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Abstract 

 Several shear-wave velocity (Vs) prediction models have been tested on wireline 

log data at Norne Field in the Norwegian Sea. A genetic algorithm was used to invert P-

wave velocity (Vp) for the elastic parameters using the Krief, Self-consistent (SC), and 

Differential Effective Medium (DEM) models. The inverted shear moduli were then used 

to predict Vs. Using this method, the Krief method provided the best match of the 

effective medium models to the measured Vs. Error analysis shows that the predicted Vs 

is largely correlated with Vp, density, and porosity. Higher Vp, higher density, and lower 

porosity tend to produce the largest prediction error. 

 These predictions were compared to other well-established Vs prediction models 

and the effect of these predictions on AVO modeling was investigated. It is shown that 

the AVO response begins to show noticeable difference at small Vs errors. For example, 

the DEM prediction at the oil saturated well had a 6.8% error from the measured Vs at 

the AVO modeled interval, and AVO mismatch begins at around 15 degrees offset. At 

the brine saturated well, the Krief, Greenberg-Castagna, and Raymer-Hunt-Gardner 

(RHG) Vs predictions provided the closest match to the true AVO model while at the oil 

saturated well, the Krief, RHG, and Han Vs predictions provided the best match to the 

true AVO model. 
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Chapter 1: Introduction 

 Reservoir characterization and amplitude variation with offset (AVO) studies 

require accurate shear-wave velocities (Vs) to properly interpret the area of study. Vp/Vs 

ratios can be used to identify lithology, or identify hydrocarbon bearing formations, and 

inaccurate Vs can give misleading results. Often, especially in older wells, Vs data are 

missing or of poor quality. Instead of conducting an expensive logging run to acquire Vs 

data, a Vs log is often predicted using various methods. These Vs prediction techniques 

mostly involve (1) effective medium models, (2) heuristic models, or (3) empirical 

models (Smith, 2011). The empirical models are the easiest to apply; however, there is no 

way to check their accuracy if predicting a single well, and many of them have been 

derived in only brine-saturated environments. On the other hand, the effective medium 

and heuristic models are applicable to a larger range of environments but require as 

inputs various parameters that may be difficult to obtain. Also, many of these models 

were derived in the laboratory and their effectiveness in predicting a Vs log has limited 

investigation. 

 The objective of this thesis is to evaluate several of these Vs prediction models on 

wireline log data and quantify their effect on AVO modeling. The data used in this study 

consist of log data, provided by Statoil, from two wells in the Norne Field, a sandstone 

reservoir below the Norwegian Sea in about 370 meters of water. The first well, which 

will be called well #1, is brine saturated with a depth interval of 2676-2837 m true 

vertical depth (TVD). Available logs include: 

• Gamma Ray (GR) 
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• Shale Volume (Vshale) 

• Density Porosity (Phid) 

• Neutron Porosity (Nphi) 

• Water Saturation (Sw) 

• Bulk Density (Rhob) 

• Compressional-wave Slowness (DTC) 

• Shear-wave Slowness (DTS) 

Slowness has been converted to velocity. Well #2 ranges in depth from 2597-2791 m 

TVD. It contains oil with an oil-water contact at 2694.7 m TVD. The same logs available 

in well #1 are available in well #2. The suite of logs for each well are shown in figures 1 

and 2. The methods and parameters used by Statoil to derive the petrophysical parameters 

are shown in appendix A.  
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Figure 1: Well log suite for well #1. Major formations are delineated by the black lines. 
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Figure 2: Well log suite for well #2. Major formations are delineated by the black lines. The oil-water 

contact (OWC) is shown is indicated by the red line. 
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Chapter 2: Geologic Setting 

 The Norne Field is located 200 km offshore on the Norwegian continental shelf in 

water depths of 370-390 m (Steffensen and Karstad, 1996). The field was discovered in 

1991 with a 110 m column of oil and a 25 m gas cap. Figure 3 gives well locations and 

hydrocarbon distribution within the field. The field is part of a horst structure that is 9 km 

x 3 km and the top of the reservoir lies at 2525 m mean sea level. The reservoir is 

composed of Jurassic sandstones and is divided into 4 main formations, from top to base: 

Garn, Ile, Tofte, and Tilje. These sands are classified as mostly fine-grained, well to very 

well sorted subarkosic arenites (Verlo and Hetland, 2008). Separating the Garn and Ile 

formations is the Not claystone which acts as a pressure barrier between the units. 
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Figure 3: Well locations and hydrocarbon distribution within Norne Field. Red is gas and green is 

oil. Locations of the wells used in this study are marked. (Statoil, 1999) 

 

The reservoir becomes thinner to the north due to erosion and thickness varies in the field 

from 260 m in the south to 120 m in the north. Thicknesses of the total reservoir in this 

study are 165 m at well #1 and 195 m at well #2. Detailed descriptions of the reservoir 

formations are provided in the following.  

2.1 Garn Formation 

 The Garn formation sits on top of the Not formation and represents the shallowest 

formation in the reservoir. It is subdivided into 3 compartments based on differing 

properties and reservoir quality increases from the bottom to the top. Garn 1, the  

E3H (well #2) 

F1H (well #1) 
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lowermost portion of the Garn formation, is a sandstone that coarsens upwards. The 

bottom of Garn 1 is muddy and bioturbated, as it is an extension of the Not formation, 

and sand content increases upward. Garn 2 consists of fine-grained sandstone and has a 

calcareous cement at the top which can act as a local barrier to fluid flow (Verlo and 

Hetland, 2008). Garn 3 is made up of cross-bedding and fine-grained sandstone sitting 

below a coarse-grained sandstone. 

2.2 Not Formation 

 The Not formation is a dark gray to black claystone deposited in a quiet marine 

environment. The formation coarsens upward into the Garn formation and actually a very 

fine-grained, bioturbated sandstone is present at the top of the formation. 

2.3 Ile Formation 

 The Ile formation was deposited at the shoreface and is subdivided into three 

sections. Ile 1 and 2 are separated by a calcareous cemented layer while Ile 2 and 3 are 

separated by a sequence boundary, indicating a shift from a regressive to transgressive 

environment (Verlo and Hetland, 2008). Ile 1 and 2 are composed of fine- to very fine- 

grained sand which coarsens to the north. Ile 3 is a heavily bioturbated, fine- to very fine- 

sandstone that fines upwards. 

2.4 Tofte Formation 

 The Tofte formation sits on top of an unconformity that represents a hiatus most 

likely due to uplift and subsequent aerial exposure and erosion (Verlo and Hetland, 

2008). This formation was deposited in a marine environment from foreshore to offshore 

and is subdivided into three sections. Tofte 1 is bioturbated and fine grained at the bottom 
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and coarsens upward into a medium to coarse-grained sandstone. Tofte 2 is a heavily 

bioturbated, muddy and fine-grained sandstone while Tofte 3 is a fine- to very fine-

grained sandstone which is also heavily bioturbated. A coarser grained bed is found at the 

top of the Tofte formation and represents a sequence boundary. 

2.5 Tilje Formation 

 The Tilje formation sits below the aforementioned unconformity and was 

deposited in a tidally affected environment. It consists mostly of sandstone with some 

claystone and conglomerates and is subdivided into four sections. Tilje 1 is believed to be 

composed of two sandstone sections, one coarsening upward and a massive sandstone on 

top. Tilje 2 is a heterolithic unit consisting of sandy layers, bioturbated shales, laminated 

shales, and conglomeratic sections. Tilje 3 is a fine-grained sandstone with low 

bioturbation while Tilje 4 is composed of a fine-grained, bioturbated, muddy sandstone in 

the lower section and conglomeratic layers interbedded with sandstone and shale. 
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Chapter 3: Methods 

3.1 Inversion Scheme 

 Chaveste and Jimenez (2003) presented a technique to determine the elastic 

moduli and densities of rocks by minimizing the difference between the measured and 

modeled P- and S-wave velocities and density. Rock properties are often assumed for log 

data, however, these chosen values may not be representative of the true conditions. For 

example, typical values of bulk modulus and shear modulus for quartz are 37 and 44, 

respectively, but these values may be inappropriate to the conditions of the area of study.  

