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ABSTRACT

General characteristics of the isolated masses of a non­

buoyant fluid puff released in a fluid of identical density 

have been investigated. However, this is not the case with 

the horizontal motion of a compressible fluid. This study is 

so conducted as to probe the phenomena of motion of the smoke 

ring which moves through and associates with its confined and 

unstratified surroundings.

The Eulerian velocities of the ring along the ring axis, 

the momentum, and the numerical constants related to the ring 

motion are studied in this dissertation both analytically and 

experimentally. The results are presented as functions of 

elapsed time or distance corresponding to the time. Two 

distinguished regions of ring motion have been found experi­

mentally by the sudden change of characteristic dimension of 

the ring as it travels downstream. It is observed that the 

Eulerian velocities, momentum, and force acting on the ring 

in each region are distinguishably different. They may be 

approximately predicted by the theories of ideal fluids in 

the first (or initial) region, and by theories of turbulent 

flow in the second (or "turbulent") region.
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NOMENCLATURE

A Cross-sectional area of ring in the advance 

direction of the ring

a Radius of cross section of isolated vortex filament

C Numerical constant

D diameter of outlet

F Force acting on ring

L,M,N Arbitrary function

l Momentum

m Mass of fluid

n Numerical constant

nt Numerical constant

P Impulse

r Radius of ring

r0 Radius of outlet

Ro Non-dimensional radius of outlet, r0/D

r,0,x Cylindrical coordinates

R,X Non-dimensional cylindrical coordinates (r/D,x/D) 

tg Time interval between the origin of coordinates and 

actual starting point of ring motion (virtual origin)

t Time

T Energy

U Mean velocity in x-direction

Uo Mean velocity along ring-axis



X

U5 Velocity Ug at X = 5

u Velocity component in x-direction

v Velocity component in y-direction and r-direction

w Velocity component in z-direction

Q Volume rate

V Velocity of advance of ring

Vo Velocity V along ring-axis

V2o Velocity VQ at X = 20

F Circulation

p Density of fluid

s,B Cylindrical coordinate in the cross section of 

vortex filament

<j> Distance from the coordinates of a vortex filament 

to a point in fluid

Y Stream function

§ Vorticity component in y-z plane

H Vorticity component in x-z plane

Vorticity component in x-y plane and r-x plane



CHAPTER I

INTRODUCTION

In 1952, Bowen [1] observed that in certain demoli­

tion explosions, smoke rings were formed which maintained 

their shape to considerable heights. He first investigated 

this phenomenon in the interest that it may be possible to 

use such rings in rain-making experiments to project seed­

ing material into clouds. Bowen's observations showed 

the initial cloud formed by explosion was approximately 

symmetrical, and rose rapidly from the flat ground. In 

about 10 to 15 seconds it had clearly formed a smoke ring. 

As it rose higher, the diameter of the ring increased and 

the cross-sectional area of the vortex filament decreased; 

this process continued until the ring broke up about 10 

minutes later at about 5,000 ft., at which elevation there 

was later found to be an inversion.

Laboratory experiments on buoyant rings and other re­

lated puff motions have been studied by Turner [2], 

Grigg and Stewart [3], and Richards [4]. Their works in­

dicate that there is a fundamental difference in behavior 

of vortex rings projected upwards, according to whether 

they do or do not contain fluid which is lighter than the 

surroundings.



This study is designed to investigate the motion of a 

non-buoyant vortex ring with finite initial momenttun at an 

outlet and which travels horizontally through unstratified 

surroundings in which the effect of body forces is neglected.



CHAPTER II

THEORETICAL REVIEW OF THE PROBLEM

I. DERIVATION OF THE MOTION OF THE RING IN ITS INITIAL STAGE

When a circular vortex ring is first puffed out, the 

motion may be assumed to be laminar. Spreading of the vorti­

city from the core is caused mainly by a molecular diffusion, 

the effect of which is rather insignificant compared with 

the main motion. It is also clear that the velocity of the 

ring will not change'unless the vorticity of the ring is 

spread over a region which can be easily observed by the 

increase of its radius r. Thus, at this initial stage, the 

ring is expected approximately to behave as if it were in an 

ideal fluid. A certain period of time after the ring is 

generated, the motion becomes turbulent and turbulent dif­

fusion comes into play. At this stage, the diameter of the 

ring would be expected to increase rapidly as it travels 

downstream. Eventually, all the kinetic energy of the puff 

will be transferred to turbulent energy and the ring thus 

will fade out of sight.

When a circular vortex ring travels along a common axis 

which coincides with the x-axis, it is evident that the 

longitudinal velocity'component, u, the radial velocity 

component, v, and the vorticity, ?, at any point in the field
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are functions of the longitudinal distance, x, and the radial 

distance, r.

