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ABSTRACT

An electromagnetic dipole in motion constitutes a 

source and gives rise to an electromagnetic field. A 

covariant expression for the 4-vector current density is 

derived for such a source and the resulting field equa

tions in terms of a 4-vector potential, are solved using 

the Green's function. Potentials analogous to the Lienard- 

VJeichert potentials are obtained for the electromagnetic 

dipole in motion. These potentials are used to calculate 

the general expressions for the electric and the magnetic 

fields due to a moving electric dipole. Using the expres

sions for the far-fields, a general expression for the 

Poynting vector is obtained. Finallyfrom the general 

expressions for the potentials, fields and the Poynting 

vector, some special cases are derived.
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CHAPTER I

INTRODUCTION

The basic laws of electromagnetism can be summarized

in the differential form by the four Maxwell's equations:

V* E =1 4tt

Vx B = 47t j + j_ 
c c

V x E - -L IB

(1-1)

(1-2)

(1-3)

V- B = o . (I-^)

When combined with the Lorentz force law and Newton's 

second law of motion, these equations provide a complete 

description of the classical dynamics of interacting 

charged particles and electromagnetic fields. The solution 

of Maxwell's equations, which are coupled first order par

tial differential equations relating the various components 

of electric and magnetic fields, is simplified by the in

troduction of a scalar and a vector potential, and A , 

defined by

B = VxA ' a-5)

E = ' 7 U - ; (1-6)
v- dI7
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a,nd subject to the constraint Lorentz condition

V-A + -i- o (1-7)c at
Using these potentials, the Maxv;ell’s equations lead to

the following equations for A and <^>

VZA _ J-, - - 421 J , (1-8)
qZ G 2 X

- -4.'Ml - - <? . (1-9)
C1 3

These, laws can easily be cast into covariant form by 

defining a 4-vector potential - (a, and a 4-vec-

tor current density - (_J? "i-t-S) • Using these two

jl“vectors> equations (1-8) and (1-9) can be written as a 

single equation

The Lorentz condition becomes

y Utt = 
. V dXy

• (z-10)

T Mv
> My

0 ■> . (I-11)

the first two Maxell's equations take the form

y -
y My

z 1?- 1 (1-12)
c *
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and the last two equations reduce to

(1-13)

fyu-v is a completely antisymmetric second rank tensor known 

as the electromagnetic field tensor and is defined in terms 

of the ^-vector potential by

p" _ Av A/z

its explicit form beingU)

0 Bz

F —

N 
7\

CO 
D
O 

i 0 Bx

0 IF
(I-u)

-aEz 0

The 4-vector potential due to a given charge and 

current distribution can be evaluated by solving (1-10) 

and the fields can be obtained either by equations (1-5) 

and (1-6) or directly by the equation (1-14).

This procedure will be followed to derive the expres

sions for the electromagnetic potentials and fields of a 

particular system of charges and currents in motion. This 

system of charges and currents is assumed to be of such 
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small dimension that it can be represented by Dirac delta 

function and the distribution of charges and currents 

within this system is such that the net charge is zero. 

Such a system will be termed an electromagnetic dipole and 

will be characterized by an electric dipole moment {d and 

a magnetic dipole moment 'm in its rest frame.

The electromagnetic potentials for such a system were 

obtained by Bialasusing a technique originally due to 

Lorentzand also by representing the sources by singular 

distributions of charges and current. His first method, 

however, is not rigorous and the calculations have been 

carried out only to first order of approximation. In the 

second method he uses the 4-dimensional formulation analo

gous to the one presented here to derive the potentials of 

a moving dipole. Later in the paper he derives expressions 

for certain properties of the radiation field for a. re

stricted class of motions. An excellent account of this 
problem is given by Ellis^^. His approach is entirely 

different from the one presented here. He describes an 

electric dipole as two equal and opposite charges con

nected rigidly and calculates the potentials and fields 

due to the motion of such a system. The history of the 

dipole in 4-dimensions is described by a thin "ribbon" of 

constant width whose edges are the world lines of the two 

charges. Later in the'paper, he discusses the radiation 
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from the dipole for cert?«in cases. He gives no discus

sion of the analogous magnetic dipole problem.

In the present treatment of the problem, equation 

(1-10) will be solved for general as an integral over 

a Green’s function. The Lienard-Weichert potentials will 

then be derived for a moving charge and an electromag

netic dipole. These potentials will be used to derive 

the fields and the general expression for the Poynting 

vector will be calculated. Some special cases of this 

general problem will then be discussed.



CHAPTER II

SOLUTION OF IdAXWELL'S EQUATIONS

The fields can be obtained by solving Maxwell's equa

tions directly. However, instead of solving these coupled 

equations it is more convenient to obtain the potentials 

first and then obtain the fields from these potentials 

using (1-5) and (1-6) or (I-l^l). In terms of the 4-vectc.j'

A/j. > Maxwell's equations lead to

L_J - -c-

subject to the condition

2 - o .

Equation (II-l) can be solved either by direct integra
tion^^ or by the more physical approach of constructing 

an appropriate Green's function and invoking the super

position principle. The latter method will be adopted 

here.

Assume that the required solution of (II-l) is the 

superposition integral
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where cLx = c^x' dx' -- cl and Gc(x-x') is

a Green’s function. Substituting this solution in equa

tion (II-l), we find that G(x-x') must satisfy

□ O(x-x') = - 47T f(X-x) , (II-3)

where (x-x') = S (x - x) <^(xo-x^ . Equations (II-2)

and (II-3) insure that our proposed solution (II-2) satis

fies the Lorentz condition (1-11). This follows since we 

have

E - 4- E J (x'j .
r c m J

On the right hand side, the variable of integration is x' 

and hence the operator T, "xv can be taken under the 
p.

integral and the last equation can be written as

since does not depend on x and hence can be

treated as constant with respect to the differentiation 

with respect to x . Nov; G(x-x^) is a function of (x-x^) 

and hence
"M =

Therefore the last expression can be written

£ = - .L f <k\' E l(x')

P c J I*-
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Performing partial integration once, this becomes

The right hand side is identically zero because of conser

vation of charge and hence the solution (II-2) satisfie 

the Lorentz condition regardless of the detailed form of

Gc. ( x - x)

The solutions of (II-3) satisfying causality condi- 
4 • (6)t ions'1 1 j

f < o
G (X-/) = O J (H-*)

x« > o
are

- Cn (x-x') = r S( r) ,

where R - j r' | - x - x'| and xo- >/o = c(t- 1)

Here G_(x-xj) is the causal and the anticausal Green’s 

function. For a general solution of (II-3), we can take 

a linear combination of the two solutions G..v and Gt._ i. e

(x - x)

4-r<) +

The sum of two delta functions appearing on the right hand
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side can be written as a single delta function (7)

G (x-/) 2 StX-RG- (II-6)

This Green’s function, wiien used with proper

in equation (II-2) gives the sum of the retarded and ad

vanced potentials at once since all equations are linear. 

