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ABSTRACT

The laminar flow in the entrance region of a circular
sector is investigated by linearizing the governing equation
and cohsidering the velocity as the fully developed velocity
plus a difference velocity.

The non-linear transformation is determined “"after the
fact" in that the axial coordinate is stretched, the problem
solved in the transformed coordinate system and the "stretching
factor" then determined by equating two expressions for the
- pressure gradient.

There are no experimental results with which to compare,
however, the results compare very favorably with similar

analyses in a circular tube.
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CHAPTER I
INTRODUCTION

The laminar flow of an incompressible fluid through a
duct will undergo a development from some initial profile at
the entrance of the duct to a fully developed profile at some
point far downstream. The length of the duct in which the
velocity develops is defined as the entrance region.

The condition that a flow in a circular tube is considered

_ Dw

to be laminar is that Reynolds number, R where D is

e
the diameter of the duct, w is the mean velocity of the flow
and v. is the kinematic viscosity, is less than 2100. No fluid
is completely incompressible, however, a fluid is termed incom-
pressible if the density can be considered constant.

The equations of motion governing the velocity solution
for laminar incompressible flow are non-linear, therefore, the
velocity solution is approximate. The non-linearity of the
equations of motion is attributed to the inertia terms.

The present method of analysis to be employed in construct-
ing a velocity solution is due to Sparrow, et al [l]l. The

analysis is a linear model technique in which a transforma-

tion from the linear system to the non-linear system is achieved

1All numbers in brackets refer to correspondingly numbered

references in the Bibliography.



by equating two expressions for the pressure gradient. The
velocity solution which is determined from the linear model
is continuous over the cross section and along the axial co-
ordinate.

The application of the analysis by Sparrow, et al, to
the circular tube and to the parallel plate channel compares
favorably to the prior analysis and to experimental results.
The present application will be made to a circular sector.

In the course of the analysis, reference is made repeatedly
_to various theorems and definitions which are now presented.

The first theorem is referred to as Green's formula in
two diﬁensions [2]. If ¢ and ¢ have continuous second

partial derivatives, then
2, _ 4yu2 = 39 _ 43y g
J (yv%e $v4éy)da gsc(q,an ¢8n) ds (1.0)
In the special case where y = 1 , then
jv2¢ dA = $¢ g—% ds . (1.1)

The second can be derived from Green's theorem by an appropriate

substitution of variables [2].
= 3‘1 + ¥ -
fA(u—— + V——)dA = IA ( ay)dA + ?cw(udy vdx) (1.2)
A further substitution yields [2]

fawvtvan = - 1202 + & %1an + §wlt as (1.3)



The outward normal derivative of the function w(x,y) is

defined as [2]

lim w(x,y) -~ w(x',y") oW

n-»>0 AN 3

o]

where (x,y) lies on a simple closed curve c¢ , (x',y') lies

intérior to ¢ on the normal to c¢ at (x,y) and aAn is

‘the distance from (x',y') to (x,y) measured along the normal.
A useful relation for the definition of the outward normal

derivative is [2]

where :dy/ds and dx/ds are computed with respect to c¢ .

Theorem 1. If '{¢n} is an orthogonal sequence of functions

on f[a,b] and

I Knép = 0 ' (1.4)

where the convergence is uniform, then
K =
n 0

for each n .

Proof. Multiplying Eq. (1.4) by ¢m , integrating over

[a,b] and using the uniform conﬁexgence of >{¢n} yields

b
LKy fa 6,0 =0

2:
m .

2

b i b b
Now | ¢pépm = 0 if n #m hence K_ [ ¢ 0 but [ ¢ #0 ,
a , m “a a M

therefore, Kp=0 for each m .



CHAPTER II
STATEMENT OF THE PROBILEM

The laminar inéompressible flow in a straight duct with
an axially unchanging cross-section which is a circular sector
is to be considered. The duct akis lies along the positive =z
direction with x and y the cross—-sectional coordinates.
The equations of motion governing the flow development can be

written as [1]

4 (2.1)

v *v=20 (2.2)

where Vv is the velocity vector having components u , v , w
in the x , y , z directions, respectively. The pressure,
density and kinematic viscosity are denoted by P , p and v ,
respectively. The symbol v, defined by 82/ax2 + 32/3y2 is
the two dimensional Laplacian operator.

The first equation represents the conservation of linear
momentum with the assumption that the static pressure is uniform
across each section and the component ﬁBZW/azz is negligible

compared to the cqomponents ﬁazw/axz and uazw/ay2 « The

second equation is a statement of the conservation of mass.



Equation (2.1) is replaced by the following linear

equation:
— 0W _ 2
E.('Z)W —a—z— '—A(Z) + Vvl w (2.3)

where ¢(z) 1is an undetermined funétion of z and A(z) is‘
an undetermined function Which includes the pressure gradient
and the residual of the inertia terms. This procedure is due
to Sparrow, et al [1l] and has been widely accepted as a reason-
able approximation to the non-linear model. .

Integration of Eg. (2.3) ovef the cross-sectional area

yields
_ v ow
A (z) = - x éc 3N dl (2.4)

where ¢ 1is the contour described by the duct walls and §w/3N
is the outward normal derivative of the velocity at the duct
wall. The details of the derivation of A(z) are presented in
Theorem 1 of the Appendix.

The transformation from the linear to the non-linear co-
ordinate systems is defined using

dz = e¢(2) dég (2.5)

The transformation could, of course, be viewed as a function of
z* .

The combination of Egs. (2.3){ (2.4) and (2.5) gives

' _ Vo, 3w
W'——VV]_W"Xécs-ﬁdl (2.6)
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Equation (2.6) is transformed from rectangular coordinates

to cylindrical coordinates and becomes

—ow _ 82w, loaw , 1 32y v
T Vbt Tar vz aee) xdew al. (2

The introduction of the following dimensionless variables

facilitates the analysis for the circular sector.

