THE POTENTIALS AND FIELDS O AN
ELECTROMAGNETIC DIPOLE IN
ARBITRARY MOTION

A Thesis
Presented to
the Faculty of the Committee on Physics

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Abdul Sattar Khan ILodhi

January 1969

4544332



ACKNOWLEDGMENT

The author wishes to acknowledge with decep appreci-
ation the continued help and highly valuable suggestions
given by Dr. R. H. Walker, who has becen rnore than esn ad-

visor during the preparation of this work.



THE POTENTIALS AND FIELDS OF AN
ELECTROMAGNETIC DIPOLE IN
ARBITRARY MOTION

An Abstract of a Thesis
| Presented to
the Faculty of the Committee on Physics

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Master of Scilence

By
Abdul Sattar Khan Lodhil

January 1969



ABSTRACT

An electromagnetic dipole in motion constitutes a
source and gives rise .-to an electromagnetic field. A
covariant expression Tor the L-vector current density is
derived for such a source and the resulting field equa-
tions in terms of a L-~vector potential are solved using
the Green's function. Potentials analogous to the Lienard-
Weichert potentials are obtalned for the electromagnetic
dipole in motion. These potentials are used to calculate
the general expressions for the electric and the magnetic
fields due to a moving electric dipole. Using the expres-
sions for the far-~filelds, a gencral expression for the
Poynting vector is obtalned. Finally, from the general
expréssions for the potentials, fields and the Poynting

vector, some special cases are derived.
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CEAPTER I
INTRODUCTICN

The basic laws of electromagnetism can be summarized
in the differential form by the four Maxwell's equations:

A

V'E = 4mn¢ (I-1)
VxB = &Cr\_f +J€%§ (I-2)
VX E = L g_”é_ (1-3)
VB o=o. (1-4)

When combined with the Lorentz force law and Newton's
second law of motion, these equations provide a complete
description of the classical dynamics cf interacting
charged particles and électromagnetic fields. The solution
of Maxwell's equations, which are coupled first ofder par-
tial differential equations relating the various components
of electric and magnetic fields, is simplified by the in-
Y

troduction of a scalar and a vector potential, <p and A ,

defined by
(1-5)

93)2
il
4
X
>

%—& -V o, (1I-6)



and subject to the constraint Lorentz condition

oo (1-7)

Using these potentials, the Maxwell's equations lead to

—_

the following equations for A and &

VA _ LYA - _4r T, (1-8)
S C

v1<}> _ 13 —4ng (I-G:
c? 312 - ’

These laws can easily be cast into covariant form by
defining a lU-vector potential Aﬂ, = (&, 1p) and a h-vec-
tor current density q; = (f; 1¢g) . Using these two
h.vectors, equations (I-8) and (I-9) can be written as a

single equation

Y oAw o 4m g (1-10)

The Lorentz condition becomes

Z Ay o5 (I-11)
> 0%y

the first two Maxwell's equations take the form

>F;&v - 41 J I-12
; 2%, ¢ I ( :



and the last two equations reduce to

}F;A.x/ }F;\u_ )Fy)\ - O
% TS Tl (I-13)

ﬁ;v is a completely antisymmetric second rank tensor known
as the electromagnetic field tensor and is defined in terms

of the l-vector potential A% by

F _ oA, - )AM 5 (Imlu)

PYT ¥ 2%y,

its explicit form being(l)

[ o B, By, aE, |
F}—M} _ -B, 0 By 1E, (£-15)
B_y - B, ¢} "'Ez
__'\.Ex —’LEJ —!LE_L 0

The U-vector potential ;»L due to a given charge and
current distribution can be evaluated by solving (I-10)
and the.fields can be obtained éither by equations (I-5)
and (I-6) or directly by the equation (I-14).

This procedure will be followed to derive the exﬁres—
sions for the electromagnetic potentials and fields of a
particular system of charges and currents in motion., This

system of charges and currents is assumed to be of such



small dimension that it can be represented by Dirac delta
function and the distribution of charges and currents
within this system 1s such that the net charge is zZero.
Such a system will be termed an electromagnctic dipole and
will be characterized by an electric dipole moment F‘ and
a magnetic dipole mcment ™ in its rest frame.

The electromagnetic potentials for such a system were
obtained by Bialas(g) using a technique originall& due to
Lorentz(3) and also by representing the sources by singular
distributions of charges and current. His first method,
however, is not rigorouvs and the calculations have been
carried out only to first order of approximation. In the
second method he uses the 4-dimensional formulaticn analo-
gous to the one presented here to derive the potentials of
a moving dipole. ILater in the paper he derives expressions
for certain properties of the radiation field for a re-
stricted class of motions., An excellent account of this
problem is given by Eliis(u). His approach is entirely
different from the one presented here. He describes an
electric dipole as two equal and opposite charges con-
nected rigidly and calculates the potentials and fields
due to the motion of éuch a system. The history of the
dipole in L-gimensions is described by a thin "ribbon" of
constant width whose edges are the world lines of the two

charges. Later in the paper, he discusses the rediation



from the dipole for certain cases. He gives no discus-
sion of the analogous magnetic dipéle problem.

In the present treatment of the problem, equation
(I-lO) will be solved for general ;ﬂh as an integral over
a Green's function. The Lienard-Weichert potentials will
then be derived for a moving charge and an electromag-
netic dipole. These potentials will be used to derive
the fields and the general expression for the Poynting
vector will be calculated. Some specisl cases of this

general problem will then be discusscd.



CBAPTER IT
SOLUTION OF MAXWELI.'S EQUATIONS

The fields can be obtained by solving lMaxwell's equd~
tions directly. However, instead of solving these coupled
eguations it is more convenient to obtain the potentials
first and then obtain the fields from these potentials
using (I-5) and (I-6) or (I-14), 1In terms of the lk-vectcr

/ML, Maxwell's equations lead to
2 .-
DA, =- 45 J. (£I-1)

subject to the condition

Equatioﬁ (II-1) can be solved either by direct integra-
tion(5) or by the more physical approach of constructing
an aprropriate Green's function and invoking the super-
position principle. The latter method will be adopted
here.

Assume that the required solution of (II-1l) is the

superpcosition integral

A = 4 [ Gy ) (1r-2)



-~

/

4 , ,
where d.x = cfx'dx; 5 x = ct and C;(x—x) is
a Green's function. Substituting this solution in equa-

tion (II-1), we find that G&(x-x) must satisfy

2 . ,
O G(x-%x) = - 4m § (x-x) , (11-3)

vhere 54(xaxﬁ = Sg(?-ij $(x,-x,) . Equations (II-2)

and (II-3) insure that our proposed solution (II-2) satis-
fies the Lorentz condition (I-11). This follows since we

have |

- 4 4 ,- —_
> DAm - _% 7. EL, S‘A,x Cx(x—xj qﬁﬁxﬁ )

On the right hand side, the variable of integration is x’
and hence the operator Z::%— can be taken ungder tha
o 9%

intezral and the last eguatvion can be written as

a4

RIS U B AU YR O
® X, C o % !

since JA(XS docs not depend on X and hence can be

treated as constant with respect to the differentiation

with respect to X . Now Ci(x-—x) is a function of (foQ

and hence

6 _ G

: }xM DXL

Therefore the last expression can he written

QAL = L fo/ 2. LTSN x) .
g X Cj R *



Performing partial integration once, this becomes

7 A - oqu/G(x_x') 7, %J/‘*Oi) .

)
C 24
s DX | , M XL

)DL

The right hand side is identically zero because of conser-

vation of charge and hence the solution (II-2) satisfies

the Lorentz condition regardless of the detailed form of
& (x——xj .