Thus

cl4x = Ayu.Xx) + A^Cx) .

It should be understood that only the retarded potentials 

are to be retained after integration. The delta function 

appearing in the. integral can be written in another con

venient form by noting that

Vie then have the simple result

A^Cx) - -2 C J4 xz r; ) . (H-7)

Equation (II-7) is ihe general, solution of (II-l) giving 

both the retarded and advanced potentials due to any 

charge and current distribution J^.CX) . To illustrate 

the techniques we shall use for the dipole problem, we 

will now obtain the fields of a moving point charge.
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In the case of a moving point charge, the charge and 

current densities are given by

r 3
^(x) e b (x -xp) (II-8)

J (x) - e V S (x-Xpj (II-9)

Xp being the instantaneous position vector of the par

ticle. We can write equations (II-8) and (1I-9) in 4- 

vector form by recalling that the space part of the 4- 

vector current density is J and the time part is the 

charge density i.e. J^(x)- ic^. With this defi

nition the above equations lead to

J^Cx) = e(v , Zc J S (x-xp) D

which can also be written as

(11-10)

where LI - 1 (v, is the 4-vector velocity of

the particle. The last equation.can be cast into another

form that is more useful for our purposes. Further we 

shall explicitly demonstrate its covariance. We can write 

(11-10) as



11

where P is the time at which the particle is at the

position xp . From the properties of delta functions 

we know that

S(t -tp) - c S(ct _ctP) c£(xo-xor).

Using this result in the integral for we have

We now parameterize the motion by the particle's proper 

time, 't* and consider the ^-position to be an implicit

function of T . Then

From this last expression it is clear that is a

4-vector.

The well-known Lienard-Weichert potentials due to

a charge in motion can be obtained fi-om (II-7) using (11-11). 

Substituting the right hand side of (11-11) for Ju. (_x) in 

(II-7), we have
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If we interchange the order of integrationsthis becomes

(x) = 2 e cd'x' r;) £4(x-yp)

We may now carry out the integration over the primed vari

ables to obtain

A^cx) - ^(tf) S(LR1) (IT-12)

This integral is worked out in detail in the Appendix.,

and the final result is

A^tx) - -

n2- where z? = / , .

Um CtP)

In 3-vector notation, this expression for the potentials

reduces to
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where ^3 = 2-

R = (x- xp) .

Vl =
—A 
R 
l^l unit vector along R and

Equations (11-14) and (11-15) are the

Lienart-Weichert potentials due to a moving charge e .

The corresponding fields can be obtained from these 

potentials by (1-5) and (1-6) or the electromagnetic 

field tensor can be obtained directly from (1-14). The 

latter method is simpler since we can avoid the algebraic 

complexities of differentiation with a constraint and, 

hence, will be followed here. VJe have

F -

with given by (11-12). Substituting in the right 

hand side of the above equation yields

\ Aa U. S (A) 
J '

Assuming that we may interchange the order of integration

and differentiation, this last equation becomes

But A SO) zr, 1
dX. oXi cLl doX A

and hence the last integral becomes



2 e

may write thewe

above integral as

2 e
A2 A'c

However and hence we have

2. e_

Now performing partial integration

yields

- R-v U2 e
I

Kmli2e UF,

F tL tZ V — Ry U- e

A

2L

once, this integral

Since is an implicit function of

4 ■

2 LL, R. - 2 Llu R

lly - Ry

which can be integrated at once
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Carrying out the indicated derivatives gives the covariant

form of the field, tensor, namely

(Ryl^-F^Uy) (c\ LRiA)
/ \3,

We have adopted the notation of a dot representing differ

entiation with respect to proper time. (11-16) is the 

final expression for the electromagnetic field tensor due 

to a charge in motion. Using (1-15), this can be vzritten 

in 3-vector form:

h(i_p.-s7
I J OuRcL[(i_p.^)2- -> (IT-17)

B (\,t) = e
R\|_p.u)3

(vT. a.) (x'n j 

(i - jsmj5

- n x E

(IT-18)

I 
f

These are the fields due to a moving charge. It is in

teresting to note that in this particular case the mag

netic field is. everywhere perpendicular to the electric 

field and to the vector K extending from the particle 

location at time "t - "t  R to the field, point.
" c
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We shall use the same technique to obtain the poten

tials and fields due to a moving electromagnetic dipole. 

But first we need an expression for J/a. corresponding to 

a moving electromagnetic dipole. The next chapter deals 

with the derivation of a covariant expression for current 

density corresponding to dipole sources of the fields.



CHAPTER III

THE DIPOLE AS A FIELD SOURCE

In the rest frame of a particle having an electric 

dipole moment jo and a magnetic dipole moment vn , the 

polarization and magnetization vectors P and are 

given by

P(X) (III-l)

M (x) - ^(x-xp) (III-2)

v/here is the position vector of the particle. The 

two vectors P and M are equivalent to charge a.nd cur

rent densities and J" given by

^(x ) - - V -P = - V-[ p S3(x-Xp)^
(IH-3)

Jex) = cVxfn = c S3(x-xp)j. (III-4)

Hovrever, these are not written in covariant form, and 

hence are not convenient to use in their present form. In 

order to find the correct covariant form of (III-3) and
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(III-4) we notice that, as is known from the macroscopic 

formulation of electrodynamics, the fields P .and 
form a tensor given by(8)

0 <Px

IV =
-V o Mx

My 0 -PZ

- i -Pz 0

This is a second rank completely anti sjnnmetric tensor

whose divergence gives the 4-vector

X (X) = c L 32i‘' . (ni-6)

' Xy

Upon expansion in three vector form, this can be showrn to

be the covariant form of (III-3) and

Now from the fields and M , we construct an

array defined by (III-l) and (III-2), namely

I'V = S\x-af). (HI-7)

It is obvious that if is a tensor, then is not 

a tensor because -xf) is not a scalar, or vice versa. 

