AN INVESTIGATION OF TURBULENT FLOW

IN A CORRUGATED PIPE

A Thesis
, Presented to
the Faculty of the Department of Chemical Engineering University of Houston

In Partial Fulfillment
of the Requirements for the Degree Master of Science in Chemical Bngineerins

by
Wuu-nan Chen

August, 1973
685047

My most sincere thanks are extended to my advisor, Dr. A. E. Dukler, for his advice and guidance during the course of this study.

Thanks also for many friends, especially for Mr. K. J. Chu, Who have given me counsel and assistance during my study and thanks for Mr. Roy Priest and Mr. Mike Smith for their valuable assistance in designing and constructing the experimental equipment.

Loving and heartfelt thanks due my wife, Monica, who not only provided me with continuous encouragment, but also type this thesis.

AN INVESTIGATION OF TURBULENT FLOW IN A CORRUGATED PIPE

An Abstract of a Thesis Presented to

the Faculty of the Cullen College of Engineering University of Houston Houston, Texas

In Partial Fulfillment of the Requirements for the Degree Master of Science in Chemical Engineering

by
Wuu-nan Chen
August, 1973

ABSTRACT

Today turbulent measurement with hot wire anemometer' is a routine procedure but the conventional equations require a knowledge of the direction of the mean velocity. For flow over peripheral corrugationswhere the mean velocity vector is changing in direction with radial and axial positions the cnnventional equations are not valid. Therefore, new equations were derived. These show that the simple sum and differencing techniques useful for parallel flow no longer can be applied.

Experiments were made in a corrugated pipe. This corrugated pipe approximates a sine wave in shape and has the wavelength, $2.75^{\prime \prime}$, the amplitude, $0.437^{\prime \prime}$, and the smallest radius, 4.275". Experimental data shows that the conventional commercial X-wire boundary layer probe support system interference to the flow. A special type of X-wire was designed and called "Boundary Layer Probe." Using this probe, the radial velocity vector can be easily determined alons with the axial component from the derived equations. The system of equations is complex requiring computer solution of data digitized from analog tape.

Data show that the turbulent intensities in longitudinal and radial direction across the pipe radius are higher than those measured from the smooth circular pipe. This is so even at the centerline. The local relative turbulent intensities show that a sharp jump occurs around the tip line (line connecting the tips of the peaks) at certain section which seems to indicate a "separation flow" existing in that region.
I Introduction 1
II Previous Studies And Analytical Considerations. 3
III Hot Wire Anemometry Theory
A. General Remarks 14
B. Basic Principle 14
C. Operating Principle 15
IV -.Experimental Equipment
A. Hot Wire Anemometry System 21
B. Reference Channel 22
C. Flow Channel 23
D. Pitot Tube And Micro Manometer 23
E. DC Offset 23
F. Tape Recorder 25Development Of Computational Algorithm
A. The Computational Algorithm For The Final. Program 26
B. The Computational Algorithm For Calibration Program 30
VI Data Processing System
A. Hybrid Digitizing And Time-mean Program 36
B. Calibration Program 40
C. Final Program 41
VII Error Analysis
A. Calibration Signal From Eridge Voltage To Computer Output 43
B. The Tape Recorder Signal-To-Noise Ratio And DC Offset 45
C. The Sensitivity of Radial Velocity
-Determination To The Measured Value Of Bridge Voltage. 46
-.VII Probe Configuration 53
IX Presentation Of Data
A. Distribution Of Mean Velocities. 65
B. Distribution of Vs'And Vn'. 74
c. Turbulent Shear stress Distribution 87
D. Energy Spectrum Measurement. 92
E. Scale And Microscale Measurements 109
F. Separation Flow Around ML1 Point. 114
G. Flow Pattern 118
X Appendix
A. The Measurement of k Value 122
B. Hybrid Digitizing And Time-mean Program 125
C. Calibration Curve Program 130
D. Final Program 135
E. Auto Power Spectrum Using Fast Fourier Transform 138
XI Bibliography. 141
Nomenclature 143
List of Tables 147
List of Figures 148

The purpose of this work was to study turbulent flow in a rough corrugated pipe to try to understand the mechanism for increased shear and pressure drop.

In order to do this a constant temperature hot wire* anemometer was used. But in a system like this techniques for using hot wire anemometer systems have not been fully established. This is due to the fact that most existing equations require a knowledge of the direction of the mean velacity vector in order to use them. For flow over corrugated surface the direction of this velocity is an unknown quantity. As a result it has been necessary to develop new equations for the mean velocity, its direction, and the auto and cross correlations of the velocity fluctuations. The resulting equations are complex so it was necessary to develop new software to solve for the flow quantities of interest. As part of the work fast fourier transform programs were developed to permit calculation of spectra and correlation directly from the constant temperature hot wire anemometer signal.

In order to apply the new method to the problem of flow over peripheral corrugations it:was necessary to design a probe with a new geometry and test its performance.
*
Hot wire anemometer is the general terminology for this kind of instrument despite the fact that the heated element used in this work was a quartz cylinder coated with platinum or tungsten.

The resulting probe and response equations were used to measure flow over a corrugated surface and the variation in both the mean flow and in the turbulent quantities were measured.

II PREVIOUS STUDIES AND ANALYTICAL CONSIDERATION

Previous Studies
Prandtl ${ }^{(1)}$, Jones ${ }^{(2)}$ and Sears ${ }^{(3)}$ established that for laminar flow past an infinitely long cylinder oblique to a uniform ---velocity field, the two velocity components in a plane normal to the axis of the cylinder are independent of the axial component. If the cylinder is heated uniformly along its axis, consideration of the energy equation shows that the rate of heat loss per unit length depends only on the normal velocity component. From these facts the cosine law of directional sensitivity can be established for an infinitely long hot wire anemometer, and this result is generally assumed to apply to wires of finite length. The cosine law is expressed as:

$$
\begin{equation*}
\mathrm{Ve}=V_{I} \cdot \cos \beta_{3} \tag{II-1}
\end{equation*}
$$

where V is the effective cooling velocity of the stream, V_{I} is the instantaneous velocity, δ is the angle between the instantaneous velocity vector and the wire axis, and $\beta_{3}+\delta=90^{\circ}$. (see Figure II-1) Schrbauer and Klebanoff ${ }^{(4)}$ experimentally tested the cosine law and concluded that it held for finite wire for angles of yaw less than 70°.

Kronauer ${ }^{(5)}$ suggested that the deviation from the cosine law depended on the length-to-diameter ratio of the wire and is substantially independent of the Reynolds number. Kronauer expressed his results in the form:

$$
\begin{equation*}
\operatorname{Ve}\left(\beta_{3}\right)=V_{I} \cdot \cos \beta_{3}+1.2(D / L)^{\frac{1}{2}} \cdot \sin ^{2} \beta_{3} \tag{II-2}
\end{equation*}
$$

where D and I are sensor diameter and length respectively.

Champagne and Sleicher observed that there is-considerable disagreement as to the directional sensitivity of a sensor and to the accuracy of measurements made with wire oblique to the flow when cosine law cooling is assumed. They, therefore, made extensively theoretical and experimental research and derived the following equation,

$$
\begin{equation*}
V^{2}=V_{I}^{2}\left(\cos ^{2} \beta_{3}+k^{2} \cdot \sin ^{2} \beta_{3}\right) \tag{II-3}
\end{equation*}
$$

where the value of k is a constant depending primarily upon the length-to-diameter ratio (L/D) of the sensor. Equations (II-2) and (II-3) both indicate that an inclined sensor is sensitive to the tangential velocity component along the sensor. This sensitivity must be taken into consideration when interpreting data from an inclined sensor. Champagne and Sleicher meanwhile derived the equations which included the effects of non-linearity caused by high intensity turbulence. However, those equations were applied for one-dimensional flow only where the mean flow direction is known.

If the direction of the mean velocity is not known or if it varies with position across the flow, the directional sensitivity of the X-wire (wires in the form of X array) changes, and the conventional equations are not valid. One method of overcoming this problem would be to use two identical wires and a traversing mechanism that allows the X array to be rotated about its center until the output voltage in each wire is equal. The
rotation can then be measured mechanically and measured velocity fluctuations can be resolved along the desired coordinates. The three undesirable features of this method are that it is very - difficult to make identical wires, that the traversing mechanism can become too complex, and that if the fluctuations are large, it is impossible to tell practically whether the two output voltage are equal or not.

Bullock and Bremhorst ${ }^{(8)}$ suggested a method for measuring statistics of the turbulence and the direction of the mean velocity vector when changes in the direction take place along a traverse. In principle the method is sound but in practice it is limited. Error in measuring wire current in commercially available hot wire equipment are such that the calculated angle for the velocity vector can be expected to be in error by at least 5 degrees.

Mccroskey and Durbin proposed a new type of two sensor probe to measure flow angle. Their system consisted of two sensor in a "V" configuration. Equations were developed for extracting the direction of the mean velocity when it lies in the plane of the V. Their work demonstrated that very high precision in measurement was necessary to interpret the results and this made it necessary to develop a new high precision control circuit. The method thus requires special circuits and is not useful when the plane in which the mean velocity vector lies is not known.

In 1968, Yost ${ }^{(28)}$ carried out extensive measurements of flow over roughnesses. The basic equation he used in calculating the mean velocity is,

$$
\overline{\mathrm{Ve}}=\overline{V_{\mathrm{I}}}(\sin \alpha)^{1 / k_{0}}
$$

where k_{0} is a factor which allows the deviation from the sine law and is measured to be 1.1. He, then, linearized the relation between bridge voltage from anemometer and the effective cooling velocity. The equation is,

$$
\overline{\mathrm{Eb}}=\mathrm{C}_{3} \overline{\mathrm{Ve}}
$$

With $\alpha=45^{\circ}$ and $\bar{V}_{I}=\bar{V}_{I O}$ at centerline,

$$
c_{3}=\overline{\mathrm{Ve}} /\left(0.73 \overline{\mathrm{~V}_{x 0}}\right)
$$

C_{3} is calculated once $\overline{\mathrm{Ve}}$ and $\overline{V_{I o}}$ be measured. Then for any unknown velocity vector, there are two equations corresponding to the two wires, i.e.

$$
\begin{aligned}
& \overline{V_{A}}=\overline{V_{I}}\left(\sin \alpha_{A}\right) 0.909 \\
& \overline{V_{B}}=\overline{V_{I}}\left(\sin \alpha_{B}\right) 0.909
\end{aligned}
$$

where $\alpha_{A}+\alpha_{B}=90$. Dividing $\overline{V_{A}}$ by $\overline{V_{B}}$ gives,

$$
\alpha_{A}=\arctan \left(\overline{V_{A}} / \overline{V_{B}}\right)^{1.1}
$$

also, $\quad \bar{V}_{I}=\bar{V}_{A} /\left(\sin \alpha_{A}\right) 0.909$
Finally, $\quad \overline{V_{n}}=\bar{V}_{I} \sin \left(90^{\circ}-\alpha_{A}\right)$
The factor k_{0} which accounts for the deviation from sine law is not a constant. It depends on the sensor geometry and varies with angle of inclination, α. This equation with k_{o} measured at $\alpha=45$ can only be used within $\alpha=45^{\circ} \pm 10^{\circ}$.

The factor k in equation (II-3) depends on sensor geometry and also varies with the angle of inclination. But extensive ${ }^{(6)(29)}$ measurements have been made using equation (II-3) and found that the value of k measured at $\alpha=60^{\circ}$ has a maximum error for the determination of mean velocity between 1 to 3% at $0^{\circ}<\alpha<60^{\circ}$. For a film type of sensor which has less end loss due to the support, the maxmimum error will be improved.

In measurements of turbulence and Reynolds shear stress, Yost did not include the contribution of radial velocity component. The contribution of radial velocity to the turbulent quantities may not be negligible especially when radial Velocity is large.

Aware of these difficulties we derived new equations using equation (II-3) and the geometrical relations of the wires and their three independent coordinates. These equations can be applied in two-dimensional flow without requiring the mean velocity vector to be known.

FIGURE II-1. VELOCITY CONPONENT DIAGRAM IN ONE DIMENSION.

Analytical Considerations

Define intrinsic coordinates S, N, T with Es as a unit vector tangent to the mean streamline, where En and Et coincide with the principal normal and binormal direction, respectively, of the mean streamline as shown in Figure II-2. Let $\overline{V s}, \overline{V n}$, and $\overline{V t}$ be the resulting mean velocities and Vs^{\prime}, Vn', and Vt' be the velocity component fluctuations in the S, N, and T direction, respectively.

FIGURE II-2. VELCCITY COMPONENT DIAGRAM IN THREE DIMENSIONS.

The magnitude of the instantaneous velocity vector is (see Figure II-2)

$$
\begin{equation*}
V_{I}=\left(\left(\overline{V s}+V s^{\prime}\right)^{2}+\left(\overline{V n}+V n^{\prime}\right)^{2}+\left(\overline{V t}+V t^{\prime}\right)^{2}\right)^{\frac{1}{2}} \tag{IIT}
\end{equation*}
$$

- The instantaneous effective cooling velocity is given by

$$
\begin{equation*}
V_{e}^{2}=V_{I}^{2}\left(\cos ^{2} \beta_{3}+k^{2} \cdot \sin ^{2} \beta_{3}\right) \tag{II-5}
\end{equation*}
$$

where k is a constant depend primarily upon the length-todiameter ratio of the wire, β_{3} is the angle between the instantaneous velocity vector and the normal to the wire axis. β_{3} can be expressed in terms of α, the angle between the normal to the wire and the longitudinal, s, direction; and the velocity component as follows. Applying the cosine law of trigonometry (see Figure II-2) yields:

$$
\begin{gather*}
-\sin \beta_{3}=(\cos \alpha \\
+\frac{2 \sin \alpha \cdot \cos \alpha \cdot \tan \beta_{2}}{\cos \beta_{4}}+\frac{\sin ^{2} \alpha \cdot \tan ^{2} \beta_{2}}{\cos ^{2} \beta_{4}}+\sin ^{2} \alpha \cdot \tan ^{2} \beta_{4} \tag{II-6}\\
\left.-1-\frac{\sin ^{2} \alpha}{\cos ^{2} \beta_{3} \cdot \cos ^{2} \beta_{4}}\right)\left(\frac{\cos \beta_{2} \cdot \cos \beta_{4}}{2 \sin \alpha}\right)
\end{gather*}
$$

The angle β_{2} and β_{4} are defined by

$$
\begin{align*}
& \sin \beta_{z}=\left(\overline{V n}+\cdot V n^{\prime}\right)\left(\left(\overline{V s}+V s^{\prime}\right)^{2}+\left(\overline{V n}+V n^{\prime}\right)^{2}+\left(\overline{V t}+V t^{\prime}\right)^{2}\right)^{-\frac{1}{2}} \\
& \cos \beta_{2}=\left(\left(\overline{V s}+V s^{\prime}\right)^{2}+\left(\overline{V t}+V t^{\prime}\right)^{2}\right)^{\frac{1}{2}}\left(\left(\overline{\mathrm{Vs}}+V s^{\prime}\right)^{2}+(\overline{\mathrm{Vn}}+\mathrm{Vn})^{2}+\right. \\
& \left.(\overline{\mathrm{Vt}}+\mathrm{Vt})^{2}\right)^{-\frac{1}{2}} \\
& \sin \beta_{4}=\left(\overline{V t}+V t^{\prime}\right)\left(\left(\overline{V s}+V s^{\prime}\right)^{2}+\left(\overline{V t}+V t^{\prime}\right)^{2}\right)^{-\frac{1}{2}} \tag{II-7}\\
& \cos \beta_{4}=\left(\overline{\mathrm{Vs}}+V s^{\mathrm{I}}\right)\left(\left(\overline{\mathrm{Vs}}+V s^{i}\right)^{2}+\left(\overline{\mathrm{Vt}}+\mathrm{Vt} \mathrm{t}^{\prime}\right)^{2}-\frac{1}{2}\right. \\
& \text { Now consider a situation of two-dimensional flow only, ie. } \\
& \overline{\mathrm{Vt}}=0 \text {. and assume } \mathrm{Vt}^{\prime} \cong 0 \text {. Set } \beta_{4}=0 \text {, or } \tan \beta_{4}=1 \text {, and } \\
& \cos \beta_{4}=1 \text {. Substitute into (II-6) and (II-7), we have }
\end{align*}
$$

$$
\begin{align*}
-\sin \beta_{3} & =\left(-\sin \alpha+\cos \alpha \cdot \tan \beta_{2}\right) \cdot \cos \beta_{2} \\
\sin \beta_{2} & =\left(\overline{V n}+V n^{\prime}\right)\left(\left(\overline{V s}+V s^{\prime}\right)^{2}+\left(\overline{V n}+V n^{\prime}\right)^{2}\right)^{-\frac{1}{2}} \\
\cos \beta_{2} & =\left(\overline{V s}+V s^{\prime}\right)\left(\left(\overline{V s}+V s^{\prime}\right)^{2}+\left(\overline{V n}+V n^{\prime}\right)^{2}\right)^{-\frac{1}{2}} \tag{II-9}\\
\tan \beta_{2} & =\left(\overline{V n}+V n^{\prime}\right) /\left(\overline{V s}+V s^{\prime}\right)
\end{align*}
$$

Substitute (II-9) into (II-8) gives

$$
-\sin \beta_{3}=\left(-\sin \alpha+\cos \alpha \frac{\left(\overline{V n}+V n^{\prime}\right)}{\left(\overline{V s}+V s^{\prime}\right)}\right)\left(\frac{\left(\overline{V s}+V s^{\prime}\right)}{\left(\left(\overline{V s}+V s^{\prime}\right)^{2}+\left(\overline{V n}+V n^{\prime}\right)^{2}\right)^{\frac{1}{2}}}(I I-10)\right.
$$

Squaring (II-10) gives,

$$
\begin{align*}
& \sin ^{2} \beta_{3}=\left(\sin ^{2} \alpha\left(1+\frac{V s^{\prime}}{\overline{V s}}\right)^{2}+\cos ^{2} \alpha\left(\frac{\overline{\mathrm{Vn}}}{\overline{\mathrm{Vs}}}+\frac{\mathrm{Vn}}{\overline{\mathrm{Vs}}}\right)^{2}-2 \sin \alpha \cos \alpha\left(1+\frac{\mathrm{Vs}}{\overline{\mathrm{Vs}}}\right)\right. \\
& \left.\left(\frac{\overline{\mathrm{Vn}}}{\overline{\mathrm{Vs}}}+\frac{1}{\overline{\mathrm{Vs}}}\right)\right)\left(\frac{1}{\left(1+\frac{V s^{\prime}}{\overline{\mathrm{Vs}}}\right)^{2}+\left(\frac{\overline{\overline{V n}}}{\overline{\mathrm{Vs}}}+\frac{\overline{\overline{V s}}}{}\right)^{2}}\right. \tag{II-11}
\end{align*}
$$

Define $\mathrm{R}=\overline{\mathrm{V} n} / \overline{\mathrm{Vs}} ; \gamma_{n}=\mathrm{Vn}^{\prime} / \overline{\mathrm{Vs}} ; \quad \boldsymbol{\gamma}_{s}=\mathrm{Vs}^{\prime} / \overline{\mathrm{Vs}}$
Then (II-11) becomes,

$$
\begin{gather*}
\sin ^{2} \beta_{3}=\left(\sin ^{2} \alpha(1+\gamma s)^{2}+\cos ^{2} \alpha(R+\gamma n)^{2}-2 \sin \alpha \cdot \cos \alpha(1+\gamma s)(R+\gamma n)\right) \\
\%\left((1+\gamma s)^{2}+\left(R+\gamma_{n}\right)^{2}\right)^{-1} \tag{II-13}
\end{gather*}
$$

The denominator of this equation may be expanded in a power series to give

$$
\begin{align*}
\left(\left(1+\gamma_{s}\right)^{2}+\left(R+\gamma_{n}\right)^{2}\right)^{-1}= & 1-2 \gamma_{s}+3 \gamma_{s}^{2}-\left(R+\gamma_{n}\right)^{2}-4 \gamma_{s}^{3}+4 \gamma_{s}\left(R+\gamma_{n}\right)^{2} \\
& +4 \text { th. order terms } \tag{II-14}
\end{align*}
$$

Substituting (II-14) into (II-13) and collecting terms gives

$$
\begin{aligned}
\sin ^{2} \beta_{3}= & \left(-(R+\gamma n)^{2}+2 \gamma s(R+\gamma n)^{2}\right) \cdot \sin ^{2} \alpha+\sin ^{2} \alpha+\left(\left(R+\gamma_{n}\right)^{2}-2 \gamma_{s}(R+\gamma)^{2}\right) \cos ^{2} \alpha \\
& -2 \sin \alpha \cdot \cos \alpha \cdot\left((R+\gamma n)-\gamma s\left(R+\gamma_{n}\right)+\gamma_{s}^{2}\left(R+\gamma_{n}\right)-\left(R+\gamma_{n}\right)^{3}\right)
\end{aligned}
$$

(II-15)

Thus

$$
\begin{align*}
\cos ^{2} \beta_{3}+k^{2} \cdot \sin ^{2} \beta_{3}= & \cos ^{2} \alpha \cdot\left(1+k^{2} \cdot \tan ^{2} \alpha+\left(k^{2}-1\right)\left(\left(\tan ^{2} \alpha-1\right) J_{1}-\right.\right. \\
& \left.\left.2 J_{3} \cdot \tan \alpha\right)\right) \tag{II-16}
\end{align*}
$$

where

$$
\begin{aligned}
& e J_{1}=\left(-\left(R+\gamma_{n}\right)^{2}+2 \gamma_{s}\left(R+\gamma_{n}\right)^{2}\right) \\
& J_{3}=\left(\left(R+\gamma_{n}\right)-\gamma_{s}\left(R+\gamma_{n}\right)+\gamma_{s}^{2}\left(R+\gamma_{n}\right)-\left(R+\gamma_{n}\right)^{3}\right)
\end{aligned}
$$

From (II-4) we have

$$
\begin{equation*}
V_{I}^{2}=\frac{2}{V s} \cdot\left((1+\gamma s)^{2}+(R+\gamma n)^{2}\right) \tag{II-17}
\end{equation*}
$$

substituting (II-17) and (II-16) into (II-5) gives

$$
\begin{align*}
\mathrm{Ve}^{2}=\frac{2}{\mathrm{Vs}} \cdot \cos ^{2} \alpha\left(\left(1+\gamma_{s}\right)^{2}+\left(R+\gamma_{n}\right)^{2}\right)(1 & +k^{2} \cdot \tan ^{2} \alpha+\left(k^{2}-1\right)\left(\left(J_{1} / \cos ^{2} \alpha\right)\right. \\
& \left.\left.-2 J_{1}-2 J_{3} \tan \alpha\right)\right) \tag{II-18}
\end{align*}
$$

Substituting J_{1} and J_{3} and rearranging,

$$
\begin{equation*}
\frac{\mathrm{Ve}_{1}}{\overline{\mathrm{Vs}} \cdot \cos \alpha}=\left(S_{1}+S_{2}+S_{3}\right)^{\frac{1}{2}} \tag{II-19}
\end{equation*}
$$

where

$$
\begin{align*}
S_{1}= & \left(1+k^{2} \cdot \tan ^{2} \alpha\right)+2 R\left(1-k^{2}\right) \tan \alpha+R^{2}\left(k^{2}+\tan ^{2} \alpha\right) \\
S_{2}= & 2 A_{1} \cdot r s+2 A_{2} \cdot r_{n} \\
& A_{1}=\left(1+k^{2} \tan ^{2} \alpha\right)-R \cdot \tan \alpha\left(k^{2}-1\right) \\
& A_{2}=\left(1-k^{2}\right) \tan \alpha+R\left(k^{2}+\tan ^{2} \alpha\right) \\
S_{3}= & A_{3} r_{n}^{2}+A_{4} r_{s}^{2}+A_{5} r s r_{n} \tag{II-20}\\
& A_{3}=k^{2}+\tan ^{2} \alpha \\
& A_{4}=1+k^{2} \cdot \tan ^{2} \alpha \\
& A_{5}=2\left(1-k^{2}\right) \tan \alpha
\end{align*}
$$

R, γ s and \sqrt{n} are defined in equation (II-12)

Similarly for wire \#, we have

$$
\begin{equation*}
V_{2}^{2}=V_{I}^{2}\left(\cos ^{2} r_{3}+k^{2} \sin ^{2} r_{3}\right) \tag{II-21}
\end{equation*}
$$

where $r_{3}=90^{\circ}-\beta_{3}$
Finally we have

$$
\begin{equation*}
\frac{\mathrm{Ve}_{2}}{\overline{\mathrm{Vs}} \cdot \cos \alpha}=\left(\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}\right)^{\frac{1}{2}} \tag{II-22}
\end{equation*}
$$

where

$$
\begin{align*}
T_{1}= & \left(k^{2}+\tan ^{2} \alpha\right)-2 R\left(1-k^{2}\right) \tan \alpha+R^{2}\left(1+k^{2} \tan ^{2} \alpha\right) \\
T_{2}= & 2 B_{1} \gamma s+2 B_{2} \gamma_{n} \\
& B_{1}=\left(k^{2}+\tan ^{2} \alpha\right)+R\left(k^{2}-1\right) \tan \alpha \\
& B_{2}=\left(k^{2}-1\right) \tan \alpha+R\left(1+k^{2} \tan ^{2} \alpha\right) \\
T_{3}= & E_{3} \gamma_{n}^{2}+B_{4} r_{s}^{2}+B_{5} \gamma s r_{n} \tag{II-23}\\
& B_{3}=1+k^{2} \tan ^{2} \alpha \\
& B_{4}=k^{2}+\tan ^{2} \alpha \\
& B_{5}=2\left(k^{2}-1\right) \tan \alpha
\end{align*}
$$

Equations (II-19) and (II-22) provide relationship between the instantaneous effective velocity across each wire $\left(\mathrm{Ve}_{1}, \mathrm{Ve}_{2}\right)$, the wire orientation, α, the tangent of the mean velocity vector, R, the influence coefficient for cooling along the film, k, and values of the instantaneous fluctuating velocity ratios, $\gamma s, \gamma n, \gamma s \gamma_{n}$. Now it is clear that if a hot wire anemometer can be used to find these instantaneous cooling velocities then by manipulation of the equations it could be possible to extract information on the mean velocity, $\overline{\mathrm{Vs}}$, the vector direction, R , and the corre-
lation coefficients γ_{s}, γ_{n} and $\gamma_{s} \gamma_{n}$. The use of the hot wire system is discussed in the next section and development of the equations for finding these quantities is then treated.

