3.17)
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Unlike in the case of the even eigenfunctions, Φ2
n acts as the negative identity on the

odd eigenfunctions.

Note that φ
(n)
m ∈ dom Φn for all m and n. Moreover φ

(n)
m has eigenvalue (−i)m

under Φn. Since ϕn has polynomial growth and is continuous, |ϕn(η)| ≤M1 +M2|η|α

for some M1,M2, α > 0. Noting that φ
(n)
m has exponential decay, it follows that

∫ ∞
−∞

∫ ∞
−∞
|ϕn(xy)φ(n)

m (x)φ
(n)
m′ (y)| dx dy ≤∫ ∞

−∞

∫ ∞
−∞

(M1 +M2|xy|α)|φ(n)
m (x)φ

(n)
m′ (y)| dx dy <∞.

Hence by Fubini-Tonelli, we have that

〈φ(n)
m , φ

(n)
m′ 〉 = (−i)m〈Φnφ

(n)
m , φ

(n)
m′ 〉 = (−i)m〈φ(n)

m ,Φnφ
(n)
m′ 〉 = (−i)m−m′〈φ(n)

m , φ
(n)
m′ 〉,

and so if m 6≡ m′ (mod 4), then 〈φ(n)
m , φ

(n)
m′ 〉 = 0. This is in direct analogy with

the traditional Fourier transform eigenfunctions: there are four mutually orthogonal

eigenspaces.

Furthermore, {φ(n)
m } is a complete set of eigenfunctions. To see this, note that

φ
(n)
m is of the form p

(n)
m (x)e−

x2n

2n , where p
(n)
m is a polynomial of degree 2mn or 2mn−1;

moreover, p
(n)
m is a linear combination of powers of the form x2nl or x2nl−1, depending

on whether m is even or odd.

We can employ Gram-Schmidt to obtain an orthonormal set from the eigenfunc-

tions; the orthonormal set is denoted by p̃
(n)
m (x)e−

x2n

2n , where p̃
(n)
m is a polynomial of

degree 2mn or 2mn−1—in general, p
(n)
m and p̃

(n)
m need not be the same. Additionally,

the Gram-Schmidt procedure only occurs within each eigenspace since the different

eigenspaces are mutually orthogonal by the preceding argument.
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3.5 SOME EIGENFUNCTIONS OF ΦN

Because p
(n)
2k is comprised of powers x2nl, we can view p̃

(n)
2k (x) as a polynomial

q̃
(n)
2m(x2n). The orthogonality of the functions p̃

(n)
2k (x)e−

x2n

2n can then be summarized as

∫ ∞
−∞

p̃
(n)
2k (x)p̃

(n)
2l (x)e−

x2n

n dx = 2n1− 1
2n δkl.

After a change of variable, this becomes

∫ ∞
0

x−1+ 1
2n q̃

(n)
2k (nt)q̃

(n)
2l (nt)e−t dx = δkl.

The polynomials q̃
(n)
2k have degree k and so appropriate linear combinations show that

every function of the form xke−x can be realized.

Proceeding in the same way for the odd eigenfunctions, we can view p̃
(n)
2k+1(x) as a

polynomial x2n−1q̃
(n)
2k+1(x2n). The orthogonality relation can again be summarized as

∫ ∞
−∞

p̃
(n)
2k+1(x)p̃

(n)
2l+1(x)e−

x2n

n dx =
1

2
n−3+ 1

n δkl.

After making a change of variable, this becomes

∫ ∞
0

x3− 1
n q̃

(n)
2k+1(nt)q̃

(n)
2l+1(nt)e−t dx = δkl.

Note that every monomial power appears like before.

Because q̃k is a polynomial, the analysis by Akhiezer [2, p. 61] for the complete-

ness of the Laguerre polynomials proves the completeness of eigenfunctions {φ(n)
m } in

L2(R). The completeness of the Laguerre polynomials can be summarized as follows:

Theorem 3.9. Let f : [0,∞)→ R be measurable and ν > −1, then if
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3.6 ΦN AS AN L2 ISOMETRY

1.

∫ ∞
0

e−xxν |f(x)|2 dx <∞,

2.

∫ ∞
0

e−xxνf(x)xm dx = 0

for all m ∈ N0, then f ≡ 0.

Furthermore, there is a convenient recursion relation for the φ
(n)
m which follows

from (3.16) and (3.17):

φ
(n)
m+2(x) =

1

4n
φ(n)
m (x) +

x

2n

dφ
(n)
m

dx
. (3.18)

Because the eigenfunctions φ
(n)
m of Φn are complete and φ

(n)
m ∈ L1(R, dx) ∩

L1(R, dµn) ∩ L2(R, dx), it follows that dom Φn is dense in L2(R).

3.6 Φn as an L2 Isometry

We wish to show that Φn is an L2 isometry on dom Φn. Traditionally, the L2 isometry

of the Fourier transform from L1(R, dx)∩L2(R, dx) to L2(R, dx) is proved by appealing

to the convolution theorem. However no obvious convolution theorem exists for Φn

in general and so we take a purely L2 approach by appealing to the completeness of

the eigenfunctions of Φn.

Theorem 3.10. If f ∈ dom Φn, ‖Φnf‖L2(R,dx) = ‖f‖L2(R,dx), so Φn is an isometry

with dense range and extends to a unitary on L2(R, dx).

Proof. Let {ψ(n)
m } be an orthonormal basis of eigenfunctions of Φn. Such a basis exists

by the analysis in Section 3.2. For f ∈ dom Φn, Φnf ∈ L2(R, dx) by hypothesis and

32



3.6 ΦN AS AN L2 ISOMETRY

so 〈Φnf, ψ
(n)
m 〉 is finite. Thus

〈Φnf, ψ
(n)
m 〉 =

∫ ∞
−∞

Φnf(y)ψ
(n)
m (y) dy

=

∫ ∞
−∞

(∫ ∞
−∞

ϕn(xy)f(x) dx

)
ψ

(n)
m (y) dy.

We can interchange the integrals above since y 7→
∫
R |ϕn(xy)f(x)| dx is finite

everywhere and has at most polynomial growth at infinity and ψ
(n)
m has exponential

decay. Therefore

〈Φnf, ψ
(n)
m 〉 =

∫ ∞
−∞

f(x)

∫ ∞
−∞

ϕn(xy)ψ
(n)
m (y) dy dx.

It is clear that
∫
R ϕn(xy)ψ

(n)
m (y) dy = imψ

(n)
m (x), giving the relation 〈Φnf, ψ

(n)
m 〉 =

(−i)m〈f, ψ(n)
m 〉. If we write f =

∑
m〈f, ψ

(n)
m 〉ψ(n)

m , then

Φnf =
∑
m

〈Φnf, ψ
(n)
m 〉ψ(n)

m

=
∑
m

(−i)m〈f, ψ(n)
m 〉ψ(n)

m .

The L2 norm of Φnf gives ‖Φnf‖2
L2(R,dx) =

∑
m |(−i)m〈f, ψ

(n)
m 〉|2 =

∑
m |〈f, ψ

(n)
m 〉|2 =

‖f‖2
L2(R,dx). Hence Φn is an L2 isometry on dom Φn which is dense in L2(R, dx) and so

Φn extends to an isometry on L2(R, dx). Moreover, Φn has dense range in L2(R, dx)

since its range includes the span of the eigenfunctions {φ(n)
m }, thus Φn extends to a

unitary on L2(R, dx).

Remark 3.11. This approach is, in some sense, a reverse of the usual approach

for the Fourier transform. In traditional Fourier transform theory, the L1 theory is
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explored, then the L1 ∩ L2 theory, and culminates in the L2 theory. Here, we briefly

explore the L1 theory, then establish some L2 results, and ultimately make a remark

about the L1 ∩ L2 theory of Φn.

In an abuse of notation, we denote the unitary extension of Φn to L2(R, dx) by Φn

though there is no risk of confusion as the meaning will be clear from context. Since

the dilation property holds on dom Φn, Φn is bounded and Dα is bounded, the dilation

property holds for the unitary extension of Φn via simple continuity arguments.

3.7 The Spectrum of Φn

By analogy with the Fourier transform, we wish to show that Φn satisfies Φ4
nf = f for

each f ∈ L2(R) which in turn gives that the spectrum of Φn is contained in {±1,±i}.

Theorem 3.12. Φ4
n = I on L2(R) and its spectrum is comprised only of ±1,±i.

Proof. Let f ∈ L2(R) and {ψ(n)
m } be an orthonormal basis of eigenfunctions for Φn,

then

〈Φ4
nf, ψ

(n)
m 〉 = 〈f, (Φ∗n)4ψ(n)

m 〉 = 〈f, i4mψ(n)
m 〉 = 〈f, ψ(n)

m 〉.

Since this holds for all m, it must be the case that Φ4
nf = f , i.e. Φ4

n = I. This

gives that Φ∗n = Φ−1
n = Φ3

n naturally. This generalizes the well-known result for the

Fourier transform which states that F∗ = F−1 = F3.

The spectral mapping theorem [45] shows that the spectrum of Φn is contained in

{±1,±i}. In fact, in Section 3 we demonstrated that each of these spectral values is

realized and each is indeed an eigenvalue.
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3.8 The Spectral Analysis of Dn

The Dn operator is an unbounded operator as its spectrum is [0,∞) as evidenced by

the fact that Dn(x)ϕn(xy) = y2nϕn(xy). The functions ϕn are generalized eigenfunc-

tions [3], and so y2n is in the continuous spectrum of Dn. It is natural to inquire about

the analytic properties of Dn, namely whether or not it is (essentially) self-adjoint or

positive.

Define Dn on the linear span of the eigenfunctions φ
(n)
m . This space is dense by pre-

vious arguments and Dn is well-defined on these functions; particularly, it maps φ
(n)
m

to another L2(R) function. A straightforward induction argument shows that Dnφ
(n)
m

is again a polynomial multiplying exp(−x2n/2n). If φ
(n)
m (x) = p

(n)
m (x) exp(−x2n/2n),

then Dnφ
(n)
m has degree given by deg p

(n)
m +2n. For instance, exp(−x2n/2n) is mapped

to (1− x2n) exp(−x2n/2n).

Suppose then that φ
(n)
m is not in the closure of the range of Dn + i. Then for every

f ∈ span{φ(n)
m′ : m′ ∈ N0}

〈(Dn ± i)f, φ(n)
m 〉 = 0. (3.19)

Equivalently,

〈f, (Dn ∓ i)φ(n)
m 〉 = 0 (3.20)

for all f ∈ span{φ(n)
m′ : m′ ∈ N0}. However 0 6= f = (Dn ∓ i)φ(n)

m ∈ span{φ(n)
m′ : m′ ∈

N0} by the above, so φ
(n)
m is in the closure of the range of Dn± i. Thus the deficiency

indices [37, p.138] for Dn are both zero and thus Dn is essentially self-adjoint. Hence

the closure of Dn in the graph norm is a self-adjoint operator. Furthermore, Dn is a

positive operator as explained below.

By the spectral theorem, we know that there exists a unique unitary mapping
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3.9 THE ΦN AND FOURIER-BESSEL TRANSFORMS

U : L2(R)→ L2(R) such that UDng =MfUg for some multiplication operator Mf .

By the analysis for Φn, we saw that the symbol for Dn under Φn was y2n. Since Dn

and Dn agree on a dense set, we must conclude that the spectral family for Dn is

generated by Φn.

3.9 The Φn and Fourier-Bessel transforms

With the appearance of Bessel functions in the expression for ϕn, it is natural to ask

what, if any, connection there is between Φn and the Fourier-Bessel transform. We

choose to consider the following definition for the Fourier-Bessel transform:

Fνf(y) =

∫ ∞
0

jν(xy)f(x) dλν(x), (3.21)

where dλν(x) = x2ν+1 dx and jν(x) = x−νJν(x). Most analysis of the Fourier-Bessel

transform is restricted to the case ν > −1
2

as in this range the measure dλν is non-

singular (c.f. [24]). Some analysis has been done in the regime −1 < ν < −1
2
, cf. [2,

p. 62]. Fν is an isometry on L2(R+, dλν) when restricted to a dense subspace and

also extends to a unitary on L2(R, dλν).

Write Φn = Φ+
n + iΦ−n , where Φ+

n is the integral operator with integral kernel cn

and Φ−n is the integral operator with integral kernel sn. Φ+
n and Φ−n can be thought

of as restrictions of Φn to even and odd functions, respectively. Thus Φn can be

written as Φn = Φ+
n ⊕ iΦ−n , where we have decomposed dom Φn into its even and odd

subspaces.

To relate Φn to Fν we must project functions onto R+ since the Fourier-Bessel

transform is restricted to R+. Let P+ denote the projection onto R+. If f ∈ dom Φn
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3.9 THE ΦN AND FOURIER-BESSEL TRANSFORMS

is even, then there is a natural relationship between P+f and Φnf : Φnf = Φ+
n f =

2Φ+
nP+f . A similar relationship holds for odd functions. Thus we may restrict our

attention to those f ∈ dom Φn with support on R+ when considering Φn without loss

of generality.

Define the operators S+
n : L2(R+, dx) → L2(R, dλ−1+ 1

2n
) and S−n : L2(R, dx) →

L2(R+, dλ1− 1
2n

) by S+
n f(x) = n−

1
2

+ 1
2nf( n
√
nx) and S−n f(x) = n−

1
2

+ 1
2nx−2+ 1

nf( n
√
nx).

