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Abstract

As an extension to the previously investigated buoyancy-driven exchange flow of

pure fluids in inclined ducts, we propose an experimental and theoretical approach

to practically study the effect of solid particles within the flow. The flow problem

starts in a density-unstable lock-exchange configuration with heavy suspension be-

ing on top of a light pure fluid in a long narrow pipe or channel. Suspension is a

mixture of negatively-buoyant solid particles in a Newtonian pure fluid. The density

difference between the heavy and light phases is small enough to neglect the inertia

(Boussinesq approximation).

Flow is firstly studied through an experimental framework. Various sedimen-

tary, transitionary, and mixing regimes are observed based on the pipe inclination

angle, β, and initial volume fraction of particles, ϕ0. The results are mapped on

dimensionless diagrams suitable for industrial design and environmental planning.

Effects of particle size and fluid’s viscosity are further discussed. The sedimentary

behavior is diminished by reducing particle size, whereas remains unchanged with

fluid’s viscosity. The advancement frontal speed of the heavy suspension layer into

the light pure fluid, V̂f , is measured over full range of experiments. It is found that

V̂f becomes larger as the pipe is titled away from the horizontal direction. An in-

termediate range of particle volume fraction, ϕ0, is interestingly discovered to lead

to maximal V̂f . A non-dimensional scale for frontal velocity is successfully proposed

constituting various flow and geometrical parameters.

For strictly vertical duct, a lubrication model is developed to theoretically in-

vestigate the flow in this simplified configuration. Novel particle-rich zones inside

the suspension are further discovered in the vicinity of the advancing heavy and

light fronts. It was further revealed that the geometry confinement plays a signif-
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icant role in exchange flow dynamics through formation of interfacial patterns and

particle-enrichment behavior. The fundamental findings of this thesis help under-

stand the dynamics of important flows observed in nature within oceanographic and

geophysical contexts as well as in industry through discharge, transport and disper-

sion of slurries, mine tailings, pastes, pharmaceuticals, paper pulp, drill cuttings,

sludge, effluents and sewage, manufacture of cement clinker in inclined kilns, min-

eral processing in hydrocyclones, and inclined fluidized beds.
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Chapter 1: Introduction

1.1 Problem of study

This thesis investigates buoyancy-driven interpenetration of a heavy particle-

laden fluid into a light pure one in an inclined narrow conduit (pipe or duct). Flow

starts by a gate release in the middle of a long lock-exchange geometry where heavy

suspension occupies its upper half and a light pure fluid the lower one. Suspension

in our study consists of negatively-buoyant solid particles. Both the carrying fluid

and the light pure one are considered to follow Newtonian rheology. The suspension

is collectively heavier than pure fluid due to the presence of heavy particles. Buoy-

ancy is a significant driving force for the flow in this problem; however, pertaining to

various configuration and fluid types, sedimentation may also be a crucial in the de-

velopment of the flow. We study the effects of initial volume fraction of particles, ϕ0,

density ratio of light and heavy phases, ψ, inclination angle, β, size ratio of particle

to pipe, rp, density ratio of particle to the fluid, ξ, and density and viscosity ratios

of light fluid to the carrying fluid, η, and κ, respectively. The diameter or width of

the duct, denoted by D̂, is comparably small with respect to its length, L̂, suitable

for capturing the behavior of fully developed flows. The inclination angle, β, changes

from horizontal (β= 90◦) to vertical directions (β= 0◦), leading to different sedimen-

tary or mixing mechanisms in the flow. Figure 1.1 shows a schematic of the problem.

There are numerous buoyancy-driven flows in nature widely found in oceanography,

meteorology, and geophysics [1–3]. There are also multiple applications of these flows

in industry such as chemical, mining, and petroleum processes [4, 5]. Such flows, in

practice, often carry solid particles along the way resulting in more complex behav-

ior. Buoyant particle-laden flows have applications in discharge, transport and dis-
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Figure 1.1: Schematic of the problem. Tilt angle β, measured from vertical. The
interface shape and particle distribution are illustrative only.

persion of slurries, mine tailings, pastes, pharmaceuticals, paper pulp, drill cuttings,

sludge, effluents and sewage [6–8], manufacture of cement clinker in inclined kilns

[9], mineral processing in hydrocyclones [10], and inclined fluidized beds [11]. Our

main motivation comes from complex buoyancy-driven flows that exist in the oil and

gas industry vastly concerned with well construction e.g. drilling, well/plug cement-

ing, and hydraulic fracturing; see figure 1.2a. The well cementing process requires

a metal casing with circular cross section to be placed into the well. The remained

drilling mud inside the pipe has to be removed by cement slurry being pumped or

buoyantly released in the case of plug cementing. The mud then leaves the system

from the very bottom of the pipe through the gap between the casing and the rocky

wall. This problem has previously been investigated considering a pair of pure flu-

ids [12–14]. In this study, we aim to understand the underlying mechanism of such

buoyant flows in the presence of particles in order to design efficient industrial pro-

cesses involving such flows. From a practical standpoint, the optimum condition of

particle-laden exchange flow is to remove as much as drilling mud without consider-

able sedimentation along the channel (mixed suspension). Similar studies can also

help preventing environmental hazards as seen for example, during the release of

2



particulate effluents into the fresh water canals (figure 1.2b). The buoyancy-driven

suspension exchange flow perfectly imitates such scenario. Therefore, understanding

the halting (mixing) behavior as well as interpenetration extent of flow can facilitate

the design and planning of robust water way systems.

(a) © Kamran Alba

(b) © Greenpeace

Figure 1.2: Applications of the buoyant particle-laden exchange flows, (a) well ce-
menting: cement (suspension) replaces the drilling mud (pure fluid) in-
side the well casing. (b) Release of effluents into the water canals.

Buoyancy-driven flows have been vastly studied experimentally [13, 15–17], an-

alytically [18–21], and computationally [22–24] for pure fluids. Meanwhile, particu-

late flows have been studied in the literature primarily in the contexts of enhanced

3



sedimentation in inclined pipes (Boycott flow) [25–27], turbidity currents [28, 29],

and particulate thin film flows over a substrate [30, 31]. The interpenetrating ex-

change flow of a suspension into a pure fluid within a practical duct geometry still

remains to be meticulously studied. The complexity of such case arises from the ef-

fect that sedimentation imposes on the evolution of flow. Basically, settling tends to

reduce the concentration of particles within the heavy mixture, and ultimately its

buoyant advantage over the pure ambient. One of the very few studies available in

literature on this topic is the recent work of Saha et al. (2013) [32], carried experi-

mentally for horizontal configuration. They found that the particle-laden layer un-

dergoes a sedimentary phase and finally halts at a finite distance. A comprehensive

study of the particle-laden flows in pipes tilted at various angles still lacks severely

in the literature. Current thesis studies this problem to address the following objec-

tives:

• Objective I: Identifying various sedimentary and/or mixed regimes.

Interpenetrating particle-laden flows may exhibit various sedimentary and/or

mixed patterns as shown in the rather recent study of [30] for free-surface ge-

ometry. The mixed flows can be uniform or may contain particle-rich/depleted

zones. Naturally, the question is what type of novel regimes are likely to

emerge in the case of flow in duct? Understanding the sedimentation or mixing

behavior of the particles is of great importance in many industries concern-

ing slurry flows, for instance in characterizing the properties of gruels, sauces,

salad dressings, chemicals, paints and cosmetics [33]. Through experimenta-

tion, we aim to fundamentally study the effect of various parameters of the

problem such as duct inclination angle and particle/fluid properties on sedi-

mentation and mixing.

• Objective II: Characterizing the runout length and/or spreading speed

4



of the interpenetrating layers. Sedimentation over time can lead to halt-

ing or runout [32]. On the other hand, if solid particles are remained mixed

due to the dynamics of the flow they will continue spreading [30]. Two critical

questions arise here: 1) What is the runout length and time in the case of sedi-

mentary flows? 2) What is the spreading speed of interpenetrating layers in the

case of mixed flows? There can be incredibly interesting counter-intuitive ef-

fects associated with the runout length and/or spreading speeds. For instance,

in the case of sedimentary flows in horizontal configuration it has recently been

observed that the maximum runout length/time is achieved within an interme-

diate range of particle volume fraction [32]. Moreover, in the case of continuous

flows, the highest spreading rate of the interpenetrating and convective current

is repeatedly reported to happen at an intermediate inclination angle. Through

integrated experimental and mathematical methodologies, we aim to build a

predictive framework responding to these unaddressed questions for the case

of inclined channels.

• Objective III: Classification of flow regimes in dimensionless maps.

Predictive flow regime maps concerning interpenetrating flows are of extreme

importance in the process designs such as in mining [10] and energy industries

[8]. Once flow regime maps in the dimensionless format are furnished, the

engineers can conveniently locate pre-designed flows on these maps to ensure

they meet the criteria. As third objective and after extensive analyses of the ex-

perimental and mathematical data obtained in the previous phases, we aim to

provide the followings: 1) The underlying flow regimes related of interpenetrat-

ing particle-laden flows in ducts with respect to the dimensionless parameters

of the problem. 2) Dimensionless formulas predicting the spreading speed of

the layers in the applicable ranges to be achieved through curve-fitting of the

experimental data.
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The approaches taken to understand the suspension gravity current in this thesis

are experimental and theoretical. The major part of the results are obtained by ex-

periments explained in detail in chapter 2. The flow in the case of vertical channel is

further described analytically through a system of conservative partial differential

equations (PDEs), called as lubrication model; see chapter 3. The governing equa-

tions are then solved numerically to investigate the effects of wide range of parame-

ters on the advancement and particle-enrichment in the flow. The final aim through

these integrated studies is to fundamentally understand the underlying mechanisms

of buoyant particle-laden exchange flows and to provide quantitative measures of

flow parameters for optimized industrial design and environmental planning.

1.2 Outline of the thesis

The next chapter looks into the adopted experimental approach including

methodology, the apparatus, and the range of parameters. We present the experi-

mental results in this chapter for a range of ϕ0 away from the packed limit, and over

full range of tilt angles, β. The verification of the apparatus through benchmark-

ing the experiments of [16] will be presented separately in appendix A. Chapter 3

lays out a mathematical analysis of the flow in vertical 2D channel. Complemen-

tary information will further be provided in the appendices. Appendix F will present

the details of the lubrication model derivation. The discussion involving the shear-

induced migration effects will be evaluated in appendix B. The adjusted model for

the flow in axisymmetric pipe geometry will be given in appendix C. Additional co-

efficients and flux functions in the derived model are also available in appendices D

and E. The thesis is closed in chapter 4 by highlighting the novel findings of the

study, concluding remarks, industrial recommendations and future perspectives.
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Chapter 2: Experiments

In this chapter we present the experimental results of particle-laden exchange

flows over full range of tilt angles, β, and over a range of initial particle concentra-

tion, ϕ0. The carrying fluid in the suspension is considered the same as light pure

fluid, yet, the overall density of suspension is always maintained higher than the

pure phase due to the presence of particles. Flows within our range of parameters

adopt low Reynolds numbers (negligible inertia) and are in the limit of Boussinesq

approximation, i.e., small density difference between heavy and light phases, thus,

negligible inertia. Through measuring the extent of the interpenetration domain in

the post-processed camera recordings of the pipe, various sedimentary and mixing

regimes are identified, then, are plotted on the dimensionless maps of ϕ0 and β. The

same approach allows us to quantify the advancement rate of the flow in each of

those experiments which are presented in the appropriate velocity figures.

2.1 Experimental approach

2.1.1 Methodology

We utilize an experimental apparatus consisting of an acrylic pipe with a pneu-

matic gate valve placed in the middle as shown in figure 2.1. The inner diame-

ter and total length of the pipe are D̂ = 9.53 mm and L̂ = 2000 mm, respectively.

These dimensions result in a small aspect ratio (δ= D̂/L̂ ≈ 0.0048) suitable for cap-

turing the long time and fully developed effects of the flow [32, 34, 35]. The entire

pipe and valve structure is mounted on an aluminum frame which allows tilting

of the pipe in clockwise way at an angle of inclination β, measured from the ver-

tical direction. Heavy suspension occupies the left-hand side of the pipe and light

pure fluid the right-hand side. The apparatus is equipped with solenoid valves and

7



Figure 2.1: Schematic of the experimental apparatus. The entire pipe system can be
tilted at an angle β, measured from vertical.
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diaphragm pumps in order to facilitate experimental procedure, while minimizing

the chance of non-homogeneity and Boycott flow development within the suspension

layer prior to the gate release. In order to maintain a lock-exchange configuration,

shut-off valves at two ends of the system are closed immediately after heavy and

light fluids are in place. At the start of each experiment (t̂ = 0), the gate valve is

opened allowing heavy particle-laden mixture to penetrate into the pure liquid ambi-

ent. Experiment continues until the heavy front reaches the opposite end of the pipe

or halts at a run-out distance; whichever occurs first. Pipe is illuminated by plac-

ing Light-Emitting Diode (LED) stripes behind two light-diffusing panels to obtain

a homogeneous lightening. Images are taken every 0.5 s using a high-speed cam-

era (Basler Ace acA2040-90um CMOS, 20482 pixels) positioned at an adequately far

location from the pipe. In post-processing of images, light intensity of each pixel is

scaled onto a concentration value, C(x̂, ẑ, t̂) between 0 and 1, by applying the Beer-

Lambert law [36]. Note that C = 0 and 1 values are assigned to the suspension and

pure fluid respectively. The concentration values, C, less than 0, due to sedimenta-

tion of particles, are appointed the value 0 in order to consistently locate the frontal

position and speeds across all experiments; see section 2.2.2 for details. A schematic

post-processed image of the pipe with scaled light intensity is presented in the inset

of figure. 2.1.

2.1.2 Range of parameters

Consistent with our recent theoretical work on the same topic [34], our experi-

ments involve 9 independent dimensional parameters which we henceforth denote

with a circumflex (^). The gravitational acceleration is denoted by ĝ, pipe diameter

D̂, and pipe length L̂. Solid particles have density ρ̂p. The particles diameter, d̂,

is adequately large for suspension to be non-Brownian [37], whereas, it is relatively

small compared to the pipe diameter i.e., 1 µm ≪ d̂ ≪ D̂. Density and viscosity of

carrying fluid (the same as light pure fluid) are ρ̂ f , and µ̂ f , accordingly. Initial and
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Table 2.1: List of dimensional independent parameters in the experiments.

Definition Parameter Range
Gravitational acceleration ĝ 9.81 m s-2

Pipe diameter D̂ 9.53 mm
Pipe length L̂ 2 m

Particle diameter d̂ 40, 70 µm.
Particle density ρ̂p 2500 kg m-3

Pure fluid density ρ̂ f 1243.0, 1253.4 kg m-3

Pure fluid viscosity µ̂ f 0.367, 0.765 Pa s
Initial volume of particles V̂p 3.56-35.59 cm3

Jamming volume of particles V̂j 47.69 cm3

jamming volume of particles are V̂p and V̂j respectively. The latter depends on the

shape and packing arrangement of particles [32]. A total of 7 independent dimension-

less controlling parameters are evaluated [34], namely pipe aspect ratio, δ= D̂/L̂ ≪ 1,

angle of inclination β, particle-to-pipe-diameter ratio rp = d̂/D̂ ≪ 1, particle-to-fluid-

density ratio ξ= ρ̂p/ρ̂ f , initial volume fraction of particles ϕ0 = V̂p/V̂H , jamming vol-

ume fraction ϕ j = V̂j/V̂H , and Reynolds number Re t = ρ̂H(ϕ0)V̂tD̂/µ̂H(ϕ0). Assuming

that the suspension solution initially fills half of the pipe, the volume of the heavy

solution, V̂H , is approximated as V̂H =πD̂2L̂/8. The density of the suspension is ex-

pressible as ρ̂H(ϕ0)= ρ̂pϕ0 + ρ̂ f (1−ϕ0) for ϕ0 away from the packed limit (ϕ0 → ϕ j)

[38, 39]. The viscosity of the suspension may be captured via a Newtonian rheology

in the form of µ̂H(ϕ0)= µ̂ f
(
1−ϕ0/ϕ j

)−2 [40], in which, jamming volume fraction for

spherical particles is proposed as ϕ j ≈ 0.61 [32, 41]. The characteristic velocity, V̂t,

in the Reynolds number expression is given by Eq. (2.1) [36]. The dimensional and

dimensionless parameters governing the flow along with their range and values are

listed in Tables 2.1 and 2.2, respectively. These parameters are also conveniently

provided in figure. captions throughout this paper.