III HOT WIRE ANEMOMETRY THEORY

A. GENERAL REMARKS:

The hot wire anemometer is an instrument used for measuring instantaneous velocities in a fluid stream, through - the stream's instantaneous cooling effect on a very thin, electrically heated wire filament or film.

The first major application was in the study of turbulence in air streams. The use of hot-wire, or hot-film probes permitted, not only oscilloscope portrayal of turbulent velocity fluctuations but also a numerical investigation of their magnitude. Today turbulence measurement. with the hot wire anemometer is a routine procedure, and with special x-wire, x-film or v-wire, v-film arrays longitudinal and transverse components of turbulence can be measured separately and the correlation between them can be investigated. The hot wire anemometer is also used in the measurement of temperature and temperature fluctuations.

B. BASIC PRINCIPLE:

A hot sensor(wire or film) probe has at its working end a thin wire or film through which an electric heating current is passed. The voltage across the hot wire or hot film depends on its electrical resistance, which depends on its temperature. In turn, its temperature depends on the cooling effect of the air stream. Because the sensor is small (typically about $0.04^{\prime \prime}$ Iong and $0.0003^{\prime \prime}$ diameter
for wire and 0.04" long and 0.002" diameter for film), the instrument is able to respond very rapidly to fluctuations in air velocity. The hot wire itself is usually tungsten or -platinum alloy while a film is a quartz rod coated with platinum,'soldered or welded at each end to supporting needles. Two type of electric circuity , "constant current" and "constant temperature", have been used. (see Figure. III-1) 1. In the cnnstant current system, the heating current is kept constant and the voltage across the hot wire or hot film is examined. In such a system the response of the sensor to a velocity fluctuation is modified by its own internal heat capacity, which becomes important for fluctuating frequencies above about fifty cycles per second. Thus special circuitry is necessary to compensate for this "storage" effect of the wire or film.
2. In the constant temperature type of instrument, a feedback circuit maintains the resistance constant and thus the temperature of the sensor is constant. The energy input to the sensor must then go entirely into the air stream. The internal capacity is no longer of importance, because its temperature is constant, and consequently this energy input is a measure of the instantaneous air velocity.
C. OPERATING PRINCIPLE:

Consider a long thin wire which is heated by an electric

(a)

oscilloscope
(b)

FIGURE III-1. BLOCK DIAGRANS OF (a) CONSTANT CURRENT METHOD AND (b) CONSTANT TEMFERATURE METHOD.
circuit and cooled by a moving stream of air, the velocity of which is to be measured. The rate at which heat is transferred to the air stream in steady flow has been studied by (10) To (16)
a number of investigators. Although there are various heat transfer relations for a cylinder in cross flow, the recommended relation for air is that by Collis and Williams. However, King's equation ${ }^{(10)}$ is also a good approximation for hot wire and hot film measurements with lons cylinders and is simpler. We found that it is in very good agreement with our experiment.

The total amount of heat transferred depends on:
1.The flow velocity
2.The difference in temperature between the wire, or film and the fluid
3.The physical properties of the fluid
4.The dimensions and physical properties of the cylinder Generally 2 and 4 are known. So 1 or 3 can be measured if either one is known or kept constant. The sensor is cooled by heat conduction, free and forced convection, and radiation. Under usual operating conditions, where wire or film temperature do not exceed $300^{\circ} \mathrm{C}$, the radiation effects are nesigibly small. For air and a wire of $0.005^{\prime \prime}$ diameter, Van Der Hegge Zijnen ${ }^{(17)}$ showed that free convection is negligible. In 1914, an approximate theoretical calculation due to King ${ }^{(10)}$ gave,

$$
\begin{equation*}
N u=\left(\frac{2}{\pi} \cdot \frac{c_{v}}{C_{P}} \cdot \operatorname{Pr} \cdot \operatorname{Re}\right)^{\frac{1}{2}}+\frac{1}{\pi} \tag{III-1}
\end{equation*}
$$

where $\quad N u=$ Nusselt number, $\mathrm{H} / \mathrm{f} \cdot \mathrm{Kg} \cdot(\mathrm{Ts}-\mathrm{Te})$

$$
\begin{aligned}
\operatorname{Pr}= & \text { Prandtl number }, \mu \mathrm{Cp} / \mathrm{K} \tilde{\delta} \\
\mathrm{Re}= & \text { Reynold number, } \rho \mathrm{Ve} \cdot \mathrm{D} / \mu \\
\mathrm{H}= & \text { Rate of heat transfer to stream per unit length } \\
& \text { of sensor }
\end{aligned}
$$

$\dot{K}_{g}=$ Thermal conductivity of fluid
Cp $=$ Specific heat at constant pressure
$\mathrm{Cv}=$ Specific heat at constant volume
$\mathrm{Ve}=$ Effective cooling velocity
$\rho=$ Density of fluid
D = Diameter of sensor
$\mu=$ Viscosity of fluid
Ts = sensor temperature
$T e=$ Static stream temperature far from sensor

For thermal-equilibrium conditions, the heat per unit time transferred to the ambient fluid from a sensor must be equal to the heat generated per unit time by the electric current through the sensor, thus We have,
where $\quad I=$ The sensor heating current

$$
\Omega_{W}=\text { The total electric resistance of the sensor }
$$

For the purpose of hot wire or hot film anemometer it is convenient and usual to write this relation in the form

$$
\begin{equation*}
I^{2} \Omega_{\omega}=\left(C_{1}+C_{2} \sqrt{V_{e}}\right)\left(T_{s}-T_{e}\right) \tag{III-う}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{1}=\frac{1}{\pi}(\pi \mathrm{~K} \delta L) \tag{III-4}\\
& C_{2}=(\pi \mathrm{KgL})\left(\frac{2 C_{V}}{\pi C_{P}} \operatorname{Pr} \frac{\rho D}{\mu}\right)^{\frac{1}{2}}
\end{align*}
$$

Furthermore, equation (III-4) can be written as

$$
\begin{equation*}
E b \frac{\Omega_{w}}{\left(\Omega_{w}+\Omega_{3}\right)^{2}}=\left(C_{1}+C_{2} \sqrt{V e}\right)(T s-T e) \tag{III-5}
\end{equation*}
$$

\because here $\quad \mathrm{Eb}=$ Bridge voltage, $I\left(\Omega_{\omega}+\Omega_{3}\right)$

$$
\Omega_{3}=\text { Electric resistance in serie with }
$$

(see figure iII-1, (b))
In the practice of hot wire anemometry the factors C and C are not calculated according to the known functions of the known physical properties of the fluid, but are determined experimently by calibration. Although in Kingis derivation, the air was assumed to be incompressible and inviscid, and the experimental study by King ${ }^{(10)}$, showed fair agreement. with (III-1) for low velocities which are not suitable for practical applications. The equation (III-5) is exactly same as given by Kramers ${ }^{(18)}$ except the expression for C_{1} and C_{2} differ appreciably. For air and diatomic gases Kramers: (18) empirical relation has proved to be valid in the range $0.01<\operatorname{Re}<10000$. So that if $W e$ determine C_{1} and C_{2} by experiment other than by known functions as given by equation (III-4), then equation (III-5) will be suitable for practical applications in a gas stream.

In the constant temperature system used in this work, Ts and Ω_{3} is kept constant. Ω_{3} is a built-in constant electric resistance. Eb is measured experimently. So
equation (III-5) leads to one unknown, Ve. Any change in $V e$ is uniquely determined by Eb. Recall from equation (II-5)

$$
V e^{2}=V_{I}^{2}\left(\cos ^{2} \beta_{3}+k^{2} \sin ^{2} \beta_{3}\right)
$$

substituted into equation (III-5), we have

$$
\begin{equation*}
E_{6}^{2} \frac{\Omega_{\omega}}{\left(\Omega_{3}+\Omega_{w}\right)^{2}}=\left(C_{1}+C_{2} \sqrt{V_{I}\left(\cos ^{2} \beta_{3}+k^{2} \sin ^{2} \beta_{3}\right)^{1 / 2}}\right)\left(T_{5}-T_{e}\right) \tag{III-6}
\end{equation*}
$$

An equation such as this exists for each sensor. There are two sensors used simultaneously, then we have two simultaneous equations, and there are only two independent variables, $V_{工}$ and β_{3}. Theoretically, V_{I} and β_{3} can be solved. If we let $\mathrm{Eb}=\overline{\mathrm{Eb}}+E \mathrm{~b}^{\prime}, V_{I}=\overline{V_{I}}+V_{I}^{\prime}$, and $\beta_{3}=\overline{\beta_{3}}+\beta_{3}^{\prime}$ where $\overline{\mathrm{Eb}}$, $\overline{V_{I}}$, and $\overline{\beta_{3}}$ represent time-mean variables, $E b^{\prime}, V_{I}^{\prime}$ and β_{3}^{\prime} represent fluctuation variables with $\overline{\mathrm{Eb}^{\prime}}=0, \overline{V_{I}^{\prime}}=0$, and $\overline{\beta_{3}^{\prime}}=0$, and substituted into equation (III-6) for each sensor then there are four equations and there exists four unknown variables, $\overline{V_{I}}, V_{I}^{\prime}, \overline{\beta_{3}}$ and β_{3}^{\prime}. Therefore, by combining one another among them, the turbulent intensity, turbulent shear stress and other turbulent quantities can be calculated.

IV EXPERIMENTAI EQUIPMENT

A. Hot Wire Anemometer System

All data are obtained with a two-channel, constant temperature anemometer system manufactured by Thermo-System, Inc. This constant temperature anemometer is of model 1010A, and has a frequency response of 0 to 50000 cps . The anemometer produces a Vultage signal, Eb, proportional to the effective cooling velocity, Ve, according to equation (III-5).

There are two types of probes used in this experiment. One is the single film, model 1210 with sensor type 20 manufactured by Thermo-System Inc. The sensor type 20 has a sensing size 0.002". diameter and 0.04" long, a relative frequency response 40000 cps , and has low end losses. It is a standard film sensor for air and low velocity water measurement. This single film was used to evaluate the value of k in equation (II-5). The value measured was 0.35 .

The other is the X-film type with sensor type 20. This type of probe is specially designed so that the axes of the sensor are parallel to vertical plane, and they are perpendicular to each other, ie $\alpha=45^{\circ}$. All the sensors used were calibrated in a reference channel. This channel is a $3^{\prime \prime}$ diameter commercial aluminum smooth pipe. Probes were placed at the center position and a pitot tube inserted to independently measure the velocity at the center position of this smooth pipe.
B. Reference Channel

This is a commercial, 6061 T 6 alloy, Aluminum pipe. The dimensions of the pipe and the position of hot film probe and the pitot tube are shown in figure (IV-1). As is well known, the radial velocities in such a pipe is very small if they are not zero. The calibration curve which has as a criterion $\overline{\operatorname{Vn}}=0$ is drawn from measurements in this pipe at the center line position. The air flow is supplicd by a compressor.

FIGURE IV-1. SCHEMATIC DIAGRAM OF REFERENCE CHANNEL.

C. Flow Channel

The flow channel is a galvanized corrugated pipe. Fizure IV-2 shows its longitudinal view. Experiments are made at $\mathrm{y} / \mathrm{r}=1.0$ (center), $0.5,0.25,0.10,0.05,0.0187$ of VL2, ML2, VS, ML1 respectively. The air flow is supplied by a blower with a screen gate through which the ambient air passes.
D. Pitot Tube And Micro Manometer

Mean velocities used in the calibration curve fit were obtained with ordinary pitot tube with a $1 / 8$ " diameter. All pressure measurements were obtained with a Merian micro manometer. This manometer had a range of $10^{\prime \prime}$ of water and the pressure difference could be measured to an accuracy of $0.0005^{\prime \prime}$.
E. DC Offset

This is electronic equipment used to subtract, a constant mean voltase with accuracy of $\pm 0.06 \%$. This equipment is used to subtract, a constant mean voltase from the output of the hot

FIGUREIV-2. SChEMATIC DIAGRAM OF FLOW ChanNEL.
wire anemometer to increase the signal-to-noise ratio when recorded on magnetic tape. By this method the accuracy of turbulence intensity measurements are greatly increased.
F. Tape Recorder

All data are recorded on APPEX instrumentation tape. The tape recorder is ATPEX 1300 which has seven simultaneous channels and has center carrier frequencies from 1000 to 5700 HZ . The highest frequency of the experimental signal is estimated to be 10000 HZ. The tape speed used is 30 ips with center carrier frequency at 2700 HZ when recorded. In data processing the tape speed is reduced to 15 ips with center carrier frequency at 1500 HZ .

V DEVELOPMENT OF COMPUTATIONAL ALGORITHM

In this chapter we develop the computational algorithm for the Final Program and the Calibration Program. The Final Program was used to evaluate $R, V s, \overline{r_{s}^{2}}, \overline{r_{n}^{2}}$, and $\overline{r_{s} \gamma_{n}}$. The Calibration Program was used to calibrate the hot film used in experiments.
A. The Computational Algorithm For The Final Program: The right side of equation (II-19) is expanded using the binomial theorem. Neglecting third order and higher terms, gives

$$
\begin{align*}
\frac{V e_{1}}{\overline{\mathrm{Vs}} \cdot \cos \alpha} & =\left(S_{1}+S_{2}+S_{3}\right)^{\frac{1}{2}} \\
& \cong S_{1}^{\frac{1}{2}}\left(1+\frac{S_{2}}{2 S_{1}}+\frac{S_{3}}{2 S_{1}}-\frac{1}{8} \frac{S_{2}^{2}}{S_{1}}\right) \tag{V-1}
\end{align*}
$$

If we decompose le into a mean and a fluctuation part, we have

$$
\mathrm{Ve}=\overline{\mathrm{Ve}}+V e^{\prime} \quad \text { with } \overline{\mathrm{Ve}^{\top}}=0
$$

Take the time-mean of equation $(V-1)$, gives

$$
\begin{equation*}
\overline{\mathrm{Ve}}=\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot S_{1}^{\frac{1}{2}}\left(1+\frac{\overline{S_{3}}}{2 S_{1}}-\frac{1 \overline{S_{2}^{2}}}{8}\right) \tag{c}
\end{equation*}
$$

Equation ($\overline{T-1}$) minus equation ($7-2$), gives

$$
\mathrm{Ve}^{\prime}=\overline{\mathrm{Vs}} \cdot \cos d \cdot S_{1}^{\frac{1}{2}}\left(\frac{S_{2}}{2 S_{1}}+\frac{1}{2 S_{1}}\left(S_{3}-\overline{S_{3}}\right)-\frac{1}{8} \cdot \frac{1}{S_{1}}\left(S_{2}^{2}-\overline{S_{2}^{2}}\right)\right)
$$

s_{3} and s_{2}^{2} contain terms in $\gamma_{s}^{2}, r_{n}^{2}$, and $r s r_{n}$, and $\gamma_{s}^{2}, \gamma_{n}^{2}$, $\gamma_{\mathrm{s}} \gamma_{n}$ are all of higher order than γs and γn, so that $\left(S_{2}^{2}-\overline{S_{2}^{2}}\right)$ and $\left(S_{3}-\overline{S_{3}}\right)$ are negligibly small compared to S_{2}.

Then we have

$$
\begin{equation*}
V e^{\prime}=\overline{V_{s}} \cdot \cos \alpha \cdot S_{1}^{\frac{1}{2}}\left(\frac{S_{2}}{2 S_{1}}\right) \tag{v-3}
\end{equation*}
$$

Substituted (II-20) into (V-2) and (V-3) for wire \#1, gives

$$
\begin{align*}
& \overline{V e_{1}}=\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot S_{1}^{\frac{1}{2}}\left(1+\overline{r_{S}^{2}}\left(\frac{A_{4}}{2 S_{1}}-\frac{A_{1}}{2 S_{1}^{2}}\right)+\overline{r_{n}^{2}}\left(\frac{A_{3}}{2 S_{1}}-\frac{A_{2}^{2}}{2 S_{1}^{2}}+\overline{r s r_{n}}\left(\frac{A_{5}}{2 S_{1}}-\frac{A_{1} A_{2}}{S_{1}^{2}}\right)(V-4)\right.\right. \\
& V e^{\prime}=\overline{V s} \cdot \cos \alpha \cdot S_{1}^{\frac{1}{2}}\left(\frac{A_{1}}{S_{1}} r s+\frac{A_{2}}{S_{1}} r_{n}\right) \tag{v-5}
\end{align*}
$$

Similarly for equation (II-22), We have

$$
\begin{align*}
& \overline{\mathrm{Ve}_{2}}=\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot T_{1}^{\frac{1}{2}}\left(1+\overline{Y_{s}^{2}}\left(\frac{B_{4}}{2 T_{1}}-\frac{B_{1}^{2}}{2 T_{1}^{2}}\right)+\overline{r_{n}^{2}}\left(\frac{B_{3}}{2 T_{1}}-\frac{B_{2}^{2}}{2 T_{1}^{2}}\right)+\overline{\gamma_{s} \gamma_{n}}\left(\frac{B_{5}}{2 T_{1}}-\frac{B_{1} B_{2}}{T_{1}^{2}}\right)\right. \\
& \mathrm{Ve}_{2}^{\prime}=\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot T_{1}^{\frac{1}{2}}\left(\frac{B_{1}}{T_{1}} r_{s}+\frac{B_{2}}{T_{1}} r_{n}\right) \tag{V-7}
\end{align*}
$$

Now define,

$$
\begin{align*}
& 1+F_{1}=1+\overline{Y_{S}^{2}}\left(\frac{A_{4}}{2 S_{1}}-\frac{A_{1}^{2}}{2 S_{1}}\right)+\overline{\gamma_{n}^{2}}\left(\frac{A_{3}}{2 S_{1}}-\frac{A_{2}^{2}}{2 S_{1}^{2}}\right)+\overline{r_{S} \gamma_{n}}\left(\frac{A_{5}}{2 S_{1}}-\frac{A_{1} A_{2}}{S_{1}^{2}}\right) \tag{v-8}\\
& 1+F_{2}=1+\overline{r_{S}^{2}}\left(\frac{B_{4}}{2 T_{1}}-\frac{B_{1}^{2}}{2 T_{1}}\right)+\overline{\gamma_{n}^{2}}\left(\frac{B_{3}}{2 T_{1}}-\frac{B_{2}^{2}}{2 T_{1}^{2}}+\overline{\gamma_{s} Y_{n}}\left(\frac{B_{5}}{2 T_{1}}-\frac{B_{1} B_{2}}{T_{1}^{2}}\right)\right. \tag{v-9}
\end{align*}
$$

equations ($V-4$) and ($V-6$) become,

$$
\begin{align*}
& \overline{\mathrm{Ve}_{1}}=\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot S_{1}^{\frac{1}{2}}\left(1+F_{1}\right) \tag{V-10}\\
& \overline{\mathrm{Ve}_{2}}=\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot F_{1}^{\frac{1}{2}}\left(1+F_{2}\right) \tag{V-11}
\end{align*}
$$

If F_{1} and F_{2} are small (the measured values of F_{1} and F_{2} are, in fact, very small) then it is clear that between these two equations, once $\overline{V_{e}}$ and $\overline{\mathrm{Ve}}_{2}$ are determined from the hot wire anemometer, then we have two equations in the two unknowns, $\overline{\mathrm{Vs}}$ and R.

Define

$$
\begin{aligned}
\phi^{2} & =\left(\frac{\overline{V e}_{1}\left(1+F_{2}\right)}{\overline{V_{2}}\left(1+F_{1}\right)}\right)^{2}=\frac{S_{1}}{T_{1}} \\
& =\frac{\left(1+k^{2} \cdot \tan ^{2} \alpha\right)+2 R\left(1-k^{2}\right) \tan \alpha+R^{2}\left(k^{2}+\tan ^{2} \alpha\right)}{\left(K^{2}+\tan ^{2} \alpha\right)-2 R\left(1-k^{2}\right) \tan \alpha+R^{2}\left(1+k^{2} \tan ^{2} \alpha\right)}
\end{aligned}
$$

For an 90° arry set at 45° to the s-direction $\alpha=45^{\circ}$, then

$$
\begin{equation*}
R=\frac{1}{2}\left(\frac{1+k^{2}}{1-k^{2}}\right)\left(\frac{\phi^{2}-1}{\phi^{2}+1}\right) \tag{V-12}
\end{equation*}
$$

It is then straightforward to evaluate Vs from either equation ($\mathrm{V}-10$) or ($\mathrm{V}-11$) above. As will be shown below, with a computational algorithm it is possible to solve the equation exactly including the terms F_{1} and F_{2} by a system of sequential solutions once the terms for the correlations included in F_{1} and F_{2} have been found.

From equations (V-5) and (V-7), We have

$$
\begin{aligned}
& \frac{V e_{1}^{\prime}}{\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot S_{1}^{\frac{1}{2}}}=\frac{A_{1}}{S_{1}} Y_{s}+\frac{A_{2}}{S_{1}} r_{n} \\
& \frac{V e_{2}^{\prime}}{\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot T_{1}^{\frac{1}{2}}}=\frac{B_{1}}{T_{1}} r_{s}+\frac{B_{2}}{T_{1}} r_{n}
\end{aligned}
$$

or

$$
\begin{align*}
& \frac{V e_{1}^{\prime}}{\overline{{V e_{1}}^{\prime} /\left(1+F_{1}\right)}=\frac{A_{1}}{S_{1}} r_{s}+\frac{A_{2}}{S_{1}} r_{n}} \tag{v-13}\\
& \frac{V e_{2}^{\prime}}{\overline{V_{e}^{2}}} /\left(1+F_{2}\right) \tag{v-14}
\end{align*}=\frac{B_{1}}{T_{1}} r_{s}+\frac{B_{2}}{T_{1}} r_{n}, ~ l
$$

It is now possible to obtain for r_{s}^{2}, r_{n}^{2} and $\gamma_{s} r_{n}$ by working with these equations. But notice that the simple sum and differencing techniques useful for parallel flow no longer
can be applied here. Adding or subtracting, equations (V-13) and (V-14) will not produce signal proportional only to γ_{s} or γ_{n} except for the special case where $R=0$. For a general case, these relationships must be used.

$$
\begin{align*}
r_{s}(t) & =\frac{\frac{V e_{1}^{\prime}}{\overline{V_{1}} /\left(1+F_{1}\right)} B_{2} S_{1}-\frac{V e_{2}^{\prime}}{\overline{V e}_{2} /\left(1+F_{2}\right)} A_{2} T_{1}}{A_{1} B_{2}-A_{2} B_{1}} \tag{V-15}\\
r_{n}(t) & =\frac{\frac{V e_{1}^{\prime}}{\overline{V e}_{1} /\left(1+F_{1}\right)} B_{1} S_{1}-\frac{V e_{2}^{\prime}}{\overline{V e}_{2} /\left(1+F_{2}\right)} A_{1} T_{1}}{-\left(A_{1} B_{2}-A_{2} B_{1}\right)} \tag{v-16}
\end{align*}
$$

and

$$
\begin{align*}
& \text { (} \mathrm{V}-17 \text {) } \\
& \overline{r_{n}^{2}}=\frac{\left(\frac{B_{1} S_{1}}{\overline{V_{1}} /\left(1+F_{1}\right)}\right)^{2} \overline{V e_{1}^{2}}-\left(\frac{2 A_{1} B_{1} S_{1} T_{1}}{V e_{1}} \overline{V_{2}} /\left(1+F_{1}\right)\left(1+F_{2}\right)\right.}{V e_{1}^{\top} V e_{2}^{\prime}}+\left(\frac{A_{1} T_{1}}{\overline{V e_{2}} /\left(1+F_{2}\right)}\right)^{2} \overline{V_{2}^{2}}{ }_{\left(A_{1} B_{2}-A_{2} B_{1}\right)^{2}}^{(V-18)} \tag{V-18}\\
& \overline{r_{5} r_{n}}=\frac{B_{1} B_{2}\left(\frac{S_{1}}{\overline{V e_{1}} /\left(1+F_{1}\right)}\right)^{2 \overline{V e_{1}^{\prime}}-\left(A_{1} B_{2}+A_{2} B_{1}\right)\left(\frac{S_{1} T_{1}}{\overline{V e_{1}} \overline{V e_{2}} /\left(1+F_{1}\right)\left(1+F_{2}\right)}\right) \overline{V e_{1}^{\prime} V e_{2}^{\prime}}}}{-\left(A_{1} B_{2}-A_{2} B_{1}\right)^{2}} \tag{V-19}\\
& +\underbrace{+A_{1} A_{2}\left(\frac{T_{1}}{\overline{\mathrm{Ve}}_{2} /\left(1+\mathrm{F}_{2}\right)}\right)^{2 \overline{V_{2}^{1}}}}
\end{align*}
$$

Thus, if the signals $\mathrm{Ve}_{1}^{\prime}(\mathrm{t})$, and $\mathrm{Ve}_{2}^{\prime}(\mathrm{t})$ are available either in analog or digital form, the above two equations can be
used to calculate $\gamma s(t)$, and $\gamma(t)$ and from this the calculations of $\overline{\gamma_{s}^{2}}, \overline{\gamma_{n}^{2}}$ and $\overline{\gamma_{s} \sqrt{n}}$ can be found. The calculation must be sequential since F includes these correlations but the calculation can proceed schematively as in Figure F-1.1 and the value of k and α are known and the value of $\overline{\mathrm{Ve}}$ and Ve' (t) are obtained from the hot wire anemometer. (see Appendix D)
B. The Computational Algorithm For Calibration Program Recall from equation (III-5)

$$
E b \frac{\Omega_{\omega} \cdot}{\left(\Omega_{\omega}+\Omega_{3}\right)^{2}}=\left(C_{1}+C_{2} \sqrt{V e}\right)(T s-T e)
$$

where C_{1} and C_{2} are constants determined experimently. Ω_{3} is a built-in constant electric resistance. In the constant temperature hot wire anemometry system which we used in this thesis. the resistance - and so the temperature - of the hot wire is kept constant, ie Ω_{3} and $T s$ are constants. Te is ambient temperature which is a known quantity. Therefore the signal from the constant temperature anemometer, $\mathrm{Eb}(\mathrm{t})$, is related uniquely to $\mathrm{Ve}(\mathrm{t})$, the effective cooling velocity. Solving equation (III-5) for Ve for wire \#1, gives

$$
\begin{equation*}
V e_{1}=\alpha_{S 1}+\alpha_{S 2}\left(E b_{1}^{2}\right)+\alpha_{S 3}\left(E b_{1}^{4}\right) \tag{V-20}
\end{equation*}
$$