= W =z —..LE* I, = V - LW
¢ = —, p = = , B = v = A ’ Re....T
= 1 _ 1 = B = _ Yo _ (2 1/2
N=g/,8=g . R=0., fo L (%)

where 6,5 1is the angle subtended by the duct opening, »po 1is
"the radius of the duct and w is the average velocity.
The non-dimensional linear differential equation governing

the flow in the duct then becomes
2 2
39 _ 3% 130 123% o 20
56 9p b 3p | 527062 ¢c 5n 98 (2.8)
The details of the derivation are given in Theorem 2 of the
Appendix.

! The boundary condition on ¢ is that ¢ = 0 on the duct

wall and the initial condition on. ¢ is that ¢ =1 at g =0 .



CHAPTER III
ANALYTICAL SOLUTION

A solution to Eq. (2.8) is assumed of the form
$(p,0,8) = ¢e(p,0,8) + ¢£q(p,0) (3.1)
where d5g is the fully developed velocity distribution and
¢ 1s the entrance region velocity distribution equal to the
difference between the local velocity and the fully developed
velocity.

Substitution of Eg. (3.1) into Eg. (2.8) gives

_3%e 4 y2, - ¢ 2¢%e 2., - ¢ 29fa -
[-562 + V90e = $c 5 98] + [V29g5 = § =39 asl = 0 (3.2)
The differential equation governing the fully developed flow in

in rectangular coordinates is

2
v wfd(x,y)

=1+
Q-lQ-
N

(3.3)

where 3 is the dynamic viscosity equal to the product of
the kinematic viscosity, Vv , and the density, ¢ . Trans-
formation of codrdinates from rectangular to non-dimensional

cylindrical coordinates gives

1 2 1
A v ¢fd (p,8) = 3 az

Integration of Eqg. (3.3) over the duct cross-section yields the

result that

g
[of
el

= 1)
919
NI
5
It

Sarteg ) aa =

=1
[oN]
N



and by Green's formula Eq. (1.1)
f V2w (x,y) da ='¢ dwgg dS
A Tfd'! : c  3n ’
therefore,
2 1
Viweg () = 5§ ——ﬁd ds

The Jacobian of the transformation from rectangular to

non-dimensional cylindrical coordinates is pA so

1 2 Al agp 1
A Ja " 052 =K T @ T ;

where A represents the cross-sectional area in the non-
dimensional cylindrical coordinates (p,6) . By Green's

formula , Egq. (1.1),

Al‘fAtvzq’fdpAdAt =5 $o 35 as

therefore,

_ 9¢fa
- 56c an ds

2
Viteg
and the second bracket of Eg. (3.2) is zero.

The requirement that the velocity solution ¢ becomes

¢pq at some point in the duct results in
lim ¢e(plerB) = 0 (3.5)
Breo

In view of Eg. (3.5), a solution ¢ ©of the form
(=] . 2

¢e(p,e‘,s) = i-—z-l cigi(p,e)'e_al 8
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is assumed where the Ci's and the ui's are to be determined
from the boundary and initial conditions.

Substituting Eq. (3.6) into Eg. (3.2) gives

[ . 18g1+1829’i+ ,._9§§9ids]-°°128—0 (3.7)
i= 101 —*“%' b 02 302 * *i9i ¢ Ton ¢ - )

and if there is a function 94 such that

2 2
8 gi ,Loagy . 13 9i,, 25 _ ¢ 39igg-
okt T et e gor e 9i - § S ds =0 (3.8)

with the boundary condition 93 0 on the duct wall, then
Eq. (3.7) will be satisfied.

The eigenfunctions .gi(p,e) form an orthogonal sequence
over the cross-sectional area A with a weight function p
by Theorem 3 of the Appendix.

Using the orthogonality properties of the eigenfunctions

95 and the initial condition on e that

0 (pr08,0) = ¢5(0,8) = ¢-50(0,0) ,

then the Fourier coefficients of Eq. (3.6) are determined by

_ (de,9i) _ [aléo=¢£a) 9iodA _ _ $£agi pdA 5 g
€i (g;+9;) = Jagi‘edn 19i (3.9)

It remains to solve Eg. (3.8) for .g; over the rectangular
region 0 <6 <R, 0 <p <B.
Since ¢ ——l dS is a constant, the contour integral can

be expanded as a Fourier sine series over the interval 0 < 6 < R .
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99 4M; 2 1 . Kuo
°9i = M; = 21 =
. éc-a 7 ds = Mj = . T Kil 7 sin ( = ) (3.10)

where XK =1, 3, 5, ..., i=1,2, 3, ...
A solution 95 for Eg. (3.8) of the form

® A . Kno
g;(0,8) = I S (p) sin ; K=1, 3,5, ...

K=1

is assumed. Substituting this function into Eg. (3.8) and
performing the required differentiations gives, after a suit-

able arrangement of terms,

© 2 . . .
z [pst " (p) +pSK'(p)+-(aizp - (%%)2)SK(9)- %%%DZ]San;e =0

k=1
By Theorem 1 of Chapter I the following differential

equation results:

2 2 2 - Km,2 M5 2

p SK" (p) + pSK‘(O) + (0‘1 p = ("—RTL) )SK(Q) = }“I‘{l‘ P K = 1,3,5,...
The Sturm-Liouville form of this differential equation

is
(0S' '+ (2% - EDhg () =M, g <o B (3.12)
°°K (p) if R’ o "k T TR ° = .

with boundary conditions

I
o

Sy (0)

1
o

SK(B)
The solution for SK is obtained by constructing a Green's

function. The solution for SK is
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_2Mi Yu(aiB)

B
: -0
- Yu(ojp) f t Ju(ajt)dt
o}
4 B .
- Julaze) [ t Yu(ejt)dt] (3.13)
p
where ﬁ = %g , K=1, 3,5, ... . The details of the con-

struction are presented in Theorem 4 of the Appendix.

