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ABSTRACT

The laminar flow in the entrance region of a circular 

sector is investigated by linearizing the governing equation 

and considering the velocity as the fully developed velocity 

plus a difference velocity.

The non-linear transformation is determined "after the 

fact" in that the axial coordinate is stretched, the problem 

solved in the transformed coordinate system and the "stretching 

factor" then determined by equating two expressions for the 

pressure gradient.

There are no experimental results with which to compare, 

however, the results compare very favorably with similar 

analyses in a circular tube.
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CHAPTER I

INTRODUCTION

The laminar flow of an incompressible fluid through a 

duct will undergo a development from some initial profile at 

the entrance of the duct to a fully developed profile at some 

point far downstream. The length of the duct in which the 

velocity develops is defined as the entrance region.

The condition that a flow in a circular tube is considered 

to be laminar is that Reynolds number, Re = where D is 

the diameter of. the duct, w is the mean velocity of the flow 

and v is the kinematic viscosity, is less than 2100. No fluid 

is completely incompressible, however, a fluid is termed incom­

pressible if the density can be considered constant.

The equations of motion governing the velocity solution 

for laminar incompressible flow are non-linear, therefore, the 

velocity solution is approximate. The non-linearity of the 

equations of motion is attributed to the inertia terms.

The present method of analysis to be employed in construct­

ing a velocity solution is due to Sparrow, et al [1]"*". The 

analysis is a linear model technique in which a transforma­

tion from the linear system to the non-linear system is achieved

■^All numbers in brackets refer to correspondingly numbered 
references in the Bibliography.



2

by equating two expressions for the pressure gradient. The 

velocity solution which is determined from the linear model 

is continuous over the cross section and along the axial co­

ordinate.

The application of the analysis by Sparrow, et al, to 

the circular tube and to the parallel plate channel compares 

favorably to the prior analysis and to experimental results. 

The present application will be made to a circular sector.

In the course of the analysis, reference is made repeatedly 

to various theorems and definitions which are now presented.

The first theorem is referred to as Green’s formula in 

two dimensions [2] . If <|> and ip have continuous second 

partial derivatives, then

J (ipv2<p - <pv2<p)dA = ds (1.0)
' z d n d n

In the special case where ip = 1 , then

Jv <p dA = ds . (1.1)

The second can be derived from Green's theorem by an appropriate 

substitution of variables [2].

/a(uS + vlv)dA = "/aw(Ix + iv)dA + ^cw<udy " vdx> d-2) ' tx d 2s. (J y * rl (j 2s. j y / c.

A further substitution yields [2]

/Awv2waA= - + (1.3)



3

The outward normal derivative of the function w(x,y) is 

defined as [2]

lim w(x/y) - wCx'yy1)  gw 
n+0 ./\ji gn

where (x,y) lies on a simple closed curve c , (x^y*) lies 

interior to c on the normal to c at (x,y) and An is 

the distance from (x^y1) to (x,y) measured along the normal.

A useful relation for the definition of the outward normal 

derivative is [2]

gw gw dy  gw dx 
gn gx ds gy ds

where . dy/ds and dx/ds are computed with respect to c .

Theorem 1. If "E4>nl an orthogonal sequence of functions 

on [a,b] and

Z Kn$n = 0 d-4)n=l

where the convergence is uniform, then

Kn=0

for each n .

Proof. Multiplying Eq. (1.4) by <|> , integrating over

[a,b] and using the uniform convergence of yields

00 ,b
E Kn ja <t> <|> = 0 n=l n J d nYm

Now =0 if n m hence Km =0 but 0 ,

therefore, = 0 for each m .



CHAPTER II

STATEMENT. OF THE PROBLEM

The laminar incompressible flow in a straight duct with 

an axially unchanging cross-section which is a circular sector 

is to be considered. The duct axis lies along the positive z 

direction with x and y the cross-sectional coordinates. 

The equations of motion governing the flow development can be 

written as [1]

v • vw = - —+ vv12w (2.1)

V * v = 0 (2.2)

where v is the velocity vector having components u , v , w 

in the x , y , z directions, respectively. The pressure, 

density and kinematic viscosity are denoted by P , p and v ,
2 2 2 2respectively. The symbol defined by 3 /dx + 3 /3y is 

the two dimensional Laplacian operator.

The first equation represents the conservation of linear 

momentum with the assumption that the static pressure is uniform 
2 2across each section and the component ^3 w/3z is negligible 

2 2 2 2compared to the components p3 w/3x and p3 w/3y . The 

second equation is a statement of the conservation of mass.
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Equation (2.1) is replaced by the following linear 

equation:

e(z)w = A (z) + (2.3)

where e(z) is an undetermined function of z and A(z) is 

an undetermined function which includes the pressure gradient 

and the residual of the inertia terms. This procedure is due 

to Sparrow, et al [1] and has been widely accepted as a reason­

able approximation to the non-linear model..

Integration of Eq. (2.3) over the cross-sectional area 

yields

A(z) = - ^ 5 dl (2.4)

where c is the contour described by the duct walls and 3w/aN 

is the outward normal derivative of the velocity at the duct 

wall. The details of the derivation of A(z) are presented in 

Theorem 1 of the Appendix.

The transformation from the linear to the non-linear co­

ordinate systems is defined using

dz = e(z) dz* (2.5)

The transformation could,, of course, be viewed as a function of 

z* .

The combination of Eqs. (2.3), (2.4) and (2.5) gives

— aw 2 V , gw
w 8^‘= w " a aiS dl (216)
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Equation (2.6) is transformed from rectangular coordinates 

to cylindrical coordinates and becomes

— aw ra2w . 1 aw , 1 a2w1 v < aw ,,
w = M la^ + r a? + ae?! " a sn dl ' l2'7)

The introduction of the following dimensionless variables 

facilitates the analysis for the circular sector.

, w r 1 z * zr—  Lw<t’ “ ' p “ L ' 6 Re L ' L VA , Re - v

N = £,s = £,R=6ozB=Po = ^= (j)1/2

where 6O is the angle subtended by the duct opening, po is 

the radius of the duct and w is the average velocity.