 First, the velocities are modeled by representing Vp and Vs as: 

                                                 𝑉𝑝 =  �𝐾𝑠𝑎𝑡 + 4
3 𝜇𝑠𝑎𝑡

𝜌𝑠𝑎𝑡
                                                                (1𝑎) 

and 

                                                𝑉𝑠 =  �
𝜇𝑠𝑎𝑡

𝜌𝑠𝑎𝑡
                                                                                  (1𝑏) 

where Ksat and μ sat are the saturated bulk and shear moduli, respectively, and ρsat is the 

saturated density. The density can be estimated by a weighted sum of the rock 

constituents: 

                                                𝜌 =  � 𝑓𝑖 ∗ 𝜌𝑖                                                                                  (2)
𝑖

 

where fi is the volume fraction of the ith component and ρi is its density. Ksat is estimated 

from Gassmann’s equation (Gassmann, 1951) which can be represented as (Smith, 2003): 



10 
 

                                           𝐾𝑠𝑎𝑡 = 𝐾∗ +  
�1 − 𝐾∗

𝐾0
�

2

∅
𝐾𝑓𝑙

+ (1 − ∅)
𝐾0

− 𝐾∗

𝐾0
2

                                                   (3) 

where K* =the dry frame bulk modulus, K0 = the bulk modulus of the mineral matrix, Kfl 

= the pore fluid bulk modulus, and ∅ = porosity. According to the Gassmann formulation, 

the shear modulus is insensitive to the pore fluid and thus: 

                                            𝜇𝑠𝑎𝑡 =  𝜇𝑑𝑟𝑦                                                                                         (4) 

The bulk and shear moduli of the mineral matrix can be estimated by Voigt-Reuss-Hill 

averaging: 

                                           𝑀𝑘,𝜇 =  
1
2

(𝑀𝑉 + 𝑀𝑅)                                                                       (5𝑎) 

where MV is the Voigt bound given as: 

                                           𝑀𝑉 =  � 𝑓𝑖𝑀𝑖

𝑛

𝑖=1

                                                                                  (5𝑏) 

and MR is the Reuss bound given as: 

                                            
1

𝑀𝑅
=  �

𝑓𝑖

𝑀𝑖

𝑛

𝑖=1

                                                                                     (5𝑐) 

where fi = the volume of the ith mineral and Mi = its respective modulus. The bulk 

modulus of the fluid, Kfl, can be calculated by Wood’s relation (Wood, 1955):  

                                            
1

𝐾𝑓𝑙
=  

𝑆𝑤

𝐾𝑤
+  

(1 − 𝑆𝑤)
𝐾ℎ𝑦𝑐

                                                                     (6)  

where Sw = the water saturation, Kw = the bulk modulus of water, and Khyc = the 

hydrocarbon bulk modulus. The bulk moduli of the pore fluids at reservoir conditions can 
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be calculated by the Batzle and Wang formulation (Batzle and Wang, 1992). Finally, the 

dry frame bulk modulus can be calculated based on the chosen model. 

 An objective function can now be minimized to solve for the various constants 

that make up the previous equations. The objective function to be minimized is (Chaveste 

and Hilterman, 2007): 

    𝑂𝐹 = �𝑊𝑉𝑝 �(𝑉𝑝𝑒 − 𝑉𝑝𝑚)2 +  𝑊𝑉𝑠 �(𝑉𝑠𝑒 −  𝑉𝑠𝑚)2 +  𝑊𝜌 �(𝜌𝑒 − 𝜌𝑚)2 �          (7) 

where e represents the estimated value and m represents the measured value. W is a 

weighting factor that is a function of the reciprocal of the standard deviation of the 

respective parameter. 

 This method can be used for Vs prediction by setting WVs = 0 and using the 

inverted shear modulus from Vp in equation (1b). In this study, density was decoupled 

from the objective function and thus the equation to be minimized is: 

                                                  𝑂𝐹 =  �(𝑉𝑝𝑒 − 𝑉𝑝𝑚)2                                                             (8) 

This objective function provides the basis for Vs prediction using effective medium 

models in this study. The effective medium models presented in the following sections 

were tested using this method by solving for the dry frame Vp and performing Gassmann 

fluid substitution to reservoir conditions using equation (3). 

 A genetic algorithm in MATLAB is used to solve for the objective function. 

Genetic algorithms can solve constrained and unconstrained problems and are based on 

the biological principle of natural selection (MATLAB user’s guide). Whereas classical 

optimization routines generate a single point at each iteration, genetic algorithms generate  
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populations of points with the best point approaching the optimal solution. The algorithm 

evolves over generations to an optimal solution and stops based on defined stopping 

criteria. The stopping criteria in this study is a minimum change in the fitness (objective) 

function value of 1e-6 from one generation to the next. Figure 4 shows the results of 

using a genetic algorithm and an objective function as described above to invert for grain 

densities (in this case, sand and shale). We can see that this method works exceptionally 

well for inverting for grain densities. 

 

Figure 4: Measured Vs. Predicted bulk densities using the inverted sand and shale grain densities. 
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3.2 Shear-wave Velocity Predictors 

3.2.1 Krief Method 

Krief et al., (1990) developed a method of relating the dry frame moduli to the 

mineral matrix moduli, porosity, and the Biot coefficient. Their formulas originate with 

the equation of the dry frame bulk modulus given in Gassmann (1951). The resulting 

equations for the dry frame bulk modulus and shear modulus are: 

                                                      𝐾𝑑𝑟𝑦 =  𝐾0(1 − 𝛽)                                                                 (9𝑎) 

and 

                                                       𝜇𝑑𝑟𝑦 =  𝜇0(1 − 𝛽)                                                                 (9𝑏) 

where β = the Biot coefficient. They equated (1-β) to (1-ϕ)m and found  m = 3/(1-ϕ) by a 

best fit to the data. The final versions of equations (9a) and (9b) are: 

                                                       𝐾𝑑𝑟𝑦 = 𝐾0(1 − ∅)
3

(1−∅)                                                     (10𝑎) 

and 

                                                       𝜇𝑑𝑟𝑦 = 𝜇0(1 − ∅)
3

(1−∅)                                                      (10𝑏) 

(10a,b) are input to equations (3) and (4) and the genetic algorithm is used to solve for the 

bulk and shear moduli of sand and shale denoted as Ksand, μsand, Kshale, and μshale, 

respectively. The inverted shear moduli are then used in equation (1b) to estimate Vs.  

 

3.2.2 Self-consistent (SC) Effective Medium Method 

Several frequently used elastic moduli estimation methods (the Hashin-Shtrikman 

and Voigt-Reuss bounding methods, for example) are based on the moduli and the  
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volume fractions of each constituent. However, it has been shown that the geometry of 

the components plays an important role in their elastic moduli; therefore, methods have 

been developed that take into account the shapes of the inclusions. Most of these methods 

solve for the elastic deformation of an inclusion of one material in an infinite background 

host and then estimate the elastic moduli when there is a distribution of these inclusions 

(Mavko, 2009). The downfall of these methods is that they only are applicable to dilute 

concentrations of inclusions and thus may not be applicable to the given conditions. For 

example, the Kuster-Toksoz model is only applicable to situations where (Xu and White, 

1995): 

∅
𝛼

≪ 1 

where α is the aspect ratio of the inclusions. One method for accounting for the 

interaction of inclusions is the self-consistent (SC) approximation. This method replaces 

the background medium with a new background medium after inclusions have been 

added and is solved iteratively until the total volume of inclusions has been added. One 

major difference between this model and the DEM model described in the next section is 

that the SC model does not treat any of the individual constituents as the host medium. 

Berryman (1980) provided a general solution to the original self-consistent formulation 

for a medium with N-phases: 

                                                       � 𝑥𝑖(𝐾𝑖 − 𝐾𝑠𝑐
∗ )

𝑁

𝑖=1

𝑃∗𝑖 = 0                                                   (11𝑎) 

and 



15 
 

                                                   � 𝑥𝑖(𝜇𝑖 − 𝜇𝑠𝑐
∗ )

𝑁

𝑖=1

𝑄∗𝑖 = 0                                                        (11𝑏) 

where xi = the volume fraction of the ith phase, Ki,μi = the bulk and shear modulus of the 

ith phase, respectively, Ksc,μsc = the effective moduli of the self-consistent background 

medium, and P,Q = geometric factors. The expressions for P and Q are given in 

Appendix B. This method includes the shape of the grains as well as the shapes of the 

inclusions. Equations (11a) and (11b) are solved for dry inclusions by setting K and μ = 0 

for the inclusion phases. Saturated moduli can be estimated with this method, however, 

the model assumes inclusion isolation with respect to pore flow and thus is appropriate to 

high-frequency laboratory conditions. For logging frequencies, it is better to solve for dry 

frame elastic moduli and then use Gassmann’s equation to fill the pores with the 

applicable fluid (Mavko et al., 2009). 