FIGURE V-1. CONPUTER FLOW DIAGRAM FOR FINAL PROGRAM. (WITHOUT CALIBRATION CONSTANTS)
where

$$
\begin{align*}
& \alpha_{s 1}=\left(C_{1} / C_{2}\right)^{2} \\
& d_{s 2}=-2 \frac{C_{1}}{C_{2}} \frac{\Omega_{\omega}}{\left(\Omega_{\omega}+\Omega_{3}\right)^{2}} \frac{1}{(T s-T e)} \tag{V-21}\\
& \alpha_{s 3}=\frac{1}{C_{2}^{2}} \frac{\Omega_{\omega}^{2}}{\left(\Omega_{\omega}+\Omega_{3}\right)^{4}} \frac{1}{(T s-T e)^{2}}
\end{align*}
$$

Ve, can be obtained via linearization by using an analog linearizer but since data processing in this study was through a hybrid computer with very accuràte-electronics, it was more reliable to record Eb (or rather the fluctuation in Eb) and use equation ($\mathrm{V}-20$) to solve for Ve_{1}. Take time-mean of equation (v-8), gives

$$
\begin{equation*}
\overline{\mathrm{Ve}_{1}}=\alpha_{s 1}+\alpha_{s 2}\left(\overline{\mathrm{~Eb}} \mathrm{~B}_{1}^{2}\right)+\alpha_{s_{3}}(\overline{\mathrm{~Eb}}) \tag{v-22}
\end{equation*}
$$

equation ($V-8$) minus ($V-10)$, gives

$$
\begin{equation*}
V e_{1}^{1}=\alpha_{s 2}\left(E b_{1}^{2}-\overline{E b_{1}^{2}}\right)+\alpha_{S 3}\left(E D_{1}^{4}-\overline{E b_{1}^{4}}\right) \tag{V-23}
\end{equation*}
$$

Similarly, for wire $\#$ \#, we have

$$
\begin{align*}
& \overline{\mathrm{Ve}_{2}}=\alpha_{t 1}+\dot{\alpha}_{t 2}\left(\overline{\mathrm{~Eb}_{2}^{2}}\right)+\alpha_{t 3}\left(\overline{\mathrm{~Eb}_{2}^{4}}\right) \tag{v-24}\\
& \mathrm{Ve}_{2}^{1}=\alpha_{t 2}\left(\mathrm{~Eb}_{2}^{2}-\overline{\mathrm{Eb}_{2}^{2}}\right)+\alpha_{t 3}\left(\mathrm{~Eb}_{2}^{4}-\overline{\mathrm{En}_{2}^{4}}\right) \tag{v-25}
\end{align*}
$$

Combine equations ($\mathrm{v}-10$), ($\mathrm{v}-11$) and ($\mathrm{v}-22)$, ($\mathrm{V}-24)$, we have

$$
\begin{align*}
& \overline{V e_{1}}=\alpha_{s 1}+\alpha_{s 2}\left(\overline{E b_{1}^{2}}\right)+\alpha_{s 3}\left(\overline{E b_{1}^{4}}\right)=\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot S_{1}^{\frac{1}{2}}\left(1+F_{1}\right) \tag{v-26}\\
& \overline{\mathrm{Ve}_{2}}=\alpha_{t 1}+\alpha_{t 2}\left(\overline{E b_{2}^{2}}\right)+\alpha_{t 3}\left(\overline{E b_{2}^{4}}\right)=\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot T_{1}^{\frac{1}{2}}\left(1+F_{2}\right) \tag{V-27}
\end{align*}
$$

where α and k are known. If the X -array of hot film is placed at the centerline of a uniform smooth pipe R is zero, thus $S_{i} \cos \alpha$ and $T_{1} \cdot \cos \alpha$ are know. If the centerline velocity $\overline{\mathrm{Vs}}$ is measured with an accurate pitot tube for a variety of
flow rates and the bridge voltages recorded then the coefficients, $\alpha_{s_{j}}$ and $\alpha_{t_{j}}$, can be found from a polynomial curve fit if the values of F_{1} and F_{2} have been evaluated for each velocity. These equations clearly showed that the correlation of the velocity fluctuations (which determined F_{1} and F_{2}) enter into the calibration calculation and if neglected can introduce serious error.

The fluctuating velocity is related to these coefficients

$$
\begin{align*}
& \mathrm{by}_{\mathrm{Ve}}^{1} 1=\alpha_{s 2}\left(E b_{1}^{2}-\overline{E b_{1}^{2}}\right)+\alpha_{s 3}\left(E b_{1}^{4}-\overline{E b_{1}^{4}}\right)=\overline{V s} \cdot \cos \alpha_{S_{1}}^{\frac{1}{2}}\left(\frac{A_{1}}{S_{1}} r_{s+} \frac{A_{2}}{s_{1}} r_{n}\right)(V-28) \\
& \mathrm{Ve}_{2}^{\prime}=\alpha_{\mathrm{t} 2}\left(\mathrm{~Eb}_{2}^{2}-\overline{\mathrm{Eb}_{2}^{2}}\right)+\alpha_{\mathrm{t} 3}\left(\mathrm{~Eb}_{2}^{4}-\overline{\mathrm{Eb}} \overline{2}_{2}^{4}\right)=\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot \mathrm{~T}_{1}^{\frac{1}{2}}\left(\frac{\mathrm{~B}_{1}}{\mathrm{~T}_{1}} \mathrm{rs}+\frac{\mathrm{B}_{2}}{\mathrm{~T}_{1}} r_{\mathrm{n}}\right) \tag{V-29}
\end{align*}
$$

These equations can now be incorporated along with a polynomial curve fit in a sequential calculations to obtain the coefficients, $\alpha_{s_{j}}$ and $\alpha_{t_{j}}$. This is shown in the Figure $V-2$. (see Appendix C)

using polynomial curve fit
$\because E Q .(V-26),(V-27)$ to find
input a set of data
$E b_{1}^{2}-\overline{E b_{1}^{2}(I), ~} E b_{1}^{4}-\overline{-E b_{1}^{4}(I)}$
$E b_{2}^{2}-E b_{2}^{2}(I), E b_{2}^{4}-E b_{2}^{4}(I)$
$\alpha_{s 1}, \alpha_{s 2}, \alpha_{s 3}, \alpha_{t 1}, \alpha_{t 2}, \alpha_{t 3}$

FIGURE V-2. COMPUTER FLOW DIAGRAM FOR CALIBRATION CURVE PROGRAM.

The signal from the constant temperature hot wire anemometer is an analog signal. This analog signal is processed throush a hybrid computer to sive digital data, then the digital computer is used to process these digital data. This data processing system consists of these programs:
A. Hybrid digitizing and time-mean program
B. Calibration program
C. Final program

The flow chart of this system is as follow:

FIGURE VI-1. DATA PROCESSING SYSTEM.
A. Hybrid Digitizing And Time-mean program

Analog data from magnetic tape records are"processed through a hybrid computer. This equipment consists of a Hybrid System Inc. SS-100 analog, a specially designed interface HS-1044 and an IBM 360-44 digital computer.

This program is used to digitize the input analog data into digital numeric values, and to find its time-mean value. The time-mean value is calculated according to the formula

$$
\begin{equation*}
\overline{f\left(t_{i}\right)}=\frac{1}{N} \sum_{i=1}^{N} f\left(t_{i}\right) \tag{VI-1}
\end{equation*}
$$

where $f\left(t_{i}\right)$ is any function of discrete time t_{i}, N is the total number of discrete time t_{i}.

In order to solve the simultaneous equations (V-10), and (V-11), it was necessary to obtain simultaneous values of Eb_{1} and Eb_{2}. A signle input channel was used to execute the digitizing function, thus it was necessary to use a synchronization technique. The synchronize devise is called the "sample-hold", and functions as follows:
Eb_{1} (t)
$\mathrm{Ebb}_{2}(\mathrm{t})$

The computer "read" the true signal at any time, say, t_{i}, simultaneously, $\mathrm{Eb}_{1}\left(\mathrm{t}_{i}\right)$ and $\mathrm{Eb}_{2}\left(\mathrm{t}_{i}\right)$, but the true signals are digitized alternately. Thus, for example, the values $E b_{1}\left(t_{0}\right)$ and $E b_{2}\left(t_{0}\right)$ are sampled at time t_{0}. At time, t_{0}, $\mathrm{Eb}_{1}\left(\mathrm{t}_{0}\right)$ is digitized, and at time $\mathrm{t}_{1}, \mathrm{~Eb}_{2}\left(\mathrm{t}_{0}\right)$ is digitized. At time t_{2}, two new reading are obtained. The effect is to feed into digital storage pairs of corresponding values of Eb_{1} and Eb_{2} sampled at time intercals $2(1 / f)$ apart, where f is the sampling frequency.

Every computer has its limitation of capacity. In this program .We used a capacity of 8000 locations for storing the digitized values for each channel. For two channels we have 16000 locations. The maximum frequency of the turbulence of interest in this work is less than 8000 cps (cycles per second). Recording tape speed of 30 ips (inch per second) was used which has a frequency response from 0 to 10000 cps . In reproducing the signal through the hybrid computer, a tape speed of 15 ips was used because of the limitation of the digitizing frequency available. For the accurate spectral representation of the analog signal by the discrete data, the digitizing frequency should be at least twice the maximum frequency of interest. For the reason of the economy, the factor is usually chosen as two. If the signal is processed through the digitizer at the same speed as recorded and if two channels are to be sampled then the required
digitizing frequency is $(2 * 8000) * 2=32000 \mathrm{cps}$. In this work tape playback of 15 ips was used. This is one half the reading speed. Therefore, an effective digitizing frequency of 16000 cps was used. Because computer capacity is limited to 8000 locations, the sampling time for each run is limited to that which will generate 4000 data points at the digitizing frequency of 16000 cps for each channel. This time length of $1 / 4$ seconu is not long enough for sufficiently statistical accuracy of the result. In order to achieve the required accuracy, 15 separate runs, each of $1 / 4$ second duration, were taken at the same condition and processed through the same computational program. It gives the total digitizing time for each channel 3.75 second. For a high frequency measurement 3.75 second is quite enough. (see Appendix B) The analog patch panel chart and the logic patch panel chart are as follows:

The Logic patch panel chart

The analog patch panel chart.

FIGLRE VI-3. Tre LOGIC EATCI EATEL CTART AID THE AVALOG PATCH PADEL CHART.
B. Calibration Curve Program

All the sensors used have to be calibrated, and this is the fundamental procedure that all the measurements relied

- on. Usually, the calibration procedure assumed the mean flow direction is known, and the stream velocity is not fluctuating. However, there is always some degrees of fluctuation existing in the stream. Therefore, in calibrating sensors to this fluctuating components needs to be considered.

This program is used to evaluate the coefficients of the calibration curve, $\alpha_{s 1}, \alpha_{s 2}, \alpha_{s 3}, \alpha_{t 1}, \alpha_{t 2}$, and $\alpha_{t 3}$, by solving equations ($\mathrm{V}-26$) and $(\mathrm{V}-27)$. This program consisted of a polynomial curve fit to fit a set of data, ($\mathrm{Eb} \mathrm{b}_{\mathrm{i}}, \mathrm{Vs}$), where Eb i is obtained from hot wire anemometer output, and $\overline{\mathrm{Vs}}$ from pitot tube measurement placed in the center position of a smooth pipe. From the program output, $R(R=\overline{\mathrm{Vn}} / \overline{\mathrm{Vs}})$ calculated is really quite small, so that we just let $R=0$ in this calibration curve program. The value of α, the angle between the normal to the sensor and the longitudinal direction, is a manufactured constant, which is 45°. Also we let

$$
\begin{aligned}
& 1+F_{1}=1+\overline{\gamma_{S}^{2}}\left(\frac{A_{4}}{2 S_{1}}-\frac{A_{1}^{2}}{2 S_{1}^{2}}\right)+\overline{\gamma_{n}^{2}}\left(\frac{A_{3}}{2 S_{1}}-\frac{A_{2}^{2}}{2 S_{1}^{2}}\right)+\overline{\gamma s \gamma_{n}}\left(\frac{A_{5}}{2 S_{1}}-\frac{A_{1} A_{2}}{S_{1}^{2}}(V-3)\right. \\
& 1+F_{2}=1+\overline{\gamma_{S}^{2}}\left(\frac{B_{4}}{2 T_{1}}-\frac{B_{1}^{2}}{2 T_{1}^{2}}+\overline{\gamma_{n}^{2}}\left(\frac{B_{3}}{2 T_{1}}-\frac{B_{2}^{2}}{2 T_{1}^{2}}+\overline{\gamma s V_{n}}\left(\frac{B_{5}}{2 T_{1}}-\frac{B_{1} B_{2}}{T_{1}^{2}}\right)(V-9)\right.\right.
\end{aligned}
$$

The flow chart of this program is listed in Figure (V-2).
C. Final program

The purpose of this program is to provide the mean velocity and turbulent intensity in the longitudinal and radial direction and their cross correlation of the velocities, $\overline{\mathrm{Vs}}$, $\overline{\mathrm{Vn}}, \sqrt{\overline{V_{s}^{2}} / \mathrm{Vs}}, \sqrt{\overline{V_{n}^{2}} / \mathrm{Vs}}$, and $\overline{\mathrm{Vs}^{1} V n^{1}}$. This program essentially is solving the simultaneous equations of (7-it), (7-j), $(V-17),(V-13)$, and $(Y-19)$. The flow chart of this program is as follows:

A. Calibration signal From Bridge Voltage To Computer Output

FIGURE VII-1. SIGNAL FLOW DIAGRAM FROM HOT WIRE ANEMOMETER TO HYBRID COMPUTER.

In processing the analog signal from hot wire anemometer to the hybrid computer output, the signal is processed through an adjustable $D C$ offset and tape recorder as in Figure VII-1 . Each electronic unit has its own gain and offset value and this must be taken into consideration during processing the data in order to obtain accurate results. The following method was used in our data processing. Let

$$
\begin{aligned}
A= & \text { Instantaneous Bridge voltage from hot wire } \\
& \text { anemometer }
\end{aligned}
$$

$K_{0}=$ Gain value of adjustable DC offset
$\delta_{0}=$ Adjustable DC offset value
$\delta_{1}=$ Offset value of tape recorder
$\delta_{z}=$ Offset value of hybrid computer
$K_{1}=$ Gain value of tape recorder
$K_{2}=$ Gain value of hybrid computer
$\mathrm{H}_{2}=$ Hybrid computer output
then

$$
\begin{aligned}
& K_{0}\left(A+\delta_{0}\right)=\text { Output of } D C \text { offset } \\
& K_{0} \cdot K_{j}\left(A+\delta_{0}\right)+\delta_{1}=\text { Output of tape recorder }
\end{aligned}
$$

and

$$
\mathrm{H}_{2}=\mathrm{K}_{2}\left(\mathrm{~K}_{0} \mathrm{~K}_{1}\left(\mathrm{~A}+\delta_{0}\right)+\delta_{1}\right)+\delta_{2}=\text { Output of hybrid computer }
$$

Our object was to find A, so that

$$
\begin{aligned}
\mathrm{H}_{2} & =\mathrm{K}_{2}\left(\mathrm{~K}_{0} \mathrm{~K}_{1}\left(\mathrm{~A}+\delta_{0}\right)+\delta_{1}\right)+\delta_{2} \\
& =\mathrm{K}_{3}\left(\mathrm{~A}+\delta_{0}\right)+\mathrm{K}_{4}
\end{aligned}
$$

where

$$
\begin{align*}
& K_{3}=K_{0} K_{1} K_{2} ; \quad K_{4}=K_{2} \delta_{1}+\delta_{2} \\
& \mathrm{H}=\left(-\frac{H_{2}-K_{4}}{\mathrm{~K}_{3}}\right)-\delta_{0} \tag{VII}
\end{align*}
$$

By this way, the signal A can be found in terms of hybrid computer output and those gain and offset values. Now, we know δ_{0}, because this offset is readable directly from the setting of a precision potentiometer. We can find K_{3} and K_{4} by putting two known signals H_{0} and H_{1} of constant amplitude onto the tape recorder and observing the output of the hybrid computer. This is as follows:

Let $\quad H_{0}, H_{1}=$ Known input signal to tape recorder

$$
\mathrm{H}_{o o}, \mathrm{H}_{10}=\text { The corresponding output of } \mathrm{H}_{0}, \mathrm{H}_{1} \text {, res- }
$$ pectively, from hybrid computer

then

$$
\begin{align*}
& \mathrm{H}_{00}=\mathrm{H}_{0} \mathrm{~K}_{3}+\mathrm{K}_{4} \tag{VII-2}\\
& \mathrm{H}_{10}=\mathrm{H}_{1} \mathrm{~K}_{3}+\mathrm{K}_{4} \tag{VII-3}
\end{align*}
$$

solving (VII-2) and (VII-3), gives

$$
\begin{align*}
& \mathrm{K}_{3}=\frac{\mathrm{H}_{00}-\mathrm{H}_{10}}{\mathrm{H}_{0}-\mathrm{H}_{1}} \tag{VII-4}\\
& \mathrm{~K}_{4}=\frac{-\mathrm{H}_{00} \mathrm{H}_{1}+\mathrm{H}_{10} \mathrm{H}_{0}}{\mathrm{H}_{0}-\mathrm{H}_{1}} \tag{VII-5}
\end{align*}
$$

By this method, the constants K_{3}, K_{4} and δ_{0} can be found for any setting of the tape unit and adjustable offset unit. With this correction the true siEnal from the hot wire anemometer can be calculated ignoring the gain and offset introduced from the individual electronic instruments used in data processing.
B. The Tape Recorder Signal-To-Noise Ratio And DC Offset Input signals to the tape recorder are amplified or attenuated so that the maximum or minimum voltage is +1.414 volts. The signal-to-noise ratio of the recorder at 30 ips (inch per second) speed is 44 DB or Es/en $=160$. Thus the noise level can be expected to be 0.62% of 1.414 or +0.009 volts. Consider a bridge voltage signal of 1.414 volts maximum with 5% fluctuation due to turbulence. It is clear that the noise is of the order of $0.6 / 5$ or 12% of the fluctuating sicgnal. With fluctuation of the order of 2.5% of the mean, the noise can be over 20%. However, if the noise voltage is eliminated to a maximum of 1.414 volts then the error in the fluctuating quantity is of the order of 0.6%.

This procedure was, in fact, followed and errors due to tape recorder noise can be expected to be less than 1.0%. The DC offset potentiometer are readable within 0.001 volt.
C. The Sensitivity Of Radial velocity Determination To The Measured Value of Bridse Voltage

Recall from equations ($V-1$) and ($V-20$),

$$
\begin{align*}
\mathrm{Ve}_{1} & =\alpha_{S 1}+\alpha_{S 2}\left(E b_{1}^{2}\right)+\alpha_{S 3}\left(E b_{1}^{4}\right) \tag{VII-12}\\
& =\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot S_{1}^{\frac{1}{2}}\left(1+\frac{S_{2}}{2 S_{1}}+\frac{S_{3}}{2 S_{1}}-\frac{1}{8} \frac{S_{2}^{2}}{S_{1}^{2}}\right) \tag{VII-13}\\
\mathrm{Ve}_{2} & =\alpha_{T 1}+\alpha_{T 2}\left(E b_{2}^{2}\right)+\alpha_{T 3}\left(E b_{2}^{4}\right) \tag{VII-14}\\
& =\overline{\mathrm{Vs}} \cdot \cos \alpha \cdot T_{1}^{1}\left(1+\frac{T_{2}}{2 T_{1}}+\frac{T_{3}}{2 T_{1}}-\frac{1}{8} \frac{T_{2}^{2}}{T_{1}^{2}}\right) \tag{VII-15}
\end{align*}
$$

Because S_{2} and S_{3} contain r_{s} and r_{n} terms, so it is negligible compared to S_{1}. As first approximation, we assume $1+G_{1}$ and $1+G_{2}$ are constant.
(VII-14) divided by (VII-15), gives

$$
\frac{V e_{1}}{V e_{2}}=\frac{S_{1}^{\frac{1}{2}}\left(1+G_{1}\right)}{T_{1}^{1 / 2}\left(1+G_{2}\right)}
$$

or

$$
\frac{V e_{1}\left(1+G_{2}\right)}{V e_{2}\left(1+G_{1}\right)}=\left(\frac{S_{1}}{T_{1}}\right)^{\frac{1}{2}}
$$

defined

$$
\begin{equation*}
\Phi=\frac{V e_{1}\left(1+G_{\lambda}\right)}{V e_{2}\left(1+G_{1}\right)} \tag{VII-18}
\end{equation*}
$$

$$
\therefore \quad \Phi^{2}=\frac{S_{1}}{T_{1}}=\frac{\left(1+k^{2}\right)+2\left(1-k^{2}\right) R+\left(1+k^{2}\right) R^{2}}{\left(1+k^{2}\right)+2\left(1-k^{2}\right) R+\left(1+k^{2}\right) R^{2}}
$$

with $\alpha=45^{\circ}$.
If $R=0$ then $\Phi=1$. Now assume $R \neq 0$, solving the above equation, gives

$$
R^{2}-\left(\frac{\Phi^{2}+1}{\Phi^{2}-1}\right)\left(\frac{2\left(1-k^{2}\right)}{\left(1+k^{2}\right)}\right) R+1=0
$$

or

$$
\begin{equation*}
R=\left(\frac{\Phi^{2}+1}{\Phi^{2}-1}\right)\left(\frac{1-k^{2}}{1+k^{2}}\right) \pm \sqrt{\left(\left(\frac{\Phi^{2}+1}{\Phi^{2}-1}\right)\left(\frac{1-k^{2}}{1+k^{2}}\right)\right)^{2}-1} \tag{VII-19}
\end{equation*}
$$

define

$$
\begin{aligned}
\psi & =\left(\frac{\Phi^{2}+1}{\Phi^{2}-1}\right)\left(\frac{1-k^{2}}{1+k^{2}}\right) \\
\therefore \quad R & =\psi+\left(\psi^{2}-1\right)^{\frac{1}{2}} \\
& =\psi \pm\left(\psi-\frac{1}{2 \psi}-\frac{1}{8 \psi^{3}}-\frac{1}{16 \psi^{5}}-\cdots\right) \\
& = \pm\left(\frac{1}{2 \psi}+\frac{1}{8 \psi^{3}}+\frac{1}{16 \psi^{5}}+\cdots\right)
\end{aligned}
$$

The sign of R indicated the direction of radial velocity, we take positive sign in order to simplify the discussion.

$$
R=\frac{1}{2 \psi}+\frac{1}{8 \psi^{3}}+\frac{1}{16 \psi^{5}}+\cdots
$$

From experimental measurements, Φ is usually between 0.8 and 1.3 for $k=0.35$, so that ψ is large.

Therefore,

$$
\frac{1}{2 \psi} \gg \frac{1}{8 \psi^{3}}
$$

We have,

$$
\begin{align*}
R & \cong \frac{1}{2 \psi}=\frac{1}{2}\left(\frac{\Phi^{2}-1}{\Phi^{2}+1}\right)\left(\frac{1+k^{2}}{1-k^{2}}\right) \\
& =\frac{1}{2}\left(1+\frac{-2}{\Phi^{2}+1}\right)\left(\frac{1+k^{2}}{1-k^{2}}\right) \tag{VII-21}
\end{align*}
$$

differentiating (VII-21), gives

$$
\begin{equation*}
\left.d R=2\left(\frac{1+k^{2}}{1-k^{2}}\right): \frac{\Phi d \Phi}{\left(\Phi^{2}+1\right)}\right) \tag{VII-22}
\end{equation*}
$$

differentiated (VII-18), (VII-12) and (VII-14) individually, gives

$$
\begin{align*}
& \mathrm{d} \Phi=\left(\frac{1+G_{2}}{1+G}\right)\left(\frac{V e_{2} d V e_{1}-V e_{1} d V e_{2}}{V e_{2}^{2}}\right) \tag{VII-23}\\
& d V e_{1}=2\left(\alpha_{\mathrm{S} 2} \mathrm{~Eb}_{1}+2 \alpha \alpha_{3} E \mathrm{~Eb}_{1}^{3}\right) d E b_{1} \tag{VII-24}\\
& d V e_{2}=2\left(\alpha \mathrm{t}_{2} \mathrm{~Eb}_{2}+2 \alpha \mathrm{t}_{3} \mathrm{~Eb}_{2}^{3}\right) \mathrm{dEb}_{2} \tag{VII-25}
\end{align*}
$$

Therefore, we have the following equations:

$$
\begin{align*}
& \mathrm{Ve}_{1}=\alpha_{\mathrm{s} 1}+\alpha \mathrm{s}_{2}\left(\mathrm{~Eb}_{1}^{2}\right)+\alpha_{\mathrm{s} 3}\left(\mathrm{~Eb}_{1}^{4}\right) \tag{VII-12}\\
& \mathrm{Ve}_{2}=\alpha \mathrm{t}_{1}+\alpha \mathrm{t}_{2}\left(\mathrm{~Eb}_{2}^{2}\right)+\alpha \mathrm{t}_{3}\left(\mathrm{~Eb}_{2}^{4}\right) \tag{VII-14}
\end{align*}
$$

$$
\begin{align*}
d V e_{1} & =2\left(\alpha_{S_{2} E b_{1}}+2 \alpha \mathrm{~S}_{3} E b_{1}^{3}\right) d E b_{1} \tag{VII-24}\\
d V e_{2} & =2\left(\alpha_{2} E b_{2}+2 \alpha \mathrm{t}_{3} E \mathrm{~Eb}_{2}^{3}\right) d \mathrm{~Eb}_{2} \tag{VII-25}\\
\Phi & \left.=\frac{V e_{1} 1+G_{2}}{V e_{2} 1+G_{1}}\right) \tag{VII-18}\\
d \Phi & =\left(\frac{V e_{2} d V e_{1}-V e_{1} d V e_{2}}{V_{2}^{2}}\right)\left(\frac{1+G_{2}}{1+G_{1}}\right) \tag{VII-23}\\
d R & =2\left(\frac{1+\mathrm{k}^{2}}{1-\mathrm{k}^{2}}\right)\left(\frac{\Phi d \Phi}{\left(\Phi^{2}+1\right)^{2}}\right. \tag{VII-22}
\end{align*}
$$

Consider these calculations;
$\mathrm{k}=0.35, \mathrm{Ve},=26.10981, \mathrm{Ve}_{2}=20.21416, \mathrm{mb}=1.29166$,
$E b_{2}=4.21687, G_{1}=G_{2}=0$
substituted into above equations, we have

$$
\begin{aligned}
& \Phi=1.29166, \quad 2\left(\frac{1+k^{2}}{1-\mathrm{k}^{2}}\right)=2.5584 \\
& 2 \mathrm{Ve}_{2}\left(\alpha_{\mathrm{s} 2} \mathrm{~Eb}_{1}+2 \alpha_{53} \mathrm{~Eb}_{1}^{3}\right) / \mathrm{Ve}_{2}^{2}=1.65743 \\
& 2 \mathrm{Ve}_{1}\left(\alpha \mathrm{t} 2 \mathrm{~Eb}_{2}+2 \alpha_{3} \mathrm{~EB}_{2}^{3}\right) / \mathrm{Ve}_{2}^{2}=1.81317
\end{aligned}
$$

Therefore

$$
\mathrm{dR}=0.46411\left(1.65743 \mathrm{aEb}_{1}-1.81317 \mathrm{dEb}_{2}\right)
$$

dEb can occur as a result of
A. hot wire anemometer drift
B. error in reading of $D C$ offset
C. goodness of polynomial curve fit

Hot wire anemoneter drift is +0.005 volis in 15 hours or , say, 0.003 volts over the period of a complete experiment. (about 7 hours) The DC offset reading is read from a digital volt meter which is readable within 0.001 volt.