S+
n and S−n are both invertible and their inverses are given by a simple change of

variable. Furthermore, Φ+
n = (S+

n )−1F−1+ 1
2n
S+
n and Φ−n = (S−n )−1F1− 1

2n
S−n . This

gives the commutative diagrams shown in Figure 3.1.

It is straightforward to show that S±n are isometries so the fact that Φn is an

isometry is a consequence of Fν being an isometry. Instead of simply using this fact

from the outset, we chose to supply new proofs as the literature for Fν when −1 <

ν < −1
2

is quite sparce. While Φn is closely related to the Fourier-Bessel transform

and many properties of Φn can be gleaned from the Fourier-Bessel transform, they are

inherently different. Although there are extensions of the Fourier-Bessel transform to

the whole real line (cf. [41]), there are no analogous generalizations of the Fourier-

Bessel transform to the whole real line that are similar to Φn.

L2(R+, dµ−1+ 1
2n

)

L2(R+, dλ) L2(R+, dλ)

L2(R+, dµ−1+ 1
2n

)

S+
n

Φ+
n

S+
n

F−1+ 1
2n
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L2(R+, dµ1− 1
2n

)

L2(R+, dλ) L2(R+, dλ)

L2(R+, dµ1− 1
2n

)

S−n

Φ−n

S−n
F1− 1

2n

Figure 3.1: Commutative diagrams showing the relationships between Φ+
n and Φ−n

and the Fourier-Bessel transform.

3.10 The Short-Time Φn Transform

As a result of the linearity and exponential nature of the Fourier kernel, the Fourier

transform of a translate of a function f differs from the Fourier transform of f by a

modulation. There is unfortunately no similar relationship between the Φn transform

of a function f and a translate of f . The lack of translation invariance is not a

severe drawback as many integral transforms in practice do not have this, e.g. the

Fourier-Bessel and Mellin transforms. Consequently, the most natural setting for the

Φn transform is in fact as a short-time transform. Recall that the short-time Fourier

transform (STFT) [26] of a function f ∈ S(R) with a window g ∈ S(R) is given by

Vgf(x, y) = (2π)−1/2

∫ ∞
−∞

e−ixyg(x′ − x)f(x′) dx′. (3.22)

Employing the notation fx(x
′) = f(x′ − x), this can be rewritten in a more tan-

gible form: Vgf(x, y) = F(gxf)(y). (3.22) can instead be written as Vgf(x, y) =

e−ixyF(gf−x)(y), which can be interpreted as the Fourier kernel being centered with

the window up to a phase factor. The second realization of the STFT will expedite

the development of the short-time Φn transform.

Due to the translational invariance (up to a phase factor) of the Fourier transform,
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3.10 THE SHORT-TIME ΦN TRANSFORM

the window need not be centered with the kernel in the definition of the STFT since

the power spectra for the two different formulations of the STFT given above are

equivalent and thus carry the same information. However since the kernels for n > 1

are no longer translation invariant, some ambiguity arises when considering short-

time analogues of Φn. We could consider two different definitions of the short-time

Φn transform for a sufficiently nice windowing function g and function f :

V(n)
g f(x, y) =

∫ ∞
−∞

ϕn(xy)g(x′ − x)f(x′) dx′, (3.23)

V(n)
g f(x, y) =

∫ ∞
−∞

ϕn((x′ − x)y)g(x′ − x)f(x′) dx′. (3.24)

The former clearly resembles the STFT as given in (3.22), with ϕ and f centered

at x = 0 and the window g, centered at x, passing over both. Despite their very

different natures, the two notions are in fact equivalent up to an interchange of g and

f and a reflection in the time-frequency plane. However the latter definition is more

desirable than the former: the short-time Φn transforms of f and a translate of f as

given by (3.24) differ only by a translation in the time-frequency plane; this is not

true with the realization in (3.23).

Thus, we choose to break with the established literature of simply sliding the

window across the kernel and function and instead choose to center the kernel with

the window g and slide them across the function. That is, we choose the convention

given in (3.24). We now give the formal definition of the short-time Φn transform

and prove two theorems regarding the short-time Φn transform: the reconstruction

property and an orthogonality relation.

Definition 3.13. Let x, y ∈ R and g, f ∈ L2(R) such that gf−x ∈ L2(R) for all x.
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3.10 THE SHORT-TIME ΦN TRANSFORM

We define the short-time Φn transform of f with window g to be

V(n)
g f(x, y) = Φn(gf−x)(y). (3.25)

If f and g are arbitrary functions in L2(R), Φn(gf−x) may not exist since gf−x in

general need not be in L2(R), thus the prescription that gf−x ∈ L2(R) is necessary.

This restriction is not very strong as it holds for all f, g ∈ S(R), which is a dense

subspace of L2(R), but for the sake of mathematical rigor, we keep it. Assuming

Φn(gf−x) exists in the original sense as an integral transform, e.g. if f and g are

n-Gaussians, then the definition would be exactly as in (3.24). Instead of restricting

to functions on which Φn is defined naturally as an integral transform and then

extending the results via density arguments, we prefer to work in full generality from

the outset for simplicity of argument. With this definition, we may immediately state

the theorem.

Theorem 3.14. Let f, g ∈ L2(R) such that gf−x ∈ L2(R), then f may be recon-

structed from V(n)
g f by the following

f(x) =
1

〈g, g〉

∫ ∞
−∞

g(x− x′)ΦnV(n)
g f(x′,−x+ x′) dx′, (3.26)

where ΦnV(n)
g f is understood to be Φn acting on hx′(y) = V(n)

g f(x′, y), i.e. x′ is fixed.

Proof. We first consider the operation of Φn on V(n)
g f . This gives

ΦnV(n)
g f(x′,−x+ x′) = Φn(Φn(gf−x′)(·))(−x+ x′) = Φ2

n(gf−x′)(−x+ x′).

With the appearance of Φ2
n, it is natural to break gf−x′ into even and odd parts in
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order to make use of the fact that Φ2
n acts as the identity on even functions and the

negative identity on odd functions. We write f−x′ = f+
−x′ + f−−x′ and g = g+ + g−.

Therefore it follows that

ΦnV(n)
g f(x′,−x+ x′) = Φ2

n((g+ + g−)(f+
−x′ + f−−x′))(−x+ x′)

= ((g+ − g−)(f+
−x′ − f

−
−x′))(−x+ x′)

= g(x− x′)f−x′(x− x′)

= g(x− x′)f(x).

Then by the above,

1

〈g, g〉

∫ ∞
−∞

g(x− x′)ΦnV(n)
g f(x′,−x+ x′) dx′ =

1

〈g, g〉

∫ ∞
−∞

g(x− x′)g(x− x′)f(x) dx′.

This is readily realized as f(x). Thus the theorem is proved.

The above theorem holds in more generality: one may instead replace Φn with

any operator Φ such that Φ2 acts as a parity operator.

With the ability to reconstruct a signal from its short-time Φn transform, it is

natural to ask if energy is also preserved as is the case with the STFT. It so happens

that an orthogonality relation holds regarding short-time Φn transforms—much like

in the case of the STFT [26]—which immediately leads to energy preservation. We

shall now state the theorem.

Theorem 3.15. Let f, f̃ , g, g̃ ∈ L2(R) such that gf−x, g̃f̃−x ∈ L2(R), then the follow-
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ing orthogonality relation holds

∫
R2

V(n)
g f(x, y)V(n)

g̃ f̃(x, y) dy dx = 〈f, f̃〉〈g, g̃〉. (3.27)

Proof. From the definition of the short-time Φn transform, we have

∫
R2

V(n)
g f(x, y)V(n)

g̃ f̃(x, y) dy dx =

∫ ∞
−∞

∫ ∞
−∞

Φn(gf−x)(y)Φn(g̃f̃−x)(y) dy dx

=

∫ ∞
−∞
〈Φn(gf−x),Φn(g̃f̃−x)〉y dx,

where the notation 〈·, ·〉y is an inner product over y (with x fixed). Making use the

unitarity of Φn, this becomes

∫
R2

V(n)
g f(x, y)V(n)

g̃ f̃(x, y) dy dx =

∫ ∞
−∞
〈gf−t, g̃f̃−t〉y dx

=

∫ ∞
−∞

∫ ∞
−∞

g(y)g̃(y)f−x(y)f̃−x(y) dy dx

=

∫ ∞
−∞

g(y)g̃(y)

∫ ∞
−∞

f(x+ y)f̃(x+ y) dx dy

= 〈f, f̃〉〈g, g̃〉.

Here we have employed Fubini’s theorem. Taking f = f̃ , g = g̃ and 〈g, g〉 = 1,

we see that ‖V(n)
g f‖2

L2(R2,dx) = ‖f‖2
L2(R,dx) so the short-time Φn transform preserves

energy.

The above theorem also holds in greater generality: one may replace Φn with any

inner-product preserving operator Φ and the short-time transform arising from Φ will

also be norm-preserving.
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3.11 The Uncertainty Principle for Φn

With the eigenfunctions of Φn established, we may now investigate the nature of the

uncertainty relation for Φn. Since x2n plays the analogous role of x2 in the theory of

Φn, it stands to reason that the proper uncertainty product should be

(∫ ∞
−∞

x2n|f(x)|2 dx
)(∫ ∞

−∞
y2n|Φnf(y)|2 dy

)
. (3.28)

Since it is necessary to view Φn as an integral operator, we must have that f ∈

dom Φn, i.e. f ∈ L1(R, dx) ∩ L1(R, dµn) ∩ L2(R, dx) such that Φnf ∈ L2(R, dy).

Moreover, we must have that x 7→ x2nf(x) ∈ L2(R, dx) and y 7→ y2nΦnf(y) ∈

L2(R, dy) in order for the above inner products to be sensible.

In the case of the Fourier transform, the uncertainty principle is expedited by not-

ing that if f ∈ L2(R, dx), then f ′ ∈ L2(R, dx) if and only if y 7→ iyFf(y) ∈ L2(R, dy),

and moreover for y-a.e. Ff ′(y) = iyFf(y). Since Φn was developed not from a first

order differential operator but rather a second order differential operator, we instead

appeal to the second derivative. By extending the logic above, f ′′ ∈ L2(R, dx) if and

only if y 7→ y2Ff(y) ∈ L2(R, dy) and they are equal almost everywhere. This leads

into the next lemma.

Lemma 3.16. Let f ∈ dom Φn ∩ AC(R) and x 7→ 1
xn−1f

′(x) ∈ L2(R), then

Dnf ∈ dom Φn if and only if y 7→ y2nΦnf(y) ∈ L2(R, dy) and they are equal al-

most everywhere.

Proof. Suppose that Dnf ∈ dom Φn, then 〈ΦnDnf, ψ
(n)
m 〉 is finite for all m, giving

〈ΦnDnf, φ
(n)
m 〉 = 〈Dnf,Φ

∗
nφ

(n)
m 〉 = 〈Dnf, i

mφ(n)
m 〉 = 〈f, imDnφ

(n)
m 〉
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3.11 THE UNCERTAINTY PRINCIPLE FOR ΦN

The integration by parts with Dn is justified since φ
(n)
m has exponential decay

and its derivative mitigates the singularity induced by Dn. Applying Φn to both

terms in the inner product and noting that ΦnDnφ
(n)
m (y) = y2nΦnφ

(n)
m (y), we have

that 〈ΦnDnf, φ
(n)
m 〉 = 〈y2nΦnf, φ

(n)
m 〉. Since this inner product is finite for all m ∈ N0,

it follows that y 7→ y2nΦnf(y) ∈ L2(R) and moreover ΦnDnf(y) = y2nΦnf(y) in

the L2(R) sense. Thus they are equal almost everywhere. The converse follows by

running the above argument in reverse.

With the previous lemma, we are now able to formally state and prove the uncer-

tainty principle for Φn.

Theorem 3.17. Let f ∈ dom Φn be L2-normalized, x 7→ x2nf(x) ∈ L2(R) and

y 7→ y2nΦnf(y) ∈ L2(R), then

(∫ ∞
−∞

x2n|f(x)|2 dx
)(∫ ∞

−∞
y2n|Φnf(y)|2 dy

)
≥ 1

4
(3.29)

and equality holds if and only if f(x) = e−
λx2n

2n for some λ ∈ C with <(λ) > 0.

Proof. Since y 7→ y2nΦnf(y) ∈ L2(R), Lemma 1 gives that Dnf ∈ L2(R) and

y2nΦnf(y) = ΦnDnf(y) and so

〈xnf, xnf〉〈ynΦnf, y
nΦnf〉 = 〈xnf, xnf〉〈Φnf,ΦnDnf〉

= 〈xnf, xnf〉〈f,Dnf〉.

Integrating by parts is justified by virtue of f ∈ AC(R) and 1
xn−1f

′(x) ∈ L2(R) and

gives

〈xnf, xnf〉〈ynΦnf, y
nΦnf〉 = 〈xnf, xnf〉〈x−n+1f ′, x−n+1f ′〉. (3.30)
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Using Cauchy-Schwarz with η(x) = xnf(x) and ξ(x) = x−n+1f ′(x), we have that

〈xnf, xnf〉〈ynΦnf, y
nΦnf〉 ≥ |〈xf, f ′〉|2, (3.31)

with equality if and only if λxnf(x) = 1
xn−1

df
dx

, i.e. f(x) = e−
λx2n

2n where <(λ) >

0. Note that the right hand side of (4.3) is bounded below by 1
4

from the Fourier

transform uncertainty principle.

3.12 A Family of Related Integral Transforms

The results in this section of the thesis are abridged as many of the results are

carbon copies of the results in the previous section, with minor changes. Rather than

repeating the arguments nearly exactly, the main points are summarized.