   

3.2.3 Differential Effective Medium (DEM) Method 

  An alternative effective medium method that takes into account the geometry of 

the components and allows for more than a dilute concentration of inclusions is the 

differential effective medium (DEM) method. Whereas the self-consistent method 

applied to a composite of an N number of phases, DEM is restricted to a 2-phase 

medium. Phase 1 (the matrix) begins with no inclusions, and phase 2 (the inclusions) are 

incrementally added to phase 1. This process continues until the desired fraction of the 

inclusion phase is reached, in this case porosity. In reality, the evolution of a 

rock’sporosity may not occur in this manner and thus this is merely a thought experiment 
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and should not be taken to represent the true nature of the porosity evolution (Mavko, 

2009). 

 Berryman (1992) gave the formulation for the differential equations used to solve 

for the effective bulk and shear moduli as: 

                               (1 − 𝑦)
𝑑

𝑑𝑦
[𝐾∗(𝑦)] = (𝐾2 − 𝐾∗)𝑃∗2(𝑦)                                              (12𝑎) 

and 

                              (1 − 𝑦)
𝑑

𝑑𝑦
[𝜇∗(𝑦)] = (𝜇2 − 𝜇∗)𝑄∗2(𝑦)                                                 (12𝑏) 

where K* and μ* are the effective moduli, K2 and μ2 = the bulk and shear moduli of the 

inclusions, y = the inclusion volume (porosity in this study), and P and Q = geometric 

factors as described in appendix B. As with the self-consistent method, dry moduli are 

first estimated by setting K* and μ* = 0 and the saturated moduli are estimated by 

Gassmann’s equation.  The reason for this arises from the same frequency stipulation 

mentioned for the self-consistent method. 

 

3.2.4 The Mudrock Line 

 Castagna et al. (1985) define a mudrock as a clastic, silicate rock composed 

mainly of clay or silt-sized grains. They found an empirical relationship between the 

compressional velocity and shear velocity of water-saturated mudrocks based on in situ 

sonic and seismic measurements (Figure 5), given as: 

                                                      𝑉𝑝 = 1.16𝑉𝑠 + 1.36                                                           (13𝑎) 

or  
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                                              𝑉𝑠 = .8621𝑉𝑝 − 1.1724                                                           (13𝑏) 

where Vp and Vs are in kilometers per second. Examination of figure 5 gives an insight 

into the remarkable relationship, given that mudrocks are highly variable. One can see 

that the pure clay point lies very close to the line connecting the end members of pure 

water and pure quartz. As porosity of a pure clay increases, the velocities decrease in a 

linear manner towards that of pure water while as quartz is added to pure clay the 

velocities increase in a linear manner towards that of pure quartz (Castagna et al., 1985). 

 It was found that the mudrock line could further apply to water-saturated 

sandstones as Pickett’s trend (Pickett, 1963) for sandstones based on laboratory 

measurements coincides precisely with the mudrock line. Laboratory measurements and 

data from the literature showed, in general, a good fit to the mudrock line (Figure 6). 

 

Figure 5: Empirical relationship between Vp and Vs found from in situ measurements at various 

formations. (Castagna et al., 1985) 
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The mudrock line has become a popular shear-wave velocity predictor that is easy 

to implement. However, its restriction to water-saturated sediments limits its 

effectiveness in hydrocarbon environments. Also, as an empirical formula, its accuracy at 

a given basin may be less than adequate depending on the objective. 

 

Figure 6: Compilation of Vp and Vs laboratory and literature data plotted with the mudrock line. 

(Castagna, 1985) 

 

3.2.5 Greenberg-Castagna Empirical Formula 

 Greenberg and Castagna (1992) developed empirical relationships for estimating 

the shear-wave velocity of brine-saturated multiminerallic rocks based on empirical 

relationships of monominerallic rocks. Using these monominerallic velocity 

relationships, the shear-wave velocity of the composite can be calculated by an average 

of the harmonic and arithmetic means of the monominerallic shear-wave velocity, 

expressed as: 
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   𝑉𝑠 (𝑘𝑚
𝑠

) = 1
2

��∑ 𝑋𝑖 ∑ 𝑎𝑖𝑗
𝑁𝑖
𝑗=0 𝑉𝑗𝑝𝐿

𝑖=1 � + �∑ 𝑋𝑖(∑ 𝑎𝑖𝑗𝑉𝑗𝑝)𝑁𝑖
𝑗=0

−1𝐿
𝑖=1 �

−1
�                        (14) 

where L = the number of monomineralic constituents,  X = the volume fraction of each 

constituent, aij = regression coefficients, N = the order of the regression polynomial, and 

Vp = the brine saturated, composite medium compressional velocity. Regression 

coefficients are given in table 1. The Greenberg-Castagna relations used in this study are 

those for a sandstone-shale system, expressed as: 

   𝑉𝑠 �
𝑘𝑚

𝑠
� = .8042𝑉𝑝 − .8559, 𝑓𝑜𝑟 𝑠𝑎𝑛𝑑𝑠𝑡𝑜𝑛𝑒𝑠                                                   (15𝑎) 

and 

   𝑉𝑠 �
𝑘𝑚

𝑠
� = .7700𝑉𝑝 − .8674, 𝑓𝑜𝑟 𝑠ℎ𝑎𝑙𝑒𝑠                                                             (15𝑏) 

  

 a b c 

Limestone -0.05508 1.01677 -1.03049 

Dolomite - 0.58321 -0.07775 

Sandstone - 0.80416 -0.85588 

Shale - 0.76969 -0.86735 

 

Table 1: Vp-Vs regression coefficients for pure monomineralic rocks, from Castagna et al., (1993). 

Equation is of the form: Vs = aVp2 + bVp + c 
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3.2.6 Non-Vp Regressions 

 Many other regression studies have been conducted to relate Vs to various 

properties, as has been done with the mudrock line and the GC equations in relation to 

Vp. To distinguish the following models from those, the equations in this section will be 

referred to as non-Vp regressions as they relate Vs to properties such as clay content and 

porosity, and not merely Vp.  The non-Vp regressions discussed here can be found 

together in Castagna et al., (1993). 

 Tosaya (1982) related Vp and Vs to porosity and clay content through laboratory 

measurements of brine-saturated sandstones and shales at 5800 psi (40 MPa). Clay 

content was obtained by detailed chemical and petrographic analysis. The multiple 

regression of Vs to clay content and clay volume produced the equation: 

                                     𝑉𝑠 �
𝑘𝑚

𝑠
� = 5.8 − 8.6𝜑 − 2.4𝑋𝑐𝑙                                                        (16) 

where  𝜑 = porosity and Xcl = fractional clay volume. 

 Castagna et al. (1985) followed a similar path of Tosaya (1982) and performed 

multiple linear regression of velocities versus porosity and clay content. However, their 

data was sonic log measurements from the Frio formation and clay content was 

determined by conventional log analysis. The resulting regression equation is: 

                                     𝑉𝑠 �
𝑘𝑚

𝑠
� = 3.89 − 7.07𝜑 − 2.04𝑋𝑐𝑙                                                (17) 

 We can see the obvious resemblance to the Tosaya equation. The correlation 

coefficient of this equation on the Frio data was 0.96. 
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 Han et al. (1986) conducted perhaps the most extensive study of velocities of 

clay-bearing sandstones. They measured the velocities of 75 sandstones in the laboratory 

at effective pressures ranging from 100 bars to 400 bars, porosities ranging from 2 to 

30%, and clay volumes from 0 to 50%. Velocity regressions were done against clay 

volume and porosity for each pressure regime. The regression equation for Vs is: 

                                     𝑉𝑠 �
𝑘𝑚

𝑠
� = 𝑎 + 𝑏𝜑 − 𝑐𝑋𝑐𝑙                                                                  (18) 

and the coefficients are given in table 2. 

 Eberhardt-Phillips et al. (1989) extended this study by adding effective pressure 

as a regression parameter and using nonlinear multiple regression. The resulting equation 

is: 

                        𝑉𝑠 �
𝑘𝑚

𝑠
� = 3.70 + 4.94𝜑 − 1.57�𝑋𝑐𝑙 + .361(𝑃 − 𝑒−16.7𝑃)                  (19) 

where P is effective pressure in kilobars. 