The solutions of (II-3) satisfying causality condi-

tions(G) )
X,mXp £ O
C;,(wal) =0 o (TT-4)
/
X=Xy > 0
are
] , )
Gy (=) = = S(LxR) (11-5)
- / — - p) ,
where R =|R'|=|%-X'| and  §, = %o-»x, = c(t-t) .

- [ . [
Here G_(x-x) is the causal and G, the anticausal Green's
function. For a general solution of (II-3), we can take

e linear combiration of the two sclutions G, and Gr_ , i.e

G(X—-XI) = &+ ~ G

= JQ_/[S<%D+R> . S(@,-R)} .

The sum of two delta functions appearing on the right hand



side can be written as a single delta function(7)
-~ ’ 2 2/ v
G(x-xy = 2 §(€-F). (II-6)

This Green's function, wiien used with proper J%(xﬁ
in equation (II-2) gives the sum of the retarded and ad-
vanced potentials at once since all equations are linear.

Thus

Aﬁ(x) = %J X S({;- Rl’) J/A(x’) = A:\(x) + A;A(x) .

It should be understood that only the retarded potentials
are to be retained after integration. The delta function
appearing in the integral can be written in another con-

venient form by noting that

nd

2

Y 2 (N = 2, ¢ S @
%o Ro= (-t -|3x-x) -~ZP:(><}(;><}A) = = 2R
We then have the simple result
: 4 v 2, 7 . -
A#(xs - %S O x S(z; R, ) Ju ) . (II-7)

Eqﬁatjon (II-7) is the general solution of (IL-1l) giving

both the retarded and advanced potentials due to any |

charge and current distribution JFQXJ . To illustrate
the technigues we shall use for the dipole problem, we

will now obtain the fields of a moving point charge.
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In the case of a moving point charge, the charge and

current densities are given by

C(X) = e 83(52—32‘?) (1I-8)

\T(S?) = eV Sa(i-R‘P) (II-9)
;Q being the instantaneous position vector of the par-
ticle. We can write equations (II-8) and (II-9) in L~
vector form by recalling that the space part of the 4~
vector current density is :f and the time part is the
charge density ¢ i.e. J ()= (T, tcg). With this defi-

nition the above equations lead to
J' — . gs — Y
fJx) = e(Vv, &C‘) (X=X.) 5

which can also be wrlitten as

’ 3 . .
Ju(x) = e W, & (X-%p) {1 = e (I1-10)

where UV*: * (V, +c) 1is the Mh-vector velocity of
%
e

the particle. The last equation.can be cast into another
form that is more useful for our purposes. Further we
shall explicitly demonstrate its covariance. We can write
(II-10) as

. J}L(X) = e fim e u, g%;jf,) S(t-tp) dt, ,

c*
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where tF is the time at which the particle is at the
position '§P . From the properties of delta functions

we know that
S(t "tP) = C S(ct_ctP) = CS(XO—XOF)-

Using this result in the integral for JF s, we have

J,,g(x) = ecj o W 33(75—?}) §(x, —%yp) dbp

We now paraneterize the motion by the particle's proper
time, 7T , and consider the L-position to be an implicit

function of T . Then

Boon = e [[IT8 90250 5oy e e e

ct dT

But since iﬁr N , Wwe have
e z
‘I_ %/;_L
o T~
J,L&Lx): ecjg(x—xf,) U.,& (;L"'C ) (1I-11)

From this last expression 1t 1s clear that J;(X) is a
h-vector.

The well-known Jdienard-Weichert potentials due to
a charge in motion can be obtained from (II-7) using (II-11).
Substituting the right hand side of (II-11) for J;_L;) in

(II-7), we have
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/A\/“(x) = ZCLS cLArlx, g(};\,fg:)[ecj d. uﬁu},) g(x—xg(rc)x .

If we interchange the order of integrations, this becomes

Af* (x) = zejolﬁc X j A W (t) 8(7% Rl,\) g(xﬂﬁ»)X;

We may now carry out the integration over the primed vari-
ables to obtain

Aluax) = zejm W () S(\%RD : (I7-12)

This integral is worked out in detail in the Appendix

and the final result is

'A/ALx) = - e[ UL“ Cte) (I1-233
}; Raly 1

=0

2.
where JS= >, QA.
A

In 3-vector notation, this expression for the potentials
reduces to

Z‘(f) = € ——‘ﬁ—:‘—“ (1I-24)
R\~ B-7
t = t.R
P C
b3y = e X&;____ (11-15)
R(u;{:ﬁ) 4oL R
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- R

where 3= n= R = unit vector along R , and

°K¢

IR}
R=(X-X,) . Equations (II-14) and (II-15) are the

Lienart-Weichert potentials due to a moving charge e .

The corresponding fields can be obtained from these
potentials by (I-5) and (I-6) or the electromagnetic
field tensor can be obtained directly from (I-14). The
latter method is simpler since we can avoid the algebraic
complexities of differentiation with a constraint and,
hence, will be followed here. Ve have

F — BA;/ ' EAM

PSS T YK

BX/LL )Xl,

with A, given by (II-12). Substituting in the right

hand side of the above equation yields

F = 2 _a_
Y Q%X

/u

Jo’."t w, Sy — o Sa\rc PERYES

D%y

Assuming that we may interchange the order of integration

and differentiation, this last equation becomes
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F;_A.V = 2e SO{'\CX.Z u,, R/~ —'ZL,(/&RV] 8(5)

-

Since 4 is an implicit function of <« we may write the

above integral as

Fow = ZeJoL»c[ZQLL,Rﬂ —LL#R,J] dr 4 5(s).