However, is a scalar, and if is taken

to be a tensor then

1 (III-8)
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I 
suggests that is also a tensor. Hence if is

the array constructed from and rn in a particular

Lorentz frame, then in any other frame, is given by 

the Lorentz transformation

■ vn L L A . (in-9)
r <r , r

Th:i s array vie shall call "the moments tensor," The tensor 

field produced by is "then given by (III-8).

It is convenient to write (III-8) in a form in which 

it is immediately evident that M^y is indeed a tensor. 

To this end, consider the integral

lyuy = Ctptrj) S (X - Apt't)) S (t-tpCaj) Ut (l.Tl“10)

where again "r is the proper time of the particle, having 

an associated moments tensor , and xp =xftT) 5 tr~trexj

is the parametric representation of the particle's world 

line. Now

S\x-xf) SCt-tf,) - cS (x-xf) S (ct - ctj,) c. (x-xp) 

is certainly a scalar, rn^y is by definition a tensor and 

d'r is a scalar. Hence the integrand in (III-10) is a

tensor. But

Vv - S3(x -xf) S ar
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- ">

and since

Jtf

we have

l^v - (x-Xp) S(t-tp) ,J'TTZ'p7T J_Lp

Tnus it is quite reasonable to take for the effective 

current of the particle in motion the expression

•Tr« -y-“" ■

But since

^/AV = ^(X -Xp) -tp) <4^

- cj^y<tp) SH(x _)ip) J't ,

we have 
r* C

3r Cx) = c2 L (tp) b ( x-^p) .

Now the variable of integration is ar and since the
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point of observation 

tiation operator can 

we may write

Qx) - c2

This is the covariant form of equations (III-3) and (III-4), 

representing the 4-vector current density due to a moving 

is independent of T. , the differen- 

be taken under the integral sign and

1 t m v ft.) x- x,.)! J -c . (HI-11)1

particle whose electromagnetic structure is characterized.

by the moments tensor m^v .

The moments tensor may be displayed in mati-ix

form as

o

Kyi —11 bp- V

-yyi2 o
(111-12

-f7?A o

' ‘-I3_ x
o

This choice of the tensor characterizes both the

electric and magnetic properties of the source. The kind

of dipole depends on the form of the tensor . In

the case of an electric dipole, having a dipole moment

in its rest frame and YV'>-=. o this tensor takes the form

o

0

O

O

O

O

o

m 'p.v -
0

-tb•x

0

-ib

0

A

(HI-13)
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From the Lorentz transformation we may obtain the tensor

yy)^ in any artibrary frame. In a frame relative to

which the particle has velocity v the tensor v

becomes

The corresponding case of a particle with in its

rest frame gives

o - o

- w o 0
YYi(0')

—
z A

O 0

0 0 o o

(111-15)

and in the frame in which the particle has velocity v

o Ym2 -Ymy
C -X

-Ymz o Yn1x -d

= "^mx O _\i (dd)
(Hl-16)

X c
i t (^ixy) 0

x c s \ c- /2
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The tensor introduced above is a completely

antisymmetric second rank tensor. The tv/o invariants 

associated vzith this tensor are

(III-l?)

(III-18)

is a completely antisymmetric unit tensor

of fourth rank defined by

if any two indices arc equal.

for an even (odd) permutation 

of indices.

The expressions (IIl-l?) and (III-18) in the three vector 

form are

(III-19)

(111-20)and

From the transformation properties of the tensor Tn,,,, it 

can be seen that if a particle has an electric dipole 

moment and a magnetic dipole moment rrio in its rest 

frame, then in another frame in vrhich its velocity is V" , 

the electric and magnetic dipole moments are given by

(HI-21)
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■nq = / -t ^2LY) 4- (I - "^’21 v.
\ c / v2- (III-22)

It is clear from these expressions that if a particle has 

only an electric dipole moment or only a magnetic dipole 

moment in its rest fra,me (i.e. rd6-o or o ), then in 

another inertial frame in which its velocity is V , one 

generally observes both electric and magnetic dipole 

moments, the only exception being when the particle moves 

parallel to its axis in which case one only observes the 

electric or magnetic dipole moment, but v/hen the motion 

is not along the dipole axis, then the electric and the 

magnetic dipole moments are mutually perpendicular. Fur

ther, if a particle has both electric dipole and magnetic

dipole moments in its rest frame such that they are orthog 

onal, then vanishes and since •'n'h is invariant

under Lorentz transformation, .Lq will be zero in. any 

other Lorentz frame and it is possible to find a Lorentz 

frame in which such a particle will have either electric 

or magnetic moments according to whether m-rn is 

positive or negative. It is also seen that if

is an invariant which allows

us to define unambiguously the numerical value of the mag

netic moment of a particle. In particular this should be 

true for the elementary particles-. Having obtained the 

expression for current' density in the covariant form, we
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can. now proceed, to calculate the potential due to a 

relativistic electromagnetic dipole by solving (II-?) with 

given by (III-ll).



CHAPTER IV

SOLUTION OF i-lAXWELL’S EQUATION WITH

A RELATIVISTIC DIPOLE SOURCE

An electromagnetic dipole in motion constitutes a 

source of fields and the corresponding current density 

is given by (III-ll). The general solution of Maxwell's 

equations in terms of potentials is given by (II-7), 

from which the potentials due to an electromagnetic 

dipole in motion can be calculated when (III-ll) is sub

stituted for , i.e.

(tp) S20

Interchanging the order of differentiation and integration 

in this expression, we get

2cL jVx'l [S4(/-Xr);

We may also interchange the order of integrations. so that
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the last equation can be v/ritten as

AM - 2c L 
r v

7x' $,(L (iT)

Now considering the integral in the parenthesis, and per

forming partial integration once, we obtain

which immediately leads to

A^IX) = -2C L jlr "C

where - X • This integral is similar to

(11-12) and may be evaluated using the substitution

, which leads to
x

=-2cL[ ’WyJk. «L olx.

r v J L RaUa I J

After performing partial integration once, we have

- 2 c L
y

XXIAyC"tp) Ry

I, RaUa

S(^) (rv-2)
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This integral can be evaluated immediately giving

An (x) 2c L (IV-3)

This can be written in an alternate form by noting

dL =i .d - _ i-
cU 2.^ 3^ 2 L RaUa

and hence

L
(iv-4)

Performing the differentiation, this can be written as

A/x) = -cL 
V

^i.uv Ry Rv (R/'t. t ^a)}
CLRaUa)5

(IV-5)

where the dots denote derivatives with respect to .