Our choices of particles are two different sizes of soda-lime glass microspheres

(Cospheric LLC) with density ρ̂p = 2500±50 kg m-3. First type involves smooth

spheres with mean diameter 70 µm and standard deviation ≈ 5 µm , and the sec-

ond type 40 µm with similar distribution. Particles are suspended within two dif-
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Table 2.2: List of dimensionless independent parameters in the experiments.

Definition Parameter Range
Aspect ratio δ= D̂

L̂
4.8 ×10-3

Pipe inclination angle β 0◦−88◦

Particle-to-pipe-diameter ratio rp = d̂
D̂

0.004, 0.007

Particle-to-fluid density ratio ξ= ρ̂p
ρ̂ f

1.99, 2.01

Initial volume fraction of particles ϕ0 = V̂p

V̂H
0.05-0.50

Jamming volume fraction of particles ϕ j = V̂j

V̂H
≈ 0.61

Reynolds number Re t = ρ̂H(ϕ0)V̂tD̂
µ̂H(ϕ0) 0.10-1.72

ferent aqueous glycerin solutions: First one with 93% glycerin-water concentration

by weight with density ρ̂ f = 1243.0±0.1 kg m-3 and viscosity µ̂ f = 0.367±0.001 Pa s.

Second one is a 97% glycerin-water solution with density ρ̂ f = 1253.4±0.1 kg m-3 and

viscosity µ̂ f = 0.765±0.001 Pa s. We consider the same values for viscosity as reported

in [42]. Suspension was prepared by weighting particles and fluid separately, pour-

ing fluid first in a reservoir agitated by a heavy-duty mixer (IKA® Eurostar 200),

and at the end adding the particles continuously but slowly. This procedure ensures

maintaining a uniform and bubble-free mixture. In order to examine the accuracy

of initial particle concentration after adding particles, we measured the densities of

at least three samples of the mixture using a density meter (Attension® Sigma 701

module) with 0.1 kg m-3 resolution, and successfully verified the results with theory,

ρ̂H(ϕ)=ϕ0ρ̂p +
(
1−ϕ0

)
ρ̂ f (5 kg m-3 negligible error) [32]. Highly exothermic mixing

was experienced due to the extreme shear forces inflicted by the mixer propeller on

bulk of the viscous mixture. Therefore, for avoiding uncontrolled temperature vari-

ations, we immersed mixing chamber in a cold-water bath. Under this controlled

condition, temperature always remained in the limit of 291∼294 K (measured by

OMEGAETTE® HH308 thermometer with res. ±0.1 K). Moreover, β is measured by

an angle indicator with ±0.1◦ resolution.

Three separate sets of experiments were designed covering angles β ∈ [0◦−88◦].
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Table 2.3: List of experimental sets along with their corresponding parameter
ranges.

d̂ (µm) µ̂ f (Pa s) ρ̂ f (kg m-3) û0 (mm s-1) rp ξ

Set A 70 0.367 1243.0 0.009 0.007 2.01
Set B 40 0.367 1243.0 0.003 0.004 2.01
Set C 70 0.765 1253.4 0.004 0.007 1.99

First set includes 47 experiments involving particle size d̂ = 70 µm, and initial vol-

ume fractions ϕ0 = {0.05, 0.15, 0.30, 0.40, 0.50}. Particles are suspended in the less

viscous 93 wt% aqueous glycerin solution. For investigating the effect of particle size,

we consider the fluid in set B being the same as set A, while using smaller particles

d̂ = 40 µm, with initial volume fractions ϕ0 = {0.05, 0.30, 0.50} (21 experiments). For

set C, we consider the more viscous 97 wt% solution. This set also consists of 21 ex-

periments, designed to study the effect of interstitial fluid on the flow. Table 2.3 lists

three sets of experiments and their assigned variables.

2.2 Results

2.2.1 Buoyancy-driven exchange flow of pure fluids in inclined pipes

Before proceeding to particle-laden limit, we first performed 33 experiments with

pure fluids in order to: 1) Explore the effect of buoyant mixing in the absence of

particles providing a basis for comparison with further suspension experiments.

2) Validate our experimental apparatus through benchmarking against the well-

established results of Seon et al. (2005) and (2007), obtained for various density con-

trasts and tilt angles [16, 18]. Two major effects are observed as seen in figure 2.2a

(The parameters are ρ̂H = 1018.4 kg m-3, ρ̂L = 998.1 kg m-3,µ̂H = µ̂L = 1 × 10−3 Pa s,

At = (1−ψ)/(1+ψ) = 0.01, ϕ0 = 0, Re t = 291, ξ = 0, and rp = 0. The field of view

is 2000 × 9.53 mm2 in all the images). First, interpenetration in the form of quasi-

parallel layers of heavy fluid, named leading, into the light pure one, termed as trail-

ing over time is evident. Second, at angles away from horizontal, transverse mixing,

in the form of Kevin-Helmholtz instabilities, homogenizes local density contrast at
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Figure 2.2: (a) Sequence of experimental images for pure exchange flow obtained for
β= 60◦ at times t̂ = [0,5,11, . . . 32,37] s. (b) Array of images over the full
range of inclination angle, β, at t̂ ≈ 35 s.

the interface [16]. Location of the interface between heavy (C = 0) and light (C = 1)

fluids is obtained from the averaged concentration profile across the depth, C̄(x̂, t̂)

[35].

Similar to Seon et al. (2005) [16], we observed three different flow regimes by in-

creasing β, i.e., decreasing inclination (figure 2.2b). I) diffusive : for pipes close to

vertical, flow is turbulent and thoroughly diffusive meaning that the averaged con-

centration profile C̄(x̂, t̂) follows a macroscopic diffusion law which is shown in our

appendix; see also Ref. [18]. II) Transitionary: by further increasing β, mixing across

the width of the pipe becomes weaker, and C̄(x̂, t̂) no longer follows the diffusive law

[16, 18]. Inertia is the dominant limiting process during the first and second flow

regimes. III) Viscous: finally, heavy and light fronts steadily evolve over time in the

form of separate counter-current fingers with minimal transverse mixing. Flow in

this regime is controlled by viscous-buoyant stress balance. Seon et al. (2007) have

shown in viscous regime except the particular case of horizontal pipe, the front al-

ways reaches a constant velocity [18]. Thus, in the following section, the special

case of β= 90◦ is excluded from our experiments for generality. See the appendix for

quantitative classification of different flow regimes and benchmarking results.
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2.2.2 Particle-laden exchange flows in near-horizontal angles: halt time

and distance

Unlike interpenetrating flow of pure fluids in which buoyancy forces arise from

the density difference between heavy fluid and light ambient (using salt), such forces

in suspension gravity currents originate from denser particles in the mixture [32]. In

near-horizontal pipes, upon releasing the gate, similar exchanging leading and trail-

ing fronts are formed; see figure 2.3a. (The parameters are ϕ0 = 0.30, β= 88◦, d̂ = 70

µm, µ̂ f = 0.367 Pa s, û0 = 0.009 mm s-1, ψ= 0.767, Re t = 1.21, ξ= 2.01, and rp = 0.007.

The field of view is 2000×9.53 mm2). Flow develops through three stages after re-

leasing the gate. During stages I and II, buoyant stress in order of (ρ̂H − ρ̂L) ĝD̂, is

initially balanced by inertial stress as (ρ̂H + ρ̂L)V̂ 2, and later is controlled by viscous

stress, (ρ̂H + ρ̂L)ν̂avV̂ /D̂2. Here, ν̂av is the average kinematic viscosity of heavy and

light fluids [16, 17]. Therefore, we have defined the respective characteristic veloci-

ties for inertial and viscous phases as

V̂t =
√

1−ψ

1+ψ
ĝD̂, (2.1)

V̂ν = 1−ψ

1+ψ

ĝD̂2

ν̂av
, (2.2)

where, ψ= ρ̂L/ρ̂H(ϕ0) is density ratio of the light fluid to heavy suspension.

Saha et al. (2013) [32] showed an additional stage for flow in horizontal tilt an-

gle, during which, particle settling gradually diminishes the driving buoyancy force

through reducing the effective density difference (stage III).

Consequently, flow reaches an abrupt halt over a finite distance [32]. The behav-

ior reported by Saha et al. (2013) [32] for horizontal duct (β= 90◦), is found to persist

in the slightly inclined pipe in our experiments (β = 88◦). Henceforth, we use the

word sedimentary as indication to this stage. Halt is evident in figure 2.3a where

leading front remains almost immobile with time. There is also found a straight line

14



Heavy suspension Light pure fluid

Leading front
Trailing front

Sediment-
ary front

Stoppage distance

1  0.90.80.70.60.50.40.30.20.10  

(a)

Trailing front

Sedimentary front

-1000 -500 0    500  1000 

0

200

400

600

800

1000 0

0.2

0.4

0.6

0.8

1

(b)

0 200 400 600 800 1000
0

1

2

3

4

5
104

0 1000
0

250

(c)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

(d)

Figure 2.3: (a) Sequence of images at times t̂ = [0,136,272, . . . 816,952] s , (b) spatio-
temporal diagram of the depth-averaged concentration, (c) leading front’s
location , and (d) frontal velocity dependency on time for a suspension
flow at near horizontal angle (set A).
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corresponding to the halt distance which is evident from spatio-temporal diagram

of the depth-averaged concentration in figure 2.3b. Settling rate is often expressed

as the product of Stokes slip velocity of a single particle û0 = (ρ̂p − ρ̂ f ) ĝd̂2/(18µ̂ f ) by

Richardson-Zaki hindrance function, (1−ϕ0)5 [43–45]. Thus, the characteristic slip

velocity of the sedimentary phase, ûs, is defined as

ûs =
r2

p(ξ−1)(1−ϕ0)5

18
ĝD̂2

ν̂ f
, (2.3)

with ν̂ f being the kinematic viscosity of interstitial fluid. Note that ψ and ξ are

convertible as ψ= 1/(1+ (ξ−1)ϕ0) [34].

Figure 2.3a further depicts the settling of particles from top part of the pipe to-

wards the bottom. Due to the depthwise settling, trailing front created by light pure

fluid disappears after a while (see third to fifth snapshots in figure 2.3a). The disap-

pearance of the trailing front is accompanied by the formation of a sedimentary front

on the very left hand side of the tube marked in figure 2.3a. As the flow halts, all the

leading, trailing, and sedimentary fronts stop advancing (figures 2.3a & 2.3b). Loca-

tion of the leading, trailing, and sedimentary fronts at any time are obtainable from

the mean scaled concentration profiles C̄(x̂, t̂) 1. The obtained values are then pre-

cisely fitted by ninth-degree polynomials. Results are displayed in spatio-temporal

diagram (figure 2.3b) using white dashed line for leading and black for trailing and

sedimentary fronts.

Leading front’s location, X̂ f , shown in figure 2.3c (inset), initially grows linearly

with time, later deflects, and ultimately turns to a plateau as develops through

inertial, viscous, and sedimentary phases respectively. Inertial-viscous transition

(t̂ ≃ 70 s) as well as viscous-sedimentary changeover (t̂ ≃ 700 s) are also clearly evi-

dent in this figure. Notice that the front location in figure 2.3c is primarily expressed

in the form X̂2
f to be consistent with study of Saha et al. (2013) [32]. X̂ f is further

1The criteria for locating fronts are verified by those in previous works of the authors [13, 35, 36].
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Figure 2.4: Variation of the stoppage distance X̂s, and time t̂s (inset), with initial vol-
ume fraction of particles: ϕ0 = {0.05, 0.15, 0.30, 0.40, 0.50}, β= 88◦, using
set A.

used to calculate the instantaneous frontal velocity as V̂f = dX̂ f /dt̂. As seen in fig-

ure 2.3d, V̂f gradually decreases to zero as flow comes to a halt at stoppage time,

t̂s, corresponding to the distance, X̂s. We present halting time t̂s, and distance X̂s,

in figure 2.4 for various initial volume fraction of particles, ϕ0, for a slightly angled

pipe, β = 88◦. (Other parameters are d̂ = 70 µm, µ̂ f = 0.367 Pa s, û0 = 0.009 mm s-1,

ψ = {0.952, 0.868, 0.767, 0.712, 0.664}, Re t = {1.37, 1.72, 1.21, 0.67, 0.22}, ξ = 2.01,

and rp = 0.007). Both curves in figure 2.4 interestingly depict a maximum over

an intermediate particle concentration (ϕ0 = 0.30) which is consistent with findings

of Ref. [32] obtained for a strictly horizontal channel. Error bars were small, thus

not shown in this figure for clarity. This unique phenomenon can be described by

looking into the competing effect of the viscosity and density of suspension. Basi-

cally, by increasing the initial volume fraction of particles ϕ0, suspension’s viscosity

µ̂H(ϕ0)∝ (1−ϕ0/ϕ j)−2 increases exponentially, neighboring infinity in the vicinity of

packed limit (ϕ0 →ϕ j). Meanwhile, density of suspension ρ̂h(ϕ0)∝ϕ0 also increases
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linearly with ϕ0. As a result, in the dilute limit where viscosity is low, density dif-

ference is also small leading to a premature halt of the flow. Close to the packing

limit, density difference is significant, yet the viscosity is extensively high so the flow

remains almost immobile. This can explain the maximal halting time and distance

corresponding to the intermediate ϕ0.

2.2.3 Particle-laden exchange flows in inclined pipes

2.2.3.1 Principal characteristics

Pipe inclination transforms the behavior of flow by affecting settling and spread-

ing processes [30]. Three distinct regimes are observed in our low-Reynlods-number

experiments (Re t ∈ [0.10−1.72]). i) At low particle concentrations, ϕ0, and inclina-

tions (β→ 88◦), flow is primarily controlled by sedimentation and may halt at a finite

location as explained in section 2.2.2. Halting occurs less frequently as the pipe is

further inclined, in fact, none is observed for β< 75◦ over the range of particle concen-

trations ϕ0 = {0.05, 0.15, 0.30, 0.40, 0.50}. The advancing suspension front position,

X̂ f , for such flows is curved and turns to a plateau; see figure 2.5a. (Parameters are

ϕ0 = 0.30, d̂ = 70 µm, µ̂ f = 0.367 Pa s, û0 = 0.009 mm s-1, β= 30◦, 75◦ & 88◦, ψ= 0.767,

Re t = 1.21, ξ= 2.01, and rp = 0.007.) ii) At higher ϕ0 and inclinations (β→ 0◦), parti-

cles remain mixed in suspension, yet almost no significant mixing is present between

two fluids. Leading and trailing fronts spread ceaselessly and linearly with time t̂.

Therefore, X̂ f follows a straight line (figure 2.5c), as one may face during viscous

regime in pure-pure gravity exchange flows [16, 17]. iii) A transitionary domain ex-

ists between these two regimes, in which, flow manifests both sedimentary and mix-

ing characteristics, i.e., the heavy front neither advances linearly nor comes to a halt.

As a result, frontal displacement profile, X̂ f , is curved but continues unceasingly; see

figure 2.5b. It can also be shown that transition to mixing flows predominately occurs

over angles closer to horizon and away from vertical direction.
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(a) Sedimentary (b) Transitionary (c) Mixing

Figure 2.5: Experimental images at t̂ ≈ 150 s (top) and corresponding spatio-
temporal diagrams of the depth-averaged concentration (bottom) for
three flow regimes (a) sedimentary, (b) transitionary, and (c) mixing.

In order to distinct the flow regimes from one another more effectively, X̂2
f

quantity versus time, t̂, can be used as shown in figure 2.6. (Parameters are

d̂ = 70 µm, µ̂ f = 0.367 Pa s, û0 = 0.009 mm s-1, ϕ0 = {0.05, 0.15, 0.30, 0.40, 0.50},

ψ = {0.952, 0.868, 0.767, 0.712, 0.664}, Re t = {1.37, 1.72, 1.21, 0.67, 0.22}, ξ = 2.01,

and rp = 0.007.) Upward-facing curves growing unboundedly with time, are related

to the mixing regime. Oppositely, downward-facing curves progressing slowly to a

halt are categorized under the sedimentary regime. Other types of profiles which fol-

low neither trends, including irregular curves (figures 2.6a-2.6c) and straight lines

(figures 2.6d and 2.6e), belong to the transitionary regime. It is evident from fig-

ure 2.6 that the transitionary flows occur over a very narrow range of inclination

angles. To capture these flows we had to precisely design additional experiments.