B
However étg - _\ , and hence we have
a4 27, R, U,
A
Fow =- 22 | de|Bnlly - Ry el & Sa)
. 7_' R)\ u)‘ OQT

Now performing partial integration once, this integral

vields

Frw = 2efdr | d Rty ~RoU TH 54
" CJ in LRt ﬂ ()

= _ ZQSQ_IMW—&W]S(X) dt Jg
P —
: &T ZR)‘L(,\ d2

= —e| & RuuvauM] 8 g,
Clhc ZR)\u)\ Z—'Ra—uo—'
By a

which can be integrated at once

Fo = e ' d i'Rvuw - R#liv }
Z Re U(;r d Z;- Ry W,

s ;8:0
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Carrying out the indicated derivatives gives the covariant

form of the field tensor, namely

F - e (LMRV— uv RM L (Rvu}‘- _'Q/“u”) (C2+ ;R)\ UA) (II~16)

}J\v - 2
L (Law) (Lrw)

We have adopted the notation of a dot representing differ-
entiation with respect to proper time. (II-16) is the

final expression for the electromaénetic field tensor due
to a charge in motion. Using (I-15), this can be written

in 3-vector form:

E}iﬁ)::a Qijgﬁﬁiil_ | {_E&_._ _ gi:)ﬁfi:élj ,» (II-17)
g.R) | 7 B

R(1-E5) R (1_g=) T I
e o ) ( t-t.R
P c
Bty . o BxA0-g), 1 s5ud |, & Ba)] . .
{ Rl(;_ﬁ.ﬁ’P + R(_Zi ('—ﬁ-?\)L + (\—E-?\‘)}} (11~18)

_ R {f"{’%

- mxt
These are the fields duvue to a moving charge. It is in-
teresting to note that in this particular case the mag-
netic field is everywhere pefpendicular to the electric
field and to the vector Ei extending from the particle

location at time th 1. R to the field point.
.’ C‘
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We shall use the same technique to obtain the poten-
tials and fields due to a moving eiectromagnetic dipole.
But first we need an expression for J}L corresponding to
a moving electromagnetic dipole. The next chaplter deals
with the derivation of a covariant expression for current

denslty corresponding to dipole sources of the fields,



CHAPTER IIX
THE DIPOLE AS A FIELD SOURCE

In the rest frame of a particle having an electric
dipole moment F and a magnetic dipole moment W , the

polarization and magnetization vectors P and ™M are

given by
—3 R . N 3 R - \
P(X) = B S (X~ %) (IT1~1)
M) = m (X -%) (III-2)

where %, 1is the position vector of the particle. The
-4 —
two vectors P and ™M are equivalent to charge and cur-

-3

rent densities ¢ and J given by

) R __\ - 3 s o
f(X) = - NP = —V‘LAP é(X—XF)l (III"B)

= - —_3 3 - -
JIxX) = ¢Vx™M = C ‘Vx[m %(x—xP)]_ (III-4)

However, these are not written in covariant form, and
hence are not convenient to use in their present form. In

order to find the correct covariant form of (III-3) and
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(ITI-4) we notice that, as is known from the macroscopic

formulation of electrodynamics, the fields P and ™

form a tensor D4PV given by(8)
B ]
O Mz —M), 4,8(
P4 -M, My R
By o=
My -Mx O rF
-t -if -LF o

This is a second rank completely antisymmetric tenscr
whose divergence gives the L-vector
Juxy = ¢ ; ngxw - (111-6)
¥
Upon expansion in three vector form, this can be shown 1o
be the covariant form of (III-3) and (IIi—M).
Now from the fields P and ﬁ% , we construct an

array defined by (IILI-1) and (III-2), namely

M S(R%,) . (T1L-7)

It is obvious that if My, is a tensor, then w,, is not
3 - -— . .
a tensor because S(X_xe) is not a scalar, or vice versa.
: 3 e . . -
However,J);ﬁ?ﬂg(;iXF) is a scalar, and if Muy 18 taken

to be a tensor then

Muy = m Hv\[’“ S(;( (I11-8)
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. . / —
suggests that m,, is also a tensor. Hence if Mpmyp 1is
the array constructed from p and v in a particular
Lorentz frame, then in any Othe; frame, My is given by

the ILorentz transformation

My, = %12% Aog Ay« (II1-9)
This array we shall call "the momenis tensor." The tensor
field Fqu produced by w,, is then given by (111-8).

It is convenient to write (III;8) in a form in which
it is immediately evident that M, is indeed a tencor.
To this end, consider the integral

3 ' S
I/uv = J)fn/w (tf,m) § (X - s ) & (t -tP(ft)) dr (XTi-10)

where again T 1s the proper time.-of the particle, having
an associated moments tensor vn.y , and X, =Xev) 3 te=T )
is the parametric representation of the particle's world

line. Now

S (R-%,) S(t-tp) = c_83(§~§;) S(ét_ct?) = c.S+(x—,F)

is certainly a scalar, wm

wy 18 by definition a tensor and

dt is a scalar. Hence the integrand in (III-1C) is a

tensor. But

I., = Smlw(tf) 53@ %) 5 () A



— .
= wa“”(tf) S (X ~X%5) g(t-tF) <§§)J{F ,

and since

we have

I;w - jm,w(tf,) $(% -%) Slt-ty) J1-p* oltp

} —_ -
= My (8) S E-Zp) Vi = My

Tnus it is quite reasonable to take for the effective

current of the particle in motion the eXpression

Joy = ¢ L 2Ny :(j ieg)

But since

Muv = Smﬂy ) Sa()?—?F) ot -tp) dx

= C‘jm)&v(tfﬂ Sﬁ(" -—)’1?) A 2

we have
N
g

2
Jﬁ*(xJ: « fo DX

14

Now the variable of integralion is <« and since the

~Svnﬁy(tf)%f(x-xp) A~ .

20
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point of observation 1s independent of 7T , the differen-~

tiation operator can be taken under the integral sign and

we may write

J}*(x) = L gmwecf,) %v[f(x—x?) dw. (III-11)

This is the covariant form of equations (III-3) and (III-4),
representing the 4-vector current density due to a moving
particle whose electromagnetic structure is characterized
by the moments tensor w,, .

The moments tensor W, may be displayed in matrlx

form as
B i
) mi‘ —m_y LP
. -mz (@] m)( l
WH*V = F (111-12)
™My o 9 h
- L;a( —iF), —[/)Z (@]

This choice of the tensor ., characterizes both the
electric and magnetic properties of the source. The kind
of dipole depends on the form of the tensor My In
the case of an clectric dipole, having a dipole moment F

in its rest frame and "o o » this tensor takes the form

o 0 © ° % (1II-13)




e2

From the Lorentz transformation we may obtain the tensor

va

which the particle has velocity v , the tensor

becomes
] @
_X<f§f
m -
P s
()
-ivp

The corresponding case of a particle with

rest frame gives

()
pyo =

in any artibrary frame.

-,

In a frame relative to

R
X(R%%L i
’(*%V)x Al
,(III-lA)
o b,
Ap 0

- YY!J O
VYIX 0
(II1I-15)
O
0——-

and in the frame in which the particle has velocity v

O
_Ymi_
n%“v - Tmy
{(Mxv
L( ? &

Im

Z

;Xm-y —AX(YEJCAV‘
X
¥m o (M
" (C)y (111-16)
Z
y( Y )
o)
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The tensor My introduced above is a completely
antisymmetric second rank tensor. The two invariants

associated with this tensor are

ZZ My M

Y g

IS
and §; .Y 0 € Mo m ) (111-18)
Y o A

/AVG‘)\ Mm &M

(III-17)

where ?Mvrk is a completely antisymmetric unit tensor

of fourth rank defined by
O if any two indices arec egual,

+ | for an even (odd) permutation
of indices.