A solution for ¢g(p,0,8) of Eq. (3.6) has now been
constructed with the exception that the eigenvalues a, are
as yet unknown. The eigenvalues are determined by using the
fact that the éigenfunctions are orthogonal to.unity with
weight function p . The expression for the determination of
the eigenvalues is

- 1 B 4

Kil % /o Sg(%ip)ede = 0 K=1, 3,5, ... (3.14)
The derivation of Eg. (3.14) is achieved by integrating Eg. (3.11)

over the cross-section which is reduced to a single numerical

Kno
R

integrated in closed form. The determination of the eigen-

integration since the trignometric function sin can be
values is deferred until‘Chapter Iv.

The velocity solution, ¢ , for the developing flow will
be complete when the solution for the fully developed velocity,

¢fd ; i1s known.
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The equation governing the fully developed velocity flow

is
524 1 2¢gq . 1 2%¢q _ _ L dp

The pressure gradient, %g , 1s a constant depending on
the:geometry of the duct and the flow rate of the fluid in
the duct.

It is proposed first to construct a solution to

v? beq = 1 (3.16)
.where $fd = ¢fd/(ﬁﬁ dp/dz) and then to normalize ¢.4 by
the mean velocity with the result that normalized fully developed

velocity solution is independent of %% , the pressure gradient.

A proof of this is presented in Theorem 6.
A solution to Eg. (3.16) of the form

" by . Kmb6
) = I F_(p) sin
fa ~ .2, 'K R

(3.17)

is assumed. Substitution of this into Eq. (3.16) gives, after

a suitable arrangement of terms,

zl[p2 Fg" (o) + 0 Fy'(0) = (G Fe (o) + 20
K=

where X =1, 3, 5, ... .
.By Theorem 1 of Chapter I the following differential
equation results:
5 2 4p2

e F (o) + o Fe'le) = () Fplo) + =0
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The Sturm-Liouville form of this eguation is

(0 Tl (o))~ G272 Felo) = T3 (3.18)
with boundary conditions
Fp(0) = 0
and
F.(B) = 0

The solution for FK is obtained by constructing a

Green's function. The solution for FK is

02 = s 27

—2 21 where =320, K=1,3,5 ... (3.19)

Frelp) = f%
The details of the construction are presented in Theorem 7
of the Appendix.

The normalized solution to Eg. (3.15) can be written as

4 s 1 2 —p¥p (2w K7 6
K

¢fd = L 2 ] sin
?TAt¢fdpdAt K=1 we - 4 R

(3.20)

where p = -~ and K=1, 3, 5, ...

The velocity solution, ¢ , is now complete and is obtained
by summing the entrance region velocity and the fully developed
velocity, i.e.

6= ¢, + drg (3.21)

A graph of the non-dimensional velocity distribution, ¢ ,

for a value of B8 = .01 1is presented in Chapter IV.



CHAPTER 1V
NUMERICAL PROCEDURES AND RESULTS

Let f(ai) deﬁote the left hand side of Eg. (3.14). The
eigenvalues are the positive roots of f(ui) . A modified
method of false position was used to obtain the roots because
other well known root solving techniques involve the deriva-
tive of f(ai) .

The roots of f(ai) can be predicted approximately by
observing that f(ai) has singulérities whenever Ju(diB) has
a zero. -

The Bessel function Ju of the first kind is continuous
everywhere and the Bessel function Yu of'the second kind is
continuous for positive real numbers. Hence f(di) is con-
tinuous for positive real numbers whenever Ju(aiB) is dif-
ferent from zero. Thus f(ai) has a zero whenever, on any
interval of the positive real numbers, a change in sign of
f(ai) occurs and Ju(aiB) is different from zero.

Let ag and a;

a change in sign. The algorithm used to determine the roots

denote two points on which f(ai) has

of f(ai) is [3]

- a] - %
i ai [f(al)- — fl(al)] f(dl) . (4-1)
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It is shown in Theorem 8 that the previous algorithm reduces
to the method of false position. The method of false position
is used to generate the first approximation for o and the
iteration is performed using Eq. (4.1).

The integrals involved in the expression for f(ai) are
evaluated using Gaussian quadrature on the interval [0, 1],
the ideas of which were obtained from [3]. The integrals are

evaluated by use of the following:

b
[E(x)dx = (b-a) rg A, y(uy) (4.2)
i=1
where the Ai'é “are the integrals from zero td one of the
Lagrangian coefficient functions, the ui's are the zeroes
of the Legendre polynomials on the interval [0, 1] and
w(ui) = f[(b-—a)ui + al .

The irregular spacing of the eigenvalues can be expléined
by observing that infinite series are involved in the expres-
sion for f(ai) and for wu = Kn/R , Ju(aiB) has singularities
as a function of o and up .

All computation was performed on a computer using double
precision arithmetic throughout. The first fourteen eigenvalues

are presented in Table I.

The norm of the eigenfunctions .95 is defined by

o 1/2
oyl = fplo; (o,01%aa1™?
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The norm is calculated using the orthogonality properties of

the trigonometric functions sin‘Kge . Then
1/2
© 2, - . 2 K8 :
[la;11 = If, I Sg() sin® =% odal : (4.3)

K=1
The numerical calculation of the double integral in
Eg. (4.3) can be accomplished by a single numerical integra-
'n2 Kng

tion with respect to p since the integral of si R

be evaluated in closed form. The integral with respect to »p

can

was evaluated using Gaussian quadrature on the interval [0,1].
The first fourteen norms are presented in Table I.

The integral of $fd of Eg. (3.20) is evaluated in closed
form by using the uniform convergence of $fd , thereby inte-
~grating the series termwise and then numerically evaluating
the sum of

4

RB- ¥ 1 1 -
-—2-;—K=l "'K—Z' [W] where U= -E' ’ K = l, 3, 5, P (4.4)

The integral of $fd has been calculated to have an approxi-
mate value of 0.023.