It is appropriate at this stage to look into the timescales over which the sedi-

mentary, mixing, and transitionary processes take place and examine their variation

with inclination angle. Timescale pertaining to streamwise spreading is given as
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Figure 2.6: Front position, X̂2
f (t̂), over time, t̂, for various angles of inclination and

phi0 corresponding to the experiments in set A. Colors correspond to sed-
imentary (green), transitionary (yellow), and mixing (blue) regimes.
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D̂/(δV̂ν cosβ). For sedimentation, however, the timescale is defined as D̂/(ûs sinβ)

with length scale D̂/sinβ being approximately the depth of suspension at each an-

gle. By increasing β, i.e., moving away from vertical, the timescale of stream-

wise advancement increases monotonically, while the sedimentation timescale de-

creases from infinity. Therefore, the sedimentary flow is expected to emerge in near-

horizontal angles and mixing at higher inclination as also observed in the experi-

ments.

Zhou et al. (2005) presented a similar classification for free-surface particulate

film flow over a slope [30]. They reported three distinct settling behaviors: at low

concentrations, ϕ0, and inclinations (large β), particles settle out of the flow and ag-

gregate at the bottom. At intermediate ϕ0 and β, suspension remains well mixed.

And at higher ϕ0 and inclinations (smaller β), particles are transported faster than

fluid, accumulating in a thick ridge in the vicinity of the advancing contact line. Sim-

ilar behaviors of the first and second regimes in Zhou et al. (2005) are also observed

in downstream pipe section in our experiments corresponding to “sedimentary” and

“mixing” regimes. Nevertheless, our results show no particle enrichment near the

tip of the front; see figure 2.7 for images over full range of parameters. Accumu-

lation may occur as a result of relative transportation rate of solid and fluid [30,

31]. Zhou et al. (2005) [30] expressed that the relative velocity solid-fluid is pro-

portional to the particle settling rate ûs, which in our experiments is estimated as

typically O(10−4) weaker than characteristic velocity V̂ν. Therefore, particles remain

rather immobile with respect to fluid in streamwise direction. Still in the depth-

wise direction, volume fraction may increase with depth by settling or decrease

by the particle flux due to the gradients in concentration and shear stress [46–

48]. Mirzaeian & Alba (2018) [34] showed that in narrow vertical channels shear-

induced migration effect may be neglected in front of settling one if the ratio of their
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(a) ϕ0 = 0.05 (b) ϕ0 = 0.15

(c) ϕ0 = 0.30 (d) ϕ0 = 0.40

(e) ϕ0 = 0.50

Figure 2.7: Array of experimental images at various angles for same experiments
as in figure 2.6 recorded at: (a) t̂ = 484± 32 s, (b) t̂ = 248± 12 s, (c) t̂ =
141±13 s, (d) t̂ = 101±9 s, and (e) t̂ = 153±35 s. View: 2000×9.53 mm2.
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fluxes (in m/s),
ĴMigration

ĴSettl ing
= 9Kν(1−ϕ0/ϕ j)2

ψ(ξ−1)
1−ψ

1+ψ
, (2.4)

is infinitesimal. Constant Kν ≈ 0.62 corresponds to shear-induced particle flux due

to gradient in effective viscosity of the suspension [47]. The ratio in Eq. (2.4) is

approximately 0.05-0.25 for our range of study, implying that the migration effects

may not be too small in presented experiments (up to 25 % of settling flux). As a

visual example, consider the experiment at β= 60◦ in figure 2.7b. For this experiment

at t̂ ≈ 248 s with ûs = 0.004 mm s-1, a sediment layer with 1 mm thickness is expected

(pipe width is approximately 10 mm). However, the concentration across thickness

of the leading front seems to be uniform in this figure. One may relate the reduced

particle settling to the migration flux due to high shear rate at this angle.

Let us now focus on the irregular protuberance observed at the forefront of some

experiments, for example the one at β = 15◦ with ϕ0 = 0.30 in figure 2.7c. For a

closer look, consider Fig 2.8 showcasing this experiment. (Parameters are ϕ0 = 0.30,

β= 15◦, µ̂ f = 0.367 Pa s, û0 = 0.009 mm s-1, ψ= 0.767, Re t = 1.21, ξ= 2.01, and rp =
0.007.) The mean concentration, C̄, in the right-hand pipe is presented for a sequence

of recordings in this figure. It is clear that the spike in concentration at the advancing

front is caused by a bump at the tip of the leading front. In the absence of particle

enrichment close to the front, such bump is solely controlled by three-dimensional

inertial effects [17, 49]. Similar patterns are often observed in our experiments with

intermediate volume fraction ϕ0, and in pipes tilted away from horizontal (β→ 0◦);

see for example β = 15◦ and 30◦ in figures 2.7b-2.7d. The height and stretch length

of these bumps may vary with ϕ0 and β; see figure 2.7. Further detailed analysis of

ridge formation at the front is beyond the scope of this paper.

We have summarized flow classification results for set A in the phase dia-

gram of figure 2.9a. (Parameters are ϕ0 = {0.05, 0.15, 0.30, 0.40, 0.50}, d̂ = 70 µm,

µ̂ f = 0.367 Pa s, û0 = 0.009 mm s-1, ψ = {0.952, 0.868, 0.767, 0.712, 0.664}, Re t =
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Figure 2.8: Concentration profiles on the right-hand side of the pipe at times t̂ =
[0,23,46 . . . 138,161] s, showing the formation of a ridge close to the front
region.

{1.37, 1.72, 1.21, 0.67, 0.22}, ξ = 2.01, and rp = 0.007.) Mixing cases shown by (p)

belong to a domain as specified by intermediate particle concentration and high in-

clination (see area below the dashed line). We expect to find fewer mixing flows in

dilute limit (ϕ0 → 0) and none at ϕ0 = 0, where there is no driving density differ-

ence to set off the exchange flow. The same trend is presumed for the packed limit

(ϕ0 →ϕ j) where effective viscosity µ̂H(ϕ0)= µ̂ f (1−ϕ0/ϕ j)−2 becomes extremely high

so that suspension will be overly packed and almost immobilized. This explains the

predicted deflection of mixing domain’s bound near higher volume fraction, ϕ0, in fig-

ure 2.9a. Furthermore, due to strong sedimentation in the limit of near-horizontal

pipes (β→ 90◦), all experiments in this angle are classified as sedimentary and shown

by (u) in the phase diagram. Few sparse transitionary data points adjacent to the

mixing domain are also shown in this figure as (q) which make up for approximately

20% of all cases. The experiments with and without a ridge at the leading front are

also marked in figure 2.9a, stretching over medium ϕ0 and small β. The implication
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Figure 2.9: (a) Phase diagram, and (b) variation of the mean frontal velocity V̂f ,av,
versus angle of inclination β, for experiments in set A. The fitted line in
inset is given by Eq. (2.6) with CF = 0.435.

is that at least some forms of inertial bump appear in majority of mixing experi-

ments.

An important characteristic which is of interest to geophysical and industrial pro-

cesses is how fast the heavy suspension layer advances within duct upon its release

into a light ambient. We have obtained the mean frontal velocity, V̂f ,av, by averaging

V̂f at long times when the flow proceeds steadily (variation in velocity is less than

10%). Figure 2.9b presents measured mean frontal velocities for all the experiments

in set A. V̂f ,av grows expectedly with inclination (or decrease in β) since the driv-

ing buoyancy force in streamwise direction increases (depthwise sedimentation also

decreasing). Furthermore, higher velocities are interestingly found over an interme-

diate range of particles volume fraction, away from dilute (ϕ0 = 0.05) and dense limits

(ϕ0 = 0.50). This phenomenon can be explained by considering the intricate effect of

ϕ0 on heavy fluid’s density and viscosity. The ratio of density of light to heavy fluid,

ψ= ρ̂L/ρ̂H(ϕ0), decreases with ϕ0, ultimately resulting in a larger driving buoyancy

force (increasing V̂f ,av). In the vicinity of packing concentration, however, effective

viscosity µ̂H(ϕ0), grows exceedingly (µ̂H(ϕ0)∝ (1−ϕ0/ϕ j)−2); viscous dissipation is

strong and flow motion is highly restrained (decreasing V̂f ,av). That is why a maxi-
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mal interpentration rate, V̂f ,av, is achieved over an intermediate volume fraction.

Let us now investigate whether the dimensional front speeds in figure 2.9b can

be predicted (scaled) using an appropriate velocity scale. Herbolzheimer & Acrivos

(1981) suggested that for batch sedimentation (Boycott flow), the motion of the de-

scending suspension/clear-fluid interface to be enhanced according to Λ1/3 cos2β [27].

Here, Λ= 18ϕ0/[(1−ϕ0)5r2
p] is the ratio of the sedimentation Grashof number to Re t,

representing the combined effects of pipe geometry and kinematics of sedimentation.

In our case, since we face an exchange flow between the heavy and light phases, gov-

erned by viscous-buoyant stress balance (Eq. 2.2), Λ1/3 cos2β enhancement term may

be multiplied by V̂ν. In other words, a velocity scale, Û f , may be constructed as

Û f = V̂νΛ
1/3 cos2β. (2.5)

The inset in figure 2.9b does, in fact, reveal the successfulness of such scaling. Except

for the vertical pipe (high Û f values in figure 2.9b), velocities collapse agreeably on a

line given as

V̂f = CFÛ f , (2.6)

with CF = 0.435 being the curve-fitted slope. In fact, Û f can be ∼O(102) greater than

characteristic velocity of the pure viscous flow, V̂ν. Therefore, we can substantiate

that Boycott-type enhanced flow rate in the clarified layer which is exclusively re-

vealed in suspension exchange flows in inclined pipes, indeed facilitates evolution of

fronts. Nonetheless, the same statement is simply invalid for the vertical pipe where

such an effect is nonexistent.

2.2.3.2 Effect of particle size

For a comprehensive and independent evaluation of each flow parameter

in particle-laden exchange current, the density mismatch of heavy and light
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(a) ϕ0 = 0.05 (b) ϕ0 = 0.30

(c) ϕ0 = 0.50

Figure 2.10: Array of experimental images at various angles corresponding to the
experiments of set B recorded at (a) t̂ = 778±51 s, (b) t̂ = 200±26 s, and
(c) t̂ = 165±59 s. View: 2000×9.53 mm2.

(a)

0 15 30 45 60 75 90

0

2

4

6

8

0
=0.05

0
=0.30

0
=0.50

0 25

0

10

(b)

Figure 2.11: (a) Phase diagram, and (b) variation of the mean frontal velocity V̂f ,av,
versus angle of inclination β, for experiments in set B. The fitted line in
inset is given by Eq. (2.6) with CF = 0.244.

27



phases, ψ= 1/(1+ (ξ−1)ϕ0), is preserved throughout all three experimental sets

(ξ= ρ̂p/ρ̂ f ≈ 2). The settling velocity, û0, is then reduced via two ways: 1) Using

smaller particles, results of which are presented in this section. 2) Choosing a

more viscous fluid (to be presented in section 2.2.3.3). We have carried out a to-

tal of 21 experiments using smaller particles of the same density, shape, and dis-

tribution within the same fluid; see set B in Table 2.3. Range of initial particle

concentration is ϕ0 = {0.05, 0.30, 0.50}, and experiments cover full range of inclina-

tion angles (β ∈ [0◦,88◦]). Herein, only parameters involving particle size d̂, such

as particle-to-pipe-diameter ratio rp, and the settling velocity ûs ∝ r2
p are reduced;

see Eq. (2.3). All the other parameters in Tables 2.1 and 2.2 remain unchanged; see

snapshots of set B experiments given in figure 2.10. (Parameters are d̂ = 40 µm,

µ̂ f = 0.367 Pa s, û0 = 0.003 mm s-1, ϕ0 = {0.05, 0.30, 0.50}, ψ = {0.952, 0.767, 0.664},

Re t = {1.37, 1.21, 0.22}, ξ= 2.01, and rp = 0.004.)

We use similar method as explained previously to classify the flow and present the

results in figure 2.11a. Interestingly, the boundary of the mixing regime is slightly

shifted upward, meaning that the transition from sedimentary to mixing flows oc-

curs even at closer angles to the horizontal direction. This behavior is well expected

since the buoyant stress, scaled as (1−ψ) ĝD̂, is unaffected by the change of parti-

cle size d̂, meanwhile reduced sedimentation lets particles stay mixed in the flow for

a longer time. It is also very interesting that the periphery of the ridged domain in

the phase diagram remains rather untouched regardless of the particle size; compare

figure 2.11a with figure 2.9a. This reiterates the fact that in the absence of signifi-

cant relative velocity between solid and fluid phases along the pipe, bumps originate

from the inertial effects at the tip and are certainly independent of settling behav-

ior of particles. Through visual examples of the experiments in figure 2.10, it can be

also observed that the particle-enrichment is insubstantial along the leading front;

for example, see the image at β= 75◦ with ϕ0 = 0.30 in this figure.
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Apart from the vertical pipe (β = 0◦), the trends in V̂f ,av for experiments

with smaller particles (set B) in figure 2.11b, seem to be consistent with those of

larger particles (set A shown previously in figure 2.9b). Front velocity consistently

decreases with β and is maximal over an intermediate ϕ0 range. The decrease in

particles’ settling rate does not have a sizable impact on the advancement of front;

compare V̂f ,av values between figures 2.9b and 2.11b. The scaled results presented

in the inset of figure 2.11b, display a collapse on a line with the equation in form of

Eq. (2.6) with the constant CF = 0.244. Note that CF has decreased equiproportional

with rp in experiments of set B with respect to set A, implying that CF = f (rp).

2.2.3.3 Effect of fluid’s viscosity

The fluid’s viscosity, µ̂ f , affects the flow behavior remarkably by controlling:

1) settling rate ûs ∝ 1/µ̂ f (see Eq. (2.3)), and simultaneously 2) The spreading

rate through adjusting the effective viscosity of suspension µ̂H(ϕ0)= µ̂ f (1−ϕ0/ϕ j)−2.

We have designed 21 additional experiments by suspending the same particles of

set A, this time, in a fluid almost twice as viscous with nearly the same density

(variation was < 1%; see set C in Table 2.3). As a consequence, µ̂H is increased,

thus lowering ûs and Re t, while all other parameters remain unchanged. See fig-

ure 2.12 for the experimental images belonging to set C. (Parameters are d̂ = 70 µm,

µ̂ f = 0.765 Pa s, û0 = 0.004 mm s-1, ϕ0 = {0.05, 0.30, 0.50}, ψ = {0.953, 0.770, 0.668},

Re t = {0.66, 0.58, 0.10}, ξ = 1.99, and rp = 0.007.) Counterintuitively, extents of do-

mains in the phase diagram given in figure 2.13a are in identical fashion of those

in set A shown in figure 2.9a. It is valid to conclude that the fluid’s viscosity con-

sistently influences the settling and spreading processes to the same extents, thus

the regime transition is immaterial of µ̂ f . Nevertheless, by increasing the viscosity

of fluid, V̂f ,av decreases in all experiments with regard to set A; compare the results

in figure 2.13b to figure 2.9b. Note that by increasing µ̂ f both the viscosities of sus-
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(a) ϕ0 = 0.05 (b) ϕ0 = 0.30

(c) ϕ0 = 0.50

Figure 2.12: Array of experimental images at various angles corresponding to the
experiments of set C recorded at (a) t̂ = 882±52 s, (b) t̂ = 323±42 s, and
(c) t̂ = 251±18 s. View: 2000×9.53 mm2.
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Figure 2.13: (a) Phase diagram and (b) variation of the mean frontal velocity V̂f ,av,
versus angle of inclination β, for experiments in set C. The fitted line in
inset is given by Eq. (2.6) with CF = 0.385.
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pension and pure phases are increased leading to overall flow slowdown (decrease in

V̂f ,av).