The expressions (III-17) and (ITI-18) in the three vector

form are |

FF _mem | (LIe-19j

B

and (I1I-20)

From the transformation properties of the tensor My it
can be seen that if a particle has an electric dipole
moment b and a magnetic dipole moment wm, in its rest
frame, then in another frame in which its velocity is' v s
the electric and magnetic dipole nmoments are given by

A -\

b :J(E__@Lf)*-@—fj ;gif , (117-21)

C



_—
—

- _
m o= I (7, E’%Y) + (1-37) Y—Y—’—V;v v. (I11-22)
It is clear from these expressions that if a particle has
only an electric dipole moment or only a magnetic dipole
moment in its rest frame (i;e. M=o or Fi:;o ), then iﬁ
another inertial frame in which its velocity 1is v , one
generally observes both electric and magnetic dipole
moments, the only exception being when the particle moves
parallel to its axis in which case one only observes the
electric or magnetic dipole moment, but when the motion

is not along the dipole axis, then the electric and the
magnetic dipole moments are mutually perpgndicular. Fur-
ther, 1f a particle has both electric dipole and magnetic
dipole moments in its rest frame such that thcy are orthog-
onal, then Fi-ﬁl vanishes and since ?i‘?ﬁb is invariant
under Lorentz transformation, 'ﬁ'%% will be zero in any
other Lorentz frame and it is possible to find a Lorentz
frame in which such a barticle will have eilther electric
or magnetic moments éccording to whethez"FfF— M- is
positive or negative. It is also seen that if }i:zo R
then ‘*;%f;ﬁu':.F:F ~ ™. is an invariant which allows
us to define tnambiguously the numerical value of the mag-
netic moment of a particle. In particular this should be

true for the elementary particles. Having cbtained the

expression for current density in the covariant form, we
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can now proceed to calculate the potential AP“ due to a
relativistic electromagnetic dipole by solving (II-7) with

J}L given by (III-11).



CHAPTER IV

SOLUTION OF MAXWELL'S EQUATION WITH
A RELATIVISTIC DIPOLE SOURCE

An electromagnetic dipole in motioh constitutes a
source of fields and the corresponding current density
is given by (ILI-11). The general solution of Maxweil's
equations in terms of potentials A}LL is given by (II-7),
from which the potentials due to an electromagnetic
dipole in motion can be calculated when (III-11) is sub-

stituted for J/.& , Ll.e.

v 0%y

A/L& (X) = %_jol_drx/ 5( z sz\){& 7, 2 Xobt My ) sz'—xP)-J‘

Xy

': za%Jofx'[S(}; Ri) %_, Solrr_ My, (tp) %4(%”7@} .

Interchanging the order of differentiation and integration

in this expression, we get

Alu‘(x) =2¢C Z;) joﬁxf[g (Z; RZ)E‘J‘T My (£) %; {54( x - xr)}} .

We may also interchange the order of integrations, so that



the last equation can be written as

41 2, 4,
Afk(x) = Zc.?_;,Jd't { JOLX S(é R/\) m,‘w({f) %_xl {5 (x'-

b4

xPﬂ .

27

Now considering the integral in the parenthesis, and per-

forming partial integration once, we obtain

Ao =-2e I [ax] [mup S0 2 (5]

which immediately leads to

DY .
- t s
A/A(x) --2c¢ Zv So{“c Wy () )Xyié(ér{)\)
where RA - (XA"XMJ . This integral is similar
(I1-12) and may be evaluated using the substitution

Ax) = ZJ}?; , Which leads to
)

AI“(X) = —Zchm’”&F) Ry 4 ig(xjk A5
| > J LR, ds

After performing partial integration once, we have

Au) = 2c _ZJ_o_L_ My & Ry TS 4) ds
H Y ou\_ ZR,\LL)\

A

(IV-1)

e

(1v-2)
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This integral can be evaluated immediately giving

R
A}L(x) - 2cC Z X\ZL—Z MF—)_——?—} . (IV—B)
¥ Z}J Ry Ua A=o0

This can be written in an alternate form by notin
Yy

d - dv.d - _ 1 L,
ds d4a I"Z ZZRAH,\ %4
. A
and hence
A}&(X):—CZ ——‘r%;iM} , (1V-L4)
V
: Z; o Z‘Eglih A=0

Performing the differentiation, this can be written as

A,u(x) — __CZ YT.],‘-’-V RV "—muv'Ru _ mP\VRV {Z\J (R)\\l)\ “* {2), U)\)} (l‘\l"_S)
v N 3 2
G Rat) (LRW,) Ao

where the dots denote derivatives with respect to (G

But év:1“liv , and hence (IV-5) finally becomes

. . 2,
AIA(X) :—-C-z_. My Ry =M Uy, My Ryiix(%u}‘—u))} . (1V-6)

| | (ZRw) (Z R0

: i

This general expression gives the.potentials due to a

moving dipole whose electromagnetic properties are
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characterized by the moments tensor Muy ‘given by (III-12).
The particular form of this expression depends on the form

of the tensor m The individual cases of electric

wy oot
and magnetic dipoles can be deduced from this expression
and the case of an eléctromagnetic dipole may be obtained
by superposition. We shall now calculate the potentials

of an electric and a magnetilc dipole separately.
a) ELECTRIC DIPOLE

In the case of a moving electric dipole ( ﬁ%:c*,?:fo
in its rest frame), the form of the tensor My in any
frdme oY reference relative to which the dipole has a
velocity v , is given by (IIL-14). The scalars agpear-
ing in the expression for Aﬂﬁx) in‘(IV—6) can be easily

written in a 3-vector form as

‘Z}l R)\u)\ = —‘{ Y_C- ' (IVM?)
~ . 2 2, = 4 N
2. (R, -Uy) = <+ I(R m)_jéal(v.a)) (1v-8)
where [ =R ('-B"n) , ¥ _ 3.V . m= E;
i = fre T

and ©o. is the acceleration of the dipole. The constraint

£d-0 , when vritten in a three vector form leads to

_t:_ti

)R

. (IV-9)
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The positive sign in the above relation corresponds to
advanced potentials and the negati&e.sign gives the re-
tarded potentials. The causality conditions require that
we retain only. the retarded potentials.

Now the lU-vectors appearing in (IV-6) can also be
cast into 3-vector form by using (III-14) for wn

Qv
There follows

%: m/«tv Ry = {Li—é\x(XF—g)— UF)R} > -1 (’{F)ﬁl > (IV-10)

Dt

L e R :hﬁa(ﬁ_;r) -3 OB (e

Zv- My U, :Xiva/ E%\‘/ - Xl}jc}) - KZ?K;J > (IV-12)

where the dots denote derivatives with respect to T .