If the stream function of the motion is Y, then the fore­

going velocity components may be expressed as

1 3YU = - ± r_Lr 3r ,

1 3Y
v = r 3^

and the vorticity,

_ 3v 3u
3x 3r

1 32Y 32Y 1 3Y . 
” r 3x2 + 3r2 - r 3r-

To determine the stream function Y, it may be assumed that 

the flow is given by the line integral of some function 

around the boundary curve [6], i.e.

fg(lu + mv + nw)ds = 0(c)(Ldx + Mdy + Ndz) (3)

where l,m,n are the direction cosines of the normal to the 

surface element ds; L,M,N are a set of functions; (c) is a 

closed curve which lies on the surface of the filament; s is 

(1)

(2)
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a surface stretched over the curve (c); u,v,w are the cor­

responding velocity components in the axial, radial, and 

tangential directions, respectively. Using Stokes’ theorem, 

one finds

<^c)(Ldx + Mdy + Ndz)

_ , n ,9N dM. , 3N. , m,3M ...
" zs[1,a7 " + m<a? ” ta’ + n(at " a7,lds <4)

Comparing equations (3) and (4), we obtain

3N 3Mu = 3y 3z

3L 3NV = 3z 3x

3M 3Lw = 3x 3y (5)

It is necessary and sufficient that these three functions 

should satisfy

3w  9v 3M 3N- 3y " 3z - x^3x + 3y + 3z) -V2L

3u 3w _ _3_,dL 3M 3N n - 3z " 3x ~ 3y(3x + 3y + 3z) -V2M

y 3v 3u 3 3L 3M 3N ,_ 3x “ 3y “ dz^dx + 3y + 3z^
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They will in any case be indeterminate to the extent of 

three additive, functions, which may be so chosen that

8L  3M 9N
dx 9y 9z (6)

Hence,

9w  9v _^2 
9y 9z =

_ 9U 9W _ _ril 
9"z " 9x

— 9V _ 9u _ 
9x 9y (7)

Particular solutions of these equations are obtained by equat­

ing L,M,N to the potentials of distributions of matter whose 

volume-densities are ?/4tt ,p/4it, respectively. For the case 

of a ' circular vortex ring, in which all vorticity components 

but that in the direction perpendicular to both x and r 

vanish, we may thus simply write:

N = fff,,— dxdrdO4 it 'j Jv r (8)

where t;' is the value of ? at the point (x,,r,,8,).



7

To find the value of Y at a point (x,r) due to a single 

vortex filament of circulation T, whose coordinates are 

(xz,r'), we may denote that the element which makes an angle 

6 with the direction of H may be denoted by r'd0, and therefore

frr' pir cos 9 
4it 6 <}> (9)

where $ = {(x-xz)2 + r2 + r'2 - 2rr' cosO}^

If 4>! and <f)2 denote the least and greatest distances 

of the point P from the vortex, respectively, we may write:

<j>12 = (x-x')2 + (r-r')2

= (x-x')2 + (r+rz)2

Hence,

<J)2 = (fij2 cos2 + <j>22 sin2

4rr' = <j>i 2 - (j)22 - 2r2 (10)

Therefore,

? = - (({>12+ <t>2 2)
o

tt__ ________ de_____________
(tj)!2 cos2 - <f>22 sin2

- 2 ^(cti^cos2 + (j)22 sin2 d9} (11)



8

By means of Landen's transformation, the above expression

may be rewritten into a.simple form:

T = - jjT (4)1 + 4>2) [Fi (A) - Ej (A)] ,

where A 4>i - 4>2 
+

(12)

In considering the case of an isolated vortex ring, the 

dimensions of whose cross section are small in comparison 

with the radius r of the ring, the ratio 4’i/4>2 small for 

points in or near the substance of the vortex, and A is near 

unity. We then have

FJA) = lln ILti—lALi r (13)
2 4>14>2

and Ei(A) = 1.

At points within the substance of the vortex, the value of ?
is of order F r In E, where e is a small quantity compared £
with the dimensions of the section.

For circular section, neglecting the variations of r and

C over the section, we may obtain from Equations (12) and (13)

Y =■- - // (In |E - 2)dx'dr',
27T ' ' <P J (14)
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or in polar coordinates.

41   C^fa fr 2irJ0 { (In - 2)s'ds'd<|>, (15)

where a is the radius of the circular section and is much 

less than r.

Hence,

Y = ~ 1 era2 (In 8r - 2 - 1 ti-}Y - - ^ra tin — 2 (16)

for any point (s,B) inside the section. The only variable 

part of Equation (16) is the last term; this shows that the 

stream lines within the section are concentric circles, and 
the velocity at a distance s from the center is L s.