The standard deviation of the curve fit is 0.004 volts in Eb_{1} or Eb_{2}. Therefore, the maximum error is 0.008 volts. So, for $d E b_{1}<0, \mathrm{aEb}_{2}<0$,

$$
\begin{aligned}
d R & =0.46411(-1.65743+1.81317)(0.008) \\
& =0.000578
\end{aligned}
$$

for $\mathrm{dEb}_{1}>0, \mathrm{dEb}_{2}<0$,

$$
\begin{aligned}
d R & =(0.46411)(1.65743)(0.008) \\
& =0.01289
\end{aligned}
$$

Also $\tan \theta=R$, and at small angle $d \theta \sim d R$. So a $d R$ of $0.000578 \sim 0.01289$ radian or θ can be resolved to be

$$
\begin{aligned}
& \mathrm{d} \theta=(0.000578)(3000 / 2)=0.02760 \text { degree } \\
& \mathrm{d} \theta=(0.01289)(300 / 2)=0.61550 \text { degree }
\end{aligned}
$$

and
For this calculation,

$$
R=\frac{1}{2}\left(\frac{1+0.35}{1-0.35}\right)\left(\frac{1.29166-1}{1.29166+1}\right)=0.16021
$$

the percentage error is

$$
\frac{d R}{R}=\frac{0.000578}{0.16021}=0.36 \%
$$

and

$$
\frac{d R}{R}=\frac{0.01289}{0.16021}=8.05 \%
$$

$d R / R=8.05 \%$ is the maximum error with $d E b_{1}>0$ and $d E b_{2}<0$. Usually, $d E b_{1}$ and $d E b_{2}$ have the same sign. Therefore, the percentage error is always less than 8.05\%. If $\alpha \mathbb{E} b_{1}$ and $\mathrm{d}_{\mathrm{Ib}}^{2} 2$ have the same sign, the error in R (ie $d R$) is decreased rapidly.

The total turbulent energy in longitudinal and radial direction as calculated by two different methods are listed in Table VII-1. Method A is calculated from the power spectrum, and method B is calculated directly from the time series of the velocity.

The power spectrum is first calculated from the signal then the turbulent energy is calculated from

$$
\overline{V_{i}^{2}}=\int_{0}^{\infty} E_{i}(f) d f \quad \text { NETHOD A }
$$

where $E_{i}(f)$ is the auto-power-spectrum in i-direction. The turbulent energy is calculated by method B from the following equation,

$$
\overline{v_{i}^{2}}=\int_{0}^{\infty}\left(v_{i}(t)\right)^{2} f t \quad \text { METHOD B }
$$

Table VII- 1 shows that the measured values, $\left.\left.V s^{\prime}\right)_{A}, V s^{\prime}\right)_{B}$, $\left.\mathrm{Vn}^{\prime}\right)_{A}$, and $\left.\mathrm{Vn}{ }^{\prime}\right)_{B}$, are almost same, except for a few points. This, along with the discussion in chapter VII, gives us the confidence that the methods used in this work are correct.

```
TABLE VII-1.
---------------
COMPARISON OF TURBULENT INTENSITIES BY METHOD A AND METHOD B
```

Method A is by Power Spectrum Measurement.
Method B is by Time-series Measurement.

	$\mathrm{Re}_{\text {Max }}=2.53 * 10^{5}$				$R e_{\operatorname{Max}}=2.53 * 10^{5}$		
Position	y / r	$\left.\overline{V_{s}^{2}}\right)_{A}$	$\overline{\left.{V s^{\prime}}^{2}\right)_{B}}$	Deviation	$\overline{\left.\mathrm{m}^{2}\right)_{A}}$	$\overline{\left.V_{n}^{2}\right)_{B}}$	Deviation
ML2	1.0	30.1	31.1	3.3\%	22.8	23.5	2.8\%
	0.5	71.1	69.2	3.6	34.0	31.2	9.0
	0.25	75.8	79.4	4.9	32.0	33.2	3.7
	0.10	69.6	76.5	9.2	33.5	34.4	2.7
	0.05	92.6	74.1	25.0	28.2	29.5	4.7
	0.0187	63.5	66.8	5.3	32.7	34.8	6.4
VS	1.0	30.4	30.7	1.3	22.8	23.4	2.5
	0.5	57.5	66.7	16.0	29.2	29.1	0.4
	0.25	66.4	77.9	17.2	30.3	31.8	5.1
	0.10	84.5	80.4	5.5	32.8	32.8	0.0
	0.05	81.8	81.6	0.4	39.6	35.8	10.8
	0.0187	78.7	82.9	5.4	27.7	27.5	0.9
ML2	1.0	30.0	31.7	5.9	23.3	23.5	0.9
	0.5	62.4	66.3	6.3	30.4	32.1	5.9
	0.25	77.5	76.9	0.8	31.1	31.8	0.2
	0.10	78.2	81.5	4.2	26.7	26.8	0.0
	0.05	63.4	65.0	2.6	25.0	24.7	1.3
	0.0187	65.1	56.2	16.0			
VL2	1.0	30.6	35.7	16.7	23.1	26.9	16.3
	0.5	73.5	70.6	4.1	32.2	32.5	0.8
	0.25	75.3	80.8	7.3	30.6	34.3	12.1
	0.10	74.0	81.9	10.5	25.3	28.1	11.0
	0.05	51.6	55.2	6.9	20.7	21.5	4.1
	0.0187	36.6	37.3	1.8	9.4	10.1	7.6

VIII PROBE CONFIGURATION

The sensor itself is usually tungsten or platinum alloy or film (quartz coated with platinum), soldered or welded at each end to supporting needles. All the work done earlier - by others attempted to minimize the degree of the interference of the flow caused by the wire support. However, there have been no.good criterion to judge the results.

At first, we used the probe manufactured by Thermo-system Inc. for sommercial use in cross flow. This is a film probe with dimensions $0.002^{\prime \prime}$ diameter and 0.04" long. The constant value of k measured was 0.35 and α is $45^{\circ} \pm 1^{\circ}$. (see Appendix I) This probe was placed in a rectangular channel. The probe configuration and the dimensions of this rectangular channel are shown in Figure VIII-1 and VIII-2.

front view

FIGURE VIII-1. SGHEMATIC DIAGRAM OF X-FILM PROBE IN CROSS FLOW.

The probe was positioned as shown in Figure VIII - 2 and measurements made at the centreline ($y / r=1.0$) and at various positions between the centerline and the lower wall. The measured mean and fluctuating quantities are tabulated in Table VIII-1. The transverse velocities across th smooth channel diameter should, of course, be zero. But the calculated transverse velocities in Table VIII-1 showed significant non-zero values, except those measured at the centerline position. This result raised some questions as to the possibility of wire support interference.

This same probe was than placed at the axis of a smooth circular pipe but this time with the alignment as shown in Figure VIII-3 and Figure VIII-4.

FIGURE VIII-2. SCHEMATIC DIAGRAM OF RECTANGULAR CHANNEL
AND PROBE POSITION.
$\frac{\text { TABLE VIII-1 }}{\text { (Cross Flow) }}$
At centerline $(y / r=1.0)$

pitot tube velocity	$\overline{\mathrm{Vs}}$	$\overline{\mathrm{Vn}}$	$\sqrt{\overline{V_{s}^{2}} / \overline{V s}}$	$\sqrt{\overline{V_{n}^{2}} / \overline{V s}}$	$-\overline{V_{s}^{1} V n^{1}}$
62.30	62.70	-0.176	3.02%	3.06%	-0.011
56.18	55.65	0.245	3.00	3.16	-0.126
49.12	49.14	0.048	3.02	3.22	-0.073
41.25	41.44	0.000	3.01	3.31	-0.086
34.38	34.61	-0.223	3.08	3.43	-0.071
24.49	24.44	0.000	3.20	3.60	-0.064
20.62	20.61	0.122	3.28	3.68	-0.048
11.97	12.02	-0.021	3.51	3.84	-0.036

Y / r	$\overline{V s}$	$\overline{V n}$	$\sqrt{\overline{V_{s}^{2}} / \overline{V s}}$	$\sqrt{\overline{V_{n}^{2}} / \overline{V s}}$	$-\overline{V_{s} V_{n}{ }^{2}}$
1.0	62.70	-0.176	3.02	$\%$	3.06%
0.75	63.22	2.190	3.64	3.37	-0.011
0.50	60.88	2.654	4.88	3.97	-2.918
0.25	56.73	3.203	5.97	4.45	-4.231
0.125	53.35	3.757	6.42	4.49	-4.400
0.025	52.06	3.822	6.48	4.48	-4.733

end view

FIGURE VIII-3. SCHEMATIC DIAGRAM OF X-FILM PROBE IN END FLOW.

FIGURE VIII-4. SCHENATIC DIAGRAM OF REFERENCE CHANNEL AND PROBE POSITION.

In such an orientation the possibility of wire supprot interference is decreased for a probe of this design. The measured quantities obtained in the experiment are tabulated in - Table VIII-2. These results are also plotted in Figure VIII-7, (19)

VIII-8, \& VIII-9, which compare the Laufer's data, the end \dot{f}_{\perp} Jw data and the Boundary Layer Probe data. From the T able VIII-2 it is now seen that $\overline{\mathrm{Vn}}$ is quite smail at all radial positions across the pipe. The longitudinal turbulent intensities are slightly higher than those of Laufer's data, and the radial ones are lower than those of Laufer's ${ }^{(1)}$ data. This could because the probe used by Laufer in his experiment was the one we used at the very begining and with the same arrangement. This increase in longitudinal energy and decrease in radial energy is reasonable because the interference of the wire support is reduced to some extent. This reduction of interference prevents the Iongitudinal turbulence energy from becoming radial turbulence energy by the interference of the wire support. The Reynolds shear stress agree well with the linear relationship. The result thus clearly sugsest that wire support interference takes place with this configuration with some arrangement in flow.

From the knowledge obtained in these experiments a special probe was designed. This probe is such that its wires are parallel to each other and lie in a vertical plane with all wire support downstream of the wire. Its three views

TABLE VIII-2.

(End Flow)

y / r	$\overline{\mathrm{Vs}}$	Vn	$\sqrt{\sqrt{s^{2}}} / \mathrm{Vs}$	$\sqrt{V_{n}^{2}} / \mathrm{Vs}$	$-\overline{V^{\prime} V^{\prime}}$
1.0	37.17	0.036	3.31 \%	2.58%	-0.043
0.8	35.77	-0.08	4.05	2.72	-0.534
0.6	33.81	-0.13	5.18	3.17	-0.985
0.5	32.60	-0.12	5.60	3.30	-1.142
0.4	31.32	-0.11	5.99	3.45	-1.298
0.3	29.64	-0.09	6.52	3.60	-1.511
0.2	27.69	-0.09	6.78	3.63	-1.541
0.128	25.30	-0.07	7.00	3.64	-1.506

are shown in figure viIII-5.

FIGURE VIII-5. SCHEMATIC DIAGRAM OF BOUNDARY LAYER PROBE. Comparing the probes in Figures VIII-3. \& VIII-5 it is seen that the big difference between them is the mounting configuration of the support. Also the minor difference between them is that the probe of Figure VIII-3 is a: straight-one, but Figure VIII-5 is a curved one. We called this special designed probe the "Boundary Layer Probe". This probe was placed in the same smooth circular pipe as shown in igure

The measured quantities obtained in the experiment were tabulated in Table VIII-3 and also plotted in Figures VIII-7, VIII-8, and VIII-9. Again, the calculated $\overline{\mathrm{Vn}}$'s are very small at all radial positions across the pipe. The longitudinal and radial turbulent intensities have similar values to those in end flow. Reynolds shear stress agrees well with the linear relationship. The results found in end flow and boundary layer probe flow experiments assures us that the wire support really causes some interference in flow and data of other investigations which used the type of probe (including Laufer) are open to some question.

TABLE VIII-3.

(Boundary Layer Probe Flow)

Āt centerli pitot tube velocity	$\frac{(y / r}{\overline{V s}}$.0) $\overline{\mathrm{Vn}}$	$\sqrt{\mathrm{Vs}^{2}} / \mathrm{Vs}$	$\sqrt{\overline{V_{n}^{2}}}$	- Vs ${ }^{1} \mathrm{Vn}{ }^{\text {a }}$
56.25	56.28	0.024	3.52 \%	2.92 \%	-0.348
53.83	53.87	-0.022	3.50	2.91	-0.270
50.60	50.66	-0.048	3.48	2.95	-0.257
47.81	47.82	-0.016	3.51	2.96	-0.257
44.75	44.73	-0.067	3.51	3.00	-0.240
40.92	40.89	-0.002	3.50	3.04	-0.184
37.65	37.63	0.049	3.47	3.00	-0.147
33.88	33.91	0.038	3.52	3.03	-0.130
29.85	29.99	0.049	3.59	3.10	-0.118
25.72	25.55	-0.048	3.60	3.15	-0.081
21.32	21.29	-0.025	3.59	3.14	-0.055
15.44	15.50	0.008	3.65	3.16	-0.026

y / r	Vs	Vn	$\sqrt{V^{2}}{ }^{1} / \mathrm{Vs}$	$\sqrt{V_{n}^{2}} / \mathrm{Vs}$	$\overline{-V s^{\prime} V n^{\prime}}$
1.0	36.17	0.021	3.50%	3.01 \%	-0.135
0.9	36.06	0.006	3.57	3.04	-0.158
0.8	35.62	0.021	4.04	3.17	-0.414
0.7	34.81	-0.004	4.62	3.38	-0.681
0.6	33.89	-0.015	5.11	3.59	-0.871
0.5	32.75	0.028	5.59	3.83	-1.081
0.4	31.55	0.008	6.08	4.00	-1.250
0.3	30.20	0.017	6.42	4.14	-1.387

\square

Li					－－						$1=$		
					－		Rio＝ 50,	5000，	$\mathrm{V}=1$	$\left.{ }^{\frac{\tau_{0}^{\prime}}{\rho}}\right)^{\frac{1}{2}}$			
\cdots				\div	二		Chen ${ }^{-1}$ Chen＇ Laure	$\begin{aligned} & \text { data } \\ & \text { sia } \\ & \text { cos } \end{aligned}$	$\begin{aligned} & \text { (En } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { flow } \\ & \text { oundary } \end{aligned}$	y Lay	${ }^{\text {er }} \mathrm{Pr}$	robe）
星	$1 \cdot 6$			\cdots	二					\because			
\square	1.5			\square	－			－	0	13－1	－\because		
－	11.4												
\square			\because	\because	\cdots		7	\cdots	－2	\because	－－		
	1.3												
	1.2		－	\square	\cdots				\square	－			
－	－			Z	－1，			\because	－				
	4.1								－－				
	10	\because	－－a：	－	$1-$	－	－	－	IT	\cdots	\cdots		
	7.0				\square			$\square \square$	\square				
${ }^{*} \mathrm{~s}$			\cdots	－	\square	1	－$: \square$	T15	\square	－+	\square		\square
	0.9		\bigcirc		．	1－：	\square	＋1＋10	$\underline{\square}$	\square	＋+1		
$\square \pm$	0.9		\square	\cdots	－	9	T：F	－	品		7		
	0.8		－	\cdots	\square	1.	$1 \cdot 1$	－	$1 \sim$	－			
\because		\square	\square	－	$=$	－		II：	\square	0	S．．．．		
	0.7		\cdots	－－	－			\cdots	$=$	\bigcirc	¢		
－＝		$\therefore=-$	\square	\cdots	－－	：－	－	\square		\square			
	0.6		\square		＝－		－-1	－					
	0.6	\cdots	\cdots	－	－－			－	－	－	－：		
\square	0.5	二	\square	－	－	\cdots	－	\square	$\square=$	$\underline{\square}$			
$=$	－ 9		\square		\square	O		\cdots	\cdots	\cdots			
			\square	二－	\square	－	－		프늘	0			
		\square		\square	\square					\square			
	0.3		\square	－	－		$7 \cdots$						
		0%	10	20.	30.	.40	0.50.	6%	70	． 80.9	！9 1．		
			－－			$\cdots: \bar{y}$	r						

FIGURA VIII－8．RADIAL IURSULTMT INTATSITY．

IX PRESENTATION OF DATA

The experiments were made in the corrugated pipe (see Figure IV-2). Data were taken at $y / r=1.0,0.5,0.25,0.10$, 0.05 and 0.0187 where r is the radius and y is the distance from wall. : The calibration curve was made in the reference channel (see Figure IV-1).
A. Distribution of Mean Velocities

Mean velocity measurements and all the other turbulent quantities were carried out at $y / r=1.0,0.5,0.25,0.10$, 0.05, 0.0187 at different sections designated as VS, ML1, ML2, VL2, as shown in Figure IV-2. Because the corrugated pipe is not a pipe of uniform diameter equal values of y / r at different sections does not mean the equal position from centerline. D.ue to the non-uniform diameter of the corrugated pipe; the Reynold number is defined as:

$$
\operatorname{Re}_{\operatorname{Max}}=\frac{\mathrm{D} \cdot \overline{\mathrm{VSO}}}{-\bar{\nu}}
$$

where D is the diameter of the pipe measured at Vs section, ie.8.550", and $\overline{\text { Vso }}$ is the longitudinal velocity at the centerline measured at VS section. For $\overline{\text { Vso }}=25.40 \mathrm{ft} / \mathrm{sec}, \mathrm{Re}_{\mathrm{Max}}=$ $1.15 * 10^{5}$, and for $\overline{\mathrm{Vso}}=56.22 \mathrm{ft} / \mathrm{sec}, \operatorname{Re}_{\mathrm{Max}}=2.53 \% 10^{5}$. These are the two Reynold numbers used in this work.

1. Distribution of longitudinal velocity, $\overline{\mathrm{Vs}}$

Longitudinal velocity data are tabulated in Table IX-1 and Table IX-2. They are also plotted in Figure IX-1 and Figure IX-2. The diagrams show no difference in $\overline{\mathrm{Vs}}$ for all the sections from $y / r=1.0$ to $y / r=0.5$ but closer to the wall there

TABLE IX-1

$\mathrm{Re}_{\text {Max }}=1.15^{* 10^{5}}$

Position -. --	y / r	$\overline{\mathrm{Vs}}$	$\overline{\mathrm{Vn}}$			
NLI 1	1.0	25.74	0.21	9.52\%	7.96\%	0.05
	0.5	20.53	0.06	18.19	11.24	3.38
	0.25	18.28	0.46	19.92	12.20	2.88
	0.10	14.89	0.92	24.38	14.16	3.31
	0.05	13.14	1.49	26.36	14.46	3.41
	0.0187	9.07	0.93	23.52	17.36	2.28
VS	1.0	25.40	0.29	9.09	7.88	0.06
	0.5	21.81	0.23	15.58	10.35	2.70
	0.25	18.68	0.26	19.94	12.14	3.08
	0.10	16.37	0.04	23.31	12.79	2.65
	0.05	15.56	-0.12	22.82	13.76	2.03
	0.0187	15.51	-0.42	21.61	12.35	0.63
ML2	1.0	25.27	0.29	9.39	7.93	-0.21
	0.5	21.79	0.35	15.98	10.31	2.82
	0.25	17.37	0.06	21.59	12.68	3.25
	0.10	14.10	-0.16	24.13	13.02	2.10
	0.05	11.62	-0.35	24.40	13.73	0.73
	0.0187	10.32	-0.54	23.07	12.97	-0.84
VL2	1.0	25.33	0.30	9.20	8.01	-0.02
	0.5	20.94	0.29	17.56	10.89	3.23
	0.25	17.50	0.46	21.15	12.70	3.28
	0.10	12.31	1.09	26.54	15.19	3.00
	0.05	8.86	0.60	22.64	15.82	. 1.51
	0.0187	8.06	-0.00	16.23	10.34	-0.25

TABLE IX-2.
$R e_{\operatorname{Max}}=2.53 * 10^{5}$

Position	y / r	$\overline{\mathrm{Vs}}$	Vn	$\sqrt{\overline{V^{2}}{ }^{2}} / \overline{\mathrm{Vs}}$	$\sqrt{\overline{V_{n}^{2}}} / \overline{V s}, c c a r, \overline{V s^{1} V n^{1}}$	
	1.0	55.79	0.88	10.00\%	8.68\%	-2.05
	0.5	47.22	0.95	17.62	11.82	18.42
	0.25	40.66	1.71	21.92	14.16	20.67
ML1	0.10	33.98	3.81	25.74	17.26	20.92
	0.05	30.58	5.14	28.15	17.77	21.43
	0.0187	21.47	5.18	38.07	27.49	31.17
	1.0	56.22	0.82	9.86	8.60	-0.06
	0.5	47.26	0.57	17.28	11.42	15.75
	0.25	41.03	0.51	21.51	13.75	20.47
VS	0.10	39.17	0.45	22.89	14.61	18.18
	0.05	37.77	0.02	23.91	15.83	14.94
	0.0187	39.87	-0.35	22.84	13.14	4.96
	1.0	57.20	0.75	9.85	8.48	0.01
	0.5	46.24	0.53	17.61	12.26	17.45
	0.25	41.24.	0.61	21.26	13.67	18.72
ML2	0.10	33.17	-2.08	27.21	15.60	14.71
	0.05	28.02	-3.67	28.77	17.73	6.16
	0.0187	24.37	-4.59	30.76	17.52	-5.87
	1.0	56.94	0.82	10.49	9.11	3.20
	0.5	46.19	0.74	18.19	12.34	17.84
	0.25	37.78	0.56	23.79	15.49	23.08
VL2	0.10	30.93	1.83	29.26	17.13	18.74
	0.05	18.76	2.37	39.59	24.73	15.77
	0.0187	15.27	0.32	39.99	20.83	0.76

FIGURE IX-1. LONGITUDIFAL vEAN VELOCITY DISTRIBUTION ACROSS FLOW CHATMEL.