These derivatives can be changed to derivatives with

respect .to tp, using

d - dted _ oy d
d de Jdt dtp
and hence
(X'E_:_v) _ épg a,g (F=) + x(;}v) + x(an)j , (IV-13)
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(XF) - {‘Zac-j)F + Xl‘F) : (IV-14)

where the dots on the right hand side of (IV-13) and
(IV-14) represent derivatives with respect to t,: . Using
the expressions (IV-7-14) in (IV-6), the potentials Ao

can be written in an equivalent 3-vector form as

e Uc? P i
_F(i3¥L b _F{(an)xR_+<Fg7x§
c
{?:t _Ec_

and

PR = '(;1[3 N sta;>(\, R) & _’__ <'F") —\) . (Iv-16)

Expressions (IV-15) and (IV-16) give the vector and scalar
potentials due to a moving electric dipole with velocity V
A

and acceleration o , and also take into account the



32

possible rotations or oscillations of the dipole during

its motion.
b) MAGNETIC DIPOLE

In the case of a magnetic dipole ( P=o0, ™o

" in its rest frame) the form of the tensor Mu» in the
rest frame of the particle is given by (III-15), its form
in any frame relative to which the particle has velocity

V., being given by (III-16), so that the 4-vectors

appearing in (IV-6) take the form given by

Zy_. YY)/.LV R)/ - {ﬁx()’ﬁ) + (Yﬁ)&\/)a} , lx(ﬁjxj)‘k\} ; (_[V_l.{)
O [ SR B Eo s
(*’77\><7)'7J = [6‘ s io] , (1v-19)

whereas the scalars remain the same as in case of an elec~-
tric dipole. The dots here represent the derivatives with
respect to T , and can be changed to derivatives with

respect to tP as vas done in the casc of the electric
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dipole. Using the above 3-vector forms, and changing the
derivatives with respect to T to derivatives with re-
spect to tp , the general expression (IV-6) in the case

of a moving magnetic dipole gives

AR ) = mx[ R_ . R& _ Ry (RAR
. XZP Q'z L YLD._SC KB o
R(’é-&)'\? 2 R RY
- 3 v { Ve —P_Tc-;;} > (IV-20)
4,-1-%
P <

These expressions represent the vector and scalar poten-
tials due to a moving ﬁagnetic dipole. These potentials
can be used to derive the electric and magnetic fields.
We shall now calculate the electric and magnetic fields
due to a moving electric dipole using the potentials

(IV-15) and (IV-16) in equations (I-5) and (I-6).



CHAPTER V
THE ELECTROMAGNETIC FIELD

The electric and magnetic fields E? and §§ due to an
electromagnetic dipole in motion can be calculated either
by calculating the electromagnetic field tensor ﬁ;y
.directly using (Inlh) as was done in the case of a moving
point charge in Chapter II, or by using the appropriate
potentials in equations (I-5) and (I-6}. The latter
method will be focllowed here to calculate these fields
for the case of a moving dipole. The electric and mag-
netic fields due to a moving electric dipole are derived
here in detail using the potentials (IV-15) and (IV-16)
in equations (I-5) and (I-6). The fields due to a moving
magnetic dipole can then be obtained from the dual of the
field tensor corresponding to the case of the electric
dipole and those of.an electromagnetic dipole in motion
can be obtained by superposition. Hence we only need to
calculate the fields of a moving electric dipole. The
prescribed procedure to obtain fields from the scalar and
vector potentials is rendered somewha’ complicated because
of the constraint (IV-9) imposed on the potentials. This
requires that the time t is involved in the potentials

only through this constraint. Thus in general these



35

potentials are functions of the form l+2(x)3)3)tp) and
since 9, may be regarded a function of Xy, %)t5 ve have
two types of partial derivatives of W to consider. In

what follows, we shall use the following notation:

%%E = derivative with respect to X when X
X ,
contained implicitly in {§ as well as X
appearing explicitly is varied, H,%,t
being kept constant;
%ﬁk = derivative with respect to X when y,%,ip
X
are held constants and only the explicit
X 1is varied;
%ﬁ? = derivative of \v with respect to t? when
P
explicit X, vy, ¥ are kept constant;
jﬁ? = derivative with respect to the t con-

tained implicitly in {P when both ex-
plicit and implicit XJH,'% are kept

constant.

With these definitions, we have the following results

dw _ dw  dt | (v-1)
dt ¥, dt

dy _ 2% | 2w db (v-2)
d % X% 2t dx



and similarly for derivatives with respect to y and

¥y
Using these definitions and results, cquations (I-5) and
(I-6) can be rewritten as

E(i.ty= - R _ya . R 2o V-
(o) oo T Ty )

- \ A KN S

B(.)—()'t) -~ VvxA _ R X 2A 5 (v-14)
) cl )tF

A b A A N

N - . o . K . . ” .
where V = 1 Sk Tdw T %0 and hence the derivatives
are all partial derivatives and can be evaluated using the

.Y

N
expressions for A and &

In the case of a moving electric dipole, the vector

and scalar potentials are given by (IV-15) and (IV-16)
which can be rewritten as

e

-3 - — N PR N 2N
ARy-|[FR |, EFR®RE) BR F_:i}v‘ BRZ L P V-5
) {YEC+ P3 o2 + e ‘e * Per N le ? ( ))
to- t-R
-1 L RaITPR (TR :‘ﬁ}_‘_ . (V-6)
PO Hmﬁ fak PR -P

Using these expressions, the partial derivatives appearing

in (V-3) and (V-4) may be evaluated.
2R

We first calculate
and get afler simplification
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2 X{ 6(PR)(R B 3R (VR)  3GRIE &), 3 (PR)

}—EP_ ) e A Pre y* 14
_ 3R R 2GR 3(PRRD |, (PR
KL [3 R EJ B_Z Re Q_S (._3 Q}C}
LEREE) | SEHR)  FR 208 2ED]p
2.3C3 [4‘ C‘\' [Lcl ¥ 1[.3C Q"L Rc
R SRV (R.G PR)
n 3CFR 2 (PR L 3ERIRE) 2 (P
xz, !.3 !_L CR EB C_a V-'z_c-,_
o G F
B P }QJ M P c? N e ot i REL
&Ra,) F‘X . (v-7)
Pre? <
t?—.t_a.
Similarly 29 gives
>t
20, = X CFR)(Ra) 3FRIRE) + 3(P-R)e 3 (PR)e
atp B ERARY 13 RC ¥4 g4 NEPE