 Effective pressure is defined as the difference between overburden (lithostatic) 

pressure and pore (hydrostatic) pressure. The equation for overburden pressure in Norne 

Field is (Dadashpour, 2009): 

                         𝑃𝑂𝑉 = 0.0981 ∗ (9𝑥10−5𝑇𝑉𝐷 + 1.7252) ∗ 𝑇𝑉𝐷                                        (20) 

where TVD = true vertical depth. Pore pressure was calculated based on a formation 

pressure plot and results are in table. Subtracting the pressures given in table 3 from 

equation (20) provides the effective pressure for Norne Field. 
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Effective Pressure 
(Bars) 

a b c 

400 3.52 -4.91 -1.89 

300 3.47 -4.84 -1.87 

200 3.39 -4.73 -1.81 

100 3.29 -4.73 -1.74 

 
Table 2: Values of coefficients of equation 18 (Han regression). Taken from Castagna et al., (1993).  
 
 
 

Depth Interval (m) Initial Pressure (Bar) Gradient (Bar/m) 

2670-2709 (well #1) 
2597-2638 (well #2) 

290 0 

2709-2792 (well #1) 
2638-2738 (well #2) 

245 0.0123 

2792-2837 (well #1) 
2738-2790 (well #2) 

252.5 0.066 

 
Table 3: Pore (hydrostatic) pressures in Norne Field. 
 

 

3.2.7 Raymer-Hunt-Gardner (RHG) Vs Equation 

 Wyllie et al., (1956) developed a velocity-porosity transform by assuming that the 

wave propagates a fraction of its time in the matrix and a fraction of its time in fluid. The 

equation, known commonly as the Wyllie time-average equation, has no correct physics 

based derivation, but has been used over the years as an effective method of relating 

compressional velocity to porosity in well consolidated sandstones. Raymer et al., (1980) 

developed an improvement to the Wyllie equation, known as the Raymer-Hunt-Gardner 

(RHG) equation and is expressed as: 
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                              𝑉𝑝 = (1 − 𝜑)2𝑉𝑝𝑚𝑎 + ∅𝑉𝑓                                                                         (18) 

where Vpma = the Vp in the matrix, 𝜑 = porosity, and Vpf =  the fluid velocity. Castagna 

(1985), using Biot-Gassmann theory, derived a Vs form of the RHG equation given as: 

                              𝑉𝑠 = (1 − 𝜑)2𝑉𝑠𝑚𝑎                                                                                      (19) 

where Vsma = the Vs in the matrix. Dvorkin (2008) extended this equation by using the 

Gassmann assumption that the shear modulus is not affected by the pore fluid and 

developed the following RHG Vs equation for calculating the saturated Vs given that 

equation (19) represents dry Vs: 

                             𝑉𝑠 = 𝑉𝑠𝑑𝑟𝑦�
𝜌𝑑𝑟𝑦

𝜌𝑏
= (1 − 𝜑)2𝑉𝑠𝑚𝑎�

(1 − 𝜑)𝜌𝑠

(1 − 𝜑)𝜌𝑠 + 𝜑𝜌𝑓
                      (20) 

where ρdry = the bulk density of the dry sediment, ρb = the bulk density of the wet 

sediment, ρs = the density of the solid phase, ρf = the density of the fluid phase, and 𝜑 = 

porosity. It is obvious from the equation that the prediction is dependent on accurate 

estimates of densities and elastic moduli of the matrix, thus, the equation will provide a 

good test as to the accuracy of the inverted density and moduli values.  

 

 

 

 

 

 

 



24 
 

Chapter 4: Results for Well #1 

 The methods described in chapter 3 will now be used to predict the shear-wave 

velocity in well #1. An assumption is made that the lithologic environment is of two end 

members: sand and shale. No other local shear data or measurements are used in this part, 

thus this represents a blind prediction of shear-wave velocity based on compressional 

velocity and petrophysical log measurements. 

 

4.1 Krief Model 

 The Krief model was used as described in section 3.2.1. Ksand, μsand, Kshale, and 

μshale were left as parameters to be solved by minimizing equation (8). As mentioned 

before, Vs has been removed from the objective function in order to use this method as a 

Vs predictor. The fluid properties (which can be left for the algorithm to solve) were 

solved beforehand based on the Batzle-Wang equations (Batzle and Wang, 1992). The 

input properties are given in table 4 and the output properties are given in table 5. An 

interval of 200 points in the Tofte formation (depth: 2740-2765 m) was used for the 

inversion as it is has the most uniform velocities and produced the best results. The 

moduli were constrained using upper and lower bounds so as to produce realistic results. 

The lower bounds are 25, 25, 10, and 1 for Ksand, μsand, Kshale, and μshale, respectively, 

while the corresponding upper bounds are 40, 45, 25, and 10. The resulting best fit elastic 

properties produced by the inversion are given in table 6. These shear moduli were then 

used to estimate Vs (Figure 7).   
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Brine Salinity 
(ppm) 

Oil 
Gravity 
(API) 

Gas 
Gravity 
(specific 
gravity) 

Gas-Oil 
Ratio 
(L/L) 

Pore 
Pressure 
(MPa) 

Temperature 
(oC) 

50,000 32.7 0.85 111 27 100 

 
Table 4: Input fluid properties for the Batzle-Wang equations. 
   

Fluid Density (g/cc) Bulk Modulus (GPa) 
Brine 1.0 2.7 

Oil 0.73 0.65 
Gas 0.24 0.07 

 
Table 5: Output fluid properties of the Batzle-Wang equations. 

 

K sand (GPa) μ sand (GPa) K shale (GPa) μ shale (GPa) 

39.8 30.6 13.4 8.3 

 
Table 6: Elastic moduli inverted from Vp at well #1 using the Krief model. 

 

 We can see that solving for the elastic moduli over a small interval produces good 

results when applying those moduli to the entire log interval. The Vp estimation using the 

estimated moduli has a mean square error (MSE) of .1098 when compared to the 

measured Vp. Meanwhile, the predicted Vs has an MSE of .0557 when compared to the 

measured Vs, an excellent match considering no measured Vs values were used in the 

minimization. In fact, inverting Vs for shear moduli produced a usand = 31.2 and ushale = 

8.3. These results are very similar to those in table 6 and show the robustness of using Vp 

to predict Vs.  
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Figure 7: Velocity prediction at well #1 using the Krief method and inverting Vp for elastic moduli. 

Using the estimated moduli, the Vp estimation has an MSE = .1098 and the estimated Vs has an MSE 

= .0557. 

 

 Comparing the Vs estimation error to the measured logs shows a slight correlation 

between Vp, density, and porosity (Figure 8). Several of the large Vs errors can be linked 

to high Vp, high density, and high porosity. This is likely a lithology effect due to dense, 

tight streaks such as limestone or cemented sand. There appears to be no correlation 

between the Vs error and shale volume, indicating that the inversion has successfully 

inverted for both sand and shale properties. 
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Figure 8: Comparison of Krief-predicted Vs error (left column) at well #1 with the measured logs. 

There exists a slight correlation between the error and Vp, density, and porosity. Several of the 

higher error data points are tracked to points of high Vp, high density, and low porosity. 

 

 If we look at the Vp/Vs ratio for this well, we see that most of the clean sands lie 

between ratios of 1.7 to 1.8, while the shaley units have Vp/Vs ratios greater than 1.8 

(Figure 9). The Krief-predicted Vs does not adequately allow for this distinction between 

the lithologies. We see a much higher variation in Vp/Vs ratios for the sands and an 

overlap of the sand and shale ratios. 
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Figure 9: Measured Vp vs. measured Vs (left) compared with measured Vp vs. Krief-predicted Vs 

(right) at well #1. Data is color coded by shale volume. The measured data shows sands having Vp/Vs 

ratios ranging from 1.7-1.8 while the shaley units have Vp/Vs ratios greater than 1.8. Using the Krief-

predicted Vs does not provide the same level of lithology distinction. 

 

4.2 Self-consistent (SC) Method 

 The self-consistent effective medium method was described in section 3.2.2. 

Along with inverting for the elastic moduli, the aspect ratios of the sand/shale grains and 

sand/shale porosities were also left as free parameters to be solved by the genetic 

algorithm. The aspect ratios of the sand grains were constrained with a lower bound of .1 
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and an upper bound of .99 while the bounds for the shale grains were .01 and .99, 

respectively. The aspect ratio of the sand porosity was constrained with a lower bound of 

.01 and an upper bound of .3 while the bounds for the shale porosity are .001 and .1, 

respectively. The Vp-inverted, best fit aspect ratios are given in table 7. 