The Fourier coefficients cy of Eq. (3.6) which are
defined in Eq. (3.9) are evaluated numerically due to the
nature of the expression for the eigenfunctions 95 - The

coefficients c; are calculated using the orthogonality

properties of the trignometric functions sin K;e\. Thus
L 1% . .2 Knd
Ci = (-Ozﬁﬂgi”é K=1 IA(SK(Q)FK(Q)SJ—H R pdA

for K= l’ 3, 5, L] (405)
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2 Kro
R

reducing the double integral of Eg. (4.5) to a single numerical

The integral of sin

is evaluated in closed form thereby

integration with respect to , . The integral was evaluated
using Gaussian quaarature.on the interval [0,1]. The first
fourteen Fourier coefficients are presented in Table I.

The non-dimensional velocity ¢ can now be completely

determined and is constructed by summing e and The

¢fq °
magnitude of the velocity at any point (p,¢,g) in the duct
can be determined by numerically evaluating Eq. (3.21) with
the aid of the eigenvalues and Fourier coefficients of Table I.

The velocity solution w cannot be regarded as complete
until the relationship between the linear and non-linear co-
ordinate systems is determined.

The first step in the evaluation of this transformation
is the determination of the function ¢(g) of Eg. (2.5). The
relationship between g and 2z is found by calculating the
pressure gradient 3P/3z 1in two ways. It is proposed to cal-
culate the pressure gradient by integrating the mementum
Eg. (2.1) and solving for 3P/3z and then multiplying the
momentum Eq. (2.1) by the velocity w , integrating over the
duct cfoss-section and solving for 3P/3z . Sincé entrance
regién analyses are approximate, the pressure gradients cal-
culated on these different bases need not necessarily be the

same.
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Integration of the momentum Eg. (2.1) across the duct

cross-section yields

ae/o) _ L d (295 -0 g 2 4

T T dz  Adz ‘p A 75 9N

. (4.6)
A proof of the above is presented in Theorem 9 of the Appendik.
Multiplying the momentum Eg. (2.1) by the velocity w

and integrating over the duct cross-section gives

3 .
- s = 5 da = IA (V3w) - (Viw)dA (4.7)

by Theorem 10 of the Appendix.
The pressure gradients of Eg. (4.6) and (4.7) are eguated
and after a suitable rearrangement of terms

3
& 6% - $pan]

g6c —g—% ds + [A(vlcp)- (V14) @A

e (B)

(4.8)

as a result of Theorem 11 of the Appendix.
The expression for e(B) can be simplified by using the

orthonormality of the eigenfunctions, the orthogonality of the

function sin ng and from Eg. (3.10) since the eigenfunctions
. 3g4 1
are normalized,. then —=Ll dgs = « The numerator of
! 96c on ngill

e(B) is independent of any term involving integrals in which
. : ' . : d _
the integrand is only a function of ¢fd since a5 deq = 0.

Let w=w

£ 0 then Eg. (4.6) becomes

__01_(_1’_/_91:_.‘195 3WE 41 (4.9)
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and Eg. (4.7) becomes

d(P/ ) N : .
therefore,
v . - Y dWE =
2 f, v (vywpdaa - X6 2E a1 = o (4.11)

Hence the denominator of ¢(8) is independent of any term
involving integrals in which the integrand is only a function

of ¢fq * Thus

oo

(o] 2 -2
2 -—
. -2 lzlclzal [lgs||2e7221%8 4 2.7 o5 alzll g ]%eTei"®
’EB = -3
T —01 B Adey 4 dde ¢ f ey % 3¢ 3¢f
iEicie Al w2 e e Gle) T 4 Se-ledA
;jA % ¢2 éiﬂpdA (2.12)

T -a ;4B _gg a¢e 3o f a¢e 3¢e 00Ffy - T
j=1Cie” o+ f [( ) +2 55 + ( ) + 252S Tﬁr]pdA

The double integral in the numerator of e(B) was evaluated
using Simpson's 1/3 rule on a rectangle and the algorithm is

expressed as follows:

_ Bk
Is = 5 My, 5410941, 5-1"%-1, 541 %1, 51
+ 4 (u + + u

i+1,5 + u, 1']) + 16 u, j] [5] (4.13)

i,5+1 7 %i,5-1
where uij is the integrand to be evaluated over a rectangle
of dimensions 2h by 2K centered at i,j .

The initial condition on ¢ 1s that ¢(p,0,0) =1 ,

hence ¢2(p,e,0) = 1 . Since the eigenfunctions are orthogonal

- with weight function p , then e(0} =1 . A graph of ¢ is
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presented and in éomparison to the fesults achieved by Sparrow,
et al [1] the trend of e for various values of B8 is quite
reasonable. The graph of e approaches a limiting value of
0.288. |

From Egq. (2.5)
dz = e(z*) dz* (4.14)

and integrating Eg. (4.14) yields the result that
B . ;
z =1f0 e (t)dt (4.15)

A graph of z versus B8 1is presented and the velocity w is
completely determined with the use of the graph presenting the

non-dimensional velocity, ¢ , and the graph of z versus B8 .
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11
12
13

14

*i
6.9223
8.9142
9.5474

10.6661
11.9286
15.3404

15.9121

16.9504

17.3865
18.8292
19.6553
20.2228
21.1401

21.7530

TABLE I

el |2

L1132 x 107
-3

.1084
.3633
.3026
.2634
.7278
.1636
.2593
.1030
.6009
.6274
.2636
.7291

.6237

X

10
10
10
10
10
10
10
10
10
10
10
10

10

2

-5
-4
-5
-3
-3
-4
-4
-5
=5
-6
-5

-5

Ci
.594977
.563270

.124202

.294250

1

.166251
.103703

.742509

1

.644379
.896926
.184589

158520

.380502
.186210

.653036

10
10
10
10
10
10
10
10
10
10
10
10

10

21
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Figure 1, Velocity contour, B8 = 0.001
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Figure 2, Velocity contour, B = 0,01
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APPENDIX

Theorem 1:

A(z) = -

Proof: The mean velocity is by definition

Equation (2.3) is integrated over the duct cross-sectional area

in the following manner:

ﬁ'fA e(z) gz da = f A(z)dA + v f 2wdA
or
¥ oelz) 2 f wdd = [ A(z)dA + v [ v 2an
dz 7 °7 A a !

but f wdA = wA is a constant, hence éi [ wda = 0 .
2 A

Then A(z)+A + V ¢ —N dl = 0 where the equality of the area
integral and the contour 1ntegral follows from Eg. (1.1).