-

SERRY | FRERE | sGRIRY 29

24 et 93 % Iz c3 1 )
— 3(p.V) . 3(?7)(?.&)' N 3(?.;‘3\) N M
XLY,B’ [3 cr XlQ.B ?_3C)—
PR R e T y
—_(z__g - 2 (P V) -- bro v — R . (‘**8)
R RS {*c e
t . t_R
g <
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The evaluation of V4 and VXA is simple hecause the

derivatives involvecd are all partial derivatives, and

A

. a Y .
hence p %, & o - and Vv are all constants with

P

respect to these operations. Therefore we get

V= H (P-v) L BREY | ®@2)E) (i(.‘.v)}_[g

X’-!} Y.B CL P’Cl \L(‘_

_{3(?-?2) L 3FRERD) _ 207) | 2 BR) w\
t-t-R

y2 4 04 e e
pT e
which simplifies to
| Réle  GR - ¥ FRYED)
V= + + — 2Ry P )
{PP o) 2 (' b2
L36R) 269 2<F.§)} /R )X (v-9)
A 3 3 R c 4
Yol Cc {®c. if=i-&~
<
and in the same manner we get
Vx A - {3“"‘3)7 L3ERRD) o 2(BRW _ 2(BVIV o F
X11_4RC [4RC3 (}_Z’RC—I EBRCI ﬂzRC
L2BRa 3 [P RdE  PRale B
e 1% 33 13c3 %> [(V-10)
trti_%
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Substituting expressions (V-7), (V-8), (V-9) and (V-10)

in (V-3) and (V-4) we obtain the fields, namely

TR0 =[[(CRED)  aFR  3@HWH) (PR RS
Y iS5 e Y4 P Y,A c3 k& 3 -

_3(RY) L 3ERERLS 3GVERD) Fa

e 15k gre> B
0GR sGRRE) 269 (i?f)_}?ﬁ |
T = e B

_{6@?)(@&) _3ERE 360 FRED
Y 4t Yl 9 ot

= S W2 EECEEN S — LY
LOAPRRE)T syt (PR N (PR)(Ra) P&

[5 e 14 2 14 c4 2363

LPRERD L 2(BY aBY FR ey
14-(34 xlgl}cz ) ESP\C)' Q_‘?‘C?’

_ 3(153-‘@) _ PR 3PRIRE) | 2(PR) z(F-f)ERa
Yt BRe> P P e
_{ | R P {8 uz a)R s (PR)RE &%~
XZE3 ESC')_ } ' ixlt? 3 Y_BC?’ QZ& it_g
(V-11)

and
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EA(“):H CRDED) _3ERCE) , 3GH | 3R

Xl ZSC_a EAC‘? X4 QSC 24(:1
L(PRESD)  EVERD | FRRE  sFREY, PR
(*c* 04t gt S Ve

L PR 26V —4(}3'\')}4;5 +{3(F-§) 3(PR)(R-2)

EBC?, Y7-24C2. 23R c* X Xl 148- T [4C4
208 20913, , Buak PR PR BV
[3(:3 QBC} ,O_3C3 . F-CL K'L '23C_ X'L[BC

__(pRQ(QXV)+_(RaJ(PXR) +_(R%EKPﬁU4_ p X% . (V-12)
£3 C.3 13 C3 v3C3 11 Cl
{{,:L%

Expressions (V-11) and (V-12) represent the most general
expressions for fields due to a moving electric dipole.
It is apparent that these fields ére not everywhere per-
pendicular to each other in contrast to the fields of a
moving charge.

The radiation of electromagnetic waves is accompanied
by radiation of energy. The energy flux is given by the

-

Poynting vector S which is defined by

S - g/__l(fx'é) (V-13)

and represents the amount of field energy through unit

area in unit time, assuming that at the given moment
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there are no charges on the surface itself. It must be
remembered, however, that the above definition of Poynting
vector is not a mandatory one. Since this vector is in-
troduced in the electromagnetism only by way of its diver-
gence, the curl of an arbitrary vector can be added to it
without altering the physical facts of the case. However,
this definition is adopted because of convenlence, par-
ticularly in the electrom@gnetic theory of light. The

total energy radiated can be calculated by integrating

—3

the normal component of f; over a surface of a sphere

of infinite radius surrounding the sources, and hence for

this purpose we need to use only far-fields. For large

values.of ﬁi\ , only terms proportional to .%: are sig-

nificant, as the other fterms in the fields do not conirib-
ute to the surface integral. Thus the far-fields cen be

obtained from the general expressions (V-10) and (V-11)

by retaining the terms proportional to 1. , that is

R

E@ = H(F-fi)ﬁi-éi) DERERLS sERRY | BR }

X
R4 C3 R5 C4 R4' C3 R3 C?‘ R‘

(ERHRY _3GRRZY | ERED PR 1T
R3c4 R4‘ (‘_5 R3 C4 R‘1C3

Ric* R>c3

_{a@’-ﬁ)(ﬁ-d) N 2@@}-& BR) 5 (RAF ¥ ]
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and

Boy= | (PRED | FRED  3GRHERY PR g
%-F(X)) § R‘*’Cf + R4C4 + RECS <+ R”c3}vx

JRFRIED  2FR 18 BB 48
Rt 4 R ¢3 R*c?
TR (R.@) (F *R)
+ RE X N R®>c3 ?
t.t.r (v-15)
v C

where we have used the fact that for large values of |[R],
! 5+ R . From the expressions (V-14) and (V-15) it is

obviogs that

Be = - EF\%\R - R (V-16)

- —
i.e. in the radiation zone, thz fields E and B are
perpendicular to each other and to the direction of propa-

gation. Using (V-16), the Poynting vector can be written

—A
L
S - < \Ef\ n . (V-17)
Am
— ' -
Since E¥ is proportional to 1 , S is proportional
R
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to L. , is in the radial direction, and falls off as L s
Rl R')_
in agreement with the inverse square law. Its explicit
form is
-— s oo 2 a4 L4 2
S (i\,t) _c (\J-RS}—(R-Q/) N 9(FR) (R®&) i (P 'R)
4T RS c® RE 8 R*c?
D2 a2y S A —- a2 =
N ¢(pR) Ra) Rw) . L(PRIPR)(R-a) }<v2 | 2 (RV)
7.7 L6 c2
R'c Rfe Re
2(PRIGPRI(RD) | 2 PRGR (RDROT v, 4R
Y 5 + ¢ ¢ Ncr T 7 TRe L
R> 5 R°c RIS Re v

, PR Ra? {ﬁ q_ 4@&7)} . g;{%-

Récg

+,7-<F-ﬁ>(?€)<é‘-a) }+ z(V-a)i%(P-ﬁ)l(ﬁ-) 3G RIRYRS
5 [

\5 (‘.5

QR B (PR Ra)  2FRERDED 2 FRHED R
RE & R c® R5cS

LERIRD |, 2GRER ) 2@DIERED | ERED
T RSCS Rq‘ C4 } Cz
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+

s(FRI(RAS | GRIGPR (RA) ) 260 [ FRORE)(ED
R‘)CG RSCS C" RSC-‘;