 These shear moduli and aspect ratios were then used in the SC model to predict 

Vs (Figure 10). The MSE for Vp prediction is .0795 while it is .0568 for Vs prediction. 

Based on the MSE, we see nearly identical results to the Vs prediction using the Krief 

model, however, visual inspection shows that the SC inversion slightly overestimates the 

shear velocity for the clean sand interval. Comparison of the elastic moduli provides 

evidence that the sand grain/porosity aspect ratios may be too high. The sand bulk 

modulus of 30.5 inverted using the SC method is much lower than the 39.8 inverted using 

the Krief model, however, the Vp prediction in the clean interval is similar for both 

models. It is likely that the algorithm produced higher aspect ratios to compensate for the 

lower bulk modulus in order to provide the best match to the velocities. Also, the inverted 

sand shear modulus using the SC model is slightly lower than that using the Krief model 

which obviously wouldn’t explain an overprediction of velocity. 
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 K μ Aspect Ratio 

Sand grains 30.5 28.6 .193 

Shale grains 21.2 9.9 .054 

Sand porosity - - .245 

Shale porosity - - .1 

 
Table 7: Inverted moduli and aspect ratios from Vp inversion at well #1 using the SC method. 

 

  

Figure 10: Velocity prediction results at well #1 using the inverted moduli and aspect ratios in the 

self-consistent method. The MSE = .0795 and .0568 for Vp and Vs estimation, respectively. 

 



31 
 

 Comparison of the prediction error with the measured logs shows a correlation 

with density and porosity (Figure 11). The points of largest error coincide with the points 

of high density and low porosity. Once again, it can be reasoned that this is a lithology 

effect due to tight streaks. 

 

 

Figure 11: Comparison of the SC-predicted Vs error (left column) at well #1 with the measured logs.  

We see a correlation between the Vs error and density and porosity. Many of the large error points 

coincide with high density and low porosity. 

 

 Lithology distinction using the SC-predicted Vs is slightly better than what we 

saw using the Krief-predicted Vs (Figure 12). The shaliest units have Vp/Vs ratios of 



32 
 

greater than 2 and are clearly separated from the sandstones, however, the moderately 

shaley points with Vp/Vs ratios ranging from 1.7-2 overlap with much of the sand data 

points. We begin to separation with the cleanest sandstones having low Vp/Vs ratios, 

below 1.7.  

 

Figure 12: Measured Vp vs. measured Vs (left) compared with measured Vp vs. SC-predicted Vs 

(right) at well #1. The shaliest and cleanest units can be detected by the Vp/Vs ratios using the SC-

predicted Vs. 
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4.3 DEM Method 

 The DEM method was described in section 3.2.3. While the SC method involves 

the grain aspect ratios, the DEM method only involves aspects ratios of the porosities and 

thus these two parameters were left to be solved by the genetic algorithm, along with the 

elastic moduli. The same constraints that were previously used were used in the DEM 

inversion. The results of inverting Vp for the elastic moduli and sand/shale aspect ratios 

are given in table 8. 

 These moduli and aspect ratios were then used in the DEM method to predict Vs 

(Figure 13). The MSE for Vp prediction is .1139 while for Vs prediction it is .1071. We 

see that the prediction using the DEM at this well is not as accurate as the Krief or SC 

method. Interestingly, the shear moduli and sand/shale porosity aspect ratios are lower 

than those inverted from the SC method, yet Vs is slightly overpredicted using the DEM 

method.  

 K μ Aspect Ratio 

Sand grains 26.1 26 - 

Shale grains 24.9 10 - 

Sand porosity - - .04 

Shale porosity - - .012 

 
Table 8: Elastic moduli and aspect ratios from Vp inversion at well #1 using the DEM method. 
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Figure 13: Velocity prediction results at well #1 using the DEM method. MSE for Vp prediction is 

.1139 and .1071 for Vs prediction. 

 

 The predicted error shows a strong correlation with density (Figure 14). The error 

follows a similar trend to the density trend, with much of the higher error correlating with 

higher density. In turn, the higher error can also be correlated with lower porosity.  
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Figure 14: Comparison of the DEM-predicted Vs error with the measured logs at well #1. A 

correlation exists between the error, density, and porosity. Higher density, coinciding with lower 

porosity, tends to increase the predicted error. 

 

 Lithology identification using the DEM-predicted Vs is the least accurate of the 

three methods used in the inversion scheme (Figure 15). We see a wide range of Vp/Vs 

ratios with many pure shale data points showing similar ratios to clean sand points. The 

overprediction of Vs for both sandstone and shale leads to lower Vp/Vs ratios, and thus 

less lithology distinction. 
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Figure 15: Measured Vp vs. measured Vs (left) compared with measured Vp vs. DEM-predicted Vs 

at well #1. Lithology identification is mostly ambiguous using this Vs. 

 

4.4 The Mudrock Line  

 Figure 16 shows the results of Vs prediction using the mudrock line. The MSE is 

.0194. We can see that the mudrock line produces a good trend to the measured Vs but 

under-predicts the velocity, which results in a higher Vp/Vs ratio than what is given by 

the measured values (Figure 17). It is possible that this discrepancy is due to the pore 

geometry. As explained in Castagna et al., (1985), we would expect a formation with 
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 equant pores to have a lower Vp/Vs ratio and data would lie above the mudrock line, as 

we see in figure 17. This also may lead to the conclusion that the self-consistent inverted 

aspect ratios, as opposed to the DEM results, are more representative of the actual 

conditions. Thin section data would be needed for further proof of the pore geometry 

effect on the mismatch of the mudrock line. 

 

Figure 16: Results of Vs prediction at well #1 using the mudrock line. MSE is .0194. 
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Figure 17: Vs vs. Vp for well #1. The mudrock line, as well as constant Vp/Vs ratio lines, is plotted 

with the measured data. The data is color-coded by shale volume. 

 

4.5 Greenberg-Castagna Empirical Formula 

 The GC prediction was used with equations (15a) and (15b) for sand and shale, 

respectively, with the coefficients provided in table 9. The resulting prediction is shown 

in figure 18. We can see the excellent prediction that the GC formula provides, with a 

MSE of .0044. This is a better match than any of the previous models and shows the 

effectiveness of this method in brine-saturated sand/shale environment. 

Vshale 
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Figure 18: Vs prediction at well #1 using the Greenberg-Castagna empirical formulas. The MSE is 

.0044. 

 

4.6 Non-Vp Regression Equations 

 Equations (16), (17), (18), and (19) were tested against the measured Vs using the 

coefficients provided in the respective tables in section 3.2.6. Results are shown in figure 

19. We see that each regression equation provides a reasonably accurate prediction to the 

measured Vs. Based on the MSE the Han regression provides the best estimate with an 

MSE of .0960, followed by the Eberhardt-Phillips regression (.1067), the Tosaya 

regression (.1305), and the Castagna regression (.1700). However, if we focus on the 

clean sand interval with a uniform Vs, we see that the Tosaya regression is the most 
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accurate, while the Han and Eberhardt-Phillips regressions slightly overestimate Vs and 

the Castagna regression slightly underestimates Vs. 

 

 

Figure 19: Vs prediction for well #1 using the non-Vp regression equations. The predictions from left 

to right are based on equations (16), (17), (18), and (19). Equations and coefficients are given in 

section 3.2.6. 

 

4.7 Raymer-Hunt-Gardner (RHG) Vs Equation 

 The Raymer-Hunt-Gardner Vs equation was described in section 3.2.7. The 

inverted sand and shale densities as shown in figure 4 and shear moduli inverted by the 

Krief model were used in equation (20). The matrix shear modulus was determined by 

VRH averaging and this modulus was used to find the matrix shear velocity. Vs for well 

#1 was then predicted using equation (20). The resulting prediction is shown in figure 20. 
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 We see that the RHG Vs model provides a good match to the measured Vs with an MSE 

of .0462. As this model is dependent on the shear moduli and densities used, we see that 

the moduli and densities inverted using the genetic algorithm with the Krief model are 

proper values to be used at this well.  

 

Figure 20: Vs prediction results for well #1 using the RHG Vs equation. The MSE is .0462. 