Again, here the scaled velocities collapse onto a line similar to Eq. (2.6) with the

slope CF = 0.385. This constant also varies adversely with the viscosity, suggesting

that in general CF = f (rp, µ̂ f ). Therefore, it is advised that CF values given in this

manuscript are valid only over certain range of flow parameters and should not be

generalized to different circumstances (see Tables 2.1 and 2.2).
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Chapter 3: Modeling

In the previous chapter we identified distinct sedimentary, transitionary, and

mixing flow regimes depending on different combinations of parameters. It was

shown that flow often manifests mixing behavior over the range of intermediate ϕ0,

and in pipes with high inclination (lower β). It was also revealed that the aver-

age velocity of the advancing front V̂f ,av, follows a scaling paradigm as expressed in

Eq. (2.6). Vertical pipe case (β = 0◦), however, is exempt from this model in the ab-

sence of Boycott-type settling mechanism. Such a flow is crucially important in oil

well construction during the vertical drilling/cementing stages. Therefore, an accu-

rate assessment of the scale of frontal velocity in the vertical pipe, requires a precise

mathematical modeling of the problem. Furthermore, such a model enables us to ex-

amine the particle-enrichment phenomenon which was absent in our experimental

results by adopting proper flow parameters.

Lubrication approximation can be applied to model flows in buoyant-viscous do-

main with negligible inertia. A continuum 1D lubrication model of a particle-laden

film flowing down a slope was first developed by [30], predicting the evolution of the

interface height, h, and particle volume fraction, ϕ, with time, t, and streamwise dis-

tance, x. References [30, 31, 48] reported the formation of a particle-rich ridge in the

vicinity of the advancing suspension front (contact line) due to different rates of solid

and fluid transport. Two-dimensional effects were later studied in [50], revealing

that the addition of solid particles can diminish well-known fingering instabilities of

an advancing contact line. While there is a large body of studies on modeling single-

layer suspension film flows, the literature on two-layer exchange systems of suspen-

sion and pure fluid lacks severely. As a novel approach, we extend the methodology of

[30] for free-surface film flows to a practical exchange system within confined (duct)
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Figure 3.1: Schematic of the symmetric particle-laden exchange flow in a vertical
2D duct used in the lubrication model analysis. Note that dimensional
notations are used in the figure. The interface shape is illustrative only.

geometry. As discussed in [51], the exchange flow of two fluids in a vertical duct may

reveal slumping side-by-side or symmetric patterns with either heavy or light fluids

moving in the core region of the duct. In particular, we are interested in the sym-

metric mode where the heavy particle-laden film falls along the side walls and the

light fluid moves upward in the center of the duct; see figure 3.1. From a different

perspective, the examined exchange flow can be considered as an extension to the

fundamental Taylor bubble problem of [52], now studied for particle-laden fluids.

In this chapter, a more comprehensive scenario is considered where the carrying

and light can be different from one another (same-fluid assumption in experiments

of chapter 2). Therefore, two new dimensional parameters, i.e., carrying fluid density

ρ̂ f ,H , and viscosity µ̂ f ,H are introduced to the problem. Accordingly, the new dimen-

sionless parameters involving carrying fluid are obtained, e.g., light-to-carrying-fluid

density and viscosity ratios, denoted by η and κ, respectively. Also, note that the par-
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ticle size here is presented by its radius â, whereas duct width is considered 2D̂. All

other non-dimensional parameters are adjusted accordingly and explained throughly

in the section 3.1. This study is further extended by investigating the variation of

interpenetrating rate as well as particle concentration within the suspension layer

along the vertical pipe analytically, for a wide range of controlling parameters. This

includes the effects of density, size, and volume fraction of particles, as well as vis-

cosity and density of light and carrying fluids, and Reynolds number. Results are

presented in dimensionless interface height and concentration figures which are fur-

ther discussed throughout this chapter. A last note here is that the developed model

is only applicable to highly viscous regimes and it is unable to capture interfacial

instabilities due to the inherent lubrication model assumption used (negligible in-

ertia) [19]. The stability of thin pure fluid films were extensively studied in the

previous works [20, 53, 54] via a Weighted Residual (WR) model. Extending the

current particle-laden formulation to a similar WR model, capable of capturing in-

stabilities, is extremely challenging due to the addition of weakly inertial terms in

Navier-Stokes equations.

3.1 Dimensional and dimensionless governing parameters

The problem shown schematically in figure 3.1 involves 11 dimensional param-

eters which we denote with ˆ symbol. The gravitational acceleration is denoted by

ĝ. The vertical duct has width, 2D̂, and length, L̂. The duct geometry considered

may simulate particle-laden groundwater flows through aquifers, conduits, caves,

cracks, joints, and faults. To capture the fully-developed flow effects as discussed

in [13], we assume L̂ ≫ D̂. The solid particles, which are considered to be heavier

than the carrying fluid (negatively buoyant), have radius, â, and density, ρ̂p. Par-

ticularly, we are interested in non-Brownian suspensions i.e. â > 1 µm [37]. The

Newtonian carrying fluid in the heavy solution has density, ρ̂ f ,H , and viscosity, µ̂ f ,H .

Similarly, the Newtonian light fluid density and viscosity are denoted by ρ̂L and µ̂L
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Table 3.1: List of dimensional independent input parameters of the lubrication model
problem.

Definition parameter
Gravitational acceleration ĝ

Half the duct width D̂
Duct length L̂

Particle radius â
Particle density ρ̂p

Carrying fluid density ρ̂ f ,H
Carrying fluid viscosity µ̂ f ,H

Light fluid density ρ̂L
Light fluid viscosity µ̂L

Initial total volume of particles V̂p
Jamming volume of particles V̂j

respectively. Both the fluids and solid phases are assumed to be incompressible. The

initial total volume of particles is V̂p. At time t̂ = 0 s, the heavy particle-laden mix-

ture occupies the top half of the duct (x̂ < 0) whereas the light pure fluid takes the

bottom half (x̂ ≥ 0). The jamming volume which depends on the shape and pack-

ing arrangement of the particles, is further assigned by V̂j [32]. Through a dimen-

sional analysis based on Buckingham-π theorem, it is not difficult to show that 8

dimensionless parameters control the flow in question, namely the duct aspect ratio,

δ = D̂/L̂ ≪ 1, particle-radius-to-half-the-duct-width, rp = â/D̂, particle-to-carrying-

fluid density ratio, ξ = ρ̂p/ρ̂ f ,H , light-to-carrying-fluid density ratio, η = ρ̂L/ρ̂ f ,H ,

light-to-carrying-fluid viscosity ratio, κ = µ̂L/µ̂ f ,H , initial volume fraction of parti-

cles, ϕ0 = V̂p/V̂H , jamming volume fraction, ϕ j = V̂j/V̂H , and the Reynolds number,

Re = ρ̂H
(
ϕ0

)
V̂t(2D̂)/µ̂H

(
ϕ0

)
. Similar to the approach of [31], we assume that the

volume fraction of particles across the depth of the suspension layer, y, is uniform

i.e. ϕ = ϕ(x, t) only. See Ref. [55] for particle heterogeneity effects in sedimentary

flows and Appendix B for negligibility of shear-induced migration effects. Assum-

ing that the duct has unit depth, the total volume of the heavy solution is found as

V̂H = D̂L̂. Further assuming monodisperse spherical particles, jamming volume frac-
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Table 3.2: List of dimensionless independent input parameters of the lubrication
model problem.

Definition parameter
Aspect ratio δ= D̂

L̂
≪ 1

particle-radius-to-half-the-duct-width ratio rp = â
D̂
≪ 1

Particle-to-carrying-fluid density ratio ξ= ρ̂p
ρ̂ f ,H

> 1

Light-to-carrying-fluid density ratio η= ρ̂L
ρ̂ f ,H

> 1

Light-to-carrying-fluid viscosity ratio κ= µ̂L
µ̂ f ,H

∈ [0.1,10]

Initial volume fraction of particles ϕ0 = V̂p

V̂H
<ϕ j

Jamming volume fraction of particles ϕ j = V̂j

V̂H
≈ 0.67

Reynolds number Re = ρ̂H(ϕ0)V̂t(2D̂)
µ̂H(ϕ0) ∼O(1)

tion is obtained as ϕ j ≈ 0.67 [31]. The expressions ρ̂H
(
ϕ0

)= (
ρ̂pϕ0 + ρ̂ f ,H

(
1−ϕ0

))
and

µ̂H
(
ϕ0

)= µ̂ f ,H
(
1−ϕ0/ϕ j

)−2 determine the density and viscosity of heavy fluid respec-

tively [32]. The characteristic velocity in the Reynolds number expression is defined

as V̂t =
√(

1−ψ
)

ĝD̂/
(
1+ψ

)
where ψ= ρ̂L/ρ̂H(ϕ0) = η/

(
1+ (ξ−1)ϕ0

)
is the density ra-

tio of the light fluid to heavy suspension. In our simulations, η can be larger than 1

i.e. light fluid heavier than the carrying fluid. However, ψ is always less than one

meaning that the overall suspension mixture is heavier than the light fluid. The di-

mensional parameters governing the flow along with the dimensionless numbers and

their ranges are listed in Tables 3.1 and 3.2.

3.2 Lubrication model derivation

We aim to construct a lubrication model in simplified vertical 2D channel geome-

try shown schematically in figure 3.1. Due to symmetry, only half of the duct domain

between the left wall (y = 0) and center (y = 1) is considered in the model. Extend-

ing the model to a pipe geometry, potentially more convenient for experimentation,

is performed in Appendix C. As discussed in depth in Appendix B, for the Boussi-

nesq limit considered (At ≪ 1 where At = (ρ̂H(ϕ0)− ρ̂L)/(ρ̂H(ϕ0)+ ρ̂L)= (1−ψ)/(1+ψ)

is the Atwood number), we may neglect the diffusive effects associated with shear-
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induced migration of particles [31, 56, 57]. A lubrication model describing viscous

exchange flow of pure fluids has been developed in our recent work [58] for which

the configuration was considered to be slumping i.e. no-slip condition at both y = 0

and 1. Here, we adopt a symmetric configuration i.e. no-slip condition at y = 0 and

stress-free condition at y = 1. Following the approach of [58] the governing stream-

wise and depthwise momentum equations in the heavy particle-laden layer reduce

to

0=−px + ρH(ϕ)Re
1−ψ

+µH(ϕ)uyy, (3.1)

0=−py, (3.2)

where we have scaled the streamwise and depthwise distances by D̂/δ and D̂ respec-

tively. Moreover, the pressure has been scaled by µ̂H(ϕ0)V̂t/(δD̂). The dimensionless

density and viscosity of the heavy layer in the continuum form and as a function of

the particles volume fraction, ϕ, are expressed below [31]

ρH
(
ϕ

)= 1+ (ξ−1)ϕ
1+ (ξ−1)ϕ0

, (3.3)

µH
(
ϕ

)= (
1−ϕ/ϕ j

)−2(
1−ϕ0/ϕ j

)−2 . (3.4)

Similarly, for the light fluid layer we obtain

0=−px + ψRe
1−ψ

+muyy, (3.5)

0=−py, (3.6)
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where m = µ̂L/µ̂H(ϕ0) = κ
(
1−ϕ0/ϕ j

)2 is the viscosity ratio of the light fluid to that of

the heavy suspension layer. Integrating (3.2) and (3.6) across the width gives

p = p0 (x, t)+ ρH(ϕ)xRe
1−ψ

, 0≤ y≤ 1, (3.7)

where we define p0(x, t) as

p0 (x, t)= p (x,0, t)− ρH(ϕ)xRe
1−ψ

. (3.8)

In obtaining (3.7), we neglected the effects of an interfacial tension between the two

mixtures for simplicity. In other words, we consider an immiscible interface but with

zero interfacial tension. Such limit is indeed equivalent to a miscible interface with

zero molecular diffusion; see [20, 54, 59] for studies taking similar approach for pure

fluids.

The pressure expression (3.7) is now used in the streamwise momentum equa-

tions (3.1) and (3.5) to give

0=−P0,x +µH(ϕ)uyy, 0≤ y≤ h, (3.9)

0=−P0,x − ρH(ϕ)−ψ

1−ψ
Re+muyy, h ≤ y≤ 1. (3.10)

Note that for simplification, we have defined P0,x = p0,x+ (xρH,ϕϕxRe)/(1−ψ). Apply-

ing appropriate boundary and interfacial conditions in (3.11)-(3.13), the equations

(3.9) and (3.10) can be integrated with respect to y in order to determine the stream-

wise velocity closures in each layer. In the case of miscible fluids, standard no-slip

condition at the lower wall (y = 0) may be used. However, in the case of immisci-

ble fluids, we face the well-known contact-line problem due to the singularity of the

stress at the walls. Many authors have worked intensely for decades to address this

issue suggesting a wide range of remedies e.g. replacing no-slip conditions at the
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wall by Navier-slip ones [60] assuming a narrow precursor film of thickness b in the

vicinity of the wall as laid out by [61]. Similar to study of [31], we are interested in

a scenario where the suspension mixture flows close to the surface of the duct wall.

The precursor film approach then suits our application the best. In fact, the validity

of such assumption for particle-laden flows has been confirmed in the experiments of

[30]. Due to the symmetry, we can further apply the stress-free condition in the duct

center (y= 1). In summary

u = 0, at y= 0, (3.11)

uy = 0, at y= 1. (3.12)

The homogeneity of the velocity and stress at the interface, h, requires

[u]= 0,
[
τxy

]= 0, at y= h, (3.13)

where [ ] denotes the jump of the given quantity. Note that in (3.13), τxy = uy for the

heavy and τxy = muy for the light fluids respectively. The last condition needed to

solve the system of equations (3.9) and (3.10) for the velocity closures is the total flow

constraint
1∫

0

ud y= 0. (3.14)

The streamwise velocity, u, in the heavy and light layers can then be obtained by

integrating (3.9) and (3.10) twice as

u = P0,x y2

2µH
+ c1 y+ c2, 0≤ y≤ h, (3.15)

u =
(
P0,x + ρH −ψ

1−ψ
Re

)
y2

2m
+d1 y+d2, h ≤ y≤ 1, (3.16)

where P0,x, c1, c2, d1, and d2 are coefficients given in Appendix D. The flux function,
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Figure 3.2: Variation of the flux function, q, in (3.17) with interface height, h, for
pure fluids (ϕ0 = rp = ξ= 0) and a) κ= 1 at various values of Re, b) Re =
20 at various values of κ.

q = q̂/D̂, as the flow rate within the heavy layer can eventually be calculated as

q =
h∫

0

ud y, (3.17)

which is given in Appendix E as function of h, Re, m, µH , and ρH . In the case of pure

fluids (ϕ0 = 0), we obtain ρH = µH = 1 from (3.3) and (3.4). Relevant dimensionless

numbers governing the flow would then be reduced to Re and κ. Note that since

ρH = 1 in (3.16) the model becomes immaterial of ψ (thus η). Figures 3.2a and b

show the variation of q versus h for different values of Re and κ respectively. As

h → 0 and 1, q → 0. The flux function, q exhibits a maximum in the interval h ∈ [0,1].

The location of this maximum remains unchanged in the iso-viscous case, h ≈ 0.586;

see figure 3.2a. However, the maximal q location slightly shifts to the left (smaller

h) with decreasing the viscosity ratio, κ, i.e. less-viscous light fluid, as shown in

figure 3.2b.

The evolution equations for the interface height and particle volume fraction re-

spectively read; see appendix F for derivation and also Ref. [31] for similar formula-
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tion derived for particle-laden film flow over an inclined surface,

ht + qx = 0, (3.18)

(ϕh)t + (upϕh)x = 0, (3.19)

where up is the particle velocity expressed as up = q/h + us(1 − ϕ). Here,

us = f (ϕ)w(h)u0 is the dimensionless hindered Stokes velocity with u0 =
2â2 (

ρ̂p − ρ̂ f ,H
)

ĝ/(9V̂tµ̂ f ,H) - or u0 = (ξ−1)ψκRe
(
1+ψ

)
r2

p/(9mη
(
1−ψ

)
) - being the

dimensionless Stokes velocity of a single particle [32]. Moreover, f (ϕ) = (1−ϕ)5

is Richardson-Zaki settling function [43] and w(h) is the wall function chosen as

w(h) = h2 to give 0 and 1 at the wall (y = 0) and center (y = 1) respectively; see also

Ref. [31] for other forms of the wall function. In (3.18) and (3.19), time is naturally

scaled by D̂/(δV̂t). In order to advantageously solve the system of equations (3.18)

and (3.19) in a conservative framework, we define an additional parameter θ as

θ =ϕh. (3.20)

Using (3.20), (3.18) and (3.19) will result in the following set of equations, simply in

the form of classical Riemann problem

ht +Fx(h,θ)= 0, (3.21)

θt +Gx (h,θ)= 0, (3.22)

where

F(h,θ)= q(h,θ), (3.23)

G(h,θ)= θF(h,θ)
h

+u0θ

(
1− θ

h

)
f
(
θ

h

)
w(h). (3.24)
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The kinematic conditions (3.21) and (3.22) along with flux condition (3.14) ensure

conservation of pure fluids as well as total mass of particles (and thus volume and

area due to the presumed incompressibility) at all times.