\therefore.													－．
	－－－					－			－－－				\cdots.
1111		1				1			$1+$	$\ldots+1$			
1．1，	． i －					\cdots							
1.1		－1：			1－1．	\ldots	\cdots		－＋1 ！	－！	＋－t \ldots		
＋－1．		$\underline{+}$			－1－							－－－．	－．．．
－		＋							15－				
							eryax						
$1+$							－10	MII－－	－				
1					－． 1				－				
							$\rightarrow-0$	VL2					
							x	M12					
$\begin{aligned} & \text { +i } \\ & \hdashline-1 \end{aligned}$	－ft	sec）	\square			－－－．－		VS		\div			$+1$
－1．							＋1．						$+$
							1	T	I				
$+1$	60								－T．				
$1+$							－．．．．：						
				\cdots	\cdots					－-1			
				1.	－－4			\because		－	：＋	－－－－	\cdots
	－55												
1											－	\square	
1				\square									
				－i，						－1			
	50							$\underline{2}$		1			
							\rightarrow			＋－6．－7	$\underline{+1}+$		
－1									1	－	－	1	
	＋									－1：	＋	1	
1＋1	45					－	－－		1＋1				
＋1	4												
\square	1	＋					L	－1－1	＋	－－－1	＋－	－1．0］	
	$\underline{\square}$								$\underline{\square}$		－		
	40								\square			$\cdots+$	
		$1{ }^{2}$	－	7			＋1，						
$-1+1: 1$		18	$\cdots 1$	＋			$\square:$		$-1+$		－1		
		1	$\cdots<1$							$+$			$1+1$
	35	1	\％ 7					；	！	＋＋1	1		
		1	17	－									
		1		$\cdots \quad 1$				T		T＋1			
			L－	$\begin{aligned} & 1 \\ & \hline \end{aligned}$			111			1			
	30	1		I									
		12		1	equa	$1 \cdots 01$	tance	1ron	cent	arıın			
		1＊				－－	＋i＋i						
$+1$		17	F		．		1．1．1				＋		
＋1：	25	47	6ip		－sit	$i o n$		！					
		k	tp	1120	0 OSt	$10 n$							
		H－						i	\vdots				
		1		\square		\cdots	1	1：11	＋1．＋1	\ldots	$1+$		
		－					！！！	$!$		$\therefore \quad 1$	＋1＋		
－													
		0									${ }^{-1}$		
		－					1	1：1：			\cdots		
								$\underline{-1}$	＋				
	15							：			，		
！！							－	－－．．．					
－1：							＋	！					
1								1			1	T	1
	10											$\underline{1}$	
	：					－	1＋1	1：1：	111	\square	＋．		
				；		－：	\cdots	－ 1	1－			\ldots	
－i	± 5		－-		$+$	$\underline{+}+$	－	$1+1+$	＋1＋+		－	－！：	
												1	
－1．．．	$1:$				1．11	1			T；	1			
－i：		＋		1，	1						1， 1		
	0						$\cdots!$			I	1－1－1		
			$1-0$	10	－						－		
		Q－ 0				4		O．．．0．	$7 \cdots 0$	8－0	9．．1	O－	－
						$\cdots-\mathrm{y}$	1 r				－		
										－－－－－		．．．．．．－	－－－－－
											－．．．		
									\cdots	$\cdots \div$			
		FIGUF	$R \mathrm{~S}=$	2	ONGIT	UDIN	L MEA	AN VFI	OCITY	DIST	$R I B U T$	ION	\cdots
					GROSS	S FLOT	TGİA	埌要上					
－					T．．．．			$\xrightarrow{\rightarrow}$	\cdots	－－－－－	\cdots	\cdots	$\cdots+\cdots$
									，				
＋1！	－1－1	，		＋									
$\underline{+}$				！				＋					

are difference. At $R e_{\text {Max }}=1.15 * 10^{5}$ the curves show less deviation. However, at $\operatorname{Re}_{\mathrm{Ha}} \mathrm{x}=2.53 * 10^{5}$ there is a sharp decrease in the region of $\mathrm{y} / \mathrm{r}=0.0$ to $\mathrm{y} / \mathrm{r}=0.1$. If we draw the line connecting the tips of the peak then the sharp change in $\overline{\mathrm{Vs}}$ occurs near this line. This would suggest that the flow is suddenly trapped beneath this line by the valley. The longitudinal velocity is higher in wall region (from $\mathrm{y} / \mathrm{r}=0.0$ to $\mathrm{y} / \mathrm{r}=0.2$) at the Vs section than at other sections. This is due to the fact that Vs section has the small crosssectional area. Also, notice that between $\mathrm{y} / \mathrm{r}=0.05$ and $\mathrm{y} / \mathrm{r}=$ 0.0 , there appears a peak in the velocity for the VS section. This could be due to a local jet flow in this wall region. Such a jet could exist because the flow at MI2 section is forced to pass the smaller area of VS section then open to a larger area of the IIL1 section.
2. Distribution of radial velocity, $\overline{\mathrm{Vn}}$

The sign of radial velocity indicates the direction of the velocity vector. For the region below the centerline, the positive sign means the velocity vector is toward the wall and the negative sign means toward the center. The radial velocity data are tabulated in Table IX-1 and Table IX-2. They are also plotted; in Figure IX-3 and Figure IX-4.

At $\operatorname{Re}_{\mathrm{Max}}=1.15 * 10^{5}, \overline{\mathrm{Vn}}$ is zero from $\mathrm{y} / \mathrm{r}=1.0$ down to $\mathrm{y} / \mathrm{r}=$ 0.3 independent of the sections chosen. For ML2 and VS,

FIGURE IX-3. RADIAL MGAN. VEOCITY DIGRRIBUTICN ACROSO, FLON CEAMKDL

					-								
					..-..						-		
H11	111	II!	1		IT	IT 1	T ${ }^{+}$		T	II	T		
1													
$11+$					$\because \square-+$								
+1:													
+ +								--+..					
$4+$								2.53*	-5				
H:1+1	\square	$\underline{+}+$			-	-	Nax	2:33\%					
		\pm						IIIT		-			
$+1+$	+1	$\underline{\square}$			\square		\square	VE2			-		
		\square			71		- 0	Viz				\cdots	
		$\stackrel{+}{+-1}$					- $-\triangle$	VS					
		\cdots			\because								
							$1+$						
$\overline{V n}$	(ft/s	sec)											-
							H-	\square			1		
										\square			
	-6.		t1p	1 1ne.	gos	On							
		12								+1			
							T		H		T		
	-5.							-		,			
		1		7				-			+		
		1									T		
	1												
		1											
		1	V			-		\square	-	1! 1			
			\cdots			T				$\underline{+}$	T1	- +	
			i		1	$\bigcirc 1$				-		+1	
		${ }^{2}$			- !	T				T,			
			$1-1$								\%		
		T-							$+1$	+1,		$\underline{+}$	
H-1		-1	S 1		$\xrightarrow{-}$								
	1					\checkmark							
	$\because 1$									$\underline{-}+$	\bigcirc		
	\square		-								-	-i	
	0.		- -1	7-									
		\%											
		-	1							+1.1			
\dagger	$\frac{1}{-1}$	-	\square										
		1	\%										
		1			$\underline{1}$								
	-2.	1	1		-								
		11								-1			
		1		1							I:		
\square	-3.	[7]		$\cdots \mathrm{eq}$	al di	istanc	e fr	om cen					
	-3.	-			al	-			terli	ne			
	T	\therefore		7									
		-1	-2			${ }^{-}+$							
\square	-4.	-											
+1T		\rightarrow											
		$1 \times$											
	-5.		tip 1	$\sin \theta$	20s16i	On							
					-	-			,				
									-		-		
y	,	. 0	1	2	0	$4-0$	50	. 60	. $7-0$	8--0,	. $9-1$	0-.	
						- $\mathrm{y} /$							
T-1			- $\mathrm{IX}-4$					ITY -D	ISTRI			-03s -	-
\square	1	IGURW	1X-		$\begin{aligned} & A D I A L I D \\ & E Q H \\ & \hline \end{aligned}$				ISTR	Bu1)	N, AUR	Oso	-

$\overline{\mathrm{Vn}}$ is zero even down to the wall, but for hL1 and VL2, they show higher values. At $\operatorname{Re}_{\mathbb{N a x}}=2.53 * 10^{5}$ the observation for $\overline{\mathrm{Vn}}$ is the same. However, $\overline{\mathrm{Vn}}$ is not zero for all sections at $y / r=$ 1.0 but has a value of about $0.6 \mathrm{ft} / \mathrm{sec}$, we think that this is due to the fact that the corrugated pipe is not perfectly symmetric. We will artificially adjust the zero line upward to give a radial velocity at centerline which is zero. From $\mathrm{y} / \mathrm{r}=1.0$ to $\mathrm{y} / \mathrm{r}=0.25 \overline{\mathrm{Vn}}$ is zero for all sections. For ML1 and VL2, $\overline{\mathrm{Vn}}$ has a positive sign, this means that the velocity vector is flowing toward the wall. For ML2 and VS, $\overline{\mathrm{Vn}}$ has a negative sign which means the flow is going up toward the center. This is reasonable because the fluid should follow the curve of the wall boundary. When fluid passes the VS point, its direction should diverge from the wall slope and change direction toward the wall passing the VL2 point. Smoke trace experiments showed that there really exists a degree of secondary motion as described above. But such observations are only qualitative. Therefore, the measurement of radial velocity is important.
B. Distribution of $V s^{\prime}$ And $V n^{\prime}$

Three relative turbulent intensities were calculated, one relative to the centerline longitudinal mean velocity at each section, one relative to the local mean velocity, and one relative to the friction velocity, $V *$, for $R e_{M a x}=1.15 \% 10^{5}$ and $\operatorname{Re}_{\text {Max }}=2.53 * 10^{5}$. Turbulent intensities relative to centerline axial velocity for radial and longitudinal direction are tabulated in T able $I X-3$ and $I X-4$ and are also plotted in F igure IX-5, IX-6, IX-7, and IX-8, where they are compared to the (19) Laufer's data. Those data show that all the turbulent intensities measured in the corrugated pipe are much higher than those measured in smooth pipe. The second relative turbulent intensity data are also tabulated in Table IX-3 and Table IX-4, and are also plotted in Figure IX-9, IX-10, IX-11, and IX-12. These relative turbulent intensities give information about the local turbulence because they provide an indication of the ratio of the kinetic energy of turbulence and the kinetic energy of mean motion. Between $y / r=1.0$ to $y / r=0.25$ these two local turbulent intensities, longitudinal and radial local turbulent intensities, show almost no difference for all sections. We think the dispersion from one another at $y / r=0.5$ in Figure IX-10 could be due to experimental error. At Remax $=$ $1.15 * 10^{5}$ the curves increase smoothly along the pipe radius, then have a tendency to increase rapidly near the wall. As velocity increases, at $R e_{\text {liax }}=2.53 * 10^{5}$, there is the same behavior as at low velocity but a sharp increase exists at

TABLE IX-3

$\operatorname{Re}_{\operatorname{Max}}=1.15 * 10^{5}$

Posiyion	y / r	$\sqrt{\overline{V s}^{2}} / \overline{V s}_{l c a l} \sqrt{V_{s^{2}}^{2}} / \overline{V s}_{\text {certer }}$		$\sqrt{\overline{V n}^{2}} / \overline{V s} \text { local }^{\sqrt{V_{n}^{2}} / \overline{V s}}$	
ML1	1.0	9.52\%	9.52\%	7.96\%	7.96\%
	0.5	18.19	14.51	11.24	8.97
	0.25	19.96	14.16	12.20	8.66
	0.10	24.38	14.10	14.16	8.19
	0.05	26.36	13.46	14.46	7.38
	0.0187	23.52	8.29	17.36	6.12
VS	1.0	9.09	9.09	7.88	7.88
	0.5	15.58	13.38	10.35	8.89
	0.25	19.94	14.67	12.14	8.93
	0.10	23.31	15.02	12.79	8.24
	0.05	22.82	13.98	13.76	8.43
	0.0187	21.61	13.20	12.35	7.54
ML2	1.0	9.39	9.39	7.93	7.93
	0.5	15.98	13.78	10.31	8.89
	0.25	21.59	14.84	12.68	8.72
	0.10	24.13	13.46	13.02	7.27
	0.05	24.40	11.22	13.73	6.31
	0.0187	23.07	9.42	12.97	5.30
VL2	1.0	9.20	9.20	8.01	8.01
	0.5	17.56	14.52	10.89	9.00
	0.25	21.15	14.61	12.70	8.77
	0.10	26.54	12.90	15.19	7.38
	0.05	22.64	7.92	15.82	5.53
	0.0187	16.23	5.16	10.34	3.29

TABLE IX-4

$$
\operatorname{Re}_{\operatorname{Max}}=2.53 * 10^{5}
$$

Posi- t:-n	y / r	$\sqrt{\overline{V s^{2}}} / \overline{V s} \quad \sqrt{V^{2}} / \overline{V s}_{\text {center }}$		$\sqrt{{V n^{2}}^{2}} / \overline{V s}_{\text {local }} \sqrt{V_{V^{2}}} / \overline{V s}_{\text {center }}$	
MLI	1.0	10.00\%	10.00\%	8.68\%	8.68\%
	0.5	17.62	14.91	11.82	10.00
	0.25	21.92	15.98	14.16	10.32
	0.10	25.74	15.68	17.26	10.51
	0.05	28.15	15.43	17.77	9.74
	0.0187	38.07	14.65	27.49	10.58
VS	1.0	9.86	9.86	8.60	8.60
	0.5	17.28	14.53	11.42	9.60
	0.25	21.51	15.70	13.75	10.03
	0.10	22.89	15.95	14.61	10.18
	0.05	23.91	16.06	15.83	10.64
	0.0187	22.84	16.20	13.14	9.32
ML2	1.0	9.85	9.85	8.48	8.48
	0.5	17.61	14.24	12.26	9.91
	0.25	21.26	15.33	13.67	9.86
	0.10	27.21	15.78	15.60	9.05
	0.05	28.77	14.09	17.77	8.69
	0.0187	30.76	13.11	17.52	7.47
VL2	1.0	10.49	10.49	9.11	9.11
	0.5	18.19	14.76	12.34	10.01
	0.25	23.79	15.79	15.49	10.28
	0.10	29.26	15.89	17.13	9.31
	0.05	39.59	13.04	24.73	8.15
	0.0187	39.99	10.72	20.83	5.59

-	1	\cdots			-								
		ow											
									1.15	10			
								-	Chen	${ }^{\text {'s }}$ d d	ata	(iL1)	
						\cdots			x Cher	!s da	ata (V)	VS)	
									Chen	's da	ata	(L2)	
	$\square \mathrm{VS}$	ME1	VIT2					$\square \triangle$	\triangle Chen	's da	ata (V	vL2)	
										$1{ }^{5}$			
		-		\square			\cdots	${ }^{\text {Re }}$ Max	$=5.0 \%$			-	
						--	\cdots		L Lauf	er s	data		
-		-	- -		--	--.--	-	---			-		
					--	---1	-			-			
	-	-			--								
	$\mathrm{V}_{1 \mathrm{I}^{+}}+\overline{\mathrm{Vs}^{\prime}}$	center											
					\cdots								
\square					---	-			-				
	10.0												
\square													
	9.0												
\pm			-					$7-$	\cdots				
		\%	-							-			
	8.0												
							$\xrightarrow{+}$	-					
	7.0												
	1.0	\% 7											
+		60%										-	
	6.0												
-\%													
-		01							---				
\square	5.0		-					\cdots			---	\cdots	
	4.0												
		0°	-	T-									
\because						\square						---	
+	3.0												
										\square	\square		
	2.0												
\square						-	--	-		\cdots			
	1.0		-								\because		
	1.0	\cdots	\cdots		\cdots	-		\cdots					
	\cdots												
	0.0												
	$\cdots 0.0$	0.1	0	2.0	-0	40		- 0			9 1		
\cdots	$+\cdots$	-	-	- -	-	\cdots							
	+	F-											
						-							

FIGUR出 IX-7. - RADIAL TURBULETYT INTMESITIES RELATIVE TO CENTERLINE YEAF VELOCITY ACROSS FLOW CHAMIEL.

FIGURZ IX-8. RADIAL TURBULENT IATMASITIES RELATIVE TO GRNTERLINE IEAN VELOCITY ACROSS FLOF CHATHEL.

FIGURE IX-10. LOWGITUDINAL TURBULENT INTENSITIES RELATIVE TO LOCAL ZAI VREOCITY ACROSS FLOW CEARIEL.

$\square \rightarrow$ -			-									1	
				\cdots		-				-		1	
$++1$	$\underline{+11}$	+7-	ITI]	I	ب-	Г;	江	-1-	$1+1$				
$1+$							-	M1					
111							$\because 0$	VL2		- Vs	S ML1	VL2	MiL2
					-1		-x	-					
							$\square \triangle$	V'ś					
$\int_{\text {Vn }}$													
\square	- Va 2	osal			\cdots		1						
					\square	-							
fo	-30							Remax	$=2.53$	40			
+ +1	\square									----			
$111+1$							$\underline{+1}$			\bigcirc		\square	
$1 i$	-25-	- 0^{\prime}	$<t$	P 1in	- pos	ition					--		
-		-	$\square 1$	--			$\square \cdot+$	\square			-		
	-20-	$6 \pm$	2					\square					---
	1	$1-1$											
	-	\cdots		\checkmark ¢	qual	distan	nce fr	rom-ce	enter1	Ine			
-	T15	- ${ }^{+}$		-2		----		\square					
	-	\cdots		\rightarrow	$\underline{\square}$				$\square+$				
	+								- $-\cdots$				
	10							-					
					i +1		\square				-		
						\square							
	$\bigcirc 5$				+						! 11		$1!$
					+:								
											1		
	0						+ +						
	0	2-0	1.0	20	$3-0$	$4-0$	$5-0$	+6-0.	$7-0$	8.0.	2.1		
					-1								
						J/							
	FIGUR	RH - IX	-11.	RADI	AL TUF	RBULEN	NT-IN	TTMSI	TIES	REIAT	IVE TO		
				LOCA	LIEAT	IT VEIO	OCITY	ACROS	SS FLO	OH CH	ANMEL:		
$i \sqrt{v^{2}}$	$\underline{1 / V s}$												
		ocal			-1	-							
0	$\underline{20}$				1	-		Re ${ }_{\text {Lax }}$	$=1.15$	5×105			
					$\square 1$	-				\cdots			
									-	1,			
	15												
	I	x						\cdots	\%	\ldots		\cdots	
$H 1$								\ldots	+	-	1	--	
		0									+		
	\bigcirc		:	\because	Y:		\square		\cdots				
	: 5		! !		Hi.i								
	- 5												
\square				\because									
	-0					- -	-- -1	+	--7	-7-	- - -		---
	-0	2-0.0.	1-0.	$2-0$	$3-0$	4-0.0.	5-0	:6-0.	7-0	$18 \cdots 0$	9-1		
I													-
						- y	tr						
\square	-	\square		\cdots	\cdots	\cdots		--	$\rightarrow \cdots$				
	-								- -	--...			
1.1													
\square		FIGUR	I IX	12.	RADIAI	I. TURB	BULEH	T InT	ENSIT	IES R	WLATTV	VE TO	
					LOCAI	ITEAM	VELOO	CITY	ACROS	5 FLO	W. CHAN	NNEL.	
\cdots											1----		

$y / r=0.05$ for ML1 section and at $y / r=0.1$ for VL2 section. This sharp increase in local relative turbulent intensity occurs around the tip line (the line connecting the tips - of the peaks). This will be discussed latter in section F. Another relative turbulent intensity calculated is Oue based on the friction velocity, $\mathrm{V} \%$, for $\mathrm{Re}_{\text {Max }}=2.53 \div 105$. This friction velocity, V, calculated was based on the total average shear stress which is discussed in section C. This relative turbulent intensity data are plotted in Figure IX-13 and IX-14. They are compared to the Laufer's data.

 TO FRICTION VELOCITY ACROSS FLOW CHARMEL.

FIGUNE IX-14. RADIAL TURBULHT IMTEHSITIES REIATIVE
TO FRICTICN VILOCITY ACROSS FLCN GHANIXL.
C. Turbulent Shear Stress Distribution

The measured turbulent shear stress data are tabulated in Table IX-1 and Table IX-2, and are also plotted in Figure - IX-15 and Figure IX-16. From $y / r=1.0$ to $y / r=0.5$ the distributions colncide with each other for all sections of the roughness. Lioser to the wall there is significant influence of section location. The ML1 curve has a very peculiar behavior. This observation along with the trend of $\overline{\mathrm{Vs}}, \overline{\mathrm{Vn}}, \sqrt{\sqrt{\mathrm{Vs}^{\prime \prime}}} / \overline{\mathrm{Vs}}_{\text {local }}$ and $\sqrt{\overline{V_{n}^{2}}} / \overline{V_{s}}$ local curves suggests a particular type of fluid motion and this will be discussed latter.

For a smooth circular pipe, the total shear stress equation is,

$$
\begin{equation*}
\tau=-\left(\frac{\Delta P}{\Delta I}\right)-\frac{D}{4} \tag{IX}
\end{equation*}
$$

where $\Delta P / \Delta L$ is pressure drop along longitudinal, s, direction, and D is pipe diameter. But one asks,"is there a similar equation which exists for corrugated pipe?"

The force acting on the control volume is given by the flux of momentum summed over the entire control volume surface and the rate of change of the momentum within the volume,

$$
\frac{1}{g_{C}} \iint_{A S} \overline{\overline{\mathrm{ss}}} \rho \mathrm{~V}_{I} \cdot \cos \alpha_{\rho} \mathrm{dAs}+-\frac{\mathrm{d}}{\mathrm{~d} \theta} \iiint_{V} \frac{\overline{\mathrm{Vs}} \rho}{\mathrm{SC}_{\mathrm{V}}} \mathrm{dV}=\text { Fsr-Fsp-Fsd }
$$

where \quad Fsr $=$ the external force in longitudinal, s, direction acting on the solid boundary of the volume Fsp $=$ the pressure force in S-direction

$$
\begin{aligned}
& \text { Fsd }=\text { the shear stress caused by viscosity } \\
& \alpha_{e}=\text { angle between } V_{I} \text { and s-direction } \\
& \text { As }=\text { surface area normal to the s-direction } \\
& \mathrm{V}=\text { control volume }
\end{aligned}
$$

At steady state, $\frac{d}{d}-=0$, and the control surfaces taken within the fluid or at its boundary, Fsr=0,
therefore,

$$
\frac{1}{\mathrm{Bc}_{\mathrm{c}}} \iint_{A S} \overline{\mathrm{Vs}} \rho \mathrm{~V}_{\mathrm{I}} \cdot \cos \alpha_{e} d A s=-\mathrm{Fsp}-\mathrm{Fs} \alpha
$$

If the condition is chosen at same cross-sectional area, we have,

$$
-\frac{1}{g_{c}} \iint_{A s} \overline{\mathrm{Vs}} \rho \mathrm{~V}_{I} \cdot \cos \alpha_{e} \mathrm{dAs}=0
$$

therefore,

$$
F s p=-F s d
$$

Shear stress is tangential to curve surface at every point so that the shear stress at s-direction is

$$
\tau_{s}=\tau * \cos \alpha_{a}
$$

where α_{a} is the angle between the tangent to the wall boundary and the longitudinal, s, direction. The total drag force of length 4 L in S-direction is,

$$
\tau_{\text {total }}=\int_{L_{1}}^{L_{2}} \tau \cdot \cos \alpha_{a} \cdot 2 \pi r d s
$$

where $r=f(s)$ and ($\left.L_{1}-L_{2}\right)=$ wave length or its multiple.
Define an average total shear stress of length $\Delta L\left(=L_{1}-L_{2}\right)$

$$
\bar{\tau}=\frac{1}{2 \pi \overline{r r}(\Delta L)} \int_{L_{1}}^{L_{2}} \tau \cdot \cos \alpha_{a} \cdot 2 \pi r d s
$$

Where $r=\left(r_{0}+r_{1}\right) / 2$ and r_{1} is the radius at VL2 section, r_{0} is the radius at VS section (see Figure IX -17).

FIGURE IX -17. SHEAR STRESS COMPONENT DIAGRAM.

The pressure force, Fsp , at the corresponding area with radius r is,

$$
F s p=(-\Delta p)\left(\pi \bar{r}^{2}\right)
$$

therefore,

$$
(-\Delta p)\left(\pi \bar{r}^{2}\right)=2 \pi \bar{r}(\Delta L) \cdot \bar{\tau}
$$

or,

$$
\begin{equation*}
\bar{\tau}=-\left(\frac{\Delta p}{\Delta L}\right)\left(\frac{\bar{Y}}{2}\right) \tag{IX-2}
\end{equation*}
$$

This equation is very similar to equation (I X-1).
The wall shear stress is different along a wave length because the velocity profile at every cross-section at every point is different. The average pressure drop measured at $\operatorname{Re}_{\text {Max }}=2.53 \% 10^{5}$ is 0.00670 in H $_{2} 0 /$ in which gives $\bar{\tau}=0.0783\left(\mathrm{Ib}_{\mathrm{f}} / \mathrm{ft}^{2}\right)$ or $\mathrm{V} * 2=34.1$ $(\mathrm{ft} / \mathrm{sec})^{2}$. Connecting $\mathrm{V}^{2}=34.1(\mathrm{ft} / \mathrm{sec})^{2}$, at $\mathrm{y} / \mathrm{r}=0.0$ and $\mathrm{V}{ }^{2}=0.0$ at $y / r=1.0$ gives a straight line which represents the average total
shear stress curve. Observe that from $y / r=1.0$ to $y / r=0.5$ measured values of turbulent shear stress coincide with this Ine but closer to the wall the turbulent shear is significantly lower. For a smooth circular pipe with the diameter $2 \bar{r}^{\prime}$ and with the empirical equation, $f=0.046 R_{e}^{-\frac{1}{5}}$ and $V *=V_{b} \sqrt{f} / 2_{(21)}^{(0)}$ where f is the friction factor and V_{b} is bulk average velocity, and for VL2 section with $V_{b}=42 \mathrm{ft} / \mathrm{sec}$, we have $\mathrm{V} *^{2}=4.07$. Connecting $V .^{2}=4.07$ at $\mathrm{J} / \mathrm{r}=0.0$ and $\mathrm{V}{ }^{2}=0.0$ at $\mathrm{J} / \mathrm{r}=1.0$ represents the total shear stress curve for a smooth pipe then it is seen that the shear stress from smooth circular pipe is much less than that from the corrugated pipe.

If we let,
where τ^{2} nd is the shear stress caused by secondary flow, then the difference between curve A and curve C is caused by corrugations (see Figure IX-16). From $y / r=1.0$ to $y / r=0.5$ curve A and curve B almost coincide, this means that far from the wall the particular slope of the wall has no effect. This is completely reasonable since the core region "sees" an average of the local behavior and that connected from upstream locations. From $y / r=0.5$ to $y / r=0.0$ the difference between curve A and curve B is $\frac{l}{l}$ aminar and $\frac{2 n d .}{l}$. However, since $l^{\text {laminar }}$ is very small, we can regard this difference as due to $\tau^{2 n d}$ only.

D. Energy Spectrun Feasurement

The hot wire signal were processed through a hybrid diritizing and power spectrum prosram. (see Appendix I) These auto-power-spectrum measured at Reviax $=2.53 \% 10^{5}$ are plotted in figure IX-20 through IX-31 and are presented as normalized values, $F_{i}\left(k_{W}\right)$, where $F_{i}\left(k_{W}\right)=E_{i}\left(k_{W}\right) / \overline{V_{i}^{2}}$ in i-direction, k_{W} is the local wavenumber defined as $2 \pi f / \overline{V s}$ local, and f is the frequency.

In Figure IX-18, we compare the longitudinal centerline (19) data made at the VS section to the Laufer's data. We see that both sets of data have the same $-5 / 3$ power of the wavenumber, k_{W}, over a considerable range. But the Laufer's curve is lower than the VS one. This means that there is less loncitudinal turbulent energy in Laufer's data. This is because the snooth circular pipe generates less longitudinal turbulent energy then does the corrugated pipe. If we plot this same data in dimensionless form as in Figure IX-19, we notice that when frequency approaches zero, the value $\left(\overline{V s} \cdot E_{S}(f) / \overline{V_{s}^{2}} \cdot \Lambda_{f}\right)=4.0$ agrees very satisfactorily with experimental data obtained from extrapolation of the measured $E_{S}(f)$ curve.

