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Abstract

Traditionally, embedded programmers have relied on using low-level mechanisms

for coordinating parallelism and managing memory. This is typically a herculean

task, especially considering that this approach is processor-specific and requires that

the process must be redone to target different deployment processors. As multi-

core technology becomes more prevalent in embedded systems, high-level approaches

are being sought to reduce programmers’ burden as they write code for more com-

plex multicore systems. This dissertation explores implementing a high-level shared-

memory parallel programming model for embedded multicore processors. The pro-

cessor representative of this type that is used for this work is the TMS320C6678

(also referred to as C6678) digital signal processor (DSP) manufactured by Texas

Instruments.

The C6678 is a high-performance fixed and floating-point DSP that comprises

eight DSP core subsystems. In addition to external memory, it has roughly 8MB

of on-chip memory, most of which may be configured as either cache or scratch-

pad. When a portion of its local on-chip memory is configured as cache, software-

controlled mechanisms must be used to manage the coherence of shared data that

is cached in core-local memories. When the same memory is configured as scratch-

pad, software-controlled mechanisms are also necessary to manage data movements

between memory segments within the memory hierarchy. This memory organization

brings additional challenges when developing applications for the C6678 as well as

other processors with similar memory setups.

In this dissertation, we present a compiler implementation of a high-level pro-

gramming model for managing parallelism in the C6678. This implementation is
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leveraged to automatically utilize scratchpad memory without additional interven-

tion from the programmer. A high-level construct is also introduced for controlling

data placement. An assessment of the performance impact of various memory con-

figurations of the C6678 is also presented.
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Chapter 1

Introduction

1.1 Embedded Multicore

Multicore technology has been prominent in the high-performance, desktop, and

gaming markets [33, 60, 34]. It is now finding its way into the embedded space. The

major reason for this trend is the increasing demand for more powerful, but at the

same time less power consuming processors to meet the ever increasing processing

demands of embedded applications. Multicore is a shift from the traditional method

of relying on higher speeds, which demanded higher power consumption to derive

more performance. The Cortex-A9 MPCore from ARM [16], the MSC8156 Digital

Signal Processor (DSP) from Freescale Semiconductors [29], and the TMS320C6678

DSP from Texas Instruments [72] are examples of embedded multicore processors

that are currently used in medical, networking, telecommunications, and industrial

computing applications.

1



While the multicore paradigm offers the obvious advantage of hardware paral-

lelism, applications running on multicore processors will have to be carefully written

to exploit this parallelism efficiently. Specifically, tasks such as decomposing the

application into separate tasks that may be concurrently executed, mapping the ex-

ecution of these tasks to cores, and managing communication and synchronization

between tasks/cores must be performed.

Language designers have responded to the complexity of parallel programming

by providing high-level languages/constructs that simplify and structure the way

the programmer thinks about and expresses parallelism within programs. The use of

high-level abstractions also shields the programmer from the low-level aspects associ-

ated with mapping computations to parallel machines. In most cases, this approach

does not sacrifice performance when the platform implementation includes code op-

timization strategies. Examples of high-level shared memory parallel programming

models include OpenMP [26], Intel’s Threading Building Blocks (TBB) [67], and

Cilk [21]. Of these, OpenMP is the de facto standard for parallel programming on

shared memory systems and enjoys wide popularity (especially in the high perfor-

mance computing community) because of its ease of use, support for incremental

parallelism, performance portability, and wide availability.

While significant progress has been attained in boosting the performance of pro-

cessors through parallel processing, high-latency off-chip memory accesses remains

one of the biggest bottlenecks to the performance of applications in both single-core

and multicore environments [65, 27]. Processor speed has been increasing at a more

rapid rate than memory speed leading to the memory wall problem [77] where the
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CPU stalls while waiting for memory requests to be fulfilled. In order to close the gap

between processor and memory speed, general-purpose and embedded multicore pro-

cessors incorporate fast on-chip static random access memory (SRAM), sometimes

at multiple levels, as a means of reducing the number of slower off-chip (dynamic

RAM) DRAM accesses. The idea is for the SRAM to hold a subset of an applica-

tion’s dataset/instructions for faster access. SRAM blocks may be operated as either

caches or scratchpad memory. When the memory reference pattern of an applica-

tion has good spatial and/or temporal reference locality (i.e., memory references are

clustered in space and/or time), they can benefit from having on-chip SRAM.

General-purpose processors typically have multi-level hardware caches, usually

with hardware cache coherence, where the hardware is responsible for moving data

across levels of the memory hierarchy. However, caches are not always effective

because they are subject to misses—there is no guarantee that a requested mem-

ory item is contained in the cache. A cache miss causes a stall in execution until

the requested memory item is brought in from a secondary cache or main memory.

Scratchpad memory is an alternative to caches that is common in embedded pro-

cessors because it is not subject to misses, and therefore offers more deterministic

performance. Scratchpad memories are also considered to be more energy and space

efficient than caches [18]. Like caches, scratchpad memories are low-latency stor-

age but rely on explicit software instructions to manage their content. Allocation

and movement of memory objects in scratchpad must be managed either by the

programmer or compiler.
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Some of the processors incorporate both caches and scratchpad memories. High-

end embedded processors often allow their memory organization to be flexibly con-

figured such that a memory region may be configured entirely as cache, entirely as

scratchpad, or as a combination of both. Examples of processors that have on-chip

memory that may be configured either as cache or scratchpad include the P2020 and

P2010 from Freescale Semiconductors [30] and the TMS320C6678 from Texas Instru-

ments [72]. The Kepler GK110 from NVIDIA [59] also supports several scratchpad/-

cache configurations. ARM’s Cortex-A9 MPCore does not include scratchpad but

allows cache sizes for each core to be independently configured [16]. This flexibility

enables a processor’s underlying memory system to be adapted to an application’s

requirements and provides opportunities for saving power [66, 78, 79].

1.2 TMS320C6678: A Representative Embedded

Multicore Processor

The TMS320C6678 (subsequently, we will refer to this as C6678) DSP is a high-

performance multicore fixed and floating-point DSP that is based on TI’s Keystone

multicore architecture [72]. It comprises eight C66x DSP core subsystems. Each

of the cores runs at either 1 or 1.25GHz (depending on the version) and can per-

form 32 Multiply-Accumulates (MACs) per cycle for fixed-point computations and

16 single-precision floating-point operations per cycle when operating at 1.25GHz.

The combination of the eight cores gives the C6678 a peak computational perfor-

mance of 160 single-precision GFLOPS and 60 double-precision GFLOPS . With a
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power consumption of just 10W, the C6678 can achieve up to 16 single-precision

GFLOPS/Watt, making it one of the most power-efficient processors in the market

today.

Figure 1.1: C6678 multicore DSP block diagram [72]

The C6678 has a total of 8832KB of on-chip memory organized in multiple levels.

Each core has 32KB of level 1 program (L1P) and 32KB of level 1 data (L1D)

memory. In addition, each core also has 512KB of local level 2 (LL2) unified high-

speed memory, which can be configured either as scratchpad, cache, or a combination
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Table 1.1: Memory read performance of the C6678

L1P L1D LL2 SL2 SL3 DDR
latency (cycles) ∼1 ∼1 ∼7 ∼20 ∼22 ∼80

of both. Furthermore, another 4MB of multicore shared memory and 128 KB of

ROM are also available to be shared by the eight cores. Portions of the on-chip

shared memory may be configured as a shared level 2 RAM (SL2) or a shared level

3 RAM (SL3). SL2 RAM is cacheable only within local L1P and L1D caches, not

LL2. SL3 RAM is cacheable by both L1P/L1D and LL2 cache. The ROM contains

software used to boot the device. When configured as cache, LL2 memory is always

coherent with the L1D cache. However, the shared memory (SL2 and SL3) is not

guaranteed by the hardware to be coherent with L1 and L2 caches. Cache coherency

must, therefore, be controlled in software to protect the integrity of data that is

shared among the cores. Table 1.1 shows the approximate latency, in CPU cycles,

for the various memories when a core tries to read a single value from memory.

Several key hardware components facilitate highly efficient and seamless inter-

device and intra-device communication in the C6678 [72]. A 64-bit double-data-rate

3 (DDR-3) external memory interface (EMIF) running at 1600MHz supports fast ac-

cess to external memory while a non-blocking switch fabric called TeraNet provides

the interconnect between the C66x DSP cores, peripherals, and memories, and en-

ables fast and contention-free internal data movement. The multicore shared memory

controller (MSMC) provides direct access to shared and external memory without

directly drawing from TeraNet’s capacity. The Multicore Navigator facilitates and

manages communications within the device via a queue manager subsystem and a
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packet direct memory access (DMA) subsystem. The queue manager subsystem com-

prises 8,192 hardware queues and is responsible for accelerating the management of

packet queues. The packet DMA subsystem optimizes the packet-based communica-

tion of the on-chip cores by practically eliminating all copy operations.

1.3 Problem Statement

In the past, embedded programmers have depended on using low-level mechanisms

for coordinating parallelism and managing memory. This is typically a daunting

task, especially considering that this approach is processor-specific and requires that

the process must be redone for each change in the instruction set architecture, or to

target different deployment processors.

The use of OpenMP to improve programmer productivity, as they write code

for more complex multicore systems, has been well studied and justified [36, 32].

OpenMP extends C, C++, and Fortran with a set of compiler directives to express

application parallelism in a high-level fashion. The compiler directives are embedded

in the code in the form of pragmas for C and C++ programs. However, OpenMP

requires special compiler support in order to translate the annotated code into mul-

tithreaded code. A runtime library is also usually necessary to manage the execution

of the multithreaded code, performing tasks like creating threads, scheduling work

units, and managing synchronizations.

While several commercial and open-source implementations of OpenMP exist [3,
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4, 7, 5, 73, 8, 22, 69, 17, 52, 9, 51], as far as we are aware, none of these imple-

mentations have been deployed for embedded multicore processors. OpenMP imple-

mentations often rely on low-level software components, such as an operating system

and thread libraries, for implementing concurrency, memory management, and syn-

chronization. While such components exist in general purpose systems, usually with

standard interfaces, embedded software typically run on bare-metal or a real-time

operating system (RTOS). One of our goals in this dissertation is providing a robust

OpenMP implementation that will support the execution of OpenMP applications

on an embedded multicore system.