3.3 Numerical scheme

3.3.1 Procedure

Our methodology to numerically solve the system of Partial Differential Equa-

tions (PDE) of (3.21) and (3.22) in space, x, and time, t, is based on the robust explicit

high-resolution Total Variation Diminishing (TVD) finite difference scheme of [62].

We first define

u⃗ =

 h

θ

 , f⃗ =

 F

G

 (3.25)

Discretizing (3.21) and (3.22) using finite difference method gives

u⃗n+1
j − u⃗n

j

∆t
+ 1
∆x

[
f⃗ n

j+ 1
2
− f⃗ n

j− 1
2

]
= 0. (3.26)

The flux vector, f⃗ , in (3.26) is expressed as

f⃗ n
j± 1

2
= 1

2

{[
f⃗
(
u⃗R,n

j± 1
2

)
+ f⃗

(
u⃗L,n

j± 1
2

)]
−an

j± 1
2

[
u⃗R,n

j± 1
2
− u⃗L,n

j± 1
2

]}
. (3.27)

Here,

u⃗R,n
j+ 1

2
= u⃗n

j+1 −
∆x
2

(⃗
un

x
)

j+1, u⃗L,n
j+ 1

2
= u⃗n

j +
∆x
2

(⃗
un

x
)

j,

u⃗R,n
j− 1

2
= u⃗n

j −
∆x
2

(⃗
un

x
)

j, u⃗L,n
j− 1

2
= u⃗n

j−1 +
∆x
2

(⃗
un

x
)

j−1, (3.28)
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with (⃗un
x )k being a flux limiter chosen to be in the minmod class of the following form

(⃗
un

x
)
k = minmod

( u⃗n
k − u⃗n

k−1

∆x
,
u⃗n

k+1 − u⃗n
k

∆x

)
. (3.29)

The function minmod is defined as

minmod (a,b)= 1
2

[sgn(a)+sgn(b)] .min(|a| , |b|) . (3.30)

Also note that

an
j± 1

2
=max

ρ
(
∂ f⃗
∂u⃗

)
u⃗R,n

j± 1
2

,ρ

(
∂ f⃗
∂u⃗

)
u⃗L,n

j± 1
2

 , (3.31)

gives the local propagation speed of the interfacial wave. Here,

ρ(A)= max(|λ1| , |λ2|), (3.32)

is the spectral radius of matrix A with λ1 and λ2 being its eigenvalues. The stable

time step, dt, is calculated using a Courant-Friedrichs-Lewy (CFL) condition as

dt = CFL.dx
max(|a (t)|) . (3.33)

For our simulations, we have found that CFL ≈ 0.1 leads to stable results. Once h

and θ are computed, particle volume fraction can be simply obtained from ϕ = θ/h.

The numerical examples shown in this thesis are attained using the computational

resources in Center for Advanced Computing & Data Systems of University of Hous-

ton (Maxwell cluster). While the run time on a parallelized code on such a cluster

(4 nodes) for pure fluids can be very quick (order of minutes), due to the extremely

small mesh size required in the particle-laden case, it can take up to 4 days for the

simulations to complete. We will discuss this in more details in section 3.4.2.
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3.3.2 Benchmarking notes

In order to ensure the validity of our model and numerical scheme, the following

steps were taken (results are not presented here for brevity): 1) Figures 6.23-27 and

6.32 in [62], obtained from solving similar nonlinear conservation equations to (3.21)

and (3.22), were successfully recovered using our code. 2) Adopting the flux function

expression given in Appendix B of [58], we benchmarked their results of exchange

flow of pure immiscible fluids in a duct. 3) In the case of particle-laden film flow over

a flat free surface studied by [31], the flux function, q, is shown to simply reduce

to q = ρHh3/µH ; compare with q expression given in our Appendix E. Using this

flux function and our numerical scheme, we fully restored figures 4.3 and 4.4 in [31],

where they depict particle enrichment and depletion effects in the vicinity of the

advancing suspension front. We will discuss this issue in detail in section 3.4.2.

3.4 Results

3.4.1 Pure fluids (ϕ0 = 0)

While the slumping exchange flow of two fluids in a duct has been investigated ex-

tensively in the literature [19, 58, 63, 64] the symmetric configuration, to the best of

our knowledge, has not been studied even for pure fluids. Therefore, we find it impor-

tant to address such limit first before moving on to a more complicated particle-laden

flow. In the absence of an interfacial tension between the two fluids, the thickness

of the precursor film can be chosen as zero (b = 0) without any contact-line singu-

larity issue [19, 58]. Figure 3.3a shows the evolution of the interface height with

time assuming two iso-viscous fluids (κ= 1) at Re = 20. (Other parameters used are

ϕ0 = rp = ξ= 0.) The initial condition is such that the interface height is h = 1 and 0

over x < 0 and x ≥ dx respectively, i.e. the heavy (light) mixture occupying left (right)

side of the duct. It has been confirmed that the computed solution is not sensitive

to the choice of initial condition (results not presented here for brevity). The mesh
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Figure 3.3: a) Evolution of the interface height, h, with time, t = [0,1,2, ...,10], of two
iso-viscous fluids. b) Dependency of the derivative of the flux function,
qh, on h. c) Collapse of the h profiles using similarity parameter, λ= x/t.

size chosen to produce figure 3.3a and all other pure fluid examples is dx = 0.02. The

results for dx = 0.002 (blue dashed line) are almost indistinguishable from those of

dx = 0.02 as illustrated in figure 3.3a. Due to the symmetric duct flow configuration,

the light layer in the center of the duct has to advance faster than the heavy one to

conserve mass.

The interface profiles shown in figure 3.3a suggest a rather self-similar pattern

in the form of steady traveling waves. Using a similarity parameter, λ= x/t, equation

(3.18) can be re-written as

−λhλ

t
+ qλ

t
= 0. (3.34)
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Alternatively, the following condition can be derived

λ= qh, (3.35)

which, via q expression given in Appendix E, relates λ to h, Re and κ. For the

example shown in figure 3.3a (ϕ0 = 0, Re = 20, κ= 1), we may obtain the following

λ=−10(h3 −5h2 +6h−2)h2, (3.36)

Equation (3.36) clearly has an analytical expression for h as function of λ. However,

it can be checked this solution does not satisfy the total flow rate constraint (3.14)

over the whole range of λ [58]. Reference [65] showed that a compound wave solution

may instead be put forth comprising heavy and light layers front heights, hH f and

hLf , located at λH f and λLf respectively; and a stretching region in between (λLf <
λ<λH f ). Following the approach of [19], the front heights, hH f and hLf , and speeds,

λH f (=VH f ) and λLf (=VLf ), are determined from the equal-area rule

q(hH f )= hH f qh(hH f ), (3.37)

−q(hLf )= (1−hLf )qh(hLf ). (3.38)

Figure 3.3b depicts the implementation of the equal-area rule for the example shown

in figure 3.3a. It is found that hH f ≈ 0.482, hLf ≈ 0.736, VH f ≈ 0.366 and VLf ≈
−0.575. The compound similarity solution for the flow shown in figure 3.3a is finally

obtained as

h =


1, λ<−0.575,

−10
(
h3 −5h2 +6h−2

)
h2, −0.575≤λ≤ 0.366,

0, λ> 0.366,

(3.39)
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velocity profile, u.

The analytical solution (3.39) and computed interface profiles at long time are shown

in figure 3.3c. The long-time behavior is defined where there are no noticeable

changes of the interface height behavior with time, t. For instance, in figure3.3a, it

can be seen that as time progresses, the interface height front approaches the value

of 0.482 i.e. the layers steadily interpenetrate into one another within a traceable

path. Very close agreement found between the analytical solution (3.39) and compu-

tation in figure 3.3c verifies the effectiveness of the similarity-solution approach.

Figure 3.4a compares the interface profiles at long time (t = 10) for κ= 1 and dif-

ferent values of Re. (Other parameters used are ϕ0 = rp = ξ = 0.) As observed, the

interpenetration of the heavy and light layers is enhanced with Re. Larger Re can

be interpreted as higher density difference between the two fluids which acts to in-
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tensify the exchange flow. Although the frontal speeds change with Re, the front

heights remain unaffected. The effect of a viscosity contrast between the two flu-

ids, κ, is shown in figure 3.4b. It is evident that at lower κ values (less-viscous light

fluid), the degree of interpenetration of the layers is higher which is in agreement

with the findings of [19, 64] for slumping flows. Keeping Re = ρ̂H
(
ϕ0

)
V̂t(2D̂)/µ̂H

(
ϕ0

)
constant with more-viscous heavy fluid (low κ) requires larger V̂t or driving buoy-

ancy force which acts to expand the extent of the exchange zone (figure 3.4b). Unlike

figure 3.4a shown for different values of Re, the front height does change with κ.

It is insightful at this stage to look into the streamwise velocity profiles of a typical

simulation. Figure 3.4c shows computed velocity profiles using (3.15) and (3.16) at

different locations, x = −6,−2,2,5, for κ = 2 case in figure 3.4b. The calculated in-

terface heights at the given x locations are respectively, h = 1,0.669,0.534,0. The

velocity profile is perfectly zero at duct cross sections that are full of heavy (h = 1)

and light (h = 0) layers. The validity of the no-slip and no-stress conditions (3.11) and

(3.12) at the wall (y = 0) and the duct center (y = 1) respectively is apparent. Since

κ = 2 corresponds to a less-viscous heavy fluid, we note a slightly larger gradient of

velocity within this layer (h = 0.669 and 0.534 cases in figure 3.4c) which ensures

homogeneity of shear stress across the interface; see condition (3.13).

The variation of the height and speed of heavy and light fronts at long time with

κ and Re is shown in figure 3.5 using the equal-area rule. Figures 3.5a and b demon-

strate the variation of hH f and hLf respectively over a wide range of κ. As predicted

in figure 3.4a, the heights of heavy and light fronts will not change with the Reynolds

number. Therefore, the curves for all values of Re overlay in figures 3.5a and b. hH f

reaches a minimum at κ≈ 0.8, while the minimum hLF appears at a smaller viscosity

contrast (κ ≈ 0.2). Although hH f and hLf change non-monotonically with viscosity

ratio, the variation of VH f and VLf with κ is monotonic as shown in figures 3.5c and

d. Also note that unlike the frontal height, the frontal speeds clearly depend on Re
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(speeds increasing with Re). Absolute values of VH f and VLf decrease with an in-

crease in κ as also revealed in figure 3.4b.

3.4.2 Particle-laden flows (ϕ0 > 0)

We now examine particle-laden flows. Solving the governing system of PDEs

(3.18) and (3.19) numerically when ϕ0 ̸= 0, is more challenging since an extremely

small mesh size (dx ≈ 2×10−7) is required to fully capture the underlying effects of

the flow [31]. Figure 3.6a shows the evolution of the interface height profile, h, at

times t = [0,0.01,0.02, ....,0.1] for ϕ0 = 0.3, Re = 0.1, and κ= 1. The other parameters

are chosen closely to those in the experiments of [30] (rp = 0.06, ξ= 1.9, and η= 1.25).

The particle volume fraction value mostly chosen in our study (ϕ0 = 0.3) is selected

such that a comparison with results of [30] and [31] can be made feasible. Under-

standing the suspension behavior in dense granular limit (ϕ0 → ϕ j) [66] requires

further studying which is outside the scope of current thesis. Note that the viscos-

ity function (3.4) becomes singular as ϕ0 → ϕ j. In the case of particle-laden flows, a

zero precursor film thickness introduces a singularity into the solution as laid out by

[31]. To overcome such a singularity, we have used a small value of b = 0.01 in the

thesis unless otherwise stated; see also experiments of [30] and computations of [31].

The small choice of t = 0.1 for the case of figure 3.6 is due to the limited access to

computational resources for carrying out these simulations. Nevertheless, even this

small interval is enough to extrapolate the long time behavior of the flow, thanks to

the self-similarity characteristic of the solutions. The top insets in figures 3.6a and b

show the collapse of profiles using λ= x/t with a small residual dependence on time

which is comparable to that found by [19] and [58] for displacement flows. Due to the

complex interface shape, Rankine-Hugoniot similarity conditions of [30] may not be

directly applied to the particle-laden exchange flows in confined geometry. Computed

solution mesh independence is successfully confirmed in figure 3.6a for two different

values of dx. The blue dashed line in (a) shows the solution at t = 0.1 for dx = 2×10−6
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Figure 3.6: Evolution of the a) interface height, h, and b) particle volume fraction, ϕ,
profiles with time, t = [0,0.01,0.02, ...,0.1].

which is almost indistinguishable from that of dx = 2×10−7.

In order to fully understand the effect of particle addition to exchange flows, we

have added interface height profiles corresponding to the pure fluids as inset to the

particle-laden figure results; see figures 3.6-3.13. The Reynolds number, Re, and

mixtures viscosity ratio, m = m(ϕ0,κ) are kept the same in associated pure-fluid and

particle-laden cases. Upon comparing figure 3.6a to pure fluid results shown in the

lower left inset, two important conclusions may be drawn: 1) The interface height

profile in the presence of solid particles exhibits a plateau in the vicinity of the heavy

layer front (h ≈ 0.348 and ϕ ≈ 0.400 as steady long-time behavior). Such plateau is

reminiscent to the capillary ridge in simulations of [58] but is formed under a com-

pletely different mechanism namely the presence of solid particles. 2) The stretched

interface between the heavy and light fronts also is more curved in the particle-laden

case compared to the pure fluid. In order to understand these differences we need to

look at the volume fraction profiles, ϕ, as shown in figure 3.6b. As it is interestingly

evident, there are jumps in ϕ along the duct length, x. Particularly, there is an in-

crease in ϕ close to the light layer’s front followed by a stronger jump in the vicinity

of the heavy layer’s front. This pattern is different than that reported experimentally

and theoretically by [30] for free-surface film flows. Due to the lock exchange config-

51



−1 −0.5 0 0.5 1

x 10
−3

0

0.2

0.4

0.6

0.8

1

x

h

 

 
b = 0.005
0.01
0.1

−1 −0.5 0 0.5 1

x 10
−3

0

0.5

1

a)

Pure fluid

−1 −0.5 0 0.5 1

x 10
−3

0.25

0.3

0.35

0.4

0.45

0.5

x

φ

 

 
b = 0.005
0.01
0.1

b)

Figure 3.7: Change in a) interface height, h, and b) particle volume fraction, ϕ, with
x at t = 0.1 and various values of the precursor film thickness, b.

uration and geometry confinement we witness a two-step increase in ϕ close to the

heavy and light layers instead of the one observed in the vicinity of the heavy front

in the case of [30]. The curvature of the interface height in particle-laden case is then

justified by the fact that the viscosity of the heavy solution is continuously changing

alongside streamwise direction through ϕ in (3.4), in turn modifying the dynamics of

the exchange flow (see also figure 3.4b).

It has been hypothesized by [30] that the accumulation of particles close to the

frontal region of the flow (e.g. in figure 3.6b) is due to the different transport rates

of fluid and solid shown mathematically in (3.23) and (3.24). See also Ref. [67] for

similar shock formation effects in sedimentation problems. One question that might

arise here is whether particle accumulation at the front can grow to an extent that

causes pinch-off. In fact, by closely looking into the experiments of [30, 56, 68–73]

for particle-laden film flow down an incline, there is no evidence that such accumula-

tion may lead to pinch-off. Also note that our computational code fails when particle

enrichment approaches the jamming limit (µ→∞ as ϕ→ϕ j). The lubrication model

assumption will also not be valid close to this limit. As can be seen, in all presented

simulations, the computed ϕ values are well below this jamming limit. Due to set-

tling Stokes velocity of particles (negative buoyancy), the particles accumulate close
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Figure 3.8: Change in a) interface height, h, and b) particle volume fraction, ϕ, with
x at t = 0.1 and various values of the Reynolds number, Re.

to the front. However, this accumulation does not grow unboundedly because at the

same time the properties of the mixture such as density (3.3) and viscosity (3.4) are

also changing as a result of enrichment, eventually taking the frontal flow dynamics

to a balanced state.