Figure IX-20 through IX-25 show that the spectrum is independent of position along the wall in the center region from $y / r=1.0$ to $y / r=0.25$. Thus $\mathrm{E}_{\mathrm{S}}\left(\mathrm{k}_{\mathrm{W}}\right)$ is the same for all four sections. However, the spectrum does depend on position, y/r.

The energy spectrum measurements have a bandwith of 32 cps and a record lensth of 3.75 sec which gives 240 degree of freedom. Thus there is a 90% confidence of the true value within 8.70 and (27) 11.3.

$$
\begin{aligned}
& V_{s}^{\prime} \text {-spectra, } y / r=1.0 \\
& \operatorname{Re}_{\operatorname{Max}}=2.53 * 10^{5} \\
& \text { Chen's data (Vs) } \\
& \operatorname{Re}=5.0 * 10^{5} \\
& \Delta \text { Laufer's data }
\end{aligned}
$$

$$
\mathrm{k}_{\mathrm{W}}(1 / \mathrm{cm})
$$

FIGURE IX-18. COIPPRISON OF LAUFER'S AIND CHEN'S DATA FOR Vs' AT $y / r=1.0$
ull Logarithmic, 3×3 Cycles

$$
\begin{aligned}
& \text { Vs'-spectrum, } y / r=1.0 \\
& \mathrm{Re}_{\mathrm{Max}}=2.53 * 10^{5} \\
& \quad \text { vs }
\end{aligned}
$$

FIGURE IX-19, Vs'-SPECTRUM IN DIMENSIONLESS FORM.
Ill Logarithmic, 3×3 Cycles
Vs'-spectra, $y / r=1.0$
$\xrightarrow{\text { flow }} 95$
$\operatorname{Re}_{\operatorname{Max}}=2.53 \div 10^{5}$

\bullet	$M L 1$
0	$V L 2$
x	$M L 2$
Δ	VS

Vs: ML1 VLe mita

1.0

$$
\begin{aligned}
& \mathrm{Vg}^{\prime}=\text { spectra, } \mathrm{y} / \mathrm{r}=0.5 \\
& \mathrm{Re}_{\mathrm{Max}}=2.53 * 10^{5} \\
& \text { Q ML1 } \\
& 0 \mathrm{VL} 2 \\
& \text { X VI2 } \\
& \Delta \mathrm{VS}
\end{aligned}
$$

$$
\begin{aligned}
& V s^{\prime}-\text { spectra, } \mathrm{y} / \mathrm{r}=0.25 \\
& \operatorname{Re}_{\mathrm{Max}}=2.53 * 10^{5}
\end{aligned}
$$

- ML1
- VL2
\times ML2

$$
\begin{gathered}
\mathrm{Re}_{\mathrm{Max}}=2.53 * 10^{5} \\
\mathrm{ML} 1 \\
0 \mathrm{VL2} \\
\times \mathrm{ML} 2 \\
\Delta \mathrm{VS}
\end{gathered}
$$

$$
V s^{2} \text {-spectra, } \mathrm{y} / \mathrm{r}=0.05 \xrightarrow{\text { flow }} 99
$$

$2-4$
$\mathrm{Re}_{\mathrm{Max}}=2.53 * 10^{5}$
R

- NL1
0 VI2
\times ML2
\triangle VS

Vis MLi VLe Mía
\qquad
$y / r=1.0$

1
$-\sigma \frac{\cdots}{-\quad ;}$

8

$10-4$ 1.0

FIGURE IX-26. $\quad V^{\prime}{ }^{\prime}-$ SPIECTRUM AT $y / r=1.0$
II Logarithmic, 3×3 Cycles

$$
\begin{gathered}
R e_{\operatorname{Iax}}=2.53 * 10^{5} \\
\mathrm{ML} 1
\end{gathered}
$$

0 VL2
x I:L2
\triangle VS

$$
\begin{array}{ll}
& \text { ML1 } \\
0 & \text { VL2 } \\
\times & \text { ML2 } \\
\triangle & \text { VS }
\end{array}
$$

$$
k_{W}(1 / f t)
$$

$$
F_{n}\left(k_{W}\right)=\text { normalized wavenumber power spectrum }
$$

FIGURE IX-28. $V_{n}{ }^{\prime}-S P E C T R U M ~ A T ~ y / r=0.25$
111 Logarirhmic, 3×3 Cycles

$$
\begin{aligned}
& \text { Vn'-spectra, } y / r=0.10 \\
& R e_{\mathrm{Nax}}=2.53 * 10^{5} \\
& \text { - ML1 } \\
& \text { OVL2 } \\
& \text { X ML2 } \\
& \Delta \mathrm{VS}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

$$
{ }^{9} 18
$$

${ }^{2} \quad{ }^{3} \quad 4 \quad 5 \quad 678100$

$$
k_{w}(1 / f t)
$$

$F_{n}\left(k_{w}\right)=$ normalized wavenumber power spectrum
FIGURE IX-29. Vn'-SPECTRUS AT $y / r=0.10$

11 Logarithmic, 3×3 Cycles

$$
\text { Vn'-spectra, } y / r=0.05
$$

$F_{n}\left(k_{W}\right)=$ normalized wavenumber power spectrum

$$
\mathrm{Re}_{\operatorname{Tax}}=2.53 * 10^{5}
$$

$F_{n}\left(k_{V}\right)=$ normalized wavenumber power spectrum FIGURE IX-31. Vn'-SPECTRUM AT $y / r=0.0187$
E. Scale And Nicroscale Measurements

We assume that this field is stationary. There then exists a constant time averase value of the contributions of all the frequencies.

Let $E_{s}(f) d f$ be the contribution to $\overline{V^{2}}$ of the frequencies between f and $I+d f$; the distribution function $E_{S}(f)$ then has to satisfy the condition,

$$
\begin{equation*}
\int_{0}^{\infty} E_{S}(f) d f=\overline{V_{s}^{2}} \tag{IX-3}
\end{equation*}
$$

or,

$$
\int_{0}^{\infty} F_{s}(f) d f=1
$$

Where $\quad F_{S}(f)=E_{S}(\hat{I}) / \overline{V_{S}{ }^{\prime}}$.
The power spectrum $S^{+}(\omega)$ of a process $V^{\prime}(t)$ is the Fourier Transform of its autocorrelation,

$$
\begin{equation*}
S^{+}(\omega)=\int_{-\infty}^{\infty} R(\tau) e^{-j \omega \tau} d \tau \tag{IX-4}
\end{equation*}
$$

where $R(\tau)=\left\langle V s^{\prime}(t+) V s^{\prime}(t)\right\rangle,\langle \rangle$ is the expectation notation, and from the fourie's inversion formula it follows that,

$$
\begin{equation*}
R(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S^{+}(\omega) e^{j \omega \tau} d \omega \tag{IX-5}
\end{equation*}
$$

with $\tau=0$, the above becomes,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} s^{+}(\omega) d \omega=R(0)=\left\langle V s^{\prime}(t) \cdot V s^{\prime}(t)\right\rangle \tag{IX-6}
\end{equation*}
$$

If the Ergodicity of the autocorrelation exists then

$$
\left\langle V s^{\prime}(t+\tau) \cdot V s^{\prime}(t)\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} V s^{\prime}(t+\tau) \cdot V s^{\prime}(t) d t \quad(I X-7)
$$

$$
\begin{align*}
\therefore \quad\left\langle V s^{\prime}(t) V s^{\prime}(t)\right\rangle & =\frac{\lim \frac{1}{T \rightarrow \infty}---\int_{-T}^{T} \mathrm{Vs}^{\prime}(t) \mathrm{Vs}^{\prime}(t) d t}{} \tag{IX-8}\\
& =\mathrm{Vs}^{2} \cdot
\end{align*}
$$

finally,

$$
\begin{equation*}
\int_{-\infty}^{\infty} S^{+}(f) d f=\overline{V_{s}^{2}} \quad \text { with } \omega=2 \pi f \tag{IX-9}
\end{equation*}
$$

Since the process $V s^{\prime}(t)$ is real, then $R(\tau)$ and $s^{+}(\omega)$ are real and even,so that

$$
\begin{equation*}
\int_{0}^{\infty} S(f) d f=\overline{V s^{2}} \tag{IX-10}
\end{equation*}
$$

where $S(f)=2 S^{+}(f)$ for $0 \leqslant f<\infty$, otherwise zero. The physically measured quantity is $S(f)$ other than $S^{+}(f)$ because negative frequencies are just imaginary ones. (24) (IX-3) and (IX-10) are identical if we let $E_{S}(f)=S(f)$. .

If Taylor's hypothesis applies, then we have,

$$
\begin{equation*}
R(\tau)=\int_{0}^{\infty} F_{s}(f) \cdot \cos \left(\frac{2 \pi f x}{\left.-\frac{--}{V s}-\right)} d f\right. \tag{IX-11}
\end{equation*}
$$

for homogeneous turbulence where x is the coordinate distance, and (26)

$$
\begin{equation*}
\frac{1}{\lambda^{2}}=2 \cdot \lim _{x \rightarrow 0}\left(\frac{1-R(\tau)}{x^{2}}\right) \tag{IX-12}
\end{equation*}
$$

where $\boldsymbol{\lambda}$ is the micro scale.
when x is small ,

$$
\begin{gather*}
\cos \left(\frac{2 \pi f x}{\overline{V s}}\right) \cong \frac{2 \pi^{2} x^{2} f^{2}}{1-\frac{--}{V_{s}^{2}}--} \tag{IX-13}\\
\therefore \quad R(\tau)=\int_{0}^{\infty} F_{3}(f)\left(1-\frac{2 \pi^{2} x^{2} f^{2}}{\left.-\frac{-}{V s}-2\right) d f}\right. \tag{IX-14}
\end{gather*}
$$

$$
\begin{align*}
& =\int_{0}^{\infty} F_{s}(f) d f-\int_{0}^{\infty} F_{s}(f)\left(\frac{2 \pi^{2} x^{2} f^{2}}{-\frac{-\infty}{V s}}-1\right) d f \\
& \therefore 1-\int_{0}^{\infty} F_{s}(f)\left(-\frac{\pi^{2} x^{2} f^{2}}{\overline{V s}}-2-\right) d f \tag{IX-15}
\end{align*}
$$

$$
\begin{align*}
\therefore \quad \frac{1}{\lambda^{2}} & =2 \cdot \lim _{x \rightarrow 0} \int_{0}^{\infty} F_{s}(f)\left(-\pi^{2} x^{2} f^{2}\right. \\
\therefore & =4 \pi^{2} \int_{0}^{\infty} \frac{F_{s}(f) f^{2}}{-\frac{V s}{V s}-d f} \tag{IX-16}
\end{align*}
$$

The longitudinal and radial micro scales are shown in Table IX-5.

The integral scale of turbulence is defined by

$$
\begin{equation*}
\Lambda=\int_{0}^{\infty} R(\tau) d \tau \tag{IX-17}
\end{equation*}
$$

so it is easily determined. The longitudinal and radial integral scale are also tabulated in Table IX-5.

The micromscale of turbulence calculated by Taylor ${ }^{(25)}$ from a turbulent-producing grid with a mesh $3 * 3$ in are compared to our data with a mesh $1 * 1$ in in Table IX-6.

TABLE IX-5.

Longitudinal and Radial

Hicro-Scale
Integral-Scale

Position	y/r	$\lambda_{f}(f)$	$\lambda \mathrm{g}$ (ft)	$\Lambda_{f}(f t)$	人g (ft)
ML1	1.0	0.0137	0.00884	0.189	0.0589
	0.5	0.0186	0.00935	0.590	0.146
	0.25	0.0168	0.00807	0.570	0.170
	0.10	0.0121	0.00649	0.267	0.137
	0.05	0.0108	0.00525	0.244	0.0993
	0.0187	0.0071	0.00417	0.164	0.0570
Vs	1.0	0.0143	0.01000	0.191	0.0619
	0.5	0.0171	0.00904	0.385	0.0638
	0.25	0.0161	0.00807	0.495	0.150
	0.10	0.0145	0.00677	0.418	0.0905
	0.05	0.0121	0.00631	0.333	0.0700
	0.0187	0.0108	0.00495	0.374	0.0381
ML2	1.0	0.0142	0.00911	0.186	0.0591
	0.5	0.0177	0.00906	0.600	0.143
	0.25	0.0174	0.00820	0.525	0.155
	0.10	0.0127	0.00573	0.312	0.0413
	0.05	0.0097	0.00497	0.190	0.0333
	0.0187	0.00894		0.0919	
VLe	1.0	0.0135	0.00940	0.195	0.0600
	0.5	0.0173	0.00893	0.592	0.140
	0.25	0.0147	0.00720	0.575	0.163
	0.10	0.0120	0.00557	0.204	0.0528
	0.05	0.00752	0.00420	0.0915	0.0334
	0.0187	0.00681	0.00310	0.0502	0.0221

F. Separation Flow Around ML1 Point

The local pressure along the corrugations as measured at the wall is plotted in Figure IX-32. This diagram suggests that there is a possible separation flow around ML1 section. The corrugate pipe approximates a sine wave in shape, the equation is (see Figure IX-33),

$$
y=\frac{0.437}{2} \cdot \frac{8 \pi}{2} \sin \left(\frac{-\pi}{11}\right.
$$

differentiated,

$$
y^{\prime}=\left(\frac{0.437}{2}\right)\left(\frac{8 \pi}{11}\right) \cos \left(\frac{8 \pi}{11}-x\right)
$$

at $x=11 / 8$,

$$
y^{\prime}=\left(\frac{0.437}{2}\right)\left(\frac{8 \pi}{11}\right) \cos (\pi)=-0.499
$$

However, from data at $y / r=0.0187$ for $\operatorname{Re}_{\operatorname{Max}}=2.53 * 10^{5}$ at $\mathbb{M L} 1$ section, we have

$$
\begin{aligned}
& \begin{array}{ll}
\overline{\mathrm{Vn}} & 5.18
\end{array} \\
& \overline{\overline{\mathrm{Vs}}}=\frac{-1-\overline{2}}{21.47}=0.241
\end{aligned}
$$

Notice that $\overline{\mathrm{Vn}}$ in this case is toward the wall . With
we have (see Figure IX-34), ,

$$
\theta_{1}<\theta_{2} \quad \text { because } 0.241<0.499
$$

This would suggest that there exists some separation flow in

$$
\text { Po }=\text { Atmosphere pressure }
$$

FIGURE IX-33. SCHEMATIC DIAGRAM OF CORRUGATION.

the region very close to the wall such that the momentum displacement distance is pushed upward.

Also, if we make a close look at the data for ML1 section, - we have the follow diagrams (Figure IX-35)

FIGURE IX-35. TURBULENT QUANTITIES RELATIVE TO LOCAL VELOCITY FOR ML1. We know that at the region below $y / r=0.05$, there must exist some strong interaction between the fluid particles, because all these three curves have the unusually sharp change. When we examine the $\overline{\mathrm{Vs}}$ curves at the ML1 and ML2 sections, these two are almost identical, for the $\overline{\mathrm{Vn}}$ curves, they have a small difference. But the $\overline{\mathrm{Vs}^{\prime} \mathrm{Vn}^{\prime}}$ curves have quite different characteristics, so we could say that there must exist " separation flow" in ML1 section. The sudden. jump can be regarded as the "thickness of the separation flow region", and the starting deviation point from ML2 curve as "its effective region". Also, in the separation region, the molecular momentum transfer becomes small and the inertia effect overcomes viscous effect, so the viscous shear stress is suppressed. The difference between curves A and D in Figure IX-16 at $y / r=0.0187$ is really quite small.

G. Flow Pattern

The corrugated pipe is not a pipe of uniform diameter so that equal y / r does not mean the equal position from centerline. Therefore, the velocity lines in Figure IX-1 and IX-2 do not tell the relative position of equal velocity at any section, and do not show the flow pattern. Equal velocity lines are plotted in Figure IX-36 for $\overline{\mathrm{Vs}}=40,38,35,30$, and $25 \mathrm{ft} / \mathrm{sec}$ for $\mathrm{Re}_{\operatorname{Max}}=2.53 * 10^{5}$. These five lines show that the equal velocity line is pushed upward near the region of tip line (line connecting the tips of the peaks) then it seems to be pushed backward toward the wall when it is closer to the wall at ML2 section. It is unfortunate that there is no data available below $y / r=0.0187$. Otherwise it may show the particular flow pattern at the wall region between VL2 and ML2 section because the data at turbulent shear stress Table IX-2 shows a negative $-\mathrm{Vs}^{\prime} \mathrm{Vn}^{\top}$ value at $\mathrm{y} / \mathrm{r}=0.0187$ at ML2 section for both Reynold number. Also, the pressure distribution along a wave length in $\operatorname{Figure~IX-32~suggests~that~there~may~}$ exist a separation flow at the ML2 section. The negative value of $\overline{-\mathrm{Vs}^{\prime} \mathrm{Vn}{ }^{\prime}}$ and the pressure distribution data seems to indicate a reverse flow existing at this region.

The flow pattern at VS section is apparantly shown by the equal velocity lines that the velocity is almost uniform at the region between $\mathrm{y} / \mathrm{r}=0.25$ and $\mathrm{y} / \mathrm{r}=0.05$. Between $\mathrm{y} / \mathrm{r}=0.05$ and $\mathrm{y} / \mathrm{r}=0.0$ there exists a local jet which is shown in Figure IX-2
and discussed in section A.
The flow pattern between VS and ML1 section is shown in Figure IX-36. From the discussion in section F we think that there is a separation flow around the tip line, below this line there is a strong eddy flow region. The flow direction is shown in Figure IX-37.

FIGURE IX-37. SCHEMATIC DIAGRAM OF FLOW DIRECIION

A. The Measurement of k Value

Recall from equation (II-3),

$$
V_{e}^{2}=V_{I}^{2} \cdot\left(\cos ^{2} \beta_{3}+k^{2} \cdot \sin ^{2} \beta_{3}\right)
$$

where $\quad V e=$ Effective cooling velocity
$V_{I}=$ Instantaneous velocity
$k=$ Constant depended primarily on length-to-diameter ratio of the sensor
$\beta_{3}=90-\alpha, \alpha$ is the anfle between the instantaneous velocity vector and the sensor axis

Solve for k, we have,

$$
\begin{equation*}
\mathrm{k}=\frac{\mathrm{Ve} / \mathrm{V}_{I}^{2}-\cos ^{2} \beta_{3}}{\sin ^{2} \beta_{3}} \tag{x-1}
\end{equation*}
$$

Also, recall from equation (III-5),

$$
\operatorname{Eb}\left(\frac{\Omega_{\mu}--}{\left(\Omega_{\omega}+\Omega_{3}\right)}\right)=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \cdot \sqrt{\mathrm{Ve}}\right)(\mathrm{Ts}-\mathrm{Te})
$$

where

$$
\begin{aligned}
& \Omega_{\omega}=\text { The total electric resistance of the sensor } \\
& \Omega_{3}=\text { Electric resistance in serie with } \Omega_{\omega} \\
& \mathrm{Ts}=\text { Sensor temperature } \\
& \mathrm{Te}=\text { Static stream temperature far from sensor } \\
& \mathrm{C}_{1} \text { and } \mathrm{C}_{2}=\text { Experimental constants }
\end{aligned}
$$

Let

$$
\mathrm{Ka}=\frac{\Omega \omega}{\left(\Omega_{\omega}+\Omega_{3}\right)(\mathrm{Ts}-\mathrm{Te})}
$$

therefore,

$$
\sqrt{V e}=\frac{E b^{2} \cdot K a-C_{1}}{C_{2}}
$$

$$
(x-2)
$$

Substitute equation ($\mathrm{x}-2$) into ($\mathrm{X}-1$), gives

$$
k=\frac{\left(-b^{2}\left(\beta_{3}\right)-C_{1}\right.}{\left.\mathrm{Eb}^{2}(0) \mathrm{Ka}-\mathrm{C}_{2}\right)-\cos ^{2} \beta_{3}} \frac{\sin ^{2} \beta_{3}}{-\cdots}
$$

(Hotice that $\mathrm{Ve}=\mathrm{V}_{\mathrm{I}}$ with $\beta_{3}=0$) Therefore, if ka, C_{1}, β_{3} \& $\mathrm{Eb}(0), \mathrm{Eb}\left(\beta_{3}\right)$ are known, then k can be measured. The experiment was carried out as follows:

Placed the single sensor (wire or film) at the cinter line position of the rectangular channel as shown in figure $x-1$. Rotate the sinsor in the horizontal plane and change the flow rate then we will obtain a series of values of Eb vs β_{3}. Feed these values into equation $(x-3)$ we get the value of k.

figure $x-1$.
FIGURE X-1. SCHGFIATIC DIAGRAM OF RECTANGULAR CHANMEL AND FROBE POSITION.

```
c the mensurement of k value
    DIMENSIUN A(20),EBO(20),EB(20),VEDVO(20),FK(2C)
    100
    FORMAT (8F10.4)
    FORMAT (3X,'EBO(I)')
    205 FORMAT (3X,'EB(I)')
    210 FORMAT (3X,'VE/VEO')
    215 FORMAT (3X,'SK')
    Al = 2.418*2.418
    M = 3
    N = 11
    A(1) = SIN(2.C*3.1416/9.0)
    A(2) = 1.C/SGRT(2.0)
    A(3) = cos(2.0*3.1416/9.0)
    READ (5,100) (EBO(I),I=1,N)
    0O 98 K=1,M
    READ (5,100) (EB (I),I=1,N)
    WRITE (6,200)
    WRITE(6,100) (EBO(I),I=1,N)
    WRITE (6,205)
    WRITE(6,100) (EB (I),I=1,N)
    DO lC I=1,N
    10 VEDVO(I) = ((EB(I)**2-A1)/(EBO(I)**2-AI))**2
    WRITE (6,210)
    WRITE(6,100) (VEDVO(I),I=1,N)
    DO 20 I=1,N
    20 FK(I)=SGRT(1.0+(VEDVO(I)**2-1.0)/A(K)**2)
    WRITE (6,215)
    WRITE(o,100) (FK(I),I=1,N)
    WRITE(6,105)
    105 FORMAT (//)
    98 CONTINUE
    END
```



```
        EM5 = 0.0
        EM6 =0.0
        EM7 = 0.0
        EM8 = 0.0
        EM9 = 0.0
        EM10 = 0.0
        EMII = 0.0
        EM12 =0.0
        NN = 1
CONTINUE
        WRITE (6,105) NN
        CALL FRTIO (RCBAD,IRET)
        CALL FCHECK (RCBAD,IRET,1)
        FAMP1= 819.I*AMP1
        FAMP2 = 819.1*AMP2
        DO 10 I= l,N
        J=N-I+1
        Y(J)=-LOCAD(2*J+1)/FAMP2
    10 X(J)=-LOCAD(2*J)/FAMP1
        WRITE (6,205) {X(J),Y(J),J=1,5}
        IF (KCON .EQ. 1) GO TO 30
        DO 14 I=1,N
        X(I) = (X(I)-TLX)/TKX
    14 Y(I)=(Y(I)-TLY)/TKY
C
```



```
        DO 17 I=1,N
        X(I) = (XDC-X(I))
    17 Y(I) = {YDC-Y(I))
        IF (KCON .EQ. 2) GO TO 30
        DO 12 I= L,N
        X(I) = AX +BX*X(I) &X(I) +CX*X(I)**4-VMEANX
    12 Y(I) = AY+BY*Y(I)*Y(I)+CY*Y(I)**4-VMEANY
        IF (KCON .EQ. 3) GO TO }3
    30 CONTINUE
C INPUT SIGNAL IS FROM BRIDGE VOLTAGE OUTPUT
        XSUM = 0.0
        YSUM = 0.0
        XSUMX = 0.0
        YSUMY = 0.0
        OU 11 I=1,N
        XSUM = XSUM + X(I)
        XSUMX = XSUM X + X(I) #X(I)
        YSUMY = YSUMY+Y(I)*Y(I)
    11 YSUM = YSUM + Y(I)
        XMEAN = XSUM/FLOAT(N)
        XMEANX = XSUMX/FLOAT(N)
        YMEAN = YSUM/FLOAT(N)
        YMEANY = YSUMY/FLOAT(N)
        WRITE (6,235) XMEAN,XMEANX,YMEAN, YMEANY
        E1 = E1 + XMEAN
        E14=EL4+XMEANX
        E2 = E2 + YMEAN
        E24=E24+YMEANY
        IF (KCON .NE. 3) GO TO 32
```

```
RAN IV G LEVEL 19
245 FORMAT (/L10X,'E1=',F1O.5,5X,'E14=',F10.5,5X,'E2=',F10.5,5X,'E24='
    - ,F10.5)
250 FORMAT (/10X,'E11(XX)=',F10.5,5X,'E22(YY)=',F10.5,5X,'E12(XY)=1,F
.10.5)
        STOP
    END
```240 FORMAT (/3(10X,F10.5))
```

C
C ********** SEPARATION SECTION \#
DO 17 l=1,N
X(I) = (XDC-X(I))**2
17 Y(I) = (YDC-Y(I))**2
30 CONTINUE
xSUM2 = 0.0
YSUM2 = 0.0
X2SY2 =0.0
XSUM4 =0.0
YSUM4 =0.0
X2SY4 = 0.0
X4SY2 = 0.0
XSUM6 =0.0
YSUMG = 0.0
X4SY4 = 0.0
XSUM8 = 0.0
YSUM8 = 0.0
DO 18 I=1,N
TEMPX = X(I)
TEMPY = Y(I)
XSUM2 = XSUM2+TEMPX
YSUM2 = YSUM2+TEMPY
X2SY2 = X2SY2+TEMPX*TEMPY
XSUM4 = XSUM4+TEMPX**2
YSUM4 = YSUM4+TEMPY**2
X2SY4 = X2SY4+TEMPX*TEMPY**2
X4SY2 = X4SY2+TEMPY*TEMPX**2
XSUM6 = XSUM6+TEMPX**3
YSUMG = YSUM6+TEMPY**3
X4SY4 = X4SY4+TEMPX**2 * TEMPY**2
XSUM8 = XSUM8+TEMPX**4
YSUM8 = YSUM8+TEMPY**4
18 CONTINUE
XSUM2 = XSUM2 / FLOAT(N)
YSUM2 = YSUM2 / FLOAT(N)
X2SY2 = X2SY2 / FLOAT(N)
XSUM4 = XSUM4 / FLDAT(N)
YSUM4 = YSUM4 / FLOAT(N)
X2SY4 = X2SY4 / FLOAT(N)
X4SY2 = X4SY2 / FLOAT(N)
XSUM6 = XSUM6 / FLOAT(N)
YSUM6 = YSUM6 / FLOAT(N)
X4SY4 = X4SY4 / FLOAT(N)
XSUM8 = XSUM8 / FLOAT(N)
YSUM8 = YSUM8 / FLOAT(N)
WRITE(6,255) XSUM2,YSUM2,X2SY2,XSUM4,YSUM4,X2SY4,X4SY2,XSUM6,
YSUM6,X4SY4,XSUM8,YSUM8
EM1 = EM1 + XSUM2
EM2 = EM2 + YSUM2
EM3 = EM3 + X2SY2
EM4 = EM4 + XSUM4
EM5 = EM5 + YSUM4