Processors with memory organizations that allow their sizes and/or mode of op-

eration (i.e., as cache or scratchpad memory) to be flexibly configured also raise

important questions such as: (i) Should a given memory region be configured as

cache or scratchpad? What is the impact of this choice in terms of programmabil-

ity? (ii) How easy is it to utilize scratchpad memory? (iii) What is the impact of

smaller/larger caches on performance? Are large caches always better? While there

is previous work that have explored answers to these questions, they have been based

on simulations rather than experiments on actual processors. In this dissertation, we

have undertaken an empirical performance study using a representative embedded

multicore processor as a way to come up with answers to these questions. This study

is timely as the mainstream high-performance computing community is starting to

look at embedded systems for solutions to overcoming the looming power wall [38].

In addition, power savings may be explored by leveraging the ability to reconfigure

the sizes of on-chip memory regions to the minimum required to efficiently run a
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program [66, 78, 79].

We stated in the previous section that applications with good locality of memory

references will usually benefit from utilizing on-chip SRAM. We also mentioned that

scratchpad memories typically offer better performance than caches but that their

contents must be explicitly managed in software either by a programmer or a com-

piler. We illustrate this using the following matrix multiplication code:

1 for (i = 0; i < N; i++)

2 for (j = 0; j < N; j++)

3 for (k = 0; k < N; k++)

4 {

5 C[i*n+j] += A[i*n+k] * B[k*n+j];

6 }

Figure 1.2: Matrix multiplication

We assume that the arrays are stored in a row-major layout. In this code, each

element of C is computed using a row of A and a column of B. For simplicity, we will

focus only on the spatial reuse of A and B and ignore the fact that the code exhibits

limited temporal reuse. Since items are fetched into caches in terms of complete

cache lines, some references to A will not hit in the cache if N is large relative to

the cache size. There will be much less cache hits for B since it is accessed in a

column-wise fashion.

On the other hand, if we were to utilize scratchpad memory for the code, instead

of cache, then we could copy the entire row of A and the entire column of B into
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scratchpad memory. Subsequently, all references to A and B will be immediately sat-

isfied by scratchpad memory. The code will however need to be re-written to include

explicit allocation and copies into scratchpad memory, as well as re-writing the loop

to reflect the correct addresses of A and B in scratchpad memory (Figure 1.3).

1 // l o c a lHeap i s a s e c t i o n p l a c e d in s c r a t c h p ad memory
2 newA = Memory_alloc(localHeap , n*sizeof(dataType), ...);

3 newB = Memory_alloc ((localHeap , n*sizeof(dataType), ...);

4 for (i = 0; i < n; i++)

5 {

6 // copy row i o f A i n t o newA
7 dmaInitiateXfer(newA , &matA[i*n], ...);

8 for (j = 0; j < n; j++)

9 {

10 // copy column j o f B i n t o c on t i g u ou s newB
11 dmaInitiateXfer(newB , &matB[j] ,...);

12 for (k = 0; k < n; k++)

13 {

14 // r e f e r e n c e s t o A and B are r e p l a c e d t o r e f l e c t new add r e s s
in s c r a t c h p ad memory

15 C[i*n+j] += newA[k] * newB[k];

16 }

17 }

18 }

Figure 1.3: Matrix multiplication using scratchpad memory

We compare the performance of the codes in Figure 1.2 and Figure 1.3 on the

C6678 DSP running at 1GHz. The processor has two levels of on-chip memory:

32KB of level 1 memory and 512 KB of level 2 memory. Both memories may be

configured as either cache or scratchpad memory. In our experiments, we disabled

level 1 memory and measured the number of cycles for the codes in Figure 1.2 using
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the cache configuration for level 2 memory, and Figure 1.3 using the scratchpad

memory configuration. We measured performance as the number of cycles used

to complete the computation and the results are presented in Figure 5.6. While

both implementations of matrix multiplication are quite inefficient, it is clear from

the figure that the version that utilizes scratchpad memory outperforms the version

that uses cache because of the absence of cache misses. Note however, that the

data copying code is actually hardware-specific and requires knowledge about details

(such as the size and availability of space) of the scratchpad memory.

Figure 1.4: Cache vs. scratchpad performance of double-precision matrix multipli-
cation

An OpenMP implementation that supports parallelism and is able to automati-

cally manage scratchpad memory utilization will substantially improve the produc-

tivity of programmers and allow for the creation of efficient and portable programs.
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1.4 Dissertation Overview and Organization

In this dissertation we focus on the problem of implementing OpenMP for embedded

multicore processors. The processor representative of this type that is used for this

work is the TMS320C6678 (also referred to as C6678) digital signal processor (DSP)

manufactured by Texas Instruments.

The primary contributions of this dissertation are the following:

• A compiler implementation of OpenMP within the TMS320C6000 compiler,

the production compiler that generates object code for the TMS320C6x class

of digital signal processors, which includes our target C6678 processor.

• An empirical performance study of the impact of various memory organizations

on the performance of applications running on our representative embedded

multicore processor.

• An OpenMP-based infrastructure for automatically utilizing on-chip scratch-

pad memory without additional programmer intervention.

The remainder of this dissertation is organized as follows. Chapter 2 reviews

shared memory parallel programming models and introduces concepts in OpenMP

that will make it easy to follow the rest of this dissertation. Chapter 3 presents

our implementation of OpenMP within Texas Instrument’s C6000 compiler. Chap-

ter 4 explores the impact of various memory organizations on the performance of

applications on our target multicore platform. Chapter 5 details our approach for

12



OpenMP-based scratchpad memory management. Chapter 6 concludes this disser-

tation with relevant observations and directions for future work.
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Chapter 2

Shared Memory Programming

Models

In the shared memory model, the underlying hardware is assumed to be a collection

of processors or cores, each with access to the same shared memory. Because the

cores/processors have access to the same shared memory locations, processors can

interact and synchronize with each other through shared variables [44]. This is in

contrast to message-passing paradigms that allow parallel programs to be written for

distributed memory systems. Message-passing programming models assume that the

computing infrastructure is composed of multiple nodes with distinct memory address

spaces connected through a communication network. Each compute node can only

directly reference its own memory. Communication, of both data and intention, must

occur through discrete messages sent from process to process. The message-passing

model is generally considered to be quite cumbersome for programmers because they
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bear the responsibility for orchestrating all interprocessor communication via explicit

messages.

Most shared memory parallel programming models are based on the thread-based

model of concurrency called multithreading [48]. We will define two terms—process

and thread—before we explain multithreading. A process is created by the operating

system as a set of physical and logical resources to run a program. A thread is the

execution state of a program instance. It is an independent stream of instructions

that can be scheduled to run. A thread has its own stack, but unlike a process, a

thread shares its address space with other threads executing within the same pro-

cess [12]. Threads belonging to the same process can, therefore, access the same

global variables, same heap memory, and the same set of file descriptors. Threads

may also have a thread-specific data area for storing data that is not to be accessed

by other threads. Multithreading provides the programmer with a means to express

concurrency with threads. On a shared memory parallel architecture, each thread

can run on a separate processor/core at the same time resulting in parallel execution.

Since threads can access globally shared data belonging to the process, mech-

anisms must be in place to synchronize thread access to shared data. In order to

improve performance, a programming model may also specify a relaxed memory con-

sistency model [11] where each thread can have its own temporary view of shared

data. In this model, threads can cache shared data to reduce access times and data

consistency is only required at certain points during program execution

In the following, we introduce some of the popular shared memory programming

models. We provide the most details on OpenMP since this dissertation is largely
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Figure 2.1: Shared memory model of parallel computation

based on it.

2.1 POSIX Threads

Portable Operating System Interface (POSIX) threads, commonly referred to as

Pthreads, provide a standardized model that implements the POSIX multithreading

interface specified by the IEEE POSIX 1003.1c standard [37]. Historically, thread

implementations have varied from one hardware vendor to another since each vendor

implements its own proprietary versions of threads. This made it difficult for pro-

grammers to develop portable multithreaded applications. The Pthreads model was,

therefore, created in 1995 as a portable, vendor-neutral solution to this problem.
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The Pthreads library provides low-level interfaces for creating and destroying

threads and for coordinating thread activities. A multithreaded application typically

starts with a single thread. Additional threads may subsequently be created to

execute concurrent tasks. This concurrency translates to parallelism on parallel

hardware such as multicore processors, since several threads can run on different

cores at the same time. Threads can access globally shared data belonging to the

process, but the programmer is responsible for synchronizing access to shared data

using the Pthreads API.

In general, thread libraries, including Pthreads, may be implemented either in

kernel space or in user space [57]. Kernel-space implementations of Pthreads require

an operating system with Pthreads support and require system calls to execute most

thread operations (e.g., creation, synchronization), making the operations fairly ex-

pensive. In addition, the threads are scheduled by the operating system scheduler.

User-space implementations of Pthreads, on the other hand, implement thread op-

erations and scheduling entirely in user space. Therefore, in such implementations,

thread operations are much cheaper and scheduling can be more flexible.

Since the programmer has explicit control over threads, he must decide how

to decompose the application into parallel tasks and create (and destroy) threads

to support the decomposition. He must also explicitly control synchronizations to

ensure that dependencies are correctly managed. This becomes tedious and error-

prone, especially for large applications. Also, since Pthreads are implemented as a

library, they do not require compiler support and therefore do not easily facilitate

compiler optimizations.
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2.2 Cilk

Cilk is a multithreaded parallel programming language developed at MIT in 1994

as a parallel extension to C [20, 21, 31]. The main idea behind Cilk is that the

programmer focuses on structuring the application in a way that exposes parallelism

and data locality, while the Cilk runtime system manages deals such as scheduling,

communication, and load-balancing of parallel work among cores [31].