 

4.8 Summary 

 A summary of the Vs prediction results are provided in table 9. The correlation 

coefficient (R2) was also calculated for each prediction to show the pitfalls of such an 

error measurement. R2 is arguably the most widely used error measurement but we can 

see from this study that it can give misleading results. If we guided our results by R2, we 
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would assume that the mudrock line would be an optimal method to use. However, we 

saw from comparison to the measured Vs that the mudrock prediction underpredicts the 

velocity and we’ll see in a later chapter that it has a strong effect on AVO modeling.  

 

Model Mean Squared Error 
(MSE) 

Correlation Coefficient (R2) 

Krief .0557 .4961 

Self-consistent (SC) .0568 .5057 

DEM .1071 .4630 

Mudrock Line .0194 .9570 

Greenberg-Castagna (GC) .0044 .9572 

Tosaya Regression .1305 .4784 

Castagna Regression .1700 .4676 

Han Regression .0960 .4657 

Eberhardt-Phillips Regression .1067 .5120 

RHG .0462 .5065 

 
Table 9: MSE and correlation coefficient results for the Vs prediction models at well #1 
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Chapter 5: Results for Well #2 

 The next objective was to predict Vs at well #2. Where applicable, it is assumed 

that shear data for well #1 are available and can be used for better prediction at well #2. 

Aside from the predictions derived from well #1 data, the same methods used to predict 

Vs at well #1 have been used. 

 

5.1 Krief Method 

 In the same manner as well #1, Vp at well #2 was inverted for the elastic moduli 

using the Krief model given by equation (8). A 200 point, clean interval (depth: 2677-

2700 m) was used for the inversion. The same constraints for the moduli used at well #1 

were applied here. The best fit elastic moduli are given in table 10. These shear moduli 

were then used to predict Vs. We see that the sand and shale shear moduli inverted as this 

well are higher than those from well #1, which were 30.6 and 8.3, respectively. 

  

K sand (GPa) μ sand (GPa) K shale (GPa) μ shale (GPa) 

37.9 39.2 24.9 10 

 
Table 10: Elastic moduli inverted from well #2 using the Krief model. 
 

These shear moduli were then used to predict Vs (Figure 21). The prediction is 

less accurate than that at well #1, with an MSE of .1203 compared to that of 0.557 at well 

#1. From figure 21, we can see that Vs is overpredicted for much of the interval, bringing 
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into question the larger shear moduli at this well. However, inverting Vs alone for the 

shear moduli produced only a slightly lower μsand of 37.4 and the same μshale  of 10. 

  

 

Figure 21: Velocity prediction results at well #2 using the elastic moduli inverted from Vp using the 

Krief model. The MSE for Vp prediction is .2384 while for Vs it is .1203. 

 

 The predicted Vs error shows a strong correlation with Vp, density, and porosity 

(Figure 22). The error trend closely follows the density trend, with higher error 

coinciding with higher density, which in turn coincides with lower porosity. Also, we see 

that points of higher Vp tend to produce greater error in the Vs prediction. 

 



45 
 

 

 
Figure 22: Comparison of the Vs error using the Krief model (left column) with the measured logs at 

well #2. We see the best correlation with Vp, density, and porosity. Much of the higher error 

correlates with higher Vp, higher density, and lower porosity. 

 

 The Vp/Vs ratios at this well are lower than those at well #1, with the shaliest 

points having ratios between 1.8 and 1.9 and a majority of the cleanest sand points lying 

between 1.6 and 1.7 (Figure 23). The Krief-predicted Vs provides a poor lithology 

distinction using Vp/Vs. We seem almost complete ambiguity between the shales and 

clean sandstones.  
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Figure 23: Measured Vp vs. measured Vs (left) compared with measured Vp vs. Krief-predicted Vs 

at well #2. Using the predicted Vs, we are unable to distinguish the shales from the sands using 

Vp/Vs. 

 

5.2 Self-consistent (SC) Method 

 Using the same constraints for the elastic moduli and aspect ratios at well #1, Vp 

at well #2 was inverted using the SC model to solve for the parameters. The inverted, best 

fit moduli and aspect ratios are given in table 11. These parameters were then used in the 

SC model to predict Vs (Figure 24).  

 We see a much better Vs prediction using the SC method at this well than the 

prediction using the Krief model. The MSE for Vp prediction is .0821 while it is .0632 
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for Vs prediction. However, we still see a slight overprediction of Vs for most of the log 

interval. As the sand shear modulus inverted using the SC method is much lower than 

that inverted from the Krief model, the inverted sand geometry parameters must account 

for the overprediction. As we saw with well #1, the inverted sand porosity is atypically 

large and may account for the velocity mismatch. Nevertheless, we see that the SC 

method is much more effective at predicting Vs at well #2 than the Krief model. 

  

 K μ Aspect Ratio 

Sand grains 25.9 29.9 .107 

Shale grains 25 10 .032 

Sand porosity - - .261 

Shale porosity - - .1 

 
Table 11: Elastic moduli and aspect ratios inverted from Vp at well #2 using the SC method. 
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Figure 24: Velocity prediction results at well #2 using the elastic moduli and aspect ratios inverted 

from Vp using the SC method. The MSE for Vp prediction is .0821 and .0632 for Vs prediction. 

 

 As we have seen previously, we continue to see a correlation between the 

predicted Vs error and Vp, density, and porosity (Figure 25). The strongest correlation 

exists between the error and density with the highest errors being associated with the 

highest densities. Spikes in error can also be seen to correlate with high spikes in Vp and 

low spikes in porosity. 
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Figure 25: SC-predicted Vs error (left column) compared with the measured logs at well #2. The 

larger errors tend to coincide with higher Vp, higher density, and lower porosity. 

 

 The SC-predicted Vs at this well does a better job of delineating lithology using 

Vp/Vs than did the Krief method (Figure 26). The shale Vp/Vs ratios are higher than the 

actual measured values while the sand ratios are lowered than measured and thus we see 

a noticeable distinction between the shaley and clean units. The moderately shaley points 

still retain their ambiguity that is present in the measured case. 
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Figure 26: Measured Vp vs. measured Vs (left) compared with measured Vp vs. SC-predicted Vs 

(right) at well #2. We see different Vp/Vs ratios then given by the measured values but there is a 

visible distinction between the shaliest points and the cleanest points. 

 

5.3 DEM Method 

 The Vp inverted elastic moduli and sand/shale porosity aspect ratios at well #2 

using the DEM method are given in table 12. These shear moduli and aspect ratios were 

then used in the DEM method to predict Vs (Figure 27). The MSE for Vp prediction is 

.1016 and .0883 for Vs prediction. Once again, the Vs prediction is not as good as that 

provided by the SC method. However, the MSE at well #2 using the DEM method is  
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actually lower than that of well #1. Vs is overpredicted despite the lower shear moduli 

values as compared to the other models, similar to what we saw at well #1. Also, we see 

that the inverted shale porosity aspect ratio is larger than the sand porosity aspect ratio. A 

geometric regime of this manner is highly unlikely, however, thin section analysis would 

be needed as verification.  

 

 K μ Aspect Ratio 

Sand grains 25 26.1 - 

Shale grains 19.4 5 - 

Sand porosity - - .042 

Shale porosity - - .099 

 
Table 12: Elastic moduli and aspect ratios inverted from Vp at well #2 using the DEM method. 

 

 The prediction error follows the same trend as seen in the other models. The 

largest errors can be correlated to higher density and lower porosity (Figure 28). To a 

lesser extent, there is correlation between the error and Vp with several of the high jumps 

in error being associated with high jumps in Vp. 
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Figure 27: Velocity prediction results at well #2 using the Vp-inverted elastic moduli from the DEM 

method. MSE for Vp = .1016 and .0883 for Vs. 

 

 The Vp/Vs ratios of the shaliest units using the DEM-predicted Vs are larger than 

what is given by the measured values, while the cleaner sand Vp/Vs are smaller than 

those of the measured values (Figure 29). Hence, we are able to distinguish between sand 

and shale using Vp/Vs with the DEM-predicted Vs. 
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Figure 28: DEM-predicted Vs error (left column) compared with the measured logs at well #2. There 

is a noticeable correlation between the error, density, porosity, and to a lesser extent, Vp. Higher 

error correlates with higher density and lower porosity. Several of the largest errors can also be 

attributed to high Vp values. 
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Figure 29: Measured Vp vs. measured Vs (left) compared with measured Vp and DEM-predicted Vs. 

There is visible distinction between the shaliest points and the clean points. 