But Rv - - llv , and hence (TV-5) finally becomes

A„(x) ^-C.L
• "V

r^uvRy -YT1AVUv

AlRaM1

m„v Ry{^(R>ilA-^A)}

(SRaM3

This general expression gives the•potentials due to a 

moving dipole whose electromagnetic properties are
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characterized by the moments tensor given by (III-12).

The particular form of this expression depends on the form 

of the tensor . The individual cases of electric

and magnetic dipoles can be deduced from this expression 

and the case of an electromagnetic dipole may be obtained 

by superposition. We shall now calculate the potentials 

of an electric and a magnetic dipole separe/tely.

a) ELECTRIC DIPOLE

In the case of a moving electric dipole (yyi-. 

in its rest frame), the form of the tensor in any

frame of reference relative to which the dipole has a 

velocity v , is given by (III-14). The scalars appear

ing in the expression for A^.(x) in (IV-6) can be easily 

written in a 3-vector form as

2L RxU,. = -y lc (iv-7)

L(RA-X)- cU f , (iv-8)

-A 
where L - R. (1 - r.m) , /  r = RVT^7 1 c

and ol is the acceleration of the dipole. The constraint 

^-o , xvhen written in a three vector form leads to

(IV-9)
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The positive sign in the above relation corresponds to 

advanced potentials and the negative -sign gives the re

tarded potentials. The causality conditions require that 

we retain only.the retarded potentials.

Now the ^-vectors appearing in (IV-6) can also be 

cast into 3-vector form by using (III-14) for .

There follows

L YA = 
2/ 7

-L ? (IV-10)

L (IV-li)

T-. rryt>- Wy = I j V x Q J, -A. lp-V 5 Z XV-12)

where the dots denote derivatives with respect to *x 

These derivatives can be changed to derivatives with, 

respect.to using

d - dtp - X d- 
d't d'C. dtp dtp

and hence

. -x • r -x .
(yj - X- p (fxv) + Y(mv) (IV-13)
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(j'Fh + (IV-14)

where the dots on the right hand side of (IV-13) and 

(IV-14) represent derivatives wTith respect to "tp . Using 

the expressions (IV-7-14) in (IV-6), the potentials 

can be written in an equivalent 3-vector form as

(IV-13)

and.

(IV-16)

Expressions (IV-15) and (IV-16) give the vector and scalar 

potentials due to a moving electric dipole with velocity v 

and acceleration cl , and also take into account the



32

possible rotations or oscillations of the dipole during 

its motion.

b) MAGNETIC DIPOLE

In the case of a magnetic dipole ( = o , m o

in its rest frame) the form of the tensor in the

rest frame of the particle is given by (III-15), its form 

in any frame relative to which the particle has velocity 

v , being given by (III-16), so that the 4-vectors 

appearing in (IV-6) take the form given by 

(IV-18)

r
tol (IV-19)

v/hereas the scalars remain the same as in case of an elec

tric dipole. The dots here represent the derivatives with 

respect to X , and can be changed to derivatives with 

respect to as was done in the case of the electric
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dipole. Using the above 3-vector formss and changing the 

derivatives with respect to to derivatives with re

spect to tp , the general expression (IV-6) in the case 

of a moving magnetic dipole gives

R (R•c^) v
3 3

V x mx m . (IV-21)

=t-R
? c-

R v 
Cc7-

V (R-o.)
"I‘ L3c3‘

m x [ —-—- 
lr2i3

1 5 (IV-20)
\ -t-R

f" e

R

These expressions represent the vector and scalar poten

tials due to a moving magnetic dipole. These potentials 

can be used to derive the electric and magnetic fields. 

We shall now ca-lculate the electric and magnetic fields 

due to a moving electric dipole using the potentials 

(IV-15) and (TV-16) in equations (1-5) and (1-6).



CHAPTER V

THE ELECTROMAGNETIC FIELD

The electric and magnetic fields E and B due to an 

electromagnetic dipole in motion can be calculated either 

by calculating the electromagnetic field tensor

directly using (I--14) as was done in the case of a moving

point charge in Chapter II, or by using the appropriate 

potentials in equations (1-5) and (1-6). The latter 

method will be followed here to calculate these fields 

for the case of a moving dipole. The electric and mag

netic fields due to a moving electric dipole are derived 

here in detail using the potentials (IV-15) and (IV-16) 

in equations (1-5) and (1-6). The fields due to a moving 

magnetic dipole can then be obtained from the dual of the 

field tensor corresponding to the case of the electric 

dipole and those of an electromagnetic dipole in motion 

can be obtained by superposition. Hence we only need to 

calculate the fields of a moving electric dipole. The 

prescribed procedure to obtain fields from the scalar and 

vector potentials is rendered somevjhat complicated becaus 

of the constraint (IV-9) imposed on the potentials. This 

requires that the time t is involved in the potentials 

only through this constraint. Thus in general these
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potentials are functions of the form y, , t j and

since L may be regarded a function of x, u < t we have 

two types of partial derivatives of ip to consider. In 

what follows, we shall use the following notation:

- derivative with respect to X when x 
dx

contained implicitly in t as well as x 

appearing explicitly is varied, yj 

being kept constant;

- derivative with respect to X when y, tp 
X

are held constants and only the explicit 

X is varied;

- derivative of vu with respect to "tp when 
V tp

explicit y are kept constant;

4111 — derivative with respect to the -I con- 

talned implicitly in when both ex

plicit and implicit xJyj are kept 

constant.

With these definitions, we have the following results

. dtf ) (V-l)
dt "dtp di

cbp _ dtf (V-2)
dx "t>X ^tp Jx
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and similarly for derivatives with respect to y and 

Using these definitions and results, equations (1-5) and 

(1-6) can be rewritten as

' E (x,t) - K- „ V4> -v . (V-3)
/ cl ^tp a -btp

B(x +) VxA „ , (V-4)
ct ^tp

where V •=. an^ hence the derivatives

are all partial derivatives and can be evaluated using the 

expressions for A and 4> .