The Cilk language provides a small number of keywords to the programmer to

specify parallelism and synchronization. The cilk keyword identifies a procedure as

a Cilk procedure - an asynchronous unit of work. Parallelism is created when the

spawn keyword precedes the invocation of a Cilk procedure. A Cilk procedure may

be considered as a thread or task - a unit of work that can be scheduled. Unlike

regular C functions calls where called functions must be completed before the parent

function continues, Cilk allows the parent to continue so that it may be executed in

parallel with the child. The sync keyword is used to force a parent task to wait for

its child tasks to complete. Cilk procedures have implicit syncs at the end of the

procedure, ensuring that all children terminate before the procedure returns.

The Cilk runtime system uses a work-stealing scheduler under a work-first princi-

ple [20, 31]. Workers are located on each processor/core, and each worker maintains

a double-ended queue or deque for storing ready work. Work is inserted and re-

moved from either end of the deque. Cilk’s work-stealing scheduler allows an idle

worker to steal work from another worker’s deque. Each worker treats its deque as

a stack but other workers’ deques as queues, ensuring minimal contention for access
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to each deque. Cilk’s work-first principle forces a newly created Cilk procedure to

be immediately executed by a worker while the parent procedure is suspended.

Cilk++ [49], a commercial version of Cilk that supports both C and C++, is

distributed by Intel.

2.3 Threading Building Blocks

Threading Building Blocks (TBB) is a C++ template library developed by Intel for

the programming of multithreaded applications [67, 43]. The library abstracts native

threading packages (e.g., Pthreads) with concurrent data structures and parallel

algorithms, allowing the definition of tasks which may be dynamically scheduled to

cores by the library’s runtime system.

TBB provides low-level interfaces for specifying and launching tasks with its task

and task group APIs. The C++ templates provided by TBB allow programmers to

annotate common parallelism patterns such as loop parallelism, parallel reductions,

data-flow patterns, and parallel sort. Tasks can then be automatically extracted

from the specified patterns.

Tasks may communicate via shared memory through provided concurrent data

structures such as concurrent queues, hash maps, and vector. Concurrent structures

in TBB are thread-safe structures that are based on fine-grained locking or lockless

algorithms. TBB also includes synchronization primitives and memory allocators.

At the core of the TBB runtime library is a task scheduler that automatically
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creates and manages a thread pool, thereby hiding the complexity of explicitly man-

aging operating systems threads [68, 24]. The scheduler dynamically assigns tasks

to threads and ensures that work is balanced among threads in the pool using a

work-stealing algorithm similar to Cilk [68].

Similar to other library-based programming models, TBB does not require special

compiler support.

2.4 OpenMP

OpenMP is the de facto standard for parallel programming on shared memory mul-

ticore systems [6]. It is a specification for a collection of compiler directives, library

routines, and environment variables that may be used to specify and control par-

allelism in C, C++ and Fortran programs. OpenMP offers the programmer full

control over parallelization and is therefore classified as an explicit parallel program-

ming model.

OpenMP directives are embedded in programs in the form of pragmas for C and

C++ programs, and as sentinels for Fortran programs. OpenMP compiler directives

express the parallelism that is to be exploited in a computation as well as necessary

synchronizations. The directives are used to express information such as which re-

gions of the program may be executed in parallel by multiple threads, what kind of

parallelism exists within specific code regions, and how the work within such regions

should be distributed among threads. The library routines and environment vari-

ables are used to access or adjust execution parameters of applications such as the

20



number of threads to be used, thread bindings to cores, and default loop-scheduling

options.

2.4.1 Execution Model

An OpenMP program begins as a single thread of execution called the initial thread.

The initial thread creates additional threads, called slave or worker threads, when

parallelism is encountered. The thread that encountered the parallelism becomes the

master thread, and together the team of threads, comprising the master and worker

threads, executes the parallel code.

The parallel directive is the fundamental OpenMP directive that initiates par-

allel execution [61]. It marks a structured block of code that should be executed

in parallel by multiple threads. When the master thread encounters the parallel

directive, it generates a set of identical implicit tasks, one for each thread, from the

code in the associated structured block. Each thread in the team immediately exe-

cutes its implicit task. Work-sharing directives - for, sections, and workshare -

express data parallelism and limited task parallelism within parallel regions. They

are used to distribute the execution of associated code regions among members of

the thread team that encounter the directives. Note, however, that the actual split-

ting and distribution of the work is handled by the OpenMP implementation. The

programmer may direct and tune the work distribution with additional clauses on

the directives. More flexible task parallelism is also supported in OpenMP. The task

directive is used to specify explicit tasks - asynchronous units of work that may be
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dynamically scheduled for execution by the OpenMP runtime library. An explicit

task may be executed immediately once it is created, or its execution may be delayed

until some other time during execution of the program. Synchronization directives

are also provided to coordinate threads’ execution and data accesses within parallel

regions.

Figure 2.2: OpenMP’s fork-join model

At the end of the parallel region, the additional threads join, and only the master

thread continues execution of the program. OpenMP, therefore, uses a fork-join

model of parallel execution [61] as illustrated in Figure 2.2. Each horizontal line

represents a thread of execution. At the start of the first parallel region, the master

thread creates two additional threads and, together with these additional threads,

forms a team of three parallel threads. At the end of the first parallel region, the

slave threads disappear and the master thread resumes execution. Multiple levels of

parallelism may be achieved with nested parallel regions. The second parallel region

in Figure 2.2 has a nested parallel region. At the start of the nested parallel region,
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each thread in the executing team creates a new thread team.

2.4.2 Memory Model

OpenMP threads execute in the same shared address space and can share variables

within this address space [61]. OpenMP specifies a relaxed-consistency shared mem-

ory model where each thread can have its own temporary view of shared data. In

this model, threads can cache shared data to reduce access times and data consis-

tency is only required at certain points during program execution. In addition to

threads sharing access to variables, OpenMP also allows variables to be designated

as private to each thread rather than shared among all the threads. Data-sharing

and data-copying clauses used in conjunction with OpenMP directives are used to

specify the data environment and determine whether a variable is shared or private.

This memory model is similar to the one depicted in Figure 2.1.

2.4.3 Constructs

OpenMP constructs form the core elements of OpenMP. The constructs are used to

express thread creation, work distribution among threads, data environments, and

thread and data synchronization. A summary of the main OpenMP constructs is

presented in Table 2.1.

23



Table 2.1: Summary of commonly used OpenMP constructs

Construct Description
parallel forms a team of threads and starts parallel execution
loop specifies that the iterations of loops will be distributed among and

executed by the team of threads that encounter the construct
sections specifies that the enclosed set of structured blocks are to be dis-

tributed among and executed by the team of threads that en-
counter the construct

single specifies that the associated structured block will be executed by
only one thread in the team

task defines an explicit task
master specifies that the associated structured block will be executed by

only the master thread of the team
critical restricts execution of the associated structured block to a single

thread at a time
barrier specifies an explicit barrier at the point in which the construct

appears
taskwait specifies a wait on the completion of child tasks of the current task
atomic ensures that a specific storage location is updated atomically
flush enforces a thread’s temporary view of memory to be consistent

with memory and enforces an order on the memory operations
threadprivate specifies that variables are replicated, with each thread having its

own copy
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2.4.4 Compiler and Runtime Support

OpenMP compiler directives are embedded in the program in the form of pragmas

for C and C++ programs and as sentinels for Fortran programs [61]. Directives for C

and C++ begin with #pragma omp, while directives for Fortran begin with !$omp.

This well-defined prefix for OpenMP directives makes it easy for compilers to simply

ignore the directives and compile the code for sequential execution when OpenMP

compilation is not desired, or when the compiler does not support OpenMP.

Figure 2.3: Compilation framework for OpenMP

A general compilation framework for OpenMP is shown in Figure 2.3. An

OpenMP compiler accepts the source program containing the OpenMP directives

and generates multithreaded code that includes calls to a custom OpenMP runtime

library. The OpenMP runtime library manages the execution of the multithreaded
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Figure 2.4: Generic OpenMP solution stack

program and is responsible for (i) dynamically creating threads during program ex-

ecution, (ii) dynamic creation of asynchronous tasks, (iii) scheduling units of work

- including tasks, loop chunks, and sections of code - onto threads, (iv) managing

any required thread and data synchronizations, and (v) implementing the runtime

routines defined in the OpenMP specification. An OpenMP runtime library often re-

lies on lower level components such as the operating system, hardware libraries, and

thread libraries in order to complete these tasks. Figure 2.4 shows the interaction be-

tween components of a generic OpenMP solution stack. The end user uses compiler

directives and library routines to express parallelism in the application. The user

could also specify execution behavior by setting environment variables. The compiler

lowers the OpenMP directives into multithreaded code with calls to the OpenMP
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runtime library. The runtime library manages the execution of the application on

the hardware with help from underlying system support for threading and shared

memory.

2.5 Summary

In this chapter, we introduced shared memory programming models and provided

an overview of the main concepts of OpenMP. At its very core, OpenMP allows the

parallelization of applications through the use of high-level language constructs.

However, it is the implementation of OpenMP, not just the concepts, that makes

all the difference with respect to the performance of applications that are parallelized

using OpenMP. An implementation must make decisions about how to split tasks

between the compiler and the runtime library, the appropriate compiler translation

strategy, and how to implement runtime support for the constructs, while ensuring

that implementation overheads are kept to a minimum.

In previous work [46], we highlighted some of the design considerations for im-

plementing OpenMP tasks in a runtime library and studied the impact the choices

have on the performance of applications. We also presented microbenchmarks for

measuring the implementation overheads of OpenMP tasking constructs [47]. There

have been recent efforts to extend the applicability of OpenMP to heterogeneous ar-

chitectures, where cores have different instruction set architectures and may not have

access to a common shared memory. Such heterogeneous architectures are common

in the embedded systems domain. Our work in [14] provides a brief discussion on
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supporting OpenMP constructs using recent standard low-level interfaces.
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Chapter 3

OpenMP Implementation in C6000

The OpenMP interface is easy to use and portable across platforms in the sense that

the directives provide an abstraction that hides the details of achieving parallelization

of an application on a platform from the user. The task of translating an OpenMP

application into multithreaded code falls on the OpenMP implementation. Therefore,

the quality of the implementation has a dramatic impact on the performance of an

OpenMP application.