The non-dimensional linear differential equation governing 

the flow in the duct then becomes
2 2

34l - + 1 + 1 3 - X 3<t) dq O PMaj" a# + p a? + pa?? % ds (2*8)

The details of the derivation are given in Theorem 2 of the 

Appendix.

The boundary condition on <f> is that <j> = 0 on the duct 

wall and the initial condition on. c|> is that <f> = 1 at g = 0 .



CHAPTER III

AN7VLYTICAL SOLUTION

A solution to Eq. (2.8) is assumed of the form

<t>(pf0fB) = <t>e(Pf6/S) + 4>fd(P'6) (3.1)

where is the fully developed velocity distribution and

<[>e is the entrance region velocity distribution equal to the 

difference between the local velocity and the fully developed 

velocity.

Substitution of Eq. (3.1) into Eq. (2.8) gives

+ V24>p - <$c dsl + 4 ds] = 0 (3.2)ag yc g n vfd yc an

The differential equation governing the fully developed flow in 

in rectangular coordinates is

_2 . % 1 dP . „ -.V wfd(x,y) = = (3.3)

where is the dynamic viscosity equal to the product of 

the kinematic viscosity, v , and the density, p" . Trans­

formation of coordinates from rectangular to non-dimensional 

cylindrical coordinates gives

A V *fd (p'9) p dz

Integration of Eq. (3.3) over the duct cross-section yields the 

result that

Lv2wfd(x-y| dA = /a I aldA = = A,2wfd(x-y>
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and by Green's formula Eq. (1.1)

/A’2w£d(x-y> dA =' #c ds -

therefore,

~ dSfd A yc 9n

The Jacobian of the transformation from rectangular to 

non-dimensional cylindrical coordinates is pA so

1 f A 1 dP 1 dP 1 2
A 'At r * * * vfd^ t A p dz p dz A yfd

r Zn V2<j),.pAdA. = i dS ,
A ^At *fdH t A yc an *

therefore,

V2*.. = 4 IMS. ds 
fd zc 3n

and the second bracket of Eq. (3.2) is zero.

The requirement that the velocity solution <j> becomes

^fd at soine Point in the duct results in

lim <|)p(p,6,8) = 0 (3.5)
g-*-”

In view of Eq. (3.5), a solution <{> of the form

” 2
<t>e(Pf0./B) = cigi(p,o)e 1

where A^_ represents the cross-sectional area in the non- 

dimensional cylindrical coordinates (p,6) . By Green's 

formula , Eq. (1.1), 
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is assumed where the c^'s and the a^'s are to be determined 

from the boundary and initial conditions.

Substituting Eq. (3.6) into Eq. (3.2) gives 

(3.7)dP

9 21 9 gi , i dg-i B ap-2 "aiz + ai9i - S>c "It dsle 1 = 0"y rd 2g-; 1 9 gii£lci i-aT

and if there is a function g^ such that

2 2
+ 1 L_2i. + a. 2gi _ X Mi. ds = 0 (3.8)

dp2 p dp pz d 62 i ~c dn

with the boundary condition g^ = 0 on the duct wall, then 

Eq. (3.7) will be satisfied.

The eigenfunctions g^(p,0) form an orthogonal sequence 

over the cross-sectional area A with a weight function p 

by Theorem 3 of the Appendix.

Using the orthogonality properties of the eigenfunctions 

g. and the initial condition on d> that

^^(prdrO) <|)q (p , 6 ) — 4> f (p z 6 ) ,

then the Fourier coefficients of Eq. (3.6) are determined by

c = Up,<311 _ (&Uo-*fAl 9io<iA = _ (a ♦fdgj__pdR
Ci (91,91) SMlUaK Ij9il I2 l ’

It remains to solve Eq. (3.8) for g^ over the rectangular 

region 0 <_ 0 £ R , 0 <_ p £ B .

Since dS is a constant, the contour integral can

be expanded as a Fourier sine series over the interval 0 < 0 < R .
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1 9gi ^e. K, 4Mi V 1 • ,Ktt6. 1A.
rr ds = Mi = nr £ k sin (-r~) o.io)V# V XX JZ__ *| *'* -t*

where K = 1, 3, 5, ..., i = 1, 2, 3, .. .

K solution for Eg. (3.8) of the form

g. (p ,6) = Z S (p) sin K = 1, 3, 5, . . .
1 K=1 K R

is assumed. Substituting this function into Eq. (3.8) and 

performing the required differentiations gives, after a suit­

able arrangement of terms,

” r 2r. I, / 1 , r. I / X i Z H, 2 2 /KlTxPxo / x 4M- 2. . Ktt6 nZ [p SK " (p) +pSK' (p) + (c^ p - (-r) )sk(p) " -^-P ]sm-^- = 0 
K=1

By Theorem 1 of Chapter I the following differential

equation results:

p2SK" (p) + PSK’(p) + (“i2?2 - (^)2)SK(p) = p2 K = 1,3,5,...

The Sturm-Liouville form of this differential equation

is
2(pSK- )' + (a 2p - |)SK(p) = P 0 < p < B (3.12)

Jx (pj 1 K p jx irK —

with boundary conditions

SK(0) = 0

S„(B) = 0 JX

The solution for S„ is obtained by constructing a Green’s lx
function. The solution for is jx
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SKlp) t^tBT Jl,Uipl Jv(ait,dt

■ /O- Yp(aj_p) J t Ju(aj_t)dt
o

B
- Jp(a.p) / t YpCait)dt] (3.13)

1 P
where p = , K = 1, 3, 5, ... . The details of the con-

struction are presented in Theorem 4 of the Appendix.

A solution for <]>e(p,e,B) of Eq. (3.6) has now been 

constructed with the exception that the eigenvalues are

as yet unknown. The eigenvalues are determined by using the 

fact that the eigenfunctions are orthogonal to unity with 

weight function p . The expression for the determination of 

the eigenvalues is

CO -i B
Z K /o SK(ctiP)PdP = 0 ' K = 1, 3, 5, ... (3.14)

K=1

The derivation of Eq. (3.14) is achieved by integrating Eq. (3.11) 

over the cross-section which is reduced to a single numerical 

integration since the trignometric function sin can be 

integrated in closed form. The determination of the eigen­

values is deferred until Chapter IV.