In the study of the Φn transforms, a second family of integral transforms arises,

denoted by Φ̃n. These transforms are very closely related to the Φn transforms. In

the theory for the Φn transform, the integral kernel ϕn was defined via the differential

equation that it solves, namely

− d

dx

1

x2n−2

d

dx
ϕn(x) = ϕn(x). (3.32)

This relation may be written in another, more suggestive way (to be understood

formally): (
1

xn−1

d

dx

)∗(
1

xn−1

d

dx

)
ϕn(x) = ϕn(x). (3.33)

There is no a priori reason that one should investigate
(

1
xn−1

d
dx

)∗ ( 1
xn−1

d
dx

)
rather

than the operator
(

1
xn−1

d
dx

) (
1

xn−1
d
dx

)∗
= − 1

xn−1
d2

dx2
1

xn−1 . The linearly independent, real
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3.12 A FAMILY OF RELATED INTEGRAL TRANSFORMS

analytic eigenfunctions of this operator, denoted c̃n and s̃n, are given by

c̃n(η) =
1

2
sgn(η)n−1|η|n−

1
2J− 1

2n

(
|η|n

n

)
(3.34)

s̃n(η) =
1

2
sgn(η)n|η|n−

1
2J 1

2n

(
|η|n

n

)
. (3.35)

A stark contrast between cn and sn and c̃n and s̃n, respectively, is the appearance

of the signum function in both c̃n and s̃n. One may then define an integral kernel ϕ̃n

by

ϕ̃n(η) = c̃n(η)− is̃n(η). (3.36)

For n = 1, ϕ̃n agrees with the Fourier kernel 1√
2π

exp(−iη). For f ∈ L1(R, dx) ∩

L1(R, dµn), the Φ̃n transform of f is defined to be

Φ̃nf(y) =

∫ ∞
−∞

ϕ̃n(xy)f(x) dx. (3.37)

There are two basic eigenfunctions for Φ̃n: xn−1 exp(−x2n/2n) and 2xn exp(−x2n/2n).

For n = 1 these agree exactly with the Gaussian and x exp(−x2/2) which are known

eigenfunctions of the Fourier transform. The kernel ϕ̃n is a product kernel and so

Akhiezer’s technique for generating eigenfunctions may be applied. Doing so, we have

the family of eigenfunctions

φ̃
(n)
2m(x) =

(
∂

∂α

)m (
α

1
2xn−1e−

αx2n

2n

) ∣∣∣∣
α=1

(3.38)

φ̃
(n)
2m+1(x) =

(
∂

∂α

)m (
α

1
2

+ 1
2nxne−

αx2n

2n

) ∣∣∣∣
α=1

. (3.39)

These are polynomials multiplying exp(−x2n/2n), much like in the case of Φn with
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3.12 A FAMILY OF RELATED INTEGRAL TRANSFORMS

its eigenfunctions φ
(n)
m . In fact, a minor modification of the previous argument shows

that the eigenfunctions φ̃
(n)
m have eigenvalue ±1,±i under Φ̃n and are complete in

L2(R). Thus Φ̃n extends to a unitary.

It is not surprising that there is a direct relationship between ϕn and ϕ̃n when

considering that the differential equations they satisfy are closely related. Direct

computation shows that

1

xn−1

d

dx
ϕn(x) = −iϕ̃n(x) (3.40)

d

dx

1

xn−1
ϕ̃n(x) = −iϕn(x). (3.41)

As noted previously, a Fourier transform exits between a locally compact abelian

group G and its dual group Ĝ. For χ ∈ Ĝ and f ∈ L1(G), the Fourier transform from

G to Ĝ is given by

Ff(χ) =

∫
G

χ(g)f(g) dg.

For g ∈ L1(Ĝ) and g ∈ G, the inverse Fourier transform from Ĝ to G is given by

F−1f(g) =

∫
Ĝ

χ(g)f(χ) dχ.

In the case of (R,+), this duality collapses to effectively a single structure as its

dual group is again (R,+), leading to exp(−ixy) and exp(ixy) for the Fourier and

inverse Fourier transform kernels, respectively. A similar pairing is seen in the setting

pursued in this thesis: in the case of n = 1, Φn and Φ̃n reduce to the Fourier transform,

but for n 6= 1, Φn and Φ̃n are different, yet closely related, integral operators.
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Chapter 4

Supersymmetric Quantum

Mechanics

4.1 The Quantum Mechanical Harmonic Oscilla-

tor

In the language of quantum mechanics, observables such as energy, momentum, and

position are realized as densely-defined operators on a Hilbert space H [17, p.26] which

have specific representations in a given coordinate system. Energy is replaced with

the Hamiltonian operator H, momentum is replaced with the momentum operator p,

and position is replaced with the position operator x. In spatial coordinates, the mo-

mentum operator is represented by p = −i~∇, where ∇ is the gradient operator, and

the position operator is represented by the multiplication operatorMx, often simply

denoted by x. Two important operations in quantum mechanics are the commutator

and anticommutator. Given (possibly unbounded) densely-defined operators A,B on
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4.1 THE QUANTUM MECHANICAL HARMONIC OSCILLATOR

a Hilbert space H, their commutator and anticommutator are respectively given by

[A,B] = AB −BA, {A,B} = AB +BA. (4.1)

The existence of commutators is nontrivial in the case of unbounded operators [38,

p.275]. In what follows, the existence of each is guaranteed however. In general, if

both operators share an operator core, formal manipulation is justified. Unless stated

otherwise or noted, this is assumed.

In this language, the energy equation for the classical harmonic oscillator in one

variable becomes the operator

HHO = − ~2

2m

d2

dx2
+

1

2
kx2,

where ~ is Planck’s reduced constant, m is the mass of the oscillator, and k is the

spring constant. A natural question to ask about any operator is what, if any, eigen-

values and eigenfunctions (or eigenvectors) it may have. To this end, we wish to solve

the equationHHOψ = λψ. This results in the following second order linear differential

equation after a suitable change of variables

−1

2
ψ′′(x) +

1

2
x2ψ(x) = λψ(x). (4.2)

In the theory of differential equations, it is common to try series solution tech-

niques for linear differential equations. In this one case, one may expand ψ as a

series and find a recursion relation for its coefficients [50, p.251]. By requiring an

L2-normalizable solution, we get a constraint on the choices of λ and immediately de-

termine the eigenvalues. This however is not a very enlightening technique and com-

49



4.1 THE QUANTUM MECHANICAL HARMONIC OSCILLATOR

pletely neglects the rich algebraic structure lurking behind the quantum-mechanical

harmonic oscillator.

Perhaps the most elegant technique for solving this differential equation is via a

factorization approach [17, p.136]. The operator −1
2
d2

dx2
+ 1

2
x2 resembles a difference

of squares from elementary algebra and so it is natural to try to factor it with the

same technique. The natural factorization might be

−1

2

d2

dx2
+

1

2
x2 ?

=
1

2

(
− d

dx
+ x

)(
d

dx
+ x

)
. (4.3)

However expanding the right hand side yields

1

2

(
− d

dx
+ x

)(
d

dx
+ x

)
= −1

2

d2

dx2
+

1

2
x2 +

1

2

(
− d

dx
x+ x

d

dx

)
.

The term − d
dx
x+x d

dx
can be readily simplified by noting that these are operators

and must act on Hilbert space functions. Assuming f ∈ L2(R) and f ′ exists almost

everywhere, then

− d

dx
(xf) + x

df

dx
= −f(x)− xf ′(x) + xf ′(x) = −f.

Thus we may really view − d
dx
x + x d

dx
as the operator −I on such functions, and so

our previous relation becomes

1

2

(
− d

dx
+ x

)(
d

dx
+ x

)
= −1

2

d2

dx2
+

1

2
x2 − 1

2
I. (4.4)

The operators H1 = −1
2
d2

dx2
+ 1

2
x2 and H2 = 1

2

(
− d
dx

+ x
) (

d
dx

+ x
)

will share many

of the same properties, e.g. share eigenfunctions, and moreover their spectra will only
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4.1 THE QUANTUM MECHANICAL HARMONIC OSCILLATOR

be different by an overall shift of 1
2

because,

σ(H1) = {λ ∈ C : H1 − λI not invertible}

=

{
λ ∈ C : H2 +

1

2
I − λI not invertible

}
=

{
λ ∈ C : H2 −

(
λ− 1

2

)
I not invertible

}
=

{
λ+

1

2
∈ C : H2 − λI not invertible

}
=

1

2
+ σ(H2).

The factored Hamiltonian H2 is of a slightly simpler form, so we prefer to consider

it from this point on. Many properties of H2 can be translated into properties of H1

without much difficulty as they only differ by an overall additive constant.

Define H then to be 1
2

(
− d
dx

+ x
) (

d
dx

+ x
)

and define the operator a by

a =
1√
2

(
d

dx
+ x

)
. (4.5)

a is defined on those f ∈ L2(R) such that f ′ ∈ L2(R) and xf ∈ L2(R). If f, g ∈

L2(R) ∩ AC(R) such that f ′, g′ ∈ L2(R) and xf, xg ∈ L2(R), then the following

equalities hold and are well-defined

∫ ∞
−∞

(
d

dx
+ x

)
f(x)g(x) dx =

∫ ∞
−∞

(f ′(x) + xf(x))g(x) dx

= f(x)g(x)

∣∣∣∣∞
−∞

+

∫ ∞
−∞

f(x)(−g′(x) + xg(x)) dx

=

∫ ∞
−∞

f(x)

(
− d

dx
+ x

)
g(x) dx.
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4.1 THE QUANTUM MECHANICAL HARMONIC OSCILLATOR

Because fg ∈ AC(R) ∩ L1(R), fg vanishes at infinity, justifying the final equality.

The operator 1√
2

(
− d
dx

+ x
)

can be realized as the adjoint of a, and is denoted as

a∗. Thus the Hamiltonian H may be realized as being equivalent to

H = a∗a. (4.6)

In our analysis, there was an implicit choice made when “factoring” the Hamilto-

nian −1
2
d2

dx2
+ 1

2
x2. The factorization chosen was 1

2

(
− d
dx

+ x
) (

d
dx

+ x
)
, however there

is no reason that an alternative factorization could not be made, particularly one may

choose to instead factor the Hamiltonian as 1
2

(
d
dx

+ x
) (
− d
dx

+ x
)
. Notice that − d

dx

now appears in the second term rather than the first. Expanding this product gives

1

2

(
d

dx
+ x

)(
− d

dx
+ x

)
= −1

2

d2

dx2
+

1

2
x2 +

1

2

(
d

dx
x− x d

dx

)
= −1

2

d2

dx2
+

1

2
x2 +

1

2
I.

Thus H = 1
2

(
d
dx

+ x
) (
− d
dx

+ x
)
− I which is equivalent to H = aa∗ − I. Equating

the two expressions for H, it follows that

a∗a = aa∗ − I. (4.7)

In commutator language, this becomes [a∗, a] = −I.

This commutation relation achieves both a rich algebraic structure and a rich

analytic structure. This commutation relation shows that the operators a, a∗ and I

generate a closed Lie algebra. This Lie algebra is the Heisenberg-Weyl Lie algebra

[36, p.8]. Many algebraic structures underlying operators do not have associated
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4.1 THE QUANTUM MECHANICAL HARMONIC OSCILLATOR

analytic structures, cf. supersymmetry and supersymmetric quantum mechanics.

This makes the harmonic oscillator unique as we will show that it also has a nice

analytic structure.

Note first that the function ψ0(x) = exp(−x2/2) ∈ L2(R) is annihilated by a, that

is to say that aψ0 = 0:

(
d

dx
+ x

)
e−

x2

2 = −xe−
x2

2 + xe−
x2

2 = 0. (4.8)

Trivially then a∗aψ0 = 0 since aψ0 = 0. Thus a∗a has ψ0 as an eigenfunction with

eigenvalue 0. The function exp(x2/2) is annihilated by a∗ however it is not in L2(R),

so while aa∗ exp(x2/2) = 0 and so a∗a exp(x2/2) = − exp(x2/2), it is not an eigenfunc-

tion as we are only interested in L2(R) eigenfunctions, not generalized eigenfunctions.

The commutation relation [a∗, a] = −I yields two further commutation relations

which will serve as the basis for the rest of the analysis of the quantum-mechanical

harmonic oscillator. Applying a∗ to a∗a on the left gives

a∗aa∗ = a∗(a∗a+ I) = a∗a∗a+ a∗,

which may be realized as a commutation relation:

[a∗a, a∗] = a∗. (4.9)

A similar approach shows that [a∗a, a] = −a. This leads into our next definition.

Definition 4.1. Let 0 6= λ ∈ C and N ,X be densely-defined operators on a Banach

space X be such that [N ,X ] = λX , ranX ⊆ domN and ranN ⊆ domX . We say
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4.1 THE QUANTUM MECHANICAL HARMONIC OSCILLATOR

that X is a ladder operator for N . If λ ∈ R and λ > 0, we say that X is a raising

operator for N . Likewise, if λ ∈ R and λ < 0, we say that X is a lowering operator

for N .

This is fundamentally a restatement of the notion of roots of Lie algebras cast

in the language of unbounded operators [27, p.176]. Such commutation relations

are important as they encode a lot of important information regarding the analytic

structure of operators. This is discussed in the next theorem.

Theorem 4.2. Let 0 6= λ ∈ C and N ,X be densely-defined operators on a Banach

space X be such that [N ,X ] = λX , ranX ⊆ domN and ranN ⊆ domX . If ψ is an

eigenvector for N with eigenvalue µ, then Xψ is also an eigenvector for N provided

that Xψ 6= 0.