The effect of the precursor film thickness, b, is investigated in figure 3.7, keeping

the rest of the controlling parameters the same as in figure 3.6 (ϕ0 = 0.3, Re = 0.1,

κ = 1, rp = 0.06, ξ = 1.9, and η = 1.25). Figure 3.7a shows that even though the

shape of light layer’s front remains unchanged, the one for the heavy layer is sig-

nificantly affected by b; also compare against the inset representing pure-fluid case.

The height of the heavy layer’s front and its extent increase with b. An increase in

the frontal height is accompanied by a decrease in the level of particle enrichment

as evident in figure 3.7b. For small values of b, particle-rich zone grows to an extent

that might cause singularity in the solution (µH →∞ as ϕ→ ϕ j). This observation

is in complete agreement with the findings of [30, 31] for free-surface film flows. In

fact, they mention that this complex frontal shock behavior may not be entirely cap-

tured by first order lubrication model. Figures 3.8a and b compare the profiles of the

interface height, h, and particle volume fraction, ϕ, respectively, at various values

of the Reynolds number, Re. In compliance with our observation in figure 3.8a in-
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Figure 3.9: Change in a) interface height, h, and b) particle volume fraction, ϕ, with
x at t = 0.1 and various values of the initial particle volume fraction, ϕ0.

set for pure fluids, the interpenetration rate of the heavy and light layers similarly

increases with Re. Moreover, the heights of the heavy and light fronts remain the

same while changing Re. The constancy in advancing front heights is accompanied

by uniform increase in volume fraction of particle; see figure 3.8b.

The initial volume fraction of particles, ϕ0, plays an important role in the dynam-

ics of the flow as it controls both the density (3.3) and viscosity (3.4) of the heavy

mixture. Keeping all the other parameters constant, the dependency of the interface

height, h, and volume fraction of particles, ϕ, on ϕ0 is investigated in figures 3.9a

and b respectively. The extent of the exchange flow is decreased with ϕ0 as shown

in figure 3.9a. While the density of the heavy mixture, ρ̂H increases with ϕ0 (larger

driving force), its viscosity, µ̂H , also increases which results to an overall slowdown

of the flow. The frontal heights at the heavy and light layers are shown to minutely

increase with ϕ0. The corresponding profiles to the pure fluid case is shown in inset

of figure 3.9a. An increase in ϕ0 results in a decrease in effective mixtures viscosity

ratio, m, which can mildly extend the exchange zone between the two fluids observed

from the inset of figure 3.9a; see also figure 3.4b. Particle enrichment close to the

heavy and light fronts is consistently observed over a range of ϕ0 (figure 3.9b). How-

ever, the relative rise in particle concentration seems to be slightly less for higher
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Figure 3.10: Change in a) interface height, h, and b) particle volume fraction, ϕ, with
x at t = 0.1 and various values of the light-to-carrying-fluid viscosity
ratio, κ.

ϕ0; compare e.g. ϕ0 = 0.29 and 0.31 curves in figure 3.9b. The general features of the

flow such as interface height curvature as well as particle enrichment close to the

heavy front, for other values of ϕ0, e.g. in the dilute range ϕ0 = 0.01 [6], are similar

to those obtained for ϕ0 ≈ 0.3. Results are not presented here for brevity.

The increase in light-to-carrying-fluid viscosity ratio, κ, tends to contract the ex-

change zone between the two fluids as shown in figure 3.10a. Comparing this to

the results for pure exchange flows shown as the inset, we infer that the height of

the heavy front in the particle-laden case slightly decreases with κ which is com-

plemented by a growth in the volume fraction of particles, ϕ (figure 3.10b). Note

that in the case of free-surface film flow of [30] and [31], an increase/decrease in

the frontal height is only achieved by an increase/decrease in local particle vol-

ume fraction. However, in a confined geometry, various intricate scenarios might

happen at the front, for example, the frontal height might decrease while particle

volume fraction increasing (figure 3.10) and vice versa (figure 3.7). Let us phys-

ically explain the increase of ϕ with κ observed in figure 3.10b: Large κ corre-

sponds to small µ̂ f ,H . Considering the definition, the dimensionless Stokes veloc-

ity, u0 = 2â2 (
ρ̂p − ρ̂ f ,H

)
ĝ/(9V̂tµ̂ f ,H), is increased as µ̂ f ,H is decreased. Larger u0 in-

creases particle slip velocity in G flux function (3.24) which will consequently result
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Figure 3.11: Change in a) interface height, h, and b) particle volume fraction, ϕ,
with x at t = 0.1 and various values of the particle-radius-to-half-the-
duct-width ratio, rp.

in stronger accumulation of particles as shown in figure 3.10b. In the cases of [30]

and [31], the dynamics of flow is basically governed by particle settling within a sin-

gle carrying fluid plus no-stress condition imposed at the free surface. However, in

the current channel flow case, not only we have the effect of particles’ slip velocity but

also the interaction of the carrying and light fluids at the interface captured via the

stress homogeneity condition (3.13). Such combination gives rise to complex patterns

observed in the channel geometry as opposed to the free-surface one.

Investigating the effect of the relative size of particles, rp, can provide more in-

sight into the dynamics of the exchange flow in question. Figure 3.11 shows the

interface height and particle volume fraction profiles for the same parameters as in

figure 3.6 except rp. An increase in the size of particles consistently increases the

height of the heavy front (figure 3.11a) and local volume fraction (figure 3.11b). Note

a similar increase in ϕ close to the light fluid front as well as the heavy one. As it is

evident in figure 3.11a, the interface between the two fluids has been extended with

rp. Let us have a fundamental look into this effect: The increase in rp = â/D̂ can

be interpreted as either an increase in particle radius, â, or a decrease in half of the

duct width, D̂. If we supposedly consider the latter, then from the Reynolds num-

ber expression given in Table 3.2, Re should therefore decrease. Increasing rp while
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Figure 3.12: Change in a) interface height, h, and b) particle volume fraction, ϕ, with
x at t = 0.1 and various values of the particle-to-carrying-fluid density
ratio, ξ.

keeping Re the same in figure 3.11 requires, for instance, a decrease in the heavy

mixture viscosity, µ̂H(ϕ0), which is achievable by decreasing the carrying fluid vis-

cosity, µ̂ f ,H , see section 3.1. In order to keep κ= µ̂L/µ̂ f ,H the same in figure 3.11, µ̂L

shall also be decreased. A decrease in the carrying and light fluids viscosity, on the

other hand, acts to ease the advancement of the exchange flow as confirmed in fig-

ure 3.11a. The effect of rp is also directly reflected in particle’s dimensionless Stokes

velocity, u0 = (ξ−1)ψκRe
(
1+ψ

)
r2

p/(9mη
(
1−ψ

)
), which feeds into the flux function,

G in (3.24). An increase in rp enhances the settling speed of the particles, which in

turn, causes accumulation of particles close to the advancing frontal regions.

Another factor that can potentially enhance the Stokes settling velocity of the

particles is the particle-to-carrying-fluid density ratio, ξ; see figure 3.12. As opposed

to rp, an increase in ξ reduces the interpenetration rate of the heavy and light lay-

ers; see figure 3.12a. At first glance, this effect seems rather counter-intuitive since

an increase in ξ indicates heavier particles which should, in turn, increase the buoy-

ant driving force of the flow. However, similar to the rationale presented for fig-

ure 3.11, we need to consider the fact that the depicted profiles are obtained for con-

stant Reynolds number, Re = ρ̂H
(
ϕ0

)
V̂t(2D̂)/µ̂H

(
ϕ0

)
. From section 3.1, we learnt that

Re depends on V̂t which, by itself, decreases with ψ since V̂t =
√

(1−ψ) ĝD̂/(1+ψ).
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Figure 3.13: Change in a) interface height, h, and b) particle volume fraction, ϕ, with
x at t = 0.1 and various values of the light-to-carrying-fluid density ratio,
η.

The parameter ψ = η/(1+ (ξ− 1)ϕ0) is inversely related to ξ. Therefore, increas-

ing ξ (thus V̂t) meanwhile keeping Re constant may be deduced as an increase in

µ̂H(ϕ0) = µ̂ f ,H(1−ϕ0/ϕ j)−2 or µ̂ f ,H . Since κ = µ̂L/µ̂ f ,H = 1, we shall also have µ̂L in-

creasing. As a result, flow deceleration will occur for high ξ which is correspondingly

confirmed in figure 3.12a. Furthermore, the increase in volume fraction of particles

for high ξ (settling in high viscosity medium) is slightly less than, but still compara-

ble to, that of low ξ owing to the higher density of solids in the former (figure 3.12b).

Finally, the variations of the interface height, h, and particle volume fraction,

ϕ, versus the light-to-carrying-fluid density ratio, η, are examined in figures 3.13a

and b, respectively. Even though the presented η values are all larger than unity, i.e.

light fluid denser than the carrying one, the overall density of the suspension mixture

is always larger than the light pure fluid (ψ < 1). Note that the interpenetration

extent of the mixtures has increased with η (figure 3.13a). Similar to figure 3.12,

this effect also appears counter-intuitive at first. Because, an increase in η means a

denser light fluid in the lower section of the duct compared to the carrying fluid at

the top i.e. a decrease in the effective density difference between the heavy and light

mixtures. Increasing η meanwhile keeping Re the same in figure 3.13a, requires,

for instance, a reduction in the viscosity of the involved fluids (Re ∝ ρ̂H(ϕ0)/µ̂H(ϕ0))
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which consequently enhances flow acceleration. The front height on the heavy side

slightly decreases with an increase in η. As η increases (while keeping Re constant),

mixtures’ viscosity decreases, facilitating particles settling and thus enrichment in

volume fraction, ϕ, close to the fronts (figure 3.13b). Since rp, ξ, and η do not affect

the mixtures’ viscosity ratio, m = κ
(
1−ϕ0/ϕ j

)2, the shape of the interface height

obtained in the pure-fluid limit remains unchanged with these parameters; see insets

shown in figures 3.11a-3.13a.

3.5 Comparison between theory and experiment

A one-to-one comparison between the results of experiments with those of the

modeling may not be possible due to the different flow configurations. In experi-

ments, the exchange domain takes a slumping form in which suspension always oc-

cupies the lower wall of the pipe, while the pure fluid moves closer to the upper wall.

In the modeling, we have considered a symmetric configuration to alleviate the singu-

larity at the location of suspension front. In such geometry, particle-laden flow falls

alongside both walls, while pure fluid goes through the core of channel. Neverthe-

less, the result of modeling can correctly capture the exchanging behavior of heavy

and light fluids as also observed experimentally. For example in figure 3.14 for pure

exchange flow, both in simulation (β = 0◦, Re = 20, m = 1) and experiment (β = 80◦,

Re = 172, m = 1) the heights h, remains almost unchanged with time. Note that the

frontal height is indirectly presented by the average concentration, C̄, in the experi-

ment. This assumption is acceptably valid to estimate h for the slumping flow in the

absence of interfacial mixing.

In the particle-laden limit, the results of experiment and modeling are also rather

comparable. By looking into the figure 3.15, we observe that shape of the suspension

front is deformed in both simulation (β = 0◦, ϕ0 = 0.3, Re = 0.1, κ = 1, rp = 0.06,

ξ = 1.9, and η = 1.25) and experiment (β = 60◦, ϕ0 = 0.3, Re = 1.2, κ = 1, rp = 0.007,

ξ = 2.0, and η = 1). The trailing fronts, however, evolve in different ways. It is seen
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Figure 3.14: Evolution of (a) interface height, h, with time, t = [0, 1, . . . , 10], in
pure exchange simulation, and (b) mean concentration C̄, with time,
t = [1, 12, . . . , 100], in the experiment.
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Figure 3.15: Evolution of (a) interface height, h, with time, t = [0, 0.01, . . . , 0.1], in
particle-laden flow simulation, and (b) mean concentration C̄, with time,
t = [1, 85, . . . , 757], in the experiment.
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in the experiment (right figure), that the height of trailing front grows erratically

over time due to the effective settling across the pipe. Additional experiments need

to be carefully designed in order to evaluate the effectiveness of the mathematical

model. As well as matching fluids and particle densities, a special gate valve needs

to be considered to mimic the flow configuration assumed in the lubrication model,

namely, suspension wetting the wall and pure fluid moving through the core.
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Chapter 4: Conclusions

4.1 Contributions

Buoyancy-driven particle-laden flows in a narrow lock-exchange pipe (small as-

pect ratio, δ= D̂/L̂ ≪ 1) has been initially studied experimentally. Suspension was a

mixture of a Newtonian carrying fluid containing negatively-buoyant solid particles

with sizes in the range of d̂ ∈ [20−100] µm. In the experiments, light fluid was pri-

marily selected as the carrying fluid, thus, the effective density difference between

heavy and light phases was solely dependent on the existence of solid particles. As-

suming a jamming volume fraction of ϕ j ≈ 0.61, five dimensionless parameters con-

trol the flow, namely, pipe inclination angle, β, particle-to-pipe-diameter ratio, rp,

particle-to-fluid density ratio, ξ, initial volume fraction of particles, ϕ0 (away from

packed limit ϕ j →ϕ j), and the Reynolds number Re.

• Due to the small density difference (Boussinesq limit) and high viscosity (cor-

responding to low Reynolds numbers Re ∈ [0.10−1.72]), heavy-light interface

remains mostly unperturbed showing insignificant mixing across the pipe. As

a result, the interpenetration domain is stretched in the form of segregated

counter parallel layers of suspension moving downstream, and light pure fluid

advancing upstream.

• For pipes even slightly inclined, a novel Boycott-type interface is formed be-

hind the suspension which descends downward along the inclination of pipe.

Evolution in the direction of pipe’s axis depends on the relative buoyancy of the

light and heavy phases which itself is a function of their density difference and

the angle of inclination (β from vertical). Sedimentation tends to slow down
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the current as it reduces the concentration and consequently diminishes the

effective driving density difference. The interpenetration rate was shown to be

extremely limited by the trade-off between depthwise settling and streamwise

spreading.

• By inclining the pipe from near horizontal to vertical (decreasing β), three dis-

tinct regimes have been observed: (1) sedimentary: in the near-horizontal pipes

(β→ 90◦) buoyancy force is first balanced by inertia, later by viscosity, and at

long times is controlled by sedimentation. The spreading velocity, V̂f , decreases

constantly to zero until flow halts at a finite distance. The location and time of

the halt is closely related to the density of viscosity of suspension, while both

increase with its initial particle concentration ϕ0. It was observed in our ex-

periments that flows corresponding to intermediate ϕ0, survive longer and stop

further benefiting from rather low viscosity and effective density difference.

Besides, halt occurs less frequently by decreasing β. (2) Mixing: away from

horizontal (β → 0◦), depthwise settling hardly affects the spreading of fronts.

Particles stay mixed in the suspension and flow develops through a viscous-

buoyancy equilibrium. The front velocity, V̂f , then reaches a constant non-zero

value. (3) Transition between sedimentary and mixing regime occurs abruptly

at angles closer to horizontal. Flow in this regime partly demonstrates the

sedimentary and mixing behaviors.

• A classifying method accounting for the profile of the leading front’s location,

X̂ f , have been developed by considering i) straight profile corresponding to the

mixing regime, ii) plateaued curve as sedimentary, and iii) regular curve for the

transitionary domains. In response to the objectives laid out in chapter 1, the

results of this classification have been further plotted on a dimensionless map

of β and ϕ0 applicable for industrial design and planning. It has been revealed
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that the mixing flows abound predominately in the range of intermediate ϕ0

and at high pipe inclinations meaning lower β. Transitionary flows also tend

to occur commonly at angles closer to the horizontal for all ϕ0. A halt was

always observed in flows in the near-horizontal pipe over the full range of ϕ0.