The energy of the vortex ring is defined as

T = irp J J (u2 + v2)rdrdx

= irp / / (v - u ^) dxdr 
J' dx dr

= -irp // Y<; dxdr. (17)

By substitution of Equation (16) , Equation (17) becomes

T = {In - 7}- 
2 a 4 (18)
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The impulse of the puff is

p = lp //(ru - xv) x; rdrdx

= irp // £r2drdx.

Since it is assumed that the radius of the ring docs not 

change much at this initial stage and that the vorticity is 

a constant throughout the motion, the above relation is 

simplified, using the Stokes* theorem, to

P - irpFr2 (19)

The velocity of advance of the ring is given by Turner

[10] and is due to Sir Wm. Thomson

V = _L_ (in — - i}. (20)
4irr a 4

From this expression, it is very clear that the ring 

will not change its velocity unless the vorticity of the ring 

is spreading over a region which can be easily observed by 

the increase of r. In an ideal fluid, however, such a spread­

ing phenomenon does not exist. Even in laminar motion, such 

a spread will be insignificant.
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II. ANALYTICAL APPROACH OF THE MOTION OF THE 

RING IN THE TURBULENT STAGE

A certain period after the ring is generated, it is 

expected that turbulence will start. At this stage, the 

turbulent diffusion comes into play and the diameter of 

the ring will increase noticeably as the ring travels down­

stream.

It was noticed as early as 1876 by Reynolds that the 

impulse of vortex ring proceeding in a real fluid domain 

is substantially constant for a considerable distance. It 

seems reasonable to assume that the relations like Equations 

(18) , (19) , (20) would be approximately valid in a viscous 

fluid [10].

If Equation (19) is applied to the motion in the turbu­

lent region, it would bring about the conclusion that the 

impulse P would increase with the time as the ring travels, 

since it is assumed that the circulation F is a constant 

throughout the motion. It is, therefore, immediately clear 

that the relation (19) and its corresponding formulae like 

Equations (18) and (20) which were derived from ideal fluid 

assumptions cannot be applied to the motion of turbulent 

state, and those relations are valid only when the motion 

is approximately laminar as mentioned in the previous section.

Early experiments with isolated masses of buoyant fluid 

of constant total buoyancy in unstratified surroundings
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(Scorer [7], Woodward [8], Turner [9], Richards [4]) showed 

that each isolated mass obeyed the equation,

r = <21> 

where x is the distance traveled by the leading extremity of 

the turbulent region, 2r is the greatest horizontal dimension 

of the turbulent region, and n is a numerical constant for 

each isolated mass.

Previous work by Richards [4] also showed that the , 

relation d{pra(dx/dt)}/dt = Cmg describes the motion of the 

buoyant mass, where t is time, p is the density of the fluid, 

g is the gravitational acceleration, C is a numerical con­

stant, and m is the mass excess.

The general case of turbulent puff motion is so compli­

cated that it is suggested to describe the motions of the 

ring with the following restrictions:

(1) Any external force acts only in the direction of 

the ring motion as a whole;

(2) The external and internal densities are equal;

(3) The surrounding fluid field is unstratified and is 

stationary except when the particles are associated with the 

motion of the ring itself.

By assuming that the vortex motion follows some kind of 

similarity law of decay, one may treat the ring in the
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following way:

If it is assumed that the velocity distribution in the 

ring at this stage follows a linear similarity law, then the 

ring should follow the linear relation resulting from the 

experiments of Turner [9], Scorer [7], and Richards [4], i.e.

R = | (22)

For a ring emitted from an orifice of finite radius, Equation 

(22) becomes

X = n(R-R0), (23)

where X is the non-dimensional distance traveled by the lead­

ing extremity of the ring, R is the non-dimensional radius 

of the ring in the plane normal to the ring-axis, Ro is 

the non-dimensional radius of the outlet, and tl is a numeri­

cal constant.

It is also assumed that the fluid density may be taken 

as substantially unvaried through the travel distance of the 

ring, and that the fluid viscosity is irrelevant to the mo­

tion. Then, the velocity of advance of the ring (leading 

extremity) may be given as

V2 = (24) 
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from dimensional considerations. Under the assumption that 

the pseudo-force acting on the ring and the density are held 

constant, V is a function of R only.

By the first assumption, and that the impulse of the 

ring is in the direction of the axis of motion of the ring, 

the magnitude of the impulse is therefore approximately 

proportional to the product of a characteristic velocity with 

the density of the fluid and the cube of a characteristic 

linear dimension of the ring. The relation may be expressed 

clS

P = CtpR3 (^) , (25) 

where Cj is a proportional constant, R is the nondimensional 

radius chosen as the characteristic linear dimension of the 

ring, and is the velocity of advance of the ring taken as 

the characteristic velocity.

Since the force acting on the ring should be equal to 

the rate of change of the impulse, we may write

(CjpR3 (g) } = F. (26)
ctt 1 dt

With the restrictions (2) and (3) on page 12 and the 

initial condition of zero momentum. Equation (26) may be 

integrated with respect to time to give
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CiPr3(S = Ft. 

i at

The fact that the pseudo-force is taken to be constant will 

be discussed later.