Proof. We have that

NXψ = (XN + λX )ψ = (µ+ λ)Xψ. (4.10)

Provided that Xψ 6= 0, Xψ is also an eigenfunction of N with eigenvalue µ+ λ.

From the previous argument, a and a∗ are ladder operators for a∗a, particularly a

is a lowering operator and a∗ is a raising operator for a∗a. This allows us to exactly

solve for the eigenvalues for a∗a. Since 0 is an eigenvalue of a∗a, it follows that m is

an eigenvalue for a∗a for any m ∈ N0.

Suppose then that λ is an eigenvalue of a∗a corresponding to eigenfunction ψ such

that m < λ < m + 1 for some m ∈ N0. amψ is then an eigenfunction of a∗a with

eigenvalue 0 < λ−m < 1. Applying a once more yields another eigenfunction am+1ψ
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which has eigenvalue λ−m− 1 < 0. However,

0 ≤ 〈am+2ψ, am+2ψ〉

= 〈a∗a(am+1ψ), am+1ψ〉

= (λ−m− 1)〈am+1ψ, am+1ψ〉

< 0.

Thus, there cannot be an eigenfunction with eigenvalue λ such that m < λ < m+ 1.

A not-too-dissimilar argument shows that the only eigenfunctions are exactly those

of the form (a∗)mψ0. We define then ψm by

ψm(x) =
1

2m/2

(
− d

dx
+ x

)m
ψ0(x). (4.11)

A straightforward calculation shows that

〈ψm+1, ψm+1〉 =
√
m〈ψm, ψm〉 (4.12)

so that ψm ∈ L2(R) for all m since ψ0 ∈ L2(R).

It is a well-known fact that the entire spectrum of the quantum-mechanical har-

monic oscillator is indeed comprised only of its eigenvalues [22, p.131], that is to say

that there is no approximate point spectrum or residual spectrum. This is a direct

consequence of the fact that the functions {ψm : m ∈ N0} form a basis for L2(R).
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4.2 Supersymmetric Quantum Mechanics

With the broad success of the factorization approach to the quantum-mechanical har-

monic oscillator, physicists and mathematicians applied similar techniques to more

general systems. In the quantum-mechanical harmonic oscillator, both a∗a and aa∗

played a crucial role in the general theory. Let H1 be a one dimensional, time-

independent Hamiltonian with potential V such that H1 is positive and has an eigen-

value of 0, then in the coordinate representation and neglecting physical constants,

H1 may be written as

H1 = −1

2

d2

dx2
+ V (x). (4.13)

Provided that one is studying a system with finitely many negative energy states,

the condition of positivity is not a significant assumption, as the operator H1 + λI

will be positive for sufficiently large λ. Similarly, assuming that 0 is an eigenvalue

is not a significant assumption by taking λ to be the negative of the lowest energy

eigenvalue.

In the case of the quantum-mechanical harmonic oscillator, V (x) = 1
2
x2. We

define the operator Q and its (formal) adjoint Q∗ on L2(R) by

Q =
1√
2

(
d

dx
+W (x)

)
, Q∗ =

1√
2

(
− d

dx
+W (x)

)
, (4.14)

where it is further assumed that H1 = Q∗Q, that is to say that

V (x) =
1

2
W (x)2 − 1

2
W ′(x). (4.15)

Here it is assumed that W is continuously differentiable. If W is also polyno-
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mially bounded from above and bounded from below, then the harmonic oscillator

eigenfunctions are naturally in the domain of the operators Q and Q∗ so that both

are densely-defined. The image of the harmonic oscillator eigenfunctions will also

be in the domain of Q∗ and vice versa. Therefore if we restrict the domain of Q to

the set of functions ψ such that Qψ is in L2(R) and that Q∗Qψ is well-defined as

a differential operator acting on ψ and in L2(R), our formal manipulations to follow

are well-defined.

This is a Ricatti equation and is quite difficult to solve for general potentials V

due to its nonlinear nature. If instead, the nodeless eigenfunction ψ0 corresponding

to eigenvalue 0 is known, we may define W by

W (x) = − d

dx
logψ0(x). (4.16)

Direct computation shows that such a choice of W solves the Ricatti equation and

that ψ0 may be represented by

ψ0(x) = A exp

(
−
∫ x

0

W (x′) dx′
)
. (4.17)

A simple application of Cauchy-Schwarz shows that if exp(−
∫ x

0
W (x′) dx′) is in

L2(R), then exp(
∫ x

0
W (x′) dx′) cannot possibly be in L2(R). This is in tune with what

was seen in the case of the quantum-mechanical harmonic oscillator.

Since aa∗ was also critical in the analysis of the quantum-mechanical harmonic

oscillator, it is natural to inspect the nature of QQ∗ as well. The essence of super-

symmetric quantum mechanics is the analysis of the operators H1 and H2 and the
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relations between them. Defining H2 = QQ∗ yields the operator

H2 = QQ∗ = −1

2

d2

dx2
+

1

2
W (x)2 +

1

2
W ′(x). (4.18)

Note that we need not duplicate the argument above for Q∗ since Q and Q∗ are

of effectively the same form and so if Q∗Qψ is well-defined, so will be QQ∗ψ. Note

that both operators are densely-defined.

In the quantum-mechanical harmonic oscillator, [a∗, a] = −I; assuming a form of

a = d
dx

+W (x), direct computation shows that [a∗, a] = −I if and only if W (x) = x+α

for some α ∈ R. Thus, in general, supersymmetric quantum mechanics should not be

expected to have as rich an analytic structure as the quantum-mechanical harmonic

oscillator. Indeed, many quantum-mechanical systems do not have nice algebraic

relations between their eigenvalues, and so a true ladder structure will not exist

involving the operators H1, H2, Q, and Q∗.

Instead, a different structure exists for supersymmetric quantum mechanics. It is

straightforward that QH1 = H2Q and H1Q∗ = Q∗H2. These intertwining relations

lead to the well-known intertwining between the eigenvalues and eigenfunctions of H1

and H2.

Theorem 4.3. Let ψ be an eigenfunction of H1 with eigenvalue λ 6= 0, then Qψ is

an eigenfunction of H2 with eigenfunction λ.

Proof. First note that 〈Qψ,Qψ〉 = 〈Q∗Qψ, ψ〉 = λ〈ψ, ψ〉 <∞ so Qψ is a permissible

eigenfunction of H2 since it is in L2(R) and Qψ 6= 0. Moreover, H2Qψ = QH1ψ =

λQψ. Hence Qψ is an eigenfunction of H2 with eigenvalue of λ. The assumption that

λ 6= 0 is critical as it prevents Qψ = 0.
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A similar argument shows that if ϕ is an eigenfunction of H2 with eigenvalue λ,

then Qϕ is an eigenfunction of H1 with eigenvalue λ. The case of Q∗ψ = 0 is of no

consequence since if exp
(
−
∫ x

0
W (x′) dx′

)
is in L2(R), exp

(∫ x
0
W (x′) dx′

)
cannot be

in L2(R).

The supersymmetric operators H1, H2, Q, and Q∗ can be combined into one

framework via a matricial representation on L2(R)⊕L2(R). Define matrix operators

H, Q and Q∗ by

H =

H1 0

0 H2

 , Q =

 0 0

Q 0

 , Q∗ =

0 Q∗

0 0

 . (4.19)

These operators enjoy an algebraic structure:

[H,Q] = 0, [H,Q∗] = 0 (4.20)

{Q,Q∗} = H, {Q,Q} = 0 = {Q∗,Q∗}. (4.21)

This is a Z2-graded Lie superalgebra [34, 15] where the grading is generated by the

subspaces X1 = spanH and X2 = span{Q,Q∗}.

Diagrammatically, the intertwining for H1 and H2 can be easily summarized. Let

{ψm : m ∈ N0} and {ϕm : m ∈ N0} denote the eigenfunctions for H1 and H2,

respectively. In the language of supersymmetry, the eigenstates of H1 and H2 form

what are called sectors. Figure 4.1 shows the structure relating the two sectors.

As seen above, for supersymmetric quantum mechanics, the “ladder” structure

is quite different from the quantum-mechanical harmonic oscillator insofar that the

charge operators only allow one to move left and right between sectors, rather than
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H H̃

ψ2

ψ1

ψ0

ϕ1

ϕ0

No state

Q

Q∗

Figure 4.1: The ladder structure for supersymmetric quantum mechanics.

up and down within either sector. In supersymmetric quantum mechanics, one often

defines a hierarchy of Hamiltonians by repeating the above process with ϕ0 as the

new ground state. This creates a series of Hamiltonians which are intertwined via the

charge operators, however again one may only move left and right between sectors,

thus it is not a true ladder structure. In the next chapter, a new structure is proposed

to remedy this which melds the graded structure of supersymmetry (and supersym-

metric quantum mechanics) with the analytic structure of the harmonic oscillator.

Particularly, knowing the ground states for each sector, one may generate all higher

excited states.
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Chapter 5

Coupled Supersymmetric Quantum

Mechanics and Associated Integral

Operators

In Chapter 3 generalized Fourier transforms that emerged from an axiomatic frame-

work were investigated. These were identified as the unitary transforms that di-

agonalized certain singular Laplacian operators ∆n = − d
dx

1
x2n−2

d
dx

. The motivation

for the present work came from the question whether these transforms are related

to a type of oscillator Hamiltonian—or Hamiltonian-like operator. This is indeed

the case. If an = 1√
2

(
1

xn−1
d
dx

+ xn
)
, then H = a∗nan has the set of eigenvalues

{2kn, 2kn+ 2n− 1}∞k=0 and the corresponding eigenfunctions are complete in L2(R).

While supersymmetric quantum mechanics has a somewhat nice algebraic struc-

ture, the algebraic structure is not strong enough to give meaningful information

about the analytic structure of the underlying Hamiltonians. In this chapter, we de-

velop a family of supersymmetric systems which have a rich analytic structure and
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also a richer algebraic structure than traditional supersymmetric quantum mechan-

ics. We also develop analogues of the Fourier transform for these systems and present

further generalizations thereof.

5.1 Coupled Supersymmetry and Its Lie Algebra

In Chapter 3, it was shown that the QMHO has two separate factorizations: HHO =

a∗a + 1
2

and HHO = aa∗ − 1
2
. Defining then the SUSY Hamiltonian H1 = a∗a, its

SUSY partner Hamiltonian is H2 = aa∗. From the two factorizations of the QMHO,

it is clear that H1 and H2 each have two distinct factorizations, even though these

two factorizations are intimately connected.

That H2 = H1 + 1 is a restatement of the commutation relation for a and a∗—

which is equivalent to the canonical commutation relation. The canonical commuta-

tion relation can be a very rigid structure [37, p.274] and as such cannot be a point

of generalization. Note that the canonical commutation relations do not necessarily

guarantee that [a∗, a] = −I is solved by a = x+ ip, see [37, p.275]. The Schrödinger

representation is not strong enough to guarantee uniqueness, however the exponenti-

ated (group) representation is. As the canonical commutation relations can be very

rigid, we instead use the property that the QMHO and its partner Hamiltonian both

have two distinct factorizations to develop our theory and this leads into our first

definition.

Definition 5.1. Let a, b be closed, densely defined operators on a Hilbert space H,

a∗ and b∗ be their adjoints, and γ, δ ∈ R with γ < δ. Furthermore, suppose that

dom a = dom b, dom a∗ = dom b∗, ran a ⊆ dom a∗ (and vice versa), and similarly for b

and b∗. The ordered quadruplet {a, b, γ, δ} defines a coupled supersymmetric system

62
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(coupled SUSY system) if it satisfies

a∗a = b∗b+ γ, (5.1)

aa∗ = bb∗ + δ. (5.2)

The operators a∗a, aa∗, b∗b and bb∗ will be referred to as Hamiltonians throughout

the chapter.

It is easily seen that the coupled SUSY conditions are equivalent to the system

of equations for commutators [a∗, a] = [b∗, b] + γ − δ and anticommutators {a∗, a} =

{b∗, b} + γ + δ. Note that (5.1) and (5.2) do not imply each other, as evidenced by

taking a = 1√
2

(
d
dx

+ x
)

and b = 1√
2
eix
(
d
dx

+ x
)
. In this case, (5.1) holds whereas (5.2)

does not. Placing the exponential on the right in the definition of b shows that the

reverse implication does not hold either.

The condition that γ 6= δ will play a crucial role in what follows. We assumed

without loss of generality that γ < δ; otherwise, if γ > δ, we may simply switch the

roles of a and a∗ as well as b and b∗ and the conditions for Definition 1 would still

hold.

Example 5.2. Definition 1 includes the QMHO by letting b∗ = 1√
2

(
d
dx

+ x
)

= a,

−γ = 1 = δ. There exists an infinite family of examples satisfying the coupled SUSY

equations. A straightforward calculation shows that, for n ∈ N, the operators

an =
1√
2

(
1

xn−1

d

dx
+ xn

)
(5.3)

bn =
1√
2

(
− 1

xn−1

d

dx
+ xn

)
(5.4)
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taken with their adjoints on L2(R) also define a coupled SUSY system when restricted

to an appropriate subspace where γ = −1 and δ = 2n − 1. This family of examples

is closely related to standard SUSY with the anharmonic superpotential W1(x) =

x2n−1 where the charge operator d
dx

+ x2n−1 has been multiplied on the left by 1
xn−1 .