We introduced a generic OpenMP implementation framework in Section 2.4.4

with a discussion about the role of the compiler and runtime library. The OpenMP

specification does not prescribe a specific interface between the compiler and the

runtime library; it is up to an implementation to decide the exact roles that each

plays in order to generate and support the execution of multithreaded code. A

compiler’s implementation is, therefore, traditionally tightly coupled with a given

runtime library’s interface.
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In this chapter, we present our OpenMP implementation in the C6000 compiler.

We start with a brief overview of the C6000 compiler infrastructure before we go

into details about the OpenMP implementation. Next, we present an evaluation of

the implementation and briefly discuss other OpenMP implementations. Finally we

conclude the chapter with a summary.

3.1 The C6000 Compiler

The TMS320C6000 C/C++ compiler is an optimizing compiler that belongs to,

and is maintained by, Texas Instruments. The compiler accepts C and C++ code

conforming to the International Organization for Standardization (ISO) standards

for these languages, performs a wide variety of optimizations to improve the efficiency

of the code, and produces object code for the TMS320C6x set of DSPs produced by

Texas Instruments [71].

The compiler consists of separate tools that are invoked in independent phases

of the compilation process. The shell drives the overall compilation processes and

invokes each tool in order, and with the desired options. The parser is based on the

Edison Design Group (EDG) [2] front end, and reads the C/C++ source file, per-

forms preprocessing functions, verifies the syntax, and produces an intermediate file.

The optimizer reads the intermediate file generated by the parser, and performs var-

ious general and target specific optimizations to improve the execution speed and/or

size of the program. The code generator converts the intermediate file generated by

the parser or the optimizer to an assembly language source code for the TMS320C6x
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Figure 3.1: Layout of C6000 compiler framework

device. The assembler translates assembly language source code files into machine

language object files. The linker combines object files into a single executable output

file. It also allocates relocatable sections and symbols and resolves external refer-

ences between input files. The layout of the generic compiler framework is shown in

Figure 3.1.
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3.2 OpenMP Support in C6000

OpenMP support for C in the C6000 compiler comprises three main components.

The first component involves parsing/recognizing the OpenMP constructs. The sec-

ond aspect involves translating the OpenMP constructs into multithreaded code with

calls to a custom runtime library. The third component is the runtime library im-

plementation that facilitates the execution of the multithreaded code. Our focus in

this dissertation was on the first two components, while a separate team at Texas

Instruments worked on the runtime library component.

3.2.1 Parsing OpenMP Constructs

The EDG front end reads C source files and produces an intermediate language tree

that represents the source program. We modified the EDG front end to recognize

OpenMP constructs and include these constructs in the intermediate language.

Our starting point was the OpenMP C context-free grammar included in the

OpenMP specification [61]. We converted it to a Yacc grammar [40, 41] that included

Lex rules to recognize the OpenMP tokens. Then we used GNU Bison [1], a general-

purpose parser generator, to convert the grammar into a C program that parses the

OpenMP constructs. The EDG tokenizer is used to grab tokens from the C source

files. Once an OpenMP pragma token is encountered, the pragma is parsed using

the generated grammar. A record is created for the pragma and the pragma is then

associated with a statement record within the intermediate language tree.
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3.2.2 OpenMP Translation

We previously mentioned that a compiler implementation typically targets a specific

runtime library interface. The GNU OpenMP (GOMP) [58] runtime interface was

chosen as the target for our OpenMP compiler implementation. As we mentioned

before, a separate team customized the runtime library to use TI’s RTOS called

SYS/BIOS and other custom modules for inter-process communication.

3.2.2.1 Parallel and Task Constructs

OpenMP’s parallel and task constructs define regions of code that correspond to

implicit and explicit tasks respectively, and may be concurrently executed by a thread

team. Our translation strategy for these constructs was to outline the body of parallel

and task regions into separate functions. The outlined functions are subsequently

used as arguments to the runtime library’s thread creation or scheduling routines.

During outlining, the data-sharing attribute—shared or private—of each variable

in the region is determined. An activation record structure is created, which each

field of the structure specifying the address of shared variables. New local variables

are created within the outlined function for each private variable. As statements are

copied from their initial positions within the body of the parallel region to the newly

created outlined function, shared and private variables are remapped accordingly.

Private variables are remapped to their corresponding local variables, while shared

variables are remapped to their corresponding fields in the activation record struc-

ture. Finally, the parallel and task regions are replaced with calls to appropriate
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runtime library routines to either immediately launch the execution of the functions,

for parallel regions, or possibly defer their execution to some other time, for explicit

tasks.

We illustrate the translation of the parallel construct with a simple OpenMP

program in Figure 3.2. Each thread in the parallel region decides what part of the

global array x to work on, based on its unique thread number.

1 float x[10000];

2 int iam , nt , istart , ipoints , i;

3 int npoints = 10000;

4 #pragma omp parallel private(i, iam , nt, istart , ipoints)

5 {

6 iam = omp_get_thread_num ();

7 nt = omp_get_num_threads ();

8 ipoints = npoints / nt;

9 istart = iam * ipoints;

10 if (iam == nt -1)

11 ipoints = npoints - istart;

12 for (i = 0; i < ipoints; i++)

13 x[istart+i] = 123.456;

14 }

Figure 3.2: Simple OpenMP program. Threads’ unique IDs are used decide what
section to work on.

Figure 3.3 shows the resulting translated code. The compiler generates a new

function named omp fn 0 that contains the code that each thread will run (i.e.,

the code within lines 5 – 14 of Figure 3.2). The new temp 12 structure variable is

created and is used to store the addresses of shared variables x and npoints. Also, new

private variables are created within omp fn 0, and now replace the variables that are
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1 ...

2 auto struct omp_data_s5 temp_12;

3 ...

4 (temp_12.x) = (&x);

5 (temp_12.npoints) = (& npoints);

6 GOMP_parallel_start(__omp_fn_0 , ((void *)(& temp_12)), ((!(1U))

? 1U

7 : 0U));

8 __omp_fn_0 ((( void *)(& temp_12)));

9 GOMP_parallel_end ();

10 ...

11

12 static void __omp_fn_0(

13 void *__T141030200)

14 {

15 auto int temp_11;

16 auto int temp_10;

17 auto int temp_9;

18 auto int temp_8;

19 auto int temp_7;

20 auto struct omp_data_s5 *omp_data_p6;

21

22 omp_data_p6 = (( struct omp_data_s5 *) __T141030200);

23

24 temp_10 = (omp_get_thread_num ());

25 temp_9 = (omp_get_num_threads ());

26 temp_7 = ((*( omp_data_p6 ->npoints)) / temp_9);

27 temp_8 = (temp_10 * temp_7);

28 if (temp_10 == (temp_9 - 1))

29 temp_7 = ((*( omp_data_p6 ->npoints)) - temp_8);

30 for (temp_11 = 0; (temp_11 < temp_7); temp_11 ++)

31 (((*( omp_data_p6 ->x)))[( temp_8 + _temp_11)]) = ...

32 }

Figure 3.3: Translation for program in Figure 3.2

designated as private within the parallel region. The parallel region is replaced with

a call to the runtime library function GOMP parallel start(), which takes this newly

created function, as well as the address of the activation record structure and the

number of threads, as arguments. GOMP parallel start is called by the encountering

35



thread, and is used to launch threads that will each execute omp fn 0(). The

encountering thread becomes the master of the thread team, and proceeds to execute

omp fn 0 as well. After completing the execution of this function, the master thread

calls GOMP parallel end(). This runtime library function ensures that all threads

reach this point before the master thread proceeds, and puts the thread team to

sleep.

3.2.2.2 Worksharing Constructs

Worksharing constructs distribute the execution of the associated region among the

members of the encountering team of threads. These constructs usually exist within

the implicit tasks created from parallel regions, but each thread executes only a

portion of the work enclosed by the worksharing construct.

Since these constructs exist within parallel regions, there is no need to outline

them into separate functions. If a worksharing construct exists within the lexical

scope of its enclosing parallel region, then the region also gets outlined into the new

function that represents the implicit task. However, if the worksharing construct is

not within the lexical scope of its enclosing parallel region, it will simply be invoked

during the execution of the outlined function.

Most tasks associated with distributing work to threads are deferred until exe-

cution and are handled by the runtime library. Translation of the constructs mainly

involved introducing the runtime routines for parceling work to threads into the code,
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and, for the omp for construct, rewriting loop bounds as variables that are deter-

mined by the runtime routines. An exception to this strategy is translating the omp

for with the static schedule when no chunk size is specified. In this case, loop iter-

ations are divided into chunks that are approximately equal in size, and each thread

executes at most one chunk. It becomes unnecessary to defer the work distribution

until runtime; the compiler can achieve this task with only limited runtime calls.

1 #pragma omp for

2 for (i=1; i<n; i++) /∗ d e f a u l t l o o p s c h e d u l e i s s t a t i c ∗/
3 b[i] = (a[i] + a[i-1]) / 2.0;

Figure 3.4: Simple parallel loop with static schedule.

1 #pragma omp for schedule(dynamic)

2 for (i=1; i<n; i++)

3 b[i] = (a[i] + a[i-1]) / 2.0;

Figure 3.5: Simple parallel loop with dynamic schedule.

We contrast the translation of omp for static and dynamic schedules using Fig-

ures 3.4 and 3.5. These are similar programs except that the former uses a static

loop schedule for distributing the loop iterations to threads, while the latter uses

a dynamic loop schedule. Figures 3.6 and 3.7 are the resulting translations of

the codes in Figures 3.4 and 3.5 respectively. When no chunk size is specified for

the static schedule, each thread’s unique ID and the size of the thread team are
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sufficient to compute the upper and lower bound of the loop that each thread will in-

dependently execute. For the dynamic schedule, the GOMP loop dynamic start and

GOMP loop dynamic next runtime library calls return the appropriate upper and

lower bounds at runtime until all the iterations have been distributed to threads.