In the case of a moving electric dipole, the vector 

and scalar potentials are given by (IV-15) and (IV-16) 

vzhich can be rewritten as

Using these expressions, the partial derivatives appearing 

in (V-3) and (V-^l) may be evaluated. We first calculate 

and get after simplification
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pL4

CRc

2. (W-)3(P-R) 2. (p-FQ

2

(t>R) i3

t3C3

(R- ct) (V-7)

4 (>-R) (R-cl)

(F-R)(R-^2 z (I3-v)

_ 3 cF-v;(r-ci) 3Ck-R)(R.^)

c

2(^R) -R (v-8)

2_ 
it

22

Pc5

M gives 
U Ip

t3 <?

t — t s. 
T- c

%-

>tp

3(rR)c

Y’-p R
3(f-R)c

Y4 I4

3 U-R) 
x2-^3

3(b-R)(R^;
r rc

3 (^-v)

YZL3

2 ( V-v) b'd

3^'R;(r-v;
r c2-

(F.R)(R-cl; ( 3 (jR)(R'^) I3- R
r c* + tv

Ov)(R-t.)

V?

3Ci'R)(R V)'
I4 c3

3(b-R) ! 3if\p'R) 
fPK t3c r Re

6(b-R)(R.5L) (v.S.) 3 (P R)
Y2 P3 r-3 (3 R A +
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derivatives involved are all

are all constants withand

Therefore we get

(hv; (£.R)(a-X7)

c

211P-V)
t3r cx

which simplifies to

20$

ZCM)’ R

and in the same we getrnanner

Vx A =

c

hence 

respect to these operations.

partial derivatives, and

The evaluation of and Vx A is simple because the

i -1 -S- Tf_L c

(F-rj

2(F-v) v

yzl4

3(PR)

S.V (V-10)Pc3 Pca I

2 (FR)

Pc

(F-v)
R

3(bR)(R-^ 
pRc3

2(b-v) 
Pc

3(F’R)lR-a.)
Pcz

n|
?Q
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Substituting expressions (V-7)> (V-8), (V-9) and (V-10)

in (V-3) and (V-4) we obtain the fields, namely

L(x,-b) 3(v-r; _ 3CF'R)(y-zt;> (p 
y4 L5 c3 c3 ■

_ 3(^v) 3 CP -

^14C L4 c3 t3c3

+ 3CW sCP-R) _ ?-(H) #-R) 1r
f-Tc + E4c3 Pc1 ^c-zJ

["6(ro( R.a) _ 3(P-R) (v^? 3 (P-R) H
[ pc4 " rc4

3 (P-R) (R- 3Y2(P-R) (P'RJ(R.^)
15C5 r C2- pc4 + l3c3

(p.vXR'^) + Z (m; _ 4(hV/ it'R) 

Pc4 X?4CX L5c3 J

" 3(P'R; _ (P-R) 3(P-R)(R-Q-) Z(P-R) _ z(hVy)'li?£.
Xi14(3 E3Rc?" 14c4 E3c.3 Vsc3 j

R

t_R

J_  (R-a;
YZP E3ci

(PR)R^ _ rV
.e5c3Jr fc3 lzc

and
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6CV^)(R-&)

Isc3

3CFR)(.v^) 3(b-R) dY^'R)

Tc4 X4 L5c t4cL

(b-R)(R-^) ("?V)(R oL) (^R)(R-fc) 3^R)(R-^ h-R
pc4 + £4c4 + f4c4 l5c.s + IV

4-25l] vx R 
£3Rcz

1 2(P-R) + (?>.R)axR |=XR |>XV
l3c3 l3c’ J JL3C3 "* llc^ + Ci’c + x’-pc

(^-r;(^yv; (Vxr) (r-^j(pxv;
/3c3 + i3c3 + ev” 4 (V-12)

Expressions (V-ll) and (V-12) represent the most general 

expressions for fields due to a moving electric dipole. 

It is apparent that these fields are not everywhere per

pendicular to each other in contrast to the fields of a 

moving charge.

The radiation of electromagnetic waves is accompanied 

by radiation of energy. The energy flux is given by the 

Poynting vector -S which is defined by

S = (V-13)

and represents the a,mount of field energy through unit 

area in unit time, assuming tha.t at the given moment
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there are no charges on the surface itself. It must be 

remembered, however, that the above definition of Poynting 

vector is not a mandatory one. Since this vector is in

troduced in the electromagnetism only by way of its diver

gence, the curl of an arbitrary vector can be added to it 

without altering the physical facts of the case. However, 

this definition is adopted because of convenience, par

ticularly in the electromagnetic theory of light. The 

total energy radiated can be calculated by integrating 

the normal component of S over a surface of a sphere 

of infinite radius surrounding the sources, and hence for 

this purpose we need to use only far-fields. For large 

values of \R \ , only terms proportional to 1— are sig- 

nificant, as the other terms in the fields do not contrib

ute to the surface integral. Thus the far-fields can be 

obtained from the general expressions (V-10) and (V-ll)

by retaining the terms proportional to -4- , that is

[ R4 C3 R^c4

3(PR)(R-^

R.4c3

f(p.R)(R.t) _ 3(^R)(CaL)Z (b-R)(R.cL; hR*

I R3C4 R4 cs R3c4 Rtc3J

(h-R) V 1
<------ —---------- -f- -------- y IX/ — _____ ____________ _ ____ _ . ,
[ R3c4 Rrc3J Rzc3

P C-
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and

R^c4
1L5? a2(M

R3 c3

R^c4

2-> _i _>
( (h-R)(R.a,) , (h-R)(R.gtj 3.r)(r.i)' 

R4C4 H
5"5  “A f V X R
5c5 RV

Ar + (R-olj ar)
R^c1 R3c5

(V-.15)

where we have used, the fact that for large values of |R| 7

R From the expressions (V-14) and (V-15) it is

obvious that

Bc = _ LeJsK = ^xe 
f VRl

(V-16)

i.e. in the radiation zone, the fields E and B are 

perpendicular to each other and to the direction of propa

gation. Using (V-16), the Poynting vector can be written

S = S_ \E |T 
4/r 1 (v-17)

Since is proportional to — 
f R

S is proportional
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to -Ur , is in the rs.dial direction, and falls off as — 
R2-

in agreement with the inverse square .law. Its explicit

form is

47T

_x _A_> _» 2

+
R^c6

R4c4
1 (UR) (R-U') 3(Ur) (R-n,)4

R6 c& + R8 c8

^(UR)2 (R-cL)7" (R-ti))