This relationship has connections to canonical transformations and mutually unbiased

bases [31].

In SUSY, one considers broken and unbroken (or exact) systems. SUSY is unbro-

ken if at least one of Q1 and Q∗1 in the factorization H1 = Q∗1Q1 annihilates a state

and is broken if neither annihilate a state [14]. Unbroken SUSY is the primary focus

in the study of basic supersymmetric quantum mechanics and is the focus of much of

the remainder of this chapter. To this end, we make the following definition.

Definition 5.3. Let {a, b, γ, δ} form a coupled SUSY system. We say that it is an

unbroken coupled SUSY system if a annihilates a state and b∗ annihilates a state.

Otherwise we say that it is a broken coupled SUSY system.

Remark 5.4. If {a, b, γ, δ} form an unbroken coupled SUSY system, it cannot be

the case that a∗ and b annihilate states since otherwise δ < γ, contradicting the

assumption that γ < δ. If however (5.1) and (5.2) hold but a∗ and b annihilate

states, we may reverse the roles of a and a∗ (and b and b∗) to obtain an unbroken

coupled SUSY system.

Coupled SUSY, as the name suggests, automatically comes with a SUSY structure

by noting that H1 = a∗a and H2 = aa∗ come equipped with the usual SUSY ladder

structure. In our first theorem, we show that a ladder structure exists for coupled

SUSY.
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Theorem 5.5. If {a, b, γ, δ} form a coupled SUSY system, then a∗b and b∗a act as

ladder operators for a∗a (and b∗b) while ab∗ and ba∗ act as ladder operators for aa∗

(and bb∗). Moreover, the triples {a∗a − γ
2
, a∗b, b∗a} and {aa∗ − δ

2
, ab∗, ba∗} generate

Lie algebras isomorphic to su(1, 1).

Proof. To prove this, we proceed in much the same way as in the standard QMHO

by considering the commutator of a∗a with a∗b, a∗a with b∗a, and a∗b with b∗a. The

other cases with aa∗, ab∗ and ba∗ follow the same logic and so they are omitted for

the sake of brevity.

[a∗a, a∗b] = a∗aa∗b− a∗ba∗a

= a∗aa∗b− a∗b(b∗b+ γ)

= a∗(aa∗ − bb∗)b− γa∗b

= (δ − γ)a∗b.

Similar reasoning shows that [a∗a, b∗a] = −(δ−γ)b∗a. Since γ < δ, a∗b is a raising

operator for a∗a and b∗a is a lowering operator for a∗a. To show that these generate

a Lie algebra, we inspect the commutator of a∗b and b∗a:

[a∗b, b∗a] = a∗bb∗a− b∗aa∗b

= a∗(aa∗ − δ)a− b∗(bb∗ + δ)b

= (a∗a)2 − (b∗b)2 − δ(a∗a+ b∗b)

= 2(γ − δ)
(
a∗a− γ

2

)
.

Thus, the triple generates a Lie algebra as it is closed under commutation. After
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adding a multiple of the identity to a∗a and rescaling,

K+ =
1

δ − γ
a∗b, K− =

1

δ − γ
b∗a, K0 =

1

δ − γ

(
a∗a− γ

2

)
(5.5)

are seen to verify

[K0,K±] = ±K±, [K+,K−] = −2K0 (5.6)

the commutation relations of su(1, 1) [36], hence the Lie algebra associated to coupled

SUSY is found to be isomorphic to the su(1, 1) Lie algebra.

We note that the discrete series of su(1, 1) representations correspond to a choice

of γ
δ−γ ∈ Z, γ

δ−γ ≤ −2 [36].

As with any mathematical structure, it is of interest to ask is if there are systems

for which the commutation relations in Theorem 1 hold that do not correspond to

a coupled SUSY system—be it a broken or unbroken coupled SUSY. In the next

theorem, we prove that this is not the case under the modest assumption that ker a∗ =

{0} = ker b.

Theorem 5.6. If a, a∗, b, b∗ are operators satisfying ker a∗ = {0} = ker b and

[a∗a, a∗b] = λa∗b, (5.7)

[bb∗, ba∗] = λ′ba∗, (5.8)

[a∗b, b∗a] = µa∗a+ ν, (5.9)

[ba∗, ab∗] = µ′aa∗ + ν ′, (5.10)

where λ, λ′, ν, ν ′ ∈ R, λ 6= 0, then b∗b = αa∗a + γ and bb∗ = βaa∗ + δ for some

α, β, γ, δ ∈ R.
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Proof. Suppose that a∗a = b∗b+S and aa∗ = bb∗+T for some as-of-yet undetermined

operators S and T . Inspecting commutation relations, we have

[a∗a, a∗b] = a∗(aa∗b− ba∗a)

= a∗((bb∗ + T )b− b(b∗b+ S))

= a∗(Tb− bS).

Likewise, it follows that

[bb∗, ba∗] = b(a∗T − Sa∗).

Equating the above with the ladder operator relations, it can be seen that

[a∗a, a∗b] = λa∗b = a∗(Tb− bS)

[bb∗, ba∗] = λ′ba∗ = b(a∗T − Sa∗).

Since a∗ and b have trivial kernel, we must have that Tb − bS = λb and similarly

a∗T − Sa∗ = λ′a∗. We may use these to prove our result.

[ba∗, ab∗] = b(b∗b+ S)b∗ − a(a∗a− S)a∗

= (bb∗)2 + bSb∗ − (aa∗)2 + aSa∗

= (aa∗ − T )2 + bSb∗ − (aa∗)2 + aSa∗

= −aa∗T − Taa∗ + T 2 + bSb∗ + aSa∗

= −aa∗T − T (bb∗ + T ) + T 2 + bSb∗ + aSa∗

= −a(a∗T − Sa∗)− (Tb− bS)b∗

= −λ′aa∗ − λbb∗
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Making use of our relations above, it follows that

[ba∗, ab∗] = µ′aa∗ + ν ′ = −λ′aa∗ − λbb∗.

Therefore

bb∗ = −λ
′ + µ′

λ
aa∗ − ν ′

λ
(5.11)

By repeating these steps with [a∗b, b∗a] and using the above relations Tb−bS = λb

and a∗T − Sa∗ = λ′a∗, [a∗b, b∗a] = −λb∗b − λ′a∗a = µa∗a + ν the claimed affine

relationship between a∗a and b∗b holds as well.

Taking λ = λ′ in the previous theorem gives exactly that a, b form a coupled SUSY

system as α = 1 = β in this case.

It is natural to ask if a coupled SUSY system is unique, i.e., given a, γ, δ if b is

unique or if there are many possible choices for b. We prove a uniqueness result in

the next theorem.

Theorem 5.7. Suppose that {a, b, γ, δ} and {a, c, γ, δ} define coupled SUSY systems.

Then b = U(c∗c)1/2 and c = V (b∗b)1/2 for some partial isometries U, V .

Proof. Since we have that

b∗b+ γ = a∗a = c∗c+ γ, (5.12)

bb∗ + δ = aa∗ = cc∗ + δ, (5.13)

It follows that b∗b = c∗c and bb∗ = cc∗. The equivalences are warranted as the

operators are defined on the same subspaces. From the polar decomposition for
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closed operators [38], the first equality guarantees that b = U(c∗c)1/2 for some partial

isometry U . Switching roles gives c = V (b∗b)1/2 for some partial isometry V .

5.2 An Energy Ladder Structure for Coupled

SUSY

With ladder operators established for coupled SUSY systems, it is natural to inquire

about the eigenvalues of the coupled SUSY Hamiltonians a∗a, aa∗, b∗b, and bb∗. As in

standard SUSY, a∗a and aa∗ share the same eigenvalues—up to a possible eigenvalue

of 0. Likewise, b∗b and bb∗ share the same eigenvalues—up to a possible eigenvalue of

0. Moreover, the spectra of a∗a and b∗b are related by a shift of γ since a∗a = b∗b+γ.

Thus it is sufficient to study one of a∗a and aa∗ to fully understand the eigenvalues

of any of the Hamiltonians in a coupled SUSY system.

Theorem 5.8. If {a, b, γ, δ} form an unbroken coupled SUSY system, then the eigen-

values of a∗a are given by m(δ − γ) and m(δ − γ) + δ where m ∈ N0.

Proof. We first note that if ψ ∈ dom a is an eigenfunction of a∗a, then a∗bψ ∈ dom a;

particularly, it is normalizable. To see this, note that 〈a∗bψ, a∗bψ〉 = 〈ψ, b∗aa∗bψ〉 =

〈ψ, b∗(bb∗+ δ)bψ〉 <∞ since ψ is also an eigenstate of b∗b. An analogous result holds

for aa∗.

Since a∗b is a raising operator for a∗a and 0 is an eigenvalue of a∗a, m(δ − γ) is

an eigenvalue for a∗a. Moreover, δ is an eigenvalue for aa∗ since 0 is an eigenvalue of

bb∗. ba∗ is a raising operator for aa∗, so δ + m(δ − γ) is an eigenvalue for aa∗. Since

a∗a and aa∗ share eigenvalues—up to 0—m(δ − γ) + δ is an eigenvalue of a∗a.
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These are indeed all of the eigenvalues for a∗a. If λ is an eigenvalue of a∗a, then so

is λ−(δ−γ) since b∗a is a lowering operator for a∗a. If an eigenvalue λ (corresponding

to the eigenfunction ψ) existed between 0 and δ − γ, then λ − (δ − γ) < 0 would

be an eigenvalue of a∗a (corresponding to the eigenfunction b∗aψ) which contradicts

the positivity of a∗a. Similar reasoning shows that no eigenvalue can exist between

m(δ − γ) and m(δ − γ) + δ, which proves the theorem.

A consequence of this is that there exist no bounded operator representations

for a coupled SUSY system since the eigenvalues are unbounded. Particularly, no

finite-dimensional (matricial) representations exist.

With the ladder structure for a∗a (and aa∗) via a∗b and b∗a (and ba∗ and ab∗),

a richer ladder structure exists than the standard SUSY or QMHO structure. We

already know that a and a∗ transfer between the sectors generated by a∗a and aa∗ so

we wish to explore the structure that lies beyond this.

In general, there need not be only one state that is annihilated by a (or more

generally two states annihilated by b∗a). For instance, it could be that

a =
1√
2

 d
dx

+ x 0

0 d
dx

+ x

 , (5.14)

which annihilates the states (exp(−x2/2), 0)T and (0, exp(−x2/2))T. As such we

define the following notation.

Definition 5.9. Let {a, b, γ, δ} be an unbroken coupled SUSY system. Let ψi,0,

i ∈ I for some finite or at most countable index set I, be an orthonormal family

of (normalized) state vectors annihilated by a and φj,0, j ∈ J for some finite or at

most countable index set J , be an orthonormal family of state vectors annihilated
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by b∗a but not annihilated by a. Define then ψi,m = (a∗b)mψi,0/‖(a∗b)mψi,0‖ and

φj,m = (a∗b)mφj,0/‖(a∗b)mφj,0‖.

In the case of the harmonic oscillator, the coupled SUSY system collapses because

b = a∗ and the kernel of a is spanned by the Gaussian h0, while a vector annihilated by

b∗a = a2 but not by a is necessarily a multiple of the first excited state h1. Note that

in general the states annihilated by b∗a but not by a are in one-to-one correspondence

with the states annihilated by b∗ via the usual SUSY ladder structure.

Consider the following pairs of operators a and b which have the following (infinite)

matrix representations in an orthonormal basis:

a =


0n×m

√
δ1n×n

. . .
√
δ − γ1m×m

. . . . . .

 , (5.15)

b =



0n×m
√
−γ1m×m

. . .

√
δ − γ1n×n

. . . . . .


, (5.16)

where 0n1×n2 is the n1×n2 zero matrix, 1n1×n2 is the n1×n2 ones matrix, and all other

elements are taken to be zero. Then taking their adjoints, we have that a∗a = b∗b+γ

and aa∗ = bb∗ + δ, however dim ker a 6= dim ker b∗ unless m = n, thus |I| 6= |J | in

general. Moreover, this shows that one can build coupled SUSY systems without

much difficulty.
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Theorem 5.10. Let {a, b, γ, δ} define an unbroken coupled SUSY system. For any

i ∈ I, j ∈ J , and m ∈ N0, ψi,m and φj,m are eigenfunctions of a∗a and any normalized

eigenfunction of a∗a is of the form
∑

i λiψi,m or
∑

j ηjφj,m for some finite collection

λi, ηj ∈ C.

Proof. It is clear by earlier arguments that ψi,m, φj,m are eigenfunctions of a∗a. Con-

versely, every eigenfunction is linear combination of the ψi,m or φj,m for fixed m. To

prove this, we proceed by induction on the eigenvalue of a given eigenfunction ζ.

Without loss of generality, we consider the case that a∗aζ = m(δ − γ)ζ. The

case of a∗aζ = (m(δ − γ) + δ)ζ proceeds similarly. For m = 0 this is trivial since

ker a = span{ψi,0 : i ∈ I} and ker a∗ = {0}. Assume that a∗aζ = m(δ − γ)ζ

implies that ζ =
∑

i λiψi,m for some finite collection λi ∈ C. Suppose then that

a∗aζ̃ = (m+ 1)(δ − γ)ζ̃. We wish to show that ζ̃ =
∑

i λ̃iψi,m+1 for some λ̃i ∈ C.