1 {

2 temp_3 = omp_get_thread_num ();

3 temp_4 = omp_get_num_threads ();

4 temp_5 = 1;

5 temp_6 = temp_5 + (-1);

6 temp_7 = ((n - 1) + temp_6) / temp_5;

7 temp_8 = temp_7 / temp_4;

8 temp_8 = (( temp_8 * temp_4) != temp_7) + temp_8;

9 temp_9 = temp_8 * temp_3;

10 temp_10 = temp_9 + temp_8;

11 temp_10 = (temp_10 > temp_7) ? temp_7 : temp_10;

12 temp_1 = (temp_9 * temp_5) + 1;

13 temp_2 = (temp_10 * temp_5) + 1;

14 if (temp_9 < temp_10)

15 {

16 for (temp_0 = temp_1; temp_0 < temp_2; temp_0 ++)

17 {

18 b[temp_0] = (a[temp_0] + a[temp_0 - 1]) / 2.0;

19 }

20 }

21 GOMP_barrier ();

22 }

Figure 3.6: Translation of static schedule.

3.2.2.3 Other Constructs

Translation of some of the constructs are more straightforward. omp barrier, omp

flush, omp taskwait are each replaced with calls to GOMP barrier(), GOMP flush(),
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1 auto int n = 1000

2 {

3 if (GOMP_loop_dynamic_start (1, n, 1, 1U, (& temp_1), (& temp_2)))

4 {

5 do

6 {

7 for (temp_0 = temp_1; (temp_0 < temp_2); temp_0 ++)

8 {

9 b[temp_0] = (a[temp_0] + a[temp_0 - 1]) / 2.0;

10 }

11

12 } while (GOMP_loop_dynamic_next ((& temp_1), (& temp_2)));

13 }

14 GOMP_loop_end ();

15 }

Figure 3.7: Translation of dynamic schedule.

and GOMP taskwait() runtime routines, respectively. omp master is translated by

wrapping the associated statement with an if statement to check that only thread 0

executes the statement.

Translation for omp critical and omp atomic constructs is achieved by inserting

runtime routines at the beginning and end of the associated statement(s).

3.3 Evaluation

In this section, we use two case applications – matrix multiplication and conjugate

gradient – to demonstrate that our OpenMP implementation improves performance

by supporting parallel execution of these programs.
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3.3.1 Matrix Multiplication

The OpenMP code for matrix multiplication is displayed in Figure 3.8. We measured

the performance of this code on the C6678 for a matrix size of 1024 x 1024 while

increasing the number of OpenMP threads from one to eight. Figure 3.9 shows that

we are able to achieve near-linear speedup, obtaining a speedup up of 6.22 on eight

processors.

1 #pragma omp for private(i, j, k)

2 for (i = 0; i < N; i++)

3 for (j = 0; j < N; j++)

4 for (k = 0; k < N; k++)

5 {

6 C[i][j] += A[i][k] * B[k][j];

7 }

Figure 3.8: OpenMP version of matrix multiplication.

3.3.2 Conjugate Gradient

The Conjugate Gradient (CG) application is from the NAS OpenMP benchmarks

(NPB), a set of applications designed to evaluate the performance of parallel com-

puters [39]. CG estimates the smallest eigenvalue of a large, sparse, symmetric

positive-definite matrix using the inverse iteration coupled with a conjugate gradient

method.
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Figure 3.9: Performance of double-precision matrix multiplication. Speedup over
one thread execution is included at the top of each bar.

As with matrix multiplication, we measured the performance of CG on the C6678

with increasing number of OpenMP threads. As Figure 3.10 shows, our implemen-

tation obtains a speedup of 5.57 for 8 threads.

3.4 Related Work

A number of commercial and open source compilers currently support OpenMP.

Commercial implementations are typically not accessible to the research community
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Figure 3.10: Performance of CG. Speedup over 1 thread is included at the top of
each bar.

and usually target specific machine architectures. Examples of commercial compil-

ers with OpenMP support include the C/C++/Fortran compilers from IBM [3, 4],

Oracle [7], Intel [5, 73], and Pathscale [8].

Open source compilers typically take a source-to-source translation approach

where the OpenMP constructs are lowered into multithreaded code with calls to a

runtime library. A backend compiler is, however, required to complete the compila-

tion approach and generate executable. These include OdinMP/CCp [22], Omni [69],

Nanos Mercurium [17], and ROSE [52]. Exceptions to these are GCC [9] and
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OpenUH [51] which provide source to binary translations for OpenMP. Most of

these are used as research platforms for exploring topics such as interoperability

of OpenMP with other programming models, optimizations for OpenMP programs,

as well as language extensions for OpenMP.

OpenMP has also been implemented on other platforms other than general pur-

pose processors. Chapman et al. [23] leveraged the source-to-source translation ca-

pability of OpenUH in conjunction with the Texas Instruments C6000 compiler to

implement OpenMP for a multicore DSP platform. Their work focused on a new

OpenMP runtime library that was customized for the memory organization of the

target multicore DSP. He et al. [35] also created an OpenMP compiler and runtime

implementation for the MSC8156 six-core DSP processor from Freescale Semicon-

ductors.

3.5 Summary

In this chapter, we discussed the basic compiler implementation of OpenMP in the

C6000 compiler. We showed that our implementation is able to improve the execution

time of applications by generating and supporting the execution of multithreaded

code. The sizes and mode of the on-chip memory spaces of the C6678 may also

be flexibly configured. In Chapter 4, we will explore the impact of various memory

organizations on the performance of parallel applications. In Chapter 5, we will then

describe a methodology that allows our implementation to direct the utilization of

scratchpad memory.
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Chapter 4

Effects of On-chip Memory

Organization on Performance

4.1 Introduction

Studies have shown that on-chip memories account for a significant fraction of the

overall energy consumed by embedded systems [18, 66, 78, 79]. While desktop and

HPC systems typical have fixed memory organizations that cater to a wide range

of applications, embedded systems usually allow their memory organizations to be

tuned for specific classes of applications. This allows them to exploit optimal per-

formance at lower energy costs [66, 78, 79].

There are two main schemes for implementing on-chip memory: cache and scratch-

pad. There are tradeoffs for choosing either scheme. In the following, we investigate
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the impact of various on-chip memory sizes and mode of operation (cache or scratch-

pad) of the C6678 DSP on the performance of applications.

4.2 On-chip Memory Organization

Over time, processor core speed has been increasing at a more rapid rate than mem-

ory speed, leading to the memory wall problem [77] where the CPU stalls while

waiting for memory requests to be fulfilled. John von Neumann recognized this

point already in 1946 [75] stating that:

“It shows in a most striking way where the real difficulty, the main bottleneck,

of an automatic very high speed computing device lies: At the memory.”

A solution to this problem is incorporating static random access memories (SRAM),

which are very fast but relatively smaller and more expensive memories, within chips

in order to reduce the number of off-chip main memory (DRAM) accesses. The

SRAM will contain a subset of a program’s dataset and/or instructions for faster ac-

cess. When the memory reference pattern of an application has good spatial and/or

temporal reference locality (i.e., memory references are clustered in space and/or

time), they can benefit from having on-chip SRAM. On-chip SRAM is commonly or-

ganized in a hierarchical fashion with the fastest but smallest memory level located

closest to the CPU, and subsequent levels being slower, but larger and cheaper. The

effect of hierarchical organizations is a larger pool of memory that ideally serves data

to programs at roughly the rate of the fastest memory at the top of the hierarchy,

but costs roughly as much as the cheapest memory at the bottom of the hierarchy.
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SRAM blocks may be operated either as caches or scratchpad memory.

4.2.1 Cache

A cache serves as an interface between the CPU and main memory. Caches are not

addressable; instead the idea is for a cache to temporarily hold frequently accessed

data items or instructions so that most memory accesses are fulfilled by the cache

instead of main memory (see Figure 4.1). Unified caches contain both data and

instructions, while split caches have separate spaces for instructions and data. Caches

are organized as a number of cache lines and information transfer between the cache

and main memory is in terms of complete cache lines, rather than individual bytes.

The associativity of a cache determines into which line in the cache a memory

location will go. A fully-associative cache allows cache lines to be stored at any

location in the cache. This scheme offers the best performance because any memory

location can be stored at any cache location, but it also requires a large number of

address comparisons to determine the presence of a memory location in cache making

it rather complex and expensive to implement. An N-way set associative cache splits

the entire cache into a number of sets, each containing N cache lines. Each memory

location is assigned a set and may be cached in any one of that set’s N lines. This is

less complex to implement than fully-associative caches since only N comparisons are

required to determine the presence of a memory location in cache. A direct-mapped

cache is a 1-way set associative cache; a memory location may only be cached in a

single cache line. This is the least complex to implement of all three schemes since
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only one comparison is required to check the presence of a memory location in the

cache.

When a processor makes a memory request, it first checks whether the relevant

item is contained in the cache. A cache hit occurs if the requested item is in the

cache and the item is read from or written to the cache instead of the much slower

main memory. When the CPU does not find the requested item in the cache, it

results in a cache miss and the item must be fetched from the main memory into

cache. A cache replacement policy determines which cache line will be evicted when

a new cache line is fetched into a full cache. Common replacement policies include

least recently used (LRU) which evicts the least recently accessed cache line from

the cache and FIFO which evicts the oldest cache line.

The main advantage of using caches is the convenience that it offers to program-

mers. The contents of caches are automatically managed by the hardware and most

programs can successfully exploit the benefits of caches without any changes to the

source code. However, the best performance is achieved when a program is carefully

tuned for, or is able to adapt to, a specific cache organization. The main drawback of

caches is that they do not guarantee performance predictability; they are subject to

compulsory, capacity and conflict misses. Cache performance depends heavily on the

history of memory accesses as well as the cache placement and replacement policies

employed.
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Figure 4.1: Cache versus scratchpad memory

4.2.2 Scratchpad

Scratchpad memories are small on-chip SRAMs that are mapped to a pre-determined

address space that is disjoint from main memory; they are therefore directly ad-

dressable by the CPU. Memory references to addresses within the pre-determined

scratchpad address range are served by scratchpad (see Figure 4.1). Memory refer-

ences outside this window are served by main memory (possibly through a cache).