Therefore, A(z) = - A éc §N a1

Theorem 2: The non-dimensional form of Eg. (2.7) is

Proof: By definition ¢ = w/w , so w = w¢ and

3r Y3 3r T 3 !



2 2

w5 208 (aey2 _w 2T¢
ars< ~ U 3p ar A apZ
Since B8 = z*/ReL , then
= dw =2 36 38 _ WS 96 _ Wy 3¢
VogzE T 38 9z TReL 98 A 98
By definition N = n/L so that
W _ - 3¢ dn _ o dw
3 - Y oon oN - Y 3m
and s = 1/L so
- _ 9ds _ 1
dS—Edl—fdl

The combination of Egs. (4) and (5) gives

Vg W ogp o Mg B8
x $, 3w 4 A‘}Scands

The variable theta is non-dimensional so
1 32w - w 823
2 362 0ZA 936

Substitution of Egs. (1) through (7) into Eq.

that
B ae v 2%y v 26, vi 2%y - v g 2g
A 38 A 3o oA 3p  p?A 36 A 75 3n
Hence
20 _ 2% Lo, Lady g 204
9B ap p 9p p“ 986 c on

26

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(7) gives

Theorem 3: The sequence of functions ‘{l,gi}zzl forms an

orthogonal sequence over the duct cross-section.
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Proof: The iaplacian V?gi in cylindrical coordinates is
2 2
2g: =29 . L3 1 3794
VU9l = g2 Y T e Y52 52 (1)
then Eg. (3.8) can be written as
2 2 - 9g _
Vig; toa gy gﬁc - ds =0 (2)
and
2 2 3g4
Veg. + a.%g. - 24 ds =0 3
T9y +oyTey - S ds (3)
Multiplying Eq. (2) by _gj and Eqg. (3) by 95 gives
o é g ds - V2 g (4)
i gj - 71
o = $_9; 5 as - v? (5)
j an 93 95

Subtracting Eq. (5) from Eqg.

cross-section gives

2 2 _ 2 2
(es” = og7) [, 9395 9B = f, (93 Way m 9y vigg)an 4
9931 - Al
A ¢ 95 5 ds - A ¢c 9 Tﬁ% ds
By Eq. (1.0)
. 2 _ 2 - 393 391
fa (93 7795 — 94 vig;)an 9SC {9; 55 - 935 5p)ds . then

2_ 5G4 . .
(a; - 2) IINE: 19498 = (1-2) $ .91 ?%3 ds + (a-1) §_g3
. 993 = . 994 = :
and ¢ gi 7§3~ds $o. 99 n- ds = 0 since
g. = g. = 0 on the duct wall. Therefore,
i =95,

Ak

a N

ds

(4) and integrating over the duct
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2 2 ' N
- oy ) fA:gig.dA = 0 . Hence

(o, 3

1

IAigigj da =0 if i # j

which proves the orthogonality of any pair of eigenfunctions

.g‘i and _gj .
It remains to be shown that the eigenfunctions are ortho-
~gonal with weight function p over the duct cross-section. 1In

rectangular coordinates

2 2 _ Ll 3gi ...
vigg t ot 95 mx b, Ta 45 =0 (6)

Integrating Eq. (6) over the duct cross-section gives

a V2gi aa + ai2 fp 9 4B - % 5 (6o S asryan = o

2

but '[A v g; da = ¢ 291 gs

Cc 9n
1 3gi _ g
and % IA (¢c 5o ds)da = ¢c =21 gs
therefore,
2 =
%" Ja9; 92 =0
which becomes
fAt‘gi pdA = 0
in the transformed coordinate system.
Theorem 4: The solution of Eg. (3.12) subject to the
boundary conditions SK(O) =_SK(B) = 0 is

- 2Mj4 [Yu(aiB)
K ajiK "Ju(ejiB)

B . P
Julage) [ £ Ju(eit)dt = Yu(%p) fot Jy (@3t)dt

B
=Ju(®4p) [pt Yy (*jit)dt]
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Proof: The solution of Egq. (3.12) is achieved by con-

structing a Green's function as a solution to

(0 st 61 + @ - EH D s = Mo o, @
with boundary conditions
SK(O) =0
SK(B) =0

The Green's function should satisfy

2
(e o' + 50,5 - ED% e, =0 0<t<p (2
with G(p,0) = 0 and where G'(p,t) = agé%LEL
The general solution to Eg. (2) is
- = kv
G(prt) = A(p) Ju(ait) + B(p) Yu(ait) where 1 = =4 (3)
Applying the boundary conditions gives
G(p,0) = A(p) Ju(O) + B(p) YU(O) =0
but Yu(O) is undefined so that B(p) = 0 and
Glort) = Alp) J,(a,t) 0 <t <op (4)

In the interval (p,B) the Green's function should
satisfy the homogeneous differential Eg. (2) with the boundary

condition that G(p,B) = 0 . Hence
G(prt) = Clp) J,(a;t) + D(p) ¥ (a,t) p <t <B (5)

Applying the boundary condition on G at t =B

G(p:B) = Clp) J,(2;B) + D(p) ¥, (2;B) = 0 (6)
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and solving for c(p)

- - Yy (a3 B)
clp) = = D(p) 'J“ﬁ"(—-z—'ig)— (7)

Since G is continuous at t = p , then
A(p) Jylaze) = Clp) Julaye) + D(p) Yyulajso)

Solving for A(p) in terms of D(p) gives

_ Y, (aiB) Yy (as3p)
A(p) = D(p) 'jtjgi?)—'l' D(p) jﬁT&JiT)— A (8)