 

5.4 The Mudrock Line 

 The mudrock line is applicable only to water-saturated sediments and thus well #2 

was first fluid substituted using Gassmann’s equation to full water saturation. The elastic 

moduli used for the fluid substitution are those inverted from the Krief model and the dry 

frame bulk modulus was represented by the Krief model, equation (10a). The mudrock 

line was then used to predict Vs (Figure 30). The MSE at well #2 using the mudrock line 

is .0378, higher than that at well #1 which was .0194. This is expected as errors in fluid 

substitution are propagated into the Vs prediction. Similar to well #1, the mudrock line 

underpredicts Vs for most of the well. 
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 Using the assumption that well #1 Vs data exists, a local mudrock trend was 

derived (Figure 31). The best-fit regression to Vp and Vs at well #1 is: 

𝑉𝑠 �
𝑘𝑚

𝑠
� = .684𝑉𝑝 − .421                     (21) 

 

Figure 30: Vs prediction at well #2 using the mudrock line. The MSE is .0378.  

 

 Using this equation to predict Vs at well #2 produces a better fit, with an MSE of 

.0162 (Figure 32). This prediction is also slightly better than the mudrock prediction at 

well #1. 
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Figure 31: Local mudrock trend using measured Vp and Vs at well #1. Data are color coded by shale 

volume. 
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Figure 32: Vs prediction at well #2 using the locally derived mudrock trend at well #1.  The MSE is 

.0162. 

 

5.5 Greenberg-Castagna (GC) Empirical Formula 

 As with the mudrock line, the GC formulation was derived on water-saturated 

rocks. Therefore, Vs prediction using the GC formulation was also done using the fluid-

substituted Vp (Figure 33). We see that the GC prediction provides a similar match to the 

locally derived mudrock trend and also underpredicts Vs in the clean sand interval. 



58 
 

 

Figure 33: Vs prediction at well #2 using the GC formulation. MSE is .0194. 

 

5.6 Non-Vp Regressions 

 The Tosaya, Castagna, Han, and Eberhardt-Phillips regressions described in 

section 3.2.6 were also tested at well #2. The pore pressure profile for this well can be 

found in table 3. The prediction results using these regressions are given in figure 34. 

Also, plotted in this figure in the 5th column is the prediction using a regression of Vs to 

porosity and shale volume derived at well #1. The local regression equation is: 

                          𝑉𝑠 �
𝑘𝑚

𝑠
� = 2.3443 − 1.3686𝜑 − .4307𝑋𝑐𝑙                                               (22) 
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where 𝜑 = porosity and Xcl = clay volume. In this case, shale volume is assumed to equal 

clay volume. As with well #1, the Han regression provides the best fit with an MSE of 

.0705, followed by the Eberhardt-Phillips regression (MSE=.1003), Tosaya regression 

(MSE = .1243), and the Castagna regression (MSE = .2028). However, the newly derived 

clay-porosity regression from well #1 provides a much better fit with an MSE of .0166. 

 

 

Figure 34: Vs prediction for well #2 using the non-Vp regression equations. The predictions from left 

to right are based on equations (16), (17), (18), (19), and (22). Equations and coefficients for the first 

four equations are given in section 3.2.6. MSE is .1243, .2028, .0705, .1003, and .0166, respectively. 

 

5.7 Raymer-Hunt-Gardner (RHG) Vs Equation 

 The Raymer-Hunt-Gardner equation Vs equation was described in section 3.2.7. 

The method was utilized at well #2 in the same manner as well #1, using the elastic 



60 
 

moduli inverted from Vp using the Krief model. Matrix shear modulus was found using 

the Voigt-Reuss-Hill average. Prediction results are shown in figure 35. Overall, the 

prediction is relatively accurate with an MSE of .0906, however it is not as good as the 

prediction at well #1 using this model which had an MSE of .0462. This is, in part, 

probably due to errors in fluid saturation and fluid density as this well is not fully brine 

saturated. However, this model has the advantage of being applicable to wells with any 

pore fluid. 

 

Figure 35: Vs prediction results at well #2 using the RHG Vs equation. MSE is .0906. 
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5.8 Summary 

 A summary of the results are provided in table 13. 

 

Model Mean Squared Error 
(MSE) 

Correlation Coefficient (R2) 

Krief .1203 .4123 

Self-consistent (SC) .0632 .4354 

DEM .0883 .4087 

Mudrock Line .0378 .5882 

Locally Derived Mudrock Line .0162 .5882 

Greenberg-Castagna (GC) .0194 .6508 

Tosaya Regression .1243 .4251 

Castagna Regression .2028 .4048 

Han Regression .0705 .4174 

Eberhardt-Phillips Regression .1003 .4708 

Locally Derived Vshale-
Porosity Regression 

.0166 .4237 

RHG .0906 .4274 

 
Table 13: Summary of Vs prediction results at well #2. 
 

 

 

 

 

 

 



62 
 

Chapter 6: AVO Modeling 

 It is well known that the reflection coefficient (amplitude) of a seismic wave 

varies with incidence angle (offset). This phenomena has been used extensively as a 

direct hydrocarbon indicator. Ostrander (1982) showed that high porosity gas sands with 

abnormally low Poisson’s ratios have a noticeable effect on the amplitude variation with 

offset (AVO) response. Figure 36, taken from Rutherford and Williams (1989), shows the 

P-wave amplitude from a shale-gas sand interface for various normal incidence amplitude 

values. They classified the AVO response into three different classes. Class 1 are high 

impedance sands and show a decrease in positive reflection amplitude with offset. Class 2 

are sands with impedance close to that of the encasing shale and are represented by a 

polarity change or slight increase in amplitude with offset. Class 3 are low impedance 

sands and show an increase in negative amplitude with offset. 
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Figure 36: AVO response for a shale-gas sand interface for various normal incidence amplitude 

values with resulting AVO classes. Class 1: high impedance sands. Class 2: sands with impedance 

close to that of the shale. Class 3: low impedance sands. Taken from Rutherford and Williams (1989). 

 

 Aki and Richards (1980) derived a form of the reflection coefficient as a function 

of offset that is parameterized by P-wave velocity, S-wave velocity, and density. Shuey 

(1985) presented an alternate form of their approximation, with separate terms 

representing a different angular range of offset. The Shuey approximation in its full form 

is provided in appendix C.  

 Here we use the Shuey approximation to model the AVO response at a shale-sand 

interface. The overlying shale properties are representative of Norne Field and are taken 

from Dadashpour (2009). The shale properties are: 
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• Vp = 3.35 km/s  

• Vs = 1.8 km/s 

• Density = 2.45 g/cc. 

The Tofte formation was chosen as the sand model and the AVO responses were tested 

using the various Vs predictions in the previous chapter. The MSE, as well as the percent 

difference from the measured Vs, was calculated for the Tofte formation alone so has to 

have an accurate comparison between the Vs prediction models and their AVO response 

for this particular interval. The calculations in well #2 were restricted to the oil-saturated 

interval of the Tofte formation. The results for well #1 are given in table 14, and in table 

15 for well #2. The average measured Vp, Vs, and density for the Tofte formation in each 

well are: 

• Vp = 3.5564 km/s (well #1) 

   3.2954 km/s (well #2) 

• Vs = 2.0156 km/s (well #1) 

         2.0069 km/s (well #2) 

• Density = 2.2633 g/cc (well #1) 

     2.2055 g/cc (well #2) 

All transmission, overburden, anisotropy, etc. effects are not accounted for in this 

modeling so as to provide a simple, quantitative comparison. The AVO modeling results 

using the measured data is provided in figure 37. As well #1 is a shale-brine sand 

interface, we only see a slight increase in negative reflection amplitude with offset. On 
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the other hand, well #2 is a shale-oil sand interface and shows a larger increase in 

negative reflection amplitude with offset. 

 

Model Mean Squared 
Error (MSE) 

Vs (km/s) % Diff from Meas. 

Krief .0303 2.0526 1.8 

Self-consistent (SC) .0354 2.1434 6.3 

DEM .0902 2.2582 12.0 

Mudrock Line .0176 1.8936 - 6.0 

Greenberg-Castagna (GC) .0024 1.9920 - 1.2 

Tosaya Regression .0411 2.0566 2.0 

Castagna Regression .0708 1.9277 - 4.4 

Han Regression .0334 2.1356 6.0 

Eberhardt-Phillips Regression .0907 2.2360 10.9 

RHG .0199 2.0047 - .0.5 

 
Table 14: Vs prediction results in the Tofte formation at well #1. Average measured velocity is 2.0156 
km/s. 
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Model Mean Squared 
Error (MSE) 

Vs (km/s) % Diff from Meas. 