Let I = Ft and C = 1/Cj, then Equation (26) becomes

R3(g£) = CI/p. (27)

Using Equation (23) and integrating Equation (27) with 

respect to time, we obtain

Z/n3 = CI t/p + c'. (28)

At x = 0, we have t = t0, so Equation (28) becomes

Z/n3 = CI (t - t0)/p (29)

where Z is (Xl*/4 + XQX3 + 1.5X02X2 + Xo 3X) , I is the momentum,

and C is a numerical constant determined experimentally.

Let dl/dt be the flux of linear momentum through the

plane perpendicular to the ring-axis. Then

= /pV|v|dA, (30)

dX where V is the velocity of advance of the ring given by

and dA is the element of area. The integral of Equation (30) 
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may be approximated by pAQ|Q|/A2, in which A is the sectional 

area of the ring in the plane normal to the ring-axis, and Q 

is the volume rate of change of the ring, which is given by 

VA. By the substitution of R, V, A, and Q, Equation (30) 

becomes

dt = PQIQIa/a2

= 7tPR2(^)2. (31)

The integration of Equation (31) with respect to time, using 

zero initial momentum, yields

1 = P7rR2(||)2t (32)



CHAPTER III

EXPERIMENTAL METHOD

I. THE EXPERIMENTAL FACILITIES

The experimental facilities of this thesis were installed 

in a confined room. Through the entire laboratory work the 

following facilities were used: two different hot-wire 

anemometer sets, a smoke ring tunnel of four feet of plastic 

pipe with I.D. 8-3/4 inches, ring generating parts composed 

of a constant speed motor and a driving system. An oscillo­

scope Tektronix type 551 and a Tektronix C-12 Polaroid camera 

were used as recording devices; polaroid film of speed 

3000/type 47 was used. A carriage assembly was designed for 

moving and positioning the hot-wire probe, and a table-type 

stop watch was used for the timing. The hot-wire probes were 

cleaned with alcohol at intervals.

Plate 1 shows a front view of the tunnel and chamber, 

and Plate 2 is for the ring generating parts. These ring 

generating parts and the tunnel vzere designed in such a man­

ner that they were capable of producing viscous rings of ap­

proximately the same general characteristics repeatedly.

The Hot-Wire Anemometers

Two sets of hot-wire anemometers of different designs 

have been used for the experiment. The first was a constant­
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current anemometer. Flow Corp. HWB 3 type. The sensor of 

this instrument is a thin tungsten wire of 0.004 inches long 

with a diameter of 0.00015 inches. The wire was heated by a 

constant electrical current. The measurement of local velo­

city is based on the measure of the change in electrical 

resistance of the hot-wire due to the cooling effect of the 

surrounding fluid flow.

The second was a constant temperature hot-wire anemometer 

DISA 55A01 type, which has the principle of measurement de­

pending on the cooling effects of an electrically heated wire, 

as measured by the heating current required to maintain the 

wire at a fixed constant temperature. A platinum-plated 

tungsten wire was selected as the hot-wire, which had a length 

of 1.2 mm and diameter 5]j. The resistance of the wire at 20°C 

is 3.5 ±q*5 ohm.

The Experiment Tunnel

A four-feet long, 17% inches diameter transparent plastic 

tube was used as the experiment tunnel. It was required that 

the viscous ring had to proceed downstream without an external 

effect such as air currents. In order to keep the viscous 

rings from the disturbances caused from the air currents, and 

to avoid any possible effect on the ring motion by the buildup 

pressure in the tunnel, only the downstream end of the tunnel 

was open to the room air.
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The experiment tunnel was chosen to be circular since 

it was desired to generate circular rings. The tunnel dia­

meter should be large enough to ignore the effects of fric­

tion between the ring and tunnel wall. Plastic was selected 

as the material for the tunnel to allow for observation of 

the motion. The test-section of the tunnel was located such 

that no exit effects were present.

The tunnel was connected to the outlet of the ring gen­

erating chamber concentrically. On the top of the test sec­

tion of the tunnel, a guide was constructed so that the hot­

wire probe could move freely in the longitudinal direction.

Ring Generating Parts

Ring generating parts consisted of a cylindrical chamber, 

a pusher, a lever with a calibrated driving spring, and a 

constant speed motor with a gear box and a calculated cant 

on its pivot.

The cylindrical chamber, as shown in Plate 3, had a length 

of two inches and an inner diameter of two inches. On the back 

side, it was covered by a rubber membrane. The rubber mem­

brane was of hygienically pure latex 5” x 5”, which was very 

thin (0.007 inches) so that the bending stresses in the mem­

brane may be neglected. Also, it was age resistant and was 

hard to tear. At the front end of the chamber, a circular 

hole of diameter 1/2 inch was open to the experiment tunnel 
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as the outlet of the viscous ring. The circular hole was 

rounded in the inside edges but was flush on the outside plate.