G'(p,t) has a jump discontinuity equal to —% at t =p ,

_therefore,

' 1
Clp)a; J,' (ajp) + Dlplay Yu'(aip) - Alp)oy J, " (ajp) = = > (9)
Substituting Egs. (73 and (8) into Eg. (9) and solving for
D(p) yields
Yy (a;B) .
“D(p) -’j_—uLZEi—B—T g Ju'(dip) + D(p) oy Yu'(alp)
Yy (¢3jB) Yu(oip) _— - _ 1
+ [D(p) ﬁ@z@.—)— D(p) mJu(dip)]ai'Ju (ajp) = ’
' . . - . 1 . = - _J_u(aio)
Hence D(p) [Y,'(a3p) Ty (ajp) Yu(eqp) Jy'(ajp)] = T
i
However, ol[J,'(ajp) Y, (ajp) = Jylajp) Yy '(ajp)] = - % [5] (10)
by the derivation as presented in Theorem 5. Thus
D(p) (2/n) = - Tultip)  op
i
D(p)’= ;'£~%%$31&L (11)

1
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The construction of the Green's function is now complete

and can be written as

T or Y, (aiB)
Glort) = 707 [FH@®

Jp(@ip) = Yy (250)] Ty (e4t) 0 <t<p

T Y, (o;B)

Glpst) 20 Ju(o;iB)

Julojp)Tplajt)-Ty(aip)¥y(ajt)] o <t <B

The solution for Sg is obtained by integrating the pro-

duct of the Green's function G and the non-homogeneous

K
respect to t .

function i%iE over the intervals [0,p] and [p,B] with

_ 2M; [(Yg(aiB)

P
.ESKfp) = %oy Gutegmy Tnleie) = Yuleie)) fot Julejt)dt

Y“(ajB)

+
Jyu(aiB)

B B
Julejo) [ &Iy(eit)dt-Tu(eip) f t w(ejt)de] (12)
p Y
Equation (12) can be simplified to
_ 2M; (Yu(aiB) . B :
p ‘ B
- ¥ (aip) fot I (eit)dt - I, (eip) g t Yy(ejt)dt]
which was to be shown.

Theorem 5:

RN

Cpld, (aip) Yylage) = JTylaip) ¥u'(ajp)l = - [4]
Lemma 1:

o[J,"' (ajp) Yu(aip) - Jylaip) ¥y'(ajp)] =c
Proof: The Bessel function Jy(ajp) of the first kind

and Y (ajp) of the second kind are solutions to Eg. (3.12).



32

Hence
2 2 . L, 2 2 Km, 2
Payg Jl—\ u(aip) + Dain'(,aiO) + (,ai pT - (-—l;r-) ) Ju(aip) =0 (1)
2 2 n ' 2 2 K 2
pray Y, " (age) + pay Yu'(aip) + (a7 - (3%) ) Yy(azp) =0 (2)

where w = Krn/R . Multiplying Eq. (1) by Y, (*jp) and Eg. (2)

by Jy(ajp) and subtracting yields
%0, 2(3, " (ap) Y (0,p) = Ty(o " (o
p i u ip YR ip ‘Jp( ip) YU ( lp))
' — —
topa; (T, (egp) X (a50) = T, (a50) ¥, "(e50)) =0  (3)
Dividing Eq. (3) by pea; , then

pdi[J_u_" (Gip) Yu(aip) - Ju(aip) Yp" (Olip)]

+ [Ty Cage) Y (a50) Y " (aip)] =0 ' (4)
or that
£ ooy (3, (age) Yylage) = 3, (az0) ¥y (a50))] = 0 (5)
Hence
p[Ju'(aip) Yu(aip) - Ju(aip) Yu'(aip)] = c (6)
Lemma 2:
2 1
Jl/2 (aip) = (mip)? sin oLip
1
J'_l/z(aip) ="ﬂdip)2 COSs a.p
21
Y1/2 (Otip) = -~ (“aip)z cos a4ip

2 1 .
Y12 (e40) = (5502 sinayp
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Proof: By definition

.
1S (-1)d ey )

_ r0ip L 2
T a2 (ege) = (572 s ST TGw3/2)

1
Recall that T (v+l) = vr(v)}) and T(1/2) = (n)7
aip, 2 asp, 4 0ipy 6
S R S
21T (7/2) ~ 31T (9/2)

31y Caie) = (803 [gbor -
172 V%P T Y2 IT@EAY T T(5/2)

+ ...]

aip,y 2
_ (gig)l 1 _ (=37
T2 NI aT (/2 C 17273721 (1/2)
&t (42
Y T2 372 578 T (L/2) 31 1/2°372°572- 7721 (172) ¢
1
ek (a1p) ", (eim)? | (a3 ®
=ty 2 30t 35 T ggesegeg toeecl (D)
(2 2
o) oy 3 RS- oy 7
= iy Lo - AP AP - B L
, 1
= (“aip)2 sin o4p
0:p, 2 aip, 4 ®ip,y 6
. S S =

1
_ i 0 1 -
I_172 (40) = ()2 Ipey ~“ vy Y aiv sy T 3troy b

1 bﬁﬁqz (fi&)4
= (N7 L - 2 + 2
2 T(1/2) ~ I72t(1/2) | 21372°1/2°T(1/2)
aip, 6
) e .
315/2°3/2-1/2-T (1721 + !
.n —1 " 2 in . 4 . 6
=5 7 (25 R (3R

- +

= TT(/2) 1/2

313/2°1/2 ~ 31573372172 F***



-3k

-1
1P
B L Y-S L Y-S T CTT) RIS
T T(1/2) 21 R 4 6! ot
1 .
= (naip)z cos a;p
By definition
: _ Ju(x) cos ym = J-H(x)
Tyulx) = sinuun
therefore
2 (x) / % (x) 1
Jd 7 (x) cos n/2 - J-2 (x) _ - _ =
Y-l/z(X) sin m/2 =-3 -7 (& (8)
1 1
o J = 7(x) cos-n/2 - J 2 (x) _ _1 -
Y172 (X1 = sin -1/2 =735