Krief .0537 2.0473 2.0 

Self-consistent (SC) .0258 2.0791 3.6 

DEM .0447 2.1425 6.8 

Mudrock Line .0582 1.7908 - 10.8 

Locally Derived Mudrock Line .0117 1.9300 - 3.8 

Greenberg-Castagna (GC) .0210 1.8981 - 5.4 

Tosaya Regression .0848 1.8192 - 9.4 

Castagna Regression .2161 1.6309 - 18.8 

Han Regression .0280 1.9603 - 2.3 

Eberhardt-Phillips Regression .0555 2.0696 3.1 

Locally Derived Vshale-
Porosity Regression 

.0066 1.9376 - 3.5 

RHG .0371 2.0719 3.2 

 
Table 15: Vs prediction results in the Tofte formation at well #2. Average measured velocity is 2.0069 
km/s 
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Figure 37: AVO modeling results for well #1 and #2 using the measured velocities and densities. 

 

 Using the predicted Vs results for each well, the AVO response was calculated 

and compared to the response using the measured data. Figure 38 shows the results for 

the 10 predictions made at well #1. Of the models that utilized the genetic algorithm, we 

see that the Krief prediction provides the closest match to the true modeled response. We 

don’t see a noticeable difference in amplitude until around 30 degrees of offset. The SC 

and DEM models provide a larger AVO response than the measured results, with the SC 

model showing a better match than the DEM model. The AVO response between 

predicted and measured begins to separate around 15 degrees offset for the SC velocity 

and around 10 degrees for the DEM velocity. 
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 Vs predicted using the mudrock line was lower than the measured velocity and 

thus the AVO response shows an opposite trend from the measured response. At around 

15 degrees offset, the mudrock AVO response begins to show a decrease in amplitude 

with offset. The Greenberg-Castagna prediction provided an excellent match to the 

measured velocity and thus we see an almost identical AVO response to the measured 

results.  

 Of the non-Vp regressions, the Tosaya regression provides the best AVO match, 

with only a slight discrepancy at large offsets. The Castagna regression shows an 

opposite AVO response beginning at around 20 degrees but at a lesser magnitude than 

that provided by the mudrock prediction. The Han regression shows a larger AVO 

response, similar in magnitude to the SC model, while the Eberhardt-Phillips shows a 

much larger AVO response in a similar fashion to the DEM model. 

 The AVO model using the RHG predicted Vs provides the best match to the 

measured response, with no noticeable discrepancies between the two throughout the 

entire offset range. As the shear moduli used in the RHG prediction were derived from 

Vp inversion using the Krief model, this shows the effectiveness of the use of a genetic 

algorithm to invert for elastic moduli using the Krief model. 
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Figure 38: AVO modeling results at well #1 using predicted Vs. 

 

 Figure 39 shows the results of AVO modeling using the 12 Vs predictions at well 

#2. Once again, the Krief prediction provides the best match of the effective medium 

models to the true model. The SC model provides a relatively good match to the 

measured model, with separation between the AVO responses beginning at an offset of 

around 20 degrees. The DEM model shows a similar AVO mismatch as the SC model but 

at a larger magnitude and beginning at an offset around 15 degrees. 

 As was the case with well #1, the mudrock predicted Vs was lower than the 

measured Vs. As a result, we see an opposite trend from the true model, with the 

mudrock model showing a decrease in amplitude beginning at around 15 degrees. The 
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locally derived mudrock equation provided a much better fit, but with a smaller increase 

in amplitude with offset. The Greenberg-Castagna predicted Vs provided an AVO model 

that had almost no change in amplitude with offset and thus fails to capture the true AVO 

response. 

 Unlike well #1, where the Tosaya model provided the best AVO match, the Han 

and Eberhardt-Phillips regressions provided a better match at well #2. The Tosaya and 

Castagna regressions underpredicted velocity and provided an opposite trend in AVO 

response. The locally derived porosity-shale volume regression actually showed no 

improvement over the Han and Eberhardt-Phillips regressions. 

 Finally, the RHG predicted Vs once again provided a relatively good match to the 

true AVO model. Noticeable separation between the two AVO models begins around 20 

degrees of offset, with the RHG model showing a slightly larger increase in amplitude 

with offset. 
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Figure 39: AVO modeling results at well #2 using predicted Vs. 
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Chapter 7: Discussion and Conclusions 

 Using only well log data, shear-wave velocity has been predicted using various 

models. We have shown that the use of a genetic algorithm can be used to invert for the 

elastic parameters of the logged interval and then those shear moduli used to predict Vs. 

In this environment, Vs prediction by Vp inversion was best accomplished using the 

Krief model. The Vp inversion method has the advantage of predetermination of the 

accuracy of the results by checking the Vp prediction results using the inverted moduli. 

Also, we can use this method in any pore fluid environment which makes it favorable 

over other models that have been derived in purely brine saturated conditions. The results 

were less accurate for the SC and DEM models, which had the added free variables of 

pore and grain geometries. The inversion for these geometry parameters is non-unique 

and thus without ground truth data as confirmation, the inverted geometrical factors 

cannot be assumed to be representative of in-situ conditions. The addition of core and 

thin section data would enhance the accuracy of the SC and DEM models and possibly 

make them reliable Vs log prediction models. 

 As expected, in the brine saturate well #1, the Greenberg-Castagna provided an 

excellent fit. However, the mudrock line, while showing a small MSE due to the less 

noisy nature of the prediction, underpredicted Vs enough to affect the AVO response. In 

well #2, the GC-predicted Vs did not predict Vs as accurately and resulted in an AVO 

response less accurate than the Krief model. Addition of Vs data from well #1 to assist in 

Vs prediction at well #2 enhanced the prediction over the non-local regressions, but their 

advantage in AVO modeling was negligible when compared to other models as seen in 
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figure 25. For both wells, the RHG model provided a good prediction and close AVO 

match, proving that this model can be a reliable predictor in any pore fluid environment. 

 In conclusion, in a brine saturated sand-shale environment, the Greenberg-

Castagna formulation is probably the most reliable method of predicting Vs. However, if 

making a blind well prediction in a complex environment, inverting Vp for elastic moduli 

using the Krief model or prediction by the RHG model may be the best method. In a well 

with pore fluid other than brine, Vp inversion by the Krief model or the RHG Vs 

prediction is probably the most reliable method to predict Vs. We also see that the proper 

model is dependent on the Vs requirements. At well #2, we saw that the Krief prediction 

had a larger error than many of the other models when looking at the entire log interval 

while it had the most accurate AVO model when focusing on the Tofte formation. Thus, 

for AVO modeling a specific formation, Vp inversion using a genetic algorithm has 

shown to be the most effective method given the correct dry frame model is chosen. 
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Appendix A: Petrophysical Log Derivation Parameters 

Water-saturation (Sw) logs were derived using the Archie equation using the 

parameters listed in table A-1 (Statoil, 1999) 

 

Table A-1: Petrophysical parameters used to derive water saturation curves at Norne Field (Statoil, 

1999). 

 

Density porosity was calculated based on a core-log calibration using the equation: 

𝑃ℎ𝑖𝐷 = 𝑎 + 𝑏 ∗ 𝑅ℎ𝑜𝑏 

where a and b are coefficients derived from a linear correlation between core and log 

data. 

 

  

 

 

 

 

 

 



79 
 

Appendix B: P and Q Geometrical Factors 

The P and Q coefficients for arbitrary inclusion shape are given by (Mavko et al., 2005): 
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𝐹7 = 2 +
1
4
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with subscript i representing the inclusion and subscript m representing the matrix. 

𝜃 and 𝑓 are given by: 
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where 𝛼 is the aspect ratio. 
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Appendix C: Shuey’s Form of the Aki and Richards Approximation (Shuey, 1985) 

𝑅𝑃𝑃(𝜃1) = 𝑅𝑃 + �𝐴0𝑅𝑃 +
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where Rp is the normal incidence reflection coefficient and A0 and B0 are given by: 
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𝜎 =

1
2 (𝑉𝑃

𝑉𝑆
)2 − 1

(𝑉𝑃
𝑉𝑆

)2 − 1
 ,                                                                                                                                    

Δσ = σ2 – σ1, 

ΔVP = VP2 – VP1, 

VPa = (VP2 + VP1)/2, 

Δρ = ρ2 – ρ1, 

Δρa = (ρ2 + ρ1)/2 

 

 

 

 