A constant speed motor of 30 RPM was equipped with a cant 

on its pivot. The cant was designed to complete the motion 

of push in sec.

As the portion of contact of the cant with the pushing 

lever rod, plastic rollers were used to minimize the friction.

The viscous ring was generated by the pushing of the rod 

against the membrane of the cylindrical chamber. The lever 

system was powered with a calibrated driving spring and the 

constant speed motor. The pushing was executed in the inter­

val of no less than 20 seconds.

The Carriage Equipment

The carriage assembly was constructed so that the hot­

wire probe could be moved in two directions: horizontally, 

in the advance direction of the viscous ring, by positioning 
the hot-wire rider carriage with an accuracy of ±-i- inch; 

vertically by positioning the hot-wire rider along the car­

riage with an accuracy of inch for an exact position for 

the hot-wire probe.

The carriage was so placed that the hot-wire ran parallel 

with the axial line of the tunnel (the average axis of the 

viscous rings). The carriage base was made of heavy steel to 

minimize the undesired vibration of the hot-wire probe which 

might be absorbed from the carriage assembly.
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II. CALIBRATION OF THE HOT-WIRE

The mean flow velocity can be directly observed from the 

D.C. voltage meter of the constant temperature hot-wire 

anemometer after ploting the calibration curve of one hot­

wire. For the constant current hot-wire anemometer,a D.C. 

current meter was used.

In order to measure the local velocity with proper accu­

racy, an experimental calibration curve is required for each 

hot-wire, because the hot-wires may not be identical in their 

characteristics.

In the construction of the calibration curve, the hot­

wire probe and the pitot tube should be mounted closely in a 

flow region concerned so that the effect of velocity distribu­

tion may be neglected. The bridge D.C. voltage for the con­

stant temperature anemometer (or current for the constant 

current anemometer) is plotted against the flow velocity mea­

sured by the pitot tube. The calibration curve has the square 

of the voltage (or current) as the ordinate and the square 

root of the velocity (or the product of pressure and velocity) 

as the abscissa.

For the plot of calibration curve in the laboratory, the 

following equipment was used: A micromamometer, Flow Corp. 

MM-3 type, for which the accuracy of reading is ±0.0002 in. 

corresponding to six millionths of one psi. with butyl alcohol 

as the liquid (p = 0.81 gr/cc); a standard pitot-static tube; 
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a small centrifugal air blower of 3200 RPM, whose outlet 

velocities were controlled by an adjustable door at the in­

let; with the door open fully the velocity recorded in the 

calibration pipe was 0.298 ft/sec. The calibration wind­

tube was a feet long plastic pipe with 3-3/4 inches I.D.

A triple metal grid was mounted at the inlet portion 

of the wind tube to generate downstream turbulence. The 

metal grid was necessary since the normal flow was laminar.

For the calibration curve, the measurement of velocity 

was carried out at 40 mesh lengths downstream, where an ap­

proximately fully-developed turbulent flow could be obtained. 

During the calibration process, great difficulties were en­

countered in reading the micromamometer at these very low 

velocities. The resulting curve could only be used as a 

guide for justifying the similarity in characteristics of two 

different hot-wires in general.

One plausible way of calibrating the hot-wire at this 

very low velocity range would be the towing method. In this 

process , the hot-wire probe was mounted on a carriage and 

towed through a long chamber of stagnant air with different 

constant-speeds. The corresponding bridge D.C. voltage (or 

current) would then be plotted against the measured speed for 

the curve. This equipment was not available at the time of 

the experiment.



23

In describing the local characteristics of the viscous 

ring, a non-dimensional form was used. The coordinates were 

also expressed in non-dimensional form. The non-dimensional 

axial distance, x/D from the outlet of the chamber was de­

noted by X, and the non-dimensional radial distances, r/D 

from the axial line (ring-axis) in one direction (upward) 

and in the opposite direction (downward) were denoted by 

(+)R and (-)R, respectively. The x, in cylindrical coordinate 

system with the origin at the center of the outlet, is the 

distance measured downstream, r is the radial distance from 

the ring-axis, and D is the diameter of the outlet of the 

chamber.

For the non-dimensional form, the calibration was modi­

fied as the following: Along the ring-axis the velocities 

were measured as.a reference velocity at each measuring sec­

tion, which is perpendicular to the ring-axis. At each sec­

tion, the velocities were converted by multiplying by the 

ratio of the reference velocity to the velocity at the point 

where the reference velocity was obtained. By the conversion, 

it was expected to get a rather reliable and uniform distribu­

tion of velocities. The reasons for the above conversion were 

based on the fact that at the beginning of the measurements 

the cold resistance of the hot-wire (or wires) may vary slight­

ly; during the measurement the room temperature may also change 

in the range of about 3°F; and the measuring technique at each
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time might not be identical. In other words, the above 

variations may cause some difference in the readings on a 

day-to-day basis, and the non-dimensionalizing technique 

should be able to eliminate the errors.