Proof (Theorem 5): Since Egq. (6) is true for all u ,

let py =1/2 , then
-1
1 2 5 2 .
t = = e
T ayatege) = -7 Gepp) 2 T2 ST ie
2 %
+ (ﬂaip)Z @, Cos a.p (9)
and
-1
. _1 ., 2 T3 2
2,7
.“uip) ' §1n ayp (10)

Substitution of Egs. (7), (8), (9), and (10) into Eg. (6)
~gives

J' 1/2(a5p) Y 1/2(05p) = J 1/2(0 p) Y' 1/2 (o p)

1
A a; cos aip]

sl @7 2, n a4
2 2 Tajip4 ifP TQip
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- )Z o.p] = [(:52)7Z sin o ]‘[1(‘T°‘L"%r 2 o
[ ("aip cos ¢;pl = limETg) sin ¢.p] I3 5 ) T p2 cos %jp
( 2 )% e, sin a.,pl = ~;l_2 sin a.p cos o -2 m-cosza
Ta,p i i e3P i iP O § L if
- —41—2 sin a:;p cos aj;p— 2 o sin2 ap = - 2
TO 4P 1 1 Mo ;P i P TP
Hence
o [3u " (a1p) Yulaje) = Jylaip) Yu'(azo)] = 2
Theorem 6: The normalized fully developed velocity, %%% ’
is independent of the pressure gradient, dp/dz .
Proof: From Eg. (3.16)
2", b9 -
W dz
| ¢
Denote the solution to Eqg. (1) by ¢(p,6) . Now 1 dP = ¢y (p,0)
' rw dz
implies that ¢.. = = % y(p,8) . By definition
fd ~ Tw az Y\ o B
beq = [, ¢ da, so that by integrating ¢ =L ¥ y,0)
£a © /At ®gq %%t Sgrating  %fq T IW dqz ’
over the duct cross-section
_ 1 ap
t t
- _ 1 ap
beqa = TF @z IAt v(p,0)pda, (2)
Now normalizing Peg by beg yields that
1 ap
% ﬁa—iw(pre)
¢gqg L 4B
Tw dz fA lp(p,e)pdAt

t



whence

Trq o V(0.0)
6fd JAt w(plelpdAt

dp/dz

Theorem 7: The solution of Eg. (3.18) subject to the

boundary conditions FK(O) ¥_0 and FK(B) = 0 1is

4 3 %[pz. - puB.(Z-*u)] K
T

F, (p) = - -
K R=1 . a— where py = — K=1, 3, 5,

R
Proof: The solution of Eg. (3.18) is achieved by con-
.structing a Greén'sAfunction. The Green's function should
satisfy
e, -1 BN e, =0 0<t<o

with G(p,0) = 0 and where G'(p,t) = igi%%El .
The general solution to Egq. (1) is
Ku ~Kn

Glo,t) = A()tR+ Blp)t B 0 <t <y

Applying the boundary condition gives

G(DIO) = A(p)'o + B(P)‘O ’ but
lim t—'Kﬂ/R = -o» , hence B(p) = 0 and
t=+0

Glo,t) = A(p)tX™/R

'In the interval (p,B) , the Green's function should
satisfy the homogeneous differential equation (1) with the
boundary condition that G(p,B) = 0 .

Kr/R -Kn/R

G(p,t) = C(p)t + D(p)t

36

is independent of

(1)

(2)

(3)

(4)
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Applying the boundary condition on G at t =B

G(p,B) = C(P)BKH/R + D(p)B—K“/R = 0 , hence
v _ D(p)
C(p) = E—Z_E ‘ (_5)
R 1

Since G 1s continuous at t = p , then
Kr Kr Kn

Blolp B= clp)p® + D(plo ® . solving for A(p) in terms of
D(p) gives :

_okm

_ _ D(p) R :
A(p) = ;E—?%?-f D(plp . (6)

6&'(p,t) has a jump discontinuity equal to —% at t =

therefore, . -
Kn Kr S Kt
—1 =1 -1 .
) Kn R _ Ku R _ Kr R - _ 1
C(p) < ° D(p) = ° A(p) = ° = >

Substituting Egs. (5) ang (6) into Eq.((?) gives

(o) 51_1 _§1~1 () ~ 2K 51_1
D Ky R Ky R ~, (D R , Ky R 1
- AR T - a1 ZA AP om = - =
> Ky RP D(p) R P + [ Ko D(p)p ] R P
BZ 2L B2 oI P
R R
and solving for D(p) yields \
t KTI-
o —=
D(p) = — (8)
) R

The construction of the Green's function is now complete

and can be written as

Kr 2Ky =Rqg
_ R g R. _TR %;
G(pyt) = [ £ V2K'n'p 1t 0 it < p
2 Kr B R
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Kw ‘

S A
- R , R
G(p,t) = —-—3——§?E-t B X t p <t <B
2AK.IT_BR R

R

The solution for FK'_is obtained by integrating the
product of the Green's function G and the non-homogeneous

function A%% over the intervals [0,p]

and [p,B] with
respect to t .

Kr  2Rm  _Kn Kn
Fo(p) = [- e+ B °.R]—4—j°tRldt
K ‘P 2Km 7K /g
Kn
2 £ B "B
Kn Kz
R g T4 R B 1-XL
- [—2 27 e R Tars (2 Tt Rae (o)
2Kn 7K / JKr 7K
2 Rr g R R
R

After the integrals in Eq. (9) have been evaluated, then
Eg. (9) can be simplified to
2 _ yugl2-u)

K
g [p. Y ] where u = 7% , K=1, 3, 5,...

FK(p) =

(10)

Theorem 8: The algorithm presented in Eq.

(4.1) reduces
to the method of false position.