Scratchpad memory is entirely under software control - program or data objects must

be explicitly placed there before they are accessed.

Unlike caches, scratchpad offers predictable performance since there is no need
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to check for the availability of data/instruction in the scratchpad. This makes it

very suitable for real-time embedded systems where deterministic performance is

required. In addition, pure scratchpad memories are considerably more energy and

area efficient than caches since there is no need for comparator and signal miss/hit

circuitry which is used in caches [18]. However, utilizing scratchpad requires explicit

allocation (and dynamic movement) of data/instructions either by a programmer or

a software tool such as a compiler which requires knowledge about the size of the

scratchpad as well as data/instruction access patterns within the application.

4.3 Methodology

We introduced the C6678 architecture in Section 1.2. Let us recapitulate the salient

features of its memory organization. The C6678 has a total of 8.5MB of on-chip

memory organized in multiple levels. Each core has 32KB of level 1 program (L1P)

and 32KB of level 1 data (L1D) memory. In addition, each core also has 512KB of

local level 2 (LL2) unified memory. Furthermore, another 4MB of multicore shared

memory (MSM) SRAM is also available to be shared by the eig ht cores. L1D,

L1P and LL2 can each be configured independently either as scratchpad memory,

or cache, or a combination of both. In the cache configuration, L1P operates as a

direct-mapped cache while L1D operates as a two-way set associative cache. Their

cache sizes (0KB, 4KB, 8KB, 16KB, or 32KB) can be selected at runtime. When

configured as cache, LL2 operates as a four-way set associative cache and acceptable

sizes (0KB, 32KB, 64KB, 128KB, 256KB, 512KB) can be selected and changed at
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Table 4.1: Applications used

Benchmark Description Problem
Size (class
S)

Problem
Size (class
A)

CG Estimates the smallest
eigenvalue of a large,
sparse, symmetric posi-
tive definite matrix using
inverse iteration with a
conjugate gradient method.

1400 rows 14000 rows

EP Generates pairs of Gaus-
sian random deviates from a
set of uniformly distributed
random numbers.

2ˆ24 ran-
dom pairs

2ˆ28 ran-
dom pairs

FT Solves a 3D partial differ-
ential equation using Fast
Fourier Transforms (FFT).
Three one-dimensional
FFTs are performed for
each dimension.

64 x 64 x
64 grid

256 x 256 x
128 grid

runtime. Portions of the MSMC memory may be configured as shared level 2 SRAM

(SL2) or shared Level 3 SRAM (SL3). SL2 SRAM is cacheable only within local L1P

and L1D caches, not LL2, while SL3 SRAM is cacheable by both L1P/L1D and LL2

cache.

The EP, CG, and FT applications from the NAS OpenMP benchmarks (NPB)[39]

were selected for our study. Table 4.1 summarizes the key features of these three

applications.
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4.3.1 Experiment Setup

In our evaluations, we measure performance as the time required to complete the

computations. For cache-based memory configurations, our goal is to understand

the impact of level 2 (L2) and level 1 (L1) cache sizes on the performance of the

benchmarks. In this configuration, we set the cache size and made no changes to

the source programs. Utilizing scratchpad involved adding code for explicit memory

allocations from scratchpad memory. Note that except for EP, the entire datasets

are too large to fit in scratchpad memory. For the sake of simplicity, we used a static

allocation approach where we chose frequently accessed array structures that will

benefit most from being allocated in scratchpad memory.

We executed the programs with 1, 2, 4, and 8 OpenMP threads (each thread runs

on a separate core). Reported measurements are the average of three runs of each

benchmark for all results. The benchmarks were compiled with version 7.4.0 of the

TI C6000 compiler [71].

4.4 Results

4.4.1 Impact of Level 2 Cache Size

In order to measure the impact of varying L2 cache sizes, we kept the L1D cache

size fixed at the maximum size of 32KB while setting the L2 cache size to 0KB,

32KB, 64KB, 128KB, or 256KB. We were unable to set the L2 cache size to 512KB
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because a section of the local level 2 memory is allocated for the compiler to place

variables that must be local to each core. The performance of the benchmarks for

these level 2 cache sizes are presented in Fig. 4.2 for class S, and Fig. 4.3 for class

A. Our evaluations reveal that for the smallest problem size, class S, there is very

little variation in performance for L2 cache sizes exceeding 32KB. The reason for

this is that the size of the dataset allows the majority of the memory requests to be

serviced by the caches.

For the larger problem size, Class A (Fig. 4.3), we observe that increasing the

level 2 cache sizes reduces the execution time of the application for two of the three

benchmarks. The impact of increasing L2 size is most significant in CG, where we

observe an average of 71 percent improvement in performance when we change L2

cache size from 32KB to 256KB.

Of the three benchmarks, CG is the most memory-intensive and memory-sensitive;

the majority of its execution time is spent on a sparse matrix-vector multiplication.

A matrix access involves indirect addressing which prevents spatial reuse of cache

lines and causes a large number of L1 cache misses. For larger L2 cache sizes, most

of the L1 misses are satisfied by L2. However, as we reduce the size of L2 cache, less

L1 misses hit L2 and instead access external memory.

FT shows a similar, though less dramatic, trend as CG with an average of 40

percent improvement in performance when we change L2 cache size from 32KB to

256KB. The benchmark is less memory-intensive than CG and it involves compute-

intensive phases that are able to benefit from intensive cache accesses. For the third

benchmark, EP, no variation is observed with varying L2 cache size because EP is
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Figure 4.2: Execution times for the NAS Benchmarks Class S for varying L2 cache
sizes and number of threads.
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Figure 4.3: Execution times for the NAS Benchmarks Class A for varying L2 cache
sizes and number of threads.
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a pure CPU-intensive benchmark and its performance is not dominated by memory

accesses.

4.4.2 Impact of Level 1 Cache Size

We measured the impact of varying L1 cache sizes by keeping the L2 cache size fixed

at 256KB while setting the L1 cache size to 0KB, 4KB, 8KB, 16KB or 32KB. The

performance of the benchmarks for these L1 cache sizes is presented in Fig. 4.4 for

class A. Our evaluations reveal no significant variation in performance for varying L1

cache sizes except when the L1 cache size is set to 0KB. The performance hit when

L1 cache is set to 0KB is likely due to the accesses to scalar variables and smaller

arrays that the L1 cache had been able to reuse.

4.4.3 Utilizing Scratchpad Memory

An application can utilize scratchpad memory either by instructing the compiler to

allocate all variables in the scratchpad memory region (option 1) or by including

explicit software instructions. These instructions can be either inserted manually by

the programmer (option 2), or generated by the compiler (option 3). We note here

that the C6000 compiler currently has no support for automatic scratchpad memory

utilization. Therefore, we chose either option 1 or option 2 in our evaluations.

The size of the application’s dataset determines which option we utilize. We

made the decision to use option 1 when the entire dataset fits in scratchpad, and

option 2 when we only select a subset of the dataset to be allocated in scratchpad.
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Figure 4.4: Execution times for the NAS Benchmarks Class A for varying L1 cache
sizes and number of threads.
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For FT, we place both the 1-D FFT input and output arrays in scratchpad

memory. For class A, this requires 128KB which we allocate from level 2 memory.

Figure 4.5 shows the difference in performance when a pre-determined size of level 2

memory is configured entirely as cache versus using all or part of the level 2 memory

as scratchpad. The figure at the top shows the difference in performance when 128KB

of level 2 memory is used entirely as scratchpad memory versus using it entirely as

cache. The figure at the bottom shows the difference in performance when 256KB

of level 2 memory is used entirely as cache versus using half (128KB) as cache and

the other half as scratchpad memory. We make two observations from both figures.

First, we note that the performance is better when all or part of the memory region

is used as scratchpad than when it is used entirely as cache. This is due to the

overall reduction in misses for level 2 memory thanks to of our use of scratchpad.

Second, we observe that the scratchpad configuration scales up much better than the

all0cache configuration when the number of threads increases.

In our experiments with EP, we utilized the scratchpad memory for the array that

holds the generated random numbers. We found its performance with the scratchpad

configuration to be comparable with its performance with the cache configuration.

As we observed earlier, this is because its performance is not dominated by memory

accesses.
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Table 4.2: Comparison of FT execution time (in seconds) on C6678 and 8-core
Opteron

C6678 Opteron
1 34.64 14.42
2 19.11 8.37
4 11.41 5.53
8 7.72 4.24

4.4.4 Comparison with a Higher-end Multicore Processor

For the sake of comparison, we also measured the performance of FT on a general

purpose multicore system with dual 2.2 GHz quad-core AMD Opteron 2354 proces-

sors for a total of eight cores. Each core has 64KB L1 and 512KB L2 caches with a

shared 2MB L3 cache per processor. Each processor has a power consumption of 75

Watts. The application was compiled with the GNU C compiler 4.6 with optimiza-

tions enabled at level -O3. Table 4.2 presents the performance we obtained on this

processor and on the C6678 (version of the FT that used 256KB of L2 memory with

half scratchpad memory and half cache). As we can see, the much cheaper C6678

is able to achieve about half the performance of the Opteron while using only 10

Watts.
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Figure 4.5: Comparing cache-based, scratchpad-based and hybrid configurations for

FT.

4.5 Related Work

Other researchers have also explored the impact of different architectural parameters

on the performance of applications in the NPB suite [76, 45, 10]. Wong et al. [76]

focused on understanding how processor configuration affected the scaling of MPI
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versions of the benchmarks on a cluster of Sun UltraSPARK nodes and on an SGI

Origin 2000 system. They studied how the cache miss rate changed with cache size

and machine size by collecting memory address traces from each application and

feeding these into a cache simulator to simulate designed cache configurations. Their

focus appeared to be on the level two cache, although it was not explicitly men-

tioned. They reported different levels of sensitivity to cache size for the applications

considered. Kubota et al. [45] evaluated separate applications (MG and LU) from

the suite and reported no significant effect from varying cache size.