III. MEASUREMENT OF MEAN VELOCITY

Since it was assumed that the viscous ring consisted 

of statistically concentric circles, i.e., axisymmetric 

rings, the measurement of local mean velocity at each point 

in the field was conducted in one direction through the 

vertical sectional areas of the viscous ring.

Measuring devices consisted of the following equipment: 

two hot-wire anemometers, a Tektronix Oscilloscope, and a 

still camera to record the output of the hot-wire anemometer. 

The camera was the Tektronix type C-12 camera, which has been 

specifically designed for photographing an oscilloscope 

screen so the image is not reversed.

The mean flow velocity can be read from the bridge D.C. 

voltage (or current) meter which was built in the anemometer 

as an integrated part, and the read-out is a function of volt­

age (or current). For the low velocity, increased sensitivity 

could be obtained by making use of the oscilloscope with fixed 

bias voltages in the hot-wire anemometer DISA 55A01, which 

was established by using a D.C. compensator between the output 

of the anemometer and the input of the oscilloscope.
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The following precautionary steps had been taken during 

the velocity measurement: Any exhaust fans and air condition­

ing and ventilation units were turned off to insure that the 

air currents were not affecting the viscous ring motion in the 

tunnel. The hot-wire was held perpendicular to the advance 

direction of the viscous ring, i.e., the stream velocity vec­

tor of the ring was approximately perpendicular to the axis of 

the hot-wire filament; the viscous ring was generated at no 

less than 20 sec. intervals to ensure the statistically similar 

structure in the tunnel.

To determine the effect of the puffing interval on the 

structure of the ring, wide ranges of puffing intervals had 

been tested before any experimental data were collected. 

From these testing results, it was found that a minimum puff­

ing interval of 20 seconds was justified. During the testing 

period, it was also found that the results were quite random­

ly distributed. A successful result was obtained in the fol­

lowing way. By consecutive puffing of the rings, it was pos­

sible to obtain a certain disturbance of the fluid in the 

tunnel for which statistically steady results were observed. 

According to the experimental results, the standard deviations 

of these variations were around zero. This technique was con­

ducted first at x/D = 10 along the axis of symmetry, and then 

at several downstream stations.

The experimental data were first collected by the con­

stant current hot-wire anemometer. Flow Corp. HWB 3 and the 
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following difficulties were encountered.

1. The out-put signals from the constant current hot­

wire anemometer were the time derivatives of the velocity 

signals. It composes both positive and negative portions on 

the oscilloscope screen and, hence is very difficult to in­

tegrate;

2. At low frequency operation (such as this experiment), 

minor disturbances may easily burn out the hot-wire.

The hot-wire used was a 0.0004 inch long tungsten wire 

of 0.00015 inch diameter. The operating resistance ratio of 

1.4 - 1.2 was used.

These difficulties were resolved when the constant cur­

rent hot-wire anemometer was replaced by a constant tempera­

ture hot-wire anemometer, DISA 55A01. By using the new 

constant temperature set, the D.C. output terminal on the 

front panel gave directly the integrated signal on the screen 

of the oscilloscope; the magnitude of this positive signal 

is proportional to the local mean velocity of the motion. The 

local mean velocity is obtained by using the linear relation­

ship between the square of D.C. voltage and the square root of 

the flow velocity. The operating resistance of the hot-wire 

with the constant temperature set was about 6.3 ohms. The 

ratio of cold resistance to operating resistance of the wire 

was 1.8, and was used throughout the experiments. As a sen­

sor, a 1.2 mm long platinum-plated tungsten wire of 5p dia­

meter was used. The probe was a hot-wire of type DISA 55A25.
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As a recording device, polaroid films of speed 3000 

type 47, were used. Photographs were taken at the time scale 

0.5-2 sec. per centimeter of the oscilloscope screen with 

the aid of a triggering device. The aperture control and 

shutter speed of the camera were f/1.6 and B, respectively.

Throughout the experimental work, the maximum fluctua­

tion of the temperature in the tunnel was about 3°F. The 

corresponding resistance fluctuation of the hot-wire was 
about 2.2 3 x IO-1* ohms per degree F. This value was considered 

to be small enough to neglect any effect of temperature fluc­

tuations in the normal range.

At each measuring position, the elapsed time of leading 

extremity of the viscous ring was measured by means of a 

table-type stop watch. The stop watch was electrically con­

nected to the ring generator to provide a simultaneous motion. 