• Average front velocity V̂f ,av, is generally higher for the flows corresponding to

the mixing domain. Using a scaling factor which simultaneously constitutes

the viscous effect (depending on the ξ and Re) and Boycott feature (varying

with ϕ0 and rp) in the flow, allows us to accurately predict the frontal velocity

variation at each angle as given in Eq. (2.6). Near-vertical angles exceptionally

yield to higher variations than predicted values in absence of Boycott-type con-

vection, suggesting that their front velocities no longer follow similar scaling.

• Protuberances in the form of inertial bumps frequently appeared in our mixing

experiments. Particle enrichment along the pipe was insubstantial due to the

negligible streamwise motion of particles relative to the fluid (related to Stokes

settling velocity, û0). However, their migration in depthwise direction has been

proved to help keeping them suspended within the carrying fluid.

• By preserving the density contrast between heavy and light fluids (through

keeping ξ≈ 2), effects of reducing particle size (i.e. reducing rp) and increasing

fluid’s viscosity have further been investigated. Essentially, both reduce the

settling rate of particles û0, with only difference being that by increasing the

fluid’s viscosity, spreading is further restricted (i.e. reduced Re). Therefore, the

sedimentary behavior is diminished if smaller particles are used, while it re-

mains approximately the same regardless of the fluid’s viscosity. Consequently,

flow undergoes phase changeover at lower angles in the former case, whereas

transitions occur invariably over same range of angles during the latter.

In addition to the experimental study, buoyancy-driven exchange flow of two mix-
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tures in a vertical duct (2D channel as well as pipe) was investigated theoretically

to obtain a better insight of the problem in this configuration. The methodology

of [30] for free-surface particle-laden film flows was employed and extended to a

lock-exchange system in a confined geometry under the Boussinesq limit. The de-

rived model takes the simple form of the classical Riemann problem. A robust To-

tal Variation Diminishing (TVD) finite difference scheme was implemented to solve

the model PDEs numerically. The solutions suggest self-similar interface shapes

over time. During this analysis the carrying fluid was assumed to be different than

the light fluid, introducing two new dimensionless parameters to the problem, e.g.,

light-to-carrying-fluid density ratio, η, light-to-carrying-fluid viscosity ratio, κ. In

the limit of small aspect ratio (δ ≪ 1) and assuming a jamming volume fraction of

(here) ϕ j ≈ 0.67, other dimensionless parameters governing the flow, were namely,

particle-radius-to-half-the-duct-width ratio, rp, particle-to-carrying-fluid density ra-

tio, ξ, initial volume fraction of particles, ϕ0, and the Reynolds number, Re.

• The physical effect of these parameters on the dynamics of the flow was quan-

tified through a systematic approach. Novel particle-rich zones inside the sus-

pension were further discovered in the vicinity of the advancing heavy and

light fronts. The particle enrichment at the fronts is associated with differ-

ent transport rates of fluid and solid due to the Stokes settling velocity of the

particles.

• It was also revealed that geometry confinement plays a significant role in ex-

change flow dynamics such as formation of interfacial patterns and particle-

enrichment behavior. While in the unconfined geometry, particle enrichment

was shown to be accompanied by an increase in the interface height profile, in

a confined duct, either an increase or decrease in height is possible depending

on the controlling parameters of the flow. The level of the particle enrichment

remains the same with Re, is enhanced by κ, rp, and η and is slightly reduced
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with ϕ0 and ξ. The stretched interface between the heavy and light fronts

grows with rp, η, and Re but shrinks with ϕ0, κ, and ξ.

• By comparing the simulation result with experiment, similar behaviors were

observed in both analyses. However, due to the limitation of experimental pa-

rameter range as well as different flow configuration in the analytical study a

one-to-one comparison was not feasible. Therefore, additional experiments are

needed in order to effectively evaluate the mathematical model.

4.2 Future works

In the extension to this work, the effects of bidensity particles in suspension

would be of interest. Similar work is the experimental paper by Lee et al. (2014)

[74] for debris flow. Moreover, the displacement flow of suspension by a Newtonian

pure fluid or visa versa, similar to the work of Alba et al. (2013) [13], appears to be a

valid continuation to our lock-exchange experiments with potential industrial signifi-

cances, for example, during the fracking process. Meanwhile, the model can be easily

extended to include interfacial tension effects; see [58] for similar implementation in

the case of pure fluids.
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Published papers

Here, I briefly review the contents used in this thesis from papers that are already

accepted for publication or are currently under review. I also mention the extent of

contribution of collaborators and co-authors in the papers.

• N. Mirzaeian, and K. Alba. Particle-laden exchange flows in inclined pipes.

Prepared for submission to Phys. Rev. Fluids.

This work is primarily experimental study of exchange flow of a particle-laden

mixture releasing into a pure fluid within a lock-exchange pipe geometry. The

suspension consists of solid microspheres with size 20−100µm being suspended

in pure Newtonian fluid. It is shown that the flow evolution is primarily de-

termined by a trade-off between the depthwise settling and streamwise buoy-

ant spreading mechanisms. Various sedimentary, transitionary, and mixing

regimes are classified and the results are mapped onto dimensionless diagrams

suitable for industrial design. A scaling model for the advancing front velocity

is developed accounting for multiple flow parameters as well as the geometry.

Effects of particle size and the viscosity of interstitial fluid are further inves-

tigated. The novelty of this work is in extending the fundamental study of

particulate exchange flows in strictly horizontal channels by Saha et al. (2013)

[32] to an inclined practical pipe. The key finding of this paper is identifying

a dimensionless mixing domain marked by intermediate initial volume frac-

tion of particles, ϕ0, and lower inclination angle, β, measured from the vertical

direction. I conducted the experiments and wrote the paper while benefiting

useful comments from K. Alba. I also supervised co-op student, Hector Garza,

in realizing the experimental apparatus who is also acknowledged in the paper.

This research was supervised by K. Alba.
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• N. Mirzaeian, and K. Alba. Monodisperse particle-laden exchange flow in a

vertical duct. Accepted for publication in J. Fluid Mech.

This paper theoretically studies the particle-laden exchange problem in a

strictly vertical configuration. A 1D lubrication model similar to the method-

ology of Cook et al. (2008) [31] for free-surface thin-film flow, is developed for

channel and pipe geometries. The resulting model, which is in the form of

classical Riemann problem, is further solved numerically using a robust Total

Variation Diminishing (TVD) finite difference scheme. It is observed that the

interface between two fluids takes a self-similar shape at long times. The ef-

fects of various independent controlling parameters of the flow are quantified

through a systematic approach. The novel result of this work is identifying a

particle-enriched zone close to the advancing contact line of suspension. Inter-

estingly, it is shown that particle enrichment in a confined geometry, can be

accompanied by either an increase or decrease in frontal height depending on

the different flow parameters. The paper was written by K. Alba. He devel-

oped the mathematical model in close collaboration with myself (particularly

on shear-induced migration section and relevance to Zhou et al. (2005) [30]

and Saha et al. (2013) [32] models) and carried out the numerical simulations.

Moreover, I read the paper and provided comments prior to the submission as

well as during two detailed rounds of revisions through communication with

external referees. This research was supervised by K. Alba.
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Appendix A: Benchmarking against pure (particle-

free) exchange flow study of Seon et al. (2005) [16]

We used solution of water and NaCl salt for the heavy fluid, and fresh wa-

ter dyed with non-waterproof black ink (1600 mg/l) for the light one. Density dif-

ference between heavy and light fluids was characterized by Atwood number as

At = (ρ̂H − ρ̂L)/(ρ̂H + ρ̂L)= (1−ψ)/(1+ψ) and interpenetrating rate by Reynolds num-

ber, Re t = V̂tD̂/ν̂ f . We performed 33 experiments covering β= 0◦−88◦ and At=0.0035,

0.01 and 0.04 (Re t ∈ [170,600]). Validity of these experiments are ensured via four

ways: (1) Seon et al. [16] classified various viscous, transitionary, and mixing regimes

using the dimensionless controlling parameter Re t cosβ. This quantity represents

the relative strength of streamwise buoyant ∆ρ̂ ĝD̂ cosβ to viscous stresses µ̂V̂t/D̂

[13]. Seon et al. [16] found the changeover from viscous to transitionary flows hap-

pens at Re t cosβ≈ 50. Our experimental results presented in figure A.1a also confirm

such transition. Different regimes are denoted as viscous (u), transitionary (p), and

diffusive (q); different colors correspond to At = 0.0035 (red), At = 0.01 (yellow), and

At = 0.04 (blue).

(2) The frontal velocity variation with inclination in the viscous domain is re-

ported as V̂f /V̂t =
(
1/16−1/

(
2π2))Re t cosβ [16] which is in close agreement to our

prediction shown as inclined dashed line in figure A.1a. (3) Furthermore, in the

same figure, frontal velocities in the transitionary domain collapse onto a plateau

with maximum value V̂f /V̂t ≈ 0.7 as shown by horizontal dashed line remaining al-

most independent of inclination. (4) The heavy and light interpenetrating velocities

in the diffusive flow domain are relatively low due to the effective transverse mix-

ing [16]. For such flows, it is valid to assume a rather stationary mixing core and

79



0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8 Viscous
Transitionary
Diffusive

(a)

0 10 20 30 40 50
0

20

40

60

80

100

120

140
103

At = 0.0035
At = 0.01
At = 0.04

(b)

Figure A.1: Benchmarking result of experiments for pure fluid against Ref. [16]:
(a) dependency of V̂f /V̂t on Re t cosβ, (b) variation of the dimensionless
macroscopic diffusion coefficient versus inclination angle β, and Atwood
number At.

use x̂/
p

t̂ as a similarity parameter [18]. Thus, flow is controlled by a linear diffusion

equation,

∂C̄
∂t̂

= D̂M
∂2C̄
∂x̂2 . (A.1)

Here, D̂M is a macroscopic diffusion coefficient which may be O(105) greater than the

molecular diffusivity D̂m, and is determined by fitting the averaged concentration

profile C̄(x̂, t̂), to solutions of the diffusion equation (A.1). Our measured D̂M for

diffusive experiments in figure A.1b obey the expression proposed by Seon et al. [18],

D̂MRe3/2
t

V̂tD̂
= 5×103 (1+3.6 tanβ)2, (A.2)

for Re t . 1000, which covers the range of our pure exchange experiments. Note that

our macroscopic measurements in figure A.1b agree with Eq. (A.2), and deviations

are comparably similar to those in Ref. [18, 36].

80



Appendix B: Shear-induced migration effects

Migration of particles induced by shear is in fact an important effect widely ob-

served in particle-laden flows. Our methodology follows the approach of [30] for grav-

ity driven suspension film down an incline which neglects shear-induced migration

effect ([75, 76]). In this Appendix we would like to verify under what condition such

assumption is valid. The particle transport equation for particle-laden film flows is

given by [71] and [73] as

ϕt̂ + ûϕx̂ + v̂ϕ ŷ =−Ĵx̂,x̂ − Ĵ ŷ, ŷ. (B.1)

Here, Ĵ is the particle flux due to settling and migration

Ĵ= ĴSettl ing + ĴMigration. (B.2)

The settling and migration flux components can be expressed as the following ([71,

73])

Ĵsettl ing =
2â2 ĝ

(
ρ̂p − ρ̂ f ,H

)
9µ̂ f ,H

(
1−ϕ

)
ϕ, (B.3)

ĴMigration =− â2V̂t

D̂2

[
Kcϕ∇

(
ϕuy

)+ Kvϕ
2uy

µH
∇µH

]
. (B.4)

The constants Kc ≈ 0.41 and Kv ≈ 0.62 correspond to shear-induced particle flux

due to gradients in the particle volume fraction and effective viscosity of the sus-

pension which are determined empirically ([47, 73]). From the velocity expression

(3.15), it can be found that uy ∼ Re; see also Appendix D for the coefficients. There-

fore, the largest flux component due to shear-induced migration in (B.4) is of order

81



Kvâ2V̂tRe/D̂2, whereas that of settling is the coefficient of
(
1−ϕ

)
ϕ term in (F.14)

i.e. 2â2 ĝ(ρ̂p − ρ̂ f ,H)/(9µ̂ f ,H). Note that the rest of the terms in (F.14) and (B.4) being

multiplied by these coefficients are O(1) since they are made dimensionless. By re-

quiring the settling effects overcoming those of migration (Ĵsettl ing ≫ ĴMigration), the

following condition is finally obtained

9Kvη
(
1−ϕ0/ϕ j

)2

ψ (ξ−1)

(
1−ψ

)(
1+ψ

) ≪ 1. (B.5)

Note that the (1−ψ)/(1+ψ) term in (B.5) is nothing but the effective Atwood num-

ber, At = (ρ̂H(ϕ0)− ρ̂L)/(ρ̂H(ϕ0)+ ρ̂L). In other words, the Boussinesq limit (At ≪ 1),

discussed by [54], ensures that the shear-induced migration effects are negligible in

front of settling. Note the rest of the terms in (B.5) are approximately O(1). From a

fundamental standpoint, the small Atwood number or density difference between the

mixtures does not cause strong counter-current and shear in the flow which would

lead to migration. However, in the meantime, the particles would have the oppor-

tunity to settle due to their weight. The condition (B.5) is indeed valid in the simu-

lations presented in this paper. For instance, for a typical set of parameter chosen

in our study e.g. in figure 3.6, the left-hand-side term in condition above is approxi-

mately 0.019 i.e. settling flux more than 50 times stronger than that of shear-induced

migration.
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Appendix C: Axisymmetric flow in pipe

Performing exchange flow experiments in a pipe geometry can be more feasible

compared to the 2D channel one. Therefore, in this appendix the exchange flow model

is extended to a practical pipe geometry; see figure C.1. It is not difficult to show that

in cylindrical coordinate the momentum equations (3.9) and (3.10) take the following

form

0=−P0,x +µH(ϕ) (rur)r /r, 1−h ≤ r ≤ 1, (C.1)

0=−P0,x − (ρH(ϕ)−ψ)Re/(1−ψ)+m(rur)r /r, 0≤ r ≤ 1−h. (C.2)

Applying appropriate boundary and interfacial conditions, the equations (C.1) and

(C.2) can be integrated with respect to r in order to determine the streamwise velocity

closures in each layer. The flux function, q = q̂/(πD̂2V̂t), as the flow rate within the

heavy layer can eventually be calculated as

q = 2
1∫

1−h

rudr, (C.3)

which is given below as function of h, Re, m, µH , ρH , and ψ
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Figure C.1: Schematic of axisymmetric particle-laden exchange flow in a vertical
pipe.

q = −(1/8)Re(−4ln(1−h)µHψ−104h6mψ−144h5µHψ+176h5mψ−80h3mρH +

16h2mρH +164h4mρH +144h5µHρH +104h6mρH +80h6µHψ+92h3µHρH −

30h2µHρH +4hµHρH −4h8mψ+32h7mψ+4h8mρH −32h7mρH −24h7µHψ+

24h7µHρH +3h8µHψ−3h8µHρH +280ln(1−h)h4µHρH −208ln(1−h)h3mψ+

208ln(1−h)h3mρH +224ln(1−h)h3µHψ−224ln(1−h)h3µHρH −112ln(1−h)h2µHψ+

112ln(1−h)h2µHρH +32ln(1−h)hµHψ−32ln(1−h)hµHρH +88ln(1−h)h2mψ−

88ln(1−h)h2mρH −16ln(1−h)hmψ+16ln(1−h)hmρH +4ln(1−h)h8mψ−32ln(1−h)h7mψ−

4ln(1−h)h8mρH +32ln(1−h)h7mρH −4ln(1−h)h8µHψ+32ln(1−h)h7µHψ+

4ln(1−h)h8µHρH −32ln(1−h)h7µHρH +112ln(1−h)h6mψ−112ln(1−h)h6mρH −

112ln(1−h)h6µHψ+112ln(1−h)h6µHρH −224ln(1−h)h5mψ+224ln(1−h)h5mρH +

224ln(1−h)h5µHψ−224ln(1−h)h5µHρH +276ln(1−h)h4mψ−276ln(1−h)h4mρH −

280ln(1−h)h4µHψ−92h3µHψ−164h4mψ−4hµHψ+30h2µHψ+80h3mψ−

16h2mψ+151h4µHψ−151h4µHρH −80h6µHρH −176h5mρH +4ln(1−h)µHρH )/

(µH (h4mψ−h4µHψ−h4m+h4µH −4h3mψ+4h3µHψ+4h3m−4h3µH +6h2mψ−

6h2µHψ−6h2m+6h2µH −4hmψ+4hµHψ+4hm−4hµH −µHψ+µH )). (C.4)