In [10], the authors built a version of the benchmarks that used threads, and

evaluated their performance on the Convex Exempler shared memory system. They

measured the cache misses for increasing numbers of processors as well as the impact

of cache line size on the performance. They observed that increasing cache line sizes

could result in false sharing and produced more misses for the sample size. At the

same time, for the larger problem size, there were more capacity misses for a given

cache line size, but larger cache line sizes reduced the cache misses. A simulator was

also used for their experiments.

The major difference between our work and previous studies is that the perfor-

mance numbers that were reported in our study were results from execution on actual

hardware, while previous studies were evaluated by simulation. While evaluations

on simulators are the only option when hardware with the desired configurations are

unavailable, such evaluations are prone to inaccuracy and not as reliable as careful

measurement on a real system.
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4.6 Summary

Performance characteristics of applications on large scale systems are often different

from those on smaller systems. In this chapter, we reported the performance of a

subset of the NAS parallel benchmarks while varying the memory configuration of

the C6678 multicore DSP. We observed that while the level two cache size affected

the performance in most cases, level one cache size had no significant impact on the

execution time for the applications considered.

We observed performance improvement from utilizing scratchpad for FT, but this

required an analysis of the source code in order to identify areas where scratchpad

allocation will improve performance.

We were surprised at the scalability of the applications on the C6678, especially

EP, considering its high degree of parallelism and limited data sharing. Investigating

the factors that might have affected the performance of these applications forms part

of our future work. In Section 4.4.4, we briefly touched on the issue of power in our

comparison of the performance of the DSP versus the Opteron. A detailed analysis

of the power consumption of the applications would provided even more insight to

the benefits of configurable memory systems. This is another area that we plan to

explore in future work.
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Chapter 5

OpenMP-based Scratchpad

Memory Management

5.1 Introduction

The previous chapter highlighted the performance benefits of using scratchpad mem-

ory. However, utilizing scratchpad memory for applications is more difficult, in com-

parison to caches, because the data and/or instructions that should be stored in

scratchpad memory must be identified and explicitly specified in software. Static

allocation strategies, where the contents of scratchpad memory are fixed throughout

program execution, are usually not sufficient. Ideally, the contents of scratchpad

memory should be allowed to change to accommodate situations where the memory

requirements change across phases of the program, as well as cases where the entire

memory items are too large to fit into scratchpad memory.
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Dynamic approaches to utilizing scratchpad memory require that the memory

items that are to be moved between main memory and scratchpad memory at a

particular time be identified. In addition to this, other tasks that must be performed

include explicit memory allocation in scratchpad memory to accommodate the data

objects, copying (sections of) the data objects between main memory and scratchpad

memory, updating the memory references in the program to reflect the new addresses

of the data objects in scratchpad memory, and finally, deallocating the memory in

scratchpad memory when the data objects no longer to reside there. All these tasks

are entirely under software control and must be managed either by the programmer

or a compiler. When left entirely to the programmer, accomplishing these tasks is

both tedious and error-prone, which significantly reduces programmer productivity.

In this chapter, we present an OpenMP-based scratchpad management frame-

work. The primary goal of this framework is to facilitate the use of scratchpad mem-

ory for array accesses within certain regions of OpenMP programs while requiring

little to no additional information from the programmer. Our framework takes two

approaches. First, we focus on code transformations that allow scratchpad memory

to be automatically managed for arrays accessed within OpenMP loops. Second, we

provide a high-level data region construct that allows programmers to express data

movement in a high-level fashion with minimal impact on the structure of existing

programs.
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5.2 Automatic Scratchpad Memory Utilization

The OpenMP loop construct facilitates the scheduling of loop iterations to multiple

threads. The specified loop schedule is used to divide the iteration space into chunks

which get mapped to threads. While performing the computations included in their

assigned chunks, threads may access private or shared variables, which are usually

arrays. Each thread has access to only its own private copy of variables, but all

threads have access to shared variables. The key idea of our approach is to identify

portions of arrays that will be accessed during the execution of loop chunks, and map

these portions to scratchpad memory. When we have shared and private scratchpad

memory regions, we use the private scratchpad memory for distinct sections that are

accessed during the execution of each thread’s chunk of iterations. Shared scratchpad

memory is reserved for sections that are accessed by more than one thread. This

strategy prevents the replication of common data across multiple private scratchpad

memory regions, which reduces the effective total size of scratchpad memory.

5.2.1 Detection of Array Access Patterns

The first step is to extract information about array accesses on a thread-by-thread

basis. We focus on arrays with known dimensions and array accesses that are affine

functions of loop indexes and non-loop dependent variables. Consider the parallel

loop in Figure 5.1. Figure 5.2 shows the array sections accessed by each thread,

assuming that we have a team of four threads. For each iteration of i, loop j accesses

array elements in the first dimension of array a that are between 0 and n. The
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second dimension is accessed through loop i ; since this is the loop associated with

the OpenMP constructs, each thread will access only a portion of this dimension.

For array b, each iteration of i causes loop j to access the ith element in the first

dimension, with this access pattern replicated in the second dimension n times.

Therefore, each thread will access only a portion of elements in the first dimension,

but will access all of the second dimension.

1 #pragma omp for

2 for (i = 0; i < n; i++)

3 for (j = 0; j < n; j++)

4 a[i][j] = 6 * b[j][i];

Figure 5.1: OpenMP example illustrating thread access patterns

We leverage our OpenMP translation for the loop construct (Section 3.2.2.2) to

detect the array access patterns. To start with, we record each array reference, and

whether it is a read or a write access. For parallel loops, the lower and upper bound

values of loop iterators are generated either by the compiler (as in the case of static

schedule with no chunk size specified) or the OpenMP runtime library. We record

this, along with the lower and upper bound value for loops nested within the parallel

loop. By substituting these loop bounds into the array reference, we derive the array

section accessed by each thread. Returning to our example in Figure 5.1, we have

reference a[i][j] and b[j][i]. Using the translation strategy discussed in Section 3.2.2.2,

thread 0 gets a lower bound of 0 and an upper bound of 9 for i, and a lower bound
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Figure 5.2: Sections of array accessed by each thread

of 0 and an upper bound of n (=40) for j. Thread 0 therefore accesses 40 contiguous

elements of a, starting from a[0][0], 10 times, and 10 contiguous elements of b, 40

times.
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If these sections will fit in scratchpad, then statements to copy the sections are

inserted into the code. Otherwise, we will attempt to keep only the section accessed

in the j loop in scratchpad memory.

We detect shared access by performing an intersection of the array sections. When

threads access overlapping sections of memory, then the intersection of these array

sections will be non-empty. Such array sections are candidates for a shared scratch-

pad memory region, if that region exists on the hardware platform.

5.2.2 Code Restructuring to Utilize Scratchpad Memory

At this point, we have the array sections that will be accessed in the loop (nest). The

next step is generating memory allocation statements to allocate space in scratchpad.

The data type and the size of the dimension is used to determine the size of each

memory allocation. A corresponding de-allocation statement is also generated. The

allocation and deallocation statements are placed before and after the loop to avoid

unnecessary allocation/deallocation overheads.

Statements for copying data into or out of scratchpad memory are also gener-

ated depending on whether the access type within the loop nest is read or write.

OpenMP’s relaxed-consistency shared memory model means that a thread’s tem-

porary view of memory does not have to be consistent with memory at all times;

memory synchronization is only achieved at specific synchronization points. The

end of an OpenMP loop construct is one of such synchronization points. Therefore,

portions of shared data can safely reside in private scratchpad memory until the next
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synchronization point.

After the data allocation/copying statements have been inserted, the references

within the innermost loop to locations that will be in scratchpad memory for the

computation are modified to use the address in scratchpad memory instead of the

address of the original array locations.

First, the bounds for the loops controlling the traversal of the data sections are

adjusted to a zero offset. Then, each scratchpad memory reference is normalized to

an offset of the base address obtained from the allocation. After these modifications,

the loop iteration variables may be used to index the relevant arrays.

The resulting code generated by the compiler after the last two steps are applied

is shown in Figure 5.3. Since the C6678 includes a Direct Memory Access subsystem,

we use DMA transfers for copying data. A potential optimization is to overlap the

data copying with actual computations by prefetching data that will be used in future

iterations.

5.3 Memory Region Directive

The memory region directive is a new directive that provides the programmer with

a high-level way to express data objects that should be in a memory region when

executing an associated region of code. Memory regions are an abstraction of the

distinct scratchpad memory regions within a memory hierarchy [15]. The compiler

uses the directive to generate the required allocation and, if required, data movement
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1 ...

2 for (temp_29 = temp_25; (temp_29 < temp_24); temp_29 ++)

3 {

4 edmaInitiateXfer(temp_31 , ((*( omp_data_p27 ->a)) + temp_29 *

(*( omp_data_p27 ->n))), (( unsigned)(*( omp_data_p27 ->n)) *

8U), 1, 1, 1, 1, 1, 1, 0, 1);

5

6 edmaInitiateXfer(temp_30 , ((*( omp_data_p27 ->b)) + temp_29 *

(*( omp_data_p27 ->n))), 8U, *( omp_data_p27 ->n), 1, ((

unsigned)(*( omp_data_p27 ->n)) * 8U), 8U, 1, 1, 0, 1);

7

8 edmaWait4Completion (0);

9 for (temp_28 = 0; temp_28 < *( omp_data_p27 ->n); temp_28 ++)

10 {

11 temp_31[temp_28] += (double)(*( omp_data_p27 ->c)) * (

temp_30[temp_28 ]);

12 }

13

14 edmaInitiateXfer ((*( omp_data_p27 ->a) + temp_29 * (*(

omp_data_p27 ->n))), temp_31 , (( unsigned)(*( omp_data_p27

->n)) * 8U), 1, 1, 1, 1, 1, 1, 0, 1);

15

16 edmaWait4Completion (0);

17 }

18 ...