The velocity solution, <|> , for the developing flow will 

be complete when the solution for the fully developed velocity, 

/ is known.f d
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The equation governing the fully developed velocity flow 

is

2 2
l_l£d + 1 + X --1^- = - — (3 15)

dp2^ p dp p^ 9 02 wp dz \ ;
dP The pressure gradient, , is a constant depending on

the geometry of the duct and the flow rate of the fluid in 

the duct.

It is proposed first to construct a solution to 

2 ~
V 'f’fd = "1 (3.16)

where <t)f= <l,f^/(vw dP/dz) and then to normalize by

the mean velocity with the result that normalized fully developed
dP velocity solution is independent of , the pressure gradient.

A proof of this is presented in Theorem 6.

A solution to Eq. (3.16) of the form

*fd =

is assumed. Substitution

a suitable arrangement of

co o 2
E [p2 FK- (p) + P F '(p) - (^) F (P) + 4p ] sin = 0 , 

t,_-i ■LX xx K JX 1T1X K
JX—J-

E Fk(p) sin ~ (3.17)
K=1 K R

of this into Eq._ (3.16) gives, after 

terms,

where K = 1, 3, 5, ... .

By Theorem 1 of Chapter I the following differential 

equation results:
2 2

p2 F " (p) + p F ' (p) - (^) F (p) 4- IL- = 0
IX lx lx lx 7TK
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The Sturm-Liouville form of this equation is

(p Fk'cp)^’ ~ 7 FK(p^ irK (3.18)

with boundary conditions

F^CO) = 0 jx
and

F„(B) = 0 Jx
The solution for is obtained by constructing aix

Green's function. The solution for F^ is lx

. 2 _ pR(2-p) K
FK(p) = A [2----^^4------- 1 Where V = , K = 1, 3, 5, ... (3.19)

The details of the construction are presented in Theorem 7 

of the Appendix.

The normalized solution to Eq. (3.15) can be written as

. 4 " 1 rP2 -pPB(2~p)., . KirQ 9n.
♦fd $ pdA. K -p2 - 4 ] Sin R (3.20)

y iCt t lx—±

Kirwhere p = and K = 1, 3, 5, . ..

The velocity solution, <f> , is now complete and is obtained 

by summing the entrance region velocity and the fully developed 

velocity, i.e.

t = 4>e + 4*fd (3.21)

A graph of the non-dimensional velocity distribution, <|> , 

for a value of B = .01 is presented in Chapter IV.



CHAPTER IV

NUr/lERICAL PROCEDURES AND RESULTS

Let f(cx^) denote the left hand side of Eq. (3.14). The 

eigenvalues are the positive roots of f(ot^) . A modified 

method of false position was used to obtain the roots because 

other well known root solving techniques involve the deriva­

tive of f(ci^) .

The roots of f(cc^) can be predicted approximately by 

observing that f(a^) has singularities whenever (“^B) has 

a zero.

The Bessel function J of the first kind is continuous 

everywhere and the Bessel function of the second kind is 

continuous for positive real numbers. Hence f(a^) is con­

tinuous for positive real numbers whenever J^(a^B) is dif­

ferent from zero. Thus f(et^) has a zero whenever, on any 

interval of the positive real numbers, a change in sign of 

f(aj_) occurs and J^(a^B) is different from zero.

Let aQ and a^ denote two points on which f(a^) has 

a change in sign. The algorithm used to determine the roots 

of fC^) is [3]

°i = “i - ibp1 • t4-11 
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It is shown in Theorem 8 that the previous algorithm reduces 

to the method of false position. The method of false position 

is used to generate the first approximation for ct^ and the 

iteration is performed using Eq. (4.1).

The integrals involved in the expression for fC”^) are 

evaluated using Gaussian quadrature on the interval [0, 1] , 

the ideas of which were obtained from [3]. The integrals are 

evaluated by use of the following:

b n
Jaf(x)dx = (b-a) E A. i|>(u.) (4.2)

i=l 1 1

where the A^’s are the integrals from zero to one of the 

Lagrangian coefficient functions, the u^’s are the zeroes 

of the Legendre polynomials on the interval [0, 1] and 

iptUj^) = f[(b-a)ui + a] .

The irregular spacing of the eigenvalues can be explained 

by observing that infinite series are involved in the expres­

sion for f ( a^) and for u = Kk/R , Jp ( a^B) has singularities 

as a function of cg and y .

All computation was performed on a computer using double 

precision arithmetic throughout. The first fourteen eigenvalues 

are presented in Table I.

The norm of the eigenfunctions g^ is defined by

9 1/2
l.lgill = [/^[gitpfQ)] pdA]
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The norm is calculated using the orthogonality properties of 

the trigonometric functions sin —~ . Then

1/2 
llgill = [/a: SK(p) sin2 pdA]

1 A K=1 K
(4.3)

The numerical calculation of the double integral in

Eq. (4.3) can be accomplished by a single numerical integra­

tion with respect to p since the integral of sin2 can 

be evaluated in closed form. The integral with respect to p 

was evaluated using Gaussian quadrature on the interval [0,1]. 

The first fourteen norms are presented in Table I.

The integral of of Eq. (3.20) is evaluated in closed

form by using the uniform convergence of <|>^^ , thereby inte­

grating the series termwise and then numerically evaluating

the sum of 
4 oo

RB Lirin-. Ktt t. - - - ., ..
"27 K=1 K2 [(P+2)21 where P--p-,K-l, 3, 5, ... (4.4)

The integral of <|>^^ has been calculated to have an approxi­

mate value of 0.023.

The Fourier coefficients c^ of Eq. (3.6) which are 

defined in Eq. (3.9) are evaluated numerically due to the 

nature of the expression for the eigenfunctions g^ . The 

coefficients c^ are calculated using the orthogonality 

properties of the trignometric functions sin . Thus K

.................1 Z ..2 Ktt 6.^°i = - K023rn?BT2' K=1 Ja(SK(p)FK(p)sin -g-pSA 

for K = 1, 3, 5, ... (4.5)
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The integral of sin^ is evaluated in closed form thereby

reducing the double integral of Eq. (4.5) to a single numerical 

integration with respect to p . The integral was evaluated 

using Gaussian quadrature on the interval [0zl]. The first 

fourteen Fourier coefficients are presented in Table I.