Proof: The method of false position is derived in the
fbllowing:
Let [a,bl

be an interval on which the expression f(ai)
of Eq. (4.1) bhas a change in sign. Suppose that £(b) is

~greater than zero and that f£(a)

is less than zero. The root
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o is approximated by intersecting a straight through the
points (a,f(a)) and (b,f(b)) with the axis.
The triangle described by the points (a,f(a)) . (b,f(a))
and (b,f(b)) is similar to the triangle described by the
points (o.,0) , (b,0) and (b,£(b))

Hence

f(b) - f£(a) - f£(b)
b ~-a b -a

Solving for oy

_af(b) - bf(a)
i T TF®)Y = £(a) (1)

The algorithm of Eqg. (4.1) is

. (b - a3)
a; = aj - (f(b) — ;%ai)) floy) (2)

Let o, in the right hand side of Eq. (2) be replaced by a

G L (b - a)
*i=e- gy ora) @

- a(f®) - f(a)) - (b-a)f(a)
1 f(b) - f£(a)

Hence

_ af(b) - bf(a)
;- TEM® - f(a)

which was to be shown.

Theorem 9:
o) _ 2 v oW
'———————_[AWdA Xécmdl
Proof: Integrating Egq. (2.1) over the duct cross-section

~gives



: 1 3P - : 2
= = == dA = . veV¥w dA - v . V°w daa
f.A' p 92 [A IA
. 1 3P 15
N - =322 ga =-2=22 7
ow fA’ Y Y

and by Eqg.(l.l) of Chapter I
y 2 — oy f oW
-V IA v'w dA = -V éc, "8'*1-\_[— dl

The inner product of the velocity vector v with the

gradient of the axial component of the velocity is

= _ ow | ow ow
VVW—U'3—§+V—§—§+W-§-E
so that
L Teve da = aw 2w
[p Veoww aa = [, (u ax+Vay)dA+waasz
which becomes
[o Vo dA = +v3"1)dA+—‘—i—‘fE—2—dA
A A ax oY dz ‘A 2

From Eg. (1.2)
o A 4 v AYan = o w4 + -
fA(u X + v ay)dA [A w(ax + ay)dA + ¢ w(udy vdx)
but w = 0 on the duct wall hence

éc w(udy - vdx) = 0

| -— —_— = - = therefore
and < + Z !

2
W = 2 w-
-fa (——+—-—)dA——fA»_ZdA—z[A2dA
Combining Egs. (2), (3], (5] and (9) yields
: -
- ==z wadA Agﬁc-gﬁ-dl

which is the required result.

Lo

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)



Theorem 10:

d®/e) _ 1 -4

W v .
- g Twmmaz la T twE a (TpWlt(vywiaa

L1

Proof: Multiplying Eq. (2.1) by the velocity w gives

- gﬁgéﬁl w = w(@eoow) - vw(vw)

Integrating over the duct cross-section yields

(1)

']A__ a®P/ol an = /A w(v-yw)da - v'fA w(vzw)dA (2)

dz

Recall that .IA wdA = wA hence

_ da(®/p) - _ 8(®/p)
[A —————P-—dz wdA iz A (3)
Now
> - A W 2 3w
w(v.vyw) wu X + wv 5y + w ; (4)
and
aw AW 4 42 AWyan o aw Wyan = A w3
fA(wu X + wv 5y + w aZ)dA IA(wu <t ay)dA 1z AT?dA (5)
From Eq. (1.2)
v Wyan = - 13 (uw) 8 (vw)
fA(wu % T oW 5y da fA w [ e 5y 1da
+ éc w(wudy - wvdx) (6)
but '¢c w(wudy - wvdx) = 0 since w =0 on the duct wall and
3 (uw) d(vw) . _ .2 3u aw 2 v v
w [ X 5y 1 _ % +Awu % + W 5y + wv 5y
hence Egq. (6) reduces to
- W, e yan = — (w232 4 yan o 2w aw
fA(wu 3R T W sy)dA = fw (ax + ay)dA IA(wu 5% T WV ay)dA (7)



Lo

which can be further simplified by recalling from Theorem 10

that
: 2.,3u Vv _d w3
Jp W Gx AR =g AT 9 (8)
hence
- © oW W d w3
The combination of Egs. (5) and (9) yields
W W 2 w _d ¢ w3

The remaining term of Eqg. (2) is evaluated with the use
of Eg. (1.3)

. e 2 2 |

v f, witwan = v L1857 + G laa - v ow R ar Ay
3w
N

dl = 0 since w

and .éc \4 0 on the duct wall. Egq. (10)

reduces to

. 2 _ .
-V [A wVw dA = v fA Vlw Vlw da (12)

Combining Egs. (3), (10) and (12) gives the result

_de/p) _ 1 4 w3 v .
— cgmag Ja T @+ o [y (W) - (v w)aa (13)

which completes the proof.

Théorem 11:

d 2 _ o3
al/x 6% = $lean

. _
$o 2 ds + [, (718)- (V1) pdA

e(B) =

Proof: Recall that dz/dz* = e(z*) from Eqg. (2.5) and

that the chain rule for derivatives is
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d/dz = (d/dz*) (dz*/dz) = 1/e(z*) d/dz*

Equating Egs. (4.6) and (4.7) and with the use of the

above
1 4 2 _wl v aw v -
A dz jA (w" - 5=)dA = % ¢c;§ﬁ dl + == fA v weviw dA (1)
becomes
1 a 2 _ N ‘
c(z*) dz* IA (w™ - ——)dA \ gSc 5_1\? al + = [A Viw-Vqw dA  (2)

and solving for e(z*) yields

d 2 w
e f . (W‘ - -—)dA
e (z%) = dz % (3)
v QSC IN dl + % IA Vlw VlW dA

By definition ¢ = w/Ww or w = w¢ hence Eg. (3) becomes

az* fA (¢ QZE—)pdA

e(z*) = (4)

39 v =2
v ¢C o wds + = fA W Vy4°V ¢pdA

which reduces to

- d 2 ¢
e (z%) = w dz* IA (67 - T)pdA (5)
3
v é 5% ds + v [, 916714 pdh

By definition 2z* = L Reg = A 8 , hence

d/dz* = (v/Aw) d/dg . Hence

3
! 2 )
"“'f (o~ - )pdA
c(p) = -—SESA 2 (6)
$e 37 95 + [p V16:Vispda
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