R7c7

2( b'-R) (Ur) (R-"^) 2 (b-R) (Ur) (R-U) (R-a)l ( v2" _3_ 4{Rv)
R5c5 fUg6 j x cZ Rc

(b-R) (R-a)2" j y7- _ 5 _ 6(R-v) I cC S (R-U) 4(Ur)
r_<-cc ( c? Rc- J cl 1 R.4c£ R^c4

I2(UR)(UR)CR'U) ~

Rsc5

°1(-U R) CUR) (R-Uf

2 (v• U) W-R) (R-cl) 3 (U-R) (R-U)(R.U) 
c2- B? c7 R6 c4

sCP-R) Up-r) (r.£)
R5c5

2 (.Ur) Cur) (.r-U)
Rscs

2(UR)2(rU) 2(RR)CUR) 1 , 2(v.a)J(UR£(.R-U) (Ur)CuU 
r5c5 + R4c4 j [ R5c5 jUg4
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3(?-R)T
Rfcc6

(P'R)(P-R) (R-cu) ) + 2 (M) (F.R)(^'£)(R-5V)

R5c5 J C1 R5cr

. _i . 3
2>(pr)

R6cfc
("P-R) (jt aj

R5c5
(p.R)(R(t) 1 2(p.v)Kp.R)(R.^)

R4c4 _) C-1 [ R4c5

3(,P-R) (R- + (P-R) (R<P-R) 1 2(oL,-a)) 3 Cp-Rf (R-a-)
• Rsc5 R4c4 + Rac? | c.7- t

, 2(P^)(RR) 1, 2(p.^) 5 3(p.R)CR-^-j1' , 2#R)(.R-^)1 2(p-^

R4c4 J C? I R?c? R4C4 J ch

j'2 (P'R) + 3C"P'R) CR’^-) ? (?• R?(^'"^) a3"'kV1V)
I R3G5 R4C4 J4" RAc6 . ■*■ R4 cC

+ ±±_ + 2.CP-R)(p-£) (R-»-) t 2 (P-R)(P-^)

R^c4 R4c6, R3 c--5

(V-18)

This is the general expression for the Poynting vector S . 

Having obtained the general expressions for potentials, 

fields and the Poynting vector, we can now discuss some 

special cases of this general problem.

SOME SPECIAL CASES

(1) Constant Electric Dipole at Rest:

The potentials and fields for this particular case
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can be obtained from the general expressions of the poten

tials and fields by

hence we obtain

A(x,t)

(_X,t )

E

B (x,t)

S (x/t)

letting CL - ex = v =

= O ,

_ V -R.
R? 7

- _ £_
R5 Rs

O i

= O .

- o and

(V-19)

(V-20)

(V-21)

(V-22)

(V-23)

These results are in a.greement with the results ob

tained by elementary methods. The Poynting vector is 

identically zero everyivhere, indicating that the constant 

electric dipole does not radiate energy.

(2) Oscillating Electric Dipole at Rest:

We can obtain the potentials and fields due to an 

oscillating electric dipole at rest from the general ex

pressions by substituting a, - g, = v - o vzhich then 

reduce to

(V-24)
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(V-25)

3(^-R) R
Rzc R4 c

(V-26)

(V~2?)

(V~28)

These results are also in agreement with other more

elementary treatments. The Poynting vector is along the

direction of observation, indicating that the energy flows 

along the radial direction.

(3) Constant Electric Dipole in Uniform Motion with

Velocity Parallel to its Axis: ( j3 II'/)

The potentials and fields for a uniformly moving elec

tric dipole are obtained from the general expressions by 

letting cL - o and hence vie have •
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(V-29)

(V-30)

sCp-r)

3CP-R)

Y2 fc Ff<cz

S (X,t) - o . (V-33)

In this case the Poynting vector vanishes and hence 

the uniformly moving electric dipole does not radiate 

energy just like the case of a uniforirdy moving point 

charge.
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(4) Constant Electric Dipole Moving Uniformly Perpen

dicular to its Axis: ( I3 L •

In this case the expressions for potentials and fields 

reduce to

(V-34)

(V-35)

3OR) (V-36)E(x,t) -

B(x,t) - 3CER)-----

SCXjt) ~ o (V-38)

Here again the Poynting vector is zero and hence there 

is no energy radiated.

(5) Oscillating Electric Dipole Moving Uniformly Parallel 

to its Axis: (|= li v )

For such a dipole the expressions for potentials and
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fields reduce to

(H)

I2^
(V-39)

(V-40)

ri5
3 rf-Vj 

rt4c yz-

3C?-R)RL _x_3Y""R(bR) W'V) 2(M;r _1-
TFT + "FF? + FFRJV

V R _ 'V R (V-41)

=
' 3(?'R)
\ Y^c

4 (h-v; 3Yz(?-R) 2 (

£3rc pc2

fxR ( t=xR

ee +" y2Fc "
Vt_s (V-42)
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S(x,.-n- C Ff ( v2 ] 2(R-V)) .

471 R^c4 V RC/ R3c5

b_R. (V-43)

(6) Oscillating Electric Dipole Moving Uniformly Perpen

dicular to its Axis:

(V-44)

3(^R)
Y4l5

3(jp'R) ■ V' R 7 f 3R. Iv-R)
r2^c -t- j
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B(x^t)
Y4L5C

(P-R) 1^_"IVxR

(V-4S)

(7) Constant Electric Dipole Moving with Uniform

Acceleration: (l3 11 v)

Pc’
, (V-49)

tpa-RE

(v-50)
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3(R'R) _ 3(RR)Cv^) +
L r^c7- Y4t5 t4c3 L4c?

3(£vJ + sC^ RjCR'^)* 1 _ SCMXR^) _ "?■ 1 r

l4c4 Pl4c3 PcxR pc3 J

J 3CF r) _ pR 3(.F-R)tR^) _ 2(M)1 p.-
I pRcT pc4 Pc3 J

. f-l4c’ Pc4 14C3 pc1- J

'" _ 3CM) + 3(^R) + 3(M) Ck-^
fpc3 |4c4 + ^5

(F-v)(R'a,) zCF-v) 4(F-v) "F-"^ I

6(F-R) (R-^) 3
r c4

3 (f-R) <R-cL)
(5^5

3 C?-R) 
Y4 tSc

(F-V) (R o.) z (F -"vj
Pc4 + Yx Pc'-

F-F 4.(r-v) 1 , 3(Fr)— -— — —---------- ? y x ---------------------
P c3 P R C7 c^

4- 3 <Fr)(r^)
Pc4 ’

X-- t-R
I c.