The ring motion was generated behind the outlet of the cham­

ber. Therefore, the actual elapsed time from the outlet may 

be given as the following form:

t = tz - t0

in which tz is the elapsed time measured from the assumed 

position as the starting point of ring motion, and t0 is the 

time interval of ring motion between the aforementioned posi­

tion and the center of outlet corresponding to the origin of 

coordinates used through this thesis.



CHAPTER IV

AI'IALYSIS OF DATA

I. ESTIMATES OF RING RADIUS

The experimental data of local mean velocities at each 

testing section are shown in Figure 1 as the graph of dimen­

sionless velocity against dimensionless radial distance.

Observation of the resulting curves in Figure 2 shows 

that the radial distance R is an exponential function of the 

velocity and may be expressed as the following form:

R = U EXP (- LfTT-g)

in which R is the radial distance, U is the velocity at radial 

distance R, and Uo is the velocity along the ring-axis. It is 

easily seen that the radial distance R is roughly equal to the 

radius of the ring composed of the points with velocity U 

around the ring-axis. The radii corresponding to different 

velocities were measured from the velocity profile. The graphs 

of 2R against X were then plotted, and the slope of the graph 

n/2 was given as n-value. A typical example of such a graph 

at U/Uo = 0.5 is shown in Figure 3. As shown in Figure 2, the 

value of n suddenly changed as the ring travels downstream 

along its axis. This sharp change took place around X = 20.
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This fact, which was also observed by Richards, in puff motion 

[4] indicates the increase in radius of the ring with the for­

ward movement of the ring. This result clearly solidifies the 

prediction in Chapter II with a physical meaning to be men­

tioned. These two different regions formed by the two dis- 

tinguishably different n-values are denoted by region I and 

II, which, as mentioned in Chapter II, are physically the ini­

tial region and the turbulence region, respectively.

In the region I, the increase of radius with distance is 

insignificant, and the only contribution to diffuse the ring 

into the surroundings is probably the molecular agitation. 

Since the scale of molecular diffusion is very small compared 

with that of the turbulent diffusion when it started, it is 

therefore reasonable to neglect the effect of diffusion in 

this initial region. The motion in this region can thus be 

treated approximately as a laminar motion and the ring is 

expected to behave as if it were in an ideal fluid.

In the second region, region II, the increase in radius 

of the ring is significant. It is easily visuable that the 

flow is dispersed, and the effects of turbulent diffusion are 

noticeable. The region II may therefore be regarded as a 

turbulent region. By restriction (2) in Chapter II, the 

velocity of advance of the ring will decrease as the ring 

radius increases, and the fluid mass involved with the ring 

motion will increase correspondingly. It seems reasonable. 
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to assume that the force acting on the ring is constant 

throughout the distance traveled by the ring. This assumption 

is verified by the experimental data as will be shown later.

As predicted in Chapter 2, the viscous ring motion will 

generally follow the .linear relation

X = nR,

and the n-value may be obtained from the experimental data 

as the slope of the graph of distance X plotted against the 

radius R. In the two regions mentioned above, distinguishably 

different n-values are expected. These values were obtained 

by a least square fit of a straight line into our measured 

data and the resulting values are:

n = 281 for the region I (laminar),

n = 41 for the region II (turbulent).

II. ADVANCE VELOCITY OF RING

It is assumed that the relationship between the distance, 

X traveled by the leading extremity of the ring and the 

elapsed time t follows a quadratic form,

t = aX2 + bX + c,

in which the coefficients a, b, and c are to be determined 

by the least square polynomial approximation [11]. As shown
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in Figure 4, this approximation yields

t = 0.0011X2 + 0.0011X + 0.0803. (33)

Hypothetically, for our experiment, the motion of the ring 

should be initiated at some virtual origin which can be 
determined by taking X = x' where t = 0. The time t0 re­

quired for the ring to travel the distance Xf between the 

two origins is obtained from the Equation (33) as t0 = 0.0803 

sec.

The advance velocity of the ring may also be deterrained 

from Equation (33), which gives

(34)(0.0022 x +0.0011)-1. dt

Equation (34) is plotted as a function of time, t, in Figure

5. It is seen that the velocity of advance of the ring varies 

only slightly with time in the neighborhood of the elapsed 

time t £ 0.05 sec. in Figure 5. The period followed by 

t = 0.05 sec. corresponds to the region II (turbulent).

Under the assumption of constant pseudo-force acting on the 

ring, it is noted that an increase in radius (or mass for 

constant density) of the ring is a necessary consequence of 

the slight change in the velocity with time.
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In the region II (turbulent), the local mean velocity

is also shown in Figure 5. This Figure also shows a slight 

change of velocity with elapsed time similar to that of the 

advance velocity of the ring.