The non-dimensional velocity can now be completely 

determined and is constructed by summing and . The

magnitude of the velocity at any point (p,6,g) in the duct 

can be determined by numerically evaluating Eq. (3.21) with 

the aid of the eigenvalues and Fourier coefficients of Table I.

The velocity solution w cannot be regarded as complete 

until the relationship between the linear and non-linear co­

ordinate systems is determined.

The first step in the evaluation of this transformation 

is the determination of the function e(g) of Eq. (2.5). The 

relationship between g and z is found by calculating the 

pressure gradient gP/gz in two ways. It is proposed to cal­

culate the pressure gradient by integrating the momentum 

Eq. (2.1) and solving for gP/gz and then multiplying the 

momentum Eq. (2.1) by the velocity w , integrating over the 

duct cross-section and solving for gP/gz . Since entrance 

region analyses are approximate, the pressure gradients cal­

culated on these different bases need not necessarily be the

same.
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Integration of the momentum Eq. (2.1) across the duct 

cross-section yields 

d(P/p) 1 d ( 2__ v r dw ,," -dT" = A dZ k' W " A dl ' (4'6)

A proof of the above is presented in Theorem 9 of the Appendix.

Multiplying the momentum Eq. (2.1) by the velocity w 

and integrating over the duct cross-section gives 
3- dJP/p}. 1 d j w dA + v J , (v1w)dA (4.7)

dz wA dz 2 wA 1

by Theorem 10 of the Appendix.

The pressure gradients of Eq. (4.6) and (4.7) are equated 

and. after a suitable rearrangement of terms

[Ja(*2 - ^-)paM
e (8)--------- s -,------------------------------------—

^c In s + /a^I^’ ^l*) dA
(4.8)

as a result of Theorem 11 of the Appendix.

The expression for e(6) can be simplified by using the 

orthonormality of the eigenfunctions, the orthogonality of the 

function sin and from Eq. (3.10) since the eigenfunctions

■^21. ds = —-A-— The numerator of 
c dn IJgilI 

e(8) is independent of any term involving integrals in which

are normalized,, then ©

the integrand is only a function of ♦fd slnce 3K *£a = 0 •

Let w = Wf , then Eq. (4.6) becomes 

- diA yc 9N
 d(P/p) 

dz (4.9)
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and Eq. (4.7) becomes

" = 65 /a Cvi'-t1 • <viw£>da - <4-10’

therefore,

Sa ^a (v1w£! " - s £o dl = 0 I4-11’

Hence the

integrals in which the integrand is only a functioninvolving

Thus

• e (3)

The double integral in the numerator of 

using Simpson's 1/3 rule on a rectangle and the algorithm is

expressed as follows:

2 -ai2S

e(B) was evaluated

denominator of e(g) is independent of any term 

of tfa .

-------------2--------al----st;-------  (4.12)+ (^) + ^IpdA
ou do d ti

o E /-«• 2 •2|| ,||2—2ai2g - S , 2 2
2 £=]_ci ai | I 911 | e + 2j__^Cj_

+ + (i^)2 + 2^ lltjpdA

~^A 2 'SfpdA 
lElCi^26 +

I = -n- [U . , . . , . +U . , , . , +U . , . , - +U. i . .S 9 1+1,j+1 1+1,j-1 1-1,j+1 1-1,j-1

+ 4 (u. ... + u. . , + u.,. . + u. . .) + 16 u. .] [5] (4.13)1,3+1 1,3-1 1+1,3 1-1,3 13

where u^ is the integrand to be evaluated over a rectangle 

of dimensions 2h by 2K centered at i,j .

The initial condition on is that <|>(p,6,0) = 1 , 
2hence (p,0,0) =1 . Since the eigenfunctions are orthogonal

with weight function p , then e(0) = 1 . A graph of e is 
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presented and in comparison to the results achieved by Sparrow, 

et al [1] the trend of e. for various values of g is quite 

reasonable. The graph of e. approaches a limiting value of 

0.288.

From Eq. (2.5)

dz = e(z*) dz* (4.14)

and integrating Eq. (4.14) yields the result that

z = Jq e (t)dt (4.15)

A graph of z versus g is presented and the velocity w is 

completely determined with the use of the graph presenting the 

non-dimensional velocity, ij> , and the graph of z versus g .
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TABLE I

1 “i Ij9x.ll2 ci

1 6.9223 .1132 X IQ-2 .594977

2 8.9142 .1084 X IQ-3 .563270 X io2

3 9.5474 .3633 X 10“5 -.124202 X 103

4 10.6661 .3026 X 10“4 -.294250 X 102

5 11.9286 .2634 X 10“5 .166251 X 103

6 15.3404 .7278 X IO-3 .103703 X 102

7 15.9121 .1636 X 10"3 .742509 X 101

8 16.9504 .2593 X io-4 -.644379 X io2

9 17.3965 .1030 X io-4 .896926 X io2

10 18.8292 .6009 X 10~5 .184589 X 103

11 19.6553 .6274 X IO"5 .159520 X 103

12 20.2228 .2636 X IO-6 -.380502 X io3

13 21.1401 .7291 X 10“5 .186210 X 103

14 21.7530 .6237 X IO-5 .653036 X 102





a. tp = 0.5

Figure 2. Velocity contour, g = 0.01

M
CO



z
ReL

Figure 3. e vs. g and g vs. Z/ReL
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APPENDIX

Theorem 1:

■A(zl = " 5 S dl

Proof: The mean velocity is by definition

- 1 f w = ■=- I wdA
A A

Equation (2.3) is integrated over the duct cross-sectional area 

in the following manner:

w / e(z) |^dA= / A(z)dA+ v f . V,2wdA
J A 3z A J A 1

or

w e(z) ~ / wdA = / A(z)dA + v / V.2wdA 
az A A A 1

but f wdA = wA
J A is a constant, hence f wdA = 0 . dz j A

Then A(z)«A + v dl = 0 where the equality of the area

integral and the contour integral follows from Eq. (1.1).