(V-52)
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R' C47T

(V-53)

Moving with Uniform Accel-Electric Dipole

A (X t)

■>

£O'R/1 (R-Cl-)

26S 3

h-Ryst^'R)Rv -
S'^S

(v-56)92-JI3

(8) Constant

eration:

8

•>

R6, c8

8 (P-R)X(R a84

3(h-R) (Ret)"- 
«5r.4-

J tf= Z

3(.v R) 3Xr;(R-^)2'1

(p-R)(Ra.)^

2 (R v)
Re

3(h-R) 
y4nS

, 3C>R)Xa-J
*r *------------------

04-^4
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v^5-3 c4r ih5c
s(FR)(R-^j2" .VxR

, i3Ck-R) 
n ¥iv

s^-RJCR-g-; ■

14C4
■ G>x R -f-

"^XV

n3c
(R.cuX^xy^1

pc3 7(v-57)

c
4tt

J (F-RMR ^)7"

Rcc8

Wr? (R.a.)4 

R’c2

(9) Oscillating Electric Dipole Moving with Uniform

Acceleration: H v)

(r r)(R-5L)
Pc3- '

(V-59)
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"h-R(hR)<^(x3t) - (V-60)■>

- t- R-T c:

6(^.R)(R^) 3CP-R) _ Siw^v-U) _ seV’V) 
y'-Fc1 y4F pc3 y2'Fc

3(Tr)(R'^7" 3(Rv)(R-^) , sQV’R) , 3C^R)CR-<^)----------------  —-----------------4------------ -|.----------------
Fc4 fi4c r*c3

2(£-v; • a/ P-R- 1 _y 6CP-R)(R-
f 2... " Pg" J T' ....

_ SVpRXv-^)
Fc4

3 Cp-R)
Y4 Fc

3(hR)CRX; 3Y(p+ + ■RJ $X 
c- 1 pFFc5- r

, (to (R o,;
*t- *------------- -r (R.y) (R- 2 CF-v) _ 4(I-V) + ±3 w

Fc4 Fc4 Y21V PRC- rc J

J 3lto _-1^ + 3(F.r)(rX) 2 (R-R) _ 2(to^ p_3 
---------- > r\ Ou

I F1V Fc4 L3c3 J

? _ (R-a)p _ RP R~P , (V-61)
Yl3 r<2- fstv Fc3 Pg- J -V- t R



6 (l=-R) (R'&) _ 3(>R)(y-51) + 3(^R) +
YTFc3 64c4 x4^ l4cT

(Kr)(R.o^) + (h.v)(R.^) _ 3C^R)(R-^ + + 2. C~F^

pc4- l4c4 pc5 B3 X1"!4^

,V 3^R) , 3C^R)(^-») . 2^-R)
----  -------- L V X K H- 5 —\"i" ;—T~ 

pRc^ J [ X^Vc1- l4c4 pc3

2(R-v) Zytxg v XR + VxR (^a)(F xrH
Pc3 j pcz Y^-pc + t3c3 7 (V-62)

-t-^V -L c

S(^Rf (R.^)4

. R8c8
GclMtME^Q (?

R4c4 p?c& Aci

2(R-v)\ 2(bR)(tR)(R^) /Vz ? 4-R-V> CjAlAt
Rc y XC-2- Rc /+

_x . 7_ % *L .tx _x 2 _i —s> t. \
f-Y? _ _ 6CR-3 + (W'R) <R-^) + 4(R-R) + i2(k-R) (]p-R)(R-a.)j ct 
kcZ Rc / r6 cc R4c4 rsc5 /

/ -j. *L _x 3 __a._i.JLx -2. •• _1
1 2(o,-v) / ^O-R) (R-O-) 3(R'R)(^-R)(R a-) + 3(_^R)C'P-R)(R-^

C2- R7 c7 R6 c& R^C5"

t C(H)d-R) (R-g-f + 2 IP3)\r-2.(F-R)Cb'R)\ 
r6c6 + r5c5 b3c4 y

z(£v) / 3("?-R.)(R-^)3 (R-R)(R- (Pr)(R'^)^ g (rx)
'c^ \ R6 cfc + Rscs p4g4 / c-2
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2 CP-£)(£•£)
R.4c4

(v-63)

Acceleration:

(V-65)

3Cp-R)3(M)

G(F-R)(R.cL;i3Cp-R)(R-£) 3CP-RJ•t- 5S^3

9

r c.

R1C'1

(10) Oscillating Electric Dipole Moving with Uniform

Cc3

3 (^.R) (R - (p-R)(R^)
R5cs + R4c4

(RR) ?
nrr R

,P-R) 3Qp- K)tR-^)^ . (£'£)

R3c5 r.4c4

_x — , 2
3.(R R) CR.^)

PS r4

A 2CR’^ ( 3CRR)(R-^f 
rV / e- \ r5cs

(V'R)^

P-C2- IC

•
<bcx t) - ^•R (^.r)(r:.5L)

j Ly —- I ' 'V
^c1
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3 (P R) + + (P-R)(R.^) + CP'R.)"lp^ j3(P R)(R-ct)
y4rc t4cx Vc4 + Pc1] I Pc4

3 (P-R)
PPP

-v 2CP-R)
Pc3

Roz J__  (R-^) >
PP + pc2 /

tp=t-Rr e

(V-66)

6cx,t) = 6(pRj(R-5t)
y^t^c3

3 (P R) 3^(PR) 
^4lsc IV

(RR)(R. o)) _ 3(p.R)(R.^)T

Pc4 lsc5

^■R

Pc3
R

3(P’R) + 3(lp-R)(R-^ 2(P-R) "1 £xj[
. y^Pc1 Pc4 t3c3 J IV

"pxR V xv (RX) (V xR)
YzPc + XzPc + pc3

(V-6?)