—- 2 = 13 e o P S Y ASTRNEY 2.y
3(PR) (R-a) CR ED”  ERHERD T 260 IERERED
+ Ré’ CE' N Rs C,S R4 ct (‘_7‘ R4 Cf\‘

L RGRRA | FRARD ER ) 2@ 3ERIED
. RSCS RL\ C,4 R3C3 (‘_7' R‘SCS'
2 BRIPR) T, 20D 3RS | 2R RE)Y 2(7)
R*c* e RS r+H -
2 (PR aFRIED 1, GRIED) | ®RaSED
{ RBCS P\4C4 R4 cé RA CG
VB 1GRGR) (RY, 2GRGED
R*c* RAc6 R2 5
L PP)(RE) 5 i
R2 5 (V-18)

to-t- 8

-
This is the general expression for the Poynting vector S .
Having obtained the general expressions for potentials,
fields and the Poynting vector, we can now discuss some

special cases of this general problem.
SOME SPECIAYL, CASES

(1) Constant Electric Dipole at Rest:

The potentials and fieclds for this particular case



b5

can be obtained from the general expressions of the poten-~

tials and fields by letting G -G =V=F =P = 0 and
hence we obtain
N\
A(X)t) = 0O, (V-l9)
P X, 1) = E‘% , (v-20)
E (3 _ 3(RR)R P .
R (v-21)
B&xt)y = o (v-22)
S (it) = O . (v-23)

These results are in agrcement with the results ob-
tained by elementary methods. The Poynting wvector is
identically zero everywhere, indicating that the constant

electric dipole does not radiate energy.

(2) Oscillating Electric Dipole at Rest:
We can obtain the potentials and fields due to an

oscillating electric dipole at rest from the general ex-

-

' . A
pressions by substituting @.=0G. =V =0 which then

reduce to

Aty = —RE— , - (v-2L)

e
]
—
\
piR



PE,1) F’ﬁ - } 3 (v-25)
)= | 5 ' (v-25
Re Jy-t.e
ER =] . 3¢z P _ 3¢R)R
R® R R'c R% c
- BN } , (v-26)
Re R c
t - t-R
4 [
]
= x—‘ = =
Bt = \ PRsz 4 P;(R > (V-27)
A - "o Jgateg
e ‘e 2o 2
—1 N —-\.——A -R .
Sen-e {15 - TR R (v-28)
477 R™C R7c 4 t:'t.-&
|4 (-

These results are also in agreement with other more
elementary treatments. The Poynting vector is along the
direction of observation, indicating that the energy flows

along the radial direction.

(3) Constant Electric Dipole in Uniform Motion with
| Velocity Parallel to its Axis: ('Fl\v)
The potentials and fields for a uniformly moving elec-
tric dipole are obtained from the general expressions by

.

letting F’: F = o= 0,=0 and hence we have .
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ﬁ(it){fﬁ _ F:i }V} ; | (v-29)
ke

CP ()—?) {) = ¥z R3 - F—C ? (V-—30)

EEY = {{3(??‘) 3(?-%}-@ +{4(F-v) _3(FR)
o

X4 2{5 - Xl E‘;‘C 1.5 C}_ Y}_ 5(‘_
2R (F\_/’) 7o —P) >
|G AS S8 ¢ r (v-31)
“tp=U-%

B 3(P-R) 4Y) 29~
B(X)t = {.\5(— - R > Y
' I 1% Prc " ppe 3, V)

SEh=0. ' O (v-33)

In this case the Poynting vector vanishes and hence
the unifornly moving electric dipole does not radiate
energy just like the case of a uniformly moving point

charge.
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(4) Constant Electric Dipole Moving Uniformly Perpen-

dicular to its Axis: (P LV) -

In this case the expressions for potentials and fields
reduce to

- BR) |
ALY = {(,\_}) v] 5 (V-3L4)
e g otog
P t) = [?‘é } B} (v-35)
{T{_\(?,t) . )t 3(?"2)_‘9‘ _ \ﬂﬁ)R v —g } , (V~36)
5 1205 103 )
y* U ¥Pe YL fat -k
B, t) = 3?:1‘:2 VxR« ;311\;(_ , (V-37)
- LT .Y
¢ [
S(R,t) = o . (V-38)

Here again the Poynting vectcr is zero and hence there

is no energy radiated.

(5) Oscillating Electric Dipole Moving Uniformly Parallel
to its Axis: (P 11 V)

For such a dinole the expressions for potentials and



fields reduce %o

7+ _ P-R (Fi)_-Pv}A Ei V-3
MY ):{YZQBC C e *c> v le ’ (V-39)
. tp-t-§
PG = [(P;R) B GA7N 1.5 B (v-20)
e Fe " e |t r
P~
2 e AR 3GV . 33D 2GBY | BR 14
- (%) = -- R _s R
o h FE T eR T YR T pe pe)
_J3GRR | WrBR) _ 4GT 2(FIR EE——R}-\‘/\
Xlﬂ/gc 24 cz 83 c? 11[4 2 13 3
T;R T\;R ‘) (V-ll-l)
AT G P2 ?
b =t-R
C
By < | [36R 4G9 N 3¢*(P-R) 5 (P
Y* PP ?re 42 (2l4cr
PR 2,3 PxR TR
+238}va Fre YV }’
¢ Lt e (v-42)
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O _l__‘zu‘a‘.v)) L 28R (BY)
{ Rf¢t \ & Rc R¥c®

R (V-43)

(6) Oscillating Electric Dipole Moving Uniformly Perpen-

dicular to its Axis: '\F _I_“\'/‘)

R s GR | GRge . T |
A(X)t),: {1'1713(: + [ch }V + Qc]’ (V—-LI-LL)
1 -t_R
£ c
- PR TR X
(XJt - + 2 ro i
¢ ) K lea A[’LC t?-:.t__% (.\ ’,'1'5)
= [ 3GR . 3GR | PR PE_@.-@
E(X)t) “{{ Y45 - | Gl QsczER N Y Q_SC.
_ 3R (FR) _ _g'?;‘fﬁ)a v PR PR
[*c P } P 1
] (v-16)
—_ > -9 - O/
Pl v

P~ T <
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e 5 }
?xﬁ —FX_R‘ + __—E\XV\
llc'l Yz 3 {LP(‘_ L] |
- Teat-8 (v-47)

§(2‘ t) = C In :
’ 47 R4 c4
P¥ }
+ T |
v t t_% (V-18)

(7) Constant Electric Dipole Moving with Uniform

(P 1IV)

" Acceleration:

At = { bR L GRERY
Vs XZ F‘C_ 1-3 C.3 9_1(;1 P- o tiﬁ { — %
i . l R. a’) . - -};T/;
(%t A
qj ) [{ ‘{LQK 23 c_l }(? ) QLC. ‘kt{’:t_g (V-50)



) :HMF‘R‘MR-&) L 3R 3ERIVE) - (PR)RS)