Figure 5.3: Code generated from Figure 5.1 to use scratchpad

code. It also uses the directive to perform any necessary address updates to ensure

correct access to the corresponding data objects in scratchpad. This approach is

similar to the OpenMP approach of using directives to specify parallelism in appli-

cations. It removes the need for the programmer to deal with most of the how of

scratchpad memory utilization, instead allowing him to focus mainly on what needs

to be in scratchpad memory during the execution of specific program regions.
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5.3.1 Syntax and Behavior of Memory Region Directive

A memory region directive is used to indicate a section of code that accesses data

objects that will benefit from being allocated in (or moved to) a scratchpad memory

region. The syntax of the memory region directive is as follows:

#pragma memory region clause-list

structured-block

where clause-list is at least one of the following:

alloc(list)

in(list)

out(list)

inout(list)

The alloc clause specifies only memory allocation within a scratchpad memory

region for the listed data objects and does not imply any data movement into or

out of the memory region. Data objects that are allocated in a scratchpad memory

region can be initialized with their values before the memory region was encountered

using the in clause. Similarly, the out clause indicates that values of data objects

at the end of a memory region should be copied back to their location outside the

memory region. The inout clause indicates that values of data objects be copied in

at the start of the memory region, and copied back to their original location at the

end of the memory region.
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list is a comma-separated list of variables. For array variables, especially in cases

where the entire array cannot fit in scratchpad, array sections may be specified in

list using the Fortran-like array sections format:

array(section-subscript-list)

where array is the name of the array, and section-subscript-list is a list of one or

more section subscripts indicating a set of elements along a particular dimension of

the specified array. section-subscript-list is represented either as an array subscript,

or with the following subscript triplet notation:

[first-bound ] : [last-bound ] [:stride]

Values for subscripts and subscript triplets must be scalar integer expressions. The

stride is optional; when omitted it is assumed to be 1. This syntax provides for a

simple yet flexible interface for expressing a variety of contents for scratchpad mem-

ory. Note that references to data objects outside memory regions are to the versions

of the data objects in their original location. Regions outside of the bounds of the

specified section should not be referenced within memory regions.

In Figure 5.4, we modify our matrix multiplication example to use of the memory

region directive. For A and C, elements 0 through n in the i dimension are copied

to, and accessed via scratchpad memory. The same section of C is copied back to

main memory at the end of the memory region.
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1 #pragma omp for private(i, j, k)

2 #pragma memory region inout(c(i:i,0:n)) in(a(i:i,0:n))

3 for (i = 0; i < N; i++)

4 for (j = 0; j < N; j++)

5 for (k = 0; k < N; k++)

6 {

7 C[i][j] += A[i][k] * B[k][j];

8 }

Figure 5.4: Matrix multiplication using memory region

Memory regions may be nested to cater to hierarchical scratchpad organizations.

Figure 5.5 illustrates how a nested memory region maps to the scratchpad level that

is immediately higher than the current scratchpad level. Each memory region in the

code corresponds to the scratchpad level within the memory hierarchy with the same

color.

Figure 5.5: Nested memory regions
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5.3.2 Compiler Implementation

The main translation tasks are (i) inserting calls to manage allocation and dealloca-

tion in the scratchpad memory region; (ii) inserting calls for copying data between

memories; and (iii) updating the code within the memory region to reflect the correct

addresses in scratchpad memory.

To tackle the first task, the size of memory that should be allocated will have

to determined. If only a variable name is given, then the size corresponds to the

size of the object in main memory. We currently support only statically allocated

variables that expose the size of the variable to the compiler. If a section of data

objects is specified, the compiler uses the subscript list to compute the size. Since

we require that the subscripts are scalar integer expressions, we can express the size

in the context of specified expressions. Using the size information, a data allocation

function call for allocating a range of contiguous memory addresses is created and

placed before the first statement of the associated memory region. A corresponding

deallocation statement is placed after the last statement of the memory region.

Data objects that end up in scratchpad memory are organized in a contiguous

manner, which may be different from their original form in main memory. We support

both the standard memcpy() operation or DMA for achieving the copy operations.

Depending on how the data section to be moved is specified, the compiler either

generates a single memcpy() call to move contiguous data from the source address

to the destination address, or it generates multiple memcpy() calls to move non-

contiguous data.
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We update the memory references within the memory region to reflect the ad-

dresses of the data objects’s scratchpad locations instead of their addresses in main

memory. This requires a traversal of the statements in the associated region, and

checking whether there is a match between any encountered object references in the

region and the objects specified in the directive. When there is a match, we rewrite

the object reference as an offset to the address returned by the allocation function.

It is possible that memory allocation fails during execution. If this happens, the

original version of the code is executed. Therefore, an if statement that checks the

result of the allocation is used to determine whether to execute the original or the

translated versions.

5.4 Evaluation

We compiled two versions of the matrix multiplication code in Figure 3.8—one with

the automatic scratchpad utilization enabled, and the other with it disabled. When

scratchpad utilization is enabled, rows of C and A and columns of B are copied

to scratchpad memory before the inner k loop is executed. We compared the per-

formance of both versions on the C6678. For both versions, level 1 cache size was

set to 32KB, while we configured 256KB of the level 2 memory as either cache or

scratchpad, depending on which version we were executing.

We show the performance of the matrix multiplication code for double-precision

256 by 256, 512 by 512, and 1024 by 1024 matrices in Figure 5.6. For all three

problem sizes, we observed better performance with the versions that were compiled
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to use scratchpad.
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Figure 5.6: Performance of cache versus scratchpad version of matrix multiplication
for various matrix sizes
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We also used a five-point stencil algorithm for .

5.5 Limitations

Although our proposed framework can improve the performance of algorithms by

utilizing scratchpad, the fundamental limitation is that it does not change the struc-

ture of the algorithm in order to exploit more data locality. This is not necessarily a

limitation of the approach itself, but results from fact that our transformations are

performed in the front-end of the compiler. At the front-end, we do not have access

to control and data flow analyses information that will facilitate such transforma-

tions. However, an algorithm that already contains good locality of references can

easily be adapted to our framework.

5.6 Related Work

A considerable amount of literature has been published on compiler support for

efficient scratchpad memory allocation in embedded systems. Most of it has focused

on allocation of data objects to scratchpad [63, 64, 42, 62, 74, 28, 50, 19], while

some has focused on allocation of instructions [70, 13]. In general, the allocation

schemes may be classified as static or dynamic. In the static scheme, the data layout

in scratchpad remains fixed throughout program execution. All of these focused on

scratchpad memory utilization in the context of a sequential programs only while

our work focuses on the problem in the context of parallel OpenMP programs.

77



OpenMP-based implementations for processors with explicitly managed memory

hierarchies have also been proposed. Marongiu and Benini [55] proposed a profile-

based approach for allocating portions of large arrays to scratchpad memory after

monitoring access patterns during an initial program execution. However, data al-

location in their scheme is static and remains fixed throughout program execution.

Their more recent work [56] proposed the use of high-level directives to partition

arrays into distributed tiles and control the movement of array tiles across parallel

regions. Liu and Chaudhary [54, 53] proposed OpenMP extensions that facilitated

the use of memory transfer engines (MTEs) for DMA transfers in addition to exten-

sions for expressing heterogeneity in the Software Scalable System on Chip (3SoC)

from Cradle Technologies [25]. However, it is unclear how their proposed extensions

could be used to manage the transfer of multiple data items. He et al. [35] imple-

mented OpenMP for the MSC8156 multicore DSP from Freescale Semiconductors.

In this work, they proposed additional data placement directives that control the

placement of global variables, and data distribution directives that distribute arrays

into core-local memory.

5.7 Summary

In this chapter, we presented a compiler framework for managing scratchpad mem-

ory regions within OpenMP programs. A technique for identifying appropriate array

references that may be satisfied by scratchpad memory was proposed along with a

high-level directive for specifying (sections of) objects that should be in scratchpad
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memory. Our experimental results show that our compiler-generated code that uti-

lizes scratchpad memory achieves significant performance improvement compared to

the cache based versions of the same code. For future work, we plan to extend the ro-

bustness of our implementation by integrating it into later phases in the compilation

tool chain where more sophisticated analyses can be leveraged.
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Chapter 6

Conclusion

With the increasing adoption of multicore processors in the embedded domain, the

need for high-level programming models that assist programmers with parallelization

and memory management are more important. Programmers should be able to

focus on writing their algorithms without dealing with all of the low-level aspects of

coordinating parallelism and managing memory.

In this dissertation, we developed a compiler implementation of OpenMP, a high-

level programming model, that is suitable for for embedded multicore processors.

This fully functional implementation is included in the C6000 compiler that currently

benefits a large community of embedded systems developers.

We extended this implementation with a framework that facilitates utilizing

scratchpad memory while requiring little or no extra information from the program-

mer. Our experimental results show improved performance with our framework over

80



cache-based executions.

We also analyzed the effect of various memory configurations on the performance

of applications from a standard scientific benchmark.

6.1 Future Work

We are looking forward to extending this work in the following main areas.

Incorporating Data Locality with Scratchpad Memory Utilization In terms

of utilizing scratchpad memory, while our experimental results are encouraging, the

fact that we do not perform any optimizations to improve data reuse significantly

limits the performance of the applications. On possibility is incorporating our frame-

work into loop analyses frameworks that determine optimal tile sizes for hierarchical

architectures. Another area that we plan to explore is data reuse between threads.

Consider an example where all threads access an array that is too large to fit into

scratchpad memory. The data access patterns of the threads could be modified such

that all/most threads access the same section during a time frame rather than unique

sections.

Adaptive Cache/Scratchpad Reconfiguration There are benefits to both cache

and scratchpad configurations and applications can simultaneously benefit from both

configurations. When it is possible to have both configurations, an important ques-

tion becomes how much memory to assign to each configuration in order to get
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good performance. For future work, we will explore solutions to dynamically adapt

the size of cache and scratchpad memory based on the requirements of (phases of)

applications.
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