```

EM6 \(=\) EM6 \(+\times 25 \times 4\)
\(E M 7=E M 7+X 4 S Y 2\)
EM8 \(=\) EM8 + XSUM6
EM9 = EM9 + YSUM6
EMIO \(=\) EMIO + X4SY4
EMII = EM11 + XSUM8
EM12 = EM12 + YSUM8
IF (NN .EQ. MM) GO TO 31
\(N N=N N+1\)
GO TO 20
31 CONTINUE
\(E M 1=E M 1 /\) FLOAT(NN)
EM2 \(=E M 2 /\) FLOAT(NN)
EM3 \(=\) EM3 / FLOAT(NN)
EM4 = EM4 / FLOAT(NN)
EM5 \(=\) EM5 / FLOAT(NN)
EM6 = EMG / FLOAT(NN)
EM7 = EM7 / FLOAT(NN)
EM8 = EM8 / FLOAT(NN)
EM9 = EM9 / FLOAT(NN)
EM10 = EM10 / FLOAT(NN)
EMII = EMII / FLOAT(NN)
EM12 = EM12 / FLOAT(NN)
WRITE(6,255) EMI, EM2,EM3,EM4, EM5,EM6, EMT, EM8, EM9, EM10, EM11, EM12
FORMAT (/10X,2(F12.7,4X),3(F12.6,4X)/(10X,4(F12.5,4X),3(F12.3))) WRITE (7,249) EM1,EM2,EM3,EM4,EM5,EM6,EM7,EM8,EM9,EM10,EM11,EM12

C . CALIBRATION CURVE PROGRAM
IF \(X\) and \(Y\) INPUT REVERSE,SOLUTION STILL SAME INOIVIDALLY
\(X 1=\) FBl**2 MEAN
Y1 = EBI**4 MEAN
C \(\quad Z 1=\) VELOCITY FROM PITOT TUBE
C \(\quad 2 X=\) VELDCITY AFTER CORRECTIDN
C
C

 - . \(5,5 \mathrm{X}, \mathrm{A} \mathrm{A}^{\prime} \mathrm{I}^{\prime}, \mathrm{F} 10.5,5 \mathrm{X}, \mathrm{S} 1=1, \mathrm{~F} 10.51\)

 - \(\quad .5,5 \mathrm{X}, \mathrm{B} 5=1, \mathrm{~F} 10.5,5 \mathrm{X}, \mathrm{T} 1=1, \mathrm{~F} 10.51\)
 FORMATI/10X,'AFRS2 =', F10.5,5X,'AFRN2 =', F10.5, 5X, 'AFRSN=', F10.5)
 FORMAT (/10X,F10.4,5X, \(1 * * * 1,5 \mathrm{X}, 3 \mathrm{~F} 13.41\)
 FORMAT (/10X,'FCS \(=1, F 10.5,5 X\), 'Fl \(=1, F 10.5,5 X\), FCT \(=1, F 10.5,5 X\),
 - \(\quad\)-F2 \(=\)., F10.5)

 - 1FCT3=1,F10.5)

 - 'XSUN8',4X,'YSUM8')
 FORMAT \(\left(2 x,{ }^{\prime} E B 1 * * 2\right.\) ')
 FORMAT \(\left(2 x,{ }^{\prime}\right.\) EB 2**2')
 FORMAT \(2 x\), 'EB1**4')
 FORMAT \(\left(2 x,{ }^{\prime}\right.\) EB2*** \(\mathbf{4}^{\prime}\))
 FORMAT(\(2 x\), 'US \(\left.^{\prime \prime}\right)\)
 FORMAT(\(2 x\), US \(^{\prime}\))
 FORMAT \(2 x, U^{\prime}\) US \(\left.1 * S Q R T((1.0+S K * S K) / 2.0) *(1.0+F 1)^{\prime \prime}\right)\)
 FORMAT(\(2 \mathrm{X}, \mathrm{US} 2 * \operatorname{SQRT}(11.0+S K * S K) / 2.0) *(1.0+F 2) \prime\)
 \(N=14\)
 KCHEN \(=1\)
 \(S K=0.35\)
 READ (5,98) TEMPF
 WRITE 6,981 TEMPF
 \(\operatorname{READ}(5,100)(21(1),[=1, N)\)
 READ \((5,100)(Z 2(I), I=1, N)\)
 DO \(11 \quad I=1, N\)
 Z1(I) \(=2.90239404 *\) USQRT(Z1(I)*TEMPF)
11 Z2(I) \(=2.90239404 *\) DSQRT(Z2(I)*TEMPF)
 WRITE(6,275)

DO \(14 \mathrm{I}=1, \mathrm{~N}\)
READ (5,255) FXSUMZ(I), FYSUM2(I),FX2SY2(I),FXSUM4(I), FYSUM4(I),
-
-

\section*{-}
- FXSUM8(I),FYSUM8(I)
\[
250
\]

FORMAT(8F10.5)
DO \(13 \mathrm{I}=1, \mathrm{~N}\)
X1(I) \(=\) FXSUM2(I)
\(X 2(I)=\) FYSUM2(I)
Yl(I) \(=\) FXSUM4(I)
\(13 \mathrm{Y} 2(\mathrm{I})=\) FYSUM4(I)
WRITE (6, 276)
WRITE(6,105) (X1(I),I=1,N)
WRITE 6,277)
WRITE 6,105\()(X 2(1), I=1, N)\)
WRITE 6,278)
WRITE(6,105) (Y1(I), I=1,N)
WRITE 6,279\()\)
WRITE(6,105) (Y2(I),I=1,N)
WRITE 6,280\()\)
WRITE(6,105) (Z1(I),I=1,N)
WRITE 6,281\()\)
WRITE(6,105) (Z2(I),I=1,N)
DO \(12 \quad I=1, N\)
\(F 1(I)=0.0\)
\(12 \mathrm{~F} 2(\mathrm{I})=0.0\)
3 CONTINUE
DO \(15 \quad \mathrm{I}=1, \mathrm{~N}\)
\(Z X(I)=21(I) * S Q R T(1.0+S K * S K) / 2.0) *(1.0+F 1(I))\)
\(Z Y(I)=22(I) * S Q R T(11.0+S K * S K) / 2.0) *(1.0+F 2(I))\)
WRITE(6,111)
WRITE 6,282)
WRITE(6,105) (ZX(I),I=1,N)
WRITE 6,283)
WRITE(6,105) (ZY(I),I=1,N)
C GENERATE MATRIX
DO \(28 \mathrm{I}=1,3\)
DO \(28 \mathrm{~J}=1,3\)
BCOLMX(I) \(=0.0\)
BCOLMY(I) \(=0.0\)
\(\operatorname{ASQURX}(I, J)=0.0\)
\(28 \operatorname{ASQURY}(I, J)=0.0\)
\(\operatorname{ASGURX}(1,1)=N\)
DO 30 I \(=1, N\)
\(\operatorname{ASQURX}(1,2)=\operatorname{ASQURX}(1,2)+\times 1(1)\)
\(\operatorname{ASQURX}(1,3)=\operatorname{ASQURX}(1,3)+Y 1(1)\)
\(\operatorname{ASQURX}(2,2)=\operatorname{ASQURX}(2,2)+X 1(1) * X 1(1)\)
\(\operatorname{ASQURX}(2,3)=\operatorname{ASQURX}(2,3)+X 1(1) * Y 1(1)\)
\(\operatorname{ASQURX}(3,3)=\operatorname{ASQURX}(3,3)+Y 1(I) \neq Y 1(I)\)
\(\operatorname{ASQURX}(2,1)=\operatorname{ASOURX}(1,2)\)
\(\operatorname{ASQURX}(3,1)=\operatorname{ASQURX}(1,3)\)
\(\operatorname{ASQURX}(3,2)=\operatorname{ASQURX}(2,3)\)
DO \(31 \quad I=1, N\)
BCOLMX(1) \(=\operatorname{BCOLMX}(1)+Z X(I)\)
\(\operatorname{BCOLMX}(2)=8 \operatorname{COLMX}(2)+2 X(I) * X 1(1)\)
\(\operatorname{BCOLMX}(3)=B \operatorname{COLMX}(3)+Z X(I) * Y 1(I)\)
DO \(33 \quad \mathrm{I}=1,3\)
WRITE(6,260) BCOLMX(I),(ASQURX(I,J),J=1,3)
WRITE(6,111)
CALL SIMQ(ASQURX,BCOLMX,3,0)
\(\operatorname{ASQURY}(1,1)=N\)
DO \(34 \mathrm{I}=1, \mathrm{~N}\)
\(\operatorname{ASQURY}(1,2)=\operatorname{ASQURY}(1,2)+X 2(1)\)
\(\operatorname{ASQURY}(1,3)=\operatorname{ASQURY}(1,3)+Y 2(1)\)
\(\operatorname{ASQURY}(2,2)=\operatorname{ASQURY}(2,2)+X 2(1) * X 2(1)\)
\(\operatorname{ASQURY}(2,3)=\operatorname{ASQURY}(2,3)+X 2(1) * Y 2(I)\)
\(\operatorname{ASQURY}(3,3)=\operatorname{ASQURY}(3,3)+Y 2(1) * Y 2(1)\)
\(\operatorname{ASQURY}(2,1)=\operatorname{ASQURY}(1,2)\)
\(\operatorname{ASQURY}(3,1)=\operatorname{ASQURY}(1,3)\)
\(\operatorname{ASQURY}(3,2)=\operatorname{ASQURY}(2,3)\)
DO \(35 \mathrm{I}=1, \mathrm{~N}\)
BCOLMY(1) = BCOLMY(1)+ZY(I)
BCOLMY(2) \(=\operatorname{BCULMY}(2)+Z Y(I) * X 2(1)\)
\(\operatorname{BCOLMY}(3)=\operatorname{BCOLMY}(3)+Z Y(I) * Y 2(I)\)
DO \(36 \quad[=1,3\)
WRITE 6,260) BCOLMY(I), (ASQURY(I, J), J=1,3)
CALL SIMG(ASQURY, BCOLMY,3,O)
\(\Delta X=B C O L M X(1)\)
\(B X=B C O L M X(2)\)
\(C X=\operatorname{BCOLMX}(3)\)
\(A Y=B C O L M Y(1)\)
\(B Y=B C O L M Y(2)\)
\(C Y=\operatorname{BCOLMY}(3)\)
WRITE(6,205) AX,BX,CX,AY,BY,CY
IF (KCHEN .EQ. 4) GO TO 654
WRITE(6,111)
DO \(17 \quad \mathrm{I}=1, \mathrm{~N}\)
XSUM2 \(=\) FXSUM2(I)
YSUMZ \(=\) FYSUM2(I)
X2SY2 = FX2SY2(I)
XSUM4 \(=\) FXSUM4(I)
YSUM4 \(=\) FYSUM4(I)
X2SY4 \(=\) FX2SY4(I)
X4SY2 \(=\) FX4SY2(I)
XSUMS \(=\) FXSUMG(I)
YSUMG \(=\) FYSUMG(I)
X4SY4 \(=\) FX4SY4(I)
XSUM \(8=\) FXSUM8(I)
YSUM \(8=\) FXSUM8(I)
YSUMB \(=\) FYSUM \(8(I)\)
\(A 1=1.0+S K * S K\)
\(A 2=1.0-S K * S K\)
\(A 3=A 1\)
\(\mathrm{A} 4=\mathrm{Al}\)
\(A 5=2.0 * A 2\)
\(B 1=A 1\)
\(B 2=-A 2\)
\(B 3=A 1\)
\(B 4=A 1\)
\(B 5=-A 5\)
\(S 1=A 1\)
\(T 1=A 1\)
\(C 1=S Q R T(S 1 * 2.0) / 21(I)\)
\(C 2=S Q R T(T 1 * 2.0) / Z 2(I)\)
\(A E 11=B X * B X *(X S U M 4-X S U M 2 * X S U M 2)+2.0 * B X * C X *(X S U M G-X S U M 2 * X S U M 4)\)
- \(\quad+C X * C X *(X S U M 8-X S U M 4 * X S U M 4)\)

AE22 \(=\) BY*BY* (YSUM4-YSUM \(2 * Y S U M 2)+2.0 * B Y * C Y *(Y S U M 6-Y S U M 2 * Y S U M 4)\)
- + CY*CY* (YSUM8-YSUM4*YSUM4)

AE12 2 BX*BY* (X2SY2-XSUM2*YSUM2) \(+B X * C Y *(X 2 S Y 4-X S U M 2 * Y S U M 4) ~+~\)
- CX*BY* (X4SY2-XSUM4*YSUM2) \(+C X * C Y *(X 4 S Y 4-X S U M 4 * Y S U M 4)\)
\(\times 422=\) XSUM \(4-X\) SUM \(2 * \times\) SUM 2
Y422 \(=\) YSUM4-YSUM \(2 *\) YSUM 2
X624 = XSUM6-XSUM2*XSUM4
Y624 = YSUM6-YSUM2ヶYSUM4
\(X 844=X\) SUM \(8-X\) SUM \(4 * X\) SUM 4
Y844 = YSUM8-YSUM4*YSUM4
\(X 222=X 2 S Y 2-X\) SUM \(2 \div Y\) SUM 2
\(X 424=X 2\) SY4-XSUM \(2 * Y\) SUM 4
\(X 242=X 4\) SY2-XSUM4*YSUM2
X444 = X4SY4-XSUM4*YSUM4
WRITE \(6,1001 \times 422, \times 624, \times 844, Y 422, Y 624, Y 844, \times 222, \times 424, \times 242, \times 444\)
WRITE \((6,214) \mathrm{Cl}, \mathrm{C} 2, \mathrm{AE} 11, \mathrm{AE} 22, \mathrm{AE} 12\)
\(A F R S 2=((B 2 * C 1) * 2 * A E 11-2 * B 2 * A 2 * C 1 * C 2 * A E 12+(A 2 * C 2) * * 2 * A E 22) /\) (A1*B2-A2*B1)**2
\(A F R N 2=((B 1 * C 1) * 2 * A E 11-2 * * B 1 * A 1 * C 1 * C 2 * A E 12 *(A 1 * C 2) * * 2 * A E 22) /\) (A1*B2-A2*B1)**2
AFRSN \(=-((B 1 * B 2 * C 1 * C 1 * A E 11)-(A 1 * B 2+A 2 * B 1) * C 1 * C 2 * A E 12\) + (A1*
\(A 2 *(2 * C 2 * A E 22)) /(A 1 * B 2-A 2 * B 1) * * 2\)
\(F C S 1=(A 4 / S 1-(A 1 / S 1) * * 2) * A F R S 2\)
\(F C S 2=(A 3 / S 1-(A 2 / S 1) * * 2) * A F R N 2\)
FCS3 \(=(A 5 / S 1-2 \cdot 0 * A 1 * A 2 / S 1 * * 2) * A F R S N\)
FCS(I) \(=0.5 *(F C S 1+F C S 2+F C S 3)\)
FCT1 \(=(84 / T 1-(B 1 / T 1) * * 2) * A F R S 2\)
\(F C T 2=(B 3 / T 1-(B 2 / T 1) * * 2) * A F R N 2\)
FCT3 \(=(B 5 / T 1-2.0 * B 1 * B 2 / T 1 * * 2) * A F R S N\)
\(F C T(I)=0.5 *(F C T 1+F C T 2+F C T 3)\)
WRITE \((6,265)\) FCS(I), F1(I), FCT(I), F2(I)
WRITE \((6,220)\) AFRS2,AFRN2, AFRSN
WRITE 6,111)
CONTINUE
DO \(77 \quad 1=1, N\)
IF(DABS(FCS(I)-FI(I)).GT.0.0001.OR.DABS(FCT(I)-F2(I)).GT..0001) GU TO 61
77 CONTINUE
WRITE \((6,215) \mathrm{A}, A 2, A 3, A 4, A 5, S 1\)
WRITE \((6,216) \mathrm{Bl}, \mathrm{B} 2, \mathrm{~B} 3, B 4, \mathrm{B5}, \mathrm{Tl}\)
WRITE \((6,270)\) FCS1,FCS3,FCT1,FCT3
GO TO 91
DO \(23 \mathrm{I}=1, N\)

FINAL PROGRAM

REAL*8
- X4SY4, XSUMQ,YSUM8, AEK, ACO, ACE,ACP1,ACP2,SK,R1,R2,S1,T1
- QS,QST,C1,C2, AE11,AE22,AE12,A1,A2,A3,A4,A5,31,32,B3,B4
-
 FORMAT (F10.5)
 FORMAT (413)
 FORMAT (6F10.5)
 FORMAT (/10X,'QS=',F10.5, \(10 \mathrm{X}, \mathrm{D}\) 'OST \(=\mathrm{P}, \mathrm{F} 10.5\))
 FORMAT (/10X,'EL=',F10.5,5X,'E2=',F10.5,5X,'AE11=',F1C.5,5X,'AE2Z
 .' ,F10.5,5X,'AE12 = ',F10.51

 FORMAT (/10X, \(\mathrm{Cl}=1, \mathrm{~F} 10.5,5 \mathrm{x}, \mathrm{C} 2=1, \mathrm{~F} 10.5)\)
 FORMAT(/10X,'AFRS2 = ', F10.5,5X,'AFRN2 = ', F10.5, 5X, 'AFRSN=', F10.5)
 format (//1)
 FORMATI/10X,'US=',F10.5,5X,'UN=',FIO.5,5X,'TINTS =',FIG.5,5X,'TIN
 . \(=1\), F10.5,5X,'TSHEAR \(=1\), F10.51
 FORMAT (/10X.'IMAGINARY RUOT')
 FORMAT (2F9.5,3F9.3,7F9.0)
 FORMAT \(1 / 10 \mathrm{X}, \mathrm{SK}=1, \mathrm{~F} 10.51\)
 FORMAT (/10X,8F10.5)
 FORMAT (/10X,'(R1=',F10.5,')',9X,'R2 =',F10.5)
 FORMAT(8 F10.5)
 FORMAT (/10X,'R1=',F10.5,10X,'(R2=',F10.5,'1)')

 - 'FCT=',F10.5,5X,'F2=',F10.5)

 - 'FCS =',F10.5,5X,'Fl=',F10.5)
274 FORMAT (/10X,'AEK =1,F10.5,5X,'ACO =',F10.5,5X,'ACE =',F10.5,5X,
 ' \(\mathrm{ACP} 1=1, F 10.5,5 \mathrm{X}, \mathrm{ACP} 2=1, F 10.51\)

 - 'X2SY4',4X,'X4SY2',4X,'XSUMG',4X,'YSIJMG', 4X,'X4SY4',4X,
 - 'XSUM8',4X,'YSUM8')
 READ \((5,104) \mathrm{N}\), IND,IMM,NN
 WRITE (6,104) N,IND,IMM,HIN
 READ (5,105) AX,BX,CX,AY,BY,CY
 WRITE(6,105) \(A X, B X, C X, A Y, B Y, C Y\)
 READ (5,103) SK
 WRITE(6,275)
 DO \(10 \mathrm{I}=1, \mathrm{~N}\)
 READ (5,256) FXSUM2(I), FYSUM2(I),FX2SY2(I), FXSUN4(I), FYSUM4(I),
 FX2SY4(I),FX4SY2(I),FXSUM6(I),FYSUM6(I),FX4SY4(I),
```

        - FXSUMB(I),FYSUM8(I)
            WRITE(6,249) FXSUM2(I),FYSUM2(I),FX2SY2(I),FXSUM4(I),FYSUM4(I),
            C
                FX2SY4(I),FX4SY2(I),FXSUM6(I),FYSUM6(I),FX4SY4(1),
                FXSUMB(I),FYSUM8(I)
    CONTINUE
    1 CONTINUE
MM = l
4 CONTINUE
XSUM2 = FXSUM2(NN)
YSUM2 = FYSUM2(NN)
X2SY2 = FX2SY2(NN)
XSUM4 = FXSUM4(NN)
YSUM4 = FYSUM4(NN)
X2SY4 = FX2SY4(NN)
X4SY2 = FX4SY2(NN)
XSUM6 = FXSUM6(NN)
YSUMG = FYSUMG(NN)
X4SY4 = FX4SY4(NN)
XSUM8 = FXSUM8(NN)
YSUM8 = FYSUM8(NN)
E1 = AX+BX*XSUM2 +CX*XSUM4
E2 = AY+BY*YSUM2 + CY*YSUM4
A3 = 1.0 + SK*SK
A4 = 1.0 + SK*SK
A5 = 2.0*(1.0-SK*SK)
B3 = 1.0 + SK*SK
B4 = 1.0 + SK*SK
B5 = 2.0*(SK*SK-1.0)

```
 \(T 1=(1.0+S K * S K)-2.0 *(1.0-S K * S K) * R 1+(1 . O+S K * S K) * R 1 * R 1\)
 \(T F=1.0\)
 QS = E1/(TF* DSQRT(SI/2.0)*(1.0+F1))
 QST \(=\mathrm{E} 2 /(\mathrm{TF} * \mathrm{DSQRT}(\mathrm{T} 1 / 2.0) *(1.0+\mathrm{F} 2))\)
 \(C 1=D S Q R T(2.0 * S 1) /(T F * Q S)\)
 \(\mathrm{C} 2=\operatorname{DSQRT}(2.0 \div T 1) /(T F * Q S T)\)
 \(A 1=(1.0+S K * S K)-(S K * S K-1.0) * R 1\)
 \(A 2=(1.0-S K * S K)+(1.0+S K * S K) * R 1\)
 \(B 1=(1.0+S K * S K)+(S K * S K-1.0) * R 1\)
 \(B 2=(S K * S K-1.0)+(1.0+S K * S K) * R 1\)
 \(A F R S 2=((B 2 * C 1) * 2 * A E 11-2 * * 2 * A 2 * C 1 * C 2 * A E 12+(A 2 * C 2) * 2 * A E 22) /\)
 - \((A 1 * B 2-A 2 * B 1) * 2\)
 \(A F R N 2=((B 1 * C 1) * * 2 * A E 11-2 * B 1 * A 1 * C 1 * C 2 * A E 12+(A 1 * C 2) * * 2 * A E 22) /\)
 \((A 1 * B 2-A 2 * B 1) * * 2\)
 \(A F R S N=-(\mid B 1 * B 2 * C 1 * C 1 * A E 11)-(A 1 * B 2+A 2 * B 1) * C 1 * C 2 * A E 12+(A 1 *\)
 \(A 2 * C 2 * C 2 * A E 22) /(A 1 * B 2-A 2 * 81) * * 2\)
 \(\cdot F C S 1=(A 4 / S 1-(A 1 / S 1) * * 2) * A F R S 2\)
 \(F C S 2=(A 3 / S 1-(A 2 / S 1) * * 2) * A F R N 2\)
 FCS3 \(=(A 5 / S 1-2.0 * A 1 * A 2 / S 1 * * 2) * A F R S N\)
 \(F C S=0.5 *(F C S 1+F C S 2+F C S 3)\)
 FCT1 \(=(B 4 / T 1-(B 1 / T 1) * * 2) * A F R S 2\)
 FCT2 \(=(B 3 / T 1-(B 2 / T 1) * * 2) * A F R N 2\)
 FCT3 \(=(B 5 / T 1-2 \cdot 0 * B 1 * B 2 / T 1 * * 2) * A F R S N\)
 \(F C T=0.5 *(F C T 1+F C T 2+F C T 3)\)
 \(\operatorname{IF}(D A B S(F C S-F 1) \cdot L E \cdot 0.000 C 1 \cdot A N D . D A B S(F C T-F 2) \cdot L E \cdot 0.00 C O 1)\) GO TO 6
 \(F 1=F C S\)
 \(F 2=F C T\)
 GO TO 3
\(61 U N=Q S * R 1\)
 TINTS = DSQRT(AFRS2)
 TINTN = DSQRT(AFRN2)
 TSHEAR \(=A F R S N * Q S * Q S\)
 WRITE \((6,250)\) SK
 WRITE \((6,274)\) AEK, ACO, ACE,ACP1, ACP2
 WRITE \((6,210)\) QS,QST
 WRITE \((6,214) \mathrm{E}, \mathrm{E} 2, \operatorname{AE} 11, A E 22, A E 12\)
 WRITE \((6,215) ~ A 1, A 2, A 3, A 4, A 5, S 1\)
 WRITE \((6,216) \mathrm{Bl}, \mathrm{B} 2,03, \mathrm{B4}, \mathrm{~B} 5, \mathrm{T1}\)
 WRITE \((6,217) \mathrm{C} 1, \mathrm{C} 2\)
 WRITE \((6,270)\) FCS1,FCS2,FCS3,FCS,F1
 WRITE \((6,265)\) FCT1,FCT2,FCT3,FCT,F2
 WRITE 16,220\()\) AFRS2,AFRN2,AFRSN
 WRITE(6,227) QS,UN,TINTS,TINTN,TSHEAR
 IF (MM .EQ. IMN) GO TO 65
 \(M M=M M+1\)
 GO TO 4
 IF (NN .EQ. IND) GO TO 70
 INN \(=N N+1\)
 WRITE \((6,225)\)
 GO TO 1
70 STOP
 END
```

C
C
AUTO POWER SPECTRUM
DIMENSION X(08194),DATA(2,4097),RCOR(4098),FR(4098),iNX(1),S(280)
EQUIVALENCE (X(1),DATA(1,1))
EQLIVALEVCE (FR(1),RCOR(1))
201 FGRNAT (//5X,'TIMER',21X,'=',F8.0,//5X,'FREQLENCY',17X,'=',F10.6,
.//5X,'NO. CF ITERATION',lOX,'=',I4, //5X, 'FREQUENCY AVERAGE D
.OMAIN =',I4,//5X,'MFAN-SGUARE VALUE',9X,'=',F8.4,//5X,'TCTAL SAMP
-LEC POINTES =',I8,//5X,'EXPERIMENT PUSITION ',6X,'=',I3,//5X,'
-EXFERIMENT CATE',10X,'=',I3//5X,'REYNOLD NUNBER',12X,'=',F8.C//
.5X,'TAPE SPEEC',15X,'=',I31
FORMAT ( LOE11.3/(10E11.3))
205 FORNAT (1HH)
206 FORMAT (//5X,'FREQUENCY (CYCLES/SEC.)'/1
207 FORMAT I//5X,'NORMALIZED AUTO CORRELATION WITH TIME DELAY = 1/TINE
.R'//
209 FGRMAT (//5X,'AUTO CORRELATICN WITH TIME DELAY = 1/TIMER'/)
210 FORMAT (I 5,F1C.5,F10.5,F10.5)
220 FORMAT (1X)
226 FORNAT (5X,I6,10X,1E11.3)
240 FORNAT (//5X,'INTEGREL TIME SCALE ',5X,'=',E13.5,10X,'INTERGRAL LE
.NGTH SCALE',5X,'=',E13.5,3X,'(FT)')
FORNAT (//5x,'IORMALIZED WAVENUMBER POWER SPECTRUM ',3X,'(FT)')
FORNAT (//5X,'FREQUENCY WITH WAVENUMBER (1/FT)')
FORMAT (//5X,'NICRO SCALE CR DESSIPATION SCALE =',E13.5,3X,
* forvar (//5X,')
- F10.5)
254 FORMAT (//5X,'PHYSICAL NORMALIZED ONE_SIDE PCWER SPECTRUM',3X,
- '(SEC)')
400 FORNAT (45F8.4)
4 0 1 ~ F O R N A T ~ ( I 3 , I 6 , F 8 . 0 , I 3 , F 8 . 0 , I 3 ) ,
4 0 2 ~ F C R N A T ~ ( I 3 , I 6 , F 8 . 0 , I 3 , F 8 . 0 , I 3 , 1 4 F 1 0 . 5 )
403 FORNAT (I3,I6,F8.0,I3,F8.0,I3,6F10.5/(10F10.5))
C
KKK = 3
1 CCNTINUE
READ (1,402) MM, N , TIMER, KCOND ,REY,ISPEED,AX,BX,CX,AY,BY,CY,
- R1,R2,Q1,G2,XDC,YDC,UEMX,UEMY
WRITE(6,403) MM, N , TIMER, KCCIND , REY,ISPEED,AX,BX,CX,AY,BY,CY,
-
R1,R2,Q1,Q2,XDC,YDC,UEMX,UEMY
MM = NN-1
READ (5,210) NC, DATE, US ,TINSTS
WRITE(6,210) MD, DATE ,US ,TINSTS
RMSV = (TINSTS*US)**2
FREGY = TINER / FLCAT(N)
NN=0
NX(1) = N
NO = N*NM
M2 = N/2
M3 = M2+1
N2 = M2
MD2 = (N+2)/2