Similar to (3.21) and (3.22), the evolution equations for the interface height and

particle volume fraction in cylindrical coordinate respectively read

Ht +Fx(H,Θ)= 0, (C.5)

Θt +Gx (H,Θ)= 0, (C.6)
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Figure C.2: Comparison of the interface height profile, h, for a) pure fluid (ϕ0 = 0)
and b) particle-laden cases (ϕ0 = 0.3) between pipe and 2D channel. The
inset in part b depicts the corresponding profile of volume fraction, ϕ.

where, H = (1−h)2, Θ= θ
(
1− (1−h)2) /h, and

F(H,Θ)=−q(H,Θ), (C.7)

G(H,Θ)=−ΘF(H,Θ)
1−H

+u0Θ

(
1− Θ

1−H

)
f (H,Θ)w(H). (C.8)

See derivation in the appendix G. Using exact same numerical scheme as the one

explained in section 3.3, system of PDEs (C.5) and (C.6) can be solved to give evo-

lution of H and Θ (thus h and ϕ) in space, x, and time, t. Figures C.2a and b show

sample computed results in pipe geometry for pure fluid (ϕ0 = 0) and suspension

cases (ϕ0 = 0.3) respectively. Figure C.2a compares the pipe interface profile with

that of 2D channel shown earlier in figure 3.3a. The effect of geometry on spread-

ing of heavy and light layers is evident. The computed heavy/light frontal shock

heights (hHF ≈ 0.36 and hLF ≈ 0.63) were successfully compared to those obtained

from equal-area rule in pipe; see also (3.37)-(3.38) and [77]

q(hH f )= (
1− (1−hHF )2) qh(hH f )/[2(1−hHF )], (C.9)

−q(hLf )= (1−hLF )2qh(hLf )/[2(1−hLF )]. (C.10)
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Figure C.2b compares the pipe interface profile against that of 2D channel shown

earlier in figure 3.6 for particle-laden case. The inset depicts corresponding profile

of volume fraction, ϕ. Similar particle enrichment effect as to the 2D channel case

is observed with only slight modification due to the geometric difference. Figure C.2

suggests that the heavy and light frontal height, h, is larger in the case of channel

compared to the pipe. Moreover, the exchange flow overall advances more rapidly in

the former.
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Appendix D: Coefficients in velocity expressions

(3.15) and (3.16) for 2D channel case

P0,x = −[(3h3m−2h3µH −9h2m+6h2µH +6hm−6hµH +2µH)ψ−

3h3mρH +2h3µHρH +9h2mρH −6h2µHρH −6hmρH +6hµHρH −2µHρH]Re/

[2(ψ−1)(h3m−h3µH −3h2m+3h2µH +3hm−3hµH +µH)], (D.1)

c1 = [(2h3m−2h3µH −5h2m+6h2µH +3hm−6hµH +2µH)ψ−

2h3mρH +2h3µHρH +5h2mρH −6h2µHρH −3hmρH +6hµHρH −

2µHρH]hRe/[2µH((h3m−h3µH −3h2m+3h2µH +3hm−3hµH +µH)ψ−

h3m+h3µH +3h2m−3h2µH −3hm+3hµH −µH)], (D.2)

c2 = 0, (D.3)

d1 = [(h−3)ψ−hρH +3ρH]h2Re/

[2(ψ−1)(h3m−h3µH −3h2m+3h2µH +3hm−3hµH +µH)], (D.4)

d2 = [(h3m−h3µH −h2m+h2µH +2µH)ψ−h3mρH +h3µHρH +h2mρH −

h2µHρH −2µHρH]h2Re/

[4µH(ψ−1)(h3m−h3µH −3h2m+3h2µH +3hm−3hµH +µH)]. (D.5)
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Appendix E: Flux function, q, in (3.17) for 2D chan-

nel case

q = [(3h3m−4h3µH −6h2m+12h2µH +3hm−12hµH +4µH)ψ−3h3mρH +

4h3µHρH +6h2mρH −12h2µHρH −3hmρH +12hµHρH −4µHρH]h3Re/

[12µH((h3m−h3µH −3h2m+3h2µH +3hm−3hµH +µH)ψ−h3m+h3µH +

3h2m−3h2µH −3hm+3hµH −µH)]. (E.1)

For pure fluids, ϕ0 = 0 and ρH =µH = 1. Therefore, q is reduced to

q = (3h3m−4h3 −6h2m+12h2 +3hm−12h+4)h3Re
12(h3m−h3 −3h2m+3h2 +3hm−3h+1)

. (E.2)
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Appendix

F: Derivation of lubrication model Eqs. (3.18) and

(3.19) for 2D channel

The flux function in the heavy fluid layer is expressed as

q̂ =
ĥ∫

0

ûd ŷ, (F.1)

Leibniz integral rule can be applied to obtain the derivative of q̂

q̂ x̂ = d
dx̂

ĥ∫
0

ûd ŷ=
ĥ∫

0

û x̂d ŷ+ ĥ x̂û| ŷ=ĥ, (F.2)

continuity requires û x̂ =−v̂ ŷ, therefore

q̂ x̂ =−
ĥ∫

0

v̂ ŷd ŷ+ ĥ x̂û| ŷ=ĥ =−v̂ (h)+ ĥ x̂û| ŷ=ĥ. (F.3)

Meanwhile, depthwise velocity of the height of heavy layer is given by

v̂ (h)= Dĥ
Dt̂

= ĥ t̂ + ĥ x̂u| ŷ=ĥ, (F.4)

thus, the evolution equation for the interface height is obtained as

ĥ t̂ + q̂ x̂ = 0. (F.5)
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Non-dimesnionlized form of (F.5) using x̂ = L̂x, ĥ = D̂h, t̂ = L̂t/V̂t, and q̂ = D̂V̂tq, is

ht + qx = 0. (F.6)

Similar approach can be applied to the particle flux

d
dx̂

ĥ∫
0

ûϕd ŷ= û| ŷ=ĥϕ| ŷ=ĥĥ x̂ +
ĥ∫

0

û x̂ϕd ŷ+
ĥ∫

0

ûϕx̂d ŷ, (F.7)

from continuity û x̂ =−v̂ ŷ, yields

d
dx̂

ĥ∫
0

ûϕd ŷ= û| ŷ=ĥϕ| ŷ=ĥĥ x̂ −
ĥ∫

0

v̂ ŷϕd ŷ+
ĥ∫

0

ûϕx̂d ŷ

= û| ŷ=ĥϕ| ŷ=ĥĥ x̂ − v̂| ŷ=ĥϕ| ŷ=ĥ +
ĥ∫

0

v̂ϕ ŷd ŷ+
ĥ∫

0

ûϕx̂d ŷ. (F.8)

As before,

v̂| ŷ=ĥ = Dĥ
Dt̂

= ĥ t̂ + ĥ x̂u| ŷ=ĥ, (F.9)

similarly,

d
dx̂

ĥ∫
0

ûϕd ŷ=−ϕ| ŷ=ĥĥ t̂ +
ĥ∫

0

v̂ϕ ŷd ŷ+
ĥ∫

0

ûϕx̂d ŷ. (F.10)

On the other hand from the Leibniz integral rule

ϕ| ŷ=ĥĥ t̂ =
d
dt̂

ĥ∫
0

ϕd ŷ−
ĥ∫

0

ϕt̂ d ŷ, (F.11)
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then,

d
dx̂

ĥ∫
0

ûϕd ŷ=− d
dt̂

ĥ∫
0

ϕd ŷ+
ĥ∫

0

(
ϕt̂ + ûϕx̂ + v̂ϕ ŷ

)
d ŷ. (F.12)

The particle transport equation for particle-laden film flows is given by [71] and [73]

as

ϕt̂ + ûϕx̂ + v̂ϕ ŷ =−Ĵx̂,x̂ − Ĵ ŷ, ŷ. (F.13)

Here, Ĵ is the particle flux due to settling and migration. In absence of significant

shear-induced migration effect and for the vertical channel geometry, only settling

flux component remains in (F.13) which is defined

Ĵsettl ing =
2â2 ĝ

(
ρ̂p − ρ̂ f ,H

)
9µ̂ f ,H

(
1−ϕ

)
ϕ= ûs

(
1−ϕ

)
ϕ. (F.14)

Hence, (F.12) is modified

d
dx̂

ĥ∫
0

ûϕd ŷ=− d
dt̂

ĥ∫
0

ϕd ŷ−
ĥ∫

0

Ĵx̂,x̂d ŷ, (F.15)

and in the partial derivative form as

ĥ∫
0

Ĵx̂,x̂d ŷ= ∂

∂x̂

ĥ∫
0

Ĵx̂d ŷ− Ĵx̂| ŷ=ĥĥ x̂. (F.16)

The term Ĵx̂| ŷ=ĥĥ x̂ = 0, indicates the total flux leaving the interface of suspension

layer as also appeared in [78]. Therefore,

ĥ∫
0

Ĵx̂,x̂d ŷ= ∂

∂x̂

ĥ∫
0

Ĵx̂d ŷ, (F.17)
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integrating across width of the layer results in

∂
(
ϕĥ

)
∂t̂

+ ∂
(
ûaveϕĥ

)
∂x̂

+ ∂
(
ûs

(
1−ϕ

)
ϕĥ

)
∂x̂

= 0, (F.18)

since up = ûave + ûs
(
1−ϕ

)
, it is simplified as

∂
(
ϕĥ

)
∂t̂

+ ∂
(
ûpϕĥ

)
∂x̂

= 0, (F.19)

which in dimensionless form becomes

∂
(
ϕh

)
∂t

+ ∂
(
upϕh

)
∂x

= 0. (F.20)
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Appendix G: Derivation of lubrication model for

axisymmetric flow in pipe (Appendix C)

The flux function in the heavy fluid layer is expressed as

q̂ =
D̂∫

D̂−ĥ

2πr̂ûdr̂, (G.1)

Leibniz integral rule can be applied to obtain the derivative of q̂

q̂ x̂ = d
dx̂

D̂∫
D̂−ĥ

2πr̂ûdr̂ =
D̂∫

D̂−ĥ

2πr̂û x̂dr̂+2π
(
D̂− ĥ

)
ĥ x̂û|r̂=D̂−ĥ, (G.2)

continuity requires û x̂ =−∂ (r̂v̂)/r̂∂r̂, therefore

q̂ x̂ =−
D̂∫

D̂−ĥ

2πr̂
1
r̂
∂ (r̂v̂)
∂r̂

dr̂+2π
(
D̂− ĥ

)
ĥ x̂û|r̂=D̂−ĥ

= 2π
(
D̂− ĥ

)
v̂|r̂=D̂−ĥ +2π

(
D̂− ĥ

)
ĥ x̂û|r̂=D̂−ĥ. (G.3)

Meanwhile, depthwise velocity of the height of heavy layer is given by

v̂|r̂=D̂−ĥ = D
(
D̂− ĥ

)
Dt̂

=−Dĥ
Dt̂

=−ĥ t̂ − ĥxû|r̂=D̂−ĥ, (G.4)

thus, the evolution equation for the interface height is obtained as

q̂ x̂ =−2π
(
D̂− ĥ

)
ĥ t̂. (G.5)
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Non-dimesnionlized form of (G.5) using x̂ = L̂x, ĥ = D̂h, t̂ = L̂t/V̂t, and q̂ =πD̂2V̂tq, is

∂(1−h)2

∂t
− ∂q

∂x
= 0. (G.6)

Similar approach can be applied to the particle flux

d
dx̂

D̂∫
D̂−ĥ

2πr̂ûϕdr̂ = 2π
(
D̂− ĥ

)
û|r̂=D̂−ĥϕ|r̂=D̂−ĥĥ x̂ +2π

D̂∫
D̂−ĥ

r̂û x̂ϕdr̂+2π
D̂∫

D̂−ĥ

r̂ûϕx̂dr̂,

(G.7)

from continuity û x̂ =−∂ (r̂v̂)/r̂∂r̂, yields

d
dx̂

D̂∫
D̂−ĥ

r̂ûϕdr̂ = (
D̂− ĥ

)
û|r̂=D̂−ĥϕ|r̂=D̂−ĥĥ x̂ −

D̂∫
D̂−ĥ

∂ (r̂v̂)
∂r̂

ϕdr̂+
D̂∫

D̂−ĥ

r̂ûϕx̂dr̂

= (
D̂− ĥ

)
û|r̂=D̂−ĥϕ|r̂=D̂−ĥĥ x̂ +

(
D̂− ĥ

)
v̂|r̂=D̂−ĥϕ|r̂=D̂−ĥ

+
D̂∫

D̂−ĥ

r̂v̂ϕr̂dr̂+
D̂∫

D̂−ĥ

r̂ûϕx̂dr̂. (G.8)

As before,

v̂|r̂=D̂−ĥ = D
(
D̂− ĥ

)
Dt̂

=−Dĥ
Dt̂

=−ĥ t̂ − ĥ x̂û|r̂=D̂−ĥ, (G.9)

similarly,

d
dx̂

D̂∫
D̂−ĥ

r̂ûϕdr̂ =−(
D̂− ĥ

)
ϕ|r̂=D̂−ĥĥ t̂ +

D̂∫
D̂−ĥ

r̂v̂ϕr̂dr̂+
D̂∫

D̂−ĥ

r̂ûϕx̂dr̂. (G.10)
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On the other hand from the Leibniz integral rule

(
D̂− ĥ

)
ϕ|r̂=D̂−ĥĥ t̂ =

d
dt̂

D̂∫
D̂−ĥ

r̂ϕdr̂−
D̂∫

D̂−ĥ

(
r̂ϕ

)
t̂dr̂, (G.11)

then,

d
dx̂

D̂∫
D̂−ĥ

r̂ûϕdr̂ =− d
dt̂

D̂∫
D̂−ĥ

r̂ϕdr̂+
D̂∫

D̂−ĥ

r̂
(
ϕt̂ + ûϕx̂ + v̂ϕr̂

)
dr̂. (G.12)

The particle transport equation for particle-laden film flows is given by [71, 73]

ϕt̂ + ûϕx̂ + v̂ϕr̂ =−Ĵx̂,x̂ − Ĵr̂,r̂, (G.13)

where,

Ĵsettl ing =
2â2 ĝ

(
ρ̂p − ρ̂ f ,H

)
9µ̂ f ,H

(
1−ϕ

)
ϕ= ûs

(
1−ϕ

)
ϕ. (G.14)

For the vertical channel geometry, hence, (G.12) is modified

d
dx̂

D̂∫
D̂−ĥ

r̂ûϕdr̂ =− d
dt̂

D̂∫
D̂−ĥ

r̂ϕdr̂−
D̂∫

D̂−ĥ

r̂Ĵx̂,x̂dr̂, (G.15)

and in the partial derivative form as

D̂∫
D̂−ĥ

r̂Ĵx̂,x̂dr̂ = ∂

∂x̂

D̂∫
D̂−ĥ

r̂Ĵx̂dr̂− (
D̂− ĥ

)
Ĵx̂|r̂=D̂−ĥĥx. (G.16)
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The term Ĵx̂|r̂=D̂−ĥĥ x̂ = 0, indicates the total flux leaving the interface of suspension

layer as also appeared in [78]. Therefore,

D̂∫
D̂−ĥ

r̂Ĵx̂,x̂dr̂ = ∂

∂x̂

D̂∫
D̂−ĥ

r̂Ĵx̂dr̂, (G.17)

integrating across width of the layer results in

∂
(
ϕ

(
D̂2 − (

D̂− ĥ
)2

))
∂t̂

+
∂
[
ϕq̂+ ûs

(
1−ϕ

)
ϕ

(
D̂2 − (

D̂− ĥ
)2

)]
∂x̂

= 0, (G.18)

which in dimensionless form becomes

∂
(
ϕ

(
1− (1−h)2))

∂t
+ ∂

[(
ϕq+us

(
1−ϕ

)
ϕ

(
1− (1−h)2))]

∂x
= 0. (G.19)
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