III. LINEAR MOMENTUM WITH DISTANCE

Equation (32),

7TR2t(S 2 
dt (32)

is.plotted in Figure 6 for both the laminar and turbulent 

motions of the ring. In the turbulent region the plot is 

a straight line which indicates a linear relation between the 

increase of linear momentum and elapsed time. In the laminar 

region the plot is irregular and shows a decrease in linear 

momentum with time. This is a further indication of the two 

distinct regions. Since Equation (32) is derived for the 

turbulent region, it should not be applicable to the first 

region as they are governed by two different laws.

The change of the linear momentum may be interpreted as 

follows:

In the laminar region, the circulation is so highly 

concentrated that the angular momentum near the vortex fila­

ment is preserved throughout the laminar region. At the 
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point of transition where turbulence starts, the cross 

section of the ring increases. As a result, the concentra­

tion of the circulation decreases, and the angular momentum 

transfers to the form of the linear momentum in the x-direc- 

tion. The plots in Figure 6 are the result of the calcula­

tion of the linear momentum in the x-direction. In the tur­

bulent region, the linear momentum increases as the angular 

momentum decreases.

The slope of either plot in Figure 6 (which is the de­

rivative of the linear momentum with respect to elapsed time) 

may be regarded as a "pseudo-force" acting on the ring mass. 

Thus, it is clear that from the examination of Figure 6 that 

the pseudo-force acting on the ring in the turbulent region 

is constant in the x-direction. This result is in exact 

agreement with the assumption of constant pseudo-force acting 

on the ring.

The calculation of the linear momentum from Equation (32) 

was also attempted in the laminar region.

This calculation results in a plot which shows that I/p 

decreases irregularly with elapsed time. Furthermore, the 

value of I/p for the laminar region does not correspond to 

the value of I/p for the turbulent region at the point of 

transition. Since the turbulent region behaves as one might 

expect, it follows that this calculation for the laminar region 
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is invalid and has no physical significance.

Therefore, it is concluded that Equation (32) is appli­

cable only to the turbulent region, whereas Equation (19), 

which was derived from an ideal fluid, describes the laminar 

region.
The values of Z/n3 and I(t - t0)p in Equation (29) 

vzere calculated for each measuring section. These results 

are shown in Figure 7, in which the line represents Equation 

(29), and the slope of the line gives the value of C of 

Equation (29). It is seen that C-value of 0.011 for the 

viscous rings is much smaller than that of an axial puff, 

i.e. C = 0.25 by Richards.



CHAPTER V

CONCLUSIONS

This study was conducted to investigate the character­

istics of the smoke ring which travels horizontally in an 

experiment tunnel. The following conclusions were drawn 

from the results:

(1) The linear relationship of the ring dimension to 

the distance it traveled bears the form x = nr, vzhich was 

introduced by the previous workers in this field in studying 

various types of puff motion, and is applicable to the smoke 

ring in describing its motion. The flow field is clearly dis­

tinguished into two different regions, and they are named in 

this study as the "laminar" (x/D < 20) and "turbulent" regions 

(x/D > 20), respectively. The values of n were found to be 

281 and 41 for the laminar and turbulent regions, respectively.

(2) The ring increases its size mainly by turbulent 

entrainment, and the increase in size is nearly linear with 

distance.

(3) In the "turbulent" region, the angular momentum 

gradually transfers to the linear momentum in the.longitu­

dinal direction with the increase of elapsed time, and the 

relation between the momentum and time was fairly represented 

by a straight line drawn through the experimental data as 

shown in Figure 6. This implies that the pseudo-force acting 
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on the ring remains constant with elapsed time, and confirms 

the assumption. Although the assumption of constant circula­

tion was not directly verified in this experiment, it is 
clearly seen that the relation P = irpfr2 suggested by Lamb 

[5] cannot be applied to the turbulent region.

(4) The numerical constant C introduced by the previous 

studies in puff motions with the equation of the form 

d{pra(dx/dt)}dt = Cmg is also obtained in this study. How­

ever, the C-value of 0.011 for the smoke ring is much less 

than the value of 0.25 which is obtained for a puff motion by 

Richards [4].
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PLATE 1. EXPERIMENT TUNNEL AND CHAMBER
u>
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PLATE 2. SCHEMATIC DRAWING OF THE RING GENERATING PARTS

MEMBRANE
PURE LATEX 5"x5" OUTLET

DIA. 1/2

PLATE 3. SCHEMATIC DRAWING OF THE SMOKE RING CHAMBER



FIGURE 1.’ DEFINITION SKETCH OF COORDINATE SYSTEM
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FIGURE 2. LOCAL MEAN VELOCITY AT EACH MEASURING SECTION.
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FIGURE 4. RELATIONSHIP BETWEEN ELAPSED TIME,t AND DISTANCE x/D 
TRAVELLED BY A RING
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FIGURE 6. LINEAR'MOMENTUM I/p VERSUS ELAPSED TIME, t
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