```
```

        \(\mathrm{MO4}=\mathrm{N} /(2 * \mathrm{MD})\)
        OO 3C I =1, MD2
    $30 \operatorname{RCCR}(I)=0.0$
DO $31 \quad I=1, \mathrm{MO} 4$
$31 S(I)=0.0$
20 CONTINUE
IOUT1 $=256$
DO $33 \mathrm{I}=1, \mathrm{~N} 2,256$
DO $351 \mathrm{~J}=1,6$
351 READ $(1,220)$
33 IOUT1 $=256+$ IOUT1
IOLT2 $=256$
DO $35 \quad[=1, N 2,256$
REAC $(1,400)(X(J), J=I, I O U T 2)$
35 IOUT2 $=256+$ IOUT 2
IOUT $=4352$
DO $37 \mathrm{I}=4097, \mathrm{~N}, 256$
DO $381 \mathrm{~J}=1,6$
$381 \operatorname{READ}(1,220)$
37 IOUT1 $=256+$ IOUT 1
IOUT2 $=4352$
DO $38 \quad \mathrm{I}=4097, \mathrm{~N}, 256$
READ $(1,4 C 0)(X(J), J=I, I O U T 2)$
IGUT $2=256+$ IOUT 2
WRITE $(6,202)(X(I), I=4090,4096)$
CALL FOUR2 $(X, N X, 1,-1,0)$
DO $44 \mathrm{I}=1$, MD 2
$44 \operatorname{RCCR}(I)=\operatorname{RCOR}(I)+(\operatorname{DATA}(1, I) * \operatorname{CATA}(1, I)+\operatorname{DATA}(2, I) * D A T A(2, I)) / F L O A T(N)$
DO $64 \mathrm{~J}=1, \mathrm{NO} 4$
SAVE $=0.0$
DO $61 I=1, M D$
$I J=I+(J-1) * M D$
SAVE $=$ SAVE $+\operatorname{DATA(I,IJ)*DATA(1,IJ)+DATA(2,IJ)*CATA(2,IJ)~}$
$S(J)=S(J)+S A V E$
$N N=N N+1$
IF (NN.LT.MM) GO TO 20
$F M S U=0.0$
DO $51 \quad \mathrm{I}=2, \mathrm{M} 2$
FMSU $=\mathrm{FMSU}+\operatorname{RCOR}(I)$
FMSU $=(2 . * F M S U+R C O R(1)+R C C R(N D 2)) / F L C A T(N M * N)$
WRITE (6,205)
WRITE(6,201) TIMER, FREQY, MM, MD, FMSU,NO, PCSITN,DATE,REY, ISPEED
WRITE $(6,252)$ RMSV
DO $21 \mathrm{I}=1, \mathrm{MD} 2$
DATA(1,I) $=\operatorname{RCOR}(I) / F L O A T(M M)$
DATA(2.I) $=0.0$
CALL FOUR2 $(X, N X, 1,1,-1)$
DO $55 \mathrm{I}=1$, MD2
FR(I) $=$ FLOAT (I-I)/TIMER
DO $22 \mathrm{I}=1, \mathrm{MD} 2$
$22 \times(I)=X(I) /(F L D A T(N) *(1 .-F R E Q Y * F R(I))$
WRITE $(6,209)$
WRITE 6,202$)(X(I), I=1,31)$
$X O F 1=X(1)$

```
 DO \(29 \mathrm{I}=\mathrm{I}, \mathrm{MD} 2\)
 \(X(I)=X(I) / X O F I\)
 WRITE \((6,207)\)
 WRITE \((6,2 C 2)(X(I), I=1,301)\)
 TINTER \(=0.0\)
 DO \(27 \mathrm{I}=1, \mathrm{MD} 2\)
 IF (X(I) .LT. C.00001) GO TO 28
 TINTER = TINTER + X(I)
 WRITE \((6,226)\) I \(X(I)\)
 TINTER = TINTER * \(1.0 /\) TIMER
 TLENGT = TINTER * US
 WRITE \((6,240)\) TINTER , TLENGT
 \(0062 \mathrm{I}=1\), M04
 \(S(I)=S(I) /(F L O A T(N D * N O) * T I N E R * F M S U) * 2.0\)
 WRITE \((6,254)\)
 WRITE \((6,202) 1\) S(I),I=1,MO4)
 DO \(63 \mathrm{I}=1\), M04
 \(F R(I)=(F L O A T((I-1) * M D)+F L C A T(M D) / 2) * F R E G\).
 WRITE(6,206)
 WRITE (6,202) (FR(I),I=1,MC4)
 TMICRO \(=\mathrm{C} .0\)
 DO \(80 \mathrm{I}=1, \mathrm{MO4}\)
 TMICRO \(=\) TMICRC+S(I)*FR(I)*FR(I)
 TMICRO \(=\) TMICRO*FLOAT (MD)*FREQY*4.0*3.1416*3.1416/(US*US)
 TMICRO \(=\) SQRT(I.C/TMICRO)
 WRITE \((6,250)\) TNICRO
 DO \(72 \mathrm{I}=1, \mathrm{MO} 4\)
72 S(I) = US *S(I) / 6.2832
 WRITE \((6,246)\)
 WRITE \((6,202)\) (S(I),I \(=1\), MO4)
 DO \(73 \mathrm{I}=1, \mathrm{MO4}\)
 \(F R(I)=6.2832 * F R(I) / U S\)
 WRITE \((6,248)\)
 WRITE (\(6,2 \mathrm{C} 2)\) (FR(I), I=1, MC4)
 IF (KCOND . LT. KKK) GO TO 1
 END
1. Prandtl, L. Ministry of Aircraft Production Völkenrode. Rept. and Trans. No. 64, 1946.
2. Jones,R.T. NACA Tech. Note, No.1402, 1947.
3. Sears,W.R. J.Aero. Sci. 15,49. 1948.
4. Schubauer,G.B. \& Klebanoff,P.S. INACA Adv. Conf. Rept. Ho. 5 K 27 , Wartime Report W-86, 1946.
5. Kronauer, R.E. Pratt and Whitney Res. Rept. No.137, 1953.
6. Champagne, F.H., Sleicher,C.H., \& Wehrmann,O.H. "Turbulence measurements with inclined hot wires," J. Fluid Mech., vol.28, pt.1,pp. 153-175, 1967.
7. Champagne,F.H. \& Sleicher,G.H. "Turbulence measurements with inclined hot wire," J. Fluid Mech., vol. 28,pt.2, pp. 177-182, 1967.
8. Bullock,K.J. \& Bremhorst,K. "Hot-wire anemometer measurements in flow where direction of mean velocity change during a traverse," IEPi Transaction on Instrumentation \& measurement, vol.IM-18, No3, 1969.
9. Mccroskey, W.J. \& Durbin, E.J. "Flow angle and shear stress measurements using heated films and wires," ASME paper NO. 71-TA/FE-17, 1971.
10. King,L.V. "On the convection of hear from small cylinders in a stream of fluid," Phil. Trans. Roy. Soc. (London), 214A, 373, 1914.
11. Kovasznay,I.S. \& Tormarck,S.I. Heat loss of hot-wire in supersonic flow," Bumblebee Rep. No. 127, Johns Hopkins, 1950.
12. Lowell,H.H. "Design and application of hot wire anemometer," NACA TN2117, 1950.
13. Spangenburg,W.G. "Heat loss characteristics of hot wire anemometers," NACA, TN3381, 1955.
14. Collins,D.C. \& Williams,M.J. "Two-dimensional convection from heated wires at low Reynolds number," J. Fluid Rechanics, vol.6,1959.
15. Morkovin, X.V. "Fluctuations and hot wire anemometry in compressible flows," AJardagraph 24, 1956.
16. Hinze,J.O. "Turbulence, An Introduction To Its Mechanism And Theory," pp. 75-80, Mcgraw-Hill Co., New York,
17. Van der Hegge Zijnen,B.G. Appl. Sci. Research 6A,129, 1956.
18. Kramers,H. Physica, 12, 61, 1946.
19. Laufer,J. "The Structure Of Turbulence In Fully Developed Pipe Flow," Report 1174, National Advisory Committee For Aeronautics, 1954.
20. Bennett,C.O., \& Myers,J.E. "Momentum, Heat, And Mass Transfer," pp. 62, Mcgraw-Hill co., New York, 1962.
21. Bennett,C.O., \& Myers,J.E. "Momentum, Heat, And Mass Transfer," pp. 137-138, Mcgraw-Hill., New York, 1962.
22. Hinze,J.O. "Turbulence, An Introduction To Its Mechanism \(\frac{\text { And Theory, " pp. 60-61, Mcgraw-Hill Co., New york, }}{1959 \text {. }}\)
23. Athanasios Papoulis, "Probability, Random Variables, And Stochastic Processes," pp. 329, Mcgraw-Hill Co., New Jork, 1965.
24. Bendat,J.S., \& Piersol,A.G. "Measurement And Analysis Qf.Random Data," pp. 82, John Wiley \& Sons., 1966.
25. Taylor.G.I. "The Spectrum of Turbulence," Proc. Roy. Soc. London, 157A,537, 1936.
26. Taylor,G.I. "The Spectrum Of Turbulence," Proc. Roy. Soc. London, \(151 \mathrm{~A}, 421,1935\).
27. Schiesser,W.E. "Statistical Uncertainty of Power Spectral Estimates," TM 711-C-1 Weston-Boonshaft And Fuchs, Weston Instruments, Inc.
28. Yost,A.M. "An Investigation Of Turbulent Flow Over A Triangular Roughness," M.S. Thesis, Univ. Of Houston, 1969.
29. Jorgengen, F.E. "Directional Sensitivity of Wire And Fiber-filim Probes--An Experimental Study," DISA Information NO. 11, 1971.

A
\(A_{1}\)
\(A_{2}\)
\(\mathrm{A}_{3}\)
\(A_{4}\)
A. 5

As
B/
\(B_{2}\) \(\left(k^{2}-1\right) \tan \alpha+R\left(1+k^{2} \cdot \tan ^{2} \alpha\right)\)
\(B_{3}\)
\(\left(1+k^{2} \cdot \tan ^{2} \alpha\right)\)
\(B_{4}\)
\(\left(k^{2}+\tan ^{2} \alpha\right)\)
\(B_{5}\) \(2\left(k^{2}-1\right) \tan \alpha\)
\(C_{1}, C_{2}, C_{3}\) Calibration constant
Cp, Cv Specific heat at constant pressure, and volume respectively

D Diameter
D Diameter
Eb Bridge voltage
\(\mathrm{E}_{\mathrm{g}}(\mathrm{f}) \quad\) Power spectrum in S -direction
\(F_{1}\)
\(F_{2}\)

Fsd
Fsp
Fsr
Instantaneous bridge voltage from hot wire anemometer \(\left(1+k^{2} \tan \alpha\right)-R \cdot \tan \alpha\left(k^{2}-1\right)\) \(\left(1-k^{2}\right) \tan \alpha+R\left(k^{2}+\tan ^{2} \alpha\right)\)
\(\left(k^{2}+\tan ^{2} \alpha\right)\)
\(\left(1+k^{2} \cdot \tan ^{2} \alpha\right)\)
\(2\left(1-x^{2}\right) \tan \alpha\)
Surface area normal to S-direction
\(\left(k^{2}+\tan ^{2} \alpha\right)+R\left(k^{2}-1\right) \tan \alpha\) tively
\(\overline{\gamma_{s}^{2}}\left(\frac{A_{4}}{2 S_{1}}-\frac{A_{1}^{2}}{2 S_{1}^{2}}\right)+\overline{\gamma_{n}^{2}}\left(\frac{A_{3}}{2 S_{1}}-\frac{A_{2}^{2}}{2 S_{1}^{2}}\right)+\overline{\gamma_{s} \gamma_{n}}\left(\frac{A_{5}}{2 S_{1}}-\frac{A_{1} A_{2}}{S_{1}^{2}}\right)\)
\(\overline{\gamma_{s}^{2}}\left(\frac{B_{4}}{2 T_{1}}-\frac{B_{1}^{2}}{2 T_{1}^{2}}\right)+\overline{\gamma_{n}^{2}}\left(\frac{B_{3}}{2 T_{1}}-\frac{B_{2}^{2}}{2 T_{1}^{2}}\right)+\overline{\gamma_{s} \gamma_{n}}\left(\frac{B_{5}}{2 T_{1}}-\frac{B_{1} B_{2}}{T_{1}^{2}}\right)\)
Shear stress caused by viscosity in S-direction
Pressure force in S-direction
External force in S-direction acting on the solid
boundary of the volume
\(F_{\mathrm{s}}\left(\mathrm{K}_{\mathrm{W}}\right) \quad\) Normalized power spectrum in S-direction
\(f \quad\) Frequency
\begin{tabular}{ll}
\(G_{1}\) & \(\frac{S_{2}}{2 S_{1}}+\frac{S_{3}}{2 S_{1}}-\frac{1}{8}-\frac{S_{2}^{2}}{S_{1}^{2}}\) \\
& \\
\(G_{2}\) & \(\frac{T_{2}}{2 T_{1}}+\frac{T_{3}}{2 T_{1}}-\frac{1 T_{2}^{2}}{8}-\frac{T_{1}}{}\)
\end{tabular}
\(\mathrm{H} \quad\) Rate of heat transfer to stream per unit length of sensor
\(\mathrm{H}_{0}, \mathrm{H}_{1} \quad\) Known input signal to tape recorder
\(H_{00}, H_{10}\) Corresponding output of \(H_{0}, H_{1}\) respectively from hybrid computer
\(\mathrm{H}_{2} \quad\) Hybrid computer output
I
Sensor heating current
k, \(\mathrm{k}_{0}\) Constant depending on sensor
K8 Thermal conductivity
\(K_{0}, K_{1}, K_{2}\) Gain value of adjustable DC offset, tape recorder, and hybrid computer, respectively
\(\mathrm{K}_{\mathrm{w}} \quad\) Local wave number, \(2 \pi \mathrm{f} / \overline{\mathrm{Vs}}_{\text {local }}\)
L Length
\(\mathrm{Nu} \quad\) Nusselt number, \(\mathrm{H} /(\pi \mathrm{Kg}(\mathrm{Ts}-\mathrm{Te}))\)
\(\operatorname{Pr} \quad\) Prandtl number, \(\mu \mathrm{Cp} / \mathrm{Kg}\)
B
Pressure
Po Atmosphere pressure
R
\(\overline{\mathrm{Vn}} / \overline{\mathrm{Vs}}\)
\begin{tabular}{|c|c|}
\hline \(R(\tau)\) & Auto correlation \\
\hline Re & Reynold number, \(\rho \mathrm{VeD} / \mu\) \\
\hline \(\mathrm{Re}_{\text {Max }}\) & Reynold number defined at vs section \\
\hline -r & Radius \\
\hline \(\gamma s\) & Vs'/ \(\overline{\mathrm{Vs}}\) \\
\hline \(\gamma_{n}\) & \(\mathrm{Vn} / \overline{\mathrm{Vs}}\) \\
\hline S, \(\mathrm{N}, \mathrm{T}\) & Coordinates in longitudinal, radial, and binormal direction, respectively \\
\hline \(S_{1}\) & \(\left(1+k^{2} \cdot \tan ^{2} \alpha\right)+2 R\left(1-k^{2}\right) \tan \alpha+R^{2}\left(k^{2}+\tan ^{2} \alpha\right)\) \\
\hline \(\mathrm{S}_{2}\) & \(2 A_{1} \gamma s+2 A_{2} \gamma_{n}\) \\
\hline \(S_{3}\) & \(A_{3} r_{n}^{2}+A_{4} r_{s}^{2}+A_{5} r_{s} r_{n}\) \\
\hline \multicolumn{2}{|l|}{\(S(w), S^{+}(w)\) Power spectrum in mathematical notation} \\
\hline \(\mathrm{T}_{1}\) & \(\left(k^{2}+\tan ^{2} \alpha\right)-2 R\left(1-k^{2}\right) \tan \alpha+R^{2}\left(1+k^{2} \tan ^{2} \alpha\right)\) \\
\hline \(\mathrm{T}_{2}\) & \(2 B_{1} r_{s}+2 B_{2} \gamma_{n}\) \\
\hline \(\mathrm{T}_{3}\) & \(B_{3} \gamma_{n}^{2}+B_{4} r_{s}^{2}+B_{5} \gamma \gamma_{n}\) \\
\hline Te & Ambient air temperature \\
\hline Ts & Sensor temperature \\
\hline \(\mathrm{V}_{\text {I }}\) & Instantaneous velocity \\
\hline \(\overline{v_{1}}\) & Mean velocity in i-direction \\
\hline \(V_{1}{ }^{\prime}\) & Fluctuating velocity in 1-direction \\
\hline Ve & Effective cooling velocity \\
\hline \(\overline{\mathrm{Ve}}\) & Mean effective cooling velocity \\
\hline Ve' & Fluctuating effective cooling velocity \\
\hline v & Volume \\
\hline \(\mathrm{V}_{\mathrm{b}}\) & Bulk average velocity \\
\hline y & Distance from wall \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
v^{*}
\] & Friction velocity, \(\left(\tau_{0} / \rho\right)^{\frac{1}{2}}\) \\
\hline \(\alpha_{s i}, \alpha_{t i}\) & Calibration coefficients \\
\hline \(\alpha e\) & Angle between \(V_{\text {I }}\) and \(S\)-direction \\
\hline - \({ }^{\text {a }}\) & Angle between tangent to the wall boundary and Sdirection \\
\hline \(\alpha\) & Angle between the mormal to the sensor and the sdirection in three-dimensional plane \\
\hline \(\beta_{2}\) & Angle between \(V_{I}\) and \(\left(V s^{2}+V t^{2}\right)^{\frac{1}{2}}\) vector \\
\hline \(\beta_{3}\) & Angle between \(V_{I}\) and the normal to the sensor \\
\hline \(\beta_{4}\) & Angle between \(V\) a and \(\left(\mathrm{Vs}^{2}+\mathrm{Vt}^{2}\right)^{\frac{1}{2}}\) vector \\
\hline \(\delta\) & Angle between \(V_{I}\) and the sensor axis in one-dimensional \\
\hline & plane . \\
\hline \(\delta_{0}, \delta_{1}, \delta_{2}\) & Offset value of adjustable DC offset, tape recorder, and hybrid computer, respectively \\
\hline \(\Omega_{\omega}\) & Total electric resistance of sensor \\
\hline \(\Omega_{3}\) & Electric resistance in serie with sensor \\
\hline \(\tau\) & Shear stress \\
\hline \(\tau\) & Shear stress at wall \\
\hline \(\phi\) & \[
\left(S_{1} / T_{1}\right)^{\frac{1}{2}}
\] \\
\hline 凫 & \(\left(V e_{1}\left(1+G_{2}\right)\right) /\left(V_{2}\left(1+G_{1}\right)\right)\) \\
\hline \(\psi\) & \(\left(\Phi^{2}+1\right)\left(1-k^{2}\right) /\left(\Phi^{2}-1\right)\left(1+k^{2}\right)\) \\
\hline \(\lambda\) & Micro scale of turbulence \\
\hline \(\wedge\) & Integral scale of turbulence \\
\hline \(<>\) & Expectation notation \\
\hline \(\rho\) & Density \\
\hline \(\mu\) & Viscosity \\
\hline
\end{tabular}

VII-1. Comparision Of Turbulent Intensities By Power Spectrum Method \& Time-series Method 52
-VIII-1. Cross Flow Data ... 55
VIII-2. End Flow Data .. 58
VIII-3. Boundary Layer Frobe Data 61
IX-1. Corrugated Pipe Data with \(\operatorname{Re}_{\operatorname{Max}}=1.15 * 10^{5} \ldots . . .66\)
IX-2. Corrugated Pipe Data With \(\operatorname{Re}_{\text {Max }}=2.53 * 10^{5} \ldots . . .67\)
IX-3. Turbulent Intensities Relative To Centerine
IX-4. Velocity \& Local Velocity With \(\operatorname{Re}_{\operatorname{Max}}=1.15 \% 10^{5}\)

IX-5. Longitudinal \& Radial ricro \& Integral scale ... 112
IX-6. Comparision Of Taylor's Data With Chen's Data
In Micro Scale ... 113
FIGURE PAGE
II-1. Velocity Component Diagram In One Dimension 7
II-2. Velocity Component Diagram In Three Dimensions. 7Block Diagrams of (a) Constant Current MethodAnd (b) Constant Temperature Method.............. 16\(I^{T r}-1\)Schematic Diagram of Reference Channel22
IV-2. Schematic Diagram Of Flow Channel 24
V-1. Computer Flow Diagram For Final Program (WithoutCalibration Constants).31
V-2. Computer Flow Diagram For Calibration Curve
Program 34
VI-1. Data Processing System 35
VI-2. Synchronization Of Discrete Time Series 36
VI-3. The Logic Patch Panel Chart And The Analog Patch Panel Chart 39
VI-4. Computer Flow Diagram For Final Program (With Calibration Constants) 42
VII-1. Signal Flow Diagram From Hot Wire AnemometerTo Hybrid Computer51
VIII-1. Schematic Diagram of X-film Probe In Cross Flow 53
VIII-2. Schematic Diagram Of Rectangular Channel And Probe Position 54
VIII-3. Schematic Diagram Of X-film Probe In End Flow 56

\(R e_{M a x}=1.15 * 10^{5}\), and \(R e_{\operatorname{Max}}=2.53 * 10^{5}\) 83
IX-13. Longitudinal Turbulent Intensity Relative To Friction Velocity Across Flow Channel With \(R e_{\operatorname{Max}}=2.53 * 10^{5}\) 85
IX-14. Radial Turbulent Intensity Relative To Friction Velocity Across Flow Channel with \(\operatorname{Re}_{\operatorname{Max}}=2.53 * 10^{5}\). 86
IX-15.
IX-16. Reynold's Stress Across Flow Channel With \(R e_{\operatorname{Max}}=1.15 * 10^{5}\), and \(R e_{\text {Nax }}=2.53 * 10^{5}\) 88
IX-17. Shear Stress Component Diagram 90
IX-18. Comparision Of Laufer's \& Chen's Data For
Vs' At \(\mathrm{y} / \mathrm{r}=1.0\) 93
IX-19. Vs'-spectrum In Dimensionless Form 94
IX-20. Through IX-31Normalized Wave-number Power Spectra At Various
Position 95-108
IX-32. Pressure Distribution Along A Wave Length 115
IX-33. Schematic Diagram Of Corrugation 115
I: -34 . Distribution Of Shear Stress Vector AT \(x=11 / 8\).. 117
IX-35. Turbulent Quantities Relative To Local Velocity For ML1 117
IX-36. Equal Velocity Line \& Flow Pattern 120
IX-37. Schematic Diagram Of Flow Direction 121```