■
- c Yi y8(RR)z(R-^)4 

47V
Vr)z

R4c4

6(pR)(pRXR^fj

RV /



_ q _ + £ / R)2 -^)

4 ("P'R)2' + )2(b'R)(P R) (RA) + 2(v-^) /)XR oJ 
R^c4- Rsc5 / c2- \ R7 c7

RCRR)(RR) (R-^)2" + 3 (P'R)CP'R)(R-^) _(_ 2(H)" (.R-o-.)
R6 Ge + RS c.5 Rses

2(RR)(hR) A (R-^CP'R) ■>•¥' (FV)(R-a.)
-------------- ------ 4. ------- ----------4. —---- --- — -|- ---------------

(V-68)
■tp=t-R

r Q

(11) Constant Electric Dipole in a Circular Motion v/ith 

its Axis Perpendicular to.the Plane of Orbit:

A(x,t) = (V-6g)
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■) (V-70)

6(h-R) (R-o.) 3 CV-R) (IP R) (R-o.) 3C^R)(R ^)Z
l4cs lSc^ J

S G (PR)CR-g) 3CP-R) , 3(h'R) (R'^l o  
[ K^c3 /4lJc t4c4 L5^" j

V 3(P-R) _ (?R) + 3(.FrJ CR-^Ir^ _ S_>_ (R- 5-)V
I K2 Me1- MRc2- t4c4 J ULM l?c?

(^■R) R a, 
V^ ■>

t -t-R
f C

(V-?l)

(vxr) ^(b-R) (R-o.)
Yx L5 c3

(yRKR-ii) 3C?R) (R ot)2"

Me5

3(^-R) 
r4 l^g

3 O R) 3Q R) (.K-o-)^ + (£" ( CCx
M C4 J t3 C.3

itixl _ <>±L (a, *V) + (^2_ (bxV) + ^2^1 p (V-72)
Y2Pc l3c3 k l?e’ vr J Me1-

-It 
p 0
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—V / -x K *2- j. * 2. v ^ */ 4
S(X t) ]_ 2(R.Y)\ m>-R) (R.ct) ^(P'R.) (R-^J

47T I RC / \ CC r8c8

CCP-RXR^-? (R'^)A (P'R^Ut^)7"(X, + (p-R? (a>.^)

R? C? ) R€ c8 R4 c8

c R6 cfc
t? = t-R

These expressions at the center of the orbit reduce to

A <x,t) = o , (V-7A)

^CXjtJ - ° > (V-75)

f (#,t) = -[ ) (V-76)

L V , R 2 Jtp.t-R 
c

6(7,7) = [ . + + _±X.l . (v,77)
i2r3c feu k 1

f f-

(12) Non-Relativistic Approximation:

The potentials and fields in the rest frame of the 

dipole can also be derived from the general expressions 

by letting Y. > o , and hence in the case of a
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constant electric dipole, the expressions for potentials 

and fields become

(V-?8)

(V-79)

+ 3CbR) + S^-RXR-^)1 _ IV-o-J
Rsc2 Rs + R.sc4 )

ZCt-R)
R’c1-

3(ri<)(r-£;A
R3 c4 )

£_

R3 R3c2
(v-8o)

3(b'R) 3(M)(R-a.)

R4g2 R4c4

S(x,t) -
c ( RCip R)7" (R-a-? QU

4n > y r6 cs

2- . 4

R8 c8
. (V-82)

t ^t-R
f G
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This vector has different values depending upon the orien

tation of )=■ and the direction of gu . The total povzer 

radiated can be calculated as

dP - R2 S- n , 

dll
(V-83)

and hence the total power radiated (as observed in the 

rest frame of the particle) can be obtained by integrating

S • n over the surface of a sphere with center at

the particle’s position. We consider two cases:

(a) When b H ct :

In .this case the Poynting vector becomes

8

R

and

- PPower radiated

t = t-R
P c.

Co Cos^B

27T a

Sin 9 de
An c?

o O
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which on performing integration gives

P (V-85)

The Poynting vector itself

7T and has maximum value when

(b) When 1_ Ou •

35 c7

Ls zero when B - o, /_l and2.
6 C°£' (JI ) ~ | ’

The Poynting vector in this case reduces to

which again is zero when 0 = o, K and n and has maximum 

value v/hen 6 = ~ 371 *

The total power radiated is

P = Jr2" 5-r dlxr.

27T .7. 4. cr -n
= r Q- Sm 0 <os e

I 47V c7
Jo "a

which after integration becomes

(V-8?)



CHAPTER VI

CONCLUSION

Considering the electromagnetic dipole to be of such 

small dimensions as to be represented by the Dirac delta 

function, the electromagnetic potentials and fields have 

been calculated. Throughout the treatment of the problem, 

it was assumed that the components of electric and mag

netic dipole moments form a tensor . This assump

tion is further strengthened by considering the energy of 

an electromagnetic dipole in an external electromagnctic 

field. In the 3-vector form the energy is given by

E+Yn«E>, (VI-1)

where ja and m are the electric and magnetic dipole 

moments and E and G> represent the external electric 

and magnetic fields. The covariant generalization of 

this energy term can be written as

j L L • (VI-2)

It is quite evident from (VI-2) that the energy of an 

electromagnetic dipole is a scalar quantity and hence is 

the same in all frames. Thus all experiments will produce 

the same measured value for the magnitude of the dipole
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moment independent of the frame of reference. Because 

the dipole moments are not scalars but 3-vectors in the 

rest frame of the particle, their apparent orientation 

will depend on the motion and in general will change along 

the trajectory. In particular, dipole moments are trans

formed into each other under Lorentz transformation. The 

invariants of the tensor indicate that if and

yy) are orthogonal or have equal magnitudes in one frame 

of reference, they are orthogonal and have equal magni

tudes in all frames of reference.

Considering the electric and magnetic fields due to 

a moving charge and a moving dipole, we notice that wheres

in the former case the electric and magnetic fields are 

everywhere perpendicular to each other and to the direc

tion of observation, in the latter case, however, this is 

not so, the fields being mutually perpendicular only in 

the radiation zone.



APPENDIX

EVALUATION OF A^) - 2e d-'t S (L ;

Let - 2L Fv - ( *>. - XAP)2 > and

we may write the above integral, as

A^Cx) - 2 e f cU IL (hf) ^>(Z) .

J cL^ r

But

drA zL Rx T-. - 2 L Rx LU D
ct^ X A dr A A

and hence

<dr _ ______\____
” 2LRxUa

Substituting this in the above integral, we obtain

£ (A) cL^ .

This can be integrated immediately to give

y.(x) -e
UA ap)

L Ra tXx
2

^=0

which is the expression we have in (11-12).

hence
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