> Q,S o Y4 15 ud—c‘j E4C3

-3

_3BY) | 3ERRY  3EVERE Bl F

e §5c* 14 Bo |

__{G(F-’R‘)(R‘a) _3EREA) | 3GR) | 3GR) R

153 )4 Y+ 15 1%cs
L GEHREY 2BV 4FEY) Pf’——ﬁw
14 ct XLQ4 et gaclR Q c3

—_ _\_ _—
TGl RN PPRe* B _ e

_i 3(PR) PR 3 (FR)(Ra) 2(?-%}{{&

| R.a 1%
—{ VYT ?F}P} )t . (V-51)
Le=t-2

[5 C3 tAr 4 LS S

B 1) = H EPR) (Ra) _ 3GRITE) 3R (R
Xl

. _3GFR) GHRZD 2(F)
¥* e 1 c* 0 Lrer
—Ea’ 4,(!3?/‘) - = 3(F.R)
+ R
B33 PPRc? } VX + 1 Ut e
3 PRIRE)Y  26FV) 14 o -
+ 7T 1363—} oJxRJ , (V-52)
t



I BRVRLY 2.2 = R SN
S(i’)i) N q(PRY(Ro) G- L 18R (R &,)G( o)
47 RG’ Cs R7 o
a (PR (Ra) ®3)
. 0L V?. 2 Ry ) .
t=t-R

(8) Constant Electric Dipole Moving with Uniform Accel-
eration: (p L V)

t‘):t-—% *+ (\'TMSB)

+5(F§)(§.a)l}§ _{é(?ﬁ)(ﬁ-@‘) 3B RY(E-®)

{Fet ol R

L 3R +3(F§)('F€-&3)1}Rv_53@-§> PR
Y% °c”

g 3@3'?3\)@-53) a \ R 1=
% T}R&—i TR }FJ
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Bty = |[CRIRR) _3(RRIEE) +3(P5§) _ 3(??‘)5@&) }'v‘x;{
Yo15:3 ct* V4% 07c®
3R L 3GRR 153, BT BRIV
+{ rra A } TS P | (V=57)
tf,z-t-RE
N 2ol N N w3
SRz L g ] AL ERIRL | 2(F3) (IFRIR A
47T RQQS ct R7C7
L OAGRY (R v RRE
R s % Re )| (v-58)
to-t- 8

(9) Oscillating Electric Dipole4Moving with Uniform

Acceleration: (-F V)

I Pe 1?3, "2

Bt = h (PR, FRED  EB ‘ngi}”v’
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(10) Oscillating Electric Dipole Moving with Uniform

Accelerstion:
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(11) Constant Electric Dipole in a Circular Motion with

its Axis Perpendicular to the Plane of Orbit:
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These expressions at the center of the orbit recuce to

A(X,t) = o,

(v-7L4)
P(X,t) = 0, {V-75)
(% 4) = \ ®.a) Vg )
Bt = —[ ( 2R3 + Rsia)?) 2 (V-70)

te- t-R

<

Bty = BV RE) (W) T
1) = [ 2 Rc ol REC3 + e (v-77)
tf—_t--%

(12) DNon-Relativistic Approximation:
The potentials and fielags in the rest frame of the

dipole can also be derived from the general eXpressions
by letting

o<t

—» o > and hence in the case of a
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constant electric dipole, the expressions for potentials

and fields becone

ALt . | ERE |
o) = [—g@‘- (V-78)
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This vector has different values depending upon the orien-
tation of F and the direction of @& . The total power
radiated can be calculated as |

% = RPS.9, (V-83)
and hence the total power radiated (as observed in the
rest frame of the particle) can be obtained by integrating

S-n over the surface of a sphere with center at

the particle's position. We consider {two cases:

(2) When NG : 3

3
7

¥

In this case the Poynting vector becomes

ol

— L 4 R 4
Sty 9 P o Swe Cos® o (v-8it)

477 C_7 R*

and

Power radiated =P = j RFS.m Lo

. -
:} P o, Sidede dé

Q
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which on performing integration gives

_ ispd ' ,
P = = - (v-85)
35¢C
The Poynting vector itself is zero when © = o,z% and
K and has maximum value when 6 — cog‘Q[Z) ~
3 5
(b) VWhen P L O : -
p -
R
9 —)
—> &
The Poynting vector in this cace reduces to
— 2 4 . 4
S (i\)t>: q . P ac Smo Cos?o ;,)‘ (7\7—86)
4rc R*>

~
-
'

nix

5=0, & and m and has maximum

which egain is zero when

value when 6 = Sﬁf(jg) ~ 37
- io

The total power radiated is

P :J‘R—L 3\?}\ Cl_(l

2N R
- 9 P)'Of Sive Lose Jdodd
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o]} []

which after integration becores

2 4
P = &u . . -
35 ¢’ (v-87)



CHAPTER VI
CONCLUSION

Considering the electromagnetic dipole to be of suoh
small dimensions as to be represented by the Dirac delta
function, the electromagnetic potentials and fields have
been calculated. Throughout the treatment of the prublem,
it was assumed that the components of electric and magz-
netic dipole moments form a tensor My, . This assump-
tion is further strengthened by considering the energy of
an electromagnetic dipole in an external electromagnctic

field. In the 3-vector form the energy is givern by

-

C = PEs+mB, o (VI-1)

where F and m are the electric and magnetic dipole
moments and E and B represent the external electric
and magnetic fields. The covariant generalization of

this energy term can be written as
< = ‘E Z,L;«' Z}; My, F;v : (VI-2)

It is quite evident from (VI-2) that the energy of an
electromagnetic dipole is a scalar guantity and hence is
the same in all frames. Thus all experiments will produce

the sane mecasured value for the magnitude of the dipole
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moment independent of the frame of.reference. Because
the dipole moments are not scalars but 3-vectors in the
rest frame of the particle, their apparent orientation
will depend on the motion and in general will change along
the trajectory. In pérticular, dipole moments are trans-
formed into each other under Lorentz transformation. The
invariants of the tensor M, indicate that if P and
v are orthogonal or have equal magnitudes in one frame
of reference, they are orthogonal and have equal magni-
tudes in all frames of reference,

Considering the electric and magnetic fields due to
a moving charge and a moving dipole, we notice that whereas
in the fcrmer case the electric and magnetic fields are
everywhere perpendicular to each other and to the direc-
tion of observation, in the latter case, however, this is
not so, the fields being mutually perpendicular only in

the radiation zone.



APPENDIX

EVALUATION OF Au(x) = ZQJM W, ) S(@aj)

Let Ad(x) = ; Ri = L (XA‘X,\p)z , and hence

A

we may write the above integral as
A/ucx) = ze[ou i_’; (J(/“(t,,) Su)

But

dx _ 27, R, 2R U,
a’"t‘—- z)\—.}\d'f -~ Z‘Z)\‘R)sb(/\?

and hence

dv ‘

d 4 zé,qu,\

Substituting this in the above integral, we obtain

A/u(x) e | Y Seay ds .
: Z;uAR)

This can be integrated immediately to give

W, (¢

A/U_(X) = —&
2Ry u,

2
/f:O

which is the expression we have in (II-12),
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