Therefore, A(z) = - ^ dl

Theorem 2: The non-dimensional form of Eq. (2.7) is

2 2
21 = 9 $ + 1 21 + Jl. 9 .‘I; _ x 9<j’33 ap^ + p dp + p^ TeZ ^c an d

Proof: By definition 4> = w/w , so w = w<^> and

3w _ - H. ’9p _ 21
dr w dp dr L dp then
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1 9w _ W d <|>
r 3r ~ pA dp 

2 2 2d W  - d <(> , 9 P . 2  V7 d <f> 
3^2" W 9p2 l9rJ A dp2

Since £ = z*/ReL , then
-2

— dw "“2 9 <j) 9 5 W d d> ' Wv d <f> 
9z* dg 3z* ReL 9g A 3g

By definition N = n/L so that 

3w - 34> 3n 3w
3N 3n 3N 3n

and s = 1/L so

ds = ~ dl = i dl 
d JU J_i

(1)

(2)

(3)

(4)

(5)

The combination of Eqs. (4) and (5) gives

v f 3w ,,  vw r 3<j>A 3N dl = "A dS

The variable theta is non-dimensional so
n 2 -21 3 w  w 3 <j>
r2" 9 62 p 2A Te'2

(6)

(7)

Substitution of Eqs. (1) through (7) into Eq. (7) gives 

that

Wv 9<j> _■ vw 9__ d ( vw 9ij) vw 9__ j> — vw / 9<j>
A 9 g A 3 p 2 pA 9p p2A 3 92 A

Hence

Theorem 3:

 

The sequence of functions forms an

orthogonal sequence over the duct cross-section.
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and

2Proof: The Laplacian V g^ in cylindrical coordinates is
2 2,2gi = »2sx + 1 3Si + 4 1JH 

■ 1 ' d p2 p dp p2 3p2 (1)

then Eq. (3.8) can be written as

„2 2 r dgi ,V g. + a. g. - d) ds = 0• yi i yi yc d n (2)

+ a^g. - ^lds = 0 (3)

Multiplying Eq. (2) by g^ and Eq. (3) by g^ gives

2 r Bgi . n2 ,AXa. g.g. =© g. —ds - g. V g. (4)1 yiyj yc 9n yj yj.

2 f Sg-i , ^2 /E..a • g. g . = d> g. ds - g. V g . (5)] y3.yj yc dn yj ' *

Subtracting Eq. (5) from Eq. (4) and integrating over the duct 

cross-section gives

2 2 2 2
(ai " aj Ma 9i9j dA = (9i V. gj - g-j v gpdA +

A 6 g. ds - A 6 g. ds 7c 3 dn 7c i dn

By Eq. (1.0)

/a (9i ’S - 9j V291>dA - <91 - 9j ^)as - then

(=-l2'aj2) /a = (1"A1 ^cgi ^7 ds + (A'1) #cgj ds

and 6 gf ds = 6 g^ -^2± ds = 0 since7c- y-L gn Jc-3 an

9i =. gj = o on the duct wall. Therefore,
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(a-2 - a.2) / g.g.dA = 0 . Hence

1 3 A' 1 3

/A. g^gj dA = o if i j

which proves the orthogonality of any pair of eigenfunctions 

g.;^ and g^ .

It remains to be shown that the eigenfunctions are ortho­

gonal with weight function p over the duct cross-section. In 

rectangular coordinates

V2 gi + a.2 g. - 1 as = 0 (6)

Integrating Eq. (6) over the duct cross-section gives

ja ,2gi dA + /R 91 dA - 1 /A (#c as)dA = 0

but /A v2 gi dA = #c ds

and f (</> ds)dA = 6 dsA -'A yc 9n yc 9n

therefore,

“i2 /a 91 = 0

which becomes

/At g. pdA = 0

in the transformed coordinate system.

Theorem 4: The solution of Eq. (3.12) subject to the 

boundary conditions S„(Q) = S^(B) = 0 is lx lx

SK = 5Tk [Jp (“iB) Jl,<aiP> /„ ^("itlat - Y„(=-iP) f’t

-Ju(aip) /pt Yu («it)dt]
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Proof: The solution of Eq. (3.12) is achieved by con­

structing a Green's function as a solution to

(P S ' (p))' + (cx.2p - S (p) = ^2- 0 < p < B (1)
A 1 lx p -EV TTA ~ "

with boundary conditions

SK(0) = 0 A

sK(B) = 0

The Green's function should satisfy

(t G' (p,t) ) ' + |(ai2t2 - (~)2) G(p,t) = 0 0 < t < p (2)

with G(p,0) = 0 and where G'(p,t) =

The general solution to Eq. (2) is

G(p,t) = A(p) Ju (aj_t) + B(p) where u = (3)

Applying the boundary conditions gives

G(p,0) = A(p) Jy(0) + B(p) Yy(0) = 0 

but Yy(0) is undefined so that B(p) = 0 and

G(p,t) = A(p) 0 <_ t < p (4)

In the interval (p,B) the Green's function should 

satisfy the homogeneous differential Eq. (2) with the boundary 

condition that G(prB) = 0 . Hence

G(p,t) = C(p) Jy (ait) + D(p) YyCa^) p < t < B (5) 

Applying the boundary condition on G at t = B

G(p,B) = C(p) Jy^-jB) + D(p) Yy^j^B) = 0 (6)
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and solving for c(p)

ct?1 - - D(p) Ip-fetSr (7)

Since G is continuous at t = p , then

A(p.) Ju(a.p) = c(p) Ju(a-p) + D(p) Yp(a.p) H JL 1 1

Solving for A(p) in terms of D(p) gives

A(p) = - D(p) + D(p) ^4-4 (8)Uy ((X£P) Jy (0l£p)

G'(p,t) has a jump discontinuity equal to -4 at t = p , 

therefore,

C(p)a. Jy’Caip) + D(p)a. Y '(aiP) - A(p)a. ^'(a-p) = - 1 (9) 
J- r* J. p JL r4 Q

I

Substituting Eqs. (7) and (8) into Eq. (9) and solving for

D(p) yields

"D<p) jpuii)' “i + d<p> °i yp'(»ip)

+ [D(P> " D(P) Ju'(“iP> = - I

Hence D(p) [Yy'Ca^p) Jy(aiP) - Yy(eij_p) JpU^ip)] = - 4v.4“ij?X 
P^i

9
However, p[Jy'(aip) Yv(aiP) - Jy(aip) Yy'taj^p)] = - - [5] (10)

by the derivation as presented in Theorem 5. Thus

D(p) (2/tt) = - 41d2iPl or 
ai

D(p) = - (ID
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The construction of the Green's function is now complete 

and can be written as

G,l’-t) = 251 [jK("1B) JhaiP> - 0 < t < p

G<P't) = 251 J',<c,iP)Jp(,,lt>-Ju(“iP)Yll(=-it)l p < t £B

The solution for SK is obtained by integrating the pro­

duct of the Green's function G and the non-homogeneous 

function over the intervals [0,p] and [p,B] with

respect to t .