Applying b∗a to ζ̃ yields a state with eigenvalue m(δ−γ) and so b∗aζ =
∑

i λiψi,m

for some λi ∈ C by the inductive hypothesis. Applying then a∗b we have that

a∗b
∑

λiψi,m = a∗bb∗aζ̃

= a∗(aa∗ − δ)aζ̃

= ((a∗a)2 − δa∗a)ζ̃

= ((m+ 1)2(δ − γ)2 − (m+ 1)δ(δ − γ))ζ̃ .

Because γ ≤ 0 and m ≥ 0, (δ − γ)(m + 1) − δ is never zero. Thus ζ̃ =
∑

i λ̃iψi,m+1

for some λ̃i as claimed.

As noted above, there is a correspondence between eigenfunctions of a∗a and

aa∗ via a and a∗ in typical SUSY fashion. Thus we can write the eigenfunctions
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of aa∗ as ψ̃i,m = aψi,m/‖aψi,m‖ (where m 6= 0 since a annihilates ψi,0) and φ̃j,m =

aφj,m/‖aφj,m‖. As noted above, the states φ̃j,0 are annihilated by b∗. The following

figures summarize the coupled SUSY ladder structure.

a∗a aa∗

ψi,0

φj,0

ψi,1

φj,1

ψi,2

φj,2

ψi,3

φ̃j,0

ψ̃i,1

φ̃j,1

ψ̃i,2

φ̃j,2

ψ̃i,3

a

a∗

b

b∗

Figure 5.1: The actions of a, b, a∗, and b∗ in a coupled SUSY system.

a∗a aa∗

ψi,0

φj,0

ψi,1
φ̃j,0

ψ̃i,1
a∗

b

a∗b

Figure 5.2: The raising operator structure for the first sector in a coupled SUSY
system.

a∗a aa∗

ψi,0

φj,0

ψi,1
φ̃j,0

ψ̃i,1
a

b∗

b∗a

Figure 5.3: The lowering operator structure for the first sector in a coupled SUSY
system.

Example 5.11. Returning to the family in Example 1, a simple inductive proof
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shows that, for a fixed n ∈ N, the functions

ψ
(n)
2m(x) = e

x2n

2n

(
d

dx

1

x2n−2

d

dx

)m
e−

x2n

n (5.17)

ψ
(n)
2m+1(x) = e

x2n

2n

(
d

dx

1

x2n−2

d

dx

)m (
x2n−1e−

x2n

n

)
. (5.18)

are an orthogonal collection of eigenfunctions of a∗nan satisfying ψ
(n)
m+2 = λm,na

∗
nbnψ

(n)
m

for some λm,n. It is not hard to see that these are polynomials multiplying e−
x2n

2n and

analysis similar to that in Chapter 3 shows that they form a basis for L2(R). In the

case of n = 1, these become the usual Hermite functions up to normalization. Similar

relations hold for the eigenfunctions of ana
∗
n.

5.3 Coupled SUSY and Other Oscillator Systems

Traditionally the QMHO is associated to the 1D Heisenberg-Weyl Lie algebra as this

is the Lie algebra which corresponds to the canonical commutation relations which is

reflected in the algebra generated by the ladder operators. This is not the only Lie

algebra which may be associated to the QMHO. There are two other treatments of

the QMHO: Schwinger’s “spinification” of the two-particle QMHO and the su(1, 1)

treatment of the QMHO. Coupled SUSY is to some degree a unification of the two

treatments.

In Schwinger’s “spinification” of the QMHO [46], one considers two independent

oscillators and defines the operators

Qν =
2∑

i,j=1

1

2
a∗i (σν)

ijaj, (5.19)
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where for ν = 1, 2, 3, σν is the νth Pauli matrix. Explicitly, Q1 = 1
2
(a∗1a2 + a1a

∗
2),

Q2 = − i
2
(a∗1a2 − a1a

∗
2), and Q3 = 1

2
(a∗1a1 − a∗2a2). The operators Qν form the su(2)

Lie algebra, for instance

[Q1,Q2] = − i
4

[a∗1a2 + a1a
∗
2, a
∗
1a2 − a1a

∗
2]

=
i

2
[a∗1a2, a1a

∗
2]

=
i

2
(a∗1a1a2a

∗
2 − a1a

∗
1a
∗
2a2)

=
i

2
(a∗1a1 − a∗2a2)

= iQ3.

The finite dimensional representations in this system have a fixed quantum num-

ber which corresponds to the energy difference between the two oscillators and the

individual spin states for a fixed energy correspond to the different configurations

within each energy level. The Lie algebra su(2) is equipped with its own ladder

operators. In this case, defining Q± = Q1 ± iQ2, we have

[Q3,Q±] = ±Q±. (5.20)

A simple computation shows that Q+ = a∗1a2 and Q− = a∗2a1. These are analogous

to the (quadratic) ladder operators for a coupled SUSY system.

Similar to Schwinger’s su(2) “spinification” of the QMHO is an su(1, 1) represen-

tation of the QMHO [36]. If a, a∗ represent the usual QMHO ladder operators, then

letting K0 = a∗a+ 1
2
, K+ = (a∗)2, and K− = a2, we have that

[K0,K±] = ±K±, [K+,K−] = −2K0, (5.21)
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which is exactly the su(1, 1) Lie algebra.

Coupled SUSY has elements of both of the above approaches to the QMHO.

The ladder operators in all three cases are second order; in coupled SUSY, the ladder

operators are a combination of the operators coming from two separate Hamiltonians;

and coupled SUSY retains the su(1, 1) structure implicitly built into the QMHO.

5.4 Coherent States for Coupled SUSY Systems

In traditional SUSY, coherent states have been developed, however the coherent states

do not mimic those of the QMHO even though they do exploit the SUSY structure

[4, 13, 16]. Particularly, QMHO coherent states are often taken to be eigenfunctions of

the lowering operator; SUSY coherent states do not enjoy this property or a property

similar to it. Part of the reason for this is the lack of a true ladder structure in SUSY.

As seen above, coupled SUSY has a rich ladder structure that has elements of both

SUSY and the QMHO. This suggests that the coherent states for a coupled SUSY

system should behave somewhat analogously to that of the QMHO while retaining a

SUSY flavor.

In general, there are several kinds of coherent states, depending on the context

in which one is interested. Coherent states can be seen to be uncertainty minimiz-

ers, eigenstates of a lowering operator, specific infinite series of basis functions, or

generalized displacements of a cyclic vector. In the case of the QMHO, these are all

the same, however in general this is not the case. For su(1, 1), the various forms of

coherent states have been studied extensively [9, 23, 36]. We elect to use the displace-

ment operator definition for coherent states as it uses the Lie algebraic properties of

su(1, 1) and ties well into the coupled SUSY formalism as there are natural cyclic
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vectors in ψi,0, φj,0, ψ̃i,1, and φ̃j,0.

If one has su(1, 1) operators K0,K± where

[K0,K±] = ±K±, [K+,K−] = −2K0, (5.22)

then the operator D(z) = exp(zK+ − z̄K−) defines an su(1, 1) displacement operator

[36, p. 74]. Suppose that K0ψm = (m + k)ψm for a basis of states ψm, where

ψm+1 = K+ψm/‖K+ψm‖. The coherent state generated by D(z) can be written as

|z; k〉 = D(z)ψ0 = (1− |z|2)k
∞∑
m=0

(
Γ(m+ 2k)

m!Γ(2k)

) 1
2

zmψm. (5.23)

Suppose that {a, b, γ, δ} defines a coupled SUSY system. Define then the following

operators

K0 =
1

δ − γ

(
a∗a− γ

2

)
, K+ =

1

δ − γ
a∗b, K− =

1

δ − γ
b∗a, (5.24)

K̃0 =
1

δ − γ

(
aa∗ − δ

2

)
, K̃+ =

1

δ − γ
ba∗, K̃− =

1

δ − γ
ab∗. (5.25)

A straightforward calculation shows that the relations in (5.22) hold. Since we have

four families of cyclic vectors (indexed by i and j), we have four sets of coherent states

(indexed by i and j). A simple computation shows that

K0ψi,0 = − γ

2(δ − γ)
ψi,0 (5.26)

K0φj,0 =

(
δ

2(δ − γ)
+

1

2

)
φj,0 (5.27)

K̃0ψ̃i,1 =

(
− γ

2(δ − γ)
+

1

2

)
ψ̃i,1 (5.28)
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K̃0φ̃j,0 =
δ

2(δ − γ)
φ̃j,0, (5.29)

from which we get the following coherent states:

∣∣∣∣z;− γ

2(δ − γ)

〉
i

= (1− |z|2)−
γ

2(δ−γ)

∞∑
m=0

Γ
(
m− γ

δ−γ

)
m! Γ

(
− γ
δ−γ

)


1
2

zmψi,m (5.30)

∣∣∣∣z;
δ

2(δ − γ)
+

1

2

〉
j

= (1− |z|2)
δ

2(δ−γ)+ 1
2

∞∑
m=0

Γ
(
m+ δ

δ−γ + 1
)

m! Γ
(

δ
δ−γ + 1

)


1
2

zmφj,m (5.31)

∣∣∣∣z;− γ

2(δ − γ)
+

1

2

〉
i

= (1− |z|2)−
γ

2(δ−γ)+ 1
2

∞∑
m=1

Γ
(
m− γ

δ−γ + 1
)

m! Γ
(
− γ
δ−γ + 1

)


1
2

zmψ̃i,m (5.32)

∣∣∣∣z;
δ

2(δ − γ)

〉
j

= (1− |z|2)
δ

2(δ−γ)

∞∑
m=0

Γ
(
m+ δ

δ−γ

)
m! Γ

(
δ

δ−γ

)


1
2

zmφ̃j,m (5.33)

In the case of the QMHO, the coherent states are eigenstates of the lowering

operator. Since coupled SUSY behaves so similarly to the QMHO, it is natural to

ask what happens to the coupled SUSY coherent states under an application of the

lowering operators. The lowering operators are composed of a and b∗, so we want to

investigate the action of a and b∗ on the coherent states. To this end, we have the

following lemma.

Lemma 5.12. Let ψi,m, φj,m, φ̃i,m, and φ̃j,m be as above. Then

aψi,m =
√
m(δ − γ)ψ̃i,m (5.34)

aφj,m =

√
(δ − γ)

(
m+

δ

δ − γ

)
φ̃j,m (5.35)
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b∗ψ̃i,m =

√
(δ − γ)

(
m− δ

δ − γ

)
ψi,m−1 (5.36)

b∗φ̃j,m =
√
m(δ − γ)φj,m−1 (5.37)

Proof. We only prove the first as the others follow in exactly the same manner. We

assume without loss of generality that the proportionality is pure real as a global

phase does not change the underlying mathematics. By definition, aψi,m = λψ̃i,m, so

we need only to solve for λ.

|λ|2 = 〈aψi,m, aψi,m〉

= 〈a∗aψi,m, ψi,m〉

= m(δ − γ).

The last equality follows since ψi,m is an eigenfunction of a∗a with eigenvalue m(δ−γ).

Thus λ =
√
m(δ − γ) as desired.

Because our ladder operators can only relate ψi,m with ψ̃i,m′ and φj,m with φ̃j,m′

(and vice versa), it is clear that we can only relate (5.30) with (5.32) and (5.31) with

(5.33) (and vice versa). Making use of relations (5.34)-(5.37), we have that

a

∣∣∣∣z;− γ

2(δ − γ)

〉
i

=
√
−γ z√

1− |z|2

∣∣∣∣z;− γ

2(δ − γ)
+

1

2

〉
i

, (5.38)

b∗
∣∣∣∣z;

δ

2(δ − γ)

〉
j

=
√
δz
√

1− |z|2
∣∣∣∣z;− δ

2(δ − γ)
+

1

2

〉
j

. (5.39)

If we were to apply b∗ to the first or a to the second, we would not retain a

multiple of the original state as the relations (5.34)-(5.37) indicate. Thus, while the

coherent states are not eigenstates of the lowering operators b∗a or ab∗, applying half
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of one of the lowering operators can convert one coherent state into another—up to a

multiplicative factor (since the operators are not unitary). This appears to be a new

structure in SUSY and QMHO coherent states.

5.5 Uncertainty Principles for Coupled SUSY Sys-

tems

The canonical uncertainty principle in quantum mechanics is the Heisenberg uncer-

tainty principle which is an uncertainty principle between the position operator x

and the momentum operator p. The Heisenberg uncertainty principle says that, in

natural units, the standard deviation in position and momentum is bounded below

by σxσp ≥ 1
2
.

The minimizer of the uncertainty principle is the Gaussian (and translations and

modulations thereof). This is easily proved via Cauchy-Schwarz techniques [26]. Since

x and p can be written as linear combinations of the QMHO ladder operators (i.e.,

x = 1√
2
(a + a∗) and p = i√

2
(a − a∗)), we expect to realize uncertainty principles for

coupled SUSY systems in a similar way via their ladder operators.

Definition 5.13. Let {a, b, γ, δ} define a coupled SUSY system. We define the fol-

lowing analogues of the traditional position and momentum operators for the separate

sectors:

L = −1

2
(a∗b+ b∗a), A =

i

2
(a∗b− b∗a), (5.40)

L̃ = −1

2
(ba∗ + ab∗), Ã =

i

2
(ba∗ − ab∗). (5.41)
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In the case of the family of examples in Example 1, L = −1
2
d
dx

1
x2n−2

d
dx
− 1

2
x2n

resembles a Lagrangian and is exactly a Lagrangian operator −1
2
d2

dx2
− 1

2
x2 when

n = 1, whereas A = 1
2
{x, p} is precisely the dilation operator.

Theorem 5.14. Let {a, b, γ, δ} be an unbroken coupled SUSY system, L and A be as

above, and, also as above, ker a = {ψi,0 : i ∈ I} for some index set I. An uncertainty

principle holds for L and A and the minimizers are the states ψi,0.

Proof. Let ψ be a normalized wavefunction. Note that Robertson’s uncertainty rela-

tion [22, p.53] gives us that

(σLσA)ψ ≥
1

2
|〈ψ|[L,A]|ψ〉|

=
1

4
|〈ψ|[a∗b, b∗a]− [b∗a, a∗b]|ψ〉|

=
δ − γ

4
|2〈ψ|a∗a|ψ〉 − γ|.

Because γ < 0, a has annihilating states ψi,0, and a∗a is self-adjoint, the lower bound

given by these states is

σLσP ≥
1

4
(δ − γ)|γ|. (5.42)

This does not guarantee that this lower bound is indeed attained. For the states

ψi,0, we have

〈L〉 = 〈φi,0|L|ψi,0〉

=
1

2
〈φi,0|a∗b+ b∗a|ψi,0〉

= 0.

Similarly, 〈A〉 = 0. Evaluating 〈L2〉, making use of the fact that a annihilates the
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states ψi,0, and employing the coupled SUSY structure, it follows that

〈L2〉 =
1

4
〈ψi,0|(b∗a+ a∗b)2|ψi,0〉

=
1

4
〈ψi,0|b∗aa∗b|ψi,0〉

=
1

4
〈ψi,0|b∗(bb∗ + δ)b|ψi,0〉

=
1

4
〈ψi,0|(a∗a− γ)2 + δ(a∗a− γ)|ψi,0〉

=
1

4
(δ − γ)|γ|.

An identical result holds for 〈A2〉, thus we have that

σLσA =
√
〈L2〉 − 〈L〉2

√
〈A2〉 − 〈A〉2

=
1

4
(δ − γ)|γ|.

The states ψi,0 are indeed the only minimizers. If aψ 6= 0, then 〈ψ|a∗a|ψ〉 >

0. Because γ ≤ 0, it follows that the uncertainty product is strictly greater than

1
4
(δ − γ)|γ|.

Theorem 5.15. Let {a, b, γ, δ} define an unbroken coupled SUSY system, L̃ and Ã

be as above, and, also as above, ker b∗ = {φ̃j,0 : j ∈ J} for some index set J . An

uncertainty principle holds for L̃ and Ã and the minimizers are the states φ̃j,0.

The proof of this theorem is nearly identical to that of the previous one so we

omit it, however the uncertainty principle is now given by

σL̃σÃ ≥
1

4
(δ − γ)δ. (5.43)

82



5.5 UNCERTAINTY PRINCIPLES FOR COUPLED SUSY SYSTEMS

Often in SUSY one treats the first and second sectors simultaneously in a matrix

formulation by defining the operators H, Q, and Q∗ which act on the direct sum of

the two sectors as follows:

H =

 H1 0

0 H2

 , Q =

 0 0

Q1 0

 , Q∗ =

 0 Q∗1

0 0

 . (5.44)

The logic being that the joint Hamiltonian should act on the two subspaces sep-

arately by their own Hamiltonians and is therefore diagonal, and the joint charge

operators should be off-diagonal because Q1 and Q∗1 transfer between the two sectors.

This allows us to define a tertiary set of first order position and momentum oper-

ators. Previously, the analysis was relegated to second order position and momentum

operators because the operators L, A, L̃, and Ã acted within a sector; however by

combining the two sectors into one framework, we allow ourselves the ability to drop

down to first order operators, analogous to the usual QMHO case.

Definition 5.16. Again, let {a, b, γ, δ} define a coupled SUSY system. We define the

operators X and P on the direct sum of the two sectors as follows:

X =
1√
2

 0 a∗ + b∗

a+ b 0

 , P = − i√
2

 0 a∗ − b∗

−a+ b 0

 . (5.45)

For the infinite family of operators in Example 1, an + bn yields
√

2xn and an− bn

yields
√

2
xn−1

d
dx

. Hence an + bn extracts the coordinate-like object corresponding to the

coupled SUSY system, whereas an−bn extracts the derivative-like object correspond-

ing to the coupled SUSY system. Therefore, X plays the role of a generalized notion

of position and P plays the role of a generalized notion of momentum [13].
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Theorem 5.17. Let {a, b, γ, δ} define an unbroken coupled SUSY system and X and

P be as above, then the following uncertainty principle holds for X and P:

σXσP ≥
1

2
min{|γ|, δ}. (5.46)

Proof. Let Ψ = (ψ1, ψ2)T be the state in which we are evaluating the expectation,

then 1 = ‖ψ1‖2 + ‖ψ2‖2. Again making use of Robertson’s inequality, we have that

(σXσP)Ψ ≥
1

2
|〈Ψ|[X,P]|Ψ〉| (5.47)

=
1

4

∣∣∣∣∣∣∣
〈

Ψ

∣∣∣∣∣∣∣

 0 a∗ + b∗

a+ b 0

 ,

 0 a∗ − b∗

−a+ b 0



∣∣∣∣∣∣∣Ψ
〉∣∣∣∣∣∣∣ (5.48)

=
1

4

∣∣∣∣∣∣∣
〈

Ψ

∣∣∣∣∣∣∣
 −2γ 0

0 2δ


∣∣∣∣∣∣∣Ψ
〉∣∣∣∣∣∣∣ (5.49)

=
1

2
(|γ|‖ψ1‖2 + δ‖ψ2‖2). (5.50)

Since ‖ψ2‖2 = 1 − ‖ψ1‖2, the above is a convex combination of |γ| and δ, so indeed

we have that

σXσP ≥
1

2
min{|γ|, δ}. (5.51)

We now show that the value of 1
2
|γ| is attainable. Let Ψ = (ψi,0, 0)T, where ψi,0

is as above. The case of 1
2
δ proceeds similarly by taking Ψ = (0, φ̃j,0)T, where φ̃j,0 is

also as above. For this choice of Ψ, it follows that

〈Ψ|X|Ψ〉 =
1√
2

(〈ψi,0|a∗ + b∗|0〉+ 〈0|a+ b|ψi,0〉) = 0, (5.52)

〈Ψ|P|Ψ〉 = − i√
2

(〈ψi,0|a∗ − b∗|0〉+ 〈0| − a+ b|ψi,0〉) = 0. (5.53)
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Computing X2 and P2 yields

X2 =
1

2

 (a∗ + b∗)(a+ b) 0

0 (a+ b)(a∗ + b∗)

 (5.54)

=
1

2

 a∗a+ a∗b+ b∗a+ b∗b 0

0 aa∗ + ab∗ + ba∗ + bb∗

 (5.55)

P2 =
1

2

 (a∗ − b∗)(a− b) 0

0 (a− b)(a∗ − b∗)

 (5.56)

=
1

2

 a∗a− a∗b− b∗a+ b∗b 0

0 aa∗ − ab∗ − ba∗ + bb∗

 (5.57)

Inspecting the diagonal terms, it is clear that this uncertainty principle is quite

different from that of L and A (and from that of L̃ and Ã). We are only concerned

with the upper left elements since we are considering states of the form Ψ = (ψi,0, 0)T.

Noting that a annihilates ψi,0 and using b∗b = a∗a− γ, it follows that

〈Ψ|X2|Ψ〉 = −1

2
γ = 〈Ψ|P2|Ψ〉. (5.58)

Since γ ≤ 0, the result follows.

Remark 5.18. The above uncertainty principles agree exactly with the traditional

Heisenberg uncertainty principle in the case of the QMHO since γ = −1 and δ = 1,

giving an uncertainty bound of 1
2

for each with the minimizers being Gaussians. For

n > 1, the uncertainty product σXσP has a lower bound of 1
2
, just as in the Heisenberg

uncertainty principle with minimizers exp(−x2n/2n), but the uncertainty products

σLσA and σL̃σÃ are for n > 1 bounded by a larger constant since δ − γ = 2n.
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5.6 A Family of Coupled SUSY Integral Trans-

forms

The normalized eigenfunctions of a∗a were denoted by ψi,m and φj,m and the nor-

malized eigenfunctions for aa∗ were denoted by ψ̃i,m and φ̃j,m for some i ∈ I, j ∈ J

and m. It is not clear that the coupled SUSY algebra is sufficient in determining the

completeness of the eigenfunctions of a∗a or aa∗. To this end, define the following

Hilbert subspaces for fixed i, j:

H+
i := span{ψi,m : m ∈ N0}, (5.59)

H−j := span{φj,m : m ∈ N0}, (5.60)

H̃+
i := span{ψ̃i,m : m ∈ N}, (5.61)

H̃−j := span{φ̃j,m : m ∈ N0} (5.62)

Assume that the parent Hilbert space is realized as an L2(Ω) space for some

measure space Ω. Define the L2 distributions ci, sj, c̃i, and s̃j by

ci(x, y) =
∞∑
m=0

(−1)mψi,m(x)ψi,m(y), (5.63)

sj(x, y) = −
∞∑
m=0

(−1)mφj,m(x)φj,m(y), (5.64)

c̃i(x, y) =
∞∑
m=1

(−1)mψ̃i,m(x)ψ̃i,m(y), (5.65)

s̃j(x, y) = −
∞∑
m=0

(−1)mφ̃j,m(x)φ̃j,m(y). (5.66)

The functions ci, etc., can be thought of as elements of a rigged Hilbert space [3].
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Particularly, taking X+
i ⊆ L2(Ω) to be span{ψi,m : m ∈ N0}, then the linear maps

y 7→ 〈f, ci(·, y)〉 are bounded. Thus ci, etc., define linear functionals on X+
i , etc.,

that is they can be realized as elements of (X+
i )∗, etc., and can be considered L2

“distributions.”

The above equalities are to be understood in the weak sense, e.g., for sufficiently

nice f ∈ H+
i , we have

〈f, ci(·, y)〉 :=
∞∑
m=0

(−1)mψi,m(y)〈f, ψi,m〉. (5.67)

To this end, define the integral operators Φ+
i , Φ−j , Φ̃+

i , and Φ̃−j by

Φ+
i f1(y) := 〈f1, ci(·, y)〉, (5.68)

Φ−j f2(y) := 〈f2, sj(·, y)〉, (5.69)

Φ̃+
i f3(y) := 〈f3, c̃i(·, y)〉, (5.70)

Φ̃−j f4(y) := 〈f4, s̃j(·, y)〉. (5.71)

The integral operators are well-defined on the bases generated by the eigenfunc-

tions of the coupled SUSY Hamiltonians and have eigenvalues ±1. It is a straight-

forward calculation to show that the coupled SUSY eigenfunctions are also eigen-

functions of the integral operators (in the appropriate ways). As such, the integral

operators extend to unitaries on their respective Hilbert spaces.

The integral operators are intertwined and skew-intertwined via the coupled SUSY

charge operators, that is

aΦ+
i = Φ̃+

i a Φ+
i a
∗ = a∗Φ̃+

i (5.72)
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aΦ−j = Φ̃−j a Φ−j a
∗ = a∗Φ̃−j (5.73)

bΦ+
i = −Φ̃+

i b Φ+
i b
∗ = −b∗Φ̃+

i (5.74)

bΦ−j = −Φ̃−j b Φ−j b
∗ = −b∗Φ̃−j (5.75)

This is easily proved by considering basis elements and making use of the fact

that the charge operators are, by assumption, closed, e.g.,

aΦ+
i ψi,m′(y) = a

∞∑
m=0

(−1)mψi,m〈ψi,m′ , ψi,m〉 (5.76)

= a
∞∑
m=0

(−1)mδm,m′ψi,m (5.77)

= (−1)m
′
aψi,m′ (5.78)

Noting that aψi,m = λmψ̃i,m for some scalar λm by definition, we have that

Φ̃+
i aψi,m′(y) = 〈aψi,m′ , c̃i(·, y)〉 (5.79)

=
∞∑
m=1

(−1)mψ̃i,m〈aψi,m′ , ψ̃i,m〉 (5.80)

=
∞∑
m=1

(−1)mλmψ̃i,m〈ψ̃i,m′ , ψ̃i,m〉 (5.81)

=
∞∑
m=1

(−1)mλmψ̃i,mδm,m′ (5.82)

= (−1)m
′
aψi,m′ . (5.83)

The other cases proceed similarly.

These integral operators generalize the usual Fourier sine and cosine transforms.

In the harmonic oscillator case, these integral operators are exactly the Fourier sine
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and cosine transforms. Furthermore, the Φn and Φ̃n transforms are subsumed in this

as well by letting a = 1
xn−1

d
dx

+ xn and b = − 1
xn−1

d
dx

.