■' -,sK(p> - V"iP)) Jv("it)dt

V (a- B B
+ jT^bT JU(aiP) / tJv(ait)dt-Jtl(aip) /tYpCaitJdt] (12) 

Pk 1 7 P p
Equation (12) can be simplified to

sk'p> = jp(c‘1p) J„(«it)at

,P B- Yp(aip) / t Jy(ait)dt - Jy(aip) / t Y ^ (ei.[t) dt]
0 P

which was to be shown.

Theorem 5:
o

p[Jp’(aip) Yp(aiP) -Jy(aip) Yp'(aiP)] =-^- [4]

Lemma 1:

p[Jp'(aip) Y]j(aj_pl - Jp(aip) Yp'faip)] = c

Proof: The Bessel function Jy(aj_p) of the first kind 

and Yyta-^p) of the second kind are solutions to Eq. (3.12).
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Hence

9 9 9 9 Kir 9P a/ Ju "(a5P) + Pa.Jy'Ca-P) + (a.ZpZ - (^-)Z) Ju(aiP) = 0 (1)
J- P J. -L P J_ _L K |J-J-

p2ai2 Y " (ojP) + pa- Y 1 (a-p) + (a/p2 - (^) ) Yp(a.p) = 0 (2) 
JL H- -L -L. p X X i\ “ J,

2 1
Y-l/2 <“1P> = (^J)2 sin “iP

where p = Ktt/R . Multiplying Eq, (1) by Yw(aip) and Eq. (2)

by JyCa^p) and subtracting yields

2 2pZ<x Z(J " (a p) Yu(a.p) -Jp(«.p) Yu " (<x.p))1 Hl H 1 M 1

+ pa.(Jy'(a.p) Y (a.p) - J (a.p) Y '(a.p)) = 0 (3)
J- r1 X p X W. X Pl

Dividing Eq. (3) by p aj_ , then

Pai[J.u" (aiP) Yp(a. p) - J (a. p) Y " (alp)]

+ [Jy'(aip) Yp(aiP) Y^'taj^p)] =0 (4)

or that

[pai(Jp* (aj,p) Yp(aip) - Jv(aj_p) Yp'(aip))] = 0 (5)

Hence

ptJp'Ca^p) Yp (aj_p) - Jp (aip) Y^'Caj^p)] = c (6)

Lemma 2:
2 1

J , /o (a.p) = (------)7 sin a^p1/2 iraip

2 1
J-l/2 (aipl = cos “iP

2 1
Yl/2 '“IP’ “ " (^712 cos aiP
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Proof: By definition

J 1/2 (ot^p) = j=o j! r(j+3/2)

Recall that r (v+1) = vr (v) and r (1/2)
1 

(tt)2

J 1/2 (aip) (
^iP.)i r. ' —A__

2 , 2 Lr(3/2).

^etiP j 2 (“i p) 4 (ai P) 6
r(5/2) + 2!r (7/2) " 3•r(9/2)

-I (“iP) 2
Ol-j 1T^± r 1 _ 2

2 12 ll/2r(l/2) " I7r'372~"f"(I72)

(■Y>4 (-2M-)6
2! 1/2•3/2-5/4-T(1/2) “ 3! 1/2•3/2.5/2•7/2•r(1/2)

^)Z

7 1
- (5^Z 

r(1/2)

[2 -

[ ^P

(ajP) , (aiP)(ajp)
3 3-4'5 3-4-S-6-7

3 5
( a-j P ) , («jP)

3! 5! ]

2
= sin aip

(7)

J -1/2 (^P) =
a-o 1 1

2 1 Lr(l/2) r(3/2) 21T (5/2) " 3!r(7/2)

i । aiP x 2 f ^jP x
, a p Ct- r 1 1 21 , v 2 1
( 2-) [r(1/2) “ 1/2T (1/2) + 213/2-1/2-r(1/2)

^6

3!5/2 * 3/2-1/2-r(1/2) + * * *1

(^)2 (212.)4 . (^)6
F (1/2) [1 TTT" + 2 ! 3/2-1/2 " 3! -5/2-3/2-1/2
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- 2 ri (-o’2 +
" r(l/2) L "2! 4! 6! . . .]

2 1
.= (------- ) 2 cos a . pira^p' 1

By definition

„ f..x _ JpCx) cos UTT - J-H(x)
YvlxJ " sin PTT

Proof (Theorem 5): Since Eq. (6) is true for all V , 

let p = 1/2 , then 

1 9 9
J’ 1/9(otiP) = - o' (" a. 1 2 ™'--2 sin aiP 

1/2 2 TrOij_p Tra^p 1

therefore
1 1

v (vi - J ? cos 7r/2 ~ J~ 7 ^x) - -t - - (x)Y 1/2 (X) sin tt/2 J 2 (X)
1 1

v cos-ir/2 - J 2 (x) _ 1 , <
Y-l/2 (X) sin -V2 J 2 kX)

and

1 9 9Y* t /9 (a.p) = y (—-----) 'Z ---- cos a.p
1/2 2 7raj_p Traipz 1

9 * 1 * * *
+ ( —)? a- sin a.p (10)Tralp 1 1

Substitution of Eqs. (7), (8), (9), and (10) into Eq. (6) 

gives

J' l/2(aiP) Y l/2(aiPl - J l/2(aiP) Y^l^a.^)

1 (i^2-) 2 ——2 sin a. p + (—-—'i'Z a. cos a. p]
2 2 irctiP 1 irajp 1 lp
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l"<^>2 C°S “iP1 ~ I(^)7 sln “iel 4 <TL£>2' cos “ip

,2.^ . , 1 . 2 2
4. (------- ) z a . sin a . p ] = ------- 7 sm a . p cos a . p - -------  cs ,• cos a . pira^p 1 1 Tra£pz 1 1 iraj_p 1 1

1 2 2 2- ------- 7 sin a-ip cos a-jp- ------- a. sm an = - —ira£pz 1 -1- ira^p 1 1 irp .

Hence
-2

p[Jy'(aip) Yy (a^p) - Jy(aj_p) Yy’(aip)] = —

Theorem 6: The normalized fully developed velocity, ,---------------- <j)fd
is independent of the pressure gradient, dp/dz .

Proof: From Eq. (3.16)

■ ’2' (T^P) = -1 (1)

yw dz
^fd

Denote the solution to Eq. (1) by ip(p,6) . Now 1 dP = ip (p ,6)
pw dz

1 dPimplies that tp(p,6) . By definition

— 1 dP
♦fd = ^fd pdAt so that by inte9rating ♦fd = d7 (p '6) 

over the duct cross-section

/At *fd *'<>'e”paRt

♦fa = *(P,e)pdAt (2>

Now normalizing <j>^^ by yields that

1 dP 1 / ax<frfd yw dz ^p r _____
tfd X J i|)(p,9)pdA.

yw dz } At ' H t
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whence

dp/dz .

d>-FH ' ( p ' 0) ' . . n=' /At ♦(»,elpaAt 13 ^aepenaent of

Theorem 7: The solution of Eq. (3.18) subject to the 

boundary conditions F„(0) = 0 and F„(B) =0 is Jx ix

F (p) = - Z ^[p2 - PPB(2"u)] whprp = Kk n
K tt K=1 y 2 4 wnO3S6 p K

Proof: The solution of Eq. (3.18) is achieved by con­

structing a Green's function. The Green's function should 

satisfy

(t G' (p,t) ) ' - | (^-)2 G(p ,t) = 0 0 < t < p (1)

with G(p,0) = 0 and where G'(p,t) =

The general solution to Eq. (1) is
Kir -Kk

G(p,t)=A(p)tR+B(p)-t R 0 <_ t < p (2)

Applying the boundary condition gives

G(p,0) = A(p) -0 + B(p) -0 , but
lim t K7r//R = -a, f hence B(p) = 0 and 
t->0

G(Pft) = A(p)tK7r/R 0 <_ t < p (3)

In the interval (p,B) the Green's function should 

satisfy the homogeneous differential equation (1) with the 

boundary condition that G(p,B) = 0 . •

G(p,t) = C(p)tKir/R + D(p)t"Kir/R p < t < B (4)
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Applying the boundary condition on G at t = B

G(p,B) = C(p)BKir//R + DCp)B""KlT//R = 0 , hence

. cCpI = p(p)
r2 Kir
B T

(5)

Since G is continuous at t = p , then
Kir Kir ' Kir

A(p)pR=C(p)pR + D(p) p R . Solving for A(p) in terms of

D(p) gives

•-2—
A(p) = - + D(p)p R (6)

R

G' (p,t) has a jump discontinuity equal to -i- at t = p , 

therefore,
Kir_, -KjL-i Kir_,

. Kir R  , . Kir R  , . Kir R 1C(p) p - D(p) p - A(p) p = - - (7)

Eqs. (5) and (6) into Eq.( (7) givesSubstituting

D(p)
B2 R

Kir, -i _K7r. ,
R -D(p)^-p R +

_2Ktt
[Elet-- D(p)p R
B2

Kir. i
K^ R 1
Rp o

and solving for D(p) yields

D(p)
Kn 

p R 
9 Ktt 
Z R

(8)

The construction of the Green's function is now complete 

and can be written as
Ktt 2Ktt -K^

. . R . R . R
G(p,t) = [-2------+. ------]tR 0 < t < p

9 Kir n R
2 R~ B
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s1 K- -Kj.
G<8,t) = ...-p tR + '-^8 R p<t<B

„ Kir D R R2 — B

The solution for F„ is obtained by integrating the Jx.
product of the Green’s function G and the non-homogeneous

41 'function over the intervals [0,p] and [p,B] with irK
respect to t .

Kir 2Kir _Kir v

o KJL 
R

Kir

2 ~ B R

After the integrals in

Eq. (9) can be simplified to 
4 r,2 _ Kir

FK(P) = [£---- 1,2 " 4------- 1 where U = , K = 1, 3, 5,... (10)
Jx IT A • p — ‘t K

p . 4 . R
. 2K£ \k t dt

B

D KZ+1 B l-^Z
A/BtR dt+(2^-)A/t Rdt (9)
irK ' o nKir irK ' _

2"r p

q. (9) have been evaluated, then

Theorem 8: The algorithm presented in Eq. (4.1) reduces 

to the method of false position.

Proof: The method of false position is derived in the 

following:

Let [a,b] be an interval on which the expression f(cu) 

of Eq. (4.1) has a change in sign. Suppose that f(b) is 

greater than zero and that f(a) is less than zero. The root
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is approximated by intersecting a straight through the 

points (a,f(a)) and (b,f(b)l with the axis.

The triangle described by the points (a,f(a)) , (b,f(a)) 

and (b,f(b)) is similar to the triangle described by the 

points (a£,0) , (b,0) and (b,f(b)) .

Hence

f (b) f (a) = f (b)

Solving for a

The algorithm of

“i = “i - (f(b) : flaj) f'“i> <2)

a ,

(1)

Eq. (4.1) is

b - a

 af(b) - bf (a)
1 f(b) - f(a)

Let in the right hand side of Eq. (2) be replaced by a .

«£ = a - (b - a) 
f(b) - f(a) ) f(a)

„  a(f(b) - f(a)) - (b-a)f(a)
ai f(b) - f(a)

Hence 
„  af(b) - bf (a)
“i " f(b) - f(a)

which was to be shown.