5.7 The Coupled SUSY Algebra

As noted in Chapter 4, the matrix formulation of SUSY carries with it an algebra

structure. In coupled SUSY, there is not just one Q and Q∗ like in traditional SUSY,

rather, but two of each: one corresponding to a (or a∗) and one corresponding to b

(or b∗). Define then

Qa =

 0 0

a 0

 , Qb =

 0 0

b 0

 , (5.84)

Q∗a =

 0 a∗

0 0

 , Q∗b =

 0 b∗

0 0

 , (5.85)

Ha =

 a∗a 0

0 aa∗

 , Hb =

 b∗b 0

0 bb∗

 (5.86)

The usual SUSY superalgebra is present as expected but there is a richer structure

for coupled SUSY. Define the (lowering and raising) operators L and L∗ by

L =

 b∗a 0

0 ab∗

 , L∗ =

 a∗b 0

0 ba∗

 . (5.87)

We have then the following commutation and anti-commutation relations:

[Ha,Ha] = 0, [Hb,Hb] = 0, [Ha,Hb] = 0, (5.88)
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[Ha,Qa] = 0, [Ha,Q∗a] = 0, (5.89)

[Hb,Qa] = −(δ − γ)Qa, [Hb,Q∗a] = (δ − γ)Q∗a, (5.90)

[Ha,Qb] = (δ − γ)Qb, [Ha,Q∗b ] = −(δ − γ)Q∗b , (5.91)

[Hb,Qb] = 0, [Hb,Q∗b ] = 0, (5.92)

[Ha,L] = −(δ − γ)L, [Ha,L∗] = (δ − γ)L∗ (5.93)

[Hb,L] = −(δ − γ)L, [Hb,L∗] = (δ − γ)L∗ (5.94)

{Qa,Qa} = 0, {Q∗a,Q∗a} = 0, {Qa,Q∗a} = Ha, (5.95)

{Qb,Qb} = 0, {Q∗b ,Q∗b} = 0, {Qb,Q∗b} = Hb, (5.96)

{Qa,Qb} = 0, {Q∗a,Q∗b} = 0, (5.97)

{Qa,Q∗b} = L, {Q∗a,Qb} = L∗, (5.98)

[Qa,L] = 0, [Q∗a,L] = −(δ − γ)Q∗b , (5.99)

[Qa,L∗] = (δ − γ)Qb, [Q∗a,L∗] = 0, (5.100)

[Qb,L] = −(δ − γ)Qa, [Q∗b ,L] = 0, (5.101)

[Qb,L∗] = 0, [Q∗b ,L∗] = (δ − γ)Q∗a, (5.102)

[L∗,L] = −(δ − γ)Ha − (δ − γ)Hb. (5.103)

The vector space X generated by these operators is graded. To this end define the

following vector spaces: XH = span{Ha,Hb}, Xa = span{Qa,Q∗a}, Xb = span{Qb,Q∗b},

and X± = span{L,L∗}, then clearly X = XH ⊕ Xa ⊕ Xb ⊕ X± as vector spaces.

Let [[·, ·]] denote the Lie (super)bracket on X where it reduces to a commutator or

anti-commutator when appropriate. The above relations can be summarized neatly

via the summands for X in the following “Cayley table”, where the “product” denotes
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the target space:

[[·,·]] XH Xa Xb X±

XH XH Xa Xb X±

Xa Xa XH X± Xb

Xb Xb X± XH Xa

X± X± Xb Xa XH

The Cayley table mimics that of the usual Klein four-group Z2 × Z2, and so the

grading on this algebra is a Z2 × Z2-grading. Klein graded algebras are not entirely

new [51, 35, 5, 39, 40, 1]. If (0, 0) denotes XH, (1, 0) denotes Xa, (0, 1) denotes Xb, and

(1, 1) denotes X±, then the Lie (super)bracket on X can be written in the following

compact form:

[[x, y]] = −(−1)(i0+j0)(i1+j1)[[y, x]], (5.104)

where x ∈ (i0, j0) and y ∈ (i1, j1). In the case that i0 = 0 = j0 or i1 = 0 = j1,

then the Lie (super)bracket is a commutator, likewise if i0 = 1 = j0 or i1 = 1 = j1,

otherwise the Lie (super)bracket is an anti-commutator. This perfectly captures the

above commutation and anti-commutation relations. The Jacobi identity for this

Z2 × Z2-graded algebra is

[[x, [[y, z]]]] = [[[[x, y]], z]] + (−1)(i0+j0)(i1+j1)[[y, [[x, z]]]], (5.105)

where x ∈ (i0, j0) and y ∈ (i1, j1).

Define now the operators F+ and F− for fixed i and j by

F+ =

Φ+
i 0

0 Φ̃+
i

 , F− =

Φ−j 0

0 Φ̃−j

 . (5.106)
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The intertwining/skew-intertwining relations yield the following relations

QaF± = F±Qa Q∗aF± = F±Q∗a (5.107)

QbF± = −F±Qb Q∗bF± = −F±Q∗b (5.108)

LF± = F±L L∗F± = F±L∗ (5.109)

HaF± = F±Ha HbF± = F±Hb (5.110)

For instance,

QaF+ =

0 0

a 0


Φ+

i 0

0 Φ̃+
i


=

 0 0

aΦ+
i 0


=

 0 0

Φ̃+
i a 0


=

Φ+
i 0

0 Φ̃+
i


0 0

a 0


= F+Qa.

The other cases follow similarly.
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5.8 Future Work: A Generalization of Coupled

SUSY

In the theory of coupled SUSY, two ladders existed and the ladder operators al-

ternated between the two structures. Indeed, there are only two true sectors if one

generalizes the algorithm for SUSY in the following way: instead of finding a function

W such that d
dx

+ W (x) annihilates the lowest energy state, one finds an operator

a such that a annihilates the state. In this language, it is clear that there are only

two true sectors in coupled SUSY since the lowest energy state for aa∗ was seen to

be ϕ̃j,0 and it was assumed to be annihilated by the operator b∗. Developing the

Hamiltonians bb∗ and b∗b, one sees that the Hamiltonians that arise in this fashion

are directly related to the Hamiltonians aa∗ and a∗a. Thus there are two sectors

which are repeated ad infinitum and so one may choose to view coupled SUSY as a

supersymmetric theory with only two true sectors, much like the quantum mechani-

cal harmonic oscillator having only one sector and its supersymmetric partner sectors

being carbon copies thereof.

It is natural to ask what, if any, generalization of coupled SUSY there is. The

most natural question to ask is if there is a supersymmetric theory with n sectors.

Indeed, there is, and it may be established quite simply. We make a minor change in

notation from coupled SUSY.

Definition 5.19. Let a1, . . . , an be closed, densely defined operators on a Hilbert

space H, a∗1, . . . , a
∗
n be their adjoints, and γ1, . . . , γn ∈ R with γ1 + · · · + γn 6= 0.

Furthermore, suppose that dom a∗1 = dom a2, dom a∗2 = dom a3, and so on, ran a∗n ⊆

dom a∗n−1, ran a∗n−1 ⊆ dom a∗n−2 and so on. We say that these generate an nth order
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coupled SUSY system if

a1a
∗
1 = a∗2a2 + γ1 (5.111)

a2a
∗
2 = a∗3a3 + γ2 (5.112)

... (5.113)

ana
∗
n = a∗1a1 + γn. (5.114)

Notice that the ordering is not the same as it is in the original realization of

coupled SUSY. In coupled SUSY, a∗a = b∗b + γ and aa∗ = bb∗ + δ, whereas in this

new notation, it would be replaced with aa∗ = b∗b + γ and bb∗ = a∗a + δ. This is

not a significant change as it corresponds to interchanging the roles of a and a∗ and

replacing δ with −δ. The reason for this change of notation is that it allows for the

results to be very simply stated. We have the following theorem.

Theorem 5.20. Let a1, . . . , an define an nth order generalized coupled SUSY sys-

tem, then the nth order operators an · · · a2a1 and a∗1a
∗
2 · · · a∗n are ladder operators for

a∗1a1. Cyclic permutations of these operators act as ladder operators for the other

Hamiltonians a∗jaj. The operators a1a2 · · · an and a∗n · · · a∗2a∗1 are ladder operators for

a1a
∗
1. Cyclic permutations of these operators act as ladder operators for the other

Hamiltonians aja
∗
j .

Proof. Instead of computing the commutator, we find an expression for a∗1a1a
∗
1a
∗
2 · · · a∗n

which will be closely related to the commutator.

a∗1a1a
∗
1a
∗
2 · · · a∗n = a∗1a1a

∗
1a
∗
2 · · · a∗n

94



5.8 FUTURE WORK: A GENERALIZATION OF COUPLED SUSY

= a∗1(a∗2a2 + γ1)a∗2 · · · a∗n

= γ1a
∗
1a
∗
2 · · · a∗n + a∗1a

∗
2a2a

∗
2 · · · a∗n

= γ1a
∗
1a
∗
2 · · · a∗n + a∗1a

∗
2(a∗3a3 + γ2) · · · a∗n

= (γ1 + γ2)a∗1a
∗
2 · · · a∗n + a∗1a

∗
2a
∗
3a3 · · · a∗n

...

= (γ1 + γ2 + · · ·+ γn−1)a∗1a
∗
2 · · · a∗n + a∗1a

∗
2 · · · a∗nana∗n

= (γ1 + γ2 + · · ·+ γn−1)a∗1a
∗
2 · · · a∗n + a∗1a

∗
2 · · · a∗n(a∗1a1 + γn)

= (γ1 + γ2 + · · ·+ γn)a∗1a
∗
2 · · · a∗n + a∗1a

∗
2 · · · a∗na∗1a1

Subtracting a∗1a
∗
2 · · · a∗na∗1a1 gives

[a∗1a1, a
∗
1a
∗
2 · · · a∗n] = (γ1 + · · ·+ γn)a∗1a

∗
2 · · · a∗n. (5.115)

A similar analysis shows that an · · · a2a1 is also a ladder operator for a∗1a1.

The operators a1, a2, . . . , an and a∗1, a
∗
2, . . . , a

∗
n act as transfer operators between the

different sectors, and the sectors are cyclicly related via these operators. In general,

it is not clear what Lie algebra lies behind this generalization of coupled SUSY as the

next result suggests.

Theorem 5.21. The commutator of an · · · a2a1 and a∗1a
∗
2 · · · a∗n is an (n− 1)st degree

polynomial in a∗1a1.

Proof. We have that

an · · · a2a1a
∗
1a
∗
2 · · · a∗n = an · · · a2(a∗2a2 + γ1)a∗2 · · · a∗n
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= an · · · (a2a
∗
2)2 · · · a∗n + γ1an · · · a2a

∗
2 · · · a∗n

= an · · · (a∗3a3 + γ2)2 · · · a∗n + γ1an · · · (a∗3a3 + γ2) · · · a∗n

A simple induction focusing on the first term yields a term of the form (ana
∗
n)n−1

which can be readily recognized as being related to (a∗1a1)n−1 and so the claim is

shown.

These results generalize those obtained in the case of traditional coupled SUSY.

It is of interest to explore the Lie structure for nth order coupled SUSY and what

the graded structure is.
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metries of the Lévy-Leblond Equations. Progress of Theoretical and Experimental

Physics, page 26, 2016.

[2] N. I. Akhiezer. Lectures on Integral Transforms. American Mathematical Society,

1988.

[3] J.-P. Antoine. Quantum Mechanics Beyond Hilbert Space. Irreversibility and

Causality Semigroups and Rigged Hilbert Spaces, 504:1–33, 1998.

[4] F. Bagarello. Extended SUSY Quantum Mechanics, Intertwining Operators and

Coherent States. Physics Letters A, 372(41):6226–6231, 2008.

[5] C. Boboc. Gradings of Matrix Algebras by the Klein Group. Communications

in Algebra, 31, 2003.

[6] H. Boche. Eine Axiomatische Charakterisierung der Hilbert-Transformation.

Acta Mathematica et Informatica Universitatis Ostraviensis, 8:11–23, 2000.

[7] B. G. Bodmann, M. Papadakis, and Q. Sun. An Inhomogeneous Uncertainty

Principle for Digital Low-Pass Filters. Journal of Fourier Analysis and Applica-

tions, 12(2):181–211, 2006.

97



BIBLIOGRAPHY

[8] A. Boggess and F. J. Narcowich. A First Course in Wavelets with Fourier Anal-

ysis. Wiley, 2 edition, 2009.

[9] C. Brif. SU(2) and SU(1, 1) Algebra Eigenstates: A Unified Analytic Approach

to Coherent and Intelligent States. International Journal of Theoretical Physics,

36(7):1651–1682, 1997.

[10] L. Carleson. On Convergence and Growth of Partial Sums of Fourier Series. Acta

Mathematica, 116:135–157, 1966.

[11] G. Chen and D. Ma. Complex Form of the Hardy-Titchmarsh-Watson Character-

ization of Fourier Kernels and Some of Its Consequences. International Journal

of Mathematical Analysis, pages 3169–3190, 2013.

[12] G. Chen and D. Ma. Spectra of Unitary Integral Operators on L2(R) with Ker-

nels k(xy). Integral Equations, Boundary Value Problems and Related Problems,

pages 195–210, 2013.

[13] C. C. Chou, M. T. Biamonte, B. G. Bodmann, and D. J. Kouri. New System-

Specific Coherent States for Bound State Calculations. Journal of Physics A:

Mathematical and Theoretical, 45(50):505302, 2012.

[14] F. Cooper, A. Khare, and U. Sukhatme. Supersymmetry and Quantum Mechan-

ics. Physics Reports, 251(5):267 – 385, 1995.

[15] L. Corwin, Y. Ne’eman, and S. Sternberg. Graded Lie Algebras in Mathematics

and Physics (Bose-Fermi Symmetry). Review of Modern Physics, pages 573–603,

1975.

98



BIBLIOGRAPHY

[16] J. David and C. Fernandez. Supersymmetric Quantum Mechanics. AIP Confer-

ence Proceedings, 1287(1):3–36, 2010.

[17] P. A. M. Dirac. The Principles of Quantum Mechanics. Oxford University Press,

3 edition, 1947.

[18] G. B. Folland. A First Course in Abstract Harmonic Analysis. CRC Press, 1994.

[19] G. B. Folland. Real Analysis: Modern Techniques and Their Applications. John

Wiley & Sons, Inc., 2 edition, 1999.
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