Theorem 9:

X77 dl 9N
_ aiPM = 1 a j w2da _ " 

dz A dz J A A yc

Proof: Integrating Eq. (2.1) over the duct cross-section 

gives



k " I S da = lK 5-Vw dA ' " U da

Now A p 3 p 3 z

and by Eq.(1.1) of Chapter I

-v /a ,2W dA - -V 4C dl

The inner product of the velocity vector v with the 

gradient of the axial component of the velocity is

— —_ dW dw , dw

so that

. /A V-w'dA = /A (u -g + V ^)dA + /A w dA 

which becomes
2

JA V- W dA = /a (u + V -g)dA + A /A dA

From Eq. (1.2)

' fA(u + v ^)dA = -fn w(^ + ^)dA + 6 w(udy - vdx)JAX 3x 9y' JA Kax 3yv

but w = 0 on the duct wall hence

w(udy - vdx) = 0

and ~ = - 7^ r thereforeax ay az

t ,au . dVx r dw d c w^^A w(ax + ay)dA ^A “ W az dz ^A 2 dA

Combining Eqs. (2), C31 , C5) and (9) yields

1 dP 1 d c 2 ' v i dw ,,- — 5— = v -a— 1-a w dA - v o dlp dz A dz JA A yc 3n

10

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

which is the required result.
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Theorem 10:

(1)

cross-section yields

wdA = (2)

Recall that wdA hencewA

(3)wA

Now

(4)

and

From Eq. (1.2)

f (wuj A dx

+ w(wudy - wvdx) (6)

wvdx) 0 on the duct wall and

+ wv

hence Eq. (6) reduces to

(7)+ wv dW
9y

3W 
dy

+ wv 7^) dA 
dy

■" 2w(v«vw)dA - V w(v w)dA

+ w^ -^)dA dz'

.2 dw w -— dz

f . 9W , 3W It, (wu 7— + wv — >A 3X 3y

w(v»vw) = wu ? + wv + dx ay

since w = 0

_ d(P/p) 
dz

+ wu jw + w2 
3x 3x 3y

= g + - <5>

2 w

dy

but ^c. w(wudy -

w [^2*).+ 
3X

3 (VW) i 
dy J

2 ,3u , 3v. f , 3w + dy)dA " /a(wu d3E

— 3_ .d..^/pl = A d ( W +. V / (V W) . (v w)dA dz WA dz M 2 V7A A l 1

Proof: Multiplying Eq. (2.1) by the velocity w gives

Integrating over the duct

f - dWpl 
J A dz

d(P/p) , 2 x
- -----" ™ ~ W(VVW) - VW(V W)

■ w [i(uw.)
A 3X

r / 3w , dw,j, r .j , (wu -T— + WV -r—) dA = -1 w-'A 3x dy j

- dto/p) wdA =
dz
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which can be further simplified by- recalling from Theorem 10

that

(8)

hence

r , 9w , 9w,I (wu t— + wv -r—) dA JA dx dy (9)

(10)

The combination of Eqs. (5) and (9) yields

■ ( 2,9u , 9v. _
™ ^dx + dyidA

d r w3
: J -a “r* dAdz J A 6

d w3 , 
dz A 3 dA

r , 9w , 9w , 2 9w. dr w3 ,, I (wu -r— + wv -t— + w ) dA = -5— I _ -x- dA JA 9x 9y 9z dz JA 2

The remaining term of Eq. (2) is evaluated with the use

of Eq. (1.3)

-v /A wV2wdA = v /A[(|^)2 + ^)2ldA " v W W dl (11)

and w dl = 0 since w = 0 on the duct wall. Eq. (10) 

reduces to

-v /A wVw2dA = v V^wV^w dA (12)

Combining Eqs. (3), (10) and (12) gives the result

d(P/p) 1 d r w3 , v r- —= =— ■5— I -x- dA + I (V.w) • (Vnw)dA (13)dz wA dz -'A 2 wA J A 1 1

which completes the proof.

Theorem 11:
u2 - ^IpdA

■ ds +: / (V1(|>1 . (V-L*) pdA

Proof: Recall that dz/dz* = e(z*) from Eq. (2.5) and 

that the chain rule for derivatives is
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d/dz = (d/dz*) (dz*/dz) = l/e(z*) d/dz*

Equating Eqs. (4.6) and (4.7) and with the use of the

above

1 d f z 2 w^. v / ' dw , v < „ „ .A d^ /a (W " 2^ldA = A dN dl + ^A /a V1W,V1W dA (1) 

becomes
o

1 d r Z 2 W x f 9w ,, , V Z _ ....——z-r- v - I, (w - 7r=) dA = v d> —— dl + — _ Viw-Viw dA (2)e z* dz* ; A dw yc 3n w A -L ± x ' 

and solving for e(z*) yields

E (Z*)
/, (w^ - ^=-)dA dz* JA 2w'

v <£ — dl + ViwViw dA yc 3N w JA 1

A" /A U2 - ^pdA 
E(g) = ----- --------------------------------------

^c an S + /a Vi^-Vl^pdA

(3)

By definition <j> = w/w or w = w<j> hence Eq. (3) becomes

E (Z*)

d r z.,2-2 *3w3-=r—x- I (AW - Y " .) p £aaz* ^A Y_______2w H__________
v <f> wds + d- f w V-■ d> * V-i d> p dA 'c an w 1Y 1YP

(4)

which reduces to

w af? h (*2 - ^)pdA

v ^c In" ds + v /a vl<t)** 7l<*> pdA
(5)

By definition z* = L Reg = A — g , hence v
d/dz* = (v/Aw) d/dg . Hence

(6)



BIBLIOGRAPHY

uu

1. Sparrow, Lin and Lundgren. "Flow Development in the
Hydrodynamic Entrance Region of Tubes and Ducts," 
Phys. Fluids 7^, 3 (1964) .

2. Weinstock, R. Calculus of Variations. New York: McGraw-
Hill, 1952, pp. 4-15.

3. Singer, J. Elements of Numerical Analysis. New York:
Academic Press, 1964, pp. 192, 281-293.

4. Irving, J. and N. Mullineux. Mathematics in Physics and
Engineering. London: Academic Press, 1958, p".~ 138.

5. McCormick, J. and M. Salvador!. Numerical Methods in
Fortran. New Jersey: Prentice-Hall, 1964, pp